WorldWideScience

Sample records for weakly ionized plasmas

  1. Drift waves in a weakly ionized plasma

    DEFF Research Database (Denmark)

    Popovic, M.; Melchior, H.

    1968-01-01

    A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated.......A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated....

  2. Shock Wave Dynamics in Weakly Ionized Plasmas

    Science.gov (United States)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  3. Kolmogorov Dissipation scales in Weakly Ionized Plasmas

    CERN Document Server

    Krishan, V

    2009-01-01

    In a weakly ionized plasma, the evolution of the magnetic field is described by a "generalized Ohm's law" that includes the Hall effect and the ambipolar diffusion terms. These terms introduce additional spatial and time scales which play a decisive role in the cascading and the dissipation mechanisms in magnetohydrodynamic turbulence. We determine the Kolmogorov dissipation scales for the viscous, the resistive and the ambipolar dissipation mechanisms. The plasma, depending on its properties and the energy injection rate, may preferentially select one of the these dissipation scales. thus determining the shortest spatial scale of the supposedly self-similar spectral distribution of the magnetic field. The results are illustrated taking the partially ionized part of the solar atmosphere as an example. Thus the shortest spatial scale of the supposedly self-similar spectral distribution of the solar magnetic field is determined by any of the four dissipation scales given by the viscosity, the Spizer resistivity...

  4. Weak Interaction Neutron Production Rates in Fully Ionized Plasmas

    OpenAIRE

    Widom, A.; Swain, J.; Srivastava, Y. N.

    2013-01-01

    Employing the weak interaction reaction wherein a heavy electron is captured by a proton to produce a neutron and a neutrino, the neutron production rate for neutral hydrogen gases and for fully ionized plasmas is computed. Using the Coulomb atomic bound state wave functions of a neutral hydrogen gas, our production rate results are in agreement with recent estimates by Maiani {\\it et al}. Using Coulomb scattering state wave functions for the fully ionized plasma, we find a substantially enha...

  5. Weak Interaction Neutron Production Rates in Fully Ionized Plasmas

    CERN Document Server

    Widom, A; Srivastava, Y N

    2013-01-01

    Employing the weak interaction reaction wherein a heavy electron is captured by a proton to produce a neutron and a neutrino, the neutron production rate for neutral hydrogen gases and for fully ionized plasmas is computed. Using the Coulomb atomic bound state wave functions of a neutral hydrogen gas, our production rate results are in agreement with recent estimates by Maiani {\\it et al}. Using Coulomb scattering state wave functions for the fully ionized plasma, we find a substantially enhanced neutron production rate. The scattering wave function should replace the bound state wave function for estimates of the enhanced neutron production rate on water plasma drenched cathodes of chemical cells.

  6. Global low-frequency modes in weakly ionized magnetized plasmas: effects of equilibrium plasma rotation

    Energy Technology Data Exchange (ETDEWEB)

    Sosenko, P.; Pierre, Th. [Universite Marseille, Lab. PIIM - UMR6633 CNRS, Centre Saint Jerome, 13 - Marseille (France); Zagorodny, A. [Nancy-1 Univ. Henri Poincare, Lab. de Physique des Milieux Ionises (LPMIA, UPRES-A), Nancy 54 (France); International Centre of Physics, Kyiv (Ukraine)

    2004-07-01

    The linear and non-linear properties of global low-frequency oscillations in cylindrical weakly ionized magnetized plasmas are investigated analytically for the conditions of equilibrium plasma rotation. The theoretical results are compared with the experimental observations of rotating plasmas in laboratory devices, such as Mistral and Mirabelle in France, and KIWI in Germany. (authors)

  7. Moment fluid equations for ions in weakly-ionized plasma

    CERN Document Server

    Semenov, I L

    2016-01-01

    A new one-dimensional fluid model for ions in weakly-ionized plasma is proposed. The model differs from the existing ones in two aspects. First, a more accurate approximation of the collision terms in the fluid equations is suggested. For this purpose, the results obtained using the Monte-Carlo kinetic model of the ion swarm experiments are considered. Second, the ion energy equation is taken into account. The fluid equations are closed using a simple model of the ion velocity distribution function. The accuracy of the fluid model is examined by comparing with the results of particle-in-cell/Monte Carlo simulations. In particular, several test problems are considered using a parallel plate model of the capacitively coupled radio-frequency discharge. It is shown that the results obtained using the proposed fluid model are in good agreement with those obtained from the simulations over a wide range of discharge conditions. An approximation of the ion velocity distribution function for the problem under consider...

  8. Attenuation characteristics of electromagnetic waves in a weak collisional and fully ionized dusty plasma

    Science.gov (United States)

    Dan, Li; Guo, Li-Xin; Li, Jiang-Ting; Chen, Wei; Yan, Xu; Huang, Qing-Qing

    2017-09-01

    The expression of complex dielectric permittivity for non-magnetized fully ionized dusty plasma is obtained based on the kinetic equation in the Fokker-Planck-Landau collision model and the charging equation of the statistical theory. The influences of density, average size of dust grains, and balanced charging of the charge number of dust particles on the attenuation properties of electromagnetic waves in fully ionized dusty plasma are investigated by calculating the attenuation constant. In addition, the attenuation characteristics of weakly ionized and fully ionized dusty plasmas are compared. Results enriched the physical mechanisms of microwave attenuation for fully ionized dusty plasma and provide a theoretical basis for future studies.

  9. Experiments of discharge guiding using strongly and weakly ionized plasma channels for laser-triggered lightning

    Science.gov (United States)

    Shimada, Yoshinori; Uchida, Shigeaki; Yamanaka, Chiyoe; Ogata, Akihisa; Yamanaka, Tatsuhiko; Kawasaki, Zen-ichiro; Fujiwara, Etsuo; Ishikubo, Yuji; Kawabata, Kinya

    2000-01-01

    Generation of a long laser-plasma channel capable of triggering and guiding an electrical discharge is a crucial issue for laser-triggering protection system. We make a long plasma channel to increase the probability of triggered lightning by laser. To produce a long laser plasma channel, we propose da new technique called hybrid plasma channel method which combines weakly and strongly ionized plasma channels to maximize laser-energy efficiency of discharge guiding. We investigate the characteristics of the hybrid plasma channels to maximize laser-energy efficiency of discharge guiding. We investigate the characteristics of the hybrid plasma channel method through several laboratory experiments. The weakly ionized channel was generated by UV laser pulses in air. As the number density of electrons in weakly ionized channel is proportional to 1.1 power of laser intensity, nitrogen and oxygen molecules can not attributed to the source of ionized plasma. It is suggested that dissociation process of impurities in air whose density is 1011 - 1012 cm-3 plays an important role in plasma formation and leader triggering effect. The 50 percent flashover voltage using the hybrid plasma channel method is lower than that without the weakly ionized plasma channel. It was also found that higher repetition rate of the plasma generation on lowers the V50 furthermore.

  10. Generation of Electrojets in Weakly Ionized Plasmas through a Collisional Dynamo

    CERN Document Server

    Dimant, Yakov S; Fletcher, Alex C

    2016-01-01

    Intense electric currents called electrojets occur in weakly ionized magnetized plasmas. An example occurs in the Earth's ionosphere near the magnetic equator where neutral winds drive the plasma across the geomagnetic field. Similar processes take place in the Solar chromosphere and MHD generators. This letter argues that not all convective neutral flows generate electrojets and it introduces the corresponding universal criterion for electrojet formation, $\

  11. Development of a new experimental device for long-duration magnetic reconnection in weakly ionized plasma

    Science.gov (United States)

    Yanai, Ryoma; Kaminou, Yasuhiro; Nishida, Kento; Inomoto, Michiaki

    2016-10-01

    Magnetic reconnection is a universal phenomenon which determines global structure and energy conversion in magnetized plasmas. Many experimental studies have been carried out to explore the physics of magnetic reconnection in fully ionized condition. However, it is predicted that the behavior of magnetic reconnection in weakly ionized plasmas such as solar chromosphere plasma will show different behavior such as ambipolar diffusion caused by interaction with neutral particles. In this research, we are developing a new experimental device to uncover the importance of ambipolar diffusion during magnetic reconnection in weakly ionized plasmas. We employ an inverter-driven rotating magnetic fields technique, which is used for generating steady azimuthal plasma current, to establish long-duration ( 1 ms) anti-parallel reconnection with magnetic field of 5 mT in weakly ionized plasma. We will present development status and initial results from the new experimental setup. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus'', Giant-in Aid for Scientific Research (KAKENHI) 15H05750, 15K14279, 26287143 and the NIFS Collaboration Research program (NIFS14KNWP004).

  12. Lattice-Boltzmann simulation of laser interaction with weakly ionized helium plasmas.

    Science.gov (United States)

    Li, Huayu; Ki, Hyungson

    2010-07-01

    This paper presents a lattice Boltzmann method for laser interaction with weakly ionized plasmas considering electron impact ionization and three-body recombination. To simulate with physical properties of plasmas, the authors' previous work on the rescaling of variables is employed and the electromagnetic fields are calculated from the Maxwell equations by using the finite-difference time-domain method. To calculate temperature fields, energy equations are derived separately from the Boltzmann equations. In this way, we attempt to solve the full governing equations for plasma dynamics. With the developed model, the continuous-wave CO2 laser interaction with helium is simulated successfully.

  13. Polarization forces in the vicinity of nanoparticles in weakly ionized plasma

    CERN Document Server

    Shneider, M N

    2016-01-01

    It is shown that the polarization forces in a weakly ionized plasma lead to a substantial increase in the fluxes of neutral atoms and molecules to the surface of charged nanoparticles. Thus, the nanoparticles can change thermal balance due to the acceleration of atoms and molecules in the dipole potential and subsequent inelastic collisions to the nanoparticles.

  14. Colloidal Plasmas : Dynamo transformation of the collisional R-T in a weakly ionized plasma

    Indian Academy of Sciences (India)

    C B Dwivedi

    2000-11-01

    Theoretical prediction of a new kind of normal mode behaviour of electro-mechanical nature was first time reported by Dwivedi and Das in 1992 in the context of mesospheric modeling of observed neutral induced turbulence. Local dynamo action (due to relative neutral flow) governs the basic physical principle for linear excitation of the neutral induced low frequency instability (NILF) in mesospheric plasma, which comprises of weakly ionized inhomogeneous gas confined by the external gravity and ambient magnetic field. The present contribution offers physical explanation in terms of dynamo transformation of neutral drag effect as a source to understand complete suppression of the usual collisional R-T and in turn linear driving of the NILF. It is therefore emphasized, worth calling it as the dynamo instability.

  15. Three species one-dimensional kinetic model for weakly ionized plasmas

    CERN Document Server

    Gonzalez, J; Tierno, S P

    2016-01-01

    A three species one-dimensional kinetic model is presented for a spatially homogeneous weakly ionized plasma subjected to the action of a time varying electric field. Planar geometry is assumed, which means that the plasma dynamics evolves in the privileged direction of the field. The energy transmitted to the charges is be channelized to the neutrals thanks to collisions and impacting the plasma dynamics. Charge-charge interactions have been designed as a one dimensional collision term equivalent to the Landau operator used for fully ionized plasmas. Charge-neutral collisions are modelled by a conservative drift diffusion operator in the Doughertys form. The resulting set of coupled drift diffusion equations is solved with the stable and robust Propagator Integral Method. This method feasibility accounts for non-linear effects without appealing to linearisation or simplifications, providing conservative physically meaningful solutions. It is found that charge neutral collisions exert a significant effect sin...

  16. Hybrid electrodynamics and kinetics simulation for electromagnetic wave propagation in weakly ionized hydrogen plasmas.

    Science.gov (United States)

    Chen, Qiang; Chen, Bin

    2012-10-01

    In this paper, a hybrid electrodynamics and kinetics numerical model based on the finite-difference time-domain method and lattice Boltzmann method is presented for electromagnetic wave propagation in weakly ionized hydrogen plasmas. In this framework, the multicomponent Bhatnagar-Gross-Krook collision model considering both elastic and Coulomb collisions and the multicomponent force model based on the Guo model are introduced, which supply a hyperfine description on the interaction between electromagnetic wave and weakly ionized plasma. Cubic spline interpolation and mean filtering technique are separately introduced to solve the multiscalar problem and enhance the physical quantities, which are polluted by numerical noise. Several simulations have been implemented to validate our model. The numerical results are consistent with a simplified analytical model, which demonstrates that this model can obtain satisfying numerical solutions successfully.

  17. Three species one-dimensional kinetic model for weakly ionized plasmas

    Science.gov (United States)

    Gonzalez, J.; Donoso, J. M.; Tierno, S. P.

    2016-06-01

    A three species one-dimensional kinetic model is presented for a spatially homogeneous weakly ionized plasma subjected to the action of a time varying electric field. Planar geometry is assumed, which means that the plasma evolves in the privileged direction of the field. The energy transmitted to the electric charges is channelized to the neutrals thanks to collisions, a mechanism that influences the plasma dynamics. Charge-charge interactions have been designed as a one-dimensional collision term equivalent to the Landau operator used for fully ionized plasmas. Charge-neutral collisions are modelled by a conservative drift-diffusion operator in the Dougherty's form. The resulting set of coupled integro-differential equations is solved with the stable and robust propagator integral method. This semi-analytical method feasibility accounts for non-linear effects without appealing to linearisation or simplifications, providing conservative physically meaningful solutions even for initial or emerging sharp velocity distribution function profiles. It is found that charge-neutral collisions exert a significant effect since a quite different plasma evolution arises if compared to the collisionless limit. In addition, substantial differences in the system motion are found for constant and temperature dependent collision frequencies cases.

  18. Three species one-dimensional kinetic model for weakly ionized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J., E-mail: jorge.gonzalez@upm.es; Donoso, J. M.; Tierno, S. P. [Department of Applied Physics, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2016-06-15

    A three species one-dimensional kinetic model is presented for a spatially homogeneous weakly ionized plasma subjected to the action of a time varying electric field. Planar geometry is assumed, which means that the plasma evolves in the privileged direction of the field. The energy transmitted to the electric charges is channelized to the neutrals thanks to collisions, a mechanism that influences the plasma dynamics. Charge-charge interactions have been designed as a one-dimensional collision term equivalent to the Landau operator used for fully ionized plasmas. Charge-neutral collisions are modelled by a conservative drift-diffusion operator in the Dougherty's form. The resulting set of coupled integro-differential equations is solved with the stable and robust propagator integral method. This semi–analytical method feasibility accounts for non–linear effects without appealing to linearisation or simplifications, providing conservative physically meaningful solutions even for initial or emerging sharp velocity distribution function profiles. It is found that charge-neutral collisions exert a significant effect since a quite different plasma evolution arises if compared to the collisionless limit. In addition, substantial differences in the system motion are found for constant and temperature dependent collision frequencies cases.

  19. Plasma-Screening Effects on the Electron-Impact Ionization of Atoms / Molecules and Ions Embedded in Weak Plasma

    Science.gov (United States)

    Vaishnav, Bhushit; Joshipura, K. N.; Gangopadhyay, S.

    2007-10-01

    Plasma screening effects on electron induced atomic collision properties have attracted considerable research attention, because of applications in inertial confinement fusion and X-ray lasers etc. The theoretical interest is to examine the ionization of atomic/molecular targets by the impact of electrons in plasma. Basically the electron scattering problem is treated in a semi-empirical approach in the complex scattering potential ionization contribution (CSP-ic), to calculate total ionization cross section as a dominant part of total inelastic cross sections. This approach has been successful for number of (free) atomic and molecular targets in [1]. This paper extends the method to the collision processes in plasma and the relative contribution of ionization has been identified. We consider He^+ ion embedded in weak plasma. The static potential of the e-He^+ system in plasma environment is derived by us. Results will be discussed in the Conference. References: [1] K N Joshipura, Bhushit G Vaishnav and Sumona Gangopadhyay, Int. J. Mass. Spectrom. 261 (2007) 146.

  20. The diffusion of charged particles in the weakly ionized plasma with power-law kappa-distributions

    Science.gov (United States)

    Wang, Lan; Du, Jiulin

    2017-10-01

    We study the diffusion of charged particles in the weakly ionized plasma with the power-law κ-distributions and without the magnetic field. The electrons and ions have different κ-parameters. We obtain the expressions of both diffusion and mobility coefficients of electrons and ions respectively in the plasma. We find that these new transport coefficient formulae depend strongly on the κ-parameters in the power-law distributed plasma. When we take κ→∞, these formulae reduce to the classical forms in the weakly ionized plasma with a Maxwellian distribution.

  1. Network structural analysis using directed graph for chemical reaction analysis in weakly-ionized plasmas

    Science.gov (United States)

    Nobuto, Kyosuke; Mizui, Yasutaka; Miyagi, Shigeyuki; Sakai, Osamu; Murakami, Tomoyuki

    2016-09-01

    We visualize complicated chemical reaction systems in weakly-ionized plasmas by analysing network structure for chemical processes, and calculate some indexes by assuming interspecies relationships to be a network to clarify them. With the current social evolution, the mean size of general data which we can use in computers grows huge, and significance of the data analysis increases. The methods of the network analysis which we focus on in this study do not depend on a specific analysis target, but the field where it has been already applied is still limited. In this study, we analyse chemical reaction systems in plasmas for configuring the network structure. We visualize them by expressing a reaction system in a specific plasma by a directed graph and examine the indexes and the relations with the characteristic of the species in the reaction system. For example, in the methane plasma network, the centrality index reveals importance of CH3 in an influential position of species in the reaction. In addition, silane and atmospheric pressure plasmas can be also visualized in reaction networks, suggesting other characteristics in the centrality indexes.

  2. Full-wave Analyses of Scattering of Electromagnetic Wave from the Weakly Ionized Plasma in Plane Geometry

    Institute of Scientific and Technical Information of China (English)

    Song Falun; Cao Jinxiang; Wang Ge

    2005-01-01

    The purpose of the present work is to present a full-wave analysis of scattering from the weakly ionized plasma in the plane geometry. We have yielded an approximate solution in an analytic form to the electromagnetic wave scattering from the weakly ionizsd plasma. In the normal and oblique incidence, the analytic solution works well, as compared with the exact solution and the solution based on the Wenzell-Kramers-Brillouin-Jeffreys (WKBJ) approximation to the uniform density profile.

  3. Back corona enhanced organic film deposition inside an Atmospheric Pressure Weakly Ionized Plasma reactor

    Science.gov (United States)

    Islam, Rokibul; Xie, Shuzheng; Englund, Karl; Pedrow, Patrick

    2014-10-01

    A grounded screen with short needle-like protrusions has been designed to generate back corona in an Atmospheric Pressure Weakly Ionized Plasma (APWIP) reactor. The grounded screen with protrusions is placed downstream at a variable gap length from an array of needles that is energized with 60 Hz high voltage. The excitation voltage is in the range 0--10 kV RMS and the feed gas mixture consists of argon and acetylene. A Lecroy 9350AL 500 MHz digital oscilloscope is used to monitor the reactor voltage and current using a resistive voltage divider and a current viewing resistor, respectively. The current signal contains many positive and negative current pulses associated with corona discharge. Analysis of the current signal shows asymmetry between positive and negative corona discharge currents. Photographs show substantial back corona generated near the tips of the protrusions situated at the grounded screen. The back corona activates via bond scission acetylene radicals that are transported downstream to form a plasma-polymerized film on a substrate positioned downstream from the grounded screen. The oscillograms will be used to generate corona mode maps that show the nature of the corona discharge as a function of gap spacing, applied voltage and many other reactor parameters.

  4. Multiterm spherical tensor representation of Boltzmann's equation for a nonhydrodynamic weakly ionized plasma.

    Science.gov (United States)

    Robson, R E; Winkler, R; Sigeneger, F

    2002-05-01

    The Boltzmann equation corresponding to a general "multiterm" representation of the phase space distribution function f(r,c,t) for charged particles in a gas in an electric field was reformulated entirely in terms of spherical tensors f(l)(m) some time ago, and numerous applications, including extension to time varying and crossed electric and magnetic fields, have followed. However, these applications have, by and large, been limited to the hydrodynamic conditions that prevail in swarm experiments and the full potential of the tensor formalism has thus never been realized. This paper resumes the discussion in the context of the more general nonhydrodynamic situation. Geometries for which a simple Legendre polynomial expansion suffices to represent f are discussed briefly, but the emphasis is upon cylindrical geometry, where such simplification does not arise. In particular, we consider an axisymmetric cylindrical column of weakly ionized plasma, and derive an infinite hierarchy of integrodifferential equations for the expansion coefficients of the phase space distribution function, valid for both electrons and ions, and for all types of binary interaction with neutral gas molecules.

  5. Magnetorotational instability of weakly ionized and magnetized electron-positron-ion plasma

    Science.gov (United States)

    Mehdian, H.; Hajisharifi, K.; Azadnia, F.; Tajik-Nezhad, S.

    2016-10-01

    The magnetorotational instability in a differential rotating weakly ionized and magnetized plasma consisting of electron, positron, ion, and neutral particles has been investigated by using the multi-fluid model. Satisfying the current neutrality and homogeneity of the system in the equilibrium state by assuming the same unperturbed angular velocity for charge species and neutrals, the general local dispersion relation (DR) has been derived by taking into account the collision effects. By analytical examination of the obtained DR in the arbitrary and high frequency regimes, the instability conditions have been found in which the presence of light positive species (positrons) plays an important role in the instability criteria. Moreover, numerical investigation shows the broadening of instability range as well as increasing the maximum growth rate of instability (especially for the small number density ratio of light to heavy positive species) in the presence of positrons. The obtained results of the present investigation will greatly contribute to the understanding of the particles' dynamics as well as dissipation mechanism in some astrophysical environments, such as the region of accretion disks surrounding the central of black holes and protoplanetary disks.

  6. Propagation of dust-acoustic waves in weakly ionized plasmas with dust-charge fluctuation

    Indian Academy of Sciences (India)

    K K Mondal

    2004-11-01

    For an unmagnetized partially ionized dusty plasma containing electrons, singly charged positive ions, micron-sized massive negatively charged dust grains and a fraction of neutral atoms, dispersion relations for both the dust-ion-acoustic and the dust-acoustic waves have been derived, incorporating dust charge fluctuation. The dispersion relations, under various conditions, have been exhaustively analysed. The explicit expressions for the growth rates have also been derived.

  7. Study of atmospheric pressure weakly ionized plasma as surface compatibilization technique for improved plastic composites loaded with cellulose based fillers

    Science.gov (United States)

    Lekobou, William Pimakouon

    Atmospheric pressure plasmas have gained considerable interest from researchers recently for their unique prospective of engineering surfaces with plasma without the need of vacuum systems. They offer the advantage of low energy consumption, minimal capital cost and their simplicity as compared to conventional low pressure plasmas make them easy to upscale from laboratory to industry size. The present dissertation summarizes results of our attempt at applying atmospheric pressure weakly ionized plasma (APWIP) to the engineering of plastic composites filled with cellulose based substrates. An APWIP reactor was designed and built based on a multipoint-to-grounded ring and screen configurations. The carrier gas was argon and acetylene serves as the precursor molecule. The APWIP reactors showed capability of depositing plasma polymerized coating rich in carbon on substrates positioned within the electrode gap as well as downstream of the plasma discharge into the afterglow region. Our findings show that films grow by forming islands which for prolonged deposition time grow into thin films showing nodules, aggregates of nodules and microspheres. They also show chemical structure similar to films deposited from hydrocarbons with other conventional plasma techniques. The plasma polymerized deposits were used on substrates to modify their surface properties. Results show the surface of wood veneer and wood flour can be finely tuned from hydrophilic to hydrophobic. It was achieved by altering the topography of the surfaces along with their chemical composition. The wettability of wood veneer was investigated with contact angle measurements on capacitive drops and the capillary effect was utilized to assess surface properties of wood flour exposed to the discharges.

  8. Hybrid Simulation of Supersonic Flow of Weakly Ionized Plasma along Open Field Magnetic Line Effect of Background Pressure

    Science.gov (United States)

    Laosunthara, Ampan; Akatsuka, Hiroshi

    2016-09-01

    In previous study, we experimentally examined physical properties of supersonic flow of weakly ionized expanding arc-jet plasma through an open magnetic field line (Bmax 0.16T). We found supersonic velocity of helium plasma up to Mach 3 and the space potential drop at the end of the magnets. To understand the plasma in numerical point of view, the flows of ion and neutral are treated by particle-based Direct Simulation Monte Carlo (DSMC) method, electron is treated as a fluid. The previous numerical study, we assumed 2 conditions. Ion and electron temperatures were the same (LTE condition). Ion and electron velocities were the same (current-free condition). We found that ion velocity decreased by collision with residual gas molecules (background pressure). We also found that space potential changing with background pressure. In other words, it was indicated that electric field exists and the current-free assumption is not proper. In this study, we add electron continuity and electron momentum equations to obtain electron velocity and space potential. We find that space potential changing with background pressure slightly. It is indicated that electron is essential to space potential formation than ion.

  9. Preliminary experiment on the negative magneto-resistance effect in a weakly ionized discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, M.

    2002-04-01

    Compared with the interest in the magneto-resistance effect in solid conductors, the effect in a gas plasma has hardly been addressed. In this work, a theoretical result that a magneto-resistance in an infinite plasma decreases is examined experimentally in an actual discharge plasma. Furthermore, a modified expression for the ambipolar diffusion coefficient in the case where electrons are scattered by heavy neutral atoms is presented. (author)

  10. Effects of weakly coupled and dense quantum plasmas environments on charge exchange and ionization processes in Na+ + Rb(5s) atom collisions

    Science.gov (United States)

    Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam

    2017-02-01

    The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.

  11. Charge segregation in weakly ionized microgels

    Science.gov (United States)

    Hyatt, John S.; Douglas, Alison M.; Stanley, Chris; Do, Changwoo; Barker, Thomas H.; Fernández-Nieves, Alberto

    2017-01-01

    We investigate microgels synthesized from N -isopropylacrylamide (NIPAM) copolymerized with a large mol% of acrylic acid, finding that when the acid groups are partially ionized at high temperatures, competition between ion-induced swelling and hydrophobic deswelling of poly(NIPAM) chains results in microphase separation. In cross-linked microgels, this manifests as a dramatic decrease in the ratio between the radius of gyration and the hydrodynamic radius to ˜0.2 , indicating that almost all the mass of the microgel is concentrated near the particle center. We also observe a concurrent decrease of the polymer network length scale via small-angle neutron scattering, confirming the presence of a dense, deswollen core surrounded by a diffuse, charged periphery. We compare these results to those obtained for a system of charged ultralow-cross-linked microgels; the form factor shows a distinct peak at high q when the temperature exceeds a threshold value. We successfully fit the form factor to theory developed to describe scattering from weakly charged gels in poor solvents, and we tie this behavior to charge segregation in the case of the cross-linked microgels.

  12. Neutral Atom Diffusion in a Partially Ionized Prominence Plasma

    Science.gov (United States)

    Gilbert, Holly

    2010-01-01

    The support of solar prominences is normally described in terms of a magnetic force on the prominence plasma that balances the solar gravitational force. Because the prominence plasma is only partially ionized. it is necessary to consider in addition the support of the neutral component of the prominence plasma. This support is accomplished through a frictional interaction between the neutral and ionized components of the plasma, and its efficacy depends strongly on the degree of ionization of the plasma. More specifically, the frictional force is proportional to the relative flow of neutral and ion species, and for a sufficiently weakly ionized plasma, this flow must be relatively large to produce a frictional force that balances gravity. A large relative flow, of course, implies significant draining of neutral particles from the prominence. We evaluate the importance of this draining effect for a hydrogen-helium plasma, and consider the observational evidence for cross-field diffusion of neutral prominence material,

  13. Neutral Atom Diffusion in a Partially Ionized Prominence Plasma

    Science.gov (United States)

    Gilbert, Holly

    2010-01-01

    The support of solar prominences is normally described in terms of a magnetic force on the prominence plasma that balances the solar gravitational force. Because the prominence plasma is only partially ionized. it is necessary to consider in addition the support of the neutral component of the prominence plasma. This support is accomplished through a frictional interaction between the neutral and ionized components of the plasma, and its efficacy depends strongly on the degree of ionization of the plasma. More specifically, the frictional force is proportional to the relative flow of neutral and ion species, and for a sufficiently weakly ionized plasma, this flow must be relatively large to produce a frictional force that balances gravity. A large relative flow, of course, implies significant draining of neutral particles from the prominence. We evaluate the importance of this draining effect for a hydrogen-helium plasma, and consider the observational evidence for cross-field diffusion of neutral prominence material,

  14. Electron Capture in a Fully Ionized Plasma

    CERN Document Server

    Widom, A; Srivastava, Y N

    2014-01-01

    Properties of fully ionized water plasmas are discussed including plasma charge density oscillations and the screening of the Coulomb law especially in the dilute classical Debye regime. A kinetic model with two charged particle scattering events determines the transition rate per unit time for electron capture by a nucleus with the resulting nuclear transmutations. Two corrections to the recent Maiani et al. calculations are made: (i) The Debye screening length is only employed within its proper domain of validity. (ii) The WKB approximation employed by Maiani in the long De Broglie wave length limit is evidently invalid. We replace this incorrect approximation with mathematically rigorous Calogero inequalities in order to discuss the scattering wave functions. Having made these corrections, we find a verification for our previous results based on condensed matter electro-weak quantum field theory for nuclear transmutations in chemical batteries.

  15. Ionization cross section of partially ionized hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Baimbetov, F B; Kudyshev, Z A [Department of Physics, al - Farabi Kazakh National University, Almaty (Kazakhstan)], E-mail: Bfb77@kazsu.kz, E-mail: Z.Kudyshev@mail.ru

    2008-05-01

    In present work the electron impact ionization cross section is considered. The electron impact ionization cross section is calculated, based on pseudopotential model of interaction between plasma particles which accounts correlation effects. It is calculated with help of two methods: classical and quantum - mechanical (Born approximation). The ionization cross section is compared with corresponding results of other authors and experimental data. It has been shown that it is very important to take into account an influence of the surrounding during consideration of ionization processes.

  16. Earth’s Interaction Region: Plasma-Neutral Interactions in the Weakly Ionized gas of Earth’s High Latitude Upper Atmosphere

    Science.gov (United States)

    Thayer, Jeffrey; Hsu, Vicki

    2015-04-01

    The high-latitude regions of Earth’s upper atmosphere are strongly influenced by plasma-neutral interactions. These interactions couple electrodynamic processes of the ionosphere with hydrodynamic processes of the more abundant thermosphere neutral gas, consequently connecting the high-latitude upper atmosphere to distant regions of the geoplasma environment. This produces a complex spatial and temporal interplay of competing processes that results in a myriad of physical and chemical responses and a rich array of neutral and plasma morphologies that constitute the high-latitude thermosphere and ionosphere. The altitude extent from the lower thermosphere to the upper ionosphere (90km - 1000km) can be considered Earth’s space-atmosphere interaction region - likened to the solar chromosphere’s interaction region where radiative processes and hydrodynamic waves from the dense lower atmosphere produce a cold lower boundary that quickly transitions over a few 100 kilometers to neutral and plasma temperatures that are five times hotter. A thousand or more kilometers further in altitude, Earth's upper atmosphere becomes a hot, collisionless, geomagnetically controlled protonosphere whose neutral and plasma population originates from the thermosphere and ionosphere. A grand challenge in the study of Earth’s interaction region is how the collision-dominated thermosphere/ionosphere system exchanges energy, mass and momentum with the collisionless magnetosphere. This talk will focus primarily on collision-dominated processes of the high-latitude ionosphere and the electromagnetic energy transfer processes that lead to frictional heating of ions and neutrals, and plasma instability phenomenon that leads to extreme electron heating. Observations of the ionosphere response to these processes will be illustrated using incoherent scatter radar measurements. Relevance to the solar chromosphere will be identified where appropriate and outstanding issues in Earth

  17. ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: jaume.terradas@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2013-04-20

    Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  18. Self-Consistent Dynamic Models of Steady Ionization Fronts I. Weak-D and Weak-R Fronts

    CERN Document Server

    Henney, W J; Williams, R J R; Ferland, G J; Henney, William J.; Williams, Robin J. R.; Ferland, Gary J.

    2005-01-01

    We present a method for including steady-state gas flows in the plasma physics code Cloudy, which was previously restricted to modeling static configurations. The numerical algorithms are described in detail, together with an example application to plane-parallel ionization-bounded HII regions. As well as providing the foundation for future applications to more complex flows, we find the following specific results regarding the effect of advection upon ionization fronts in HII regions: 1. Significant direct effects of advection on the global emission properties occur only when the ionization parameter is lower than is typical for HII regions. 2. The overheating of partially ionized gas in the front is not large, even for supersonic (R-type) fronts. 3. The most significant morphological signature of advective fronts is an electron density spike that occurs at the ionization front. Observational evidence for such a spike is found in images of the Orion bar. 4. Plane-parallel, weak-D fronts are found to show at ...

  19. Alfven waves in a partially ionized two-fluid plasma

    CERN Document Server

    Soler, R; Ballester, J L; Terradas, J

    2013-01-01

    Alfv\\'en waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfv\\'en waves is affected by the interaction between ionized and neutral species. Here we study Alfv\\'en waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cut-off values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mo...

  20. Chemistry and Physics of Weakly Ionized Plasmas

    Science.gov (United States)

    2010-01-22

    constants k(E,J) for the dissociation of molecular ions J. Troe, V. G. Ushakov, and A. A. Viggiano Zeitschrift für Physikalische Chemie 219, 715-741 (May...energy distributions in the dissociation of n-propylbenzene cations (invited) J. Troe, V. G. Ushakov, and A. A. Viggiano Zeitschrift für Physikalische

  1. Alfvénic localized structures in partially ionized plasmas

    Science.gov (United States)

    Borhanian, Jafar; Rezaei, Arash

    2017-02-01

    The existence and dynamics of Alfvénic localized structures are investigated in partially ionized plasmas. We have employed the Hall magnetohydrodynamics model for partially ionized plasmas and shown that the evolution of a weakly nonlinear and weakly dispersive Alfvén wave is governed by a derivative nonlinear Schrödinger (DNLS) type equation. In the Hall effect domination limit, this equation reduces to a standard DNLS equation that possesses localized solutions in the form of solitons and rogue waves. The dependence of the profile of these structures on the Hall parameter is addressed. When the ohmic and ambipolar effects are small but finite in comparison to the Hall effect, the evolution equation takes the form of a perturbed DNLS equation. In this limit, the dynamics of envelope soliton solution is examined by means of the soliton perturbation method, the moment method, to be precise.

  2. Solitons and Weakly Nonlinear Waves in Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1985-01-01

    Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...

  3. Plasma ion stratification by weak planar shocks

    Science.gov (United States)

    Simakov, Andrei N.; Keenan, Brett D.; Taitano, William T.; Chacón, Luis

    2017-09-01

    We derive fluid equations for describing steady-state planar shocks of a moderate strength ( 0 shock Mach number) propagating through an unmagnetized quasineutral collisional plasma comprising two separate ion species. In addition to the standard fluid shock quantities, such as the total mass density, mass-flow velocity, and electron and average ion temperatures, the equations describe shock stratification in terms of variations in the relative concentrations and temperatures of the two ion species along the shock propagation direction. We have solved these equations analytically for weak shocks ( 0 shocks, and they have been used to verify kinetic simulations of shocks in multi-ion plasmas.

  4. Electron and ion transport equations in computational weakly-ionized plasmadynamics

    Energy Technology Data Exchange (ETDEWEB)

    Parent, Bernard [Department of Aerospace Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Macheret, Sergey O.; Shneider, Mikhail N. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544-5263 (United States)

    2014-02-15

    A new set of ion and electron transport equations is proposed to simulate steady or unsteady quasi-neutral or non-neutral multicomponent weakly-ionized plasmas through the drift–diffusion approximation. The proposed set of equations is advantaged over the conventional one by being considerably less stiff in quasi-neutral regions because it can be integrated in conjunction with a potential equation based on Ohm's law rather than Gauss's law. The present approach is advantaged over previous attempts at recasting the system by being applicable to plasmas with several types of positive ions and negative ions and by not requiring changes to the boundary conditions. Several test cases of plasmas enclosed by dielectrics and of glow discharges between electrodes show that the proposed equations yield the same solution as the standard equations but require 10 to 100 times fewer iterations to reach convergence whenever a quasi-neutral region forms. Further, several grid convergence studies indicate that the present approach exhibits a higher resolution (and hence requires fewer nodes to reach a given level of accuracy) when ambipolar diffusion is present. Because the proposed equations are not intrinsically linked to specific discretization or integration schemes and exhibit substantial advantages with no apparent disadvantage, they are generally recommended as a substitute to the fluid models in which the electric field is obtained from Gauss's law as long as the plasma remains weakly-ionized and unmagnetized.

  5. Weak Acid Ionization Constants and the Determination of Weak Acid-Weak Base Reaction Equilibrium Constants in the General Chemistry Laboratory

    Science.gov (United States)

    Nyasulu, Frazier; McMills, Lauren; Barlag, Rebecca

    2013-01-01

    A laboratory to determine the equilibrium constants of weak acid negative weak base reactions is described. The equilibrium constants of component reactions when multiplied together equal the numerical value of the equilibrium constant of the summative reaction. The component reactions are weak acid ionization reactions, weak base hydrolysis…

  6. Weak Acid Ionization Constants and the Determination of Weak Acid-Weak Base Reaction Equilibrium Constants in the General Chemistry Laboratory

    Science.gov (United States)

    Nyasulu, Frazier; McMills, Lauren; Barlag, Rebecca

    2013-01-01

    A laboratory to determine the equilibrium constants of weak acid negative weak base reactions is described. The equilibrium constants of component reactions when multiplied together equal the numerical value of the equilibrium constant of the summative reaction. The component reactions are weak acid ionization reactions, weak base hydrolysis…

  7. Plasma Dark Current in Self-Ionized Plasma Wakefield Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Oz, E.; Deng, S.; Katsouleas, T.; Muggli, P.; /Southern California U.; Iverson, R.; Johnson, D.K.; Krejcik, P.; O' Connell, C.; Siemann, R.H.; Walz, D.; /SLAC; Clayton,; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA

    2006-01-30

    Evidence of particle trapping has been observed in a beam driven Plasma Wake Field Accelerator (PWFA) experiment, E164X, conducted at the Stanford Linear Accelerator Center by a collaboration which includes USC, UCLA and SLAC. Such trapping produces plasma dark current when the wakefield amplitude is above a threshold value and may place a limit on the maximum acceleration gradient in a PWFA. Trapping and dark current are enhanced when in an ionizing plasma, that is self-ionized by the beam. Here we present experimental results.

  8. Electronic transport in partially ionized water plasmas

    Science.gov (United States)

    French, Martin; Redmer, Ronald

    2017-09-01

    We use ab initio simulations based on density functional theory to calculate the electrical and thermal conductivities of electrons in partially ionized water plasmas at densities above 0.1 g/cm3. The resulting conductivity data are then fitted to analytic expressions for convenient application. For low densities, we develop a simple and fully analytic model for electronic transport in low-density plasmas in the chemical picture using the relaxation-time approximation. In doing so, we derive a useful analytic expression for electronic transport cross sections with neutral particles, based on a model potential. In the regime of thermal ionization, electrical conductivities from the analytic model agree with the ab initio data within a factor of 2. Larger deviations are observed for the thermal conductivity, and their origin is discussed. Our results are relevant for modeling the interior and evolution of water-rich planets as well as for technical plasma applications.

  9. Transport properties of partially ionized hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T S [IETP, Al Farabi Kazakh National University, Tole bi, 96a, 480012, Almaty (Kazakhstan); Galiyev, K Zh [IETP, Al Farabi Kazakh National University, Tole bi, 96a, 480012, Almaty (Kazakhstan); Dzhumagulova, K N [IETP, Al Farabi Kazakh National University, Tole bi, 96a, 480012, Almaty (Kazakhstan); Roepke, G [Fachbereich Physik, Universitaet Rostock, D-18051 Rostock (Germany); Redmer, R [Fachbereich Physik, Universitaet Rostock, D-18051 Rostock (Germany)

    2003-06-06

    We have considered partially ionized hydrogen plasma for the density region n{sub e} = (10{sup 18}-10{sup 22}) cm{sup -3}. Charged particles in the system (electrons, protons) interact via an effective potential taking into account three-particle correlations. We use the Buckingham polarization potential to describe electron-atom and proton-atom interactions. The electrical and thermal conductivity is determined using the Chapman-Enskog method. We compare the obtained results with other available data.

  10. Weakly nonlinear electron plasma waves in collisional plasmas

    DEFF Research Database (Denmark)

    Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.

    1986-01-01

    The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...... of a constantly maintained pump wave is derived and a general dispersion relation describing the modulation of the high frequency wave due to different low frequency responses is obtained. Particular attention is devoted to a purely growing modulation. The relative importance of the ponderomotive force...

  11. Excitation and ionization of hydrogen Rydberg states in a plasma.

    Science.gov (United States)

    Glab, W; Nayfeh, M H

    1982-08-01

    Hydrogen Rydberg states in a hydrogen plasma are optically excited from the plasma-excited n = 2 state. Photoionization and optogalvanic ionization, which is due to electron-impact ionization and other collisional processes, are used to monitor the Rydberg states. This process may be used to study collisional ionization of the Rydberg states.

  12. Influence of renormalization shielding on the electron-impact ionization process in dense partially ionized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mi-Young; Yoon, Jung-Sik [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Osikdo-Dong, Gunsan-City, Jeollabuk-Do 573-540 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States); Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of)

    2015-04-15

    The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it is found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.

  13. Ionization cross section for a strongly coupled partially ionized hydrogen plasma: variable phase approach

    Energy Technology Data Exchange (ETDEWEB)

    Baimbetov, F B; Kudyshev, Z A [Department of Physics, Al-Farabi Kazakh National University, 050012 Almaty (Kazakhstan)], E-mail: Fazylhan.Baimbetov@kaznu.kz, E-mail: Z.Kudyshev@mail.ru

    2009-05-29

    In the present work an electron impact ionization cross section is considered. The electron impact ionization cross section is calculated with the help of a variable phase approach to potential scattering. The Calogero equation is numerically solved, based on a pseudopotential model of interaction between partially ionized plasma particles, which accounts for correlation effects. As a result, scattering phase shifts are obtained. On the basis of the scattering phase shifts, the ionization cross section is calculated.

  14. Excitation and ionization of hydrogen Rydberg states in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Glab, W.; Nayfeh, M.H.

    1982-08-01

    Hydrogen Rydberg states in a hydrogen plasma are optically excited from the plasma-excited n = 2 state. Photoionization and optogalvanic, which are due to electron-impact ionization and other collisional processes, are used to monitor the Rydberg states. This process may be used to study collisional ionization of the Rydberg states.

  15. Magnetoacoustic waves in a partially ionized two-fluid plasma

    CERN Document Server

    Soler, Roberto; Ballester, Jose Luis

    2013-01-01

    Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by the ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma $\\beta$, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional da...

  16. First-order correction terms in the weak-field asymptotic theory of tunneling ionization

    DEFF Research Database (Denmark)

    Trinh, Vinh H.; Tolstikhin, Oleg I.; Madsen, Lars Bojer

    2013-01-01

    The weak-field asymptotic theory (WFAT) of tunneling ionization in a static electric field is developed to the next order in field. The first-order corrections to the ionization rate and transverse momentum distribution of the ionized electrons are derived. This extends the region of applicability...... of the WFAT at the quantitative level toward stronger fields, practically up to the boundary between tunneling and over-the-barrier regimes of ionization. The results apply to any atom or molecule treated in the single-active-electron and frozen-nuclei approximations. The theory is illustrated by calculations...... for hydrogen and noble-gas atoms....

  17. First-order correction terms in the weak-field asymptotic theory of tunneling ionization

    DEFF Research Database (Denmark)

    Trinh, Vinh H.; Tolstikhin, Oleg I.; Madsen, Lars Bojer;

    2013-01-01

    The weak-field asymptotic theory (WFAT) of tunneling ionization in a static electric field is developed to the next order in field. The first-order corrections to the ionization rate and transverse momentum distribution of the ionized electrons are derived. This extends the region of applicability...... of the WFAT at the quantitative level toward stronger fields, practically up to the boundary between tunneling and over-the-barrier regimes of ionization. The results apply to any atom or molecule treated in the single-active-electron and frozen-nuclei approximations. The theory is illustrated by calculations...

  18. Prediction of Shock Wave Structure in Weakly Ionized Gas Flow by Solving MGD Equation

    Science.gov (United States)

    Deng, Z. T.; Oviedo-Rojas, Ruben; Chow, Alan; Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    This paper reports the recent research results of shockwave structure predictions using a new developed code. The modified Rankine-Hugoniot relations across a standing normal shock wave are discussed and adopted to obtain jump conditions. Coupling a electrostatic body force to the Burnett equations, the weakly ionized flow field across the shock wave was solved. Results indicated that the Modified Rankine-Hugoniot equations for shock wave are valid for a wide range of ionization fraction. However, this model breaks down with small free stream Mach number and with large ionization fraction. The jump conditions also depend on the value of free stream pressure, temperature and density. The computed shock wave structure with ionization provides results, which indicated that shock wave strength may be reduced by existence of weakly ionized gas.

  19. Turbulence in weakly-ionized proto-planetary disks

    CERN Document Server

    Flock, M; Klahr, H

    2012-01-01

    We investigate the characteristic properties of self-sustained MRI turbulence in low-ionized proto-planetary disks. We study the transition regime between active and dead-zone, performing 3D global non-ideal MHD simulations of stratified disk covering range of magnetic Reynolds number between 2700 5000 with a strength of alpha ~ 0.01. Below Rm < 5000 the MRI starts to decay at the midplane, having Elsasser numbers below one. We find a transition regime between 3300 < Rm < 5000 where the MRI turbulence is still sustained but damped. At around Rm < 3000 the MRI turbulence decays but could reestablished due to the accumulation of toroidal magnetic field or the radial transport of magnetic field from the active region. Below Rm < 3000 the MRI cannot be sustained and is decaying. Here hydro-dynamical motions, like density waves dominate. We observe anti-cyclonic vortices in the transition between dead-zone and active zone.

  20. Charge exchange in fluid description of partially ionized plasmas

    CERN Document Server

    Vranjes, J; Luna, M

    2015-01-01

    The effects of charge exchange on waves propagating in weakly ionized plasmas are discussed. It is shown that for low-frequency processes, ions and neutrals should be treated as a single fluid with some effective charge on all of them. We have derived a new momentum equation which should be used in such an environment. As a result, the low-frequency magnetic waves can propagate even if particles are not magnetized, which is entirely due to the charge exchange and the fact that it is not possible to separate particles into two different populations as charged and neutral species. So there can be no friction force between ions and neutrals in the usual sense. The mean force per particle is proportional to the ionization ratio $n_i/(n_i+ n_n)$. Regarding the application of the theory to the Alfven wave propagation in the lower solar atmosphere, the results predict that the plane of displacement of the fluid must change by 90 degrees when an Alfven wave propagates from the area where particles are un-magnetized (...

  1. Magnetic field amplification by collisionless shocks in partially ionized plasmas

    CERN Document Server

    Ohira, Yutaka

    2015-01-01

    In this paper, we study shock structures of collisionless shocks in partially ionized plasmas by means of two-dimensional hybrid simulations, where the shock is a perpendicular shock with shock velocity Vsh ~ 40 Va ~ 1333 km/s and the upstream ionization fraction is 0.5. We find that large density fluctuations and large magnetic fields fluctuations are generated both in the upstream and downstream regions. In addition, we find that the velocity distribution of downstream hydrogen atoms has three components. Observed shock structures suggest that diffusive shock acceleration can operate at perpendicular shocks propagating into partially ionized plasmas in real three-dimensional systems.

  2. Resonance broadening modification of weak plasma turbulence theory

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, A. (Max-Planck-Inst. fuer Aeronomie, Katlenburg-Lindau (West Germany))

    1991-02-01

    The author examines the effects on energy spectra of weak Langmuir turbulence when he includes a nonlinear damping due to the perturbation of electron orbits. The physical mechanism under consideration is usually known as a resonance broadening effect. The calculations show that the inclusion of this additional damping reduces the number of cascades predicted from weak turbulence theory for waves detectable with the EISCAT UHF (933 MHz) radar in Tromso, Norway, during RF modification of the ionospheric plasma.

  3. A comparison of weak-turbulence and PIC simulations of weak electron-beam plasma interaction

    CERN Document Server

    Ratcliffe, Heather; Rozenan, Mohammed B Che; Nakariakov, Valery

    2014-01-01

    Quasilinear theory has long been used to treat the problem of a weak electron beam interacting with plasma and generating Langmuir waves. Its extension to weak-turbulence theory treats resonant interactions of these Langmuir waves with other plasma wave modes, in particular ion-sound waves. These are strongly damped in plasma of equal ion and electron temperatures, as sometimes seen in, for example, the solar corona and wind. Weak turbulence theory is derived in the weak damping limit, with a term describing ion-sound wave damping then added. In this paper we use the EPOCH particle-in-cell code to numerically test weak turbulence theory for a range of electron-ion temperature ratios. We find that in the cold ion limit the results agree well, but increasing ion temperature the three-wave resonance becomes broadened in proportion to the ion-sound wave damping rate. This may be important in, for example, the theory of solar radio bursts, where the spectrum of Langmuir waves is critical. Additionally we establish...

  4. Surface Waves in the paritally ionized solar plasma slab

    CERN Document Server

    Pandey, B P

    2013-01-01

    The properties of surface waves in the partially ionized, incompressible magnetized plasma slab are investigated in the present work. The waves are affected by the non ideal MHD effects which causes the finite drift of the magnetic field in the medium. When the finite drift of the magnetic field is ignored, the characteristics of the wave propagation in the partially ionized plasma fluid is similar to the ideal MHD except now the propagation properties depend on the fractional ionization of the medium. In the presence of Hall diffusion, the propagation of the sausage and kink surface waves depends on the level of fractional ionization of the medium. When both the Hall and Pedersen diffusion are present in the medium, the waves undergoes damping. For typical solar parameters, waves may damp over few minutes.

  5. New Method for the Determination of Ionization Constants of Polyprotic Weak Acid

    Institute of Scientific and Technical Information of China (English)

    王静康; 郝红勋

    2003-01-01

    A new method for the determination of ionization constants of polyprotic weak acids is presented.Based on dissociation equilibrium, mass balance and charge balance, the mathematic model is established and the non-linear least-squares Gauss-Newton method is applied to numerically solve the model equations. In order to get the concentration of hydrogen ion, the Debye-Huckel equation is used to calculate its activity coefficient. The ionization constants of H2SO3 and H2C2O4 obtained by this method are in good agreement with the literature values.

  6. Global model including multistep ionizations in helium plasmas

    Science.gov (United States)

    Oh, Seung-Ju; Lee, Hyo-Chang; Chung, Chin-Wook

    2016-12-01

    Particle and power balance equations including stepwise ionizations are derived and solved in helium plasmas. In the balance equations, two metastable states (21S1 in singlet and 23S1 triplet) are considered and the followings are obtained. The plasma density linearly increases and the electron temperature is relatively in a constant value against the absorbed power. It is also found that the contribution to multi-step ionization with respect to the single-step ionization is in the range of 8%-23%, as the gas pressure increases from 10 mTorr to 100 mTorr. Compared to the results in the argon plasma, there is little variation in the collisional energy loss per electron-ion pair created (ɛc) with absorbed power and gas pressure due to the small collision cross section and higher inelastic collision threshold energy.

  7. Theory of tunneling ionization of molecules: Weak-field asymptotics including dipole effects

    DEFF Research Database (Denmark)

    Tolstikhin, Oleg I.; Morishita, Toru; Madsen, Lars Bojer

    2011-01-01

    The formulation of the parabolic adiabatic expansion approach to the problem of ionization of atomic systems in a static electric field, originally developed for the axially symmetric case [ Phys. Rev. A 82 023416 (2010)], is generalized to arbitrary potentials. This approach is used to rederive...... the asymptotic theory of tunneling ionization in the weak-field limit. In the atomic case, the resulting formulas for the ionization rate coincide with previously known results. In addition, the present theory accounts for the possible existence of a permanent dipole moment of the unperturbed system and, hence......, applies to polar molecules. Accounting for dipole effects constitutes an important difference of the present theory from the so-called molecular Ammosov-Delone-Krainov theory. The theory is illustrated by comparing exact and asymptotic results for a set of model polar molecules and a realistic molecular...

  8. Enhanced Avalanche Ionization by RF Fields Creating an Ultracold Plasma

    Science.gov (United States)

    Robinson, M. P.; Gallagher, T. F.; Laburthe Tolra, B.; Pillet, P.

    2001-05-01

    Ultracold plasmas have been shown to evolve from initially frozen Rydberg gases held in magneto-optical traps.(M.P. Robinson, B. Laburthe Tolra, Michael W. Noel, T.F. Gallagher, and P. Pillet, Phys. Rev. Lett. 85), 4466 (2000) We report the enhancement of the avalanche ionization process by application of radiofrequency fields. An initial slow ionization rate is observed in the Rydberg sample due to black body ionization and ionizing collisions with hot Rydberg atoms. This produces an overall posititve space charge of cold ions as the hot electrons leave the sample. Once a threshold density of positive charges is built up, the hot electrons become trapped to the sample, leading to avalance ionization due to electron-Rydberg collisions. The mechanism of the ionization remains unclear. However, the application of radiofrequency fields, in the 1 V/cm, 100 MHz range, dramatically enhances the rate of avalanche ionization without changing the threshold density at which it occurs. Apparently, the limiting parameter is the rate of collisional ionization of Rydberg atoms by electrons.

  9. Multi—Photon Ionization in Background of Plasma

    Institute of Scientific and Technical Information of China (English)

    顾震宇; 季沛勇

    2002-01-01

    Multi-photon ionization(MPI) in plasma is examined in terms of optical metric.and the quantum Volkov state in curved space-time is derived.The cross section of MPI is derived by virtue of the corrected Volkov state within the framework of quantum electrodynamics(QED) formal scattering theory.It shows that the plasma medium acts as a suppression on MPI.

  10. Ionized PVD with an Inductively Coupled Plasma Source

    Science.gov (United States)

    Hayden, D. B.; Juliano, D. R.; Ruzic, D. N.

    1997-10-01

    Ionized physical vapor deposition (iPVD) is used to enhance the directionality of metal deposition. This is a potential solution to depositing into higher aspect-ratio trenches and vias for metal interconnects. A dc magnetron (Donated by Materials Research Corporation) is coupled with an inductively coupled plasma (ICP) coil to increase the ionization of the sputtered metal atoms. This allows metal ions to be accelerated across the plasma sheath to a biased substrate and deposited normally. One coil design has a wider diameter than the substrate to reduce shadowing and flaking effects. Argon and neon working gases and aluminum and copper targets are investigated at varying pressures and power levels. Deposition rates and metal flux ionization fractions are measured with a quartz crystal microbalance and a multi-grid analyzer.

  11. Electrical conductivity of a methane-air burning plasma under the action of weak electric fields

    Science.gov (United States)

    Colonna, G.; Pietanza, L. D.; D'Angola, A.; Laricchiuta, A.; Di Vita, A.

    2017-02-01

    This paper focuses on the calculation of the electrical conductivity of a methane-air flame in the presence of weak electric fields, solving the Boltzmann equation for free electrons self-consistently coupled with chemical kinetics. The chemical model GRI-Mech 3.0 has been completed with chemi-ionization reactions to model ionization in the absence of fields, and a database of cross sections for electron-impact-induced processes to account for reactions and transitions activated in the flame during discharge. The dependence of plasma properties on the frequency of an oscillating field has been studied under different pressure and gas temperature conditions. Fitting expressions of the electrical conductivity as a function of gas temperature and methane consumption are provided for different operational conditions in the Ansaldo Energia burner.

  12. Partially ionized plasmas including the third symposium on uranium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, M. [ed.

    1976-09-01

    Separate abstracts are included for 28 papers on electrically generated plasmas, fission generated plasmas, nuclear pumped lasers, gaseous fuel reactor research, and applications. Five papers have been previously abstracted and included in ERA.

  13. Numerical studies of wall-plasma interactions and ionization phenomena in an ablative pulsed plasma thruster

    Science.gov (United States)

    Yang, Lei; Zeng, Guangshang; Tang, Haibin; Huang, Yuping; Liu, Xiangyang

    2016-07-01

    Wall-plasma interactions excited by ablation controlled arcs are very critical physical processes in pulsed plasma thrusters (PPTs). Their effects on the ionization processes of ablated vapor into discharge plasma directly determine PPT performances. To reveal the physics governing the ionization phenomena in PPT discharge, a modified model taking into account the pyrolysis effect of heated polytetrafluoroethylene propellant on the wall-plasma interactions was developed. The feasibility of the modified model was analyzed by creating a one-dimensional simulation of a rectangular ablative PPT. The wall-plasma interaction results based on this modified model were found to be more realistic than for the unmodified model; this reflects the dynamic changes of the inflow parameters during discharge in our model. Furthermore, the temporal and spatial variations of the different plasma species in the discharge chamber were numerically studied. The numerical studies showed that polytetrafluoroethylene plasma was mainly composed of monovalent ions; carbon and fluorine ions were concentrated in the upstream and downstream discharge chamber, respectively. The results based on this modified model were in good agreement with the experimental formation times of the various plasma species. A large number of short-lived and highly ionized carbon and fluorine species (divalent and trivalent ions) were created during initial discharge. These highly ionized species reached their peak density earlier than the singly ionized species.

  14. Numerical studies of wall–plasma interactions and ionization phenomena in an ablative pulsed plasma thruster

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lei [Beijing Research Institute of Precise Mechatronic Controls, Beijing 100076 (China); School of Astronautics, Beihang University, Beijing 100191 (China); Zeng, Guangshang; Huang, Yuping [Beijing Research Institute of Precise Mechatronic Controls, Beijing 100076 (China); Tang, Haibin [School of Astronautics, Beihang University, Beijing 100191 (China); Liu, Xiangyang [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2016-07-15

    Wall–plasma interactions excited by ablation controlled arcs are very critical physical processes in pulsed plasma thrusters (PPTs). Their effects on the ionization processes of ablated vapor into discharge plasma directly determine PPT performances. To reveal the physics governing the ionization phenomena in PPT discharge, a modified model taking into account the pyrolysis effect of heated polytetrafluoroethylene propellant on the wall–plasma interactions was developed. The feasibility of the modified model was analyzed by creating a one-dimensional simulation of a rectangular ablative PPT. The wall–plasma interaction results based on this modified model were found to be more realistic than for the unmodified model; this reflects the dynamic changes of the inflow parameters during discharge in our model. Furthermore, the temporal and spatial variations of the different plasma species in the discharge chamber were numerically studied. The numerical studies showed that polytetrafluoroethylene plasma was mainly composed of monovalent ions; carbon and fluorine ions were concentrated in the upstream and downstream discharge chamber, respectively. The results based on this modified model were in good agreement with the experimental formation times of the various plasma species. A large number of short-lived and highly ionized carbon and fluorine species (divalent and trivalent ions) were created during initial discharge. These highly ionized species reached their peak density earlier than the singly ionized species.

  15. Electron induced inelastic and ionization cross section for plasma modeling

    Science.gov (United States)

    Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby

    2016-09-01

    The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.

  16. Influences on ionization fraction in an inductively coupled ionized physical vapor deposition device plasma

    Science.gov (United States)

    Juliano, Daniel R.; Ruzic, David N.; Allain, Monica M. C.; Hayden, Douglas B.

    2002-01-01

    A computer simulation was created to model the transport of sputtered atoms through an ionized physical vapor deposition (IPVD) system. The simulation combines Monte Carlo and fluid methods to track the metal atoms that are emitted from the target, interact with the IPVD plasma, and are eventually deposited somewhere in the system. Ground-state neutral, excited, and ionized metal atoms are tracked. The simulation requires plasma conditions to be specified by the user. Langmuir probe measurements were used to determine these parameters in an experimental system in order to compare simulation results with experiment. The primary product of the simulation is a prediction of the ionization fraction of the sputtered atom flux at the substrate under various conditions. This quantity was experimentally measured and the results compared to the simulation. Experiment and simulation differ significantly. It is hypothesized that heating of the background gas due to the intense sputtered atom flux at the target is primarily responsible for this difference. Heating of the background gas is not accounted for in the simulation. Difficulties in accurately measuring plasma parameters, especially electron temperature, are also significant.

  17. Effective polarization interaction potentials of the partially ionized dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T S [IETP, Al Farabi Kazakh National University, Tole Bi 96a, 050012 Almaty (Kazakhstan); Dzhumagulova, K N [IETP, Al Farabi Kazakh National University, Tole Bi 96a, 050012 Almaty (Kazakhstan); Omarbakiyeva, Yu A [IETP, Al Farabi Kazakh National University, Tole Bi 96a, 050012 Almaty (Kazakhstan); Roepke, G [Institute of Physics, University of Rostock, D-18051 Rostock (Germany)

    2006-04-28

    The effective polarization interaction potential between charged and neutral particles is considered for a partially ionized plasma. This pseudopotential is deduced taking into account quantum-mechanical effects at short distances as well as screening effects at large distances. Furthermore, a cutoff radius is obtained using a modified effective-range theory. Explicit results for parameters describing the interaction of the atom with charged particles are given.

  18. Laser fields in dynamically ionized plasma structures for coherent acceleration

    CERN Document Server

    Luu-Thanh, Ph.; Pukhov, A.; Kostyukov, I.

    2015-01-01

    With the emergence of the CAN (Coherent Amplification Network) laser technology, a new scheme for direct particle acceleration in periodic plasma structures has been proposed. By using our full electromagnetic relativistic particle-in-cell (PIC) simulation code equipped with ionisation module, we simulate the laser fields dynamics in the periodic structures of different materials. We study how the dynamic ionization influences the field structure.

  19. Frequency upshift via flash ionization phenomena using semiconductor plasma

    Directory of Open Access Journals (Sweden)

    Nishida A.

    2013-11-01

    Full Text Available We have demonstrated frequency upshift in the terahertz region by flash ionization. The magnitude of upshift frequency is tuned by the laser intensity. A proof of principle experiment has been performed with a plasma creation time scale much shorter than the period of the electromagnetic wave and a plasma length longer than its wavelength. Frequency upshifted from 0.35 to 3.5 THz by irradiating a ZnSe crystal with a ultra-short laser pulse has been observed.

  20. Recombination and population inversion in plasmas generated by tunneling ionization.

    Science.gov (United States)

    Pert, G J

    2006-06-01

    Above-threshold ionization (ATI) ionization by linearly polarized light has been proposed by several authors as a means of driving recombination lasers in the soft x-ray spectral region. The pump radiation generates a cold electron plasma with ions in a single ionization stage, which is an ideal starting condition for strong recombination. Population inversions form during the recombination cascade to the ground state of the next ionization stage. In the absence of any relaxation the electron distribution is strongly peaked near zero energy. However, a number of different processes all heat the cold electrons towards Maxwellian, and may thereby reduce the recombination rate in the higher levels. Using numerical models we investigate these relaxation processes and their effect on recombination. We show that the recombination can be well described by the standard cascade model, provided an appropriate temperature is used. We examine two cases in detail, hydrogen-like lithium where the inversion is with respect to the ground state, and lithium-like nitrogen where it is with the first excited state. The two cases differ markedly in the degree of relaxation achieved, and in the duration of the population inversion.

  1. The kinetic theory of a dilute ionized plasma

    CERN Document Server

    García-Colin, L S

    2008-01-01

    This book results from recent studies aimed at answering questions raised by astrophycists who use values of transport coefficients that are old and often unsatisfactory. The few books dealing with the rigorous kinetic theory of a ionized plasma are based on the so called Landau (Fokker-Planck) equation and they seldom relate the microscopic results with their macroscopic counterpart provided by classical non-equilibrium thermodynamics. In this book both issues are thoroughly covered. Starting from the full Boltzmann equation for inert dilute plasmas and using the Hilbert-Chapman-Enskog method to solve the first two approximations in Knudsen´s parameter, we construct all the transport properties of the system within the framework of linear irreversible thermodynamics. This includes a systematic study of all possible cross effects (which, except for a few cases, were never treated in the literature) as well as the famous H-theorem. The equations of magneto-hydrodynamics for dilute plasmas, including the rathe...

  2. Phase Space Dynamics of Ionization Injection in Plasma Based Accelerators

    CERN Document Server

    Xu, X L; Li, F; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Yu, P; An, W; Mori, W B; Joshi, C

    2013-01-01

    The evolution of beam phase space in ionization-induced injection into plasma wakefields is studied using theory and particle-in-cell (PIC) simulations. The injection process causes special longitudinal and transverse phase mixing leading initially to a rapid emittance growth followed by oscillation, decay, and eventual slow growth to saturation. An analytic theory for this evolution is presented that includes the effects of injection distance (time), acceleration distance, wakefield structure, and nonlinear space charge forces. Formulas for the emittance in the low and high space charge regimes are presented. The theory is verified through PIC simulations and a good agreement is obtained. This work shows how ultra-low emittance beams can be produced using ionization-induced injection.

  3. Colliding ionization injection in a beam driven plasma accelerator

    CERN Document Server

    Wan, Y; Li, F; Wu, Y P; Hua, J F; Pai, C -H; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2015-01-01

    The proposal of generating high quality electron bunches via ionization injection triggered by an counter propagating laser pulse inside a beam driven plasma wake is examined via two-dimensional particle-in-cell simulations. It is shown that electron bunches obtained using this technique can have extremely small slice energy spread, because each slice is mainly composed of electrons ionized at the same time. Another remarkable advantage is that the injection distance is changeable. A bunch with normalized emittance of 3.3 nm, slice energy spread of 15 keV and brightness of 7.2 A m$^{-2}$ rad$^{-2}$ is obtained with an optimal injection length which is achieved by adjusting the launch time of the drive beam or by changing the laser focal position. This makes the scheme a promising approach to generate high quality electron bunches for the fifth generation light source.

  4. Quantum ion-acoustic solitary waves in weak relativistic plasma

    Indian Academy of Sciences (India)

    Biswajit Sahu

    2011-06-01

    Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized twospecies relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive perturbation method. A linear dispersion relation is also obtained taking into account the relativistic effect. The properties of quantum ion-acoustic solitary waves, obtained from the deformed KdV equation, are studied taking into account the quantum mechanical effects in the weak relativistic limit. It is found that relativistic effects significantly modify the properties of quantum ion-acoustic waves. Also the effect of the quantum parameter on the nature of solitary wave solutions is studied in some detail.

  5. Generation of Diffuse Large Volume Plasma by an Ionization Wave from a Plasma Jet

    Science.gov (United States)

    Laroussi, Mounir; Razavi, Hamid

    2015-09-01

    Low temperature plasma jets emitted in ambient air are the product of fast ionization waves that are guided within a channel of a gas flow, such as helium. This guided ionization wave can be transmitted through a dielectric material and under some conditions can ignite a discharge behind the dielectric material. Here we present a novel way to produce large volume diffuse low pressure plasma inside a Pyrex chamber that does not have any electrodes or electrical energy directly applied to it. The diffuse plasma is ignited inside the chamber by a plasma jet located externally to the chamber and that is physically and electrically unconnected to the chamber. Instead, the plasma jet is just brought in close proximity to the external wall/surface of the chamber or to a dielectric tubing connected to the chamber. The plasma thus generated is diffuse, large volume and with physical and chemical characteristics that are different than the external plasma jet that ignited it. So by using a plasma jet we are able to ``remotely'' ignite volumetric plasma under controlled conditions. This novel method of ``remote'' generation of a low pressure, low temperature diffuse plasma can be useful for various applications including material processing and biomedicine.

  6. Fluid description of multi-component solar partially ionized plasma

    CERN Document Server

    Khomenko, Elena; Diaz, Antonio; Vitas, Nikola

    2014-01-01

    We derive self-consistent formalism for the description of multi-component partially ionized solar plasma, by means of the coupled equations for the charged and neutral components for an arbitrary number of chemical species, and the radiation field. All approximations and assumptions are carefully considered. Generalized Ohm's law is derived for the single-fluid and two-fluid formalism. Our approach is analytical with some order-of-magnitude support calculations. After general equations are developed we particularize to some frequently considered cases as for the interaction of matter and radiation.

  7. Fluid description of multi-component solar partially ionized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khomenko, E., E-mail: khomenko@iac.es; Collados, M.; Vitas, N. [Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife (Spain); Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife (Spain); Díaz, A. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2014-09-15

    We derive self-consistent formalism for the description of multi-component partially ionized solar plasma, by means of the coupled equations for the charged and neutral components for an arbitrary number of chemical species, and the radiation field. All approximations and assumptions are carefully considered. Generalized Ohm's law is derived for the single-fluid and two-fluid formalism. Our approach is analytical with some order-of-magnitude support calculations. After general equations are developed, we particularize to some frequently considered cases as for the interaction of matter and radiation.

  8. Scattering processes and electrical conductivity of partially ionized hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T. [Fachbereich Physik, Universitaet Rostock, D-18051 Rostock (Germany); SRIETP, Al Farabi Kazakh National University, Tole bi, 96a, 480012, Almaty (Kazakhstan); Galiyev, K.; Dzhumagulova, K.N. [SRIETP, Al Farabi Kazakh National University, Tole bi, 96a, 480012, Almaty (Kazakhstan); Roepke, G.; Redmer, R. [Fachbereich Physik, Universitaet Rostock, D-18051 Rostock (Germany)

    2003-07-01

    We consider partially ionized hydrogen plasma for the density region n{sub e} = (10{sup 18} / 10{sup 22}) cm{sup -} {sup 3}. The cross sections for scattering processes between the particles are calculated within the partial wave method. Charged particles in the system (electrons, protons) interact via an effective potential that takes into account three-particle correlations. The Buckingham polarization potential is used to describe electron-atom and proton-atom interactions. The electrical conductivity is determined using the Chapman-Enskog method. The results are compared with other available data. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  9. Charged Particle Motion in a Highly Ionized Plasma

    CERN Document Server

    Brown, L S; Singleton, R; Brown, Lowell S; Preston, Dean L; Singleton, Robert L

    2005-01-01

    A recently introduced method utilizing dimensional continuation is employed to compute the energy loss rate for a non-relativistic particle moving through a highly ionized plasma. No restriction is made on the charge, mass, or speed of this particle. It is, however, assumed that the plasma is not strongly coupled in the sense that the dimensionless plasma coupling parameter g=e^2\\kappa_D/ 4\\pi T is small, where \\kappa_D is the Debye wave number of the plasma. To leading and next-to-leading order in this coupling, dE/dx is of the generic form g^2 \\ln[C g^2]. The precise numerical coefficient out in front of the logarithm is well known. We compute the constant C under the logarithm exactly for arbitrary particle speeds. Our exact results differ from approximations given in the literature. The differences are in the range of 20% for cases relevant to inertial confinement fusion experiments. The same method is also employed to compute the rate of momentum loss for a projectile moving in a plasma, and the rate at ...

  10. Ionization wave propagation on a micro cavity plasma array

    CERN Document Server

    Wollny, Alexander; Gebhardt, Markus; Brinkmann, Ralf Peter; Boettner, Henrik; Winter, Joerg; der Gathen, Volker Schulz-von; Mussenbrock, Thomas

    2011-01-01

    Microcavity plasma arrays are regular arrays of inverse pyramidal cavities created on positive doped silicon wafers. Each cavity acts as a microscopic dielectric barrier discharge. Operated at atmospheric pressure in argon and excited with high voltage at about 10 kHz frequency each cavity develops a localized microplasma. Experiments show a strong interaction of the individual cavities, leading to the propagation of wave-like emission structures along the array surface. This paper studies the ignition process of a micro cavity plasma array by means of a numerical simulation and confirms the experimental results. The propagation of an ionization wave is observed. Its propagation speed of 1 km/s matches experimental findings.

  11. The electron-atom interaction in partially ionized dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Omarbakiyeva, Yu A; Ramazanov, T S; Roepke, G [IETP, Al Farabi Kazakh National University, Tole Bi 96a, Almaty 050012 (Kazakhstan)], E-mail: yultuz@physics.kz

    2009-05-29

    The electron-atom interaction is considered in dense partially ionized plasmas. The separable potential is constructed from scattering data using effective radius theory. Parameters of the interaction potential were obtained from phase shifts, scattering length and effective radius. The binding energy of the electron in the H{sup -} ion is determined for the singlet channel on the basis of the reconstructed separable potential. In dense plasmas, the influence of the Pauli exclusion principle on the phase shifts and the binding energy is considered. Due to the Pauli blocking, the binding energy vanishes at the Mott density. At that density the behavior of the phase shifts is drastically changed. This leads to modifications of macroscopic properties such as composition and transport coefficients.

  12. Monte Carlo simulations of ionization potential depression in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stransky, M., E-mail: stransky@fzu.cz [Department of Radiation and Chemical Physics, Institute of Physics ASCR, Na Slovance 2, 182 21 Prague 8 (Czech Republic)

    2016-01-15

    A particle-particle grand canonical Monte Carlo model with Coulomb pair potential interaction was used to simulate modification of ionization potentials by electrostatic microfields. The Barnes-Hut tree algorithm [J. Barnes and P. Hut, Nature 324, 446 (1986)] was used to speed up calculations of electric potential. Atomic levels were approximated to be independent of the microfields as was assumed in the original paper by Ecker and Kröll [Phys. Fluids 6, 62 (1963)]; however, the available levels were limited by the corresponding mean inter-particle distance. The code was tested on hydrogen and dense aluminum plasmas. The amount of depression was up to 50% higher in the Debye-Hückel regime for hydrogen plasmas, in the high density limit, reasonable agreement was found with the Ecker-Kröll model for hydrogen plasmas and with the Stewart-Pyatt model [J. Stewart and K. Pyatt, Jr., Astrophys. J. 144, 1203 (1966)] for aluminum plasmas. Our 3D code is an improvement over the spherically symmetric simplifications of the Ecker-Kröll and Stewart-Pyatt models and is also not limited to high atomic numbers as is the underlying Thomas-Fermi model used in the Stewart-Pyatt model.

  13. Particle-in-cell simulations of tunneling ionization effects in plasma-based accelerators

    CERN Document Server

    Bruhwiler, D L; Cary, J R; Esarey, E; Leemans, W; Giacone, R E

    2003-01-01

    Plasma-based accelerators can sustain accelerating gradients on the order of 100 GV/m. If the plasma is not fully ionized, fields of this magnitude will ionize neutral atoms via electron tunneling, which can completely change the dynamics of the plasma wake. Particle-in-cell simulations of a high-field plasma wakefield accelerator, using the OOPIC code, which includes field-induced tunneling ionization of neutral Li gas, show that the presence of even moderate neutral gas density significantly degrades the quality of the wakefield. The tunneling ionization model in OOPIC has been validated via a detailed comparison with experimental data from the l'OASIS laboratory. The properties of a wake generated directly from a neutral gas are studied, showing that one can recover the peak fields of the fully ionized plasma simulations, if the density of the electron drive bunch is increased such that the bunch rapidly ionized the gas.

  14. Application of the weak-field asymptotic theory to the analysis of tunneling ionization of linear molecules

    DEFF Research Database (Denmark)

    Madsen, Lars Bojer; Tolstikhin, Oleg I.; Morishita, Toru

    2012-01-01

    The recently developed weak-field asymptotic theory [ Phys. Rev. A 84 053423 (2011)] is applied to the analysis of tunneling ionization of a molecular ion (H2+), several homonuclear (H2, N2, O2) and heteronuclear (CO, HF) diatomic molecules, and a linear triatomic molecule (CO2) in a static...

  15. Modeling of gas ionization and plasma flow in ablative pulsed plasma thrusters

    Science.gov (United States)

    Huang, Tiankun; Wu, Zhiwen; Liu, Xiangyang; Xie, Kan; Wang, Ningfei; Cheng, Yue

    2016-12-01

    A one-dimensional model to study the gas ionization and plasma flow in ablative pulsed plasma thrusters(APPTs) is established in this paper. The discharge process of the APPT used in the LES-6 satellite is simulated to validate the model. The simulation results for the impulse bit and propellant utilization give values of 29.05 μN s and 9.56%, respectively, which are in good agreement with experimental results. To test the new ionization sub-model, the discharge process of a particular APPT, XPPT-1, is simulated, and a numerical result for the propellant utilization of 62.8% is obtained, which also agrees well with experiment. The gas ionization simulation results indicate that an APPT with a lower average propellant ablation rate and higher average electric field intensity between electrodes should have higher propellant utilization. The plasma density distribution between the electrodes of APPTs can also be obtained using the new model, and the numerical results show that the plasma generation and flow are discontinuous, which is in good agreement with past experimental results of high-speed photography. This model provides a new tool with which to study the physical mechanisms of APPTs and a reference for the design of high-performance APPTs.

  16. Colliding ionization injection in a plasma wakefield accelerator

    Science.gov (United States)

    Wan, Y.; Zhang, C. J.; Li, F.; Wu, Y. P.; Hua, J. F.; Pai, C.-H.; Lu, W.; Gu, Y. Q.; Xu, X. L.; Joshi, C.; Mori, W. B.

    2016-03-01

    A new scheme of generating high quality electron bunches via ionization injection triggered by an counter propagating laser pulse inside a beam driven plasma wake is proposed and examined via two-dimensional particle-in-cell (PIC) simulations. This scheme has two major advantages: first, the injection distance is easily tunable by varying the launching time or the focal position of the laser pulse; second, the electrons in each injected slice are released at nearly the same time. Both factors can significantly reduce the phase space mixing during the ionization injection process (Xu et al 2014 Phys. Rev. Lett. 112 035003, Xu et al 2014 Phys. Rev. Spec. Top.: Accel. Beams 17 061301, Li et al 2013 Phys. Rev. Lett. 111 015003), leading to very small energy spreads (˜10 keV for slice,˜100 keV for the whole bunch) and very small normalized emittance (˜few nm). As an example, a 4.5 fs 0.4 pC electron bunch with normalized emittance of 3.3 nm, slice energy spread of 13 keV, absolute energy spread of 80 keV, and a brightness of 7.2× {{10}18} A m-2rad-2 is obtained under realistic conditions. This scheme may have potential applications for future compact coherent light sources.

  17. Downstream plasma transport and metal ionization in a high-powered pulsed-plasma magnetron

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Liang; Szott, Matthew M.; McLain, Jake T.; Ruzic, David N. [Center for Plasma-Materials Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Yu, He [Center for Plasma-Materials Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2014-06-14

    Downstream plasma transport and ionization processes in a high-powered pulsed-plasma magnetron were studied. The temporal evolution and spatial distribution of electron density (n{sub e}) and temperature (T{sub e}) were characterized with a 3D scanning triple Langmuir probe. Plasma expanded from the racetrack region into the downstream region, where a high n{sub e} peak was formed some time into the pulse-off period. The expansion speed and directionality towards the substrate increased with a stronger magnetic field (B), largely as a consequence of a larger potential drop in the bulk plasma region during a relatively slower sheath formation. The fraction of Cu ions in the deposition flux was measured on the substrate using a gridded energy analyzer. It increased with higher pulse voltage. With increased B field from 200 to 800 Gauss above racetrack, n{sub e} increased but the Cu ion fraction decreased from 42% to 16%. A comprehensive model was built, including the diffusion of as-sputtered Cu flux, the Cu ionization in the entire plasma region using the mapped n{sub e} and T{sub e} data, and ion extraction efficiency based on the measured plasma potential (V{sub p}) distribution. The calculations matched the measurements and indicated the main causes of lower Cu ion fractions in stronger B fields to be the lower T{sub e} and inefficient ion extraction in a larger pre-sheath potential.

  18. Stationary distribution functions for ohmic Tokamak-plasmas in the weak-collisional transport regime by MaxEnt principle

    Science.gov (United States)

    Sonnino, Giorgio; Peeters, Philippe; Sonnino, Alberto; Nardone, Pasquale; Steinbrecher, György

    2015-01-01

    In previous works, we derived stationary density distribution functions (DDF) where the local equilibrium is determined by imposing the maximum entropy (MaxEnt) principle, under the scale invariance restrictions, and the minimum entropy production theorem. In this paper we demonstrate that it is possible to reobtain these DDF solely from the MaxEnt principle subject to suitable scale invariant restrictions in all the variables. For the sake of concreteness, we analyse the example of ohmic, fully ionized, tokamak-plasmas, in the weak-collisional transport regime. In this case we show that it is possible to reinterpret the stationary distribution function in terms of the Prigogine distribution function where the logarithm of the DDF is directly linked to the entropy production of the plasma. This leads to the suggestive idea that also the stationary neoclassical distribution functions, for magnetically confined plasmas in the collisional transport regimes, may be derived solely by the MaxEnt principle.

  19. First-order correction terms in the weak-field asymptotic theory of tunneling ionization in many-electron systems

    Science.gov (United States)

    Trinh, Vinh H.; Tolstikhin, Oleg I.; Morishita, Toru

    2016-10-01

    The many-electron weak-field asymptotic theory of tunneling ionization including the first-order correction terms in the asymptotic expansion of the ionization rate in field strength was highlighted in our recent fast track communication (Trinh et al 2015 J. Phys. B: At. Mol. Opt. Phys. 48 061003) by demonstrating its performance for two-electron atoms. Here we present a thorough derivation of the first-order terms omitted in the previous publication and provide additional numerical illustrations of the theory.

  20. Simulation of the Partially Ionized Negative Hydrogen Plasma

    Science.gov (United States)

    Averkin, Sergey; Gatsonis, Nikolaos; Olson, Lynn

    2012-10-01

    A High Pressure Discharge Negative Ion Source (HPDNIS) operating on hydrogen is been under investigation. The Negative Ion Production (NIP) section of the HPDNIS attaches to the 10-100 Torr RF-discharge chamber with a micronozzle and ends with a grid that extracts the negative ion beam. The partially ionized and reacting plasma flow in the NIP section is simulated using an unstructured three-dimensional Direct Simulation Monte Carlo (U3DSMC) code. The NIP section contains a low-pressure plasma that includes H2, vibrationally-rotationally excited H2^*, negative hydrogen atoms H^-, and electrons. Primary reactions in the NIP section are dissociate attachment, H2^*+e->H^0+H^-and electron collisional detachment, e+H^-->H+2e. The U3DSMC computational domain includes the entrance to the NIP nozzle and the extraction grid at the exit. The flow parameters at the entrance are based on conditions in the RF-discharge chamber and are implemented in U3DSMC using a Kinetic-Moment subsonic boundary conditions method. Neutral--neutral, ion-neutral, Coulomb collisions and charge-neutralizing collisions are implemented in U3DSMC using the no time counter method, electron-molecule collisions are treated by the constant timestep method. Simulations cover the regime of operation of the HPDNIS and examine the flow characteristics inside the NIP section.

  1. The phenomenon of runaway electrons in partially ionized non-ideal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T S; Turekhanova, K M [IETP, Al Farabi Kazakh National University, Tole Bi 96a, 050012 Almaty (Kazakhstan)], E-mail: kunduz@physics.kz

    2009-05-29

    The effect of runaway electrons in partially ionized hydrogen plasma is investigated on the basis of pseudopotential models. The conditions of runaway electrons were determined. Dependences of an electron free path on the plasma density and coupling parameter were obtained. It is shown that if the quantum-mechanical and screening effects in non-ideal partially ionized plasma are taken into consideration, the collision frequency curve for electrons has maxima and free path curves for electrons have minima.

  2. Application of the weak-field asymptotic theory to the analysis of tunneling ionization of linear molecules

    DEFF Research Database (Denmark)

    Madsen, Lars Bojer; Tolstikhin, Oleg I.; Morishita, Toru

    2012-01-01

    electric field. The dependence of the ionization rate on the angle between the molecular axis and the field is determined by a structure factor for the highest occupied molecular orbital. This factor is calculated using a virtually exact discrete variable representation wave function for H2+, very accurate...... Hartree-Fock wave functions for the diatomics, and a Hartree-Fock quantum chemistry wave function for CO2. The structure factors are expanded in terms of standard functions and the associated structure coefficients, allowing the determination of the ionization rate for any orientation of the molecule......The recently developed weak-field asymptotic theory [ Phys. Rev. A 84 053423 (2011)] is applied to the analysis of tunneling ionization of a molecular ion (H2+), several homonuclear (H2, N2, O2) and heteronuclear (CO, HF) diatomic molecules, and a linear triatomic molecule (CO2) in a static...

  3. Does the schock wave in a highly ionized non-isothermal plasma really exist ?

    OpenAIRE

    Rukhadze, A. A.; Sadykova, S.; Samkharadze, T.

    2015-01-01

    Here we study the structure of a highly ionizing shock wave in a gas of high atmospheric pressure. We take into account the gas ionization when the gas temperature reaches few orders of an ionization potential. It is shown that after gasdynamic temperature-raising shock and formation of a highly-ionized nonisothermal plasma $T_e>>T_i$ only the solitary ion-sound wave (soliton) can propagate in this plasma. In such a wave the charge separation occurs: electrons and ions form the double electri...

  4. Does the schock wave in a highly ionized non-isothermal plasma really exist ?

    CERN Document Server

    Rukhadze, A A; Samkharadze, T

    2015-01-01

    Here we study the structure of a highly ionizing shock wave in a gas of high atmospheric pressure. We take into account the gas ionization when the gas temperature reaches few orders of an ionization potential. It is shown that after gasdynamic temperature-raising shock and formation of a highly-ionized nonisothermal plasma $T_e>>T_i$ only the solitary ion-sound wave (soliton) can propagate in this plasma. In such a wave the charge separation occurs: electrons and ions form the double electric layer with the electric field. The shock wave form, its amplitude and front width are obtained.

  5. A partially ionized plasma modeling; Un modele de plasma partiellement ionise

    Energy Technology Data Exchange (ETDEWEB)

    Le Thanh, K.C.; Raviart, P.A

    2003-07-01

    We propose a model for the partially ionized plasma sheaths near the anode of an anodic spot electric arc where the cathode is considered as an electron emitter. A fluid description takes into account the heating and the ionization of the plasma induced by the electron beam. As physical hypothesis we assume that the condition of charge neutrality is valid. According that the electron mass can be neglected compared to the ion mass, we can assume that ions and atoms have the same velocity and the same temperature. Electrons and heavy particles are then regarded as two separate fluids coexisting in the plasma. Governing equations are then multi-fluid equations with relaxation correction to the local thermodynamic equilibrium (LTE) and heating by Joule effect. Equations are solved by an operator splitting procedure. That is we first discretize the homogeneous conservation laws (i.e. without source terms) by a finite volume method. The second step is to solve the ordinary differential system (i.e, governing equation without transport terms) with an implicit scheme. (authors)

  6. Stimulated Brillouin scattering of an electromagnetic wave in weakly magnetized plasma with variably charged dust particles

    Indian Academy of Sciences (India)

    Sourabh Bal; M Bose

    2009-10-01

    We have investigated analytically the stimulated Brillouin scattering (SBS) of an electromagnetic wave in non-dissipative weakly magnetized plasma in the presence of dust particles with variable charge.

  7. A scattering cross-section and ionization equilibrium in dense metal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T S; Dzhumagulova, K N; Gabdullin, M T; Akbar, A Zh [IETP, Al Farabi Kazakh National University, Tole Bi 96a, 050012 Almaty (Kazakhstan); Redmer, R [Institute of Physics, University of Rostock, D-18051, Rostock (Germany)], E-mail: ramazan@physics.kz

    2009-05-29

    The kinetic and thermodynamic properties of non-ideal Al and Cu plasmas were investigated on the basis of pseudopotential models, taking screening and quantum-mechanical effects into account. For investigation of ionization stages, the Saha equations with corrections to non-ideality (lowering of ionization potentials) were used.

  8. Resonant Alfven waves in partially ionized plasmas of the solar atmosphere

    CERN Document Server

    Soler, R; Goossens, M

    2011-01-01

    Context. Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. In magnetic waveguides resonant absorption due to plasma inhomogeneity naturally transfers wave energy from large-scale motions to small-scale motions. In the cooler parts of the solar atmosphere as, e.g., the chromosphere, effects due to partial ionization may be relevant for wave dynamics and heating. Aims. We study resonant Alfven waves in partially ionized plasmas. Methods. We use the multifluid equations in the cold plasma approximation. We investigate propagating resonant MHD waves in partially ionized flux tubes. We use approximate analytical theory based on normal modes in the thin tube and thin boundary approximations along with numerical eigenvalue computations. Results. We find that the jumps of the wave perturbations across the resonant layer are the same as in fully ionized plasmas. The damping length due to resonant absorption is inversely proportional to the frequency, while that due to ion-neutral collisions is in...

  9. Nonrelativistic parallel shocks in unmagnetized and weakly magnetized plasmas

    CERN Document Server

    Niemiec, Jacek; Bret, Antoine; Wieland, Volkmar

    2012-01-01

    We present results of 2D3V particle-in-cell simulations of non-relativistic plasma collisions with absent or parallel large-scale magnetic field for parameters applicable to the conditions at young supernova remnants. We study the collision of plasma slabs of different density, leading to two different shocks and a contact discontinuity. Electron dynamics play an important role in the development of the system. While non-relativistic shocks in both unmagnetized and magnetized plasmas can be mediated by Weibel-type instabilities, the efficiency of shock-formation processes is higher when a large-scale magnetic field is present. The electron distributions downstream of the forward and reverse shocks are generally isotropic, whereas that is not always the case for the ions. We do not see any significant evidence of pre-acceleration, neither in the electron population nor in the ion distribution.

  10. Local thermodynamic equilibrium modeling of ionization of impurities in argon inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Serapinas, Petras, E-mail: serapinas@pfi.l [Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, 01108 Vilnius (Lithuania); Salkauskas, Julius; Ezerinskis, Zilvinas; Acus, Arturas [Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, 01108 Vilnius (Lithuania)

    2010-01-15

    Essentially higher ionization degree of small concentrations of elements in inductively coupled plasma in comparison to the ionization of pure elements is emphasized. This conclusion is used to determine the relative dependence of the sensitivity of the inductively coupled plasma mass spectrometer on the atomic mass. The possibility of evaluation of the ionization temperature and electron density from mass spectrometric signals is proposed. Temperatures about 7000 K and 8000 K were obtained from the ionization ratio dependences on ionization potentials. Electron densities of the order of magnitude 10{sup 15} cm{sup -3}, in excess to the local thermodynamic equilibrium values, follow from the application of the Saha equation to the measurement results and indicate the recombining character of the plasma in the mass spectrometer measurement region. Effects due to additional ionization from matrix were discussed. The effect is largest on minor abundant ionization state components. Matrix effect is restricted to some temperature interval, which depends on the whole matrix composition and the plasma state. The results show that the local thermodynamic equilibrium modeling, if adequately matching the sample composition, can be useful as a quantitative basis for both description of the plasma state and indication of the character of the nonequilibrium effects.

  11. Transport properties of partially ionized and unmagnetized plasmas

    Science.gov (United States)

    Magin, Thierry E.; Degrez, Gérard

    2004-10-01

    This work is a comprehensive and theoretical study of transport phenomena in partially ionized and unmagnetized plasmas by means of kinetic theory. The pros and cons of different models encountered in the literature are presented. A dimensional analysis of the Boltzmann equation deals with the disparity of mass between electrons and heavy particles and yields the epochal relaxation concept. First, electrons and heavy particles exhibit distinct kinetic time scales and may have different translational temperatures. The hydrodynamic velocity is assumed to be identical for both types of species. Second, at the hydrodynamic time scale the energy exchanged between electrons and heavy particles tends to equalize both temperatures. Global and species macroscopic fluid conservation equations are given. New constrained integral equations are derived from a modified Chapman-Enskog perturbative method. Adequate bracket integrals are introduced to treat thermal nonequilibrium. A symmetric mathematical formalism is preferred for physical and numerical standpoints. A Laguerre-Sonine polynomial expansion allows for systems of transport to be derived. Momentum, mass, and energy fluxes are associated to shear viscosity, diffusion coefficients, thermal diffusion coefficients, and thermal conductivities. A Goldstein expansion of the perturbation function provides explicit expressions of the thermal diffusion ratios and measurable thermal conductivities. Thermal diffusion terms already found in the Russian literature ensure the exact mass conservation. A generalized Stefan-Maxwell equation is derived following the method of Kolesnikov and Tirskiy. The bracket integral reduction in terms of transport collision integrals is presented in Appendix for the thermal nonequilibrium case. A simple Eucken correction is proposed to deal with the internal degrees of freedom of atoms and polyatomic molecules, neglecting inelastic collisions. The authors believe that the final expressions are

  12. Resonant- and avalanche-ionization amplification of laser-induced plasma in air

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yue; Zhang, Zhili, E-mail: zzhang24@utk.edu [Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Jiang, Naibo; Roy, Sukesh [Spectral Energies, LLC, 5100 Springfield St., Suite 301, Dayton, Ohio 45431 (United States); Gord, James R. [Air Force Research Laboratory, Aerospace Systems Directorate, Wright-Patterson Air Force Base, Ohio 45433 (United States)

    2014-10-14

    Amplification of laser-induced plasma in air is demonstrated utilizing resonant laser ionization and avalanche ionization. Molecular oxygen in air is ionized by a low-energy laser pulse employing (2 + 1) resonance-enhanced multi-photon ionization (REMPI) to generate seed electrons. Subsequent avalanche ionization of molecular oxygen and nitrogen significantly amplifies the laser-induced plasma. In this plasma-amplification effect, three-body attachments to molecular oxygen dominate the electron-generation and -loss processes, while either nitrogen or argon acts as the third body with low electron affinity. Contour maps of the electron density within the plasma obtained in O₂/N₂ and O₂/Ar gas mixtures are provided to show relative degrees of plasma amplification with respect to gas pressure and to verify that the seed electrons generated by O₂ 2 + 1 REMPI are selectively amplified by avalanche ionization of molecular nitrogen in a relatively low-pressure condition (≤100 Torr). Such plasma amplification occurring in air could be useful in aerospace applications at high altitude.

  13. Ionization enhanced ion collection by a small floating grain in plasmas

    CERN Document Server

    Khrapak, Sergey A

    2011-01-01

    It is demonstrated that the ionization events in the vicinity of a small floating grain can increase the ion flux to its surface. In this respect the effect of electron impact ionization is fully analogous to that of the ion-neutral resonant charge exchange collisions. Both processes create slow ion which cannot overcome grain' electrical attraction and eventually fall onto its surface. The relative importance of ionization and ion-neutral collisions is roughly given by the ratio of the corresponding frequencies. We have evaluated this ratio for neon and argon plasmas to demonstrate that ionization enhanced ion collection can indeed be an important factor affecting grain charging in realistic experimental conditions.

  14. Numerical Simulation of Dust Void Evolution in Complex Plasmas with Ionization Effect

    Institute of Scientific and Technical Information of China (English)

    LIU Yue; WANG Zheng-Xiong; WANG Xiao-Gang

    2006-01-01

    We develop the nonlinear theory of dust voids [Phys. Rev. Lett. 90 (2003) 075001], focusing particularly on effects of the ionization, to investigate numerically the void evolution under cylindrical coordinates [Phys. Plasmas 13(2006) 064502]. The ion velocity profile is solved by a more accurate ion motion equation with the ion convection and ionization terms. It is shown that the differences between the previous result and the one obtained with ionizations are significant for the distributions of the ion and dust velocities, the dust density, and etc., in the void formation process. Furthermore, the ionization can slow down the void formation process effectively.

  15. Simulation of various ionization effects in overdense plasmas irradiated by a subpicosecond pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhidkov, A.; Sasaki, Akira; Tajima, Toshiki [Advanced Photon Research Center, Japan Atomic Energy Research Institute, Neyagawa, Osaka (Japan)

    2000-07-01

    The effects of the elastic collisions and ionization under non-LET on the absorption efficiency, heat transfer, and particle acceleration in short pulse laser irradiated overdense plasmas are studied. We present a newly developed hybrid electromagnetic particle-in-cell method (in 1D) employing the nonlinear Langevin equation to account for Coulomb collisions and the average ion model to calculate the plasma transient ionization. The collisional and field ionization are included. Interaction between solid targets and thin foils with an arbitrary polarized, intense (I=10{sup 16}-10{sup 20} W/cm{sup 2}) laser pulse are investigated. (author)

  16. Estimate of electrical potential difference between plasmas with different degrees of ionization

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-12

    The electrical potential difference has been estimated across the mixing region of two plasmas with different degrees of ionization. The estimation has been carried out in two different contexts of a charge neutral mixing region and a charge non-neutral sheath. Ion energy gained due to the potential difference has also been estimated. In both analyses, ion energy gain is proportional to the degree of ionization, and a fairly large ionization appears to be needed for overcoming the potential energy barrier of strongly coupled plasmas.

  17. Instantaneous charge state of Uranium projectiles in fully ionized plasmas from energy loss experiments

    CERN Document Server

    Morales, Roberto; Casas, David

    2016-01-01

    The instantaneous charge state of uranium ions traveling through a fully ionized hydrogen plasma has been theoretically studied and compared with one of the first energy loss experiments in plasmas, carried out at GSI-Darmstadt by Hoffmann \\textit{et al.} in the 90's. For this purpose, two different methods to estimate the instantaneous charge state of the projectile have been employed: (1) rate equations using ionization and recombination cross sections, and (2) equilibrium charge state formulas for plasmas. Also, the equilibrium charge state has been obtained using these ionization and recombination cross sections, and compared with the former equilibrium formulas. The equilibrium charge state of projectiles in plasmas is not always reached, it depends mainly on the projectile velocity and the plasma density. Therefore, a non-equilibrium or an instantaneous description of the projectile charge is necessary. The charge state of projectile ions cannot be measured, except after exiting the target, and experime...

  18. New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Anderson, A. J.; Aramaki, T.; Asai, M.; Baker, W.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Calkins, R.; Cerdeno, D. G.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Ghaith, M.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; Mandic, V.; Mast, N.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Rogers, H. E.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Underwood, R.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2016-02-01

    The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Results are presented from the second CDMSlite run with an exposure of 70 kg day, which reached an energy threshold for electron recoils as low as 56 eV. A fiducialization cut reduces backgrounds below those previously reported by CDMSlite. New parameter space for the WIMP-nucleon spin-independent cross section is excluded for WIMP masses between 1.6 and 5.5 GeV/c^2.

  19. Ionization balance of impurities in turbulent scrape-off layer plasmas I: local ionization-recombination equilibrium

    Science.gov (United States)

    Guzman, F.; Marandet, Y.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Guirlet, R.; Rosato, J.; Valentinuzzi, M.

    2015-12-01

    In magnetized fusion devices, cross field impurity transport is often dominated by turbulence, in particular in the scrape-off layer. In these outer regions of the plasma, fluctuations of plasma parameters can be comparable to mean values, and the way ionization and recombination sources are treated in transport codes becomes questionnable. In fact, sources are calculated using the mean density and temperature values, with no account of fluctuations. In this work we investigate the modeling uncertainties introduced by this approximation, both qualitatively and quantitatively for the local ionization equilibrium. As a first step transport effects are neglected, and their role will be discussed in a companion paper. We show that temperature fluctuations shift the ionization balance towards lower temperatures, essentially because of the very steep temperature dependence of the ionization rate coefficients near the threshold. To reach this conclusion, a thorough analysis of the time scales involved is carried out, in order to devise a proper way of averaging over fluctuations. The effects are found to be substantial only for fairly large relative fluctuation levels for temperature, that is of the order of a few tens of percents.

  20. Comment on Weakly dissipative dust-ion acoustic wave modulation (J. Plasma Phys. 82, 905820104, 2016)

    Science.gov (United States)

    Kourakis, I.; Elkamash, I. S.

    2016-10-01

    In a recent article (J. Plasma Phys., vol. 82, 2009, 905820104), weakly dissipative dust-ion acoustic wave modulation in dusty plasmas was considered. It is shown in this Comment that the analysis therein involved severe fallacies, and is in fact based on an erroneous plasma fluid model, which fails to satisfy an equilibrium condition, among other shortcomings. The subsequent analysis therefore is dubious and of limited scientific value.

  1. Strong Helioseismic Constraints on Weakly-Coupled Plasmas

    Science.gov (United States)

    Nayfonov, Alan

    The extraordinary accuracy of helioseismic data allows detailed theoretical studies of solar plasmas. The necessity to produce solar models matching the experimental results in accuracy imposes strong constrains on the equations of state of solar plasmas. Several discrepancies between the experimental data and models have been successfully identified as the signatures of various non-ideal phenomena. Of a particular interest are questions of the position of the energy levels and the continuum edge and of the effect of the excited states in the solar plasma. Calculations of energy level and continuum shifts, based on the Green function formalism, appeared recently in the literature. These results have been used to examine effects of the shifts on the thermodynamic quantities. A comparison with helioseismic data has shown that the calculations based on lower-level approximations, such as the static screening in the effective two-particle wave equation, agree very well with the experimental data. However, the case of full dynamic screening produces thermodynamic quantities inconsistent with observations. The study of the effect of different internal partition functions on a complete set of thermodynamic quantities has revealed the signature of the excited states in the MHD (Mihalas, Hummer, Dappen) equation of state. The presence of exited states causes a characteristic 'wiggle' in the thermodynamic quantities due to the density-dependent occupation probabilities. This effect is absent if the ACTEX (ACTivity EXpansion) equation of state is used. The wiggle has been found to be most prominent in the quantities sensitive to density. The size of this excited states effect is well within the observational power of helioseismology, and very recent inversion analyses of helioseismic data seem to indicate the presence of the wiggle in the sun. This has a potential importance for the helioseismic determination of the helium abundance of the sun.

  2. Source formulation for electron-impact ionization for fluid plasma simulations

    DEFF Research Database (Denmark)

    Müller, S.H.; Holland, C.; Tynan, G.R.;

    2009-01-01

    The derivation of the correct functional form of source terms in plasma fluid theory is revisited. The relation between the fluid source terms and atomic physics differential cross sections is established for particle-impact ionization. It is shown that the interface between atomic and plasma...

  3. Electron impact ionization in plasma technologies; studies on atomic boron and BN molecule

    Science.gov (United States)

    Joshi, Foram M.; Joshipura, K. N.; Chaudhari, Asha S.

    2016-05-01

    Electron impact ionization plays important role in plasma technologies. Relevant cross sections on atomic boron are required to understand the erosion processes in fusion experiments. Boronization of plasma exposed surfaces of tokomaks has proved to be an effective way to produce very pure fusion plasmas. This paper reports comprehensive theoretical investigations on electron scattering with atomic Boron and Boron Nitride in solid phases. Presently we determine total ionization cross-section Qion and the summed-electronic excitation cross section ΣQexc in a standard quantum mechanical formalism called SCOP and CSP-ic methods. Our calculated cross sections are examined as functions of incident electron energy along with available comparisons.

  4. Third Harmonic Generation of a Short Pulse Laser in a Tunnel Ionizing Plasma: Effect of Self-Defocusing

    OpenAIRE

    Niti Kant

    2013-01-01

    Third harmonic generation of a Gaussian short pulse laser in a tunnel ionizing plasma is investigated. A Gaussian short pulse laser propagating through a tunnel ionizing plasma generates third harmonic wave. Inhomogeneity of the electric field along the wavefront of the fundamental laser pulse causes more ionization along the axis of propagation while less ionization off axis, leading to strong density gradient with its maximum on the axis of propagation. The medium acts like a diverging lens...

  5. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Wang

    2016-05-01

    Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  6. Ionization-potential depression and dynamical structure factor in dense plasmas

    Science.gov (United States)

    Lin, Chengliang; Röpke, Gerd; Kraeft, Wolf-Dietrich; Reinholz, Heidi

    2017-07-01

    The properties of a bound electron system immersed in a plasma environment are strongly modified by the surrounding plasma. The modification of an essential quantity, the ionization energy, is described by the electronic and ionic self-energies, including dynamical screening within the framework of the quantum statistical theory. Introducing the ionic dynamical structure factor as the indicator for the ionic microfield, we demonstrate that ionic correlations and fluctuations play a critical role in determining the ionization potential depression. This is, in particular, true for mixtures of different ions with large mass and charge asymmetry. The ionization potential depression is calculated for dense aluminum plasmas as well as for a CH plasma and compared to the experimental data and more phenomenological approaches used so far.

  7. Radical electronic transformation of strongly coupled plasma at megabar pressure ionization, dielectrization and phase transitions

    Science.gov (United States)

    Fortov, Vladimir

    2007-06-01

    The work presents new results of investigation of pressure and temperature ionization of coupled nonideal plasmas generated as a result of multiple shock compression of metals, H2, He, noble gases, S, I, fullerene C60, H2O in the megabar pressure range. The highly time-resolved diagnostics permit us to measure thermodynamical, radiative and mechanical properties of high pressure condensed matter in a broad region of the phase diagram. This data in combination with exploding wire conductivity measurements demonstrate an ionization rate increase up to ten orders of magnitude as a result of compression of degenerate plasmas at p 104-107 bars. Shock compression of H2, Ar, He, Kr, Ne, Xe in initially gaseous and cryogenic liquid state allows measuring the electrical conductivity, Hall effect parameters, equation of state, and emission spectra of strongly nonideal plasma. Thermal and pressure ionization of strongly coupled states of matter is the most prominent effects under the experimental conditions. It was shown that plasma compression strongly deforms the ionization potentials, emission spectra and scattering cross-sections of the neutrals and ions in the strongly coupled plasmas. In contrast to the plasma compression the multiple shock compression of solid Li, Na, Ca shows ``dielectrization'' of the elements. Phase transitions in strongly nonideal plasmas are discussed.

  8. Transient growth of a Vlasov plasma in a weakly inhomogeneous magnetic field

    KAUST Repository

    Ratushnaya, Valeria

    2016-12-17

    We investigate the stability properties of a collisionless Vlasov plasma in a weakly inhomogeneous magnetic field using non-modal stability analysis. This is an important topic in a physics of tokamak plasma rich in various types of instabilities. We consider a thin tokamak plasma in a Maxwellian equilibrium, subjected to a small arbitrary perturbation. Within the framework of kinetic theory, we demonstrate the emergence of short time scale algebraic instabilities evolving in a stable magnetized plasma. We show that the linearized governing operator (Vlasov operator) is non-normal leading to the transient growth of the perturbations on the time scale of several plasma periods that is subsequently followed by Landau damping. We calculate the first-order distribution function and the electric field and study the dependence of the transient growth characteristics on the magnetic field strength and perturbation parameters of the system. We compare our results with uniformly magnetized plasma and field-free Vlasov plasma.

  9. Transient growth of a Vlasov plasma in a weakly inhomogeneous magnetic field

    Science.gov (United States)

    Ratushnaya, Valeria; Samtaney, Ravi

    2016-12-01

    We investigate the stability properties of a collisionless Vlasov plasma in a weakly inhomogeneous magnetic field using non-modal stability analysis. This is an important topic in a physics of tokamak plasma rich in various types of instabilities. We consider a thin tokamak plasma in a Maxwellian equilibrium, subjected to a small arbitrary perturbation. Within the framework of kinetic theory, we demonstrate the emergence of short time scale algebraic instabilities evolving in a stable magnetized plasma. We show that the linearized governing operator (Vlasov operator) is non-normal leading to the transient growth of the perturbations on the time scale of several plasma periods that is subsequently followed by Landau damping. We calculate the first-order distribution function and the electric field and study the dependence of the transient growth characteristics on the magnetic field strength and perturbation parameters of the system. We compare our results with uniformly magnetized plasma and field-free Vlasov plasma.

  10. Toward realistic simulations of magneto-thermal winds from weakly-ionized protoplanetary disks

    CERN Document Server

    Gressel, Oliver

    2016-01-01

    Protoplanetary disks (PPDs) accrete onto their central T Tauri star via magnetic stresses. When the effect of ambipolar diffusion (AD) is included, and in the presence of a vertical magnetic field, the disk remains laminar between 1-5 au, and a magnetocentrifugal disk wind forms that provides an important mechanism for removing angular momentum. We present global MHD simulations of PPDs that include Ohmic resistivity and AD, where the time-dependent gas-phase electron and ion fractions are computed under FUV and X-ray ionization with a simplified recombination chemistry. To investigate whether the mass loading of the wind is potentially affected by the limited vertical extent of our existing simulations, we attempt to develop a model of a realistic disk atmosphere. To this end, by accounting for stellar irradiation and diffuse reprocessing of radiation, we aim at improving our models towards more realistic thermodynamic properties.

  11. Properties of a weakly ionized NO gas sensor based on multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingyuan; Zhang, Yong, E-mail: zhyong@mail.xjtu.edu.cn; Pan, Zhigang; Yang, Shuang; Shi, Jinghui; Li, Shengtao; Min, Daomin; Wang, Xiaohua; Liu, Dingxin; Yang, Aijun [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710-049 (China); Li, Xin [Vacuum Micro-Electronic and Micro-Electronic Mechanical Institute, School of Electronics and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-08-31

    Nitric oxide NO is one of the major targets for environmental monitoring, but the existing NO sensors are limited by their low sensitivity and narrow test range. Here, a NO gas sensor employing multiwalled carbon nanotubes (MWCNTs) was fabricated, and its properties in NO–N{sub 2} mixture were investigated from both emission and ionization. The current I{sub e} passing through the nanotubes cathode was found to decrease with increasing NO concentration and increase linearly in different slopes with the extracting voltage U{sub e}. It is shown that the Schottky barrier of the MWCNTs calculated by I{sub e} increased with NO concentration due to the adsorption of NO gas, which restrained the electron emission and consequently weakened the ionization. The positive ion currents I{sub c} passing through the collecting electrode at different voltages of U{sub e} were found to monotonically decrease with increasing NO concentration, which was induced by both of the reduced electron emission and the consumption of the two excited metastable states N{sub 2}(A{sup 3}∑{sub u}{sup +}) and N{sub 2}(a′{sup 1}∑{sub u}{sup −}) by NO. The sensor exhibited high sensitivity at the low temperature of 30 °C. The calculated conductivity was found to be able to take place of I{sub c} for NO detection in a wide voltage range of 80–150 V U{sub e}.

  12. Nonlinear propagation of ion-acoustic waves through the Burgers equation in weakly relativistic plasmas

    Science.gov (United States)

    Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.

    2017-04-01

    The Burgers equation is obtained to study the characteristics of nonlinear propagation of ionacoustic shock, singular kink, and periodic waves in weakly relativistic plasmas containing relativistic thermal ions, nonextensive distributed electrons, Boltzmann distributed positrons, and kinematic viscosity of ions using the well-known reductive perturbation technique. This equation is solved by employing the ( G'/ G)-expansion method taking unperturbed positron-to-electron concentration ratio, electron-to-positron temperature ratio, strength of electrons nonextensivity, ion kinematic viscosity, and weakly relativistic streaming factor. The influences of plasma parameters on nonlinear propagation of ion-acoustic shock, periodic, and singular kink waves are displayed graphically and the relevant physical explanations are described. It is found that these parameters extensively modify the shock structures excitation. The obtained results may be useful in understanding the features of small but finite amplitude localized relativistic ion-acoustic shock waves in an unmagnetized plasma system for some astrophysical compact objects and space plasmas.

  13. SPEX (Plasma Code Spectral Fitting Tool). Collisional ionization for atoms and ions of H to Zn.

    Science.gov (United States)

    Urdampilleta, I.; Kaastra, J. S.

    2017-03-01

    Every observation of astrophysical objects involving a spectrum requires atomic data for the interpretation of line fluxes, ratios and ionization state of the emitting plasma. One of processes which determines it is collisional ionization. In this study an update of the direct ionization (DI) and excitation-autoionization (EA) processes is discussed for the H to Zn-like isoelectronic sequences. The previous assessments were performed by Dere (2007, A&A 466, 771) for H to Zn isoelectronc sequences, Arnaud & Raymond (1992, ApJ. 398, 394) for Fe and Arnaud & Rothenflug (1985, A&AS, 60, 425). However, in the last years new laboratory measurements and theoretical calculations of ionization cross sections have become accessible. We provide a review, extension and update of this previous work and fit the cross sections of all individuals shells of all ions from H to Zn. These data are described using an extension of Younger's formula, suitable for integration over a Maxwellian velocity distribution to derive the subshell ionization rate coefficients. These ionization rate coefficients are included together with the radiative recombination rates data (Mao et al. 2016, A&AS, 27568) and a change-exchange model (Gu et al. 2016, A&A 588, A52, 11) into the high-resolution plasma code and spectral fit tool SPEX V3.0 (Kaastra et al. 1996, UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas).

  14. Scaling theory of relative diffusion of charged particles in a weakly magneto-turbulent plasma

    Energy Technology Data Exchange (ETDEWEB)

    Haida Wang (University of Science and Technology of China, Hefei, Anhui. Dept. of Modern Physics); Xiaoming Qui (Southwest Inst. of Physics, Leshan, SC (China))

    1989-02-01

    Stochastic motion of charged particles in a magneto-turbulent plasma is studied for the whole time region. A set of nonlinear differential equations for describing relative spatial diffusion of charged particles is derived and some explicit results are obtained in the case of a weak magnetic field. It is found that, for the diffusion in the present system there are some new and interesting properties which do not exist in an unmagnetized plasma. The clump effect is also discussed. (author).

  15. Theory of nonlocal heat transport in fully ionized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Maximov, A.V. (Tesla Labs., Inc., La Jolla, CA (United States)); Silin, V.P. (P.N. Lebedev Inst., Russian Academy of Sciences, Moscow (Russia))

    1993-01-25

    A new analytic solution of the electron kinetic equation describing the interacting of the electromagnetic heating field with plasma is obtained in the region of plasma parameters where the Spitzer-Harm classical theory is invalid. A novel expression for the nonlocal electron thermal conductivity is derived. (orig.).

  16. Modeling of Inelastic Collisions in a Multifluid Plasma: Ionization and Recombination

    CERN Document Server

    Le, H P

    2016-01-01

    A model for ionization and recombination collisions in a multifluid plasma is formulated using the framework introduced in previous work [{Phys. Plasmas} \\textbf{22}, 093512 (2015)]. The exchange source terms for density, momentum and energy are detailed for the case of electron induced ionization and three body recombination collisions with isotropic scattering. The principle of detailed balance is enforced at the microscopic level. We describe how to incorporate the standard collisional-radiative model into the multifluid equations using the current formulation. Numerical solutions of the collisional-radiative rate equations for atomic hydrogen are presented to highlight the impact of the multifluid effect on the kinetics.

  17. Kinetic theory of transport processes in partially ionized reactive plasma, II: Electron transport properties

    Science.gov (United States)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-11-01

    The previously obtained in (Zhdanov and Stepanenko, 2016) general transport equations for partially ionized reactive plasma are employed for analysis of electron transport properties in molecular and atomic plasmas. We account for both elastic and inelastic interaction channels of electrons with atoms and molecules of plasma and also the processes of electron impact ionization of neutral particles and three-body ion-electron recombination. The system of scalar transport equations for electrons is discussed and the expressions for non-equilibrium corrections to electron ionization and recombination rates and the diagonal part of the electron pressure tensor are derived. Special attention is paid to analysis of electron energy relaxation during collisions with plasma particles having internal degrees of freedom and the expression for the electron coefficient of inelastic energy losses is deduced. We also derive the expressions for electron vector and tensorial transport fluxes and the corresponding transport coefficients for partially ionized reactive plasma, which represent a generalization of the well-known results obtained by Devoto (1967). The results of numerical evaluation of contribution from electron inelastic collisions with neutral particles to electron transport properties are presented for a series of molecular and atomic gases.

  18. Jeans instability of inhomogeneous dusty plasma with polarization force, ionization and recombination

    Science.gov (United States)

    Jain, Shweta; Sharma, Prerana; Chhajlani, R. K.

    2017-05-01

    The self-gravitational Jeans instability has been studied in dusty plasma containing significant background of neutral pressure and recombination of ions and electrons on the dust surface. The full dynamics of charged dust grains, ions and neutral species are employed considering the electrons as Maxwellian. We have derived the general dispersion relation for collisional dusty plasma with ionization, recombination and polarization force. The general dispersion relation describes the effects of considered parameters which are solved in different dusty plasma situations. Further, the dispersion relation is solved numerically. The present work is applicable to understand the structure formation of interstellar molecular clouds in astrophysical plasma.

  19. The Stability of Weakly Collisional Plasmas with Thermal and Composition Gradients

    CERN Document Server

    Pessah, Martin E; 10.1088/0004-637X/764/1/13

    2013-01-01

    Over the last decade, substantial efforts have been devoted to understanding the stability properties, transport phenomena, and long-term evolution of weakly-collisional, magnetized plasmas which are stratified in temperature. These studies have improved our understanding of the physics governing the intra-cluster medium (ICM), but assumed that ICM is a homogeneous. This, however, might not be a good approximation if heavy elements sediment in the inner region of the galaxy cluster. In this paper, we analyze the stability of a weakly-collisional, magnetized plane-parallel atmosphere which is stratified in both temperature and composition. This allows us to discuss for the first time the dynamics of weakly-collisional environments where heat conduction, momentum transport, and ion-diffusion are anisotropic with respect to the direction of the magnetic field. We show that, depending on the relative signs and magnitudes of the gradients in the temperature and the mean molecular weight, the plasma can be subject ...

  20. Nonlinear propagation of weakly relativistic ion-acoustic waves in electron–positron–ion plasma

    Indian Academy of Sciences (India)

    M G HAFEZ; M R TALUKDER; M HOSSAIN ALI

    2016-11-01

    This work presents theoretical and numerical discussion on the dynamics of ion-acoustic solitary wave for weakly relativistic regime in unmagnetized plasma comprising non-extensive electrons, Boltzmann positrons and relativistic ions. In order to analyse the nonlinear propagation phenomena, the Korteweg–de Vries(KdV) equation is derived using the well-known reductive perturbation method. The integration of the derived equation is carried out using the ansatz method and the generalized Riccati equation mapping method. The influenceof plasma parameters on the amplitude and width of the soliton and the electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves are described. The obtained results of the nonlinear low-frequencywaves in such plasmas may be helpful to understand various phenomena in astrophysical compact object and space physics.

  1. Subpicosecond pulse laser absorption by an overdense plasma with variable ionization.

    Science.gov (United States)

    Zhidkov, A; Sasaki, A

    1999-06-01

    Transient ionization of an overdense plasma produced by a subpicosecond, p-polarized obliquely incident pulse laser of moderate intensity (10(16)-10(18) W/cm(2)) changes the plasma heat transfer via processes dominated by the return current and the absorption rate via ion acceleration. To explore the effect of variable ionization, a hybrid one-dimensional electro-magnetic particle-in-cell method that conforms to a direct solution of the Fokker-Planck-Landau equation is applied. A method that includes the Langevin equation to account for Coulomb collisions and the average ion model to calculate the nonlocal thermodynamic equilibrium ionization balance provides good agreement between the computed absorption and the measured results.

  2. Simulation of laser-driven plasma beat-wave propagation in collisional weakly relativistic plasmas

    Science.gov (United States)

    Kaur, Maninder; Nandan Gupta, Devki

    2016-11-01

    The process of interaction of lasers beating in a plasma has been explored by virtue of particle-in-cell (PIC) simulations in the presence of electron-ion collisions. A plasma beat wave is resonantly excited by ponderomotive force by two relatively long laser pulses of different frequencies. The amplitude of the plasma wave become maximum, when the difference in the frequencies is equal to the plasma frequency. We propose to demonstrate the energy transfer between the laser beat wave and the plasma wave in the presence of electron-ion collision in nearly relativistic regime with 2D-PIC simulations. The relativistic effect and electron-ion collision both affect the energy transfer between the interacting waves. The finding of simulation results shows that there is a considerable decay in the plasma wave and the field energy over time in the presence of electron-ion collisions.

  3. Generation of high quality electron beams via ionization injection in a plasma wakefield accelerator

    Science.gov (United States)

    Vafaei-Najafabadi, Navid; Joshi, Chan; E217 SLAC Collaboration

    2016-10-01

    Ionization injection in a beam driven plasma wakefield accelerator has been used to generate electron beams with over 30 GeV of energy in a 130 cm of lithium plasma. The experiments were performed using the 3 nC, 20.35 GeV electron beam at the FACET facility of the SLAC National Accelerator Laboratory as the driver of the wakefield. The ionization of helium atoms in the up ramp of a lithium plasma were injected into the wake and over the length of acceleration maintained an emittance on the order of 30 mm-mrad, which was an order of magnitude smaller than the drive beam, albeit with an energy spread of 10-20%. The process of ionization injection occurs due to an increase in the electric field of the drive beam as it pinches through its betatron oscillations. Thus, this energy spread is attributed to the injection region encompassing multiple betatron oscillations. In this poster, we will present evidence through OSIRIS simulations of producing an injected beam with percent level energy spread and low emittance by designing the plasma parameters appropriately, such that the ionization injection occurs over a very limited distance of one betatron cycle. Work at UCLA was supported by the NSF Grant Number PHY-1415386 and DOE Grant Number DE-SC0010064. Work at SLAC was supported by DOE contract number DE-AC02-76SF00515. Simulations used the Hoffman cluster at UCLA.

  4. Microscopic and thermodynamic properties of dense semiclassical partially ionized hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T S; Dzhumagulova, K N; Gabdullin, M T [IETP, Al-Farabi Kazakh National University, 96a, Tole Bi St, Almaty, 050012 (Kazakhstan)

    2006-04-28

    Microscopic and thermodynamic properties of dense semiclassical partially ionized hydrogen plasma were investigated on the basis of pseudopotential models. Radial distribution functions (RDF) of particles were obtained using a system of the Ornstein-Zernike integral equations. The corrections to internal energy and the equation of state were calculated using RDF.

  5. Plasma potential of a moving ionization zone in DC magnetron sputtering

    Science.gov (United States)

    Panjan, Matjaž; Anders, André

    2017-02-01

    Using movable emissive and floating probes, we determined the plasma and floating potentials of an ionization zone (spoke) in a direct current magnetron sputtering discharge. Measurements were recorded in a space and time resolved manner, which allowed us to make a three-dimensional representation of the plasma potential. From this information we could derive the related electric field, space charge, and the related spatial distribution of electron heating. The data reveal the existence of strong electric fields parallel and perpendicular to the target surface. The largest E-fields result from a double layer structure at the leading edge of the ionization zone. We suggest that the double layer plays a crucial role in the energization of electrons since electrons can gain several 10 eV of energy when crossing the double layer. We find sustained coupling between the potential structure, electron heating, and excitation and ionization processes as electrons drift over the magnetron target. The brightest region of an ionization zone is present right after the potential jump, where drifting electrons arrive and where most local electron heating occurs. The ionization zone intensity decays as electrons continue to drift in the Ez × B direction, losing energy by inelastic collisions; electrons become energized again as they cross the potential jump. This results in the elongated, arrowhead-like shape of the ionization zone. The ionization zone moves in the -Ez × B direction from which the to-be-heated electrons arrive and into which the heating region expands; the zone motion is dictated by the force of the local electric field on the ions at the leading edge of the ionization zone. We hypothesize that electron heating caused by the potential jump and physical processes associated with the double layer also apply to magnetrons at higher discharge power, including high power impulse magnetron sputtering.

  6. Longitudinal singular response of dusty plasma medium in weak and strong coupling limits

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Tiwari, Sanat; Das, Amita; Kaw, Predhiman; Sen, Abhijit [Institute for Plasma Research, Bhat, Gandhinagar - 382428 (India)

    2012-01-15

    The longitudinal response of a dusty plasma medium in both weak and strong coupling limits has been investigated in detail using analytic as well as numerical techniques. In particular, studies on singular response of the medium have been specifically investigated here. A proper Galilean invariant form of the generalized hydrodynamic fluid model has been adopted for the description of the dusty plasma medium. For weak non-linear response, analytic reductive perturbative approach has been adopted. It is well known that in the weak coupling regime for the dusty plasma medium, such an analysis leads to the Korteweg-de Vries equation (KdV) equation and predicts the existence of localized smooth soliton solutions. We show that the strongly coupled dust fluid with the correct Galilean invariant form does not follow the KdV paradigm. Instead, it reduces to the form of Hunter-Saxton equation, which does not permit soliton solutions. The system in this case displays singular response with both conservative as well as dissipative attributes. At arbitrary high amplitudes, the existence and spontaneous formation of sharply peaked cusp structures in both weak and strong coupling regimes has been demonstrated numerically.

  7. Electron residual energy due to stochastic heating in field-ionized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khalilzadeh, Elnaz [Department of Physics, Kharazmi University, 49 Mofateh Ave, Tehran (Iran, Islamic Republic of); The Plasma Physics and Fusion Research School, Tehran (Iran, Islamic Republic of); Yazdanpanah, Jam, E-mail: jamal.yazdan@gmail.com; Chakhmachi, Amir [The Plasma Physics and Fusion Research School, Tehran (Iran, Islamic Republic of); Jahanpanah, Jafar [Department of Physics, Kharazmi University, 49 Mofateh Ave, Tehran (Iran, Islamic Republic of); Yazdani, Elnaz [Laser and Optics Research School, Tehran (Iran, Islamic Republic of)

    2015-11-15

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is investigated here. Initially, the optical response of plasma is modeled by using two counter-propagating electromagnetic waves. In this case, the solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared with that without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will be significantly changed by applying a minor change in the initial conditions. Extensive kinetic 1D-3V particle-in-cell simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in a proper long pulse length is high enough to act as a second counter-propagating wave and trigger the stochastic electron motion. On the contrary, the analyses of intensity spectrum reveal the fact that the dominant scattering mechanism tends to Thomson rather than Raman scattering by increasing the pulse length. A covariant formalism is used to describe the plasma heating so that it enables us to measure electron temperature inside and outside of the pulse region.

  8. Electron residual energy due to stochastic heating in field-ionized plasma

    Science.gov (United States)

    Khalilzadeh, Elnaz; Yazdanpanah, Jam; Jahanpanah, Jafar; Chakhmachi, Amir; Yazdani, Elnaz

    2015-11-01

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is investigated here. Initially, the optical response of plasma is modeled by using two counter-propagating electromagnetic waves. In this case, the solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared with that without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will be significantly changed by applying a minor change in the initial conditions. Extensive kinetic 1D-3V particle-in-cell simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in a proper long pulse length is high enough to act as a second counter-propagating wave and trigger the stochastic electron motion. On the contrary, the analyses of intensity spectrum reveal the fact that the dominant scattering mechanism tends to Thomson rather than Raman scattering by increasing the pulse length. A covariant formalism is used to describe the plasma heating so that it enables us to measure electron temperature inside and outside of the pulse region.

  9. Modulation of waves due to charge-exchange collisions in magnetized partially ionized space plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, Dastgeer, E-mail: dastgeer.shaikh@uah.ed [Department of Physics and Center for Space Plasma and Aeronomy Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Zank, G.P. [Department of Physics and Center for Space Plasma and Aeronomy Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2010-10-04

    A nonlinear time dependent fluid simulation model is developed that describes the evolution of magnetohydrodynamic waves in the presence of collisional and charge exchange interactions of a partially ionized plasma. The partially ionized plasma consists of electrons, ions and a significant number of neutral atoms. In our model, the electrons and ions are described by a single fluid compressible magnetohydrodynamic (MHD) model and are coupled self-consistently to the neutral gas, described by the compressible hydrodynamic equations. Both the plasma and neutral fluids are treated with different energy equations that describe thermal energy exchange processes between them. Based on our self-consistent model, we find that propagating Alfvenic and fast/slow modes grow and damp alternately through a nonlinear modulation process. The modulation appears to be robust and survives strong damping by the neutral component.

  10. Modulation of waves due to charge-exchange collisions in magnetized partially ionized space plasma

    CERN Document Server

    Shaikh, Dastgeer

    2010-01-01

    A nonlinear time dependent fluid simulation model is developed that describes the evolution of magnetohydrodynamic waves in the presence of collisional and charge exchange interactions of a partially ionized plasma. The partially ionized plasma consists of electrons, ions and a significant number of neutral atoms. In our model, the electrons and ions are described by a single fluid compressible magnetohydrodynamic (MHD) model and are coupled self-consistently to the neutral gas, described by the compressible hydrodynamic equations. Both the plasma and neutral fluids are treated with different energy equations that describe thermal energy exchange processes between them. Based on our self-consistent model, we find that propagating Alfv\\'enic and fast/slow modes grow and damp alternately through a nonlinear modulation process. The modulation appears to be robust and survives strong damping by the neutral component.

  11. Renormalization shielding and eikonal analysis on the atomic collision in dense partially ionized hydrogen plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Soo [Department of Applied Mathematics, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of); Jung, Young-Dae [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of); Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590 (United States)

    2013-12-15

    The renormalization plasma screening effects on the electron-ion collision are investigated in dense partially ionized hydrogen plasmas. The Hamilton-Jacobi and eikonal methods with the effective interaction potential are employed to obtain the eikonal scattering phase shift and eikonal cross section for the electron-ion collision. It is found that the influence of renormalization screening strongly suppresses the eikonal scattering phase shift as well as the eikonal cross section, especially, for small impact parameter regions. In addition, the renormalization screening effect reduces the total eikonal cross section in all energy domains. The variation of the renormalization effects on the electron-ion collision in dense partially ionized hydrogen plasmas is also discussed.

  12. Suppression of diamagnetism by neutrals pressure in partially ionized, high-beta plasma

    Science.gov (United States)

    Shinohara, Shunjiro; Kuwahara, Daisuke; Yano, Kazuki; Fruchtman, Amnon

    2016-12-01

    Suppression of diamagnetism in a partially ionized plasma with high beta was experimentally investigated by the use of Langmuir and Hall sensor probes, focusing on a neutrals pressure effect. The plasma beta, which is the ratio of plasma to vacuum magnetic pressures, varied from ˜1% to >100% while the magnetic field varied from ˜120 G to ˜1 G. Here, a uniform magnetized argon plasma was operated mostly in an inductive mode, using a helicon plasma source of the Large Helicon Plasma Device [S. Shinohara et al., Phys. Plasmas 16, 057104 (2009)] with a diameter of 738 mm and an axial length of 4860 mm. Electron density varied from 5 × 1015 m-3 to power of 7 MHz and ˜3.5 kW, respectively. The observed magnetic field reduction rate, a decrease of the magnetic field divided by the vacuum one, was up to 18%. However, in a certain parameter regime, where the product of ion and electron Hall terms is a key parameter, the measured diamagnetic effect was smaller than that expected by the plasma beta. This suppressed diamagnetism is explained by the neutrals pressure replacing magnetic pressure in balancing plasma pressure. Diamagnetism is weakened if neutrals pressure is comparable to the plasma pressure and if the coupling of plasma and neutrals pressures by ion-neutral collisions is strong enough.

  13. Small amplitude nonlinear electron acoustic solitary waves in weakly magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata-700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Roychoudhury, Rajkumar [Indian Statistical Institute, Kolkata-700 108 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar Kolkata-700 064 (India)

    2013-01-15

    Nonlinear propagation of electron acoustic waves in homogeneous, dispersive plasma medium with two temperature electron species is studied in presence of externally applied magnetic field. The linear dispersion relation is found to be modified by the externally applied magnetic field. Lagrangian transformation technique is applied to carry out nonlinear analysis. For small amplitude limit, a modified KdV equation is obtained, the modification arising due to presence of magnetic field. For weakly magnetized plasma, the modified KdV equation possesses stable solitary solutions with speed and amplitude increasing temporally. The solutions are valid upto some finite time period beyond which the nonlinear wave tends to wave breaking.

  14. Linear Instabilities Driven by Differential Rotation in Very Weakly Magnetized Plasmas

    CERN Document Server

    Quataert, Eliot; Spitkovsky, Anatoly

    2014-01-01

    We study the linear stability of weakly magnetized differentially rotating plasmas in both collisionless kinetic theory and Braginskii's theory of collisional, magnetized plasmas. We focus on the very weakly magnetized limit that is important for understanding how astrophysical magnetic fields originate and are amplified at high redshift. We show that the single instability of fluid theory - the magnetorotational instability mediated by magnetic tension - is replaced by two distinct instabilities, one associated with ions and one with electrons. Each of these has a different way of tapping into the free energy of differential rotation. The ion instability is driven by viscous transport of momentum across magnetic field lines due to a finite ion cyclotron frequency (gyroviscosity); the fastest growing modes have wavelengths significantly longer than MHD and Hall MHD predictions. The electron instability is a whistler mode driven unstable by the temperature anisotropy generated by differential rotation; the gro...

  15. Ionization Energies of Ions in Hot and Dense Plasma: Beryllium-Like Ions for Z = 26 - 36

    Institute of Scientific and Technical Information of China (English)

    LI Yong-Qiang; WU Jian-Hua; YUAN Jian-Min

    2008-01-01

    Ionization energies of beryllium-like ions for Z = 26 - 36 in hot and dense plasmas (ne = 1022 - 1024 cm-3,kT = 500- 2000 eV) are obtained by using an approach developed for electronic structure and transition property of ions in hot and dense plasmas based on the multi-configuration Dirac-Fock model.Influence of the plasma environment is considered by introducing a correction to the one-electron potential to account for the screening of the ionized electrons. This correction is calculated from the ionized electron micro-space distribution, which is obtained based on an average atom model for the temperature and density-dependent average ionization of atoms in plasmas. Comparison between the present and the ion sphere models is made to display the significance of the ionized electron micro-space distribution.

  16. Supersonic propagation of ionization waves in an under-dense, laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, C; Back, C A; Fournier, K B; Gregori, G; Landen, O L; Glenzer, S H; Dewald, E L; Miller, M C

    2004-10-22

    We observe a laser-driven supersonic ionization wave heating a mm-scale plasma of sub-critical density up to 2-3 keV electron temperatures. Propagation velocities initially 10 times the sound speed were measured by means of time-resolved x-ray imaging diagnostics. The measured ionization wave trajectory is modeled analytically and by a 2D radiation-hydrodynamics code. The comparison to the modeling suggests that nonlocal heat transport effects may contribute to the attenuation of the heat wave propagation.

  17. Weakly nonlinear dynamics in noncanonical Hamiltonian systems with applications to fluids and plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, P.J., E-mail: morrison@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, University of Texas, Austin (United States); Vanneste, J. [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh (United Kingdom)

    2016-05-15

    A method, called beatification, is presented for rapidly extracting weakly nonlinear Hamiltonian systems that describe the dynamics near equilibria of systems possessing Hamiltonian form in terms of noncanonical Poisson brackets. The procedure applies to systems like fluids and plasmas in terms of Eulerian variables that have such noncanonical Poisson brackets, i.e., brackets with nonstandard and possibly degenerate form. A collection of examples of both finite and infinite dimensions is presented.

  18. Statistics of magnetic field fluctuations in a partially ionized space plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, Dastgeer, E-mail: dastgeer.shaikh@uah.ed [Department of Physics and Center for Space Plasma and Aeronomy Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2010-07-05

    Voyager 1 and 2 data reveals that magnetic field fluctuations are compressive and exhibit a Gaussian distribution in the compressed heliosheath plasma, whereas they follow a lognormal distribution in a nearly incompressible supersonic solar wind plasma. To describe the evolution of magnetic field, we develop a nonlinear simulation model of a partially ionized plasma based on two-dimensional time-dependent multifluid model. Our model self-consistently describes solar wind plasma ions, electrons, neutrals and pickup ions. It is found from our simulations that the magnetic field evolution is governed by mode conversion process that leads to the suppression of vortical modes, whereas the compressive modes are amplified. An implication of the mode conversion process is to quench the Alfvenic interactions associated with the vortical motions. Consequently anisotropic cascades are reduced. This is accompanied by the amplification of compressional modes that tend to isotropize the plasma fluctuations and lead to a Gaussian distribution of the magnetic field.

  19. Spectral measurements of electron temperature in nonequilibrium highly ionized He plasma

    Science.gov (United States)

    Korshunov, O. V.; Chinnov, V. F.; Kavyrshin, D. I.; Ageev, A. G.

    2016-11-01

    It has been experimentally shown that highly ionized He arc plasma does not achieve local thermodynamic equilibrium expected for plasmas with electron concentrations above 1 × 1016 cm-3 like argon plasma. We have found that the reason for this deviation is strong nonisotropy of plasma. Triple electron recombination with temperatures of 2.5-3 eV is almost absent. Charged particles move from the arc (r = 1 mm) to chamber walls due to ambipolar diffusion creating ionization nonequilibrium over the excited states rendering Boltzmann distribution and Saha equation inapplicable for determining electron temperature. A method for determining electron temperature is suggested that is based on using the relative intensities of the atomic and ion lines. Its advantage lies in an energy gap between these lines’ states over 50 eV that reduces the influence of nonequilibrium on the result. This influence can be taken into account if the ionization energies of emitting states of atom and ion have close values. The suggested method can be expanded for any media including those with dimensional nonisotropy that have both atomic and ion lines in their emission spectra.

  20. Electron residual energy due to stochastic heating in field-ionized plasma

    CERN Document Server

    Khalilzadeh, Elnaz; Jahanpanah, Jafar; Chakhmachi, Amir; Yazdani, Elnaz

    2015-01-01

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is here investigated. The optical response of plasma is initially modeled by using the concept of two counter-propagating electromagnetic waves. The solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared to the case without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will significantly be changed by applying a minor change to the initial conditions. Extensive kinetic 1D-3V particle-in-cell (PIC) simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in sufficient long pulse length is high enough to act as a second counter-propagating wave for triggering the stochastic e...

  1. Rayleigh-Taylor instability in partially ionized prominence plasma

    CERN Document Server

    Khomenko, E; de Vicente, A; Collados, M; Luna, M

    2013-01-01

    We study Rayleigh-Taylor instability (RTI) at the coronal-prominence boundary by means of 2.5D numerical simulations in a single-fluid MHD approach including a generalized Ohm's law. The initial configuration includes a homogeneous magnetic field forming an angle with the direction in which the plasma is perturbed. For each field inclination we compare two simulations, one for the pure MHD case, and one including the ambipolar diffusion in the Ohm's law, otherwise identical. We find that the configuration containing neutral atoms is always unstable. The growth rate of the small-scale modes in the non-linear regime is larger than in the purely MHD case.

  2. Partial ionization in dense plasmas: Comparisons among average-atom density functional models

    Science.gov (United States)

    Murillo, Michael S.; Weisheit, Jon; Hansen, Stephanie B.; Dharma-wardana, M. W. C.

    2013-06-01

    Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify continuum states, generate resonances and hopping electron states, and generate short-range ionic order. The mean ionization state (MIS), i.e, the mean charge Z of an average ion in such plasmas, is a valuable concept: Pseudopotentials, pair-distribution functions, equations of state, transport properties, energy-relaxation rates, opacity, radiative processes, etc., can all be formulated using the MIS of the plasma more concisely than with an all-electron description. However, the MIS does not have a unique definition and is used and defined differently in different statistical models of plasmas. Here, using the MIS formulations of several average-atom models based on density functional theory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with orbital-free Thomas-Fermi models, we quantify the effects of shell structure, continuum resonances, the role of exchange and correlation, and the effects of different choices of the fundamental cell and boundary conditions. Finally, the role of the MIS in plasma applications is illustrated in the context of x-ray Thomson scattering in warm dense matter.

  3. Partial ionization in dense plasmas: comparisons among average-atom density functional models.

    Science.gov (United States)

    Murillo, Michael S; Weisheit, Jon; Hansen, Stephanie B; Dharma-wardana, M W C

    2013-06-01

    Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify continuum states, generate resonances and hopping electron states, and generate short-range ionic order. The mean ionization state (MIS), i.e, the mean charge Z of an average ion in such plasmas, is a valuable concept: Pseudopotentials, pair-distribution functions, equations of state, transport properties, energy-relaxation rates, opacity, radiative processes, etc., can all be formulated using the MIS of the plasma more concisely than with an all-electron description. However, the MIS does not have a unique definition and is used and defined differently in different statistical models of plasmas. Here, using the MIS formulations of several average-atom models based on density functional theory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with orbital-free Thomas-Fermi models, we quantify the effects of shell structure, continuum resonances, the role of exchange and correlation, and the effects of different choices of the fundamental cell and boundary conditions. Finally, the role of the MIS in plasma applications is illustrated in the context of x-ray Thomson scattering in warm dense matter.

  4. Weakly nonlinear ion-acoustic excitations in a relativistic model for dense quantum plasma.

    Science.gov (United States)

    Behery, E E; Haas, F; Kourakis, I

    2016-02-01

    The dynamics of linear and nonlinear ionic-scale electrostatic excitations propagating in a magnetized relativistic quantum plasma is studied. A quantum-hydrodynamic model is adopted and degenerate statistics for the electrons is taken into account. The dispersion properties of linear ion acoustic waves are examined in detail. A modified characteristic charge screening length and "sound speed" are introduced, for relativistic quantum plasmas. By employing the reductive perturbation technique, a Zakharov-Kuznetzov-type equation is derived. Using the small-k expansion method, the stability profile of weakly nonlinear slightly supersonic electrostatic pulses is also discussed. The effect of electron degeneracy on the basic characteristics of electrostatic excitations is investigated. The entire analysis is valid in a three-dimensional as well as in two-dimensional geometry. A brief discussion of possible applications in laboratory and space plasmas is included.

  5. Equation of state of dense neon and krypton plasmas in the partial ionization regime

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q. F., E-mail: chenqf01@gmail.com; Zheng, J.; Gu, Y. J.; Li, Z. G. [Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, P.O. Box 919-102, Mianyang, Sichuan (China)

    2015-12-15

    The compression behaviors of dense neon and krypton plasmas over a wide pressure-temperature range are investigated by self-consistent fluid variational theory. The ionization degree and equation of state of dense neon and krypton are calculated in the density-temperature range of 0.01–10 g/cm{sup 3} and 4–50 kK. A region of thermodynamic instability is found which is related to the plasma phase transition. The calculated shock adiabat and principal Hugoniot of liquid krypton are in good agreement with available experimental data. The predicted results of shock-compressed liquid neon are presented, which provide a guide for dynamical experiments or numerical first-principle calculations aimed at studying the compression properties of liquid neon in the partial ionization regime.

  6. Nano-scale electron bunching in laser-triggered ionization injection in plasma accelerators

    CERN Document Server

    Xu, X L; Li, F; Wan, Y; Wu, Y P; Hua, J F; Pai, C -H; Lu, W; An, W; Yu, P; Mori, W B; Joshi, C

    2015-01-01

    Ionization injection is attractive as a controllable injection scheme for generating high quality electron beams using plasma-based wakefield acceleration. Due to the phase dependent tunneling ionization rate and the trapping dynamics within a nonlinear wake, the discrete injection of electrons within the wake is nonlinearly mapped to discrete final phase space structure of the beam at the location where the electrons are trapped. This phenomenon is theoretically analyzed and examined by three-dimensional particle-in-cell simulations which show that three dimensional effects limit the wave number of the modulation to between $> 2k_0$ and about $5k_0$, where $k_0$ is the wavenumber of the injection laser. Such a nano-scale bunched beam can be diagnosed through coherent transition radiation upon its exit from the plasma and may find use in generating high-power ultraviolet radiation upon passage through a resonant undulator.

  7. Ionization energy shift of characteristic K x-ray lines from high-Z materials for plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Słabkowska, K.; Szymańska, E.; Polasik, M. [Faculty of Chemistry, Nicholas Copernicus University, 87-100 Toruń (Poland); Pereira, N. R. [Ecopulse, Inc., 7844 Vervain Ct, Springfield, Virginia 22152 (United States); Rzadkiewicz, J. [National Centre for Nuclear Research, 05-400 Otwock (Poland); Seely, J. F. [Artep, Inc., 2922 Excelsior Springs Ct, Ellicott, Maryland 21042 (United States); Weber, B. V.; Schumer, J. W. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-03-15

    The energy of the characteristic x-rays emitted by high atomic number atoms in a plasma that contains energetic electrons depends on the atom's ionization. For tungsten, the ionization energy shift of the L-lines has recently been used to diagnose the plasma's ionization; the change in energy of a K-line has been measured for iridium and observed for ytterbium. Here, we present detailed computations of the ionization energy shift to K-lines of these and an additional element, dysprosium; for these atoms, some K-lines nearly coincide in energy with K-edges of slightly lower Z atoms so that a change in transmission behind a K-edge filter betrays a change in energy. The ionization energy shift of such high-energy K-lines may enable a unique diagnostic when the plasma is inside an otherwise opaque enclosure such as hohlraums used on the National Ignition Facility.

  8. Acoustic instability in the neutral precursor region of collisionless shocks propagating into partially ionized plasmas

    CERN Document Server

    Ohira, Yutaka

    2014-01-01

    Recent studies about collisionless shocks in partially ionized plasmas showed that some of neutral particles leak into the shock upstream region from the downstream region. In this paper, we perform a linear analysis and show that acoustic waves are unstable in the neutral precursor region. The acoustic instability amplifies fluctuations of magnetic field and density in the upstream region. The fluctuations are indispensable for the diffusive shock acceleration and could be important for the downstream turbulence.

  9. Direct Measurements of the Ionization Potential Depression in a Dense Plasma

    Science.gov (United States)

    Ciricosta, O.; Vinko, S. M.; Chung, H.-K.; Cho, B.-I.; Brown, C. R. D.; Burian, T.; Chalupský, J.; Engelhorn, K.; Falcone, R. W.; Graves, C.; Hájková, V.; Higginbotham, A.; Juha, L.; Krzywinski, J.; Lee, H. J.; Messerschmidt, M.; Murphy, C. D.; Ping, Y.; Rackstraw, D. S.; Scherz, A.; Schlotter, W.; Toleikis, S.; Turner, J. J.; Vysin, L.; Wang, T.; Wu, B.; Zastrau, U.; Zhu, D.; Lee, R. W.; Heimann, P.; Nagler, B.; Wark, J. S.

    2012-08-01

    We have used the Linac Coherent Light Source to generate solid-density aluminum plasmas at temperatures of up to 180 eV. By varying the photon energy of the x rays that both create and probe the plasma, and observing the K-α fluorescence, we can directly measure the position of the K edge of the highly charged ions within the system. The results are found to disagree with the predictions of the extensively used Stewart-Pyatt model, but are consistent with the earlier model of Ecker and Kröll, which predicts significantly greater depression of the ionization potential.

  10. Ionization Induced Scattering of Femtosecond Intense Laser Pulses in Cluster Plasmas

    Institute of Scientific and Technical Information of China (English)

    Wang Xiangxin; Wang Cheng; Liu Jiansheng; Li Shaohui; Ni Guoquan

    2005-01-01

    The 45° scattering of a femtosecond (60 fs) intense laser pulse with a 20 nm FWHM (the full width at half maximum) spectrum centered at 790 nm has been studied experimentally while focused in argon clusters at intensity ~ 1016 W/cra2. Scattering spectra under different backing pressures and laser-plasma interaction lengths were obtained, which showed spectral blueshifting, beam refraction and complex modulation. These ionization-induced effects reveal the modulation of laser pulses propagating in plasmas and the existing obstacle in laser cluster interaction at high laser intensity and high electron density.

  11. Modelling of turbulent impurity transport in fusion edge plasmas using measured and calculated ionization cross sections

    CERN Document Server

    Kendl, Alexander

    2014-01-01

    Turbulent transport of trace impurities impurities in the edge and scrape-off-layer of tokamak fusion plasmas is modelled by three dimensional electromagnetic gyrofluid computations including evolution of plasma profile gradients. The source function of impurity ions is dynamically computed from pre-determined measured and calculated electron impact ionization cross section data. The simulations describe the generation and further passive turbulent E-cross-B advection of the impurities by intermittent fluctuations and coherent filamentary structures (blobs) across the scrape-off-layer.

  12. The effect of bound states on X-ray Thomson scattering for partially ionized plasmas

    OpenAIRE

    Nilsen, J.; Johnson, W.R.; Cheng, K. T.

    2012-01-01

    X-ray Thomson scattering is being developed as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those used in inertial confinement fusion. X-ray laser sources have always been of interest because of the need to have a bright monochromatic x-ray source to overcome plasma emission and eliminate other lines in the background that complicate the analysis. With the advent of the xray free electron laser (X-FEL) at the SLAC Linac Coh...

  13. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    Science.gov (United States)

    Hong, Sung-Ha; Szili, Endre J.; Jenkins, A. Toby A.; Short, Robert D.

    2014-09-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine.

  14. Effect of ionized plasma medium on the radiation from a RITMA structure on ferrite substrate

    Indian Academy of Sciences (India)

    V Bhardwaj; V K Tiwari; D Bhatnagar; J S Saini; K B Sharma

    2003-12-01

    This paper presents theoretical investigations on the radiation properties of a right isosceles triangular microstrip antenna (RITMA) printed on a magnetized ferrite substrate Ni0.62Co0.02Fe1.948O4 in the presence of ionized plasma medium. The theoretical study on RITMA structure in free space is carried out in TM11 mode of excitation by applying cavity model-based modal expansion technique while hydrodynamic theory is used for its analysis in plasma medium. By varying the bias magnetic field, far-field radiation patterns in free space and plasma medium are obtained which in turn are applied in computing radiated power, directivity, quality factor and bandwidth of antenna. It is found that the presence of plasma medium affects the performance of RITMA structure significantly.

  15. High-field plasma acceleration in a high-ionization-potential gas.

    Science.gov (United States)

    Corde, S; Adli, E; Allen, J M; An, W; Clarke, C I; Clausse, B; Clayton, C E; Delahaye, J P; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Litos, M; Lu, W; Marsh, K A; Mori, W B; Vafaei-Najafabadi, N; Walz, D; Yakimenko, V

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m(-1), over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources.

  16. Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge

    Energy Technology Data Exchange (ETDEWEB)

    Macak, Karol [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Kouznetsov, Vladimir [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Schneider, Jochen [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Helmersson, Ulf [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Petrov, Ivan [Materials Science Department and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    2000-07-01

    Time resolved plasma probe measurements of a novel high power density pulsed plasma discharge are presented. Extreme peak power densities in the pulse (on the order of several kW cm{sup -2}) result in a very dense plasma with substrate ionic flux densities of up to 1 A cm{sup -2} at source-to-substrate distances of several cm and at a pressure of 0.13 Pa (1 mTorr). The pulse duration was {approx}100 {mu}s with a pulse repetition frequency of 50 Hz. The plasma consists of metallic and inert gas ions, as determined from time resolved Langmuir probe measurements and in situ optical emission spectroscopy data. It was found that the plasma composition at the beginning of the pulse was dominated by Ar ions. As time elapsed metal ions were detected and finally dominated the ion composition. The effect of the process parameters on the temporal development of the ionic fluxes is discussed. The ionized portion of the sputtered metal flux was found to have an average velocity of 2500 m s{sup -1} at 6 cm distance from the source, which conforms to the collisional cascade sputtering theory. The degree of ionization of the sputtered metal flux at a pressure of 0.13 Pa was found to be 40%{+-}20% by comparing the total flux of deposited atoms with the charge measured for the metal ions in the pulse. (c) 2000 American Vacuum Society.

  17. Wakefield-Induced Ionization injection in beam-driven plasma accelerators

    CERN Document Server

    de la Ossa, A Martinez; Streeter, M J V; Osterhoff, J

    2015-01-01

    We present a detailed analysis of the features and capabilities of Wakefield-Induced Ionization (WII) injection in the blowout regime of beam driven plasma accelerators. This mechanism exploits the electric wakefields to ionize electrons from a dopant gas and trap them in a well-defined region of the accelerating and focusing wake phase, leading to the formation of high-quality witness-bunches. The electron-beam drivers must feature high-peak currents ($I_b^0\\gtrsim 8.5~\\mathrm{kA}$) and a duration comparable to the plasma wavelength to excite plasma waves in the blowout regime and enable WII injection. In this regime, the disparity of the magnitude of the electric field in the driver region and the electric field in the rear of the ion cavity allows for the selective ionization and subsequent trapping from a narrow phase interval. The witness bunches generated in this manner feature a short duration and small values of the normalized transverse emittance ($k_p\\sigma_z \\sim k_p\\epsilon_n \\sim 0.1$). In additi...

  18. Observation of Weak Low-ionization Winds in Host Galaxies of Low Luminosity Active Galactic Nuclei at z ~1

    Science.gov (United States)

    Yesuf, Hassen; David C. Koo, S. M. Faber, J. Xavier Prochaska, Yicheng Guo, F. S. Liu, Emily C. Cunningham, Alison L. Coil, Puragra Guhathakurta

    2017-01-01

    A key physical manifestation of active galactic nuclei (AGN) feedback is predicted to be powerful galactic winds. However, the relative roles between AGN activity and star formation in driving such winds remain largely unexplored at high redshifts, near the peak of cosmic activity for both. We study winds in 12 X-ray AGN host galaxies at z ~ 1 in the CANDELS fields using deep Keck rest-frame UV spectroscopy. We find, using the low-ionization Fe II 2586 absorption in the stacked spectra, that the AGN show a median centroid velocity shift of -137 km/s and a median velocity dispersion of 103 km/ s. The centroid velocity and the velocity dispersions are obtained from a two component (ISM+wind) absorption line model. For comparison, a star-forming and X-ray undetected galaxies at a similar redshift, matched roughly in stellar mass and galaxy inclination, show the outflows to have a median centroid velocity of -135 km/s and a median velocity dispersion of 140 km/s. Thus, winds in the AGN are similar in velocities to those found in star-formation-driven winds, and are weak to escape and expel substantial cool gas from galaxies. A joint reanalysis of the z ~ 0.5 AGN sample and our sample yields a centroid velocity of -139 (+48, -87) km/s and a velocity dispersion of 82 (+47,-37) km/s. For the combined sample, about half the total equivalent width of the Fe II 2586 absorption is due to the wind. We do not observe winds with bulk velocities greater than 500 km/s predicted by some AGN feedback models.

  19. Studies of instability and transport in tokamak plasmas with very weak magnetic shear

    Energy Technology Data Exchange (ETDEWEB)

    Dong, J.Q.; Zhang, Y.Z. [Southwestern Inst. of Physics, Chengdu (China)]|[International Center for Theoretical Physics, Trieste (Italy); Mahajan, S.M. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1997-04-01

    Ion temperature gradient (ITG or {eta}{sub i}) driven microinstabilities are studied, using kinetic theory, for tokamak plasmas with very weak (positive or negative) magnetic shear (VWS). The gradient of magnetic shear as well as the effects of parallel and perpendicular velocity shear (v{prime}{sub {parallel}} and v{prime}{sub E}) are included in the defining equations. Two eigenmodes: the double (D) and the global (G) are found to coexist. Parametric dependence of these instabilities, and of the corresponding quasilinear transport is systematically analyzed. It is shown that, in VWS plasmas, a parallel velocity shear (PVS) may stabilize or destabilize the modes, depending on the individual as well as the relative signs of PVS and of the gradient of magnetic shear. The quasilinear transport induced by the instabilities may be significantly reduced with PVS in VWS plasmas. The v{prime}{sub E} values required to completely suppress the instabilities are much lower in VWS plasmas than they are in normal plasmas. Possible correlations with tokamak experiments are discussed.

  20. Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation.

    Science.gov (United States)

    Rehman, Mati Ur; Jawaid, Paras; Uchiyama, Hidefumi; Kondo, Takashi

    2016-09-01

    Plasma medicine is increasingly recognized interdisciplinary field combining engineering, physics, biochemistry and life sciences. Plasma is classified into two categories based on the temperature applied, namely "thermal" and "non-thermal" (i.e., cold atmospheric plasma). Non-thermal or cold atmospheric plasma (CAP) is produced by applying high voltage electric field at low pressures and power. The chemical effects of cold atmospheric plasma in aqueous solution are attributed to high voltage discharge and gas flow, which is transported rapidly on the liquid surface. The argon-cold atmospheric plasma (Ar-CAP) induces efficient reactive oxygen species (ROS) in aqueous solutions without thermal decomposition. Their formation has been confirmed by electron paramagnetic resonance (EPR) spin trapping, which is reviewed here. The similarities and differences between the plasma chemistry, sonochemistry, and radiation chemistry are explained. Further, the evidence for free radical formation in the liquid phase and their role in the biological effects induced by cold atmospheric plasma, ultrasound and ionizing radiation are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Existence of Global Weak Solutions to a Hybrid Vlasov-MHD Model for Magnetized Plasmas

    CERN Document Server

    Cheng, Bin; Tronci, Cesare

    2016-01-01

    We prove the global-in-time existence of large-data finite-energy weak solutions to an incompressible hybrid Vlasov-magnetohydrodynamic model in three space dimensions. The model couples three essential ingredients of magnetized plasmas: a transport equation for the probability density function, which models energetic rarefied particles of one species; the incompressible Navier--Stokes system for the bulk fluid; and a parabolic evolution equation, involving magnetic diffusivity, for the magnetic field. The physical derivation of our model is given. It is also shown that the weak solution, whose existence is established, has nonincreasing total energy, and that it satisfies a number of physically relevant properties, including conservation of the total momentum, conservation of the total mass, and nonnegativity of the probability density function for the energetic particles. The proof is based on a one-level approximation scheme, which is carefully devised to avoid increase of the total energy for the sequence...

  2. The stability of weakly collisional plasmas with thermal and composition gradients

    DEFF Research Database (Denmark)

    Pessah, M.E.; Chakraborty, S.

    2013-01-01

    Over the last decade, substantial efforts have been devoted to understanding the stability properties, transport phenomena, and long-term evolution of weakly collisional, magnetized plasmas which are stratified in temperature. The insights gained via these studies have led to a significant...... approximation if heavy elements are able to sediment in the inner region of the galaxy cluster. Motivated by the need to obtain a more complete picture of the dynamical properties of the ICM, we analyze the stability of a weakly collisional, magnetized plane-parallel atmosphere which is stratified in both...... in homogeneous media. We also find that there are new modes which are driven by heat conduction and particle diffusion. We discuss the astrophysical implications of our findings for a representative galaxy cluster where helium has sedimented. Our findings suggest that the core insulation that results from...

  3. Dissipative particle dynamics simulations of weak polyelectrolyte adsorption on charged and neutral surfaces as a function of the degree of ionization

    CERN Document Server

    Alarcón, F; Goicochea, A Gama

    2012-01-01

    The influence of the chain degree of ionization on the adsorption of weak polyelectrolytes on neutral and on oppositely and likely charged surfaces is investigated for the first time, by means of Monte Carlo simulations with the mesoscopic interaction model known as dissipative particle dynamics. The electrostatic interactions are calculated using the three-dimensional Ewald sum method, with an appropriate modification for confined systems. Effective wall forces confine the linear polyelectrolytes, and electric charges on the surfaces are included. The solvent is included explicitly also and it is modeled as an athermal solvent for the polyelectrolytes. The number of solvent particles is allowed to fluctuate. The results show that the polyelectrolytes adsorb both onto neutral and charged surfaces, with the adsorption regulated by the chain degree of ionization, being larger at lower ionization degrees, where polyelectrolytes are less charged. Furthermore, polyelectrolyte adsorption is strongly modulated by th...

  4. Switched ferroelectric plasma ionizer (SwiFerr) for ambient mass spectrometry.

    Science.gov (United States)

    Neidholdt, Evan L; Beauchamp, J L

    2011-01-01

    We present the implementation of a switched ferroelectric plasma ionizer (SwiFerr) for ambient analysis of trace substances by mass spectrometry. The device utilizes the ferroelectric properties of barium titanate (BaTiO(3)) to take advantage of the high electric field resulting from polarization switching in the material. The source comprises a [001]-oriented barium titanate crystal (5 × 5 × 1 mm) with a metallic rear electrode and a metallic grid front electrode. When a high voltage AC waveform is applied to the rear electrode to switch polarization, the resulting electric field on the face of the crystal promotes electron emission and results in plasma formation between the crystal face and the grounded grid at ambient pressure. Interaction with this plasma and the resulting reagent ions effects ionization of trace neutrals. The source requires less than 1 W of power to operate under most circumstances, ionizes molecules with acidic and basic functional groups easily, and has proven quite versatile for ambient analysis of both vapor phase and aspirated powdered solid samples. Ionization of vapor phase samples of the organics triethylamine, tripropylamine, tributylamine, and pyridine results in observation of the singly protonated species in the positive ion mass spectrum with sensitivity extending into the high ppb range. With acetic acid, deprotonated clusters dominate the negative ion mass spectrum. Aerodynamic sampling of powdered samples is used to record mass spectra of the pharmaceuticals loperamide and ibuprofen. Chemical signatures, including protonated loperamide and deprotonated ibuprofen, are observed for each drug. The robust, low power source lends itself easily to miniaturization and incorporation in field-portable devices used for the rapid detection and characterization of trace substances and hazardous materials in a range of different environments.

  5. Instability saturation by the oscillating two-stream instability in a weakly relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Barnali; Poria, Swarup, E-mail: swarup-p@yahoo.com [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Sahu, Biswajit, E-mail: biswajit-sahu@yahoo.co.in [Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126 (India)

    2015-04-15

    The two-stream instability has wide range of astrophysical applications starting from gamma-ray bursts and pulsar glitches to cosmology. We consider one dimensional weakly relativistic Zakharov equations and describe nonlinear saturation of the oscillating two-stream instability using a three dimensional dynamical system resulting form a truncation of the nonlinear Schrodinger equation to three modes. The equilibrium points of the model are determined and their stability natures are discussed. Using the tools of nonlinear dynamics such as the bifurcation diagram, Poincaré maps, and Lyapunav exponents, existence of periodic, quasi-periodic, and chaotic solutions are established in the dynamical system. Interestingly, we observe the multistable behavior in this plasma model. The system has multiple attractors depending on the initial conditions. We also notice that the relativistic parameter plays the role of control parameter in the model. The theoretical results presented in this paper may be helpful for better understanding of space and astrophysical plasmas.

  6. Early-stage plasma dynamics with air ionization during ultrashort laser ablation of metal

    Energy Technology Data Exchange (ETDEWEB)

    Hu Wenqian; Shin, Yung C.; King, Galen [School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2011-09-15

    In this study, the early-stage plasma evolution generated by an ultrashort laser pulse is investigated through pump-probe shadowgraph measurements and simulations. The measurements are performed to show the evolution of the plasma front, while the simulation model is used to further investigate the evolution process and mechanism. Specifically, the laser pulse propagation in air is simulated using the beam propagation method with the slowly varying envelope approximation. The lattice dynamics, the electron dynamics and the multi-scattering event, and the evolution of charged particles (free electrons and ions), are simulated using a molecular dynamics method, a Monte Carlo method, and a particle-in-cell method, respectively. With this simulation model, the refractive index and plasma evolutions are calculated and compared with measured results to validate the simulation model. Different plasma expansion processes, caused by the air ionization, are found with the focal point slightly above and below the target. Air ionization occurs in both cases, but their primary mechanisms are shown to be different.

  7. A collisional-radiative model for low-pressure weakly magnetized Ar plasmas

    Science.gov (United States)

    Zhu, Xi-Ming; Tsankov, Tsanko; Czarnetzki, Uwe; Marchuk, Oleksandr

    2016-09-01

    Collisional-radiative (CR) models are widely investigated in plasma physics for describing the kinetics of reactive species and for optical emission spectroscopy. This work reports a new Ar CR model used in low-pressure (0.01-10 Pa) weakly magnetized (<0.1 Tesla) plasmas, including ECR, helicon, and NLD discharges. In this model 108 realistic levels are individually studied, i.e. 51 lowest levels of the Ar atom and 57 lowest levels of the Ar ion. We abandon the concept of an ``effective level'' usually adopted in previous models for glow discharges. Only in this way the model can correctly predict the non-equilibrium population distribution of close energy levels. In addition to studying atomic metastable and radiative levels, this model describes the kinetic processes of ionic metastable and radiative levels in detail for the first time. This is important for investigation of plasma-surface interaction and for optical diagnostics using atomic and ionic line-ratios. This model could also be used for studying Ar impurities in tokamaks and astrophysical plasmas.

  8. Chaoticity threshold in magnetized plasmas: Numerical results in the weak coupling regime

    Energy Technology Data Exchange (ETDEWEB)

    Carati, A., E-mail: andrea.carati@unimi.it; Benfenati, F.; Maiocchi, A.; Galgani, L. [Università degli Studi di Milano, Milano (Italy); Zuin, M., E-mail: matteo.zuin@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Padova (Italy)

    2014-03-15

    The present paper is a numerical counterpart to the theoretical work [Carati et al., Chaos 22, 033124 (2012)]. We are concerned with the transition from order to chaos in a one-component plasma (a system of point electrons with mutual Coulomb interactions, in a uniform neutralizing background), the plasma being immersed in a uniform stationary magnetic field. In the paper [Carati et al., Chaos 22, 033124 (2012)], it was predicted that a transition should take place when the electron density is increased or the field decreased in such a way that the ratio ω{sub p}/ω{sub c} between plasma and cyclotron frequencies becomes of order 1, irrespective of the value of the so-called Coulomb coupling parameter Γ. Here, we perform numerical computations for a first principles model of N point electrons in a periodic box, with mutual Coulomb interactions, using as a probe for chaoticity the time-autocorrelation function of magnetization. We consider two values of Γ (0.04 and 0.016) in the weak coupling regime Γ ≪ 1, with N up to 512. A transition is found to occur for ω{sub p}/ω{sub c} in the range between 0.25 and 2, in fairly good agreement with the theoretical prediction. These results might be of interest for the problem of the breakdown of plasma confinement in fusion machines.

  9. Gas chromatography interfaced with atmospheric pressure ionization-quadrupole time-of-flight-mass spectrometry by low-temperature plasma ionization

    DEFF Research Database (Denmark)

    Norgaard, Asger W.; Kofoed-Sorensen, Vivi; Svensmark, Bo

    2013-01-01

    A low temperature plasma (LTP) ionization interface between a gas chromatograph (GC) and an atmospheric pressure inlet mass spectrometer, was constructed. This enabled time-of-flight mass spectrometric detection of GC-eluting compounds. The performance of the setup was evaluated by injection...

  10. DYNAMICS OF CORONAL RAIN AND DESCENDING PLASMA BLOBS IN SOLAR PROMINENCES. II. PARTIALLY IONIZED CASE

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, R.; Soler, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Zaqarashvili, T. V., E-mail: ramon.oliver@uib.es [Institute of Physics, IGAM, University of Graz, Universitätsplatz 5, 8010, Graz (Austria)

    2016-02-20

    Coronal rain clumps and prominence knots are dense condensations with chromospheric to transition region temperatures that fall down in the much hotter corona. Their typical speeds are in the range 30–150 km s{sup −1} and of the order of 10–30 km s{sup −1}, respectively, i.e., they are considerably smaller than free-fall velocities. These cold blobs contain a mixture of ionized and neutral material that must be dynamically coupled in order to fall together, as observed. We investigate this coupling by means of hydrodynamic simulations in which the coupling arises from the friction between ions and neutrals. The numerical simulations presented here are an extension of those of Oliver et al. to the partially ionized case. We find that, although the relative drift speed between the two species is smaller than 1 m s{sup −1} at the blob center, it is sufficient to produce the forces required to strongly couple charged particles and neutrals. The ionization degree has no discernible effect on the main results of our previous work for a fully ionized plasma: the condensation has an initial acceleration phase followed by a period with roughly constant velocity, and, in addition, the maximum descending speed is clearly correlated with the ratio of initial blob to environment density.

  11. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    Science.gov (United States)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  12. Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations

    Science.gov (United States)

    Wu, D.; He, X. T.; Yu, W.; Fritzsche, S.

    2017-02-01

    A physical model based on a Monte Carlo approach is proposed to calculate the ionization dynamics of hot-solid-density plasmas within particle-in-cell (PIC) simulations, and where the impact (collision) ionization (CI), electron-ion recombination (RE), and ionization potential depression (IPD) by surrounding plasmas are taken into consideration self-consistently. When compared with other models, which are applied in the literature for plasmas near thermal equilibrium, the temporal relaxation of ionization dynamics can also be simulated by the proposed model. Besides, this model is general and can be applied for both single elements and alloys with quite different compositions. The proposed model is implemented into a PIC code, with (final) ionization equilibriums sustained by competitions between CI and its inverse process (i.e., RE). Comparisons between the full model and model without IPD or RE are performed. Our results indicate that for bulk aluminium at temperature of 1 to 1000 eV, (i) the averaged ionization degree increases by including IPD; while (ii) the averaged ionization degree is significantly over estimated when the RE is neglected. A direct comparison from the PIC code is made with the existing models for the dependence of averaged ionization degree on thermal equilibrium temperatures and shows good agreements with that generated from Saha-Boltzmann model and/or FLYCHK code.

  13. Investigations of the potential functions of weakly bound diatomic molecules and laser-assisted excitive Penning ionization

    Energy Technology Data Exchange (ETDEWEB)

    Goble, J.H. Jr.

    1982-05-01

    Three variations on the Dunham series expansion function of the potential of a diatomic molecule are compared. The differences among these expansions lie in the choice of the expansion variable, lambda. The functional form of these variables are lambda/sub s/ = l-r/sub e//r for the Simon-Parr-Finlan version, lambda/sub T/ - 1-(r/sub e//r)/sup p/ for that of Thakkar, and lambda/sub H/ = 1-exp(-rho(r/r/sub e/-1) for that of Huffaker. A wide selection of molecular systems are examined. It is found that, for potentials in excess of thirty kcal/mole, the Huffaker expansion provides the best description of the three, extrapolating at large internuclear separation to a value within 10% of the true dissociation energy. For potentials that result from the interaction of excited states, all series expansions show poor behavior away from the equilibrium internuclear separation of the molecule. The series representation of the potentials of weakly bound molecules are examined in more detail. The ground states of BeAr/sup +/, HeNe/sup +/, NaAr, and Ar/sub 2/ and the excited states of HeNe+, NaNe, and NaAr are best described by the Thakkar expansion. Finally, the observation of laser-assisted excitive Penning ionization in a flowing afterglow is reported. The reaction Ar(/sup 3/P/sub 2/) + Ca + h nu ..-->.. Ar + Ca/sup +/(5p /sup 2/P/sub J/) + e/sup -/ occurs when the photon energy, h nu, is approximately equal to the energy difference between the metastable argon and one of the fine structure levels of the ion's doublet. By monitoring the cascade fluorescence of the above reaction and comparing it to the flourescence from the field-free process Ar(/sup 3/P/sub 2/) + Ca ..-->.. Ar + Ca/sup +/(4p /sup 2/P/sub J/) + e/sup -/ a surprisingly large cross section of 6.7 x 10/sup 3/ A/sup 2/ is estimated.

  14. Alfvenic Ion Temperature Gradient Activities in a Weak Magnetic Shear Plasma

    CERN Document Server

    Chen, W; Li, Y Y; Shi, Z B; Du, H R; Jiang, M; Yu, L M; Yuan, B S; Li, Y G; Yang, Z C; Shi, P W; Ding, X T; Dong, J Q; Liu, Yi; Xu, M; Xu, Y H; Yang, Q W; Duan, X R

    2016-01-01

    We report the first experimental evidence of Alfvenic ion temperature gradient (AITG) modes in HL-2A Ohmic plasmas. A group of oscillations with $f=15-40$ kHz and $n=3-6$ is detected by various diagnostics in high-density Ohmic regimes. They appear in the plasmas with peaked density profiles and weak magnetic shear, which indicates that corresponding instabilities are excited by pressure gradients. The time trace of the fluctuation spectrogram can be either a frequency staircase, with different modes excited at different times or multiple modes may simultaneously coexist. Theoretical analyses by the extended generalized fishbone-like dispersion relation (GFLDR-E) reveal that mode frequencies scale with ion diamagnetic drift frequency and $\\eta_i$, and they lie in KBM-AITG-BAE frequency ranges. AITG modes are most unstable when the magnetic shear is small in low pressure gradient regions. Numerical solutions of the AITG/KBM equation also illuminate why AITG modes can be unstable for weak shear and low pressure...

  15. Characterization of the ionization degree evolution of the PF-400J plasma sheath by means of time resolved optical spectroscopy

    Science.gov (United States)

    Avaria, G.; Cuadrado, O.; Moreno, J.; Pavez, C.; Soto, L.

    2016-05-01

    Spectral measurements in the visible range of the plasma sheath ionization degree evolution on the plasma focus device PF-400J are presented. The measurements were done with temporal and spatial resolution in a plasma focus device of low stored energy: PF-400J (176-539 J, 880 nF, 20-35 kV, quarter period ∼ 300ns) [1]. An ICCD was attached to a 0.5 m focal length visible spectrometer, which enabled the acquisition of time resolved spectrum with 20 ns integration time throughout the whole current pulse evolution. The spatial resolution was attained using a set of lenses which allowed the focusing of a small volume of the plasma sheath in different positions of the inter-electrode space. Discharges were carried out in mixtures of Hydrogen with gases in different proportions: 5% Neon, 5% Krypton and 2% Nitrogen. Discharges using Neon as an impurity showed no ionization of the gas, just a very low intensity emission of Ne I at times much larger than the maximum current. Nitrogen, on the other hand, showed a high ionization reaching N V (N 4+) at the end of the axial phase, with a distinctive evolution of the ionization degree as the plasma sheath moved towards the end of the electrodes. A mixed result was found when using Krypton, since the ionization degree only reached levels around Kr II/III, even though it has an ionization potential lower than Neon.

  16. Consecutive reversible ionization-recombination reactions and ionic charge state distribution of Au plasma

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhiyan; ZHU Zhenghe; TANG Changhuan; TANG Yongjian; GAO Tao

    2005-01-01

    The present work proposes kinetics of ionization-recombination to study the charge state distribution of Au plasma. The first step is to calculate the average lifetime, energy level structure, degeneracy and partition function of Au48+―Au52+ by relativistic quantum mechanics, and next to compute the equilibrium constant and the second-order recombination rate constant by statistical thermodynamics. Based on these data, the differential equations of consecutive reversible ionization-recombination reactions are solved from which the charge state distribution and its average charge are derived. Finally, the influence of electron temperature and density on average charge is given in this paper. It is called the first-principle theory, for no experimental data are needed.

  17. Nanoscale Electron Bunching in Laser-Triggered Ionization Injection in Plasma Accelerators

    Science.gov (United States)

    Xu, X. L.; Pai, C.-H.; Zhang, C. J.; Li, F.; Wan, Y.; Wu, Y. P.; Hua, J. F.; Lu, W.; An, W.; Yu, P.; Joshi, C.; Mori, W. B.

    2016-07-01

    Ionization injection is attractive as a controllable injection scheme for generating high quality electron beams using plasma-based wakefield acceleration. Because of the phase-dependent tunneling ionization rate and the trapping dynamics within a nonlinear wake, the discrete injection of electrons within the wake is nonlinearly mapped to a discrete final phase space structure of the beam at the location where the electrons are trapped. This phenomenon is theoretically analyzed and examined by three-dimensional particle-in-cell simulations which show that three-dimensional effects limit the wave number of the modulation to between >2 k0 and about 5 k0, where k0 is the wave number of the injection laser. Such a nanoscale bunched beam can be diagnosed by and used to generate coherent transition radiation and may find use in generating high-power ultraviolet radiation upon passage through a resonant undulator.

  18. K-Alpha Emission Spectra From Non-Equilibrium Ionizing Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, V L; Decaux, V; Beiersdorfer, P

    2004-12-16

    K{alpha} X-ray emission spectra from highly charged Fe ions have been theoretically predicted using a detailed and systematic spectral model. Account has been taken of the fundamental atomic radiative-emission processes associated with inner-shell electron collisional excitation and ionization, as well as dielectronic recombination. Particular emphasis has been directed at extreme non-equilibrium or transient-ionization conditions, which can occur in astrophysical and tokamak plasmas. Good agreement has been found in comparisons with spectral observations on the EBIT-II electron beam ion trap at the Lawrence Livermore National Laboratory. We have identified spectral features that can serve as diagnostics of the electron density, the line-formation mechanism, and the charge-state distribution.

  19. Injection to rapid diffusive shock acceleration at perpendicular shocks in partially ionized plasmas

    CERN Document Server

    Ohira, Yutaka

    2016-01-01

    We present a three-dimensional hybrid simulation of a collisionless perpendicular shock in a partially ionized plasma for the first time. In this simulation, the shock velocity and the upstream ionization fraction are Vsh ~ 1333 km/s and fi ~ 0.5, that are typical values for isolated young supernova remnants in the interstellar medium. We confirm previous two-dimensional simulation results that downstream hydrogen atoms leak into the upstream region, they are accelerated by the pickup process in the upstream region, and large magnetic field fluctuations are generated both in the upstream and downstream regions. In addition, we find that the magnetic field fluctuations have three-dimensional structures and the leaking hydrogen atoms are injected to the diffusive shock acceleration at the perpendicular shock after the pickup process. The observed diffusive shock acceleration can be interpreted as the shock drift acceleration with scattering. Particles are accelerated to v ~ 100 Vsh ~ 0.3c within ~ 100 gyroperio...

  20. Understanding the anomalous dispersion of doubly-ionized carbon plasmas near 47 nm

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, J; Castor, J I; Iglesias, C A; Cheng, K T; Dunn, J; Johnson, W R; Filevich, J; Purvis, M A; Grava, J; Rocca, J J

    2008-04-15

    Over the last several years we have predicted and observed plasmas with an index of refraction greater than one in the soft X-ray regime. These plasmas are usually a few times ionized and have ranged from low-Z carbon plasmas to mid-Z tin plasmas. Our main calculational tool has been the average atom code. We have recently observed C{sup 2+} plasmas with an index of refraction greater than one at a wavelength of 46.9 nm (26.44 eV). In this paper we compare the average atom method, AVATOMKG, against two more detailed methods, OPAL and CAK, for calculating the index of refraction for the carbon plasmas and discuss the different approximations used. We present experimental measurements of carbon plasmas that display this anomalous dispersion phenomenon. It is shown that the average atom calculation is a good approximation when the strongest lines dominate the dispersion. However, when weaker lines make a significant contribution, the more detailed calculations such as OPAL and CAK are essential. During the next decade X-ray free electron lasers and other X-ray sources will be available to probe a wider variety of plasmas at higher densities and shorter wavelengths so understanding the index of refraction in plasmas will be even more essential. With the advent of tunable X-ray lasers the frequency dependent interferometer measurements of the index of refraction may enable us to determine the absorption coefficients and line-shapes and make detailed comparisons against our atomic physics codes.

  1. Influence of Ionization Degrees on the Evolutions of Charged Particles in Atmospheric Plasma at Low Altitude

    Institute of Scientific and Technical Information of China (English)

    PANG Xuexia; DENG Zechao; JIA Pengying; LIANG Weihua; LI Xia

    2012-01-01

    A zero-dimensional model which includes 56 species of reactants and 427 reactions is used to study the behavior of charged particles in atmospheric plasmas with different ionization degrees at low altitude (near 0 km). The constant coefficient nonlinear equations are solved by using the Quasi-steady-state approximation method. The electron lifetimes are obtained for afterglow plasma with different initial values, and the temporal evolutions of the main charged species are presented, which are dominant in reaction processes. The results show that the electron number density decays quickly. The lifetimes of electrons are shortened by about two orders with increasing ionization degree. Electrons then attach to neutral particles and produce negative ions. When the initial electron densities are in the range of 10l~ ~ 1014 cm-3, the negative ions have sufficiently high densities and long lifetimes for air purification, disinfection and sterilization. Electrons, O(2,-), O(4,-) CO(4,-) and CO(3,-) are the dominant negative species when the initial electron density neo ≤ 1013 cm^(-3), and only electrons and CO3 are left when neo 〉 1015 cm^(-3). N(+,2), N+ and O(+,2) are dominant in the positive charges for any ionization degree. Other positive species, such as 0(+,4), N(+,3), NO(+,2), NO(+,2), Ar(+,2) and H3O+. H2O, are dominant only for a certain ionization degree and in a certain period.

  2. Negative ion beam formation using thermal contact ionization type plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Fukuura, Yoshiyuki; Murakami, Kazutugu; Masuoka, Toshio; Katsumata, Itsuo [Osaka City Univ. (Japan). Faculty of Engineering

    1997-02-01

    The small ion sources utilizing thermal ionization have been already developed, and at present, in order to increase ion yield, that being developed to the cylindrical plasma prototype having the inner surface of a Re foil cylinder as the ionization surface, and stably functioning at 3,000 K has been developed, and by using this plasma source, the research on the formation of various ions has been carried out. At present, the research on the formation of Li negative ion beam is carried out. The separation of negative ions from electrons is performed with the locally limited magnetic field using a small iron core electromagnet placed behind the electrostatic accelerating lens system. So for, the formation of about 2 {mu}A at maximum of negative ions was confirmed. It was decided to identify the kinds of ions by time of flight (TOF) process, and the various improvements for this purpose were carried out. The experimental setup, the structure of the plasma source, the circuits for TOF measurement and so on are explained. The experimental results are reported. The problems are the possibility of the formation of alkali metals, the resolution of the time axis of the TOF system and so on. (K.I.)

  3. Torsional Alfven waves in solar partially ionized plasma: effects of neutral helium and stratification

    CERN Document Server

    Zaqarashvili, T V; Soler, R

    2012-01-01

    Ion-neutral collisions may lead to the damping of Alfven waves in chromospheric and prominence plasmas. Neutral helium atoms enhance the damping in certain temperature interval, where the ratio of neutral helium and neutral hydrogen atoms is increased. Therefore, the height-dependence of ionization degrees of hydrogen and helium may influence the damping rate of Alfven waves. We aim to study the effect of neutral helium in the damping of Alfven waves in stratified partially ionized plasma of the solar chromosphere. We consider a magnetic flux tube, which is expanded up to 1000 km height and then becomes vertical due to merging with neighboring tubes, and study the dynamics of linear torsional Alfven waves in the presence of neutral hydrogen and neutral helium atoms. We start with three-fluid description of plasma and consequently derive single-fluid magnetohydrodynamic (MHD) equations for torsional Alfven waves. Thin flux tube approximation allows to obtain the dispersion relation of the waves in the lower pa...

  4. Average Distribution of Ionic Charges and Ionizability for the Au Plasma System

    Institute of Scientific and Technical Information of China (English)

    杨天丽; 蒋刚; 朱正和

    2002-01-01

    Using relativistic multi-configuration Dirac-Fock theory, we calculate the transition data of 3dj - n fj, (n =5, 6, 7) for the M-shell from an Ni-like Au ion to an As-like Auion using the GRASP programme with the core-polarization, quantum electrodynamical effect and Breit correction. Based on the present calculation results andthe experiment of the Xingguang-Ⅱ laser facilities, the average distribution of ionic charge and the ionizabilityhave been derived. The average ionization degree of Au plasma Z* is 49.06 ± 0.5, which is comparable with theresult of the Lawrence Livermore National Laboratory.

  5. The effects of added hydrogen on a helium atmospheric-pressure plasma jet ambient desorption/ionization source.

    Science.gov (United States)

    Wright, Jonathan P; Heywood, Matthew S; Thurston, Glen K; Farnsworth, Paul B

    2013-03-01

    We present mass spectrometric data demonstrating the effect that hydrogen has on a helium-based dielectric-barrier discharge (DBD) atmospheric-pressure plasma jet used as an ambient desorption/ionization (ADI) source. The addition of 0.9 % hydrogen to the helium support gas in a 35-W plasma jet increased signals for a range of test analytes, with enhancement factors of up to 68, without proportional increases in background levels. The changes in signal levels result from a combination of changes in the desorption kinetics from the surface and increased ion production in the gas phase. The enhancement in ADI-MS performance despite the quenching of key plasma species reported in earlier studies suggests that ionization with a H2/He plasma jet is the result of an alternate mechanism involving the direct generation of ionized hydrogen.

  6. Electrospray ionization Fourier transform mass spectrometric analysis of intact bikunin glycosaminoglycan from normal human plasma.

    Science.gov (United States)

    Laremore, Tatiana N; Leach, Franklin E; Amster, I Jonathan; Linhardt, Robert J

    2011-08-15

    A mixture of glycosaminoglycan (GAG) chains from a plasma proteoglycan bikunin was fractionated using native, continuous-elution polyacrylamide gel electrophoresis, and the resulting fractions were analyzed by electrospray ionization Fourier transform mass spectrometry (ESI FTMS). Molecular mass analysis of the intact GAG afforded information about the length and composition of GAG chains in the mixture. Ambiguity in the interpretation of the intact GAG mass spectra was eliminated by conducting an additional experiment in which the GAG chains of known molecular mass were treated with a GAG-degrading enzyme, chondroitinase ABC, and the digestion products were analyzed by ESI FTMS. The plasma bikunin GAG chains consisted predominantly of odd number of saccharides, although few chains consisting of even number of saccharides were also detected. Majority of the analyzed chains were tetrasulfated or pentasulfated and comprised by 29 to 41 monosaccharides.

  7. Scattered ionizing radiations from low-energy focus plasma and radiation dosimetery assessment

    Indian Academy of Sciences (India)

    G M El-Arag; M A Ayad; M A El-Kolaly; W Madcour

    2010-10-01

    Scattered ionizing radiation emissions from a low-energy plasma focus (0.1 kJ Mather-type) device operating with different gases were studied. The plasma focus device was powered by a capacitor bank of 1 F at 18 kV maximum charging voltage. The radiation emissions were investigated using time-integrated thermoluminescence TLD-500. These detectors were calibrated against standard X-ray machine as well as standard sources (60Co and 137Ca). Calibration of detectors showed linear relation over all the region of measurements. It was found that radiation levels would be minimum for different gases, when the gas pressure was between 0.5 and 0.8 Torr. Only helium deviated from this phenomenon as it gave maximum radiation level at 0.8 Torr pressure. It was also found that, for all the gases used, the radiation levels were maximum when the applied voltage was 15 keV.

  8. Plasma lipid analysis by hydrophilic interaction liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Sonomura, Kazuhiro; Kudoh, Shinobu; Sato, Taka-Aki; Matsuda, Fumihiko

    2015-06-01

    A novel method for the analysis of endogenous lipids and related compounds was developed employing hydrophilic interaction liquid chromatography with electrospray ionization tandem mass spectrometry. A hydrophilic interaction liquid chromatography with carbamoyl stationary phase achieved clear separation of phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, ceramide, and mono-hexsosyl ceramide groups with good peak area repeatability (RSD% 0.99). The established method was applied to human plasma assays and a total of 117 endogenous lipids were successfully detected and reproducibly identified. In addition, we investigated the simultaneous detection of small polar metabolites such as amino and organic acids co-existing in the same biological samples processed in a single analytical run with lipids. Our results show that hydrophilic interaction liquid chromatography is a useful tool for human plasma lipidome analysis and offers more comprehensive metabolome coverage.

  9. Proton temperature-anisotropy-driven instabilities in weakly collisional plasmas: Hybrid simulations

    CERN Document Server

    Hellinger, Petr

    2014-01-01

    Kinetic instabilities in weakly collisional, high beta plasmas are investigated using two-dimensional hybrid expanding box simulations with Coulomb collisions modeled through the Langevin equation (corresponding to the Fokker-Planck one). The expansion drives a parallel or perpendicular temperature anisotropy (depending on the orientation of the ambient magnetic field). For the chosen parameters the Coulomb collisions are important with respect to the driver but are not strong enough to keep the system stable with respect to instabilities driven by the proton temperature anisotropy. In the case of the parallel temperature anisotropy the dominant oblique fire hose instability efficiently reduces the anisotropy in a quasilinear manner. In the case of the perpendicular temperature anisotropy the dominant mirror instability generates coherent compressive structures which scatter protons and reduce the temperature anisotropy. For both the cases the instabilities generate temporarily enough wave energy so that the ...

  10. Spin Polarized Photons from Axially Charged Plasma at Weak Coupling: Complete Leading Order

    CERN Document Server

    Mamo, Kiminad A

    2015-01-01

    In the presence of (approximately conserved) axial charge in the QCD plasma at finite temperature, the emitted photons are spin-aligned, which is a unique P- and CP-odd signature of axial charge in the photon emission observables. We compute this "P-odd photon emission rate" in weak coupling regime at high temperature limit to complete leading order in the QCD coupling constant: the leading log as well as the constant under the log. As in the P-even total emission rate in the literature, the computation of P-odd emission rate at leading order consists of three parts: 1) Compton and Pair Annihilation processes with hard momentum exchange, 2) soft t- and u-channel contributions with Hard Thermal Loop re-summation, 3) Landau-Pomeranchuk-Migdal (LPM) re-summation of collinear Bremstrahlung and Pair Annihilation. We present analytical and numerical evaluations of these contributions to our P-odd photon emission rate observable.

  11. The efficiency of fast wave current drive for a weakly relativistic plasma

    Science.gov (United States)

    Chiu, S. C.; Lin-Liu, Y. R.; Karney, C. F. F.

    1994-10-01

    Current drive by fast waves (FWCD) is an important candidate for steady-state operation of tokamaks. Major experiments using this scheme are being carried out on DIII-D. There has been considerable study of the theoretical efficiency of FWCD. In Refs. 4 and 5, the nonrelativistic efficiency of FWCD at arbitrary frequencies was studied. For DIII-D parameters, the results can be considerably different from the Landau and Alfvén limits. At the high temperatures of reactors and DIII-D upgrade, relativistic effects become important. In this paper, the relativistic FWCD efficiency for arbitrary frequencies is studied. Assuming that the plasma is weakly relativistic, i.e., Te/mc2 is small, an analytic expression for FWCD is obtained for high resonant energies (uph/uTe≫1). Comparisons with the results from a numerical code ADJ and the nonrelativistic results shall be made and analytical fits in the whole range of velocities shall be presented.

  12. Third Harmonic Generation of a Short Pulse Laser in a Tunnel Ionizing Plasma: Effect of Self-Defocusing

    Directory of Open Access Journals (Sweden)

    Niti Kant

    2013-08-01

    Full Text Available Third harmonic generation of a Gaussian short pulse laser in a tunnel ionizing plasma is investigated. A Gaussian short pulse laser propagating through a tunnel ionizing plasma generates third harmonic wave. Inhomogeneity of the electric field along the wavefront of the fundamental laser pulse causes more ionization along the axis of propagation while less ionization off axis, leading to strong density gradient with its maximum on the axis of propagation. The medium acts like a diverging lens and pulse defocuses strongly. The normalized third harmonic amplitude varies periodically with the distance with successive maxima acquiring lower value. The self-defocusing of the fundamental laser pulse decays the intensity of the third harmonic pulse.

  13. Rayleigh-Taylor instability in partially ionized compressible plasmas: one fluid approach

    CERN Document Server

    Diaz, A J; Collados, M

    2014-01-01

    We study the modification of the classical criterion for the linear onset and growth rate of the Rayleigh-Taylor instability (RTI) in a partially ionized (PI) plasma in the one-fluid description, considering a generalized induction equation. The governing linear equations and appropriate boundary conditions, including gravitational terms, are derived and applied to the case of the RTI in a single interface between two partially ionized plasmas. The boundary conditions lead to an equation for the frequencies in which some of them have positive complex parts, marking the appearance of the RTI. We study the ambipolar term alone first, extending the result to the full induction equation later. We find that the configuration is always unstable because of the presence of a neutral species. In the classical stability regime the growth rate is small, since the collisions prevent the neutral fluid to fully develop the RTI. For parameters in the classical instability regime the growth rate is lowered, but for the consi...

  14. CO2 impact ionization-driven plasma instability observed by Pioneer Venus Orbiter at Periapsis

    Science.gov (United States)

    Curtis, S. A.; Brace, L. H.; Niemann, H. B.; Scarf, F. L.

    1985-01-01

    Observations of enhanced ac electric field noise about Pioneer Venus periapsis are shown to be related to spacecraft-generated impact ionization of the ambient CO2. The frequency of the electric field noise is found to peak in the vicinity of the CO2(+) ion plasma frequency and to closely follow the form of the neutral CO2 density profile. When the electric field noise in all channels is normalized by the square root of the CO2 number density, the ratio is constant. Since the impact electron density measured by the Pioneer Venus Langmuir probe, is observed to scale directly with the neutral CO2, the growth of the electric field amplitude is found to be linear in time with a growth rate proportional to the CO2(+) ion plasma frequency. On the basis of these results the impact ionization-driven instability is shown to be the ion acoustic instability. Implications for the lack of observations by Pioneer Venus of reflected-O(+)-driven instabilities, as have been proposed for the space shuttle, are discussed.

  15. Oblique non-neutral solitary Alfven modes in weakly nonlinear pair plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Verheest, Frank [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); School of Physics, Howard College Campus, University of KwaZulu-Natal, Durban 4041 (South Africa); Lakhina, G S [Indian Institute of Geomagnetism, New Panvel, Navi Mumbai 410218 (India); Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2005-04-01

    The equal charge-to-mass ratio for both species in pair plasmas induces a decoupling of the linear eigenmodes between waves that are charge neutral or non-neutral, also at oblique propagation with respect to a static magnetic field. While the charge-neutral linear modes have been studied in greater detail, including their weakly and strongly nonlinear counterparts, the non-neutral mode has received less attention. Here the nonlinear evolution of a solitary non-neutral mode at oblique propagation is investigated in an electron-positron plasma. Employing the framework of reductive perturbation analysis, a modified Korteweg-de Vries equation (with cubic nonlinearity) for the lowest-order wave magnetic field is obtained. In the linear approximation, the non-neutral mode has its magnetic component orthogonal to the plane spanned by the directions of wave propagation and of the static magnetic field. The linear polarization is not maintained at higher orders. The results may be relevant to the microstructure in pulsar radiation or to the subpulses.

  16. Limitations of Hall MHD as a model for turbulence in weakly collisional plasmas

    Directory of Open Access Journals (Sweden)

    G. G. Howes

    2009-03-01

    Full Text Available The limitations of Hall MHD as a model for turbulence in weakly collisional plasmas are explored using quantitative comparisons to Vlasov-Maxwell kinetic theory over a wide range of parameter space. The validity of Hall MHD in the cold ion limit is shown, but spurious undamped wave modes exist in Hall MHD when the ion temperature is finite. It is argued that turbulence in the dissipation range of the solar wind must be one, or a mixture, of three electromagnetic wave modes: the parallel whistler, oblique whistler, or kinetic Alfvén waves. These modes are generally well described by Hall MHD. Determining the applicability of linear kinetic damping rates in turbulent plasmas requires a suite of fluid and kinetic nonlinear numerical simulations. Contrasting fluid and kinetic simulations will also shed light on whether the presence of spurious wave modes alters the nonlinear couplings inherent in turbulence and will illuminate the turbulent dynamics and energy transfer in the regime of the characteristic ion kinetic scales.

  17. Quantum-mechanical calculation of ionization potential lowering in dense plasmas

    CERN Document Server

    Son, Sang-Kil; Jurek, Zoltan; Ziaja, Beata; Santra, Robin

    2014-01-01

    The charged environment within a dense plasma leads to the phenomenon of ionization potential depression (IPD) for ions embedded in the plasma. Accurate predictions of the IPD effect are of crucial importance for modeling atomic processes occurring within dense plasmas. Several theoretical models have been developed to describe the IPD effect, with frequently discrepant predictions. Only recently, first experiments on IPD in Al plasma have been performed with an x-ray free-electron laser (XFEL), where their results were found to be in disagreement with the widely-used IPD model by Stewart and Pyatt. Another experiment on Al, at the Orion laser, showed disagreement with the model by Ecker and Kr\\"oll. This controversy shows a strong need for a rigorous and consistent theoretical approach to calculate the IPD effect. Here we propose such an approach: a two-step Hartree-Fock-Slater model. With this parameter-free model we can accurately and efficiently describe the experimental Al data and validate the accuracy ...

  18. Ionized calcium and cyclic AMP in plasma and urine. Biochemical evaluation in calcium metabolic disease.

    Science.gov (United States)

    Thode, J

    1990-01-01

    Measurement of ionized calcium and cAMP in plasma and urine are used as sensitive parameters for the evaluation of calcium disorders. Ionized calcium is accepted as the biologically active form of calcium in the extracellular fluid, while urine cAMP provides an in vivo receptor assay for the biologically active parathyroid hormone. When urine is included as part of the calcium metabolic investigation it usually requires 24 h urine collection with a variety of different laboratory tests. Ionized calcium and cAMP are described in the literature in terms of several derived quantities, nomenclatures, and units which are rather unsystematic. The author developed reliable techniques and proposed systematic names and symbols and reference values for these quantities. Due to the lack of guidelines for the collection of urines in calcium metabolic evaluation, the author presented a simplified protocol (4 h standardized urine collection). In clinical investigation plasma and urine cAMP have been used to differentiate idiopathic hypoparathyroidism from pseudohypoparathyroidism (PsHP) based on the results of i.v. injection of parathyroid hormone (PTH). Nephrogenous cAMP has also been used for the detection of primary and secondary hyperparathyroidism with a high nosographic sensitivity (90%) (Broadus). The author showed that measurement of cAMP after i.v. PTH was a reliable and sensitive test to establish the diagnosis of PsHP, and that the urinary cAMP was useful for the diagnosis of secondary hyperparathyroidism in patients with jejunoileal bypass, but could not confirm the high nosographic sensitivity for the diagnosis of primary hyperparathyroidism. Further data are needed for proper conclusion. Although pursued vigorously the research into idiopathic stone formation using different protocols has not prevented stone recurrence nor indicated where further progress might be made. For the evaluation of recurrent calcium disease, the author proposed a simplified 4 h

  19. The effect of ionization on the populations of excited levels of C IV and C V in tokamak edge plasmas

    CERN Document Server

    Lawson, K D; Aggarwal, K M; Keenan, F P; Contributors, JET-EFDA; 10.1088/0953-4075/46/3/035701

    2013-01-01

    The main populating and depopulating mechanisms of the excited energy levels of ions in plasmas with densities <1023-1024 m-3 are electron collisional excitation from the ion's ground state and radiative decay, respectively, with the majority of the electron population being in the ground state of the ionization stage. Electron collisional ionization is predominately expected to take place from one ground state to that of the next higher ionization stage. However, the question arises as to whether, in some cases, ionization can also affect the excited level populations. This would apply particularly to those cases involving transient events such as impurity influxes in a laboratory plasma. An analysis of the importance of ionization in populating the excited levels of ions in plasmas typical of those found in the edge of tokamaks is undertaken for the C IV and C V ionization stages. The emphasis is on those energy levels giving rise to transitions of most use for diagnostic purposes. Carbon is chosen since...

  20. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades In Magentized Weakly Collisional Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.

    2009-04-23

    This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations

  1. Analysis of ionization wave dynamics in low-temperature plasma jets from fluid modeling supported by experimental investigations

    Science.gov (United States)

    Yousfi, M.; Eichwald, O.; Merbahi, N.; Jomaa, N.

    2012-08-01

    This work is devoted to fluid modeling based on experimental investigations of a classical setup of a low-temperature plasma jet. The latter is generated at atmospheric pressure using a quartz tube of small diameter crossed by helium gas flow and surrounded by an electrode system powered by a mono-polar high-voltage pulse. The streamer-like behavior of the fast plasma bullets or ionization waves launched in ambient air for every high-voltage pulse, already emphasized in the literature from experimental or analytical considerations or recent preliminary fluid models, is confirmed by a numerical one-moment fluid model for the simulation of the ionization wave dynamics. The dominant interactions between electron and the main ions present in He-air mixtures with their associated basic data are taken into account. The gradual dilution of helium in air outside the tube along the axis is also considered using a gas hydrodynamics model based on the Navier-Stokes equation assuming a laminar flow. Due to the low magnitude of the reduced electric field E/N (not exceeding 15 Td), it is first shown that consideration of the stepwise ionization of helium metastables is required to reach the critical size of the electron avalanches in order to initiate the formation of ionization waves. It is also shown that a gas pre-ionization ahead of the wave front of about 109 cm-3 (coming from Penning ionization without considering the gas photo-ionization) is required for the propagation. Furthermore, the second ionization wave experimentally observed during the falling time of the voltage pulse, between the powered electrode and the tube exit, is correlated with the electric field increase inside the ionized channel in the whole region between the electrode and the tube exit. The propagation velocity and the distance traveled by the front of the ionization wave outside the tube in the downstream side are consistent with the present experimental measurements. In comparison with the

  2. IFCC recommended reference method for the determination of the substance concentration of ionized calcium in undiluted serum, plasma or whole blood

    NARCIS (Netherlands)

    Burnett, RW; Christiansen, TF; Covington, AK; Fogh-Andersen, N; Kulpmann, WR; Lewenstam, A; Maas, AHJ; Muller-Plathe, O; Sachs, C; Siggaard-Andersen, O; VanKessel, AL; Zijlstra, WG

    2000-01-01

    A reference method is described for the determination of the substance concentration of ionized calcium in plasma by which ionized calcium (free or unbound) may be reliably determined on the basis of calibration with aqueous solutions with known concentration of ionized calcium. The composition of t

  3. Liquid Chromatography-Electrospray Ionization Mass Spectrometry Method for Determination of Protopanaxadiol in Rat Plasma

    Institute of Scientific and Technical Information of China (English)

    WU Yi; TENG Guo-sheng; LIANG Yong-tao; ZHONG Da-fang; LIU Bing

    2009-01-01

    A simple, rapid and sensitive method for the determination of protopanaxadiol in rat plasma with ginse-noside Rh2 as internal standard was developed and validated. The analyte and internal standard were extracted from plasma with ether-dichloromethane(3:2, volume ratio) and then were analyzed by reversed-phase HPLC on a short Zorbax Extend C_(18) column(50 mm×2.1 mm, 3.5 μm i.d.) eluted with a mobile phase consisting of acetoni-trile/methanol 0.10 mmol/L ammonium acetate(45:45:10, volume ratio) at 0.4 mL/min. Detection was performed on an Applied Biosystems Sciex API 4000 mass spectrometer set at unit resolution in the multiple reaction monitoring mode. Electrospray ionization was used for ion production. The assay method shows linear over a range of 5-2000 ng/mL and intra- and inter-day precisions over this range were <10.0% with accuracy ranged from 86.3% to 114.1%. The limit of detection was 500 pg/mL in the plasma. The method was successfully applied to a preclinical pharmaco-kinetic study of protopanaxadiol(17.5 mg/kg) administered as a single oral dose.

  4. Measurements and modeling of the impact of weak magnetic fields on the plasma properties of a planar slot antenna driven plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Jun, E-mail: jun.yoshikawa@tel.com; Susa, Yoshio; Ventzek, Peter L. G. [Tokyo Electron Ltd., Akasaka Biz Tower, 3-1 Akasaka 5-chome, Minato-ku, Tokyo 107-6325 (Japan)

    2015-05-15

    The radial line slot antenna plasma source is a type of surface wave plasma source driven by a planar slot antenna. Microwave power is transmitted through a slot antenna structure and dielectric window to a plasma characterized by a generation zone adjacent to the window and a diffusion zone that contacts a substrate. The diffusion zone is characterized by a very low electron temperature. This renders the source useful for soft etch applications and thin film deposition processes requiring low ion energy. Another property of the diffusion zone is that the plasma density tends to decrease from the axis to the walls under the action of ambipolar diffusion at distances far from where the plasma is generated. A previous simulation study [Yoshikawa and. Ventzek, J. Vac. Sci. Technol. A 31, 031306 (2013)] predicted that the anisotropy in transport parameters due to weak static magnetic fields less than 50 G could be leveraged to manipulate the plasma profile in the radial direction. These simulations motivated experimental tests in which weak magnetic fields were applied to a radial line slot antenna source. Plasma absorption probe measurements of electron density and etch rate showed that the magnetic fields remote from the wafer were able to manipulate both parameters. A summary of these results is presented in this paper. Argon plasma simulation trends are compared with experimental plasma and etch rate measurements. A test of the impact of magnetic fields on charge up damage showed no perceptible negative effect.

  5. A Proposal for a Novel H- Ion Source Based on Electron Cyclotron Resonance Plasma Heating and Surface Ionization

    Science.gov (United States)

    Tarvainen, O.; Kurennoy, S.

    2009-03-01

    A design for a novel H- ion source based on electron cyclotron resonance plasma heating and surface ionization is presented. The plasma chamber of the source is an rf-cavity designed for TE111 eigenmode at 2.45 GHz. The desired mode is excited with a loop antenna. The ionization process takes place on a cesiated surface of a biased converter electrode. The H- ion beam is further "self-extracted" through the plasma region. The magnetic field of the source is optimized for plasma generation by electron cyclotron resonance heating, and beam extraction. The design features of the source are discussed in detail and the attainable H- ion current, beam emittance and duty factor of the novel source are estimated.

  6. The effect of configuration complex on dielectronic recombination process in highly ionized plasmas

    Institute of Scientific and Technical Information of China (English)

    Jiao Rong-Zhen; Feng Chen-Xu

    2008-01-01

    This paper analyses the effect of configuration complex on dielectronic recombination (DR) process in highly ionized plasmas (Xe26+,Dy38+,W46+) by using the multiconfiguration relativistic Hartree-Fock method.Resonant and nonresonant radiative stabilizing transitions and decays to autoionizing levels followed by radiative cascades are included. Collisional transitions following electron capture are neglected. The remarkable difference between the isoelectronic trend of the rate coefficients for DR through 3d94/4l4l' and through 3d94l5l' is emphasized.The trend of DR through 3d94l4l' shows irregularities at relatively low temperature due to the progressive closing of DR channels as atomic number Z increases.

  7. Liquid chromatography/electrospray ionization mass spectrometric characterization of Harpagophytum in equine urine and plasma.

    Science.gov (United States)

    Colas, Cyril; Garcia, Patrice; Popot, Marie-Agnès; Bonnaire, Yves; Bouchonnet, Stéphane

    2006-01-01

    A method has been developed for the analysis and characterization in equine urine and plasma of iridoid glycosides: harpagide, harpagoside and 8-para-coumaroyl harpagide, which are the main active principles of Harpagophytum, a plant with antiinflammatory properties. The method involves liquid chromatography coupled with positive electrospray ionization mass spectrometry. The addition of sodium or lithium chloride instead of formic acid in the eluting solvent has been studied in order to enhance the signal and to modify the ion's internal energy. Fragmentation pathways and associated patterns are proposed for each analyte. A comparison of three types of mass spectrometer: a 3D ion trap, a triple quadrupole and a linear ion trap, has been conducted. The 3D ion trap was selected for drug screening analysis whereas the linear ion trap was retained for identification and quantitation analysis.

  8. Signature of superradiance from a nitrogen gas plasma channel produced by strong field ionization

    CERN Document Server

    Li, Guihua; Zeng, Bin; Xie, Hongqiang; Yao, Jinping; Chu, Wei; Ni, Jielei; Zhang, Haisu; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2013-01-01

    Recently, Yao et al. demonstrated the creation of coherent emissions in nitrogen gas with two-color (800 nm + 400 nm) ultrafast laser pulses [New J. Phys. 15, 023046 (2013)]. Based on this two-color scheme, here we report on systematic investigation of temporal characteristics of the coherent emission at 391 nm by experimentally examining its evolution with the increase of the plasma channel induced by the intense 800 nm femtosecond laser pulses at a nitrogen gas pressure of ~25 mbar. We reveal unexpected temporal profiles of the coherent emissions, which show significant superradiance signatures owing to the quantum coherence via cooperation of an ensemble of excited N2+ molecules. Our findings shed more light on the mechanisms behind the laser-like emissions induced by strong-field ionization of molecules.

  9. Global smooth dynamics of a fully ionized plasma with long-range collisions

    CERN Document Server

    Duan, Renjun

    2012-01-01

    The motion of a fully ionized plasma of electrons and ions is generally governed by the Vlasov-Maxwell-Landau system. We prove the global existence of solutions near Maxwellians to the Cauchy problem of the system for the long-range collision kernel of soft potentials, particularly including the classical Coulomb collision, provided that initial data is smooth enough and decays in velocity variable fast enough. As a byproduct, the convergence rates of solutions are also obtained. The proof is based on the energy method through designing a new temporal energy norm to capture different features of this complex system such as dispersion of the macro component in ${\\mathbb{R}}^3$, singularity of the long-range collisions and regularity-loss of the electromagnetic field.

  10. Quantum diffraction effects on the atomic polarization collision in partially ionized dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0407, USA and Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of)

    2014-04-15

    The influence of quantum diffraction on the electron-atom polarization collision process is investigated in partially ionized dense plasmas. The pseudopotential model and eikonal method are employed to obtain the eikonal phase shift and eikonal cross section as functions of the impact parameter, collision energy, Debye length, electron de Broglie wavelength, and atomic polarizability. The results show that the eikonal phase shift for the electron-hydrogen atom polarization collision decreases with an increase of the electron de Broglie wavelength. It is important to note that the influence of quantum diffraction produces the repulsive part in the electron-atom polarization interaction. It is also found that the quantum diffraction effect enhances the differential eikonal cross section. Additionally, the total eikonal cross section decreases with increasing electron de Broglie wavelength. The variations of the eikonal cross section due to the influence of finite size of the de Broglie wavelength and Debye radius are also discussed.

  11. Screening of agrochemicals in foodstuffs using low-temperature plasma (LTP) ambient ionization mass spectrometry.

    Science.gov (United States)

    Wiley, Joshua S; García-Reyes, Juan F; Harper, Jason D; Charipar, Nicholas A; Ouyang, Zheng; Cooks, R Graham

    2010-05-01

    Low-temperature plasma (LTP) permits direct ambient ionization and mass analysis of samples in their native environment with minimal or no prior preparation. LTP utilizes dielectric barrier discharges (DBDs) to create a low power plasma which is guided by gas flow onto the sample from which analytes are desorbed and ionized. In this study, the potential of LTP-MS for the detection of pesticide residues in food is demonstrated. Thirteen multi-class agricultural chemicals were studied (ametryn, amitraz, atrazine, buprofezin, DEET, diphenylamine, ethoxyquin, imazalil, isofenphos-methyl, isoproturon, malathion, parathion-ethyl and terbuthylazine). To evaluate the potential of the proposed approach, LTP-MS experiments were performed directly on fruit peels as well as on fruit/vegetable extracts. Most of the agrochemicals examined displayed remarkable sensitivity in the positive ion mode, giving limits of detection (LOD) for the direct measurement in the low picogram range. Tandem mass spectrometry (MS/MS) was used to confirm identification of selected pesticides by using for these experiments spiked fruit/vegetable extracts (QuEChERS, a standard sample treatment protocol) at levels as low as 1 pg, absolute, for some of the analytes. Comparisons of the data obtained by direct LTP-MS were made with the slower but more accurate conventional LC-MS/MS procedure. Herbicides spiked in aqueous solutions were detectable at LODs as low as 0.5 microg L(-1) without the need for any sample preparation. The results demonstrate that ambient LTP-MS can be applied for the detection and confirmation of traces of agrochemicals in actual market-purchased produce and in natural water samples. Quantitative analysis was also performed in a few selected cases and displayed a relatively high degree of linearity over four orders of magnitude.

  12. Collisional effects in weakly collisional plasmas: nonlinear electrostatic waves and recurrence phenomena

    Science.gov (United States)

    Camporeale, E.; Pezzi, O.; Valentini, F.

    2015-12-01

    The longstanding problem of collisions in plasmas is a very fascinating and huge topic in plasma physics. The 'natural' operator that describes the Coulombian interactions between charged particles is the Landau (LAN) integral operator. The LAN operator is a nonlinear, integro-differential and Fokker-Planck type operator which satisfies the H theorem for the entropy growth. Due to its nonlinear nature and multi-dimensionality, any approach to the solution of the Landau integral is almost prohibitive. Therefore collisions are usually modeled by simplified collisional operators. Here collisional effects are modeled by i) the one-dimensional Lenard-Bernstein (LB) operator and ii) the three-dimensional Dougherty (DG) operator. In the first case i), by focusing on a 1D-1V phase space, we study recurrence effects in a weakly collisional plasma, being collisions modeled by the LB operator. By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime through a Eulerian collisional Vlasov-Poisson code. Despite being routinely used, an artificial collisionality is not in general a viable way of preventing recurrence in numerical simulations. Moreover, recursive phenomena affect both the linear exponential growth and the nonlinear saturation of a linear instability by producing a fake growth in the electric field, thus showing that, although the filamentation is usually associated with low amplitude fluctuations contexts, it can occur also in nonlinear phenomena. On the other hand ii), the effects of electron-electron collisions on the propagation of nonlinear electrostatic waves are shown by means of Eulerian simulations in a 1D-3V (one dimension in physical space, three dimensions in velocity space) phase space. The nonlinear regime of the symmetric

  13. Renormalization shielding effect on the Wannier-ridge mode for double-electron continua in partially ionized dense hydrogen plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-01-01

    The influence of renormalization shielding on the Wannier threshold law for the double-electron escapes by the electron-impact ionization is investigated in partially ionized dense plasmas. The renormalized electron charge and Wannier exponent are obtained by considering the equation of motion in the Wannier-ridge including the renormalization shielding effect. It is found that the renormalization shielding effect reduces the magnitude of effective electron charge, especially, within the Bohr radius in partially ionized dense plasmas. The maximum position of the renormalized electron charge approaches to the center of the target atom with an increase of the renormalization parameter. In addition, the Wannier exponent increases with an increase of the renormalization parameter. The variations of the renormalized electron charge and Wannier exponent due to the renormalization shielding effect are also discussed.

  14. Renormalization shielding effect on the Wannier-ridge mode for double-electron continua in partially ionized dense hydrogen plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)

    2016-01-15

    The influence of renormalization shielding on the Wannier threshold law for the double-electron escapes by the electron-impact ionization is investigated in partially ionized dense plasmas. The renormalized electron charge and Wannier exponent are obtained by considering the equation of motion in the Wannier-ridge including the renormalization shielding effect. It is found that the renormalization shielding effect reduces the magnitude of effective electron charge, especially, within the Bohr radius in partially ionized dense plasmas. The maximum position of the renormalized electron charge approaches to the center of the target atom with an increase of the renormalization parameter. In addition, the Wannier exponent increases with an increase of the renormalization parameter. The variations of the renormalized electron charge and Wannier exponent due to the renormalization shielding effect are also discussed.

  15. 0-D modeling of SST-1 plasma break-down & start-up using ECRH assisted pre-ionization

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Aveg, E-mail: aveg@ipr.res.in; Pradhan, Subrata

    2016-04-15

    Highlights: • Steady state superconducting tokamak (SST-1). • Pre-ionization. • ECRH. • 0-D model. - Abstract: Electron cyclotron resonance (ECRH) assisted break-down and start-up is considered as useful tool towards the discharge initiation in superconducting tokamaks, where the vacuum vessels and the cryostats are usually electrically continuous with thick walls. ECH pre-ionizations are known to reduce the required central solenoid swing induced toroidal electric field, E significantly. The Steady state superconducting tokamak (SST-1, R = 1.1 m, a = 0.2 m) has achieved successful plasma break-down and subsequent current ramp-up with ECH pre-ionizations in both fundamental mode and second harmonic modes with E ∼ 0.35 V/m. This work has discussed an appropriate simulation model and validated its results with experiments for the ECRH assisted breakdown and start-up, for both 1st harmonic ordinary mode (O1) and 2nd harmonic extra-ordinary mode (X2), in SST-1 for hydrogen plasmas, where the loop voltage is limited to 0.35 V/m. The simulation model is a zero-dimensional (0-D) model. In this model five temporal equations are solved for spatially-uniform plasma. The primary findings of this investigation has been the determination of the threshold ECRH power for successful pre-ionization of plasma in SST-1 and validations of the results with experimental findings in SST-1.

  16. Nonlinear Waveforms for Ion-Acoustic Waves in Weakly Relativistic Plasma of Warm Ion-Fluid and Isothermal Electrons

    Directory of Open Access Journals (Sweden)

    S. A. El-Wakil

    2012-01-01

    Full Text Available The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV equation for small- but finite-amplitude electrostatic ion-acoustic waves in weakly relativistic plasma consisting of warm ions and isothermal electrons. An algebraic method with computerized symbolic computation is applied in obtaining a series of exact solutions of the KdV equation. Numerical studies have been made using plasma parameters which reveal different solutions, that is, bell-shaped solitary pulses, rational pulses, and solutions with singularity at finite points, which called “blowup” solutions in addition to the propagation of an explosive pulses. The weakly relativistic effect is found to significantly change the basic properties (namely, the amplitude and the width of the ion-acoustic waves. The result of the present investigation may be applicable to some plasma environments, such as ionosphere region.

  17. Simulation of the Partially Ionized Reacting Plasma Flow in a Negative Hydrogen Ion Source

    Science.gov (United States)

    Gatsonis, Nikolaos; Averkin, Sergey; Olson, Lynn

    2012-10-01

    A High Pressure Discharge Negative Ion Source (HPDNIS) operating on hydrogen is been under investigation. The Negative Ion Production (NIP) section of the HPDNIS attaches to the 10-100 Torr RF-discharge chamber with a micronozzle and ends with a grid that extracts the negative ion beam. The partially ionized and reacting plasma flow in the NIP section is simulated using an unstructured three-dimensional Direct Simulation Monte Carlo (U3DSMC) code. The NIP section contains a low-pressure plasma that includes H2, vibrationally-rotationally excited H2^*, negative hydrogen atoms H^-, and electrons. Primary reactions in the NIP section are dissociate attachment, H2^*+e->H^0+H^-and electron collisional detachment, e+H^-->H+2e. The U3DSMC computational domain includes the entrance to the NIP nozzle and the extraction grid at the exit. The flow parameters at the entrance are based on conditions in the RF-discharge chamber and are implemented in U3DSMC using a Kinetic-Moment subsonic boundary conditions method. The rotational and vibrational degrees of freedom in U3DSMC are implemented using the Larsen-Borgnakke model. Chemical reactions are implemented in U3DSMC using the Quantum-Kinetic model. Simulations cover the regime of operation of the HPDNIS and examine the flow characteristics inside the NIP section.

  18. The effect of easily ionized elements Na and K on the performance of pulsed plasma thruster using water propellant

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In view of the low thrust power ratio caused by the high resistance of pulsed plasma thruster using water propellant,the paper argues that the easily ionized elements Na and K with low ionic potentials are added in the water propellant to improve its performance. The measurement of the discharging current and plasma emission spectrographic analysis prove the improvement. The experiments show that the elements Na and K have certain effect on the improvement of the performance of pulsed plasma thruster: In comparison with water propellant,the NaCl and KCl water propellant has a lower total resistance and a higher ratio of thruster power and specific impulse,and the NaCl water propellant has a slightly stronger effect on pulsed plasma thruster than the KCl. The plasma emission spectrographic analysis is in consistent with the experiment of measuring the discharging current: The elements Na and K can intensify the plasma emission spectrographic signal.

  19. Oblique propagation of ion acoustic shock waves in weakly and highly relativistic plasmas with nonthermal electrons and positrons

    Science.gov (United States)

    Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.

    2016-09-01

    This work investigates the oblique nonlinear propagation of ion acoustic (IA) shock waves for both weakly and highly relativistic plasmas composed of nonthermal electrons and positrons with relativistic thermal ions. The KdVB-like equation, involving dispersive, weakly transverse dispersive, nonlinearity and dissipative coefficients, is derived employing the well known reductive perturbation method. The integration of this equation is carried out by the {tanh} method taking the stable shock formation condition into account. The effects of nonthermal electrons and positrons, nonthermal electrons with isothermal positrons, isothermal electrons with nonthermal positrons, and isothermal electrons and positrons on oblique propagation of IA shock waves in weakly relativistic regime are described. Furthermore, the effects of plasma parameters on oblique propagation of IA shock waves in highly relativistic regime are discussed and compared with weakly relativistic case. It is seen that the plasma parameters within certain limits significantly modify the structures of the IA shock waves in both cases. The results may be useful for better understanding of the interactions of charged particles with extra-galactic jets as well as astrophysical compact objects.

  20. Electron impact ionization of plasma important SiCl{sub X} (X = 1-4) molecules: theoretical cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Kothari, Harshit N; Pandya, Siddharth H; Joshipura, K N, E-mail: harshitkothari_85@yahoo.co.in [Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120 (India)

    2011-06-28

    Electron impact ionization of SiCl{sub X} (X = 1-4) molecules is less studied but an important process for understanding and modelling the interactions of silicon-chlorine plasmas with different materials. The SiCl{sub 3} radical is a major chloro-silicon species involved in the CVD (chemical vapour deposition) of silicon films from SiCl{sub 4}/Ar microwave plasmas. We report in this paper the total ionization cross sections for electron collisions on these silicon compounds at incident energies from the ionization threshold to 2000 eV. We employ the 'complex scattering potential-ionization contribution' method and identify the relative importance of various channels, with ionization included in the cumulative inelastic scattering. New results are also presented on these exotic molecular targets. This work is significant in view of the paucity of theoretical studies on the radicals SiCl{sub X} (X = 1-3) and on SiCl{sub 4}.

  1. Quasi-steady carbon plasma source for neutral beam injector.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2014-02-01

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration.

  2. Prediction of the Conductance of Strong Electrolytes and the Calculation of the Ionization Constant of Weak Electrolytes in a Dilute Solution by a New Equation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to predict the conductance for dilute 1-1 valent electrolyte solutions,a new conductance equation was proposed based on the Onsager and Onsagar-Fuoss-Chen conductance equation.It has only one parameter A,which can be obtained directly from the data of ionic limiting molar conductivity Λ∞m,and its expression is very simple.The new equation has been verified by the experimental molar conductivities of some single strong electrolyte and mixed electrolyte solutions at 298.15 K reported in literatures.The results are in good agreement with the experimental data.Meanwhile the ionization constants of some weak electrolyte solutions were calculated by a modified equation of this new equation,and it was also found that the calculation results are in good agreement with the data in the literature.

  3. Search for Low-Mass Weakly Interacting Massive Particles Using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brandt, D.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Cerdeno, D. G.; Chagani, H.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hertel, S. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Kiveni, M.; Koch, K.; Loer, B.; Lopez Asamar, E.; Mahapatra, R.; Mandic, V.; Martinez, C.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Moore, D. C.; Nadeau, P.; Nelson, R. H.; Page, K.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Villano, A. N.; Welliver, B.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2014-01-01

    SuperCDMS is an experiment designed to directly detect Weakly Interacting Massive Particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this paper, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage- assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for 10 live days at the Soudan Underground Laboratory. A low energy threshold of 170 eVee (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV/c2.

  4. A Search for Low-Mass Weakly Interacting Massive Particles Using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brandt, D.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Cerdeno, D. G.; Chagani, H.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; Di Stefano, P. C.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Harris, H. R.; Hertel, S. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Kiveni, M.; Koch, K.; Loer, B.; Lopez Asamar, E.; Mahapatra, R.; Mandic, V.; Martinez, C.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Moore, D. C.; Nadeau, P.; Nelson, R. H.; Page, K.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redi, P.; Reisetter, A.; Ricci, Y.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, Richard; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Villano, A. N.; Welliver, B.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2014-01-27

    SuperCDMS is an experiment designed to directly detect weakly interacting massive particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this Letter, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage-assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for ten live days at the Soudan Underground Laboratory. A low energy threshold of (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV/c2.

  5. Multi-fluid Approach to High-frequency Waves in Plasmas. II. Small-amplitude Regime in Partially Ionized Media

    Science.gov (United States)

    Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume

    2017-03-01

    The presence of neutral species in a plasma has been shown to greatly affect the properties of magnetohydrodynamic waves. For instance, the interaction between ions and neutrals through momentum transfer collisions causes the damping of Alfvén waves and alters their oscillation frequency and phase speed. When the collision frequencies are larger than the frequency of the waves, single-fluid magnetohydrodynamic approximations can accurately describe the effects of partial ionization, since there is a strong coupling between the various species. However, at higher frequencies, the single-fluid models are not applicable and more complex approaches are required. Here, we use a five-fluid model with three ionized and two neutral components, which takes into consideration Hall’s current and Ohm’s diffusion in addition to the friction due to collisions between different species. We apply our model to plasmas composed of hydrogen and helium, and allow the ionization degree to be arbitrary. By analyzing the corresponding dispersion relation and numerical simulations, we study the properties of small-amplitude perturbations. We discuss the effect of momentum transfer collisions on the ion-cyclotron resonances and compare the importance of magnetic resistivity, and ion–neutral and ion–ion collisions on the wave damping at various frequency ranges. Applications to partially ionized plasmas of the solar atmosphere are performed.

  6. Simulation of the atomic and ionic densities in the ionization layer of a plasma arc with a binary cathode

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, D; Marin, J A Sillero; Munoz-Serrano, E; Casado, E, E-mail: f92orhed@uco.e [Departamento de Fisica, Universidad de Cordoba, 14071 Cordoba (Spain)

    2009-04-21

    A physical model was developed to study the behaviour of the cathode material evaporated from a thoriated tungsten cathode of an atmospheric-pressure argon plasma arc. The densities of tungsten and thorium atoms and ions in the ionization layer were obtained, and the influence of the different physical processes on the evaporated cathode material was established. It was found that almost all of the neutral atoms evaporated from the cathode are ionized near the beginning of the ionization layer, i.e. near the boundary between the sheath and the ionization layer. Thorium ions are concentrated in a 4 {mu}m region near the beginning of this layer, while tungsten ions are found in a region of 9 {mu}m. The contribution of the electric force to the velocity of ions is the dominant contribution only near the beginning of the ionization layer. At a distance from the interface between the sheath and the ionization layer greater than 3.8 {mu}m in the case of thorium ions, and greater than 5 {mu}m in the case of tungsten ions, the contributions of the density gradient forces and the frictional forces are more important than the electric force contribution.

  7. The Nonlinear Ohm's Law: Plasma Heating by Strong Electric Fields and its Effects on the Ionization Balance in Protoplanetary Disks

    CERN Document Server

    Okuzumi, Satoshi

    2014-01-01

    The MHD of protoplanetary disks crucially depends on the ionization state of the disks. Recent simulations suggest that MHD turbulence in the disks can generate a strong electric field in the local rest frame. Such a strong field can heat up plasmas and thereby change the ionization balance. To study this effect, we construct a charge reaction model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as plasma accretion by dust grains. The resulting Ohm's law is nonlinear in the electric field strength. We find that the gas-phase electron abundance decreases with increasing the electric field strength when plasma accretion onto grains dominates over gas-phase recombination, because electron heating accelerates electron--grain collisions. This leads to an increase in the magnetic resistivity, and possibly to a self-regulation of the MHD turbulence. In some cases, even the electric current decreases with increasing the field strength in a certain field range. The N...

  8. RF Pre-Ionization to Create Faster, Hotter MHD-Driven Jets and Studies of Plasma Expansion Into a Vacuum

    Science.gov (United States)

    Chaplin, Vernon; Bellan, Paul

    2013-10-01

    We are studying MHD-driven jets relevant to astrophysical jets and fusion plasmas. Previous experiments at Caltech have focused on plasmas created by breaking down neutral gas using high voltage. The Paschen breakdown criterion governing this process sets an undesirable lower limit for the jet density. To overcome this constraint, we have developed a pre-ionization system powered by a pulsed, battery-powered, 3 kW 13.56 MHz RF amplifier. Pre-ionization of plasma in a tube behind the jet experiment's center electrode is expected to enable the formation of lower density, hotter, faster jets. Thus far, argon jets have been created with v >30 km/s, twice as fast as was previously achievable. The expansion of the RF plasma into the chamber prior to the discharge of the main capacitor bank involves surprisingly complex dynamics. There are two phases: initially plasma expansion along the background magnetic field is inhibited and the primary source of emission away from the RF antenna appears to be neutral atoms excited by fast electrons or photons from the RF source. At a later time, either before or after RF turn-off depending on the magnetic field configuration, a relatively high density (ne >1018 m-3) , cold (Te < 0.5 eV) cloud of plasma emerges from the source tube.

  9. Plasma membrane H+ and K+ transporters are involved in the weak-acid preservative response of disparate food spoilage yeasts.

    Science.gov (United States)

    Macpherson, Neil; Shabala, Lana; Rooney, Henrietta; Jarman, Marcus G; Davies, Julia M

    2005-06-01

    The food spoilage yeasts Zygosaccharomyces bailii and Saccharomyces cerevisiae have been proposed to resist weak-acid preservative stress by different means; Z. bailii by limiting influx of preservative combined with its catabolism, S. cerevisiae by active extrusion of the preservative weak-acid anion and H(+). Measurement of H(+) extrusion by exponential-phase Z. bailii cells suggest that, in common with S. cerevisiae, this yeast uses a plasma membrane H(+)-ATPase to expel H(+) when challenged by weak-acid preservative (benzoic acid). Simultaneous measurement of Z. bailii net H(+) and K(+) fluxes showed that net K(+) influx accompanies net H(+) efflux during acute benzoic acid stress. Such ionic coupling is known for S. cerevisiae in short-term preservative stress. Both yeasts significantly accumulated K(+) on long-term exposure to benzoic acid. Analysis of S. cerevisiae K(+) transporter mutants revealed that loss of the high affinity K(+) uptake system Trk1 confers sensitivity to growth in preservative. The results suggest that cation accumulation is an important factor in adaptation to weak-acid preservatives by spoilage yeasts and that Z. bailii and S. cerevisiae share hitherto unsuspected adaptive responses at the level of plasma membrane ion transport.

  10. Dynamics of coronal rain and descending plasma blobs in solar prominences. I. Fully ionized case

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, R.; Soler, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Zaqarashvili, T. V.; Khodachenko, M. L., E-mail: ramon.oliver@uib.es [Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz (Austria)

    2014-03-20

    Observations of active regions and limb prominences often show cold, dense blobs descending with an acceleration smaller than that of free fall. The dynamics of these condensations falling in the solar corona is investigated in this paper using a simple fully ionized plasma model. We find that the presence of a heavy condensation gives rise to a dynamical rearrangement of the coronal pressure that results in the formation of a large pressure gradient that opposes gravity. Eventually this pressure gradient becomes so large that the blob acceleration vanishes or even points upward. Then, the blob descent is characterized by an initial acceleration phase followed by an essentially constant velocity phase. These two stages can be identified in published time-distance diagrams of coronal rain events. Both the duration of the first stage and the velocity attained by the blob increase for larger values of the ratio of blob to coronal density, for larger blob mass, and for smaller coronal temperature. Dense blobs are characterized by a detectable density growth (up to 60% in our calculations) and by a steepening of the density in their lower part, that could lead to the formation of a shock. They also emit sound waves that could be detected as small intensity changes with periods of the order of 100 s and lasting between a few and about 10 periods. Finally, the curvature of falling paths with large radii is only relevant when a very dense blob falls along inclined magnetic field lines.

  11. Cut-off wavenumber of Alfven waves in partially ionized plasmas of the solar atmosphere

    CERN Document Server

    Zaqarashvili, T V; Ballester, J L; Khodachenko, M L

    2012-01-01

    Alfven wave dynamics in partially ionized plasmas of the solar atmosphere shows that there is indeed a cut-off wavenumber, i.e. the Alfven waves with wavenumbers higher than the cut-off value are evanescent. The cut-off wavenumber appears in single-fluid magnetohydrodynamic (MHD) approximation but it is absent in a multi-fluid approach. Up to now, an explanation for the existence of the cut-off wavenumber is still missing. The aim of this paper is to point out the reason for the appearance of a cut-off wavenumber in single-fluid MHD. Beginning with three-fluid equations (with electrons, protons and neutral hydrogen atoms), we performed consecutive approximations until we obtained the usual single-fluid description is obtained. We solved the dispersion relation of linear Alfven waves at each step and sought the approximation responsible of the cut-off wavenumber appearance. We have found that neglecting inertial terms significantly reduces the real part of the Alfven frequency although it never becomes zero. T...

  12. Highly Ionized Plasma in the Halo of a Luminous Spiral Galaxy Near z=0.225

    CERN Document Server

    Narayanan, Anand; Wakker, Bart P

    2010-01-01

    We present analyses of the physical conditions in the z=0.22496 and z=0.22638 multi-phase O VI absorption systems detected in the ultraviolet HST/STIS and FUSE spectra of the quasar H1821+643. Both absorbers are likely associated with the extended halo of a ~2L* Sbc-Sc galaxy situated at a projected distance of ~116 kpc from the sight line. The z=0.22496 absorber is detected in C II, C III, C IV, O III, O VI, Si II, Si III and H I at > 3 sigma significance. The low and intermediate ions in this absorber are consistent with an origin in photoionized gas with [Si/H] and [C/H] of -0.6 dex. In contrast, the broader O VI absorption is likely produced in collisionally ionized plasma under nonequilibrium conditions. The z=0.22638 system has broad-Lya (BLA) and C III absorption offset by v = -53 km/s from O VI. The H I and C III line widths for the BLA imply T = 1.1 x 10^5 K. For non-equilibrium cooling we obtain [C/H] of -1.5 dex and a total hydrogen column of N(H) = 3.2 x 10^{18} cm^-2 in the BLA. The O VI, offset ...

  13. Psychotropics and weak opioid analgesics in plasma samples of older hip fracture patients - detection frequencies and consistency with drug records.

    Science.gov (United States)

    Waade, Ragnhild Birkeland; Molden, Espen; Martinsen, Mette Irene; Hermann, Monica; Ranhoff, Anette Hylen

    2017-07-01

    To determine use of psychotropic drugs and weak opioids in hip fracture patients by analysing plasma samples at admission, and compare detected drug frequencies with prescription registry data and drug records. Plasma from 250 hip fracture patients aged ≥65 years sampled at hospital admission were analysed by ultra-performance liquid chromatography-tandem mass spectrometry methods for detection of psychotropic drugs and weak opioid analgesics (alcohol also determined). Odds ratios for drugs detected in plasma of hip fracture patients vs. prescription frequencies of the same drugs in an age-, time- and region-matched reference population were calculated. Moreover, recorded and measured drugs were compared. Psychotropic drugs and/or weak opioid analgesics were detected in 158 (63%) of the patients (median age 84 years; 76% females), while alcohol was found in 19 patients (7.6%). The occurrence of diazepam (odds ratio 1.6; 95% confidence interval 1.1-2.4), nitrazepam (2.3; 1.3-4.1), selective serotonin reuptake inhibitors (1.9; 1.3-2.9) and mirtazapine (2.3; 1.2-4.3) was significantly higher in plasma samples of hip fracture patients than in prescription data from the reference population. Poor consistency between recorded and measured drugs was disclosed for z-hypnotics and benzodiazepines; e.g. diazepam was detected in 29 (11.6%), but only recorded in six (2.4%) of the patients. Plasma analysis shows that use of antidepressants and benzodiazepines in hip fracture patients is significantly more frequent than respective prescription frequencies in the general elderly population. Moreover, consistency between recorded and actual use of psychotropic fall-risk drugs is poor at hospital admission of hip fracture patients. © 2017 The British Pharmacological Society.

  14. Collisional Ionization Equilibrium for Optically Thin Plasmas. I. Updated Recombination Rate Coefficients for Bare though Sodium-like Ions

    CERN Document Server

    Bryans, P; Gorczyca, T W; Laming, J M; Mitthumsiri, W; Savin, D W

    2006-01-01

    Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and are often highly suspect. This translates directly into the reliability of the collisional ionization equilibrium (CIE) calculations. We make use of state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He up to and including Zn. We also make use of state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H through to Zn. Here we present improved CIE calculations for temperatures from $10^4$ to $10^9$ K using our data and the recommended electron impact ionization data of \\citet{Mazz98a} for elements up to and including Ni and Mazzotta (private communication) for Cu and Zn. DR and RR ...

  15. Plasma physics an introduction

    CERN Document Server

    Fitzpatrick, Richard

    2014-01-01

    Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This book looks at non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. Intended for the student market, the text provides a concise and cohesive introduction to plasma physics theory, and offers a solid foundation for students wishing to take higher level courses in plasma physics.

  16. Effects of ion mobility and positron fraction on solitary waves in weak relativistic electron-positron-ion plasma

    CERN Document Server

    Lu, Ding; Xie, Bai-Song

    2013-01-01

    Effects of ion mobility and positron fraction on solitary waves of envelop of laser field and potential of electrostatic field in weak relativistic electron-positron-ion plasma are investigated. The parameter region for the existence of solitary waves is obtained analytically, and the reasonable choice of parameters is clarified. Both cases of mobile and immobile ions are considered. It is found that the amplitudes of solitary waves in the former case are larger compared to the latter case. For small plasma density, the localized solitary wave solutions in terms of approximate perturbation analytical method are consistent well with that by exact numerical calculations. However as the plasma density increases the analytical method loses its validity more and more. The influence of the positron fraction on the amplitudes of solitary waves shows a monotonous increasing relation. Implication of our results to the particle acceleration is also discussed briefly.

  17. Effects of ion mobility and positron fraction on solitary waves in weak relativistic electron-positron-ion plasma

    Science.gov (United States)

    Lu, Ding; Li, Zi-Liang; Xie, Bai-Song

    2013-09-01

    The effects of ion mobility and positron fraction on the solitary waves of the laser field envelope and the potential of the electrostatic field in weak relativistic electron-positron-ion plasma are investigated. The parameter region for the existence of solitary waves is obtained analytically, and a reasonable choice of parameters is clarified. Both cases of mobile and immobile ions are considered. It is found that the amplitudes of solitary waves in the former case are larger compared to the latter case. For small plasma density, the localized solitary wave solutions in terms of the approximate perturbation analytical method are very consistent with those by exact numerical calculations. However, as the plasma density increases the analytical method loses its validity more and more. The influence of the positron fraction on the amplitudes of solitary waves shows a monotonous increasing relation. The implications of our results to particle acceleration are also discussed briefly.

  18. Quantitation of drugs via molecularly imprinted polymer solid phase extraction and electrospray ionization mass spectrometry: benzodiazepines in human plasma

    OpenAIRE

    2011-01-01

    The association of solid phase extraction with molecularly imprinted polymers (MIP) and electrospray ionization mass spectrometry (ESI-MS) is applied to the direct extraction and quantitation of benzodiazepines in human plasma. The target analytes are sequestered by MIP and directly analyzed by ESI-MS. Due to the MIP highly selective extraction, ionic suppression during ESI is minimized; hence no separation is necessary prior to ESI-MS, which greatly increases analytical speed. Benzodiazepine...

  19. Multi-fluid approach to high-frequency waves in plasmas: I. Small-amplitude regime in fully ionized medium

    CERN Document Server

    Martínez-Gómez, David; Terradas, Jaume

    2016-01-01

    Ideal MHD provides an accurate description of low-frequency Alfv\\'en waves in fully ionized plasmas. However, higher frequency waves in many plasmas of the solar atmosphere cannot be correctly described by ideal MHD and a more accurate model is required. Here, we study the properties of small-amplitude incompressible perturbations in both the low and the high frequency ranges in plasmas composed of several ionized species. We use a multi-fluid approach and take into account the effects of collisions between ions and the inclusion of Hall's term in the induction equation. Through the analysis of the corresponding dispersion relations and numerical simulations we check that at high frequencies ions of different species are not as strongly coupled as in the low frequency limit. Hence, they cannot be treated as a single fluid. In addition, elastic collisions between the distinct ionized species are not negligible for high frequency waves since an appreciable damping is obtained. Furthermore, Coulomb collisions be...

  20. Benzylammonium Thermometer Ions: Internal Energies of Ions Formed by Low Temperature Plasma and Atmospheric Pressure Chemical Ionization.

    Science.gov (United States)

    Stephens, Edward R; Dumlao, Morphy; Xiao, Dan; Zhang, Daming; Donald, William A

    2015-12-01

    The extent of internal energy deposition upon ion formation by low temperature plasma and atmospheric pressure chemical ionization was investigated using novel benzylammonium thermometer ions. C-N heterolytic bond dissociation enthalpies of nine 4-substituted benzylammoniums were calculated using CAM-B3LYP/6-311++G(d,p), which was significantly more accurate than B3LYP/6-311++G(d,p), MP2/6-311++G(d,p), and CBS-QB3 for calculating the enthalpies of 20 heterolytic dissociation reactions that were used to benchmark theory. All 4-substituted benzylammonium thermometer ions fragmented by a single pathway with comparable dissociation entropies, except 4-nitrobenzylammonium. Overall, the extent of energy deposition into ions formed by low temperature plasma was significantly lower than those formed by atmospheric pressure chemical ionization under these conditions. Because benzylamines are volatile, this new suite of thermometer ions should be useful for investigating the extent of internal energy deposition during ion formation for a wide range of ionization methods, including plasma, spray and laser desorption-based techniques. Graphical Abstract ᅟ.

  1. Emission of strong Terahertz pulses from laser wakefields in weakly coupled plasma

    Science.gov (United States)

    Singh, Divya; Malik, Hitendra K.

    2016-09-01

    The present paper discusses the laser plasma interaction for the wakefield excitation and the role of external magnetic field for the emission of Terahertz radiation in a collisional plasma. Flat top lasers are shown to be more appropriate than the conventional Gaussian lasers for the effective excitation of wakefields and hence, the generation of strong Terahertz radiation through the transverse component of wakefield.

  2. A nonlinear theory of the parallel firehose and gyrothermal instabilities in a weakly collisional plasma

    CERN Document Server

    Rosin, M S; Rincon, F; Cowley, S C

    2010-01-01

    Plasmas have a natural tendency to develop pressure anisotropies with respect to the local direction of the magnetic field. These anisotropies trigger plasma instabilities at scales just above the ion Larmor radius with growth rates of a fraction of the ion cyclotron frequency - much faster than either the global dynamics or local turbulence. The instabilities can dramatically modify the macroscopic dynamics of the plasma. Nonlinear evolution of these instabilities is expected to drive pressure anisotropies towards marginal stability values, controlled by the plasma beta. This nonlinear evolution is worked out in an ab initio kinetic calculation for the simplest analytically tractable example - the parallel firehose instability in a high-beta plasma. A closed nonlinear equation for the firehose turbulence is derived and solved. In the nonlinear regime, the instability leads to secular (~t) growth of magnetic fluctuations. The fluctuations develop a k^{-3} spectrum, extending from scales somewhat larger than r...

  3. Direct measurement of the plasma loss width in an optimized, high ionization fraction, magnetic multi-dipole ring cusp

    Science.gov (United States)

    Cooper, C. M.; Weisberg, D. B.; Khalzov, I.; Milhone, J.; Flanagan, K.; Peterson, E.; Wahl, C.; Forest, C. B.

    2016-10-01

    The loss width of plasma in the WiPAL multi-dipole magnetic ring cusp [Cooper et al., Phys. Plasmas 21, 13505 (2014); Forest et al., J. Plasma Phys. 81, 345810501 (2015)] has been directly measured using a novel array of probes embedded in the insulating plasma limiters. The large plasma volume ( ˜10 m3), small loss area associated with strong rare earth permanent magnets ( Bo˜2.23 kG at face), and large heating power ( ≤200 kW) produces a broad range of electron temperatures ( 2 magnetic fields, differs from previous devices: the cusp loss width is much larger than the Debye length and electron gyroradius and comparable to the collision length. Plasma parameters measured at the surface of ceramic limiter tiles covering the magnets and along radial chords in the cusp magnetic field indicate that electron density and temperature are nearly constant on magnetic field lines and that the mirror forces play little role in confining the plasma other than to constrict the loss area. Particle balance modeling is used to determine the cross field diffusion coefficient base on the measured losses to the limiters. The experimentally determined cross field diffusion coefficient (which determines the cusp loss width) is consistent with ambipolar diffusion across five orders of magnitude. The ambipolar diffusion across a given field line is set primarily by the electron-neutral collisions in the region where the magnetic field is the weakest, even though these plasmas can have ionization fractions near 1.

  4. Matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis of degradation products after treatment of methylene blue aqueous solution with three-dimensionally integrated microsolution plasma

    Science.gov (United States)

    Shirafuji, Tatsuru; Nomura, Ayano; Hayashi, Yui; Tanaka, Kenji; Goto, Motonobu

    2016-01-01

    Methylene blue can be degraded in three-dimensionally integrated microsolution plasma. The degradation products have been analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry to understand the degradation mechanisms. The results of MALDI TOF mass spectrometry have shown that sulfoxide is formed at the first stage of the oxidation. Then, partial oxidation proceeds on the methyl groups left on the sulfoxide. The sulfoxide is subsequently separated to two benzene derivatives. Finally, weak functional groups are removed from the benzene derivatives.

  5. Direct quantification of chemical warfare agents and related compounds at low ppt levels: comparing active capillary dielectric barrier discharge plasma ionization and secondary electrospray ionization mass spectrometry.

    Science.gov (United States)

    Wolf, Jan-Christoph; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2015-01-06

    A novel active capillary dielectric barrier discharge plasma ionization (DBDI) technique for mass spectrometry is applied to the direct detection of 13 chemical warfare related compounds, including sarin, and compared to secondary electrospray ionization (SESI) in terms of selectivity and sensitivity. The investigated compounds include an intact chemical warfare agent and structurally related molecules, hydrolysis products and/or precursors of highly toxic nerve agents (G-series, V-series, and "new" nerve agents), and blistering and incapacitating warfare agents. Well-defined analyte gas phase concentrations were generated by a pressure-assisted nanospray with consecutive thermal evaporation and dilution. Identification was achieved by selected reaction monitoring (SRM). The most abundant fragment ion intensity of each compound was used for quantification. For DBDI and SESI, absolute gas phase detection limits in the low ppt range (in MS/MS mode) were achieved for all compounds investigated. Although the sensitivity of both methods was comparable, the active capillary DBDI sensitivity was found to be dependent on the applied AC voltage, thus enabling direct tuning of the sensitivity and the in-source fragmentation, which may become a key feature in terms of field applicability. Our findings underline the applicability of DBDI and SESI for the direct, sensitive detection and quantification of several CWA types and their degradation products. Furthermore, they suggest the use of DBDI in combination with hand-held instruments for CWAs on-site monitoring.

  6. On nonlinear evolution of low-frequency Alfvén waves in weakly-expanding solar wind plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nariyuki, Y. [Faculty of Human Development, University of Toyama, 3190 Toyama City, Toyama 930-8555 (Japan)

    2015-02-15

    A multi-dimensional nonlinear evolution equation for Alfvén waves in weakly-expanding solar wind plasmas is derived by using the reductive perturbation method. The expansion of solar wind plasma parcels is modeled by an expanding box model, which includes the accelerating expansion. It is shown that the resultant equation agrees with the Wentzel-Kramers-Brillouin prediction of the low-frequency Alfvén waves in the linear limit. In the cold and one-dimensional limit, a modified derivative nonlinear Schrodinger equation is obtained. Direct numerical simulations are carried out to discuss the effect of the expansion on the modulational instability of monochromatic Alfvén waves and the propagation of Alfvén solitons. By using the instantaneous frequency, it is quantitatively shown that as far as the expansion rate is much smaller than wave frequencies, effects of the expansion are almost adiabatic. It is also confirmed that while shapes of Alfvén solitons temporally change due to the expansion, some of them can stably propagate after their collision in weakly-expanding plasmas.

  7. Refined Study of ECR Wave Propagation and Absorption in the Weakly Relativistic Plasma

    Institute of Scientific and Technical Information of China (English)

    SHIBingren; LONGYongxin

    2001-01-01

    The ECR wave heating is now a routine method for plasma heating and profile control in fusion devices and also in plasma applications. Theoretical study of ECR wave propagation and absorption began very early in 1950's. Basic theoretical work had accomplished in 1970~1980. For toroidal devices like the tokamak, the fundamental O-mode and X-mode with nearly perpendicular propagation were used very often. For pure O-mode and X-mode with kx=O,

  8. Nitrite-induced methemoglobinaemia affects blood ionized and total magnesium level by hydrolysis of plasma adenosine triphosphate in rat.

    Science.gov (United States)

    Rahman, Md Mizanur; Kim, Shang-Jin; Kim, Gi-Beum; Hong, Chul-Un; Lee, Young-Up; Kim, Sung-Zoo; Kim, Jin-Shang; Kang, Hyung-Sub

    2009-11-01

    The objective of this study was to evaluate the effects of sodium nitrite (NaNO(2))-induced methemoglobinaemia on plasma ATP (adenosine triphosphate) and corresponding changes of blood-ionized magnesium (iMg(2+)) as well as total magnesium (tMg(2+)) in a time-dependent manner. This study was performed on male Sprague-Dawley rats to which NaNO(2) was injected (10 mg/kg i.p.) to induce methemoglobinaemia. Methemoglobin (MetHb) in blood was measured before (0 min.) and after 10, 30, 60 and 120 min. of NaNO(2) injection. At respective time points, the tMg(2+), blood ions and gases were measured by atomic absorption spectrometry and ion selective electrode, respectively. Haematological parameters were checked by automatic blood cell count, and blood films were observed under light microscope. Plasma ATP was measured by bioluminescence assay using a luminometer, and plasma proteins were measured by an automatic analyser. Blood cell count (RBC, WBC and platelet), haematocrit, and haemoglobin were found to be decreased with the advancement of MetHb concentration. With the gradual increase of MetHb concentration, the plasma ATP decreased and blood iMg(2+) and plasma tMg(2+) increased significantly as time passed by in comparison with the pre-drug values. A significant decrease of the ratio of ionized calcium to iMg(2+), Na(+) and increase of K(+) was observed. In conclusion, NaNO(2)-induced methemoglobinaemia is a cause of hydrolysis of plasma ATP which is responsible for the increase of blood iMg(2+) and plasma tMg(2+) in rats.

  9. Electron ionization of open/closed chain isocarbonic molecules relevant in plasma processing: Theoretical cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Umang R., E-mail: umangpatel193@yahoo.ca [Gandhinagar Institute of Technology, Moti Bhoyan, Gandhinagar-382721, Gujarat (India); Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat (India); Joshipura, K. N.; Pandya, Siddharth H. [Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat (India); Kothari, Harshit N. [Universal College of Engineering and Technology, Moti Bhoyan, Gandhinagar-382721, Gujarat (India)

    2014-01-28

    In this paper, we report theoretical electron impact ionization cross sections from threshold to 2000 eV for isocarbonic open chain molecules C{sub 4}H{sub 6}, C{sub 4}H{sub 8}, C{sub 4}F{sub 6} including their isomers, and closed chain molecules c-C{sub 4}H{sub 8} and c-C{sub 4}F{sub 8}. Theoretical formalism employed presently, viz., Complex Scattering Potential-ionization contribution method has been used successfully for a variety of polyatomic molecules. The present ionization calculations are very important since results available for the studied targets are either scarce or none. Our work affords comparison of C{sub 4} containing hydrocarbon versus fluorocarbon molecules. Comparisons of the present ionization cross sections are made wherever possible, and new ionization data are also presented.

  10. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    Science.gov (United States)

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  11. Kadomtsev-Petviashvili solitons propagation in a plasma system with superthermal and weakly relativistic effects

    Energy Technology Data Exchange (ETDEWEB)

    Hafeez-Ur-Rehman; Mahmood, S. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Department of Physics and Applied Mathematics, PIEAS, Nilore, 44000 Islamabad (Pakistan); Shah, Asif; Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2011-12-15

    Two dimensional (2D) solitons are studied in a plasma system comprising of relativistically streaming ions, kappa distributed electrons, and positrons. Kadomtsev-Petviashvili (KP) equation is derived through the reductive perturbation technique. Analytical solution of the KP equation has been studied numerically and graphically. It is noticed that kappa parameters of electrons and positrons as well as the ions relativistic streaming factor have an emphatic influence on the structural as well as propagation characteristics of two dimensional solitons in the considered plasma system. Our results may be helpful in the understanding of soliton propagation in astrophysical and laboratory plasmas, specifically the interaction of pulsar relativistic wind with supernova ejecta and the transfer of energy to plasma by intense electric field of laser beams producing highly energetic superthermal and relativistic particles [L. Arons, Astrophys. Space Sci. Lib. 357, 373 (2009); P. Blasi and E. Amato, Astrophys. Space Sci. Proc. 2011, 623; and A. Shah and R. Saeed, Plasma Phys. Controlled Fusion 53, 095006 (2011)].

  12. Relative Distribution of Au48+ ~ Au52+ in Au Plasma by Ionization Dynamics

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhi-Yan; ZHU Zheng-He; JIANG Gang

    2003-01-01

    The present work proposes a theoretical method called ionization dynamics to derive the ionic charge state distribution. Using relativistic quantum mechanics to calculate the energy level lifetime and average ionic lifetime of each ion, the first-order ionization rate constant can be obtained. Based on these data, from the solution of differential equations for consecutive-irreversible ionization reactions, one will be able to derive the ionic charge state distribution.The calculated average positive charge 49.24 of Au48+ ~ Au52+ and their relative distribution are in good agreement with the results of Lawrence Livermore National Laboratory.

  13. A Desorbed Gas Molecular Ionization Mechanism for Arcing Onset in Solar Arrays Immersed in a Low-Density Plasma

    Science.gov (United States)

    Galofaro, J.; Vayner, B.; Ferguson, D.; Degroot, W.

    2002-01-01

    Previous experimental studies have hypothesized that the onset of Solar Array Arc (SAA) initiation in low-density space plasmas is caused by a desorbed gas molecular ionization mechanism. Indeed past investigations performed at the NASA Glenn Plasma Interaction Facility tend to not only support the desorbed gas molecular ionization mechanism, but have gone as far as identifying the crucial molecular species that must be present for molecular ion dominated process to occur. When electrical breakdown occurs at a triple junction site on a solar array panel, a quasi-neutral plasma cloud is ejected. Assuming the main component of the expelled plasma cloud by weight is due to water vapor, the fastest process available is due to HO molecules and OH(+) ions, or more succinctly, dissociative molecular-ion dominated recombination processes: H2O(+) + e(-) yields H* + OH*. Recently published spectroscopic observations of solar array arc spectra in ground tests have revealed the well-known molecular OH band (302 to 309nm), as well as the molecular SiH band (387nm peak), and the molecular CH band (432nm peak). Note that the OH band is observed in emission arcs where water vapor is present. Strong atomic lines were also observed for H(sub beta) at 486nm and H(sub alpha) at 656.3nm in prior ground testing. Independent supporting evidence of desorbed gas molecular ionization mechanisms also come from measurements of arc current pulse widths at different capacitances. We will revisit an earlier first order approximation demonstrating the dependence of arc current pulse widths on the square root of the capacitance. The simple arc current pulse width model will be then be used to estimate the temperature of the arc plasma (currently believed to be somewhere in the range of 3 to 5 eV). The current paper then seeks to extend the outlined work by including numerous vacuum chamber measurements obtained with a quadrupole mass spectrometer. A small solar array was mounted inside the vacuum

  14. Head-on collision of two dust ion acoustic solitary waves in a weakly relativistic multicomponent superthermal plasma

    Science.gov (United States)

    Saini, N. S.; Singh, Kuldeep

    2016-10-01

    A head-on collision between two dust ion acoustic solitary waves (DIASWs) travelling in the opposite direction in a weakly relativistic plasma composed of four distinct particle populations, namely, weakly relativistic ion fluid, superthermal electrons as well as positrons, and immobile dust, is investigated. By employing extended Poincaré-Lighthill-Kuo method, two Korteweg-de Vries (KdV) equations are derived. The analytical phase shift after a head-on collision of two dust ion acoustic (DIA) solitary waves is also obtained. The combined effects of relativistic factor (β), electron to positron temperature ratio (α), ion to electron temperature ratio (σ), positron to electron density ratio (P), dust density ratio (d), and superthermality of electrons as well as positrons (via κ) on the phase shifts are numerically studied. All these physical parameters have also changed the potential amplitude and the width of colliding solitary waves. It is found that the presence of superthermal electrons as well as positrons and dust grains has emphatic influence on the phase shifts and potential pulse profiles of compressive DIA solitons. Our results are general and may be helpful in understanding a head-on collision between two DIASWs in astrophysical and laboratory plasmas, especially the interaction of pulsar relativistic winds with supernova ejecta that produces the superthermal particles and relativistic ions.

  15. On the perpendicular propagating modes in the ultra-relativistic weakly magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Gohar; Iqbal, Z. [Department of Physics, GC University Lahore, Lahore 54000 (Pakistan); Murtaza, G. [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2015-03-15

    The dispersion relations for the weakly magnetized perpendicular propagating modes (O-mode, X-mode, and upper hybrid mode) based on the ultra-relativistic Fermi-Dirac distribution function with chemical potential are derived using the Vlasov–Maxwell model. The results are presented in terms of Polylog functions without making any approximation. It is found that as the ratio μ/T is increased, the cutoff points shift downward. A comparison is also performed with the previously derived results for ultra-relativistic Maxwellian distribution.

  16. Dynamics of low dimensional model for weakly relativistic Zakharov equations for plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Biswajit [Department of Mathematics, West Bengal State University, Barasat, Kolkata-700126 (India); Pal, Barnali; Poria, Swarup [Department of Applied Mathematics, University of Calcutta, Kolkata-700009 (India); Roychoudhury, Rajkumar [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)

    2013-05-15

    In the present paper, the nonlinear interaction between Langmuir waves and ion acoustic waves described by the one-dimensional Zakharov equations (ZEs) for relativistic plasmas are investigated formulating a low dimensional model. Equilibrium points of the model are found and it is shown that the existence and stability conditions of the equilibrium point depend on the relativistic parameter. Computational investigations are carried out to examine the effects of relativistic parameter and other plasma parameters on the dynamics of the model. Power spectrum analysis using fast fourier transform and also construction of first return map confirm that periodic, quasi-periodic, and chaotic type solution exist for both relativistic as well as in non-relativistic case. Existence of supercritical Hopf bifurcation is noted in the system for two critical plasmon numbers.

  17. Finite-amplitude shear-Alfv\\'en waves do not propagate in weakly magnetized collisionless plasmas

    CERN Document Server

    Squire, J; Schekochihin, A A

    2016-01-01

    It is shown that low-collisionality plasmas cannot support linearly polarized shear-Alfv\\'en fluctuations above a critical amplitude $\\delta B_{\\perp}/B_{0} \\sim \\beta^{\\,-1/2}$, where $\\beta$ is the ratio of thermal to magnetic pressure. Above this cutoff, a developing fluctuation will generate a pressure anisotropy that is sufficient to destabilize itself through the parallel firehose instability. This causes the wave frequency to approach zero, interrupting the fluctuation before any oscillation. The magnetic field lines rapidly relax into a sequence of angular zig-zag structures. Such a restrictive bound on shear-Alfv\\'en-wave amplitudes has far-reaching implications for the physics of magnetized turbulence in the high-$\\beta$ conditions prevalent in many astrophysical plasmas, as well as for the solar wind at $\\sim 1 \\mathrm{AU}$ where $\\beta \\gtrsim 1$.

  18. 弱电离高超声速流场对太赫兹波传播影响%Effects of weakly ionized hypersonic flow on propagation of terahertz wave

    Institute of Scientific and Technical Information of China (English)

    田媛; 韩一平; 牛化恒; 雷园

    2015-01-01

    在再入飞行过程中生成的等离子体鞘套对电磁波传播的影响引起了很多的关注.包覆飞行器的等离子体鞘套通常为一团弱电离的气体.等离子体鞘套的存在会影响飞行器与地面间的通信,甚至带来通讯黑障问题.为了解决这一问题,进行了大量的研究并提出提高电磁波频率可以成为一种解决方式.随着可以生成高强度太赫兹源的设备出现,电磁波与等离子体间相互作用在微波波段的研究局限被打破,高频率的太赫兹波与等离子体间的相互作用也引起了更多关注.通过计算流体力学方法对包覆飞行器的热力学和化学动力学非平衡流体进行数值计算可以得到包覆高超声速飞行器的流场分布,以此可以得到等离子体鞘套的电磁特性.通过数值计算得到四种飞行场景下的等离子体鞘套,并分析了不同传播路径下太赫兹波与等离子体鞘套的相互作用,结果表明:当飞行高度较低,鞘套等离子体密度较大时,太赫兹波具有穿过等离子体鞘套的能力,可以为通讯黑障问题的解决提供理论支持.%The plasma sheath produced in the progress of entry or reentry flight has attracted much attention as it would impact the propagation of electromagnetic wave. This plasma sheath is a group of weakly ionized gas in general and has the ability to influent the communication between aero craft and ground. Sometimes the existence of this plasma sheath even cloud cause the communication blackout which is not desirable. To improve this problem plenty of researches have done, some of the researches mentioned that raising the wave frequency could be one way. The development of intensive terahertz sources broke up the restrain of electromagnetic wave in microwave range, there comes out several researches on the interaction between terahertz wave and plasma. Computational fluid dynamics was used in numerical simulating of a thermodynamics and chemical

  19. Evolution and structure of the plasma of current sheets forming in two-dimensional magnetic fields with a null line at low initial gas ionization and their interpretation

    Science.gov (United States)

    Ostrovskaya, G. V.; Frank, A. G.

    2012-04-01

    An analysis of the experimental data obtained by holographic interferometry in our work [1] makes it possible to explain most of the observed specific features of the structure and evolution of the plasma sheets developing in a two-dimensional magnetic field with a null line in a plasma with a low initial degree of ionization (≈10-4). The following two processes are shown to play a key role here: additional gas ionization in an electric field and the peculiarities of plasma dynamics in a current sheet expanding in time.

  20. A differentially pumped argon plasma in the linear plasma generator Magnum-PSI: gas flow and dynamics of the ionized fraction

    Science.gov (United States)

    van Eck, H. J. N.; Hansen, T. A. R.; Kleyn, A. W.; van der Meiden, H. J.; Schram, D. C.; Zeijlmans van Emmichoven, P. A.

    2011-08-01

    Magnum-PSI is a linear plasma generator designed to reach the plasma-surface interaction (PSI) regime of ITER and nuclear fusion reactors beyond ITER. To reach this regime, the influx of cold neutrals from the source must be significantly lower than the plasma flux reaching the target. This is achieved by a differential pumping scheme, where the vacuum vessel is divided by skimmers into separate chambers which are individually pumped. The non-magnetized expansion of 5 Pa m3 s-1 (3 slm) argon in a low background pressure was studied in the differentially pumped vacuum vessel fitted with non-cooled flat skimmers. The behavior of the neutral component was studied with direct simulation Monte Carlo simulations and Rayleigh scattering measurements. Thomson scattering and double Langmuir probe measurements were performed on the ionized fraction. It was found that the electrons and neutral particles are not completely coupled in the shock front. The neutral fraction shows clear signs of invasion from hotter background gas, causing the average temperature and density to increase before the shock. This is also shown in the ionization ratio, which has been determined in front of and behind the first skimmer. This study helps us to understand the behavior of the gas flow in the machine and validates our modeling.

  1. A differentially pumped argon plasma in the linear plasma generator Magnum-PSI: gas flow and dynamics of the ionized fraction

    Energy Technology Data Exchange (ETDEWEB)

    Van Eck, H J N; Kleyn, A W; Van der Meiden, H J; Schram, D C; Zeijlmans van Emmichoven, P A [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Hansen, T A R, E-mail: h.j.n.vaneck@rijnhuizen.nl [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2011-08-15

    Magnum-PSI is a linear plasma generator designed to reach the plasma-surface interaction (PSI) regime of ITER and nuclear fusion reactors beyond ITER. To reach this regime, the influx of cold neutrals from the source must be significantly lower than the plasma flux reaching the target. This is achieved by a differential pumping scheme, where the vacuum vessel is divided by skimmers into separate chambers which are individually pumped. The non-magnetized expansion of 5 Pa m{sup 3} s{sup -1} (3 slm) argon in a low background pressure was studied in the differentially pumped vacuum vessel fitted with non-cooled flat skimmers. The behavior of the neutral component was studied with direct simulation Monte Carlo simulations and Rayleigh scattering measurements. Thomson scattering and double Langmuir probe measurements were performed on the ionized fraction. It was found that the electrons and neutral particles are not completely coupled in the shock front. The neutral fraction shows clear signs of invasion from hotter background gas, causing the average temperature and density to increase before the shock. This is also shown in the ionization ratio, which has been determined in front of and behind the first skimmer. This study helps us to understand the behavior of the gas flow in the machine and validates our modeling.

  2. Quantum features of a charged particle in ionized plasma controlled by a time-dependent magnetic field

    Directory of Open Access Journals (Sweden)

    Jeong Ryeol eChoi

    2014-08-01

    Full Text Available Quantum characteristics of a charged particle traveling under the influence of an external time-dependent magnetic field in ionized plasma are investigated using the invariant operator method. The Hamiltonian that gives the radial part of the classical equation of motion for the charged particle is dependent on time. The corresponding invariant operator that satisfies Liouville-von Neumann equation is constructed using fundamental relations. The exact radial wave functions are derived by taking advantage of the eigenstates of the invariant operator. Quantum properties of the system is studied using these wave functions. Especially, the time behavior of the radial component of the quantized energy is addressed in detail.

  3. Association between sperm DNA integrity and seminal plasma antioxidant levels in health workers occupationally exposed to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dayanidhi; Salian, Sujith Raj; Kalthur, Guruprasad; Uppangala, Shubhashree; Kumari, Sandhya [Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal 576104 (India); Challapalli, Srinivas [Department of Radiotherapy, Kasturba Medical College, Mangalore (India); Chandraguthi, Shrinidhi Gururajarao [Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal (India); Jain, Navya; Krishnamurthy, Hanumanthappa [National Centre for Biological Sciences, Bangalore (India); Kumar, Pratap [Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal (India); Adiga, Satish Kumar, E-mail: satish.adiga@manipal.edu [Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal 576104 (India)

    2014-07-15

    There is a paucity of data regarding the association between occupational radiation exposure and risk to human fertility. Recently, we provided the first evidence on altered sperm functional characteristics, DNA damage and hypermethylation in radiation health workers. However, there is no report elucidating the association between seminal plasma antioxidants and sperm chromatin integrity in occupationally exposed subjects. Here, we assessed the seminal plasma antioxidants and lipid peroxidation level in 83 men who were occupationally exposed to ionizing radiation and then correlated with the sperm chromatin integrity. Flow cytometry based sperm chromatin integrity assay revealed a significant decline in αt value in the exposed group in comparison to the non-exposed group (P<0.0001). Similarly, both total and reduced glutathione levels and total antioxidant capacity in the seminal plasma were significantly higher in exposed group than the non-exposed group (P<0.01, 0.001 and 0.0001, respectively). However, superoxide dismutase level and malondialdehyde level, which is an indicator of lipid peroxidation in the seminal plasma, did not differ significantly between two groups. The total antioxidant capacity (TAC) and GSH level exhibited a positive correlation with sperm DNA integrity in exposed subjects. To conclude, this study distinctly shows that altered sperm chromatin integrity in radiation health workers is associated with increase in seminal plasma antioxidant level. Further, the increased seminal plasma GSH and TAC could be an adaptive measure to tackle the oxidative stress to protect genetic and functional sperm deformities in radiation health workers. - Highlights: • Seminal plasma antioxidants were measured in men occupationally exposed to radiation. • Sperm chromatin integrity was significantly affected in the exposed group. • Glutathione and total antioxidant capacity was significantly higher in exposed group. • Sperm DNA damage in exposed subjects

  4. Towards a better preclinical model of PTSD: characterizing animals with weak extinction, maladaptive stress responses and low plasma corticosterone.

    Science.gov (United States)

    Reznikov, Roman; Diwan, Mustansir; Nobrega, José N; Hamani, Clement

    2015-02-01

    Most of the available preclinical models of PTSD have focused on isolated behavioural aspects and have not considered individual variations in response to stress. We employed behavioural criteria to identify and characterize a subpopulation of rats that present several features analogous to PTSD-like states after exposure to classical fear conditioning. Outbred Sprague-Dawley rats were segregated into weak- and strong-extinction groups on the basis of behavioural scores during extinction of conditioned fear responses. Animals were subsequently tested for anxiety-like behaviour in the open-field test (OFT), novelty suppressed feeding (NSF) and elevated plus maze (EPM). Baseline plasma corticosterone was measured prior to any behavioural manipulation. In a second experiment, rats underwent OFT, NSF and EPM prior to being subjected to fear conditioning to ascertain whether or not pre-stress levels of anxiety-like behaviours could predict extinction scores. We found that 25% of rats exhibit low extinction rates of conditioned fear, a feature that was associated with increased anxiety-like behaviour across multiple tests in comparison to rats showing strong extinction. In addition, weak-extinction animals showed low levels of corticosterone prior to fear conditioning, a variable that seemed to predict extinction recall scores. In a separate experiment, anxiety measures taken prior to fear conditioning were not predictive of a weak-extinction phenotype, suggesting that weak-extinction animals do not show detectable traits of anxiety in the absence of a stressful experience. These findings suggest that extinction impairment may be used to identify stress-vulnerable rats, thus providing a useful model for elucidating mechanisms and investigating potential treatments for PTSD.

  5. Amplification of femtosecond vacuum ultraviolet laser pulses at 126 nm in an optical-field-induced ionized argon plasma

    Science.gov (United States)

    Kubodera, Shoichi; Kaku, Masanori; Katto, Masahito; Miyazaki, Kenzo

    2012-10-01

    Short-wavelength lasers in the vacuum ultraviolet (VUV) spectral region between 100 and 200 nm have not yet been developed to the same degree as visible and infrared lasers. We have been developing the argon excimer laser at 126 nm by using an optical-field-induced ionized (OFI) argon plasma. We have observed the gain of 0.86 /cm at 126 nm in the OFI Ar plasma, which was produced inside a hollow fiber with a diameter of 250 microns and a length of 5 cm. In this paper, we have used the OFI plasma gain medium as an amplifier of the 126 nm radiation. A femtosecond 126 nm pulse was produced by the seventh-order nonlinear wavelength conversion of a femtosecond Ti:sapphire laser at 882 nm. The femtosecond wavelength-converted coherent VUV beam was then injected inside the OFI plasma that was produced by the same Ti:sapphire laser, resulting in a 2.4-fold increase of the VUV intensity with one-pass amplification. The gain-length product of 0.87 with the one-pass amplification was evaluated, which was consistent with the value we have observed in the previous measurements. The further extension of the OFI plasma by using a hollow fiber would be plausible to increase the gain-length product and the VUV amplified intensity.

  6. Mapping of coma anisotropies to plasma structures of weak comets: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    N. Gortsas

    2009-04-01

    Full Text Available The effects of coma anisotropies on the plasma environment of comets have been studied by means of a 3-D hybrid model which treats electrons as a massless, charge-neutralizing fluid, whereas ion dynamics are covered by a kinetic approach. From Earth-based observations as well as from in-situ spacecraft measurements the shape of the coma of many comets is ascertained to be anisotropic. However, most plasma simulation studies deploy a spherically symmetric activity pattern. In this paper anisotropy is studied by considering three different coma shape models. The first model is derived from the Haser model and is characterised by spherically symmetry. This reference model is then compared with two different neutral gas shape models: the dayside restricted model with no nightside activity and a cone shaped model with opening angle of π/2. In all models the integrated surface activity is kept constant. The simulations have been done for the Rosetta target comet 67P/Churyumov-Gerasimenko for two heliocentric distances, 1.30 AU and 3.25 AU. It is found that shock formation processes are modified as a result of increasing spatial confinement. Characteristic plasma structures of comets such as the bow shock, magnetic barrier region and the ion composition boundary exhibit a shift towards the sun. In addition, the cone shaped model leads to a strong increase of the mass-loaded region which in turn leads to a smooth deceleration of the solar wind flow and an increasing degree of mixture between the solar wind and cometary ion species. This creates an additional transport channel of the magnetic field from the magnetic barrier region away which in turn leads to a broadening of this region. In addition, it leads to an ion composition boundary which is only gradually developed.

  7. MESSENGER observations of the composition of Mercury's ionized exosphere and plasma environment.

    Science.gov (United States)

    Zurbuchen, Thomas H; Raines, Jim M; Gloeckler, George; Krimigis, Stamatios M; Slavin, James A; Koehn, Patrick L; Killen, Rosemary M; Sprague, Ann L; McNutt, Ralph L; Solomon, Sean C

    2008-07-04

    The region around Mercury is filled with ions that originate from interactions of the solar wind with Mercury's space environment and through ionization of its exosphere. The MESSENGER spacecraft's observations of Mercury's ionized exosphere during its first flyby yielded Na+, O+, and K+ abundances, consistent with expectations from observations of neutral species. There are increases in ions at a mass per charge (m/q) = 32 to 35, which we interpret to be S+ and H2S+, with (S+ + H2S+)/(Na+ + Mg+) = 0.67 +/- 0.06, and from water-group ions around m/q = 18, at an abundance of 0.20 +/- 0.03 relative to Na+ plus Mg+. The fluxes of Na+, O+, and heavier ions are largest near the planet, but these Mercury-derived ions fill the magnetosphere. Doubly ionized ions originating from Mercury imply that electrons with energies less than 1 kiloelectron volt are substantially energized in Mercury's magnetosphere.

  8. Damping of MHD turbulence in partially ionized plasma: implications for cosmic ray propagation

    CERN Document Server

    Xu, Siyao; Lazarian, A

    2015-01-01

    We study the damping from neutral-ion collisions of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in partially ionized medium. We start from the linear analysis of MHD waves applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and cutoff boundary of linear MHD waves is investigated. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and solar chromosphere. As a significant astrophysical utility, we introduce damping effects to propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.

  9. Light scattering by a dense ionization plasma wave with a tunable velocity

    Science.gov (United States)

    Zhidkov, Alexei; Fujii, Takashi; Esirkepov, Timur; Koga, James; Nemoto, Koshichi; Bulanov, Sergei

    2009-11-01

    An optically-dense ionization wave (IW) produced by two femtosecond laser pulses focused cylindrically and crossing each other is shown to be an efficient coherent x-ray converter. The resulting velocity of a quasi-plane IW in the vicinity of pulse intersection increases with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing an easy tuning the wavelength of x-rays. We study the conversion of a coherent light to x-rays by means of particle-in-cell simulation and by solution of continuous equation with the correct current. The x-ray spectra of a converted, lower frequency coherent light change from the monochromatic to a high order harmonic-like with the duration of ionizing pulses and the intensity of scattered pulses; the spectrum are not symmetrical at Vc.

  10. Solitary waves in dusty plasmas with weak relativistic effects in electrons and ions

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, B. C., E-mail: bckalita123@gmail.com [Gauhati University, Department of Mathematics (India); Choudhury, M., E-mail: choudhurymamani@gmail.com [Handique Girls’ College, Department of Mathematics (India)

    2016-10-15

    Two distinct classes of dust ion acoustic (DIA) solitary waves based on relativistic ions and electrons, dust charge Z{sub d} and ion-to-dust mass ratio Q’ = m{sub i}/m{sub d} are established in this model of multicomponent plasmas. At the increase of mass ratio Q’ due to increase of relativistic ion mass and accumulation of more negative dust charges into the plasma causing decrease of dust mass, relativistic DIA solitons of negative potentials are abundantly observed. Of course, relativistic compressive DIA solitons are also found to exist simultaneously. Further, the decrease of temperature inherent in the speed of light c causes the nonlinear term to be more active that increases the amplitude of the rarefactive solitons and dampens the growth of compressive solitons for relatively low and high mass ratio Q’, respectively. The impact of higher initial streaming of the massive ions is observed to identify the point of maximum dust density N{sub d} to yield rarefactive relativistic solitons of maximum amplitude.

  11. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    CERN Document Server

    Auluck, S K H

    2014-01-01

    Experimental data compiled over five decades of dense plasma focus research is consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and wind pressure resisting its motion. The resulting sheath velocity, or the numerically proportional drive parameter, is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.

  12. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    Science.gov (United States)

    Auluck, S. K. H.

    2014-09-01

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and "wind pressure" resisting its motion. The resulting sheath velocity, or the numerically proportional "drive parameter," is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.

  13. Plasma density enhancements created by the ionization of the Earth's upper atmosphere by artificial electron beams

    DEFF Research Database (Denmark)

    Neubert, Torsten; Banks, P.M.

    line) and down-going differential energy flux. The equations are solved numerically, using the MSIS atmospheric model and the IRI ionospheric model. The results from the model compare well with recent observations from the CHARGE 2 sounding rocket experiment. Two aspects of the beam-neutral atmosphere...... electrons and thereby limits the ionization of the neutral atmosphere. As an example we find from CHARGE 2 observations and from the model calculations that below about 180 km, secondary electrons generated through the ionization of the neutral atmosphere by 1-10 keV electron beams from sounding rockets...

  14. Recombination processes in a flowing magnetized plasma: Application to ionization energy recovery in the variable specific impulse magnetoplasma rocket (VASIMR)

    Science.gov (United States)

    Chavers, Donald Gregory

    Electric propulsion involves the acceleration of charged particles (ions and electrons) through electric and magnetic body forces. The collection of these charged particles, or plasma, cannot be stored but must be created in-situ. Therefore, energy must be supplied to a neutral gas to create the plasma that is accelerated by the body forces. The energy that is used to create the plasma, i.e., ionization energy, is typically lost, "frozen" in the exhaust of the thruster. When the kinetic energy in the plasma flow is much larger than the energy used to create the plasma, this frozen-flow loss is negligible. Conversely, if the frozen-flow loss is a major fraction of the total plasma energy, its recovery, even in a partial way, may improve the energy efficiency of the thruster while also providing a potential means for thrust augmentation. This dissertation investigates the underlying physics, which could enable the practical recovery of frozen-flow losses by processes such as surface and volume recombination. For surface recombination, the ions approach the surface of the metal and are neutralized by electrons from the metal via the Auger neutralization process. For volume recombination, the ions and electrons recombine, with energy released via line radiation or by transferring energy to a third body such as another electron. Since the total energy of the neutralized ion, an atom, is less than the total energy of the ion and electron pair before recombination, conservation of energy requires the release of energy as the ion and electron recombine. The measurements described in this dissertation were performed on the VX-10 experiment, a plasma device supporting the development of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept and located at the Advanced Space Propulsion Laboratory of the Johnson Space Center. Results suggest that the recombination energy can be recovered. The available energy and power recovered depends on the local plasma

  15. Calibration of the RSS-131 high efficiency ionization chamber for radiation dose monitoring during plasma experiments conducted on plasma focus device

    Science.gov (United States)

    Szewczak, Kamil; Jednoróg, Sławomir

    2014-10-01

    Plasma research poses a radiation hazard. Due to the program of deuterium plasma research using the PF-1000 device, it is an intensive source of neutrons (up to 1011 n · pulse -1) with energy of 2,45 MeV and ionizing electromagnetic radiation with a broad energy spectrum. Both types of radiation are mostly emitted in ultra-short pulses (˜100 ns). The aim of this work was to test and calibrate the RSS-131 radiometer for its application in measurements of ultra-short electromagnetic radiation pulses with broad energy spectrum emitted during PF-1000 discharge. In addition, the results of raw measurements performed in the control room are presented.

  16. Jet-Medium Interactions at NLO in a Weakly-Coupled Quark-Gluon Plasma

    CERN Document Server

    Ghiglieri, Jacopo; Teaney, Derek

    2015-01-01

    We present an extension to next-to-leading order in the strong coupling constant $g$ of the AMY effective kinetic approach to the energy loss of high momentum particles in the quark-gluon plasma. At leading order, the transport of jet-like particles is determined by elastic scattering with the thermal constituents, and by inelastic collinear splittings induced by the medium. We reorganize this description into collinear splittings, high-momentum-transfer scatterings, drag and diffusion, and particle conversions (momentum-preserving identity-changing processes). We show that this reorganized description remains valid to NLO in $g$, and compute the appropriate modifications of the drag, diffusion, particle conversion, and inelastic splitting coefficients. In addition, a new kinematic regime opens at NLO for wider-angle collinear bremsstrahlung. These semi-collinear emissions smoothly interpolate between the leading order high-momentum-transfer scatterings and collinear splittings. To organize the calculation, w...

  17. Thermal Ionization Plasma Generation and Spectrum Test%热电离等离子体生成及光谱测试研究

    Institute of Scientific and Technical Information of China (English)

    钟孟春; 宋鹏; 毛保全

    2016-01-01

    本文针对热电离等离子体如何生成问题进行研究。以火药燃气产生的等离子体为研究对象,通过分析火药燃烧过程的四个阶段和相应的气体生成物,讨论了火药燃气生成热电离等离子体的过程,并对能够生成热电离等离子体的分子数在气体总分子数中所占的百分比进行了计算。最后建立了一套热电离等离子体试验系统,采用光谱测试法对热电离等离子体进行测试,获得电子温度、电子密度等参数。该研究为热电离等离子体的进一步的应用提供了一定的理论依据。%This paper studies the generation of thermal ionization plasma. Taking the plasma produced by gunpowder gas as the research object, through the analysis of the four stages of gunpowder combustion process and the corresponding gas products, this paper discusses the process of gunpowder gas generating thermal ionization plasma, and calculates the percentage of the number of molecules to be able to generate thermal ionization plasma in the total number of molecules in the gas. Finally a set of thermal ionization plasma test system is established, and the method of spectrum test is used to test the thermal ionization plasma to get parameters such as electron temperature, electron density. This study provides certain theoretical basis for the further application of thermal ionization plasma.

  18. Plasma diagnosis as a tool for the determination of the parameters of electron beam evaporation and sources of ionization

    Science.gov (United States)

    Mukherjee, Jaya; Dileep Kumar, V.; Yadav, S. P.; Barnwal, Tripti A.; Dikshit, Biswaranjan

    2016-07-01

    The atomic vapor generated by electron beam heating is partially ionized due to atom-atom collisions (Saha ionization) and electron impact ionization, which depend upon the source temperature and area of evaporation as compared to the area of electron beam bombardment on the target. When electron beam evaporation is carried out by inserting the target inside an insulating liner to reduce conductive heat loss, it is expected that the area of evaporation becomes significantly more than the area of electron beam bombardment on the target, resulting in reduced electron impact ionization. To assess this effect and to quantify the parameters of evaporation, such as temperature and area of evaporation, we have carried out experiments using zirconium, tin and aluminum as a target. By measuring the ion content using a Langmuir probe, in addition to measuring the atomic vapor flux at a specific height, and by combining the experimental data with theoretical expressions, we have established a method for simultaneously inferring the source temperature, evaporation area and ion fraction. This assumes significance because the temperature cannot be reliably measured by an optical pyrometer due to the wavelength dependent source emissivity and reflectivity of thin film mirrors. In addition, it also cannot be inferred from only the atomic flux data at a certain height as the area of evaporation is unknown (it can be much more than the area of electron bombardment, especially when the target is placed in a liner). Finally, the reason for the lower observed electron temperatures of the plasma for all the three cases is found to be the energy loss due to electron impact excitation of the atomic vapor during its expansion from the source.

  19. Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity

    Science.gov (United States)

    M, G. Hafez; N, C. Roy; M, R. Talukder; M Hossain, Ali

    2017-01-01

    A comparative study is carried out for the nonlinear propagation of ion acoustic shock waves both for the weakly and highly relativistic plasmas consisting of relativistic ions and q-distributed electrons and positions. The Burgers equation is derived to reveal the physical phenomena using the well known reductive perturbation technique. The integration of the Burgers equation is performed by the (G\\prime /G)-expansion method. The effects of positron concentration, ion–electron temperature ratio, electron–positron temperature ratio, ion viscosity coefficient, relativistic streaming factor and the strength of the electron and positron nonextensivity on the nonlinear propagation of ion acoustic shock and periodic waves are presented graphically and the relevant physical explanations are provided.

  20. Power Absorption of High Frequency Electromagnetic Waves in a Partially Ionized Plasma Layer in Atmosphere Conditions

    Institute of Scientific and Technical Information of China (English)

    郭斌; 王晓钢

    2005-01-01

    We have studied the absorption, reflection, and transmission of electromagnetic waves in an unmagnetized uniform plasma layer covering a metal surface in atmosphere conditions.Instead of the absorption of the electromagnetic wave propagating only once in previous work on the plasma layer, a general formula of total power absorption by the plasma layer with an infinite time of reflections between the atmosphere-plasma interface and the metal surface has been derived for the first time. Effects of plasma parameters, especially the dependence of the fraction of positive ions, negative ions and electrons in plasmas on the power absorption processes are discussed. The results show that the existence of negative ions significantly reduces the power absorption of the electromagnetic wave. Absorptions of electromagnetic waves are calculated.

  1. Observation of a multiply ionized plasma with index of refraction greater than one

    Energy Technology Data Exchange (ETDEWEB)

    Filevich, J; Rocca, J J; Marconi, M C; Moon, S J; Nilsen, J; Scofield, J H; Dunn, J; Smith, R F; Keenan, R; Hunter, J R; Shlyaptsev, V N

    2004-10-14

    We present clear experimental evidence showing that the contribution of bound electrons can dominate the index of refraction of laser created plasmas at soft x-ray wavelengths. We report anomalous fringe shifts in soft x-ray laser interferograms of Al laser-created plasmas. The comparison of measured and simulated interferograms show that this results from the dominant contribution of low charge ions to the index of refraction. This usually neglected bound electron contribution can a.ect the propagation of soft x-ray radiation in plasmas and the interferometric diagnostics of plasmas for many elements.

  2. Pressure-produced ionization of nonideal plasma in a megabar range of dynamic pressures

    NARCIS (Netherlands)

    Fortov, VE; Ternovoi, VY; Zhernokletov, MV; Mochalov, MA; Mikhailov, AL; Filimonov, AS; Pyalling, AA; Mintsev, VB; Gryaznov, VK; Iosilevskii, IL

    2003-01-01

    The low-frequency electrical conductivity of strongly nonideal hydrogen, helium, and xenon plasmas was measured in the megabar range of pressures. The plasmas in question were generated by the method of multiple shock compression in planar and cylindrical geometries, whereby it was possible to reduc

  3. Driving large magnetic Reynolds number flow in highly ionized, unmagnetized plasmas

    Science.gov (United States)

    Weisberg, D. B.; Peterson, E.; Milhone, J.; Endrizzi, D.; Cooper, C.; Désangles, V.; Khalzov, I.; Siller, R.; Forest, C. B.

    2017-05-01

    Electrically driven, unmagnetized plasma flows have been generated in the Madison plasma dynamo experiment with magnetic Reynolds numbers exceeding the predicted Rmcrit = 200 threshold for flow-driven MHD instability excitation. The plasma flow is driven using ten thermally emissive lanthanum hexaboride cathodes which generate a J ×B torque in helium and argon plasmas. Detailed Mach probe measurements of plasma velocity for two flow topologies are presented: edge-localized drive using the multi-cusp boundary field and volumetric drive using an axial Helmholtz field. Radial velocity profiles show that the edge-driven flow is established via ion viscosity but is limited by a volumetric neutral drag force, and measurements of velocity shear compare favorably to the Braginskii transport theory. Volumetric flow drive is shown to produce larger velocity shear and has the correct flow profile for studying the magnetorotational instability.

  4. An argon–nitrogen–hydrogen mixed-gas plasma as a robust ionization source for inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Makonnen, Yoseif; Beauchemin, Diane, E-mail: diane.beauchemin@chem.queensu.ca

    2014-09-01

    Multivariate optimization of an argon–nitrogen–hydrogen mixed-gas plasma for minimum matrix effects, while maintaining analyte sensitivity as much as possible, was carried out in inductively coupled plasma mass spectrometry. In the presence of 0.1 M Na, the 33.9 ± 3.9% (n = 13 elements) analyte signal suppression on average observed in an all-argon plasma was alleviated with the optimized mixed-gas plasma, the average being − 4.0 ± 8.8%, with enhancement in several cases. An addition of 2.3% v/v N{sub 2} in the outer plasma gas, and 0.50% v/v H{sub 2} to the central channel, as a sheath around the nebulizer gas flow, was sufficient for this drastic increase in robustness. It also reduced the background from ArO{sup +} and Ar{sub 2}{sup +} as well as oxide levels by over an order of magnitude. On the other hand, the background from NO{sup +} and ArN{sup +} increased by up to an order of magnitude while the levels of doubly-charged ions increased to 7% (versus 2.7% in an argon plasma optimized for sensitivity). Furthermore, detection limits were generally degraded by 5 to 15 fold when using the mixed-gas plasma versus the argon plasma for matrix-free solution (although they were better for several elements in 0.1 M Na). Nonetheless, the drastically increased robustness allowed the direct quantitative multielement analysis of certified ore reference materials, as well as the determination of Mo and Cd in seawater, without using any matrix-matching or internal standardization. - Highlights: • Addition of N{sub 2} to the plasma gas and H{sub 2} as a sheath gas results in a very robust ICP. • ArO{sup +} and Ar{sub 2}{sup +} background and oxide levels are reduced by over an order of magnitude. • Multielement analysis of rock digests is possible with a simple external calibration. • No internal standardization or matrix-matching is required for accurate analysis. • Cd and Mo were accurately determined in undiluted seawater.

  5. Neutron Production Rates by Inverse-Beta Decay in Fully Ionized Plasmas

    CERN Document Server

    Maiani, L; Riquer, V

    2014-01-01

    Recently we showed that the nuclear transmutation rates are largely overestimated in the Widom-Larsen theory of the so called `Low Energy Nuclear Reactions'. Here we show that unbound plasma electrons are even less likely to initiate nuclear transmutations.

  6. Plasma induced DNA damage: Comparison with the effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lazović, S.; Maletić, D.; Puač, N.; Malović, G.; Petrović, Z. Lj. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Leskovac, A.; Filipović, J.; Joksić, G. [Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, 11001 Belgrade (Serbia)

    2014-09-22

    We use human primary fibroblasts for comparing plasma and gamma rays induced DNA damage. In both cases, DNA strand breaks occur, but of fundamentally different nature. Unlike gamma exposure, contact with plasma predominantly leads to single strand breaks and base-damages, while double strand breaks are mainly consequence of the cell repair mechanisms. Different cell signaling mechanisms are detected confirming this (ataxia telangiectasia mutated - ATM and ataxia telangiectasia and Rad3 related - ATR, respectively). The effective plasma doses can be tuned to match the typical therapeutic doses of 2 Gy. Tailoring the effective dose through plasma power and duration of the treatment enables safety precautions mainly by inducing apoptosis and consequently reduced frequency of micronuclei.

  7. THE DIAGNOSTIC O VI ABSORPTION LINE IN DIFFUSE PLASMAS: COMPARISON OF NON-EQUILIBRIUM IONIZATION STRUCTURE SIMULATIONS TO FUSE DATA

    Energy Technology Data Exchange (ETDEWEB)

    De Avillez, Miguel A. [Department of Mathematics, University of Evora, R. Romao Ramalho 59, 7000 Evora (Portugal); Breitschwerdt, Dieter [Zentrum fuer Astronomie und Astrophysik, Technische Universitaet Berlin, Hardenbergstrasse 36, D-10623 Berlin (Germany)

    2012-12-20

    The nature of the interstellar O VI in the Galactic disk is studied by means of a multi-fluid hydrodynamical approximation, tracing the detailed time-dependent evolution of the ionization structure of the plasma. Our focus is to explore the signature of any non-equilibrium ionization condition present in the interstellar medium using the diagnostic O VI ion. A detailed comparison between the simulations and FUSE data is carried out by taking lines of sight (LOS) measurements through the simulated Galactic disk, covering an extent of 4 kpc from different vantage points. The simulation results bear a striking resemblance with the observations: (1) the N(O VI) distribution with distance and angle fall within the minimum and maximum values of the FUSE data; (2) the column density dispersion with distance is constant for all the LOS, showing a mild decrease at large distances; (3) O VI has a clumpy distribution along the LOS; and (4) the time-averaged midplane density for distances >400 pc has a value of (1.3-1.4) Multiplication-Sign 10{sup -8} cm{sup -3}. The highest concentration of O VI by mass occurs in the thermally stable (10{sup 3.9} K < T {<=} 10{sup 4.2} K; 20%) and unstable (10{sup 4.2} K < T < 10{sup 5} K; 50%) regimes, both well below its peak temperature in collisional ionization equilibrium, with the corresponding volume filling factors oscillating with time between 8%-20% and 4%-5%, respectively. These results may also be relevant for intergalactic metal absorption systems at high redshifts.

  8. Evidence for high-energy and low-emittance electron beams using ionization injection of charge in a plasma wakefield accelerator

    CERN Document Server

    Vafaei-Najafabadi, N; Clayton, C E; Joshi, C; Marsh, K A; Mori, W B; Welch, E C; Lu, W; Adli, E; Allen, J; Clarke, C I; Corde, S; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Litos, M D; Yakimenko, V

    2015-01-01

    Ionization injection in a plasma wakefield accelerator was investigated experimentally using two lithium plasma sources of different lengths. The ionization of the helium gas, used to confine the lithium, injects electrons in the wake. After acceleration, these injected electrons were observed as a distinct group from the drive beam on the energy spectrometer. They typically have a charge of tens of pC, an energy spread of a few GeV, and a maximum energy of up to 30 GeV. The emittance of this group of electrons can be many times smaller than the initial emittance of the drive beam. The energy scaling for the trapped charge from one plasma length to the other is consistent with the blowout theory of the plasma wakefield.

  9. The effect of pre-ionization by a shunt resistor on the reproducibility of plasma focus x-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Sadiq, Mehboob [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Shafiq, M [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Waheed, A [PINSTECH, PO Box 2151, 44000 Islamabad (Pakistan); Lee, P [Natural Sciences Academics Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616 (Singapore); Zakaullah, M [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan)

    2006-08-15

    The effect of pre-ionization by means of a shunt resistor on the x-ray emission of a low energy (1.8 kJ) plasma focus device powered by a 9 {mu}F capacitor bank, charged at 20 kV and giving a peak discharge current of about 175 kA is investigated. Quantrad Si pin-diodes along with a suitable filter are employed as time-resolved x-ray detectors, whereas a multipinhole camera with absorption filters is used for time-integrated analysis. X-ray flux in 4{pi}-geometry is measured as a function of argon filling pressure with and without pre-ionization. It is found that appropriate selection of the shunt resistor increases shot-to-shot reproducibility of the x-ray emission as well as the stability of the pinch filament and broadens the x-ray pulse width. The x-ray emission is also enhanced by (45 {+-} 5)% at the optimum pressure.

  10. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction.

    Science.gov (United States)

    Dai, Jiayu; Hou, Yong; Yuan, Jianmin

    2010-06-18

    Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.

  11. Direct detection and identification of active pharmaceutical ingredients in intact tablets by helium plasma ionization (HePI mass spectrometry

    Directory of Open Access Journals (Sweden)

    Athula B. Attygalle

    2014-06-01

    Full Text Available A simple modification converts an electrospray ion source to an ambient-pressure helium plasma ionization source without the need of additional expensive hardware. Peaks for active ingredients were observed in the spectra recorded from intact pharmaceutical tablets placed in this source. A flow of heated nitrogen was used to thermally desorb analytes to gas phase. The desorption temperatures were sometimes as low as 50 °C. For example, negative-ion spectra recorded from an aspirin tablet showed peaks at m/z 137 (salicylate anion and 179 (acetylsalicylate anion which were absent in the background spectra. The overall ion intensity increased as the desorption gas temperature was elevated. Within the same acquisition experiment, both positive- and negative-ion signals for acetaminophen were recorded from volatiles emanating from Tylenol tablets by switching the polarity of the capillary back and forth. Moreover, different preparations of acetaminophen tablets could be distinguished by their ion-intensity thermograms.

  12. Direct detection and identification of active pharmaceutical ingredients in intact tablets by helium plasma ionization (HePI) mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Athula B. Attygalle; Freneil B. Jariwala; Julius Pavlov; Zhihua Yang; Jason A. Mahr; Mabel Oviedo

    2014-01-01

    A simple modification converts an electrospray ion source to an ambient-pressure helium plasma ionization source without the need of additional expensive hardware. Peaks for active ingredients were observed in the spectra recorded from intact pharmaceutical tablets placed in this source. A flow of heated nitrogen was used to thermally desorb analytes to gas phase. The desorption temperatures were sometimes as low as 50 1C. For example, negative-ion spectra recorded from an aspirin tablet showed peaks at m/z 137 (salicylate anion) and 179 (acetylsalicylate anion) which were absent in the background spectra. The overall ion intensity increased as the desorption gas temperature was elevated. Within the same acquisition experiment, both positive- and negative-ion signals for acetaminophen were recorded from volatiles emanating from Tylenol tablets by switching the polarity of the capillary back and forth. Moreover, different preparations of acetaminophen tablets could be distinguished by their ion-intensity thermograms.

  13. VLA Detection of RRLs from the radio nucleus of NGC 253 Ionization by a weak AGN, an obscured SSC or a compact SNR ?

    CERN Document Server

    Mohan, N R; Goss, W M; Mohan, Niruj R.

    2002-01-01

    We have imaged the H92alpha and H75alpha radio recombination line (RRL) emissions from the starburst galaxy NGC 253 with a resolution of ~4 pc. The peak of the RRL emission at both frequencies coincides with the unresolved radio nucleus. Both lines observed towards the nucleus are extremely wide, with FWHM of ~200 km /s. Modeling the RRL and radio continuum data for the radio nucleus shows that the lines arise in gas whose density is ~10^4 \\cc and mass is few thousand Msun, which requires an ionizing flux of (6-20)x10^{51} photons /s. We consider a SNR expanding in a dense medium, a star cluster and also an AGN as potential ionizing sources. Based on dynamical arguments, we rule out an SNR as a viable ionizing source. A star cluster model was considered and the dynamics of the ionized gas in a stellar-wind driven structure was investigated. Such a model is consistent with the properties of the ionized gas only for a cluster younger than ~10^5 years. The existence of such a young cluster at the nucleus seems i...

  14. Density profile in shock wave fronts of partially ionized xenon plasmas

    CERN Document Server

    Reinholz, H; Morozov, I; Mintsev, V; Zaparoghets, Y; Fortov, V; Wierling, A

    2003-01-01

    Results for the reflection coefficient of shock-compressed dense xenon plasmas at pressures of 1.6-20 GPa and temperatures around 30 000 K are interpreted. In addition to former experiments using laser beams with lambda = 1.06 mu m, measurements at lambda = 0.694 mu m have been performed recently. Reflectivities typical for metallic systems are found at high densities. Besides free carriers, the theoretical description also takes into account the influence of the neutral component of the plasma on the reflectivity. A consistent description of the measured reflectivities is achieved only if a finite width of the shock wave front is considered.

  15. Determination of amlodipine in human plasma by electrospray ionization LC-MS/MS method: validation and its stability studies

    Directory of Open Access Journals (Sweden)

    Anusak Sirikatitham

    2008-07-01

    Full Text Available A sensitive and specific high-performance liquid chromatography combined with electrospray ionization (ESI tandemmass spectrometry (LC-MS/MS method, operating in the positive ionization mode, for quantifying of amlodipine in humanplasma using tizanidine as internal standard (I.S. was developed and validated. The analyte and I.S. were extracted bysimple one step liquid/liquid extraction with a mixture of diethylether/dichloromethane (70/30, v/v. The chromatographicseparation was performed on a C18 analytical column under isocratic conditions using a mixture of 10mM ammoniumformate/methanol/acetonitrile (30/50/20, v/v/v as mobile phase at a flow rate of 1.0 mL/min. Total chromatographic runtime was 5.0 min. Detection was performed on a API 2000 QTRAP quadrupole linear ion trap mass spectrometer via turboion spray ionization. Quantitation was performed using multiple reaction monitoring (MRM mode to study parent ®product ion transitions of m/z 409.4 ® 238.1 for amlodipine and m/z 254.2 ® 44.1 for I.S., respectively. The validation andstability studies were performed according to the Thai FDA guidance for assessment of bioequivalence study in Thailand.The results were within the accepted criteria as stated in the aforementioned guidance. Linearity in plasma was obtained overthe concentration range 0.3-15.0 ng/mL, with a coefficient of determination (r2 of 0.9993. Lower limit of quantification(LLOQ was identifiable and reproducible at 0.3 ng/mL. The within- and between-run precision values were below 10%and the accuracy was ranged from 94.87 to 102.44% at all three quality controls samples levels. The analyte was found tobe stable in plasma samples under three freeze-thaw cycles, long-term storage (3 months at -20oC, short-term storage (4hours at room temperature, post-preparative and stock-solution stability. The robust and rapid LC-MS/MS method has beensuccessfully applied for routine assay to support bioequivalence or pharmacokinetics studies

  16. A SIMPLE AND RAPID MATRIX-ASSISTED LASER DESORPTION/IONIZATION TIME OF FLIGHT MASS SPECTROMETRY METHOD TO SCREEN FISH PLASMA SAMPLES FOR ESTROGEN-RESPONSIVE BIOMARKERS

    Science.gov (United States)

    In this study, we describe and evaluate the performance of a simple and rapid mass spectral method for screening fish plasma for estrogen-responsive biomarkers using matrix assisted laster desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) couopled with a short...

  17. Alfven波在微电离大气中的衰减特性研究%Attenuation of Alfven Waves in Weakly Ionized Near Earth Atmosphere

    Institute of Scientific and Technical Information of China (English)

    刘元涛; 赵华; 李磊; 王劲东; 周斌; 冯永勇

    2011-01-01

    利用简单的偶极子地磁场模型以及大气电子密度和电导率模式,分析地面产生的磁扰动以Alfven波的模式传播到近地空间区域.这种地面的磁扰动可能干扰近地空间卫星对空间磁扰动的观测.通过对地面磁扰动Alfven 波模式1000km高度内的衰减情况进行模拟,认为在近地空间采用地磁偶极子模型是合理的.由于衰减随扰动频率的增大而急剧增强,分析还得到了近地卫星能够探测到地面磁扰动的最大频率.计算结果表明,Alfven波的衰减主要集中在高度50km以下,这个区域内的大气电导率极其微弱,使Alfven波的传播受到极大衰减.0.4Hz 以下的Alfven波沿磁力线传播到1000 km高度后衰减结为原来扰动幅度的千分之一,因此频率在0.4 Hz以下的Alfven波可能会干扰低轨卫星探测磁场脉动.%Alfven waves, produced on the ground by artificial or by soundstorm, propagating to the near-earth space along the geomagnetic field lines, would decay greatly with distance.A dipole geomagnetic field model in near earth space, plasma density and conductivity models derived from observational data are used in this study to investigate the attenuation of Alfven waves below 1000 km altitude by numerical simulation methods.The frequency that would be detected by magnetometer carried by satellite was also found.The result showed that: Alfven waves will decay sharply in the height of less than 50 km for the much weak electrical conductivity in this region; it is 0.4 Hz Alfven waves, when transmitted to 1000 km, that becomes about one-thousandth of the original, so Alfven waves below 0.4 Hz can be detected by LEO satellites.

  18. Neutron production rates by inverse-beta decay in fully ionized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maiani, L.; Polosa, A.D.; Riquer, V. [Sapienza Universita di Roma, Dipartimento di Fisica (Italy); INFN, Rome (Italy)

    2014-04-15

    Recently we showed that the nuclear transmutation rates are largely overestimated in the Widom-Larsen theory of the so-called 'Low Energy Nuclear Reactions'. Here we show that unbound plasma electrons are even less likely to initiate nuclear transmutations. (orig.)

  19. Quantitative analysis of squalamine, a self-ionization-suppressing aminosterol sulfate, in human plasma by LC-MS/MS.

    Science.gov (United States)

    Li, Austin C; Sabo, Andrew M; McCormick, Timothy; Johnston, Sean M

    2004-02-18

    The special physico-chemical property of squalamine enables the formation of intra- or inter-molecular non-volatile strong salt, which is difficult to ionize in a mass spectrometer's interface. A sensitive, accurate, precise, and specific method for the quantitative determination of this self ion-suppressing compound in human plasma has been developed and validated using high performance liquid chromatography (HPLC) coupled with positive electrospray tandem mass spectrometry (MS/MS). Solid phase extraction (SPE) technique was utilized to extract human plasma samples using the Waters Oasis HLB cartridges. Deuterated squalamine was used as the internal standard (IS). Positive multiple reaction monitoring (MRM) mode was used to achieve both sensitivity and selectivity. A quadratic linearity range over 5-1000 ng/ml, R > 0.999 was achieved. Performance of the method has been validated and met all the specifications set forth in the US Food and Drug Administration's May 2001 "Bioanalytical Method Validation Guidance for Industry". Different sample reconstitution solutions were found to have dramatic impact on sensitivity of mass spectrometer used to squalamine. This is the first quantitation method using a positive and true multiple reaction monitoring mode detection for squalamine.

  20. Quantification of roxatidine in human plasma by liquid chromatography electrospray ionization tandem mass spectrometry: application to a bioequivalence study.

    Science.gov (United States)

    Ryu, Ju-Hee; Choi, Sang-Jun; Lee, Heon-Woo; Choi, Seung-Ki; Lee, Kyung-Tae

    2008-12-01

    A sensitive and specific method using a one-step liquid-liquid extraction (LLE) with ethyl acetate followed by high-performance liquid chromatography (HPLC) coupled with positive ion electrospray ionization tandem mass spectrometry (ESI-MS/MS) detection was developed and validated for the determination of roxatidine in human plasma using famotidine as an internal standard (IS). Data acquisition was carried out in multiple reaction monitoring (MRM) mode, by monitoring the transitions m/z 307.3-->107.1 for roxatidine and m/z 338.4-->189.1 for famotidine. Chromatographic separation was performed on a reverse phase Hydrosphere C(18) column at 0.2 mL min(-1) using a mixture of methanol-ammonium formate buffer as mobile phase (20:80, v/v; adjusted to pH 3.9 with formic acid). The achieved lower limit of quantification (LLOQ) was 1.0 ng mL(-1) and the standard calibration curve for roxatidine was linear (r(2)=0.998) over the studied range (1-1000 ng mL(-1)) with acceptable accuracy and precision. Roxatidine was found to be stable in human plasma samples under short-, long-term storage and processing conditions. The developed method was validated and successfully applied to the bioequivalence study of roxatidine administrated as a single oral dose (75 mg as roxatidine acetate hydrochloride) to healthy female Korean volunteers.

  1. Some plasma aspects and plasma diagnostics of ion sources.

    Science.gov (United States)

    Wiesemann, Klaus

    2008-02-01

    We consider plasma properties in the most advanced type of plasma ion sources, electron cyclotron resonance ion sources for highly charged ions. Depending on the operation conditions the plasma in these sources may be highly ionized, which completely changes its transport properties. The most striking difference to weakly ionized plasma is that diffusion will become intrinsically ambipolar. We further discuss means of plasma diagnostics. As noninvasive diagnostic methods we will discuss analysis of the ion beam, optical spectroscopy, and measurement of the x-ray bremsstrahlung continuum. From beam analysis and optical spectroscopy one may deduce ion densities, and electron densities and distribution functions as a mean over the line of sight along the axis (optical spectroscopy) or at the plasma edge (ion beam). From x-ray spectra one obtains information about the population of highly energetic electrons and the energy transfer from the driving electromagnetic waves to the plasma -- basic data for plasma modeling.

  2. Transverse dynamics of an intense electron bunch traveling through a pre-ionized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lehe, R., E-mail: remi.lehe@ensta.fr; Thaury, C.; Lifschitz, A.; Rax, J.-M.; Malka, V. [Laboratoire d' Optique Appliquée, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)

    2014-04-15

    The propagation of a relativistic electron bunch through a plasma is an important problem in both plasma-wakefield acceleration and laser-wakefield acceleration. In those situations, the charge of the accelerated bunch is usually large enough to drive a relativistic wakefield, which then affects the transverse dynamics of the bunch itself. Yet to date, there is no fully relativistic, fully electromagnetic model that describes the generation of this wakefield and its feedback on the bunch. In this article, we derive a model which takes into account all the relevant relativistic and electromagnetic effects involved in the problem. A very good agreement is found between the model and the results of particle-in-cell simulations. The implications of high-charge effects for the transport of the bunch are discussed in detail.

  3. Collaborative Research: A Model of Partially Ionized Plasma Flows with Kinetic Treatment of Neutral Atoms and Nonthermal Ions

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelov, Nikolai [Univ. of Alabama, Huntsville, AL (United States); Zhang, Ming [Florida Inst. of Technology, Melbourne, FL (United States)

    2016-07-31

    Interactions of flows of partially ionized, magnetized plasma are frequently accompanied by the presence of both thermal and non-thermal (pickup) ion components. Such interactions cannot be modeled using traditional MHD equations and require more advanced approaches to treat them. If a nonthermal component of ions is formed due to charge exchange and collisions between the thermal (core) ions and neutrals, it experiences the action of magnetic field, its distribution function is isotropized, and it soon acquires the velocity of the ambient plasma without being thermodynamically equilibrated. This situation, e. g., takes place in the outer heliosphere –- the part of interstellar space beyond the solar system whose properties are determined by the solar wind interaction with the local interstellar medium. This is also possible in laboratory, at million degrees and above, when plasma is conducting electricity far too well, which makes Ohmic heating ineffective. To attain the target temperatures one needs additional heating eventually playing a dominant role. Among such sources is a so-called neutral particle beam heating. This is a wide-spread technique (Joint European Torus and International Thermonuclear Experimental Reactor experiments) based on the injection of powerful beams of neutral atoms into ohmically preheated plasma. In this project we have investigated the energy and density separation between the thermal and nonthermal components in the solar wind and interstellar plasmas. A new model has been developed in which we solve the ideal MHD equations for mixture of all ions and the kinetic Boltzmann equation to describe the transport of neutral atoms. As a separate capability, we can treat the flow of neutral atoms in a multi-component fashion, where neutral atoms born in each thermodynamically distinct region are governed by the Euler gas dynamic equations. We also describe the behavior of pickup ions either kinetically, using the Fokker--Planck equation

  4. Collaborative Research: A Model of Partially Ionized Plasma Flows with Kinetic Treatment of Neutral Atoms and Nonthermal Ions

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelov, Nikolai [Univ. of Alabama, Huntsville, AL (United States). Dept. of Space Science. Center for Space Plasma and; Zhang, Ming [Florida Inst. of Technology, Melbourne, FL (United States). Physics and Space Sciences Dept.; Borovikov, Sergey [Univ. of Alabama, Huntsville, AL (United States). Dept. of Space Science. Center for Space Plasma and Aeronomic Research; Heerikhuisen, Jacob [Univ. of Alabama, Huntsville, AL (United States). Dept. of Space Science. Center for Space Plasma and Aeronomic Research; Zank, Gary [Univ. of Alabama, Huntsville, AL (United States). Dept. of Space Science. Center for Space Plasma and Aeronomic Research; Gamayunov, Konstantin [Florida Inst. of Technology, Melbourne, FL (United States). Physics and Space Sciences Dept.; Colella, Phillip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-07-31

    Interactions of flows of partially ionized, magnetized plasma are frequently accompanied by the presence of both thermal and non-thermal (pickup) ion components. Such interactions cannot be modeled using traditional MHD equations and require more advanced approaches to treat them. If a nonthermal component of ions is formed due to charge exchange and collisions between the thermal (core) ions and neutrals, it experiences the action of magnetic field, its distribution function is isotropized, and it soon acquires the velocity of the ambient plasma without being thermodynamically equilibrated. This situation, e. g., takes place in the outer heliosphere - the part of interstellar space beyond the solar system whose properties are determined by the solar wind interaction with the local interstellar medium. This is also possible in laboratory, at million degrees and above, when plasma is conducting electricity far too well, which makes Ohmic heating ineffective. To attain the target temperatures one needs additional heating eventually playing a dominant role. Among such sources is a so-called neutral particle beam heating. This is a wide-spread technique (Joint European Torus and International Thermonuclear Experimental Reactor experiments) based on the injection of powerful beams of neutral atoms into ohmically preheated plasma. In this project we have investigated the energy and density separation between the thermal and nonthermal components in the solar wind and interstellar plasmas. A new model has been developed in which we solve the ideal MHD equations for mixture of all ions and the kinetic Boltzmann equation to describe the transport of neutral atoms. As a separate capability, we can treat the flow of neutral atoms in a multi-component fashion, where neutral atoms born in each thermodynamically distinct regions are governed by the Euler gas dynamic equations. We also describe the behavior of pickup ions either kinetically, using the Fokker–Planck equation, or

  5. THE NONLINEAR OHM'S LAW: PLASMA HEATING BY STRONG ELECTRIC FIELDS AND ITS EFFECTS ON THE IONIZATION BALANCE IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Okuzumi, Satoshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Inutsuka, Shu-ichiro, E-mail: okuzumi@geo.titech.ac.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2015-02-10

    The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.

  6. Electrical conductivity and velocity of highly ionized plasma flows - Theory and experiment.

    Science.gov (United States)

    Vendell, E. W.; Park, C.; Posch, R. E.

    1972-01-01

    Use of an immersible, three-coil, magnetic-induction probe, previously tested in a low-density supersonic argon jet, to measure electrical conductivity and velocity profiles of a highly ionized high-density nitrogen jet in the continuum flow regime where effects due to probe bow shocks and boundary layers might not be negligible. Measured centerline values of electrical conductivity and velocity were compared with predictions based on a theoretical analysis previously developed to study the gas as it expanded adiabatically and inviscidly from an equilibrium sonic state to the nozzle exit. The resulting numerical exit plane values for electron density and electron temperature were then substituted into the Spitzer-Haerm conductivity formula to compute a theoretical conductivity which agreed within 40% of the measured conductivity, while the calculated and experimental velocity values differed by as much as 50%. The lack of agreement was attributed to the possible use of invalid assumptions and boundary conditions in the computer analysis or to the unknown effects of shocks on the probe data.

  7. Cut-off wavenumber of Alfvén waves in partially ionized plasmas of the solar atmosphere

    Science.gov (United States)

    Zaqarashvili, T. V.; Carbonell, M.; Ballester, J. L.; Khodachenko, M. L.

    2012-08-01

    Context. Alfvén wave dynamics in partially ionized plasmas of the solar atmosphere shows that there is indeed a cut-off wavenumber, i.e. the Alfvén waves with wavenumbers higher than the cut-off value are evanescent. The cut-off wavenumber appears in single-fluid magnetohydrodynamic (MHD) approximation but it is absent in a multi-fluid approach. Up to now, an explanation for the existence of the cut-off wavenumber is still missing. Aims: The aim of this paper is to point out the reason for the appearance of a cut-off wavenumber in single-fluid MHD. Methods: Beginning with three-fluid equations (with electrons, protons and neutral hydrogen atoms), we performed consecutive approximations until we obtained the usual single-fluid description. We solved the dispersion relation of linear Alfvén waves at each step and sought the approximation responsible of the cut-off wavenumber appearance. Results: We have found that neglecting inertial terms significantly reduces the real part of the Alfvén frequency although it never becomes zero. Therefore, the cut-off wavenumber does not exist at this stage. However, when the inertial terms together with the Hall term in the induction equation are neglected, the real part of the Alfvén frequency becomes zero. Conclusions: The appearance of a cut-off wavenumber, when Alfvén waves in partially ionized regions of the solar atmosphere are studied, is the result of neglecting inertial and Hall terms, therefore it has no physical origin.

  8. Elastic scattering of low energy electrons in partially ionized dense semiclassical plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dzhumagulova, K. N., E-mail: dzhumagulova.karlygash@gmail.com; Shalenov, E. O.; Ramazanov, T. S. [IETP, Al Farabi Kazakh National University, 71al Farabi Street, Almaty 050040 (Kazakhstan)

    2015-08-15

    Elastic scattering of electrons by hydrogen atoms in a dense semiclassical hydrogen plasma for low impact energies has been studied. Differential scattering cross sections were calculated within the effective model of electron-atom interaction taking into account the effect of screening as well as the quantum mechanical effect of diffraction. The calculations were carried out on the basis of the phase-function method. The influence of the diffraction effect on the Ramsauer–Townsend effect was studied on the basis of a comparison with results made within the effective polarization model of the Buckingham type.

  9. Phase shifts and the second virial coefficient for a partially ionized hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Omarbakiyeva, Y.A. [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany); IETP, al-Farabi Kazakh National University, 96a Tole bi str., 050012 Almaty (Kazakhstan); Roepke, G. [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany); Ramazanov, T.S. [IETP, al-Farabi Kazakh National University, 96a Tole bi str., 050012 Almaty (Kazakhstan)

    2009-12-15

    The influence of the interaction of electrons with hydrogen atoms on the thermodynamical properties of dense plasmas is investigated using a virial expansion approach. The second virial coefficient for the electron-atom interaction is obtained from the Beth-Uhlenbeck formula. Elastic scattering phase shifts are calculated with the help of the phase function method for different polarization potential models. Results for the second virial coefficient are given that take into account both the bound state part and the scattering state contribution (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Benedetti, Carlo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bulanov, Stepan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Min [Shanghai Jiao Tong Univ. (China); Esarey, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Geddes, Cameron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vay, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, Lule [Shanghai Jiao Tong Univ. (China); Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-21

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection.

  11. Determination of strychnine and brucine in rat plasma using liquid chromatography electrospray ionization mass spectrometry.

    Science.gov (United States)

    Xu, Yanyan; Si, Duanyun; Liu, Changxiao

    2009-02-20

    A simple, sensitive and selective liquid chromatography-electrospray mass spectrometric (LC-ESI-MS) method was developed and validated for simultaneous determination of strychnine and brucine in rat plasma, using tacrine as the internal standard (IS). Sample preparation involved a liquid-liquid extraction of the analytes with n-hexane, dichloromethane and isopropanol (65:30:5, v/v/v) from 0.1mL of plasma. Chromatographic separation was carried out on a Waters C(18) column using a mobile phase of methanol-20mM ammonium formate-formic acid (32:68:0.68, v/v/v). Positive selected ion monitoring mode was used for detection of strychnine, brucine and the IS at m/z 335.2, m/z 395.2 and m/z 199.2, respectively. Linearity was obtained over the concentration range of 0.5-500ng/mL for strychnine and 0.1-100ng/mL for brucine. The lower limit of quantification was 0.5ng/mL and 0.1ng/mL for strychnine and brucine, respectively. The intra- and inter-day precision for both strychnine and brucine was less than 7.74%, and accuracy ranged from -4.38% to 2.21% at all QC levels. The method has been successfully applied to a pharmacokinetic study of processed Semen Strychni after oral administration to rats.

  12. Langmuir wave filamentation in the kinetic regime. II. Weak and strong pumping of nonlinear electron plasma waves as the route to filamentation

    Science.gov (United States)

    Silantyev, Denis A.; Lushnikov, Pavel M.; Rose, Harvey A.

    2017-04-01

    We consider two kinds of pumped Langmuir waves (LWs) in the kinetic regime, k λ D ≳ 0.2 , where k is the LW wavenumber and λD is the Debye length, driven to finite amplitude by a coherent external potential whose amplitude is either weak or strong. These dynamically prepared nonlinear LWs develop a transverse (filamentation) instability whose nonlinear evolution destroys the LW's transverse coherence. Instability growth rates in the weakly pumped regime are the same as those of Bernstein-Greene-Kruskal modes considered in Part I (D. A. Silantyev et al., Phys. Plasmas 24, 042104 (2017)), while strongly pumped LWs have higher filamentation grow rates.

  13. Electron Density from Balmer Series Hydrogen Lines and Ionization Temperatures in Inductively Coupled Argon Plasma Supplied by Aerosol and Volatile Species

    Directory of Open Access Journals (Sweden)

    Jolanta Borkowska-Burnecka

    2016-01-01

    Full Text Available Electron density and ionization temperatures were measured for inductively coupled argon plasma at atmospheric pressure. Different sample introduction systems were investigated. Samples containing Sn, Hg, Mg, and Fe and acidified with hydrochloric or acetic acids were introduced into plasma in the form of aerosol, gaseous mixture produced in the reaction of these solutions with NaBH4 and the mixture of the aerosol and chemically generated gases. The electron densities measured from Hα, Hβ, Hγ, and Hδ lines on the base of Stark broadening were compared. The study of the H Balmer series line profiles showed that the ne values from Hγ and Hδ were well consistent with those obtained from Hβ which was considered as a common standard line for spectroscopic measurement of electron density. The ne values varied from 0.56·1015 to 1.32·1015 cm−3 and were the highest at loading mixture of chemically generated gases. The ionization temperatures of plasma, determined on the base of the Saha approach from ion-to-atom line intensity ratios, were lower for Sn and Hg (6500–7200 K than those from Fe and Mg lines (7000–7800 K. The Sn II/Sn I and Hg II/Hg I, Fe II/Fe I, and Mg II/Mg I intensity ratios and the electron densities (ne were dependent on experimental conditions of plasma generation. Experimental and theoretically calculated ionization degrees were compared.

  14. Plasma Shock Wave Modification Experiments in a Temperature Compensated Shock Tube

    Science.gov (United States)

    Vine, Frances J.; Mankowski, John J.; Saeks, Richard E.; Chow, Alan S.

    2003-01-01

    A number of researchers have observed that the intensity of a shock wave is reduced when it passes through a weakly ionized plasma. While there is little doubt that the intensity of a shock is reduced when it propagates through a weakly ionized plasma, the major question associated with the research is whether the reduction in shock wave intensity is due to the plasma or the concomitant heating of the flow by the plasma generator. The goal of this paper is to describe a temperature compensated experiment in a "large" diameter shock tube with an external heating source, used to control the temperature in the shock tube independently of the plasma density.

  15. Direct and Sensitive Detection of CWA Simulants by Active Capillary Plasma Ionization Coupled to a Handheld Ion Trap Mass Spectrometer

    Science.gov (United States)

    Wolf, Jan-Christoph; Etter, Raphael; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-07-01

    An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 μg/m3 to 6.3 μg/m3. Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (<80 W) and weight (<13 kg), this instrumentation has the potential for direct on-site CWA detection as required by military or civil protection.

  16. Self-consistent time dependent vibrational and free electron kinetics for CO2 dissociation and ionization in cold plasmas

    Science.gov (United States)

    Capitelli, M.; Colonna, G.; D'Ammando, G.; Pietanza, L. D.

    2017-05-01

    A self-consistent time dependent model, based on the coupling between the Boltzmann equation for free electrons, the non equilibrium vibrational kinetics for the asymmetric mode of CO2 and simplified global models for the dissociation and ionization plasma chemistry, has been applied to conditions which can be met under pulsed microwave (MW), dielectric barrier discharge (DBD) and nanosecond pulsed discharges (NPD). Under MW discharge type conditions, the selected pulse duration generates large concentration of vibrational excited states, which affects the electron energy distribution function (eedf) through the superelastic vibrational collisions. Moreover, in discharge conditions, plateaux appear in the vibrational distribution function (vdf) through the vibrational-vibrational up pumping mechanism, persisting also in the post discharge. In post discharge conditions, also the eedf is characterized by plateaux due to the superelastic collisions between cold electrons and the CO2 electronic state at 10.5 eV. The plateau in vdf increases the dissociation of pure vibrational mechanism (PVM), which can become competitive with the dissociation mechanism induced by electron molecule collisions. The PVM rates increase with the decrease of gas temperature, generating a non-Arrhenius behaviour. The situation completely changes under DBD and NPD type conditions characterized by shorter pulse duration and higher applied E/N values. Under discharge conditions, both vdf and eedf plateaux disappear, reappering in the afterglow.

  17. Direct and Sensitive Detection of CWA Simulants by Active Capillary Plasma Ionization Coupled to a Handheld Ion Trap Mass Spectrometer.

    Science.gov (United States)

    Wolf, Jan-Christoph; Etter, Raphael; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-07-01

    An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 μg/m(3) to 6.3 μg/m(3). Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (<80 W) and weight (<13 kg), this instrumentation has the potential for direct on-site CWA detection as required by military or civil protection. Graphical Abstract ᅟ.

  18. Weak and compact radio emission in early massive star formation regions: an ionized jet toward G11.11–0.12P1

    Energy Technology Data Exchange (ETDEWEB)

    Rosero, V.; Hofner, P.; McCoy, M. [Physics Department, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801 (United States); Kurtz, S.; Loinard, L.; Carrasco-González, C.; Rodríguez, L. F. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58090 (Mexico); Menten, K. M.; Wyrowski, F. [Max-Planck-Institute für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Araya, E. D. [Physics Department, Western Illinois University, 1 University Circle, Macomb, IL 61455 (United States); Cesaroni, R. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Ellingsen, S. P., E-mail: viviana@nmt.edu [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania 7001 (Australia)

    2014-12-01

    We report 1.3 cm and 6 cm continuum observations toward the massive proto-stellar candidate G11.11–0.12P1 using the Karl G. Jansky Very Large Array. We detect a string of four unresolved radio continuum sources coincident with the mid-infrared source in G11P1. The continuum sources have positive spectral indices consistent with a thermal (free-free) ionized jet. The most likely origins of the ionized gas are shocks due to the interaction of a stellar wind with the surrounding high-density material. We also present NIR United Kingdom Infrared Telescope (UKIRT) archival data that show an extended structure detected only at K band (2.2 μm), which is oriented perpendicular to the jet, and that may be scattered light from a circumstellar disk around the massive protostar. Our observations plus the UKIRT archival data thus provide new evidence that a disk/jet system is present in the massive proto-stellar candidate located in the G11.11–0.12P1 core.

  19. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    CERN Document Server

    Schroeder, C B; Bulanov, S S; Chen, M; Esarey, E; Geddes, C G R; Vay, J -L; Yu, L -L; Leemans, W P

    2015-01-01

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2...

  20. Hybrid Particle-In-Cell (PIC) simulation of heat transfer and ionization balance in overdense plasmas irradiated by subpicosecond pulse lasers

    Energy Technology Data Exchange (ETDEWEB)

    Zhidkov, A.; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment

    1998-11-01

    A 1D hybrid electromagnetic particle-in-cell code with new methods to include particle collisions and atomic kinetics is developed and applied to ultra-short-pulse laser plasma interaction. Using the Langevin equation to calculate the Coulomb collision term, the present code is shown to be fast and stable in calculating the particle motion in the PIC simulation. Furthermore, by noting that the scale length of the change of atomic kinetics is much longer than the Debye radius, we calculate ionization and X-ray emission on kinetics cells, which are determined by averaging plasma parameters such as the electron density and energy over number of PIC cells. The absorption of short-pulse laser by overdense plasmas is calculated in self-consistent manner, including the effect of rapid change of density and temperature caused by instantaneous heating and successive fast ionization of the target material. The calculated results agree well with those obtained from the Fokker-Planck simulation as well as experiments, for non-local heat transport in plasmas with steep temperature gradient, and for the absorption of a short laser pulse by solid density targets. These results demonstrate usefulness of the code and the computational method therein for understanding of physics of short pulse laser plasma interaction experiments, and for application to the gain calculation of short-pulse laser excited X-ray laser as well. (author)

  1. On-line clean-up and screening of oxacillin and cloxacillin in human urine and plasma with a weak ion exchange monolithic column.

    Science.gov (United States)

    Yang, Gengliang; Feng, Sha; Liu, Haiyan; Yin, Junfa; Zhang, Li; Cai, Liping

    2007-07-01

    A weak ion exchange monolithic column prepared by modifying the GMA-MAA-EDMA (glycidyl methacrylate-methacrylic acid-ethylene glycol dimethacrylate) monoliths with ethylenediamine was applied to remove matrix compounds in biological fluid. Using this monolithic column, on-line clean-up and screening of oxacillin and cloxacillin in human urine and plasma samples had been investigated. Chromatography was performed by reversed-phase HPLC on a C(18) column with ultraviolet detection at 225 nm. Results showed that the ion exchange monolithic column could be used for deproteinization and retaining oxacillin and cloxacillin in human urine and plasma, which provided a simple and fast method for assaying drugs in human urine and plasma.

  2. TIP-1 translocation onto the cell plasma membrane is a molecular biomarker of tumor response to ionizing radiation.

    Directory of Open Access Journals (Sweden)

    Hailun Wang

    Full Text Available BACKGROUND: Tumor response to treatment has been generally assessed with anatomic and functional imaging. Recent development of in vivo molecular and cellular imaging showed promise in time-efficient assessment of the therapeutic efficacy of a prescribed regimen. Currently, the in vivo molecular imaging is limited with shortage of biomarkers and probes with sound biological relevance. We have previously shown in tumor-bearing mice that a hexapeptide (HVGGSSV demonstrated potentials as a molecular imaging probe to distinguish the tumors responding to ionizing radiation (IR and/or tyrosine kinase inhibitor treatment from those of non-responding tumors. METHODOLOGY/PRINCIPAL FINDINGS: In this study we have studied biological basis of the HVGGSSV peptide binding within the irradiated tumors by use of tumor-bearing mice and cultured cancer cells. The results indicated that Tax interacting protein 1 (TIP-1, also known as Tax1BP3 is a molecular target that enables the selective binding of the HVGGSSV peptide within irradiated xenograft tumors. Optical imaging and immunohistochemical staining indicated that a TIP-1 specific antibody demonstrated similar biodistribution as the peptide in tumor-bearing mice. The TIP-1 antibody blocked the peptide from binding within irradiated tumors. Studies on both of human and mouse lung cancer cells showed that the intracellular TIP-1 relocated to the plasma membrane surface within the first few hours after exposure to IR and before the onset of treatment associated apoptosis and cell death. TIP-1 relocation onto the cell surface is associated with the reduced proliferation and the enhanced susceptibility to the subsequent IR treatment. CONCLUSIONS/SIGNIFICANCE: This study by use of tumor-bearing mice and cultured cancer cells suggested that imaging of the radiation-inducible TIP-1 translocation onto the cancer cell surface may predict the tumor responsiveness to radiation in a time-efficient manner and thus tailor

  3. Physics of ionized gases

    CERN Document Server

    Smirnov, Boris M

    2001-01-01

    A comprehensive textbook and reference for the study of the physics of ionized gasesThe intent of this book is to provide deep physical insight into the behavior of gases containing atoms and molecules from which one or more electrons have been ionized. The study of these so-called plasmas begins with an overview of plasmas as they are found in nature and created in the laboratory. This serves as a prelude to a comprehensive study of plasmas, beginning with low temperature and "ideal" plasmas and extending to radiation and particle transport phenomena, the response of plasmas to external fields, and an insightful treatment of plasma waves, plasma instabilities, nonlinear phenomena in plasmas, and the study of plasma interactions with surfaces

  4. C{sub 18}-attached membrane funnel-based spray ionization mass spectrometry for quantification of anti-diabetic drug from human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wan [Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Chen, Xiangfeng, E-mail: xiangfchensdas@163.com [Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Shandong Analysis and Test Centre, Shandong Academy of Sciences, Jinan, Shandong (China); Wong, Y.-L. Elaine; Hung, Y.-L. Winnie; Wang, Ze; Deng, Liulin [Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Dominic Chan, T.-W., E-mail: twdchan@cuhk.edu.hk [Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong)

    2016-08-24

    In this work, sorbent-attached membrane funnel-based spray ionization mass spectrometry was explored for quantitative analysis of anti-diabetic drugs spiked in human plasma. C{sub 18}-attached membrane funnel was fabricated for in situ extraction and clean-up to alleviate matrix suppression effect in the ionization process. Repaglinide was used as a target analyte of anti-diabetic drugs. Under optimal working conditions, good linearity (R{sup 2} > 0.99) was obtained in the concentration range of 1–100 ng mL{sup −1}. The method detection limit of target drugs spiked in the human plasma was around 0.30 ng mL{sup −1}. Through the application of an isotope-labeled internal standard, the signal fluctuation caused by residual background matrices was largely alleviated and the precision of measurement (RSD) was below 15%. The recovery of repaglinide for 5, 25, and 100 ng mL{sup −1} of spiked human plasma matrixes ranged from 87% to 112%. The developed method was successfully applied to determine repaglinide in plasma volunteers who orally received a dose of drug association. Our results demonstrated that membrane funnel-based spray is a simple and sensitive method for rapid screening analysis of complex biological samples. - Highlights: • Sorbent attached membrane funnel based spray platform was used for drug determination in human plasma. • The matrix suppression effect of human plasma was largely eliminated. • The method was applied to determine repaglinide in plasma volunteers. • Membrane funnel-based spray is promising for analysis of biological samples.

  5. Cloud-point extraction is compatible with liquid chromatography coupled to electrospray ionization mass spectrometry for the determination of bisoprolol in human plasma.

    Science.gov (United States)

    Giebułtowicz, Joanna; Kojro, Grzegorz; Buś-Kwaśnik, Katarzyna; Rudzki, Piotr J; Marszałek, Ryszard; Leś, Andrzej; Wroczyński, Piotr

    2015-12-04

    Cloud-point extraction (CPE) draws increasing interest in a number of analytical fields including bioanalysis, but combining CPE and LC-MS with electrospray ionization (ESI) in the determination of drugs in biological fluids such as plasma, serum or blood has not been reported so far. Bisoprolol was determined in human plasma by CPE using Trition X-114 as a surfactant and metoprolol as the internal standard. NaOH concentration, temperature and Trition X-114 concentration were optimized. All analyses were performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). All validation experiments met international acceptance criteria and no significant matrix effect was observed. The compatibility of CPE and LC-ESI-MS/MS was confirmed using clinical plasma samples and appropriate statistical tests. The determination of bisoprolol concentration in human plasma in the range 1.0-70ngmL(-1) by the CPE method leads to the results which are equivalent to those obtained by the widely used liquid-liquid extraction method. The results revealed that a structural analogue may be an appropriate internal standard when CPE is used as the extraction technique. CPE offers significant practical advantages over the classical extraction methods, including a positive impact on the environment, therefore its wider application in future pharmacokinetic studies is justifiable.

  6. Influence mechanism of low-dose ionizing radiation on Escherichia coli DH5α population based on plasma theory and system dynamics simulation.

    Science.gov (United States)

    Sun, Yi; Hu, Dawei; Li, Liang; Jing, Zheng; Wei, Chuanfeng; Zhang, Lantao; Fu, Yuming; Liu, Hong

    2016-01-01

    It remains a mystery why the growth rate of bacteria is higher in low-dose ionizing radiation (LDIR) environment than that in normal environment. In this study, a hypothesis composed of environmental selection and competitive exclusion was firstly proposed from observed phenomena, experimental data and microbial ecology. Then a LDIR environment simulator (LDIRES) was built to cultivate a model organism of bacteria, Escherichia coli (E. coli) DH5α, the accurate response of bacterial population to ionizing radiation intensity variation was measured experimentally, and then the precise relative dosage of ionizing radiation E. coli DH5α population received was calculated by finite element analysis based on drift-diffusion equations of plasma. Finally, a highly valid mathematical model expressing the relationship between E. coli DH5α population and LDIR intensity was developed by system dynamics based on hypotheses, experimental data and microbial ecology. Both experiment and simulation results clearly showed that the E. coli DH5α individuals with greater specific growth rate and lower substrate consumption coefficient would adapt and survive in LDIR environment and those without such adaptability were finally eliminated under the combined effects of ionizing radiation selection and competitive exclusion.

  7. Fast combustion waves and chemi-ionization processes in a flame initiated by a powerful local plasma source in a closed reactor.

    Science.gov (United States)

    Artem'ev, K V; Berezhetskaya, N K; Kazantsev, S Yu; Kononov, N G; Kossyi, I A; Popov, N A; Tarasova, N M; Filimonova, E A; Firsov, K N

    2015-08-13

    Results are presented from experimental studies of the initiation of combustion in a stoichiometric methane-oxygen mixture by a freely localized laser spark and by a high-current multispark discharge in a closed chamber. It is shown that, preceding the stage of 'explosive' inflammation of a gas mixture, there appear two luminous objects moving away from the initiator along an axis: a relatively fast and uniform wave of 'incomplete combustion' under laser spark ignition and a wave with a brightly glowing plasmoid behind under ignition from high-current slipping surface discharge. The gas mixtures in both the 'preflame' and developed-flame states are characterized by a high degree of ionization as the result of chemical ionization (plasma density n(e)≈10(12) cm(-3)) and a high frequency of electron-neutral collisions (ν(en)≈10(12) s(-1)). The role of chemical ionization in constructing an adequate theory for the ignition of a gas mixture is discussed. The feasibility of the microwave heating of both the preflame and developed-flame plasma, supplementary to a chemical energy source, is also discussed.

  8. Fast combustion waves and chemi-ionization processes in a flame initiated by a powerful local plasma source in a closed reactor

    Science.gov (United States)

    Artem'ev, K. V.; Berezhetskaya, N. K.; Kazantsev, S. Yu.; Kononov, N. G.; Kossyi, I. A.; Popov, N. A.; Tarasova, N. M.; Filimonova, E. A.; Firsov, K. N.

    2015-01-01

    Results are presented from experimental studies of the initiation of combustion in a stoichiometric methane–oxygen mixture by a freely localized laser spark and by a high-current multispark discharge in a closed chamber. It is shown that, preceding the stage of ‘explosive’ inflammation of a gas mixture, there appear two luminous objects moving away from the initiator along an axis: a relatively fast and uniform wave of ‘incomplete combustion’ under laser spark ignition and a wave with a brightly glowing plasmoid behind under ignition from high-current slipping surface discharge. The gas mixtures in both the ‘preflame’ and developed-flame states are characterized by a high degree of ionization as the result of chemical ionization (plasma density ne≈1012 cm−3) and a high frequency of electron–neutral collisions (νen≈1012 s−1). The role of chemical ionization in constructing an adequate theory for the ignition of a gas mixture is discussed. The feasibility of the microwave heating of both the preflame and developed-flame plasma, supplementary to a chemical energy source, is also discussed. PMID:26170426

  9. Determination of metformin in mouse, rat, dog and human plasma samples by laser diode thermal desorption/atmospheric pressure chemical ionization tandem mass spectrometry.

    Science.gov (United States)

    Swales, John G; Gallagher, Richard; Peter, Raimund M

    2010-11-02

    A simple, rapid and robust high-throughput assay for the quantitative analysis of metformin in plasma from different species using laser diode thermal desorption interfaced with atmospheric chemical pressure ionization tandem mass spectrometry (LDTD-APCI-MSMS) was developed for use in a pharmaceutical discovery environment. In order to minimize sample preparation a generic protein precipitation method was used to extract metformin from the plasma. Laser diode thermal desorption is a relatively new sample introduction method, the optimization of the instrumental parameters are presented. The method was successfully applied to spiked mouse, rat, dog and human plasma samples and was subsequently used to determine the oral pharmacokinetics of metformin after dosing to male rats in order to support drug discovery projects. The deviations for intra-assay accuracy and precision across the four species were less than 30% at all calibration and quality control levels.

  10. Relative Distribution of Au48+~Au52+ in Au Plasma by Ionization Dynamics

    Institute of Scientific and Technical Information of China (English)

    ZHUZhi-Yan; ZHUZheng-He; JIANGGang

    2003-01-01

    The present work proposes a theoretical method called ionization dynamics to derive the ionic charge state distribution. Using relativistic quantum mechanics to calculate the energy level lifetime and average ionic lifetime of each ion, the first-order ionization rate constant can be obtained. Based on these data, from the solution of differential equations for consecutive-irreversible ionization reactions, one will be able to derive the ionic charge state distribution.The calculated average positive charge 49.24 of Au48+ ~ Au52+ and their relative distribution are in good agreement with the results of Lawrence Livermore National Laboratory.

  11. Cloud-point extraction is compatible with liquid chromatography coupled to electrospray ionization mass spectrometry for the determination of antazoline in human plasma.

    Science.gov (United States)

    Giebułtowicz, Joanna; Kojro, Grzegorz; Piotrowski, Roman; Kułakowski, Piotr; Wroczyński, Piotr

    2016-09-05

    Cloud-point extraction (CPE) is attracting increasing interest in a number of analytical fields, including bioanalysis, as it provides a simple, safe and environmentally-friendly sample preparation technique. However, there are only few reports on the application of this extraction technique in liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. In this study, CPE was used for the isolation of antazoline from human plasma. To date, only one method of antazoline isolation from plasma exists-liquid-liquid extraction (LLE). The aim of this study was to prove the compatibility of CPE and LC-ESI-MS/MS and the applicability of CPE to the determination of antazoline in spiked human plasma and clinical samples. Antazoline was isolated from human plasma using Triton X-114 as a surfactant. Xylometazoline was used as an internal standard. NaOH concentration, temperature and Triton X-114 concentration were optimized. The absolute matrix effect was carefully investigated. All validation experiments met international acceptance criteria and no significant relative matrix effect was observed. The compatibility of CPE and LC-ESI-MS/MS was confirmed using clinical plasma samples. The determination of antazoline concentration in human plasma in the range 10-2500ngmL(-1) by the CPE method led to results which are equivalent to those obtained by the widely used liquid-liquid extraction method.

  12. Effect of nonplanar geometry on ion acoustic solitary waves in presence of ionization in collisional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Samiran [College of Textile Technology, Berhampore 742101, Murshidabad, West Bengal (India)]. E-mail: sran_g@yahoo.com

    2005-04-11

    It has been found that the dust ion acoustic solitary wave (DIASW) is governed by a modified form of Korteweg-de Vries (KdV) equation modified by the effects of ionization, particle collisions and bounded nonplanar geometry. Approximate analytical time evolution solution and also the numerical solution of modified form of KdV equation reveal that the wave amplitude grows exponentially with time due to ionization, whereas the bounded nonplanar geometry and collision reduce the instability growth rate.

  13. Two-Dimensional Nonlinear Propagation of Ion Acoustic Waves through KPB and KP Equations in Weakly Relativistic Plasmas

    Directory of Open Access Journals (Sweden)

    M. G. Hafez

    2016-01-01

    Full Text Available Two-dimensional three-component plasma system consisting of nonextensive electrons, positrons, and relativistic thermal ions is considered. The well-known Kadomtsev-Petviashvili-Burgers and Kadomtsev-Petviashvili equations are derived to study the basic characteristics of small but finite amplitude ion acoustic waves of the plasmas by using the reductive perturbation method. The influences of positron concentration, electron-positron and ion-electron temperature ratios, strength of electron and positrons nonextensivity, and relativistic streaming factor on the propagation of ion acoustic waves in the plasmas are investigated. It is revealed that the electrostatic compressive and rarefactive ion acoustic waves are obtained for superthermal electrons and positrons, but only compressive ion acoustic waves are found and the potential profiles become steeper in case of subthermal positrons and electrons.

  14. The effects of pre-ionization using a shunt resistor on reproducibility of the x-ray emission in a dense plasma focus device

    Science.gov (United States)

    Piriaei, D.; Yousefi, H. R.; Mahabadi, T. D.; SalarElahi, A.; Ghoranneviss, M.

    2017-08-01

    In this research, the effects of pre-ionization using a shunt resistor on reproducibility of x-ray emission in a Mather type plasma focus device have been studied. This technique increased the intensities of the emitted x-rays from argon as the filling gas of the device and made the x-ray yields with similar intensities reproducible. A Mirnov coil was also used to record the variations of the plasma's magnetic field, and the wavelet spectrums of these recorded signals showed the reduced instabilities due to the application of the pre-ionization technique. Moreover, it was demonstrated that this technique was capable of reducing the number of initial runaway electrons that could increase the impurities and instabilities inside the plasma. In addition to the above-mentioned features, this technique could improve the uniform formation of the current sheath during the breakdown phase that might later lead to a high quality pinch and high intensity emitted x-rays.

  15. Investigation of tissue inhibitor of metalloproteinases 1 in plasma from colorectal cancer patients and blood donors by surface-enhanced laser desorption/ionization time-of-flight mass spectrometryscopy

    DEFF Research Database (Denmark)

    CASPERSEN, M. B.; Sørensen, N. M.; Iversen, P

    2007-01-01

    in plasma, surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI TOF MS) was used. TIMP-1 measurements of plasma from 16 healthy donors and 14 CRC patients were performed using TIMP-1 monoclonal antibody in SELDI TOF MS and ELISA. SELDI TOF MS applying an antibody to TIMP-1...

  16. Development of a gas-cylinder-free plasma desorption/ionization system for on-site detection of chemical warfare agents.

    Science.gov (United States)

    Iwai, Takahiro; Kakegawa, Ken; Aida, Mari; Nagashima, Hisayuki; Nagoya, Tomoki; Kanamori-Kataoka, Mieko; Miyahara, Hidekazu; Seto, Yasuo; Okino, Akitoshi

    2015-06-02

    A gas-cylinder-free plasma desorption/ionization system was developed to realize a mobile on-site analytical device for detection of chemical warfare agents (CWAs). In this system, the plasma source was directly connected to the inlet of a mass spectrometer. The plasma can be generated with ambient air, which is drawn into the discharge region by negative pressure in the mass spectrometer. High-power density pulsed plasma of 100 kW could be generated by using a microhollow cathode and a laboratory-built high-intensity pulsed power supply (pulse width: 10-20 μs; repetition frequency: 50 Hz). CWAs were desorbed and protonated in the enclosed space adjacent to the plasma source. Protonated sample molecules were introduced to the mass spectrometer by airflow through the discharge region. To evaluate the analytical performance of this device, helium and air plasma were directly irradiated to CWAs in the gas-cylinder-free plasma desorption/ionization system and the protonated molecules were analyzed by using an ion-trap mass spectrometer. A blister agent (nitrogen mustard 3) and nerve gases [cyclohexylsarin (GF), tabun (GA), and O-ethyl S-2-N,N-diisopropylaminoethyl methylphosphonothiolate (VX)] in solution in n-hexane were applied to the Teflon rod and used as test samples, after solvent evaporation. As a result, protonated molecules of CWAs were successfully observed as the characteristic ion peaks at m/z 204, 181, 163, and 268, respectively. In air plasma, the limits of detection were estimated to be 22, 20, 4.8, and 1.0 pmol, respectively, which were lower than those obtained with helium plasma. To achieve quantitative analysis, calibration curves were made by using CWA stimulant dipinacolyl methylphosphonate as an internal standard; straight correlation lines (R(2) = 0.9998) of the peak intensity ratios (target per internal standard) were obtained. Remarkably, GA and GF gave protonated dimer ions, and the ratios of the protonated dimer ions to the protonated

  17. Reverse-phase liquid chromatography with electrospray ionization/mass spectrometry for the quantification of pseudoephedrine in human plasma and application to a bioequivalence study.

    Science.gov (United States)

    Kim, Jin-Ki; Jee, Jun-Pil; Park, Jeong-Sook; Kim, Hyung Tae; Kim, Chong-Kook

    2011-01-01

    A sensitive and selective reverse-phase liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method was developed and validated to quantify pseudoephedrine (CAS 90-82-4) in human plasma. Phenacetin was used as the internal standard (I.S.). Sample preparation was performed with a deproteinization step using acetonitrile. Pseudoephedrine and I.S. were successfully separated using gradient elution with 0.5% trifluoroacetic acid (TFA) in water and 0.5% TFA in methanol at a flow-rate of 0.2 mL/min. Detection was performed on a single quadrupole mass spectrometer by a selected ion monitoring (SIM) mode via electrospray ionization (ESI) source. The ESI source was set at positive ionization mode. The ion signals of m/z 166.3 and 180.2 were measured for the protonated molecular ions of pseudoephedrine and I.S., respectively. The lower limit of quantification (LLOQ) of pseudoephedrine in human plasma was 10 ng/mL and good linearity was observed in the range of concentrations 10-500 ng/mL (R2 = 1). The intra-day accuracy of the drug containing plasma samples was more than 97.60% with a precision of 3.99-11.82%. The inter-day accuracy was 99.36% or more, with a precision of 7.65-18.42%. By using this analytical method, the bioequivalence study of the pseudoephedrine preparation was performed and evaluated by statistical analysis of the log transformed mean ratios of pharmacokinetic parameters. All the results fulfilled the standard criteria of bioequivalence, being within the 80-125% range which is required by the Korea FDA, US FDA, and EMEA to conclude bioequivalence. Consequently, the developed reverse-phase LC-ESI-MS method was successfully applied to bioequivalence studies of pseudoephedrine in healthy male volunteers.

  18. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Perdian, David C. [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  19. Physics of Ionized Gases

    Science.gov (United States)

    Reiss, Howard R.; Smirnov, Boris M.

    2001-03-01

    A comprehensive textbook and reference for the study of the physics of ionized gases The intent of this book is to provide deep physical insight into the behavior of gases containing atoms and molecules from which one or more electrons have been ionized. The study of these so-called plasmas begins with an overview of plasmas as they are found in nature and created in the laboratory. This serves as a prelude to a comprehensive study of plasmas, beginning with low temperature and "ideal" plasmas and extending to radiation and particle transport phenomena, the response of plasmas to external fields, and an insightful treatment of plasma waves, plasma instabilities, nonlinear phenomena in plasmas, and the study of plasma interactions with surfaces. In all cases, the emphasis is on a clear and unified understanding of the basic physics that underlies all plasma phenomena. Thus, there are chapters on plasma behavior from the viewpoint of atomic and molecular physics, as well as on the macroscopic phenomena involved in physical kinetics of plasmas and the transport of radiation and of charged particles within plasmas. With this grounding in the fundamental physics of plasmas, the notoriously difficult subjects of nonlinear phenomena and of instabilities in plasmas are then treated with comprehensive clarity.

  20. Reduction of plasma density in the Helicity Injected Torus with Steady Inductance experiment by using a helicon pre-ionization source.

    Science.gov (United States)

    Hossack, Aaron C; Firman, Taylor; Jarboe, Thomas R; Prager, James R; Victor, Brian S; Wrobel, Jonathan S; Ziemba, Timothy

    2013-10-01

    A helicon based pre-ionization source has been developed and installed on the Helicity Injected Torus with Steady Inductance (HIT-SI) spheromak. The source initiates plasma breakdown by injecting impurity-free, unmagnetized plasma into the HIT-SI confinement volume. Typical helium spheromaks have electron density reduced from (2-3) × 10(19) m(-3) to 1 × 10(19) m(-3). Deuterium spheromak formation is possible with density as low as 2 × 10(18) m(-3). The source also enables HIT-SI to be operated with only one helicity injector at injector frequencies above 14.5 kHz. A theory explaining the physical mechanism driving the reduction of breakdown density is presented.

  1. A differentially pumped argon plasma in the linear plasma generator Magnum-PSI: gas flow and dynamics of the ionized fraction

    NARCIS (Netherlands)

    van Eck, H. J. N.; Hansen, T. A. R.; Kleyn, A. W.; van der Meiden, H. J.; D.C. Schram,; van Emmichoven, P. A. Zeijlma

    2011-01-01

    Magnum-PSI is a linear plasma generator designed to reach the plasma-surface interaction (PSI) regime of ITER and nuclear fusion reactors beyond ITER. To reach this regime, the influx of cold neutrals from the source must be significantly lower than the plasma flux reaching the target. This is

  2. A differentially pumped argon plasma in the linear plasma generator Magnum-PSI: gas flow and dynamics of the ionized fraction

    NARCIS (Netherlands)

    van Eck, H. J. N.; Hansen, T. A. R.; Kleyn, A. W.; van der Meiden, H. J.; D.C. Schram,; van Emmichoven, P. A. Zeijlma

    2011-01-01

    Magnum-PSI is a linear plasma generator designed to reach the plasma-surface interaction (PSI) regime of ITER and nuclear fusion reactors beyond ITER. To reach this regime, the influx of cold neutrals from the source must be significantly lower than the plasma flux reaching the target. This is achie

  3. Head-on collision of ion acoustic solitary waves in electron-positron-ion nonthermal plasmas for weakly and highly relativistic regimes

    Science.gov (United States)

    Alam, M. S.; Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.

    2017-07-01

    A comparative study of the interactions between nonlinear ion acoustic solitary waves (IASWs) propagating toward each other, and the electrostatic nonlinear propagation of IASWs, both for the weakly and relativistic regimes consisting of relativistic warm ions, nonthermal electrons, and positrons, is carried out. Two-sided Korteweg-de Vries (KdV) equations are derived using the extended Poincaré-Lighthill-Kuo (PLK) method to reveal the physical issues concerned. The effects of positron concentration, ion-electron temperature ratio, electron-positron temperature ratio, relativistic streaming factor, the population of electron, and positron nonthermality on the electrostatic resonances and their phase shifts are investigated for both regimes. It is found that the plasma parameters significantly modify the phase shifts, electrostatic resonances, hump-shaped electrostatic potential profiles, and the electric fields on the nonlinear propagation characteristics of IASWs. The results obtained may be useful for clarifications of interaction between IASWs in astrophysical and laboratory plasmas, especially in pulsar magnetosphere, laser produced, inertial confinement plasmas, and pulsar relativistic winds with supernova ejecta that produce nonthermal electrons, positrons, and relativistic ions.

  4. Determination of torasemide in human plasma and its bioequivalence study by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2016-04-01

    Full Text Available A sensitive and selective method using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC–ESI–MS to determine the concentration of torasemide in human plasma samples was developed and validated. Tolbutamide was chosen as the internal standard (IS. The chromatography was performed on a Gl Sciences Inertsil ODS-3 column (100 mm×2.1 mm i.d., 5.0 µm within 5 min, using methanol with 10 mM ammonium formate (60:40, v/v as mobile phase at a flow rate of 0.2 mL/min. The targeted compound was detected in negative ionization at m/z 347.00 for torasemide and 269.00 for IS. The linearity range of this method was found to be within the concentration range of 1–2500 ng/mL (r=0.9984 for torasemide in human plasma. The accuracy of this measurement was between 94.05% and 103.86%. The extracted recovery efficiency was from 84.20% to 86.47% at three concentration levels. This method was also successfully applied in pharmacokinetics and bioequivalence studies in Chinese volunteers.

  5. Determination of torasemide in human plasma and its bioequivalence study by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry$

    Institute of Scientific and Technical Information of China (English)

    Lin Zhang; Rulin Wang; Yuan Tian; Zunjian Zhang

    2016-01-01

    A sensitive and selective method using high-performance liquid chromatography coupled with elec-trospray ionization tandem mass spectrometry (HPLC–ESI–MS) to determine the concentration of tor-asemide in human plasma samples was developed and validated. Tolbutamide was chosen as the internal standard (IS). The chromatography was performed on a Gl Sciences Inertsil ODS-3 column (100 mm ? 2.1 mm i.d., 5.0 mm) within 5 min, using methanol with 10 mM ammonium formate (60:40, v/v) as mobile phase at a flow rate of 0.2 mL/min. The targeted compound was detected in negative io-nization at m/z 347.00 for torasemide and 269.00 for IS. The linearity range of this method was found to be within the concentration range of 1–2500 ng/mL (r¼0.9984) for torasemide in human plasma. The accuracy of this measurement was between 94.05%and 103.86%. The extracted recovery efficiency was from 84.20% to 86.47% at three concentration levels. This method was also successfully applied in pharmacokinetics and bioequivalence studies in Chinese volunteers.

  6. Liquid Chromatography-electrospray Ionization Tandem Mass Spectrometry for Simultaneous Determination of Metformin and Glimepiride in Beagle Dog Plasma and Bioequivalence Study

    Institute of Scientific and Technical Information of China (English)

    BAI Jing; SHI Xiao-wei; DU Ying-feng; XIANG Bai; WANG Shuai; CAO De-ying

    2012-01-01

    A sensitive and selective liquid chromatography-electrospray ionization tandem mass spectrometry(LC-ESI-MS/MS) was used for the simultaneous determination of metformin and glimepiride in beagle dog plasma with glipizide as internal standard(IS).After simplified protein precipitation with methanol,both the analytes and IS were chromatographed on a Zorbax CN column via gradient elution with methanol(containing 5 mmol/L ammonium acetate) and 5 mmol/L aqueous ammonium acetate as the mobile phase.Detection was performed by multiple reaction monitoring(MRM) scanning via ESI source operated in positive ionization mode.Specificity,linearity,accuracy,precision,recovery,matrix effect and stability were validated for metformin and glimepiride in beagle dog plasma.The calibration curves were linear in a concentration range of 10--10000 ng/mL for metformin and 4--4000 ng/mL for glimepiride with both correlation coefficients higher than 0.99.The recoveries obtained for the analytes and IS were all between 82.7% and 101.2%.The method exhibited excellent performance in terms of selectivity,robustness,short analytical time and simplicity of sample preparation.Finally,the proposed method was applied to a bioequivalence study of self-made bilayer tablet and commercial formulation containing 500 mg of metformin and 1 mg of glimepiride in beagle dogs.

  7. Tunable single-photon ionization TOF mass spectrometry using laser-produced plasma as the table-top VUV light source.

    Science.gov (United States)

    Di Palma, Tonia M; Prati, Maria V; Borghese, Antonio

    2009-12-01

    Here we report on a laser plasma-based tunable VUV photoionization time-of-flight (TOF) mass spectrometer conceived mainly to study complex gaseous mixtures. Ionizing photons at tunable vacuum UV (VUV) wavelengths are generated by a gas-target laser-produced plasma, spectrally dispersed in the range 100-160 nm and efficiently focused onto a sample molecular beam. As a test case, we studied the exhaust gas of a four-stroke moped, a typical example of a complex gaseous mixture. Due to the VUV "soft" ionization, the mass spectra are less congested and more easily interpretable. Substituted benzene derivatives are found to give the most intense signals. Several aliphatic hydrocarbons are also detected. The use of tunable VUV radiation allowed the investigation of the contribution of isomers in the mass spectrum from the onset and shape of the photoionization efficiency spectra. Semiquantitative analysis was performed using known literature data detailing the photoionization cross sections. Our findings suggest that using combined data on the mass/photoionization efficiency spectra may be very helpful for a comprehensive analysis of complex gaseous mixtures.

  8. Storage-ring ionization and recombination experiments with multiply charged ions relevant to astrophysical and fusion plasmas

    CERN Document Server

    Schippers, Stefan

    2011-01-01

    Past and ongoing research activities at the Heidelberg heavy-ion storage-ring TSR are reviewed which aim at providing accurate absolute rate coefficients and cross sections of atomic collision processes for applications in astrophysics and magnetically confined fusion. In particular, dielectronic recombination and electron impact ionization of iron ions are discussed as well as dielectronic recombination of tungsten ions.

  9. Competitive Deprotonation and Superoxide [O2 -•] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions

    Science.gov (United States)

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B.

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O•) preferentially form superoxide radical-anion (O2 -•) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2 -•) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2 -• adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O•) to generate the superoxide radical-anion ( m/z 32) or the deprotonated amide [ m/z (M - H)-], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  10. Absolute number densities of helium metastable atoms determined by atomic absorption spectroscopy in helium plasma-based discharges used as ambient desorption/ionization sources for mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Reininger, Charlotte; Woodfield, Kellie [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT 84602 (United States); Keelor, Joel D.; Kaylor, Adam; Fernández, Facundo M. [Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332 (United States); Farnsworth, Paul B., E-mail: paul_farnsworth@byu.edu [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT 84602 (United States)

    2014-10-01

    The absolute number densities of helium atoms in the 2s {sup 3}S{sub 1} metastable state were determined in four plasma-based ambient desorption/ionization sources by atomic absorption spectroscopy. The plasmas included a high-frequency dielectric barrier discharge (HF-DBD), a low temperature plasma (LTP), and two atmospheric-pressure glow discharges, one with AC excitation and the other with DC excitation. Peak densities in the luminous plumes downstream from the discharge capillaries of the HF-DBD and the LTP were 1.39 × 10{sup 12} cm{sup −3} and 0.011 × 10{sup 12} cm{sup −3}, respectively. Neither glow discharge produced a visible afterglow, and no metastable atoms were detected downstream from the capillary exits. However, densities of 0.58 × 10{sup 12} cm{sup −3} and 0.97 × 10{sup 12} cm{sup −3} were measured in the interelectrode regions of the AC and DC glow discharges, respectively. Time-resolved measurements of metastable atom densities revealed significant random variations in the timing of pulsed absorption signals with respect to the voltage waveforms applied to the discharges. - Highlights: • We determine He metastable number densities for four plasma types • The highest number densities were observed in a dielectric barrier discharge • No helium metastable atoms were observed downstream from the exits of glow discharges.

  11. A comparative study of the filamentation and two-stream instabilities in weakly relativistic counter-streaming plasmas

    Science.gov (United States)

    Ghorbanalilu, M.; Sadegzadeh, S.

    2017-01-01

    Counter-streaming plasma structures are ubiquitous in astrophysical sources of non-thermal radiations. We discuss the dispersion properties and the stability of this non-thermal particle distribution, which is modeled on the basis of the relativistic Jüttner-Maxwell distribution function in the correct laboratory frame of reference. In this work, we aim to construct analytical solutions of the dispersion relations and investigate the properties of the growth rate of the filamentation and two-stream instabilities in an unmagnetized and homogeneous counter-propagating plasma. The Maxwell and the relativistic Vlasov equations are used to derive the covariant dispersion relations that are valid in any (conveniently chosen) reference frame. Aperiodic solutions ( ℜ(ω)≃0 ) to the covariant dispersion relations of the growing modes ( ℑ(ω)>0 ) are demonstrated with the aid of analytical calculations. The dependence of the growth rate on the normalized bulk velocity β0=V0/c and thermal parameter μ=m c2/KBT is shown in graphic illustrations. We found that for both kinds of instabilities, growth rates are decreased by increasing the temperature and decreasing the bulk velocity. Therefore, the electrons at sufficiently low temperatures and with relativistic streams are capable of increasing the range of unstable wave numbers and consequently prevent the instability to cease at small wave numbers. The results indicate that under the same condition and in contrast to the non-relativistic regime, the filamentation instability has the largest growth rate and the electrostatic two-stream instability is in the next place.

  12. Thermal plasmas: fundamental aspects; Plasmas thermiques: aspects fondamentaux

    Energy Technology Data Exchange (ETDEWEB)

    Fauchais, P. [Limoges Univ. Faculte des Sciences, Lab. Science des Procedes Ceramiques et Traitements de Surface (SPCTS-UMR-6638-CNRS), 87 (France)

    2005-10-01

    This article treats of thermal plasmas, i.e. mainly produced by electric arcs and RF discharges. Their main characteristic is that they are generated at a pressure close to the atmospheric pressure (between 10{sup 4} and 10{sup 6} Pa) and refer to the classical kinetics of the Boltzmann equation. Because of the pressure, the collisions between particles are numerous and ionization is mainly due to a thermal effect. They correspond to electron densities between 10{sup 20} and 10{sup 24} m{sup -3} and temperatures between 6000 and 25000 K. In these plasmas, the electric fields and the average free trajectories are too weak to generate a ionization state by direct inelastic collision. Ionization is thus essentially a thermal phenomenon due to elastic collisions. This article presents: 1 - the particles present in a plasma: definition, energy states; 2 - characteristic data: collisions, average free path and collision cross-section, distribution function, ionization types, charged particles mobility inside an electric field, scattering, Debye length; 3 - plasmas at the thermodynamical equilibrium: conditions of equilibrium, calculation of composition, thermodynamic properties, transport properties, radiation; 4 - thermal plasmas away from equilibrium: conditions of non-equilibrium, calculation of plasma composition, calculation of transport properties, quenching phenomenon. (J.S.)

  13. Comparison of the B field dependency of plasma parameters of a weakly magnetized inductive and Helicon hydrogen discharge

    Science.gov (United States)

    Briefi, S.; Gutmann, P.; Rauner, D.; Fantz, U.

    2016-06-01

    The discharge properties of a weakly magnetized inductively coupled hydrogen discharge (operating pressure 1 Pa) are evaluated by using optical emission spectroscopy. The behaviour of the electron density n e, temperature T e and the density ratio of atomic to molecular hydrogen n H/{{n}{{\\text{H}2}}} with varying magnetic field strength (up to 12 mT) is investigated. The results obtained from the OES measurements performed with a line of sight directed along the central axis of the cylindrical discharge vessel are compared to the case when the ICP antenna is replaced by a Nagoya-type-III Helicon antenna. In the ICP case, the electron temperature and density at the axis of the cylindrical discharge vessel decrease with increasing magnetic field due to the hindered radial electron diffusion. This results in a gradual transition from a homogeneous radial emission profile to a hollow profile with minimal emission in the discharge centre. Concerning the density ratio of atomic to molecular hydrogen, one obtains very high values of up to 0.32 at low B field and a decreasing behaviour with higher magnetic fields. For the Helicon case, the obtained values of n e and T e are virtually unaffected by the external magnetic field. Furthermore, a hollow radial emission profile is observed already at low B field strengths. In the Helicon setup one obtains an increasing trend for n H/{{n}{{\\text{H}2}}} with a maximum of about 0.2 at 12 mT.

  14. Rapid determination of canagliflozin in rat plasma by UHPLC-MS/MS using negative ionization mode to avoid adduct-ions formation.

    Science.gov (United States)

    Iqbal, Muzaffar; Ezzeldin, Essam; Al-Rashood, Khalid A; Asiri, Yousif A; Rezk, Naser L

    2015-01-01

    Canagliflozin is the first sodium-glucose co-transporter-2 inhibitor, approved by the US Food and Drug Administration for the treatment of type 2 diabetes mellitus. In this study, a sensitive UHPLC-MS/MS assay for rapid determination of canagliflozin in rat plasma was developed and validated for the first time. Chromatographic separation of canagliflozin and zafirlukast (IS) was carried out on Acquity BEH C18 column (100×2.1 mm, i.d. 1.7 µm) using acetonitrile-water (80:20, v/v) as mobile phase at a flow rate of 0.3 mL min(-1). Canagliflozin and IS were extracted from plasma by protein precipitation method using acetonitrile. The mass spectrometric detection was performed using electrospray ionization source in negative mode to avoid canagliflozin adduct ions formation. Multiple reaction monitoring were used for quantitation of precursor to product ion at m/z 443.16 >364.96 for canagliflozin and m/z 574.11>462.07 for IS, respectively. The assay was fully validated in terms of selectivity, linearity, accuracy, precision, recovery, matrix effects and stability. The validated method was successfully applied to the characterization of oral pharmacokinetic profiles of canagliflozin in rats. The mean maximum plasma concentration of canagliflozin of 1616.79 ng mL(-1) was achieved in 1.5 h after oral administration of 20 mg kg(-1) in rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Application of pentafluorophenyl hydrazine derivatives to the analysis of nabumetone and testosterone in human plasma by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry.

    Science.gov (United States)

    Sheen, J F; Her, G R

    2004-12-01

    Two carbonyl compounds, nabumetone and testosterone, were derivatized with pentafluorophenyl hydrazine (PFPH) and analyzed by atmospheric-pressure chemical-ionization mass spectrometry. The PFPH derivatives underwent dissociative electron capture in negative-ion APCI (ECAPCI) and gave intense [M-20](-) ions in the mass spectra. In positive-ion APCI, the PFPH derivatives underwent efficient protonation and gave intense [M + H](+) ions in the mass spectra. In CID, the major product ions of the [M-20](-) ions in ECAPCI corresponded to the partial moiety of PFPH. In contrast, the major product ions of [M + H](+) corresponded to the partial moiety of the analyte. By using selected reaction monitoring (SRM) detection, low pg of nabumetone (1 pg) and testosterone (7 pg) could be detected in both ECAPCI and positive-ion APCI. In comparison with the detection limits (SRM) of the underivatized analytes, use of the PFPH derivatives resulted in 2500-fold and 35-fold sensitivity enhancements for nabumetone and testosterone, respectively. The PFPH derivatives were applied to the analysis of nabumetone and testosterone in human plasma by both ECAPCI and positive-ion APCI and were found to enable detection of 0.1 ng mL(-1) nabumetone in spiked plasma. For testosterone, endogenous testosterone in female plasma was detected in both ECAPCI and positive-ion APCI.

  16. Absolute number densities of helium metastable atoms determined by atomic absorption spectroscopy in helium plasma-based discharges used as ambient desorption/ionization sources for mass spectrometry

    Science.gov (United States)

    Reininger, Charlotte; Woodfield, Kellie; Keelor, Joel D.; Kaylor, Adam; Fernández, Facundo M.; Farnsworth, Paul B.

    2014-10-01

    The absolute number densities of helium atoms in the 2s 3S1 metastable state were determined in four plasma-based ambient desorption/ionization sources by atomic absorption spectroscopy. The plasmas included a high-frequency dielectric barrier discharge (HF-DBD), a low temperature plasma (LTP), and two atmospheric-pressure glow discharges, one with AC excitation and the other with DC excitation. Peak densities in the luminous plumes downstream from the discharge capillaries of the HF-DBD and the LTP were 1.39 × 1012 cm- 3 and 0.011 × 1012 cm- 3, respectively. Neither glow discharge produced a visible afterglow, and no metastable atoms were detected downstream from the capillary exits. However, densities of 0.58 × 1012 cm- 3 and 0.97 × 1012 cm- 3 were measured in the interelectrode regions of the AC and DC glow discharges, respectively. Time-resolved measurements of metastable atom densities revealed significant random variations in the timing of pulsed absorption signals with respect to the voltage waveforms applied to the discharges.

  17. Quantification of fudosteine in human plasma by high-performance liquid chromatography-electrospray ionization mass spectrometry employing precolumn derivatization with 9-fluorenylmethyl chloroformate.

    Science.gov (United States)

    Xu, Fengguo; Zhang, Zunjian; Jiao, Haoyan; Tian, Yuan; Zhang, Beibei; Chen, Yun

    2006-05-01

    This paper describes a novel method for the sensitive and selective determination of fudosteine in human plasma. The method involves a derivatization step with 9-fluorenylmethyl chloroformate (FMOC-Cl) in borate buffer and detection based on high-performance liquid chromatography-electrospray ionization mass spectrometry (LC/ESI/MS). After acetonitrile-induced protein precipitation of plasma samples, fudosteine was derivatized with FMOC-Cl, then extracted by ethyl acetate, evaporated, reconstituted and injected using an LC/ESI/MS instrument. Separation was achieved using an ODS column and isocratic elution. Excellent linearity was obtained for the entire calibration range from 0.05 to 20 microg/ml. Validation assays of the lower limit of quantification (LLOQ) as well as for the intra- and inter-batch precision and accuracy met the international acceptance criteria for bioanalytical method validation. Using the developed analytical method, fudosteine could be detected for the first time in human plasma with a low limit of detection (LLOD) of 0.03 microg/ml. The proposed method has been successfully applied to study the pharmacokinetics of fudosteine in healthy Chinese volunteers after single and multiple oral administration.

  18. Generation of High Brightness Electron Beams via Ionization Induced Injection by Transverse Colliding Lasers in a Beam-Driven Plasma Wakefield Accelerator

    CERN Document Server

    Li, F; Xu, X L; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Cheng, H B; Tang, C X; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2013-01-01

    The production of ultra-bright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional (3D) particle-in-cell (PIC) simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is much reduced and the injection is localized along the propagation axis of the wake. This minimizes both the initial 'thermal' emittance and the emittance growth due to transverse phase mixing. 3D PIC simulations show that ultra-short (around 8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes respectively and a brightness greater than 1.7*10e19 A rad-2 m-2 can be obtained for realistic parameters.

  19. Potential of gas chromatography-atmospheric pressure chemical ionization-time-of-flight mass spectrometry for the determination of sterols in human plasma.

    Science.gov (United States)

    Matysik, S; Schmitz, G; Bauer, S; Kiermaier, J; Matysik, F-M

    2014-04-11

    The application of Gas Chromatography (GC)-Atmospheric Pressure Chemical Ionization (APCI)-Time-of-Flight Mass Spectrometry (TOF-MS) is presented for sterol analysis in human plasma. A commercial APCI interface was modified to ensure a well-defined humidity which is essential for controlled ionization. In the first step, optimization regarding flow rates of auxiliary gases was performed by using a mixture of model analytes. Secondly, the qualitative and quantitative analysis of sterols including oxysterols, cholesterol precursors, and plant sterols as trimethylsilyl-derivatives was successfully carried out. The characteristics of APCI together with the very good mass accuracy of TOF-MS data enable the reliable identification of relevant sterols in complex matrices. Linear calibration lines and plausible results for healthy volunteers and patients could be obtained whereas all mass signals were extracted with an extraction width of 20 ppm from the full mass data set. One advantage of high mass accuracy can be seen in the fact that from one recorded run any search for m/z can be performed. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Simultaneous determination of quetiapine and three metabolites in human plasma by high-performance liquid chromatography-electrospray ionization mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Kun-yanLI; Ze-nengCHENG; XinLI; Xue-lianBAI; Bi-kuiZHANG; FengWANG; Huan-deLI

    2004-01-01

    AIM:To develop a high performance liquid chromatography-electrospray mass spectrometry (HPLC-MS/ESI)method for simultaneous determination of quetiapine and its sulfoxide-, 7-hydroxy-, 7-hydroxy-N-dealkyl-metabolites in human plasma. METHODS: The HPLC separation of the compounds was performed on a Kromasil C18, (5μm, 4.6 mm×150 mm) column, using water (formic acid: 1.70 mmol/L, ammonium acetate: 5.8 mmol/L)-acetoni-trile (65:35) as mobile phase, with a flow-rate of 0.95 mL/min. The compounds were ionized in the electrospray ionization (ESI) ion source of the mass spectrometer and detected in the selected ion recording (SIR) mode. The samples were extracted using solid-phase extraction columns. RESULTS: The calibration curves were linear in theranges of 10-2000 μg/L for quetiapine, 1-200 μg/L for its metabolites, respectively. The average extraction recoveries for all the four samples were above 85 %. The methodology recoveries were much higher than 95 %. Theintra-day and inter-day RSD are less than 15 %. CONCLUSION: The method is accurate, sensitive, and simple for study of pharmacokinetics and metabolic mechanism of quetiapine in patients at therapeutic dose.

  1. 空气中产生太赫兹波过程有关离化机制的理论模拟%Simulation of the ionization process of generating terahertz waves from air plasma

    Institute of Scientific and Technical Information of China (English)

    戴厚梅

    2011-01-01

    Photocurrent model is used to interpret the process of generating THz waves from laser in-duced gas plasma. First, irradiated by an intense laser pulse, the gas is ionized to gas plasma, and then the liberated electrons accelerate in the laser electric field, and an electromagnetic pulse at THz frequencies is produced. When the laser intensity is high enough, single ionization is not sufficient, for multiple degree of ionization, especially double ionization, should be taken into account. This pa-per mainly simulates the ionization process, by considering double ionization; and the electron density evolution with time is calculated out.%在利用光电流模型模拟空气中太赫兹辐射的过程中,飞秒激光首先将大气离化,离化后的电子在外场下加速,产生一定量的太赫兹渡.当飞秒激光的能量达到一定强度时,离化过程变得复杂,可发生多阶离化,并在产生离子数中扮演重要角色,尤其是二阶离化作用突出.文章重点讨论二阶离化对产生离子数的贡献.

  2. Weak Convergence and Weak Convergence

    Directory of Open Access Journals (Sweden)

    Narita Keiko

    2015-09-01

    Full Text Available In this article, we deal with weak convergence on sequences in real normed spaces, and weak* convergence on sequences in dual spaces of real normed spaces. In the first section, we proved some topological properties of dual spaces of real normed spaces. We used these theorems for proofs of Section 3. In Section 2, we defined weak convergence and weak* convergence, and proved some properties. By RNS_Real Mizar functor, real normed spaces as real number spaces already defined in the article [18], we regarded sequences of real numbers as sequences of RNS_Real. So we proved the last theorem in this section using the theorem (8 from [25]. In Section 3, we defined weak sequential compactness of real normed spaces. We showed some lemmas for the proof and proved the theorem of weak sequential compactness of reflexive real Banach spaces. We referred to [36], [23], [24] and [3] in the formalization.

  3. Equation of state of fully ionized electron-ion plasmas. II. Extension to relativistic densities and to the solid phase

    CERN Document Server

    Potekhin, A Yu

    2000-01-01

    The analytic equation of state of nonideal Coulomb plasmas consisting of pointlike ions immersed in a polarizable electron background (physics/9807042) is improved, and its applicability range is considerably extended. First, the fit of the electron screening contribution in the free energy of the Coulomb liquid is refined at high densities where the electrons are relativistic. Second, we calculate the screening contribution for the Coulomb solid (bcc and fcc) and derive an analytic fitting expression. Third, we propose a simple approximation to the internal and free energy of the liquid one-component plasma of ions, accurate within the numerical errors of the most recent Monte Carlo simulations. We obtain an updated value of the coupling parameter at the solid-liquid phase transition for the one-component plasma: Gamma_m = 175.0 (+/- 0.4).

  4. Study and Control of Various Corona Modes in an Atmospheric Pressure Weakly Ionized Plasma Reactor Using a Current Sensor Characterized by a Broad Frequency Band

    Science.gov (United States)

    Islam, Rokibul; Pedrow, Patrick; Lekobou, William; Englund, Karl

    2013-09-01

    A broad band current sensor is being used to monitor the various phenomena (primary streamers, secondary streamers, back corona, etc.) associated with an atmospheric pressure needle-array-to-grounded-screen corona discharge. The reactor consists of a PVC tube and the needle array consists of nickel coated steel electrodes with radius of curvature about 50 μ . The grounded screen is made from stainless steel mesh and applied voltage has a frequency of 60 Hz with an RMS value ranging from 0 to 10 kV. The voltage sensor is a resistive divider and the current sensor is a viewing resistor with value 50 Ω. The feed gas stream is presently (argon + acetylene) or (argon + oxygen) with the argon acting as carrier gas and the acetylene and oxygen acting as precursor gases. Voltage and current are captured with a LeCroy 9350AL 500MHz oscilloscope and analyzed with Matlab using digital signal processing algorithms. The goals of the research are 1) to measure reactor electrical power on a real time basis; 2) to provide real time control of the applied voltage and thus avoid spark conditions; and 3) to identify the various corona modes present in the reactor. Processing of substrates takes place downstream from the grounded screen, outside of the harsh corona discharge environment.

  5. Efficient Ionization Investigation for Flow Control and Energy Extraction

    Science.gov (United States)

    Schneider, Steven J.; Kamhawi, Hani; Blankson, Isaiah M.

    2009-01-01

    Nonequilibrium ionization of air by nonthermal means is explored for hypersonic vehicle applications. The method selected for evaluation generates a weakly ionized plasma using pulsed nanosecond, high-voltage discharges sustained by a lower dc voltage. These discharges promise to provide a means of energizing and sustaining electrons in the air while maintaining a nearly constant ion/neutral molecule temperature. This paper explores the use of short approx.5 nsec, high-voltage approx.12 to 22 kV, repetitive (40 to 100 kHz) discharges in generating a weakly ionized gas sustained by a 1 kV dc voltage in dry air at pressures from 10 to 80 torr. Demonstrated lifetimes of the sustainer discharge current approx.10 to 25 msec are over three orders of magnitude longer than the 5 nsec pulse that generates the electrons. This life is adequate for many high speed flows, enabling the possibility of exploiting weakly ionized plasma phenomena in flow-fields such as those in hypersonic inlets, combustors, and nozzles. Results to date are obtained in a volume of plasma between electrodes in a bell jar. The buildup and decay of the visible emission from the pulser excited air is photographed on an ICCD camera with nanosecond resolution and the time constants for visible emission decay are observed to be between 10 to 15 nsec decreasing as pressure increases. The application of the sustainer voltage does not change the visible emission decay time constant. Energy consumption as indicated by power output from the power supplies is 194 to 669 W depending on pulse repetition rate.

  6. Volume nanograting formation in laser-silica interaction as a result of the 1D plasma-resonance ionization instability

    CERN Document Server

    Gildenburg, V B

    2016-01-01

    The initial stage of the small-scale ionization-induced instability developing inside the fused silica volume exposed to the femtosecond laser pulse is studied as a possible initial cause of the self-organized nanograting formation. We have calculated the spatial spectra of the instability with the electron-hole diffusion taken into account for the first time and have found that it results in the formation of some hybrid (diffusion-wave) 1D structure with the spatial period determined as geometrical mean of the laser wavelength and characteristic diffusion length of the process considered. Near the threshold of the instability this period occurs to be approximately equal to the laser half-wavelength in the silica, close to the one experimentally observed.

  7. Volume nanograting formation in laser-silica interaction as a result of the 1D plasma-resonance ionization instability

    Science.gov (United States)

    Gildenburg, V. B.; Pavlichenko, I. A.

    2016-08-01

    The initial stage of the small-scale ionization-induced instability developing inside the fused silica volume exposed to the femtosecond laser pulse is studied as a possible initial cause of the self-organized nanograting formation. We have calculated the spatial spectra of the instability with the electron-hole diffusion taken into account for the first time and have found that it results in the formation of some hybrid (diffusion-wave) 1D structure with the spatial period determined as the geometrical mean of the laser wavelength and characteristic diffusion length of the process considered. Near the threshold of the instability, this period occurs to be approximately equal to the laser half-wavelength in the silica, close to the one experimentally observed.

  8. Determination of alprostadil in rat plasma by ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry after intravenous administration.

    Science.gov (United States)

    Lin, Xia; Zhang, Yu; Cui, Yue; Wang, Lin; Wang, Jing; Tang, Xing

    2009-05-01

    A rapid, highly selective ultra performance liquid chromatography-electrospray ionisation-tandem mass spectrometry method (UPLC-ESI-MS/MS) was developed and validated for the determination and pharmacokinetic investigation of alprostadil in rat plasma. After a simple sample preparation procedure involving a one-step liquid-liquid extraction, alprostadil and the internal standard, diphenhydramine, were chromatographed on an ACQUITY UPLC BEH C(18) column with gradient elution using a mobile phase consisting of acetonitrile and water (containing 0.1% formic acid) at a flow rate of 0.25 mL min(-1). The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring (MRM) mode via an electrospray ionization (ESI) source. The calibration curve was linear (r(2)=0.99) over the concentration range 0.4-250.0 ng mL(-1), with a lower limit of quantification of 0.4 ng mL(-1) for alprostadil. The inter- and intra-day precision (%R.S.D.) was less than 8.5% and 2.4%, respectively, and the accuracy (RE%) was between 9.3% and 1.0% (n=6). Alprostadil in rat plasma was stable when stored at room temperature for 0.5h and at -20 degrees C for two weeks. The method was very rapid, simple and reliable, and was employed for the first time for the pharmacokinetic studies of alprostadil in rats after a single intravenous administration of 50 microg kg(-1).

  9. Quantification of low levels of organochlorine pesticides using small volumes ({<=}100 {mu}l) of plasma of wild birds through gas chromatography negative chemical ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Rodriguez, Laura B. [Centro de Investigaciones Biologicas del Noroeste, S.C., Environmental Planning and Conservation Program, Mar Bermejo No. 195, Col. Playa Palo de Santa Rita, Ado. Postal 128, La Paz, BCS. 23090 (Mexico)]. E-mail: lrivera04@cibnor.mx; Rodriguez-Estrella, Ricardo [Centro de Investigaciones Biologicas del Noroeste, S.C., Environmental Planning and Conservation Program, Mar Bermejo No. 195, Col. Playa Palo de Santa Rita, Ado. Postal 128, La Paz, BCS. 23090 (Mexico); Ellington, James Jackson [National Exposure Research Laboratory, US Environmental Protection Agency, 960 College Station Road, Athens, GA 30605 (United States); Evans, John J. [National Exposure Research Laboratory, US Environmental Protection Agency, 960 College Station Road, Athens, GA 30605 (United States); Senior Service America Inc. (United States)

    2007-07-15

    A solid phase extraction and gas chromatography with negative chemical ionization mass spectrometry in scan mode (GC-NCI-MS) method was developed to identify and quantify for the first time low levels of organochlorine pesticides (OCs) in plasma samples of less than 100 {mu}l from wild birds. The method detection limits ranged from 0.012 to 0.102 pg/{mu}l and the method reporting limit from 0.036 to 0.307 pg/{mu}l for {alpha}, {gamma}, {beta} and {delta}-hexachlorocyclohexane (HCH), heptachlor, aldrin, heptachlor epoxide, endosulfan I, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE), dieldrin, endrin, endosulfan-II, endrin-aldehyde and endosulfan-sulfate. Pesticide levels in small serum samples from individual Falco sparverius, Sturnella neglecta, Mimus polyglottos and Columbina passerina were quantified. Concentrations ranged from not detected (n/d) to 204.9 pg/{mu}l for some OC pesticides. All levels in the food web in and around cultivated areas showed the presence of pesticides notwithstanding the small areas for agriculture existing in the desert of Baja California peninsula. - This technique allows small birds to be used as indicators of chemical contamination in habitats because pesticides can be quantified in very small volumes of plasma.

  10. Simultaneous determination of Eleutheroside B and Eleutheroside E in rat plasma by high performance liquid chromatography-electrospray ionization mass spectrometry and its application in a pharmacokinetic study.

    Science.gov (United States)

    Ma, Bo; Zhang, Qi; Liu, Yinhui; Li, Jing; Xu, Qiuyu; Li, Xiaotian; Yang, Xiaojing; Yao, Di; Sun, Jingjing; Cui, Guangbo; Ying, Hanjie

    2013-02-15

    Eleutheroside B and Eleutheroside E, two kinds of the major bioactive saponins of Eleutherococcus senticosus, play a pivotal role in biologic activity. In this study, a specific and sensitive high performance liquid chromatography-electrospray ionization-tandem mass spectrometry method (HPLC-MS/MS) was developed and validated for simultaneous determination of Eleutheroside B and Eleutheroside E in rat plasma. The analytes were extracted from rat plasma via a simple protein precipitation procedure with methanol and polygonin was used as internal standard. Chromatographic separation was achieved on a C18 column using a gradient elution program with acetonitrile and water containing 0.1% ammonium hydroxide solution as the mobile phase, with a flow rate of 0.2mL/min. The detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reactions monitoring (MRM) mode in a negative ion mode via electrospray ionization (ESI). The transition monitored were m/z 371 [M-H](-)→209 for Eleutheroside B, m/z 741[M-H](-)→579 for Eleutheroside E and m/z 389[M-H](-)→277 for internal standard. Linear calibration curves were obtained in the concentration range of 1-2000ng/mL for both (Eleutheroside B and Eleutheroside E), with a lower limit of quantification of 1ng/mL. Extraction recovery was over 80% in plasma. The intra- and inter-day precision (RSD) values were below 12% and accuracy (RE) was -2.80 to 5.70% at three QC levels for both. The assay was successfully applied to study pharmacokinetics behavior in rats after oral and intravenous administration of the single substances (Eleutheroside B and Eleutheroside E). And further research was performed by comparing the difference in pharmacokinetic behavior between the single substances and an aqueous extract of E. senticosus after oral administration. Significant difference in pharmacokinetic characteristics between the single substances and an aqueous extract was found in rat, which would be beneficial for

  11. Effective potentials for charge-helium and charge-singly-ionized helium interactions in a dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T.S.; Amirov, S.M.; Moldabekov, Zh.A. [Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan)

    2016-06-15

    The effective electron (proton)-He and electron (proton)-He{sup +} screened pair interaction potentials arising as a result of partial screening of the helium nucleus field by bound electrons, taking into account both screening by free charged particles and quantum diffraction effect in dense plasmas were derived. The impact of quantum effects on screening was analyzed. It was shown that plasma polarization around the atom leads to the additional repulsion (attraction) between the electron (proton) and the helium atom. The method of constructing the full electron (proton)-He and electron (proton)-He{sup +} screened pair interaction potentials as the sum of the derived potentials with the polarization potential and exchange potential is discussed. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Combined Monte Carlo and Fluid Sputter Transport Model in an Ionized PVD System with Experimental Plasma Characterization

    Science.gov (United States)

    Ruzic, David N.; Juliano, Daniel R.; Hayden, Douglas B.; Allain, Monica M. C.

    1998-10-01

    A code has been developed to model the transport of sputtered material in a modified industrial-scale magnetron. The device has a target diameter of 355 mm and was designed for 200 mm substrates. The chamber has been retrofitted with an auxilliary RF inductive plasma source located between the target and substrate. The source consists of a water-cooled copper coil immersed in the plasma, but with a diameter large enough to prevent shadowing of the substrate. The RF plasma, target sputter flux distribution, background gas conditions, and geometry are all inputs to the code. The plasma is characterized via a combination of a Langmuir probe apparatus and the results of a simple analytic model of the ICP system. The source of sputtered atoms from the target is found through measurements of the depth of the sputter track in an eroded target and the distribution of the sputter flux is calculated via VFTRIM. A Monte Carlo routine tracks high energy atoms emerging from the target as they move through the chamber and undergo collisions with the electrons and background gas. The sputtered atoms are tracked by this routine whatever their electronic state (neutral, excited, or ion). If the energy of a sputtered atom decreases to near-thermal levels, then it exits the Monte Carlo routine as is tracked with a simple diffusion model. In this way, all sputtered atoms are followed until they hit and stick to a surface, and the velocity distribution of the sputtered atom population (including electronic state information) at each surface is calculated, especially the substrate. Through the use of this simulation the coil parameters and geometry can be tailored to maximize deposition rate and sputter flux uniformity.

  13. Shear and Bulk Viscosities of a Weakly Coupled Quark Gluon Plasma with Finite Chemical Potential and Temperature---Leading-Log Results

    CERN Document Server

    Chen, Jiunn-Wei; Song, Yu-Kun; Wang, Qun

    2012-01-01

    We calculate the shear (eta) and bulk (zeta) viscosities of a weakly coupled quark gluon plasma at the leading-log order with finite temperature T and quark chemical potential mu. We find that the shear viscosity to entropy density ratio eta/s increases monotonically with mu and eventually scales as (mu/T)^2 at large mu. In contrary, zeta/s is insensitive to mu. Both eta/s and zeta/s are monotonically decreasing functions of the quark flavor number N_f when N_f \\geq 2. This property is also observed in pion gas systems. Our perturbative calculation suggests that QCD becomes the most perfect (i.e. with the smallest eta/s) at mu=0 and N_f = 16 (the maximum N_f with asymptotic freedom). It would be interesting to test whether the currently smallest eta/s computed close to the phase transition with mu=0 and N_f = 0 can be further reduced by increasing N_f.

  14. Ultracold neutral plasmas

    Science.gov (United States)

    Lyon, M.; Rolston, S. L.

    2017-01-01

    By photoionizing samples of laser-cooled atoms with laser light tuned just above the ionization limit, plasmas can be created with electron and ion temperatures below 10 K. These ultracold neutral plasmas have extended the temperature bounds of plasma physics by two orders of magnitude. Table-top experiments, using many of the tools from atomic physics, allow for the study of plasma phenomena in this new regime with independent control over the density and temperature of the plasma through the excitation process. Characteristic of these systems is an inhomogeneous density profile, inherited from the density distribution of the laser-cooled neutral atom sample. Most work has dealt with unconfined plasmas in vacuum, which expand outward at velocities of order 100 m/s, governed by electron pressure, and with lifetimes of order 100 μs, limited by stray electric fields. Using detection of charged particles and optical detection techniques, a wide variety of properties and phenomena have been observed, including expansion dynamics, collective excitations in both the electrons and ions, and collisional properties. Through three-body recombination collisions, the plasmas rapidly form Rydberg atoms, and clouds of cold Rydberg atoms have been observed to spontaneously avalanche ionize to form plasmas. Of particular interest is the possibility of the formation of strongly coupled plasmas, where Coulomb forces dominate thermal motion and correlations become important. The strongest impediment to strong coupling is disorder-induced heating, a process in which Coulomb energy from an initially disordered sample is converted into thermal energy. This restricts electrons to a weakly coupled regime and leaves the ions barely within the strongly coupled regime. This review will give an overview of the field of ultracold neutral plasmas, from its inception in 1999 to current work, including efforts to increase strong coupling and effects on plasma properties due to strong coupling.

  15. Determination of Glucosamine in Human Plasma by High-Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionization Source-Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Xingchen Zhou

    2011-01-01

    Full Text Available A sensitive, specific, and rapid high-performance liquid chromatography-atmospheric pressure chemical ionization source-tandem mass spectrometry (HPLC-APCI-MS/MS method for the determination of glucosamine in human plasma was developed and validated. Plasma samples were processed by protein precipitation with dehydrated ethanol, and the chromatographic separation was performed on an Agilent XDB-C18 column with a mobile phase of methanol—0.2% formic acid solution (70 : 30, v/v. Mass spectrometric quantification was carried out in the multiple reaction monitoring (MRM mode, monitoring ion transitions of m/z 180.1 to m/z 162.1 with collision energy (CE of 2 eV for glucosamine and m/z 181.1 to m/z 163.1 with CE of 2 eV for the internal standard (IS in positive ion mode. The linear calibration curves covered a concentration range of 53.27–3409 ng/mL with a lower limit of quantification (LLOQ of 53.27 ng/mL. The extraction recovery of glucosamine was greater than 101.7%. The intra- and interday precisions for glucosamine were less than 10%, and the accuracies were between 93.7% and 102.6%, determined from quality control (QC samples of three representative concentrations. The method has been successfully applied to determining the plasma concentration of glucosamine in a clinical pharmacokinetic study involving 20 healthy Chinese male volunteers.

  16. Study on the plasma proteomic profiling by using surface enhanced laser desorption ionization time of flight mass spectrometry for setting up a diagnostic model of endometriosis

    Institute of Scientific and Technical Information of China (English)

    Liu Hai-yuan; Liu Chun-yan; Leng Jin-hua; Liu Zhu-feng; Sun Da-wei; Zhu Lan; Lang Jing-he; Zheng Yan-hua; Zhang Jian-zhong

    2007-01-01

    Objective: To determine the plasma proteomic profiling by using surface enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF-MS) combined with bioinformatics for screening biomarkers of endometriosis and primarily setting up a diagnostic model of endometriosis.Method.Thirty-six patients with endometriosis diagnosed laparoscopically and thirty-five healthy controls were included in the study.Their serum were analyzed by SELDI and protein chip to generate protein profiling spectra.Student t test was used to compare the peak intensifies of the protein profiling results from the different groups.Biomarker Pattern Software was used to analyze the data between two groups and set up a diagnostic model for endometriosis.Protein profiling spectra from sixteen endometriosis patients and fifteen healthy controls were used double-blindedly to test the efficiency of the diagnostic model and generate the sensitivity and specificity of the model.Result: Fourteen abnormally expressed protein peaks were detected in the plasma of patients with endometriosis (P<0.01).The endometriosis diagnostic model was composed of three protein peaks.It correctly identified 33 of 36 patients with endometriosis and 29 of 35 controls in the training test.In the masked set 14 of 16 patients with endometriosis and 12 of 15 normal controls were correctly identified with sensitivity of 87.5% and specificity of 8o%.Conclusion: Patients with endometriosis have a unique cluster of proteins in plasma detected by SELDI.SELDI provides a new approach for screening novel biomarkers of endometriosis.Its utility in clinical practice need further study.

  17. Weakly dissipative dust-ion acoustic wave modulation

    Science.gov (United States)

    Alinejad, H.; Mahdavi, M.; Shahmansouri, M.

    2016-02-01

    The modulational instability of dust-ion acoustic (DIA) waves in an unmagnetized dusty plasma is investigated in the presence of weak dissipations arising due to the low rates (compared to the ion oscillation frequency) of ionization recombination and ion loss. Based on the multiple space and time scales perturbation, a new modified nonlinear Schrödinger equation governing the evolution of modulated DIA waves is derived with a linear damping term. It is shown that the combined action of all dissipative mechanisms due to collisions between particles reveals the permitted maximum time for the occurrence of the modulational instability. The influence on the modulational instability regions of relevant physical parameters such as ion temperature, dust concentration, ionization, recombination and ion loss is numerically examined. It is also found that the recombination frequency controls the instability growth rate, whereas recombination and ion loss make the instability regions wider.

  18. Impact of Ionization DEPLETIONS/TEC Bite-Outs of Equatorial Plasma Structures on Transionospheric Satellite Signals Using Global Positioning System (GPS)

    Science.gov (United States)

    Das, Tanmay

    2016-07-01

    This paper represents the impact of ionization depletions/TEC bite-outs of equatorial plasma structures on transionospheric satellite signals received from Calcutta (latitude: 22.58oN, longitude: 88.38oE geographic; 32oN magnetic dip) is situated near the northern crest of the equatorial ionization anomaly (EIA) in the Indian longitude sector, using Global Positioning System (GPS) during the equinoctial months of February-April 2011, August-October, 2011 and February-April 2012. It is observed that when a bubble moves across a satellite link, scintillations and ionization are usually encountered. The apparent duration of the bite-outs may be different from the true east-west duration, as observed with geostationary links, because of the presence of a relative velocity between the irregularity cloud and the satellite. The trajectory of a GPS satellite plays a vital role in observing the bubble characteristics. The distributions of amplitude and the parameters characterizing the ionization depletions, namely, the duration, depth and the leading and trailing edge slopes of the bubbles have been obtained during the same equinoctial months of 2011 and 2012. It is evident that the range error, extent of the bubble and ionization gradients measured in these equinoctial months of the equatorial region provides the worst case figures for system designers. The high range error (~ 3-4 m) is observed during these equinoctial months. The statistical distribution of the TEC depletions showed some significant results. Out of 29 bite-outs in February-April, 2011 equinox, the maximum amplitude was found to be about 23.25 TECU with a median depletion of about 5.92 TECU. The maximum amplitude corresponds to a range error of about 3.7 m at GPS L1 frequency. The majority of the bubbles were found to have observed duration between 10-20 minutes with a maximum of 28.14 minutes. The median value of actual duration 2.37 minutes translates to nearly 150sec of possible satellite signal

  19. Weak Force

    CERN Multimedia

    Without the weak force, the sun wouldn't shine. The weak force causes beta decay, a form of radioactivity that triggers nuclear fusion in the heart of the sun. The weak force is unlike other forces: it is characterised by disintegration. In beta decay, a down quark transforms into an up quark and an electron is emitted. Some materials are more radioactive than others because the delicate balance between the strong force and the weak force varies depending on the number of particles in the atomic nucleus. We live in the midst of a natural radioactive background that varies from region to region. For example, in Cornwall where there is a lot of granite, levels of background radiation are much higher than in the Geneva region. Text for the interactive: Move the Geiger counter to find out which samples are radioactive - you may be surprised. It is the weak force that is responsible for the Beta radioactivity here. The electrons emitted do not cross the plastic cover. Why do you think there is some detected radioa...

  20. Simulating plasma production from hypervelocity impacts

    Science.gov (United States)

    Fletcher, Alex; Close, Sigrid; Mathias, Donovan

    2015-09-01

    Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-produced plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30-72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent Van de Graaff

  1. Simultaneous determination of harpagoside and cinnamic acid in rat plasma by liquid chromatography electrospray ionization mass spectrometry and its application to pharmacokinetic studies.

    Science.gov (United States)

    Wang, Su-Jun; Ruan, Jin-Xiu; Zhao, Yan-Hong; Zhang, Zhen-Qing

    2008-01-01

    A simple and sensitive method was developed for the simultaneous quantification of harpagoside and cinnamic acid in rat plasma using high-performance liquid chromatography system coupled to a negative ion electrospray mass spectrometric analysis. The plasma sample preparation was a simple deproteinization by the addition of two volumes of acetonitrile. The analytes were separated on an Intersil C8-3 column (2.1 mm i.d.x250 mm, 5 microm) with acetonitrile-5 mm ammonium formate aqueous solution (60:40, v/v) as mobile phase at a flow-rate of 0.2 mL/min. Detection was performed on a quadrupole mass spectrometer equipped with electrospray ionization (ESI) source operated under selected ion monitoring (SIM) mode. [M+HCOO]- at m/z 539 for harpagoside, [M-H]- at m/z 147 for cinnamic acid and [M-H]- at m/z 137 for salylic acid (internal standard) were selected as detecting ions, respectively. The method was validated over the concentration range 7-250 ng/mL for harpagoside and 5-500 ng/mL for cinnamic acid. The lower limits of quantitation for harpagoside and cinnamic acid were 7 and 5 ng/mL, respectively. The intra- and inter-day precisions (RSD%) were within 9.5% and the assay accuracies (RE%) ranged from -5.3 to 3.0% for both analytes. Their average recoveries were greater than 86%. Both analytes were proved to be stable during all sample storage, preparation and analysis procedures. The method was successfully applied to the pharmacokinetic study of harpagoside and cinnamic acid following oral administration of Radix Scrophulariae extract to rats.

  2. Simultaneous Determination of Eight Ginsenosides in Rat Plasma by Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry: Application to Their Pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Li-Yuan Ma

    2015-12-01

    Full Text Available A high-performance liquid chromatography–electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS method was successfully developed and validated for the identification and determination of eight ginsenosides: ginsenoside Rg1 (1; 20(S-ginsenoside Rh1 (2; 20(S-ginsenoside Rg2 (3; 20(R-ginsenoside Rh1 (4; 20(R-ginsenoside Rg2 (5; ginsenoside Rd (6; 20(S-ginsenoside Rg3 (7; and 20(R-ginsenoside Rg3 (8 in rat plasma. The established rapid method had high linearity, selectivity, sensitivity, accuracy, and precision. The method has been used successfully to study the pharmacokinetics of abovementioned eight ginsenosides for the first time. After an oral administration of total saponins in the stems-leaves of Panax ginseng C. A. Meyer (GTSSL at a dose of 400 mg/kg, the ginsenosides 6, 7, and 8, belonging to protopanaxadiol-type saponins, exhibited relatively long tmax values, suggesting that they were slowly absorbed, while the ginsenosides 1–5, belonging to protopanaxatriol-type saponins, had different tmax values, which should be due to their differences in the substituted groups. Compounds 2 and 4, 3 and 5, 7 and 8 were three pairs of R/S epimerics at C-20, which was interesting that the t1/2 of 20(S-epimers were always longer than those of 20(R-epimers. This pharmacokinetic identification of multiple ginsenosides of GTSSL in rat plasma provides a significant basis for better understanding the clinical application of GTSSL.

  3. Simultaneous determination of dextromethorphan, dextrorphan and doxylamine in human plasma by HPLC coupled to electrospray ionization tandem mass spectrometry: application to a pharmacokinetic study.

    Science.gov (United States)

    Donato, J L; Koizumi, F; Pereira, A S; Mendes, G D; De Nucci, G

    2012-06-15

    In the present study, a fast, sensitive and robust method to quantify dextromethorphan, dextrorphan and doxylamine in human plasma using deuterated internal standards (IS) is described. The analytes and the IS were extracted from plasma by a liquid-liquid extraction (LLE) using diethyl-ether/hexane (80/20, v/v). Extracted samples were analyzed by high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Chromatographic separation was performed by pumping the mobile phase (acetonitrile/water/formic acid (90/9/1, v/v/v) during 4.0min at a flow-rate of 1.5 mL min⁻¹ into a Phenomenex Gemini® C18, 5 μm analytical column (150 × 4.6 mm i.d.). The calibration curve was linear over the range from 0.2 to 200 ng mL⁻¹ for dextromethorphan and doxylamine and 0.05 to 10 ng mL⁻¹ for dextrorphan. The intra-batch precision and accuracy (%CV) of the method ranged from 2.5 to 9.5%, and 88.9 to 105.1%, respectively. Method inter-batch precision (%CV) and accuracy ranged from 6.7 to 10.3%, and 92.2 to 107.1%, respectively. The run-time was for 4 min. The analytical procedure herein described was used to assess the pharmacokinetics of dextromethorphan, dextrorphan and doxylamine in healthy volunteers after a single oral dose of a formulation containing 30 mg of dextromethorphan hydrobromide and 12.5mg of doxylamine succinate. The method has high sensitivity, specificity and allows high throughput analysis required for a pharmacokinetic study.

  4. Use of stirred tanks for studying matrix effects caused by inorganic acids, easily ionized elements and organic solvents in inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, Eduardo [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Maestre, Salvador E. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Todoli, Jose L. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain)]. E-mail: jose.todoli@ua.es

    2006-03-15

    A stirred tank was used for the first time to elucidate the mechanism responsible for inductively coupled plasma atomic emission spectroscopy (ICP-AES) matrix effects caused by inorganic, acids and easily ionized elements (EIEs), as well as organic, ethanol and acetic acid, compounds. In order to gradually increase the matrix concentration, a matrix solution was introduced inside a stirred container (tank) initially filled with an aqueous multielement standard. PolyTetraFluoroEthylene (PTFE) tubing was used to deliver the resulting solution to the liquid sample introduction system. Matrix concentration ranged from 0 to 2 mol l{sup -1} in the case of inorganic acids (i.e., nitric, sulfuric, hydrochloric and a mixture of them), from 0 to about 2500 mg l{sup -1} for EIEs (i.e., sodium, calcium and mixtures of both) and from 0% to 15%, w/w for organic compounds. Up to 40-50 different solutions were prepared and measured in a period of time shorter than 6-7 min. This investigation was carried out in terms of emission intensity and tertiary aerosols characteristics. The experimental setup used in the present work allowed to thoroughly study the effect of matrix concentration on analytical signal. Generally speaking, the experiments concerning tertiary aerosol characterization revealed that, in the case of inorganic acids and EIEs, the mechanism responsible for changes in aerosol characteristics was the droplet fission. In contrast, for organic matrices it was found that the interference was caused by a change in both aerosol transport and plasma thermal characteristics. The extent of the interferences caused by organic as well as inorganic compounds was compared for a set of 14 emission lines through a wide range of matrix concentrations. With a stirred tank, it is possible to choose an efficient internal standard for any given matrix composition. The time required to complete this procedure was shorter than 7 min.

  5. Plasma Antenna

    OpenAIRE

    N M Vijay

    2014-01-01

    The fundamental base of plasma antenna is the use of an ionized medium as a conductor. The plasma antenna is a radiofrequency antenna formed by a plasma columns, Filaments or sheets, which are excited by a surface wave. The relevance of this device is how rapidly it can be turned on and off, only applying an electrical pulse. Besides its wide carrier frequency, the great directivity and controllable antenna shape. Otherwise a disadvantage is that it needs energy to be ionized....

  6. Quantification of low levels of organochlorine pesticides using small volumes (plasma of wild birds through gas chromatography negative chemical ionization mass spectrometry.

    Science.gov (United States)

    Rivera-Rodríguez, Laura B; Rodríguez-Estrella, Ricardo; Ellington, James Jackson; Evans, John J

    2007-07-01

    A solid phase extraction and gas chromatography with negative chemical ionization mass spectrometry in scan mode (GC-NCI-MS) method was developed to identify and quantify for the first time low levels of organochlorine pesticides (OCs) in plasma samples of less than 100 microl from wild birds. The method detection limits ranged from 0.012 to 0.102 pg/microl and the method reporting limit from 0.036 to 0.307 pg/microl for alpha, gamma, beta and delta-hexachlorocyclohexane (HCH), heptachlor, aldrin, heptachlor epoxide, endosulfan I, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE), dieldrin, endrin, endosulfan-II, endrin-aldehyde and endosulfan-sulfate. Pesticide levels in small serum samples from individual Falco sparverius, Sturnella neglecta, Mimus polyglottos and Columbina passerina were quantified. Concentrations ranged from not detected (n/d) to 204.9 pg/microl for some OC pesticides. All levels in the food web in and around cultivated areas showed the presence of pesticides notwithstanding the small areas for agriculture existing in the desert of Baja California peninsula.

  7. Evaluation of lead isotope compositions of NIST NBS 981 measured by thermal ionization mass spectrometer and multiple-collector inductively coupled plasma mass spectrometer

    Directory of Open Access Journals (Sweden)

    Honglin Yuan

    2016-09-01

    Full Text Available Because Pb isotopes can be used for tracing, they are widely used in many disciplines. The detection and analysis of Pb isotopes of bulk samples are usually conducted using thermal ionization mass spectrometer (TIMS and multiple-collector inductively coupled plasma mass spectrometer (MC-ICP-MS, both of which need external reference materials with known isotopic compositions to correct for the mass discrimination effect produced during analysis. NIST NBS 981 is the most widely used reference material for Pb isotope analysis; however, the isotopic compositions reported by various analytical laboratories, especially those using TIMS, vary from each other. In this study, we statistically evaluated 229 reported TIMS analysis values collected by GeoReM in the last 30 years, 176 reported MC-ICP-MS analysis values, and 938 MC-ICP-MS analysis results from our laboratory in the last five years. After careful investigation, only 40 TIMS results were found to have double or triple spikes. The ratios of the overall weighted averages, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb, obtained from 40 spiked TIMS reports and 1114 MC-ICP-MS results of NIST NBS 981 isotopes were 16.9406 ± 0.0003 (2s, 15.4957 ± 0.0002 (2s, and 36.7184 ± 0.0007 (2s, respectively.

  8. Selective and rapid determination of raltegravir in human plasma by liquid chromatography-tandem mass spectrometry in the negative ionization mode

    Institute of Scientific and Technical Information of China (English)

    Ajay Gupta; Swati Guttikar; Priyanka A. Shah; Gajendra Solanki; Pranav S. Shrivastav; Mallika Sanyal

    2015-01-01

    A selective and rapid high-performance liquid chromatography–tandem mass spectrometry method was developed and validated for the quantification of raltegravir using raltegravir-d3 as an internal standard (IS). The analyte and IS were extracted with methylene chloride and n-hexane solvent mixture from 100 mL human plasma. The chromatographic separation was achieved on a Chromolith RP-18e endcapped C18 (100 mm ? 4.6 mm) column in a run time of 2.0 min. Quantitation was performed in the negative ionization mode using the transitions of m/z 443.1-316.1 for raltegravir and m/z 446.1-319.0 for IS. The linearity of the method was established in the concentration range of 2.0–6000 ng/mL. The mean extraction recovery for raltegravir and IS was 92.6% and 91.8%, respectively, and the IS-normalized matrix factors for raltegravir ranged from 0.992 to 0.999. The application of this method was demonstrated by a bioequivalence study on 18 healthy subjects.

  9. Effect of neutral collision and radiative heat-loss function on self-gravitational instability of viscous thermally conducting partially-ionized plasma

    Directory of Open Access Journals (Sweden)

    Sachin Kaothekar

    2012-12-01

    Full Text Available The problem of thermal instability and gravitational instability is investigated for a partially ionized self-gravitating plasma which has connection in astrophysical condensations. We use normal mode analysis method in this problem. The general dispersion relation is derived using linearized perturbation equations of the problem. Effects of collisions with neutrals, radiative heat-loss function, viscosity, thermal conductivity and magnetic field strength, on the instability of the system are discussed. The conditions of instability are derived for a temperature-dependent and density-dependent heat-loss function with thermal conductivity. Numerical calculations have been performed to discuss the effect of various physical parameters on the growth rate of the gravitational instability. The temperature-dependent heat-loss function, thermal conductivity, viscosity, magnetic field and neutral collision have stabilizing effect, while density-dependent heat-loss function has a destabilizing effect on the growth rate of the gravitational instability. With the help of Routh-Hurwitz's criterion, the stability of the system is discussed.

  10. Selective and rapid determination of raltegravir in human plasma by liquid chromatography–tandem mass spectrometry in the negative ionization mode

    Directory of Open Access Journals (Sweden)

    Ajay Gupta

    2015-04-01

    Full Text Available A selective and rapid high-performance liquid chromatography–tandem mass spectrometry method was developed and validated for the quantification of raltegravir using raltegravir-d3 as an internal standard (IS. The analyte and IS were extracted with methylene chloride and n-hexane solvent mixture from 100 µL human plasma. The chromatographic separation was achieved on a Chromolith RP-18e endcapped C18 (100 mm×4.6 mm column in a run time of 2.0 min. Quantitation was performed in the negative ionization mode using the transitions of m/z 443.1→316.1 for raltegravir and m/z 446.1→319.0 for IS. The linearity of the method was established in the concentration range of 2.0–6000 ng/mL. The mean extraction recovery for raltegravir and IS was 92.6% and 91.8%, respectively, and the IS-normalized matrix factors for raltegravir ranged from 0.992 to 0.999. The application of this method was demonstrated by a bioequivalence study on 18 healthy subjects.

  11. Determination of bevantolol in human plasma using liquid chromatography-electrospray ionization tandem mass spectrometry and its application to a bioequivalence study.

    Science.gov (United States)

    Ren, Li; Wang, Zheng; Lou, Yiceng; Zheng, Lu; Zheng, Heng; Yin, Chunping

    2014-05-15

    A liquid chromatography-electrospray ionization tandem mass spectrometry method was established and validated for the determination of bevantolol in human plasma using propranolol as the internal standard. The optimal chromatographic behavior of bevantolol and propranolol was achieved on a Welch Ultimate XB-C18 column (5 μm, 150 mm × 2.1mm, Maryland, USA) with a mobile phase of acetonitrile-water (40:60, v/v) containing 10mM ammonium acetate and 0.1% formic acid. The mass spectrometer was operated in selected reaction monitoring mode using the transition m/z 346.1>165.1 for bevantolol and m/z 260.3>116.1 for propranolol. Sample preparation was carried out through protein precipitation with acetonitrile. The calibration curves were linear over the range of 5.00-1,000 ng/ml. The intra- and inter-day precisions were less than 6.7% and 6.6%, respectively. This method was successfully applied to the bioequivalence study of two kinds of bevantolol hydrochloride tablets in 24 Chinese male volunteers in fasting and postprandial experiment.

  12. Effect of ion radiative cooling on Jeans instability of partially ionized dusty plasma with dust charge fluctuation

    Science.gov (United States)

    Sharma, Prerana; Patidar, Archana

    2017-01-01

    In this paper, the effect of ion radiative cooling on the gravitational instability of dusty plasma is studied, incorporating dust charge fluctuation with dust-neutral, neutral-ion, and ion-neutral collisions. The basic equations are linearized using normal mode analysis to obtain a general dispersion relation. The general dispersion relation is analytically and numerically discussed to explain the role of ion radiative cooling in the structure formation through gravitational instability. The Jeans collapse criteria are found to be modified due to ion and electron radiative cooling, dust charge fluctuations, and collisions effects. It is determined from the analytical and numerical calculations that the support of radiative cooling of ions drives thermal fluctuations and gives instability to the system. The electron cooling effect remains dominating over ion cooling effect, and thus, it enhances the collapse more efficiently than ion cooling effect. Although the radiative cooling is slow, it may precede the collapse in molecular cloud, which further leads to the structure formation. The present work is relevance for the structure formation in the molecular cloud.

  13. Identification and quantification of glucosamine in rabbit cartilage and correlation with plasma levels by high performance liquid chromatography-electrospray ionization-tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pastorini, Elisabetta; Vecchiotti, Stefania; Colliva, Carolina [Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, I-40126 Bologna (Italy); Persiani, Stefano [Rottapharm-Madaus, Via Valosa di Sopra 9, 20900 Monza Brianza (Italy); Rotini, Roberto; Roatti, Giulia; Zaccarelli, Lorenzo [Division of Orthopedic Surgery (Section B), Rizzoli Orthopaedic Institute, Via Pupilli 1, 40136 Bologna (Italy); Rovati, Lucio Claudio [Rottapharm-Madaus, Via Valosa di Sopra 9, 20900 Monza Brianza (Italy); Roda, Aldo, E-mail: aldo.roda@unibo.it [Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, I-40126 Bologna (Italy)

    2011-06-10

    Graphical abstract: Highlights: > Optimization of an HPLC-ESI-MS/MS method for glucosamine in rabbit cartilage. > Application of the method to an in-vivo study. > Glucosamine presence in cartilage in physiological condition. > Significant increase of cartilage glucosamine concentration after dosing. > Good correlation between cartilage glucosamine levels and plasma concentrations. - Abstract: A new HPLC-ESI-MS/MS method for the determination of glucosamine (2-amino-2-deoxy-D-glucose) in rabbit cartilage was developed and optimized. Glucosamine was extracted from cartilage by cryogenic grinding followed by protein precipitation with trichloroacetic acid. The HPLC separation was achieved with a polymer-based amino column using a mobile phase composed of 10 mM ammonium acetate (pH 7.5)-acetonitrile (20:80%, v/v) at 0.3 mL min{sup -1} flow rate. D-[1-{sup 13}C]Glucosamine was used as internal standard. Selective detection was performed by tandem mass spectrometry with electrospray source, operating in positive ionization mode and in multiple reaction monitoring acquisition (m/z 180 {yields} 72 and 181 {yields} 73 for glucosamine and internal standard, respectively). Limit of quantification was 0.045 ng injected, corresponding to 0.25 {mu}g g{sup -1} in cartilage. Linearity was obtained up to 20 {mu}g g{sup -1} (R{sup 2} > 0.991). Precision values (%R.S.D.) were <10%. Accuracy (% bias) ranged from -6.0% to 12%. Mean recoveries obtained at 3 concentration levels were higher than 81% (%R.S.D. {<=} 8%). The method was applied to measure glucosamine levels in rabbit cartilage and plasma after single oral administration of glucosamine sulfate at a dose of 98 mg kg{sup -1} (n = 6). Glucosamine was present in cartilage in physiological condition before the treatment. After dosing, mean concentration of cartilage glucosamine significantly increased from 461 to 1040 ng g{sup -1}. Cartilage glucosamine levels resulted to be well correlated with plasma concentrations, which

  14. Plasma-screening effects on the electronic structure of multiply charged Al ions using Debye and ionsphere models

    CERN Document Server

    Das, Madhulita; Pal, S

    2016-01-01

    We analyze atomic structures of plasma embedded aluminum (Al) atom and its ions in the weakly and strongly coupling regimes. The plasma screening effects in these atomic systems are accounted for using the Debye and ion sphere (IS) potentials for the weakly coupling and strongly coupling plasmas, respectively. Within the Debye model, special attention is given to investigate the spherical and non-spherical plasma-screening effects considering in the electron-electron interaction potential. The relativistic coupled-cluster (RCC) method has been employed to describe the relativistic and electronic correlation effects in the above atomic systems. The variation in the ionization potentials (IPs) and excitation energies (EEs) of the plasma embedded Al ions are presented. It is found that the atomic systems exhibit more stability when the exact screening effects are taken into account. It is also showed that in the presence of strongly coupled plasma environment, the highly ionized Al ions show blue and red shifts ...

  15. Breakdown of a space charge limited regime of a sheath in a weakly collisional plasma bounded by walls with secondary electron emission.

    Science.gov (United States)

    Sydorenko, D; Kaganovich, I; Raitses, Y; Smolyakov, A

    2009-10-02

    A new regime of plasma-wall interaction is identified in particle-in-cell simulations of a hot plasma bounded by walls with secondary electron emission. Such a plasma has a strongly non-Maxwellian electron velocity distribution function and consists of bulk plasma electrons and beams of secondary electrons. In the new regime, the plasma sheath is not in a steady space charge limited state even though the secondary electron emission produced by the plasma bulk electrons is so intense that the corresponding partial emission coefficient exceeds unity. Instead, the plasma-sheath system performs relaxation oscillations by switching quasiperiodically between the space charge limited and non-space-charge limited states.

  16. Weak relativity

    CERN Document Server

    Selleri, Franco

    2015-01-01

    Weak Relativity is an equivalent theory to Special Relativity according to Reichenbach’s definition, where the parameter epsilon equals to 0. It formulates a Neo-Lorentzian approach by replacing the Lorentz transformations with a new set named “Inertial Transformations”, thus explaining the Sagnac effect, the twin paradox and the trip from the future to the past in an easy and elegant way. The cosmic microwave background is suggested as a possible privileged reference system. Most importantly, being a theory based on experimental proofs, rather than mutual consensus, it offers a physical description of reality independent of the human observation.

  17. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  18. Determination of 21-hydroxydeflazacort in human plasma by high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry. Application to bioequivalence study.

    Science.gov (United States)

    Ifa, D R; Moraes, M E; Moraes, M O; Santagada, V; Caliendo, G; de Nucci, G

    2000-03-01

    A liquid chromatographic atmospheric pressure chemical ionization tandem mass spectrometric method is described for the determination of 21-hydroxydeflazacort in human plasma using dexamethasone 21-acetate as an internal standard. The procedure requires a single diethyl ether extraction. After evaporation of the solvent under a nitrogen flow, the analytes are reconstituted in the mobile phase, chromatographed on a C18 reversed-phase column and analyzed by mass spectrometry via a heated nebulizer interface where they are detected by multiple reaction monitoring. The method has a chromatographic run time of less than 5 min and a linear calibration curve with a range of 1-400 ng ml(-1) (r>0.999). The between-run precision, based on the relative standard deviation for replicate quality controls, was Comercio, Brazil, as a test formulation, and Calcort from Merrell Lepetit, Brazil, as a reference formulation) in 24 healthy volunteers of both sexes who received a single 30 mg dose of each formulation. The study was conducted using an open, randomized, two-period crossover design with a 7-day washout interval. The 90% confidence interval (CI) of the individual geometric mean ratio for Denacen/Calcort was 89.8-109.5% for area under the curve AUC(0-24 h) and 80.7-98.5% for Cmax. Since both the 90% CI for AUC(0-24 h) and Cmax were included in the 80-125% interval proposed by the US Food and Drug Administration, Denacen was considered bioequivalent to Calcort according to both the rate and extent of absorption.

  19. Deviation from Boltzmann distribution in excited energy levels of singly-ionized iron in an argon glow discharge plasma for atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2012-01-15

    A Boltzmann plot for many iron ionic lines having excitation energies of 4.7-9.1 eV was investigated in an argon glow discharge plasma when the discharge parameters, such as the voltage/current and the gas pressure, were varied. A Grimm-style radiation source was employed in a DC voltage range of 400-800 V at argon pressures of 400-930 Pa. The plot did not follow a linear relationship over a wide range of the excitation energy, but it yielded a normal Boltzmann distribution in the range of 4.7-5.8 eV and a large overpopulation in higher-lying excitation levels of iron ion. A probable reason for this phenomenon is that excitations for higher excited energy levels of iron ion would be predominantly caused by non-thermal collisions with argon species, the internal energy of which is received by iron atoms for the ionization. Particular intense ionic lines, which gave a maximum peak of the Boltzmann plot, were observed at an excitation energy of ca. 7.7 eV. They were the Fe II 257.297-nm and the Fe II 258.111-nm lines, derived from the 3d{sup 5}4s4p {sup 6}P excited levels. The 3d{sup 5}4s4p {sup 6}P excited levels can be highly populated through a resonance charge transfer from the ground state of argon ion, because of good matching in the excitation energy as well as the conservation of the total spin before and after the collision. An enhancement factor of the emission intensity for various Fe II lines could be obtained from a deviation from the normal Boltzmann plot, which comprised the emission lines of 4.7-5.8 eV. It would roughly correspond to a contribution of the charge transfer excitation to the excited levels of iron ion, suggesting that the charge-transfer collision could elevate the number density of the corresponding excited levels by a factor of ca.10{sup 4}. The Boltzmann plots give important information on the reason why a variety of iron ionic lines can be emitted from glow discharge plasmas.

  20. Weakly relativistic dispersion of Bernstein waves

    Science.gov (United States)

    Robinson, P. A.

    1988-01-01

    Weakly relativistic effects on the dispersion of Bernstein waves are investigated for waves propagating nearly perpendicular to a uniform magnetic field in a Maxwellian plasma. Attention is focused on those large-wave-vector branches that are either weakly damped or join continuously onto weakly damped branches since these are the modes of most interest in applications. The transition between dispersion at perpendicular and oblique propagation is examined and major weakly relativistic effects can dominate even in low-temperature plasmas. A number of simple analytic criteria are obtained which delimit the ranges of harmonic number and propagation angle within which various types of weakly damped Bernstein modes can exist.

  1. Weakly relativistic dispersion of Bernstein waves

    Science.gov (United States)

    Robinson, P. A.

    1988-01-01

    Weakly relativistic effects on the dispersion of Bernstein waves are investigated for waves propagating nearly perpendicular to a uniform magnetic field in a Maxwellian plasma. Attention is focused on those large-wave-vector branches that are either weakly damped or join continuously onto weakly damped branches since these are the modes of most interest in applications. The transition between dispersion at perpendicular and oblique propagation is examined and major weakly relativistic effects can dominate even in low-temperature plasmas. A number of simple analytic criteria are obtained which delimit the ranges of harmonic number and propagation angle within which various types of weakly damped Bernstein modes can exist.

  2. Muscle Weakness

    Science.gov (United States)

    Al Kaissi, Ali; Ryabykh, Sergey; Ochirova, Polina; Kenis, Vladimir; Hofstätter, Jochen G.; Grill, Franz; Ganger, Rudolf; Kircher, Susanne Gerit

    2017-01-01

    Marked ligamentous hyperlaxity and muscle weakness/wasting associated with awkward gait are the main deficits confused with the diagnosis of myopathy. Seven children (6 boys and 1 girl with an average age of 8 years) were referred to our department because of diverse forms of skeletal abnormalities. No definitive diagnosis was made, and all underwent a series of sophisticated investigations in other institutes in favor of myopathy. We applied our methodology through the clinical and radiographic phenotypes followed by targeted genotypic confirmation. Three children (2 boys and 1 girl) were compatible with the diagnosis of progressive pseudorheumatoid chondrodysplasia. The genetic mutation was correlated with the WISP 3 gene actively expressed by articular chondrocytes and located on chromosome 6. Klinefelter syndrome was the diagnosis in 2 boys. Karyotyping confirmed 47,XXY (aneuploidy of Klinefelter syndrome). And 2 boys were finally diagnosed with Morquio syndrome (MPS type IV A) as both showed missense mutations in the N-acetylgalactosamine-sulfate sulfatase gene. Misdiagnosis can lead to the initiation of a long list of sophisticated investigations. PMID:28210640

  3. Optimal Density Profile of the Plasma Layer Shielded by a Conducting Surface for the Absorption of Electromagnetic Waves

    Institute of Scientific and Technical Information of China (English)

    王舸; 曹金祥; 宋法伦

    2003-01-01

    Based on the Born approximation, we reduce the approximate analysis solution to the normal and oblique incident electromagnetic wave scattering from the weakly ionized plasma layer shielded by a conducting surface. The solution is closely related to the density profile of the plasma layer. Employing the self-consistent base function, we yield the optimal density profile for the nonuniform plasma layer with the frequencies of incident electromagnetic waves ranging from 4-10 GHz. Numerical studies illustrate the optimal density profile can "survive" wide ranges of the plasma parameters. Different from the validity condition for the Wenzell-Kramers-Brillouin-Jeffreys (WKBJ) approximation, the Born approximation is feasible even if the scale length is smaller than the wavelength.Therefore, the Born approximation is universal against the scattering problem from the weakly ionized plasma.

  4. Langmuir wave filamentation in the kinetic regime. II. Weak and Strong Pumping of Nonlinear Electron Plasma Waves as the Route to Filamentation

    CERN Document Server

    Silantyev, Denis A; Rose, Harvey A

    2016-01-01

    We consider two kinds of pumped Langmuir waves (LWs) in the kinetic regime, $k\\lambda_D\\gtrsim0.2,$ where $k$ is the LW wavenumber and $\\lambda_D$ is the Debye length. They are driven to finite amplitude by a coherent external potential whose amplitude is either weak or strong. These dynamically prepared nonlinear LWs develop a transverse (filamentation) instability whose nonlinear evolution destroys the LW's transverse coherence. Instability growth rates in the weakly pumped regime are the same as those of BGK modes considered in Part I, while strongly pumped LWs have higher filamentation grow rates.

  5. A sensitive liquid chromatography-electrospray ionization-mass spectrometry method for the simultaneous determination of pentoxyverine citrate and guaifenesin in human plasma---application to pharmacokinetic and bioequivalence studies.

    Science.gov (United States)

    Wen, Jinhua; Zhang, Hong; Xia, Chunhua; Hu, Xiao; Xu, Wenwei; Cheng, Xiaohua; Gao, Jun; Xiong, Yuqing

    2010-04-01

    A sensitive and specific liquid chromatography-electrospray ionization-mass spectrometry method for the identification and quantification of pentoxyverine citrate and guaifenesin in human plasma has been developed. After extraction from plasma samples by ethyl acetate, the internal standard and analytes were separated by high-performance liquid chromatographic on a Shim-pack VP-ODS C(18) column (150 x 2.0 mm) using a mobile phase consisting of A (methanol) and B (0.4% glacial acetic acid and 4 mmol/L ammonium acetate) (A:B, 43 : 57). Analysis was performed on a Shimadzu LC/MS-2010A in selected ion monitoring mode with a positive electrospray ionization interface. The method was linear in the concentration range of 1.0-640.0 ng/mL for pentoxyverine citrate and 0.025-6.4 microg/mL for guaifenesin. The inter- and intra- precision were all within 12% and accuracy ranged from 85 to 115%.The lower limits of quantification were 1.0 ng/mL for pentoxyverine citrate and 25.0 ng/mL for guaifenesin. The extraction recovery was on average 81.95% for pentoxyverine citrate and 89.03% for guaifenesin. This is the first assay method reported for the simultaneous determination of pentoxyverine citrate and guaifenesin in plasma using one chromatographic run. Copyright (c) 2009 John Wiley & Sons, Ltd.

  6. Method development for the determination of 24S-hydroxycholesterol in human plasma without derivatization by high-performance liquid chromatography with tandem mass spectrometry in atmospheric pressure chemical ionization mode.

    Science.gov (United States)

    Sugimoto, Hiroshi; Kakehi, Masaaki; Satomi, Yoshinori; Kamiguchi, Hidenori; Jinno, Fumihiro

    2015-10-01

    We developed a highly sensitive and specific high-performance liquid chromatography with tandem mass spectrometry method with an atmospheric pressure chemical ionization interface to determine 24S-hydroxycholesterol, a major metabolite of cholesterol formed by cytochrome P450 family 46A1, in human plasma without any derivatization step. Phosphate buffered saline including 1% Tween 80 was used as the surrogate matrix for preparation of calibration curves and quality control samples. The saponification process to convert esterified 24S-hydroxycholesterol to free sterols was optimized, followed by liquid-liquid extraction using hexane. Chromatographic separation of 24S-hydroxycholesterol from other isobaric endogenous oxysterols was successfully achieved with gradient mobile phase comprised of 0.1% propionic acid and acetonitrile using L-column2 ODS (2 μm, 2.1 mm id × 150 mm). This assay was capable of determining 24S-hydroxycholesterol in human plasma (200 μL) ranging from 1 to 100 ng/mL with acceptable intra- and inter-day precision and accuracy. The potential risk of in vitro formation of 24S-hydroxycholesterol by oxidation from endogenous cholesterol in human plasma was found to be negligible. The stability of 24S-hydroxycholesterol in relevant solvents and human plasma was confirmed. This method was successfully applied to quantify the plasma concentrations of 24S-hydroxycholesterol in male and female volunteers.

  7. Strong and weak plasma response to dietary carotenoids identified by cluster analysis and linked to beta-carotene 15,15'-monooxygenase 1 single nucleotide polymorphisms

    Science.gov (United States)

    The mechanisms as well the genetics underlying bioavailability and metabolism of carotenoids in humans remains unclear. The individual temporal response of plasma carotenoids was analyzed in adults who consumed carotenoid-containing juices on a controlled-diet study using cluster analysis. Treatmen...

  8. Plasma physics and engineering

    CERN Document Server

    Fridman, Alexander

    2011-01-01

    Part I: Fundamentals of Plasma Physics and Plasma ChemistryPlasma in Nature, in the Laboratory, and in IndustryOccurrence of Plasma: Natural and Man MadeGas DischargesPlasma Applications, Plasmas in IndustryPlasma Applications for Environmental ControlPlasma Applications in Energy ConversionPlasma Application for Material ProcessingBreakthrough Plasma Applications in Modern TechnologyElementary Processes of Charged Species in PlasmaElementary Charged Particles in Plasma and Their Elastic and Inelastic CollisionsIonization ProcessesMechanisms of Electron Losses: The Electron-Ion RecombinationEl

  9. Turbulent transport and heating of trace heavy ions in hot, magnetized plasmas

    CERN Document Server

    Barnes, M; Dorland, W

    2012-01-01

    Scaling laws for the transport and heating of trace heavy ions in low-frequency, magnetized plasma turbulence are derived and compared with direct numerical simulations. The predicted dependences of turbulent fluxes and heating on ion charge and mass number are found to agree with numerical results for both stationary and differentially rotating plasmas. Heavy ion momentum transport is found to increase with mass, and heavy ions are found to be preferentially heated, implying a mass-dependent ion temperature for very weakly collisional plasmas and for partially-ionized heavy ions in strongly rotating plasmas.

  10. Evaluating a Contribution of the Knock-on Deuterons to the Neutron Yield in the Experiments with Weakly Collisional Plasma Jets (Part 1)

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-01

    Laser-generated interpenetrating plasma jets are widely used in the studies of collisionless interaction of counter-streaming plasmas in conjunction with possible formation of collisionless shocks. In a number of experiments of this type the plasma is formed on plastic targets made of CH or CD. The study of the DD neutron production from the interaction between two CD jets on the one hand and between a CD jet and a CH jet could serve as a qualitative indicator of the collisionless shock formation. The purpose of this memo is a discussion of the effect of collisions on the neutron generation in the interpenetrating CH and CD jets. First, the kinematics of the large-deflection collisions of the deuterons and carbon are discussed. Then the scattering angles are related with the corresponding Rutherford cross-section. After that expression for the number of the backscattered deuterons is provided, and their contribution to the neutron yield is evaluated. The results may be of some significance to the kinetic codes benchmarking and developing the neutron diagnostic.

  11. Aerospace Applications of Non-Equilibrium Plasma

    Science.gov (United States)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  12. Turbulent complex (dusty) plasma

    Science.gov (United States)

    Zhdanov, Sergey; Schwabe, Mierk

    2017-04-01

    As a paradigm of complex system dynamics, solid particles immersed into a weakly ionized plasma, so called complex (dusty) plasmas, were (and continue to be) a subject of many detailed studies. Special types of dynamical activity have been registered, in particular, spontaneous pairing, entanglement and cooperative action of a great number of particles resulting in formation of vortices, self-propelling, tunneling, and turbulent movements. In the size domain of 1-10 mkm normally used in experiments with complex plasmas, the characteristic dynamic time-scale is of the order of 0.01-0.1 s, and these particles can be visualized individually in real time, providing an atomistic (kinetic) level of investigations. The low-R turbulent flow induced either by the instability in a complex plasma cloud or formed behind a projectile passing through the cloud is a typical scenario. Our simulations showed formation of a fully developed system of vortices and demonstrated that the velocity structure functions scale very close to the theoretical predictions. As an important element of self-organization, cooperative and turbulent particle motions are present in many physical, astrophysical, and biological systems. Therefore, experiments with turbulent wakes and turbulent complex plasma oscillations are a promising mean to observe and study in detail the anomalous transport on the level of individual particles.

  13. New ion generation method with SF{sub 6} plasma. Direct ionization of refractory materials; SF{sub 6} purazuma wo mochiita atarashii ion seiseiho. koyuten busshitsu wo chokusetsu ion ka

    Energy Technology Data Exchange (ETDEWEB)

    Okoshi, K.; Saito, Y.; Tajima, S. [Japan Atomic Energy Research Institute, Tokyo (Japan)

    1999-11-01

    For many refractory materials, vapor pressures rise due to fluoridation. For example, a vapor pressure of B is almost zero at room temperature, whereas a vapor pressure of BF{sub 3} is 10{sup 5}Pa or greater. A SF{sub 6} plasma method is capable of directly generating a solid fluoride in an ion source and obtaining its plasma. In order to ionize refractory materials such as niobium, boron, silicon and the like, the present authors have developed a new ion generation method using a stable solid sample and SF{sub 6} gas. Further, the present method was employed to successfully and greatly extending the filament life of the ion source. The plasma method can be used widely not only for a Freeman ion source but also for an ion source using plasma such as electron cyclotron resonance (ECR) ion source. Since the refractory material ions can be stably supplied at a great intensity for a long time, they are expected to be used in corrosion-resistant materials or materials having new functions such as optical switching materials. (NEDO)

  14. Plasma effect of the Houston horse

    Science.gov (United States)

    Pavlov, V. A.; Tryaskin, Ya. V.

    2015-05-01

    The effect of a strong shock wave on a weakly ionized collisional plasma was studied. The structure of the ion-acoustic perturbation caused by the shock wave was numerically investigated. The effect of the nonlinearity, dispersion, and dissipation on the formation of an oscillating wave profile was shown. It is found that in some modes, an increase in the shock wave velocity leads to a sharp increase in the concentration of charged particles and a reduction in the number of perturbation maxima. This change of the flow structure can be preceded by the formation of localized regions with an increased degree of plasma ionization. It is shown that the presence of plasmoids can lead to a strong influence of charges on the neutral component.

  15. Ionization in Atmospheres of Brown Dwarfs and Extrasolar Planets V: Alfv\\'{e}n Ionization

    CERN Document Server

    Stark, Craig R; Diver, Declan A; Rimmer, Paul B

    2013-01-01

    Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbour localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfv\\'{e}n ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization ($\\geq10^{-7}$) that they constitute plasmas. We outline the criteria required for Alfv\\'{e}n ionization and demonstrate it's applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs and M-dwarfs for both solar and sub-solar metallicities. We find that Alfv\\'{e}n ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neut...

  16. Characterization of radial turbulent fluxes in the Santander linear plasma machine

    Science.gov (United States)

    Mier, J. A.; Sánchez, R.; Newman, D. E.; Castellanos, O. F.; Anabitarte, E.; Sentíes, J. M.; van Milligen, B. Ph.

    2014-05-01

    It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which long-term correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasmas.

  17. Characterization of radial turbulent fluxes in the Santander linear plasma machine

    Energy Technology Data Exchange (ETDEWEB)

    Mier, J. A., E-mail: mierja@unican.es; Anabitarte, E.; Sentíes, J. M. [Departamento de Física Aplicada, Universidad de Cantabria, 39005 Santander (Spain); Sánchez, R. [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés, Madrid (Spain); Newman, D. E. [Department of Physics, University of Alaska, Fairbanks, Alaska 99775-5920 (United States); Castellanos, O. F. [Instituto de Hidráulica Ambiental, Universidad de Cantabria, 39005 Santander (Spain); Milligen, B. Ph. van [Laboratorio Nacional de Fusión, Asociación EURATOM-CIEMAT, 28040 Madrid (Spain)

    2014-05-15

    It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which long-term correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasmas.

  18. Weak Galois and Weak Cocleft Coextensions

    Institute of Scientific and Technical Information of China (English)

    J.N. Alonso (A)lvarez; J.M. Fernández Vilaboa; R. González Rodríguez; A.B. Rodríguez Raposo

    2007-01-01

    For a weak entwining structure (A, C,ψ) living in a braided monoidal category with equalizers and coequalizers, we formulate the notion of weak A-Galois coextension with normal basis and we show that these Galois coextensions are equivalent to the weak A-cocleft coextensions introduced by the authors.

  19. Simultaneous determination of puerarin, daidzin, daidzein, paeoniflorin, albiflorin, liquiritin and liquiritigenin in rat plasma and its application to a pharmacokinetic study of Ge-Gen Decoction by a liquid chromatography-electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Yan, Yan; Chai, Cheng-Zhi; Wang, Da-Wei; Wu, Jie; Xiao, Hong-He; Huo, Li-Xia; Zhu, Dan-Ni; Yu, Bo-Yang

    2014-07-01

    A liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method was developed and validated for simultaneous determination of seven constituents including puerarin, daidzin, daidzein, paeoniflorin, albiflorin, liquiritin and liquiritigenin in rat plasma using schisandrin as the internal standard (IS). The plasma samples were pretreated by a one-step direct protein precipitation with acetonitrile. The chromatographic separation was carried out on a C18 column with a gradient mobile phase consisting of acetonitrile and water (containing 0.1% formic acid and 5mM ammonium acetate). All analytes and IS were quantitated through electrospray ionization in positive ion multiple reaction monitoring (MRM) mode. The mass transitions were as follows: m/z 417.5→297.2 for puerarin, m/z 417.1→255.2 for daidzin, m/z 255.2→152.4 for daidzein, m/z 498.1→179.3 for paeoniflorin, m/z 481.1→197.3 for albiflorin, m/z 436.2→257.3 for liquiritin, m/z 257.2→137.3 for liquiritigenin and m/z 415.0→384.2 for IS, respectively. All calibration curves exhibited good linearity (r>0.9979) over a wide concentration range for all components. The intra-day and inter-day precisions (RSD) at three different levels were both less than 14.3% and the accuracies (RE) ranged from -13.2% to 14.8%. The extraction recoveries of the seven compounds ranged from 72.9% to 117.4%. The validated method was successfully applied to pharmacokinetic study of the seven components in female rat plasma after oral administration of Ge-Gen Decoction aqueous extract.

  20. Simultaneous extraction of acetylsalicylic acid and salicylic acid from human plasma and simultaneous estimation by liquid chromatography and atmospheric pressure chemical ionization/tandem mass spectrometry detection. Application to a pharmacokinetic study.

    Science.gov (United States)

    Nirogi, Ramakrishna; Kandikere, Vishwottam; Mudigonda, Koteshwara; Ajjala, Devender; Suraneni, Ramakrishna; Thoddi, Parthasarathi

    2011-01-01

    A simple analytical method using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in atmospheric chemical ionization mode (APCI) for the simultaneous estimation of acetylsalicylic acid (ASA, CAS 50-78-2) and its active metabolite salicylic acid (SA, CAS 69-72-7) in human plasma has been developed and validated. ASA and SA were analyzed simultaneously despite differences in plasma concentration ranges of ASA and SA after oral administration of ASA. In spite of having different chemical, ionization and chromatographic properties, ASA and SA were extracted simultaneously from the plasma sample using acetonitrile protein precipitation followed by liquid-liquid extraction. The analytes were separated on a reversed phase column with rapid gradient program using mobile phase consisting of ammonium acetate buffer and methanol. The structural analogue diclofenac was used as an internal standard. The multiple reaction monitoring (MRM) transitions m/z 179 --> 137 for ASA, m/z 137 --> 65 for SA and m/z 294 --> 250 for IS were used. The assay exhibited a linear dynamic range of 0.02-10 microg/mL for ASA and 0.1-50 microg/mL for SA. The between-batch precision (%CV) ranged from 2.1 to 7.9% for ASA and from 0.2 to 5.2% for SA. The between-batch accuracy ranged from 95.4 to 96.7% for ASA and from 94.6 to 111.3% for SA. The validated method was successfully applied for the evaluation of pharmacokinetics of ASA after single oral administration of 650 mg test formulation versus two 325 mg reference formulations of ASA in human subjects.

  1. Theory of dissociative tunneling ionization

    CERN Document Server

    Svensmark, Jens; Madsen, Lars Bojer

    2016-01-01

    We present a theoretical study of the dissociative tunneling ionization process. Analytic expressions for the nuclear kinetic energy distribution of the ionization rates are derived. A particularly simple expression for the spectrum is found by using the Born-Oppenheimer (BO) approximation in conjunction with the reflection principle. These spectra are compared to exact non-BO ab initio spectra obtained through model calculations with a quantum mechanical treatment of both the electronic and nuclear degrees freedom. In the regime where the BO approximation is applicable imaging of the BO nuclear wave function is demonstrated to be possible through reverse use of the reflection principle, when accounting appropriately for the electronic ionization rate. A qualitative difference between the exact and BO wave functions in the asymptotic region of large electronic distances is shown. Additionally the behavior of the wave function across the turning line is seen to be reminiscent of light refraction. For weak fiel...

  2. Tunneling Ionization of Diatomic Molecules

    DEFF Research Database (Denmark)

    Svensmark, Jens Søren Sieg

    2016-01-01

    When a molecule is subject to a strong laser field, there is a probability that an electron can escape, even though the electrons are bound by a large potential barrier. This is possible because electrons are quantum mechanical in nature, and they are therefore able to tunnel through potential...... of tunneling ionizaion of molecules is presented and the results of numerical calculations are shown. One perhaps surprising result is, that the frequently used Born-Oppenheimer approximation breaks down for weak fields when describing tunneling ionization. An analytic theory applicable in the weak-field limit...

  3. Instability of Magnetized Ionization Fronts Surrounding H II Regions

    CERN Document Server

    Kim, Jeong-Gyu

    2014-01-01

    An ionization front (IF) surrounding an H II region is a sharp interface where a cold neutral gas makes transition to a warm ionized phase by absorbing UV photons from central stars. We investigate the instability of a plane-parallel D-type IF threaded by parallel magnetic fields, by neglecting the effects of recombination within the ionized gas. We find that weak D-type IFs always have the post-IF magnetosonic Mach number $\\mathcal{M}_{\\rm M2} \\leq 1$. For such fronts, magnetic fields increase the maximum propagation speed of the IFs, while reducing the expansion factor $\\alpha$ by a factor of $1+1/(2\\beta_1)$ compared to the unmagnetized case, with $\\beta_1$ denoting the plasma beta in the pre-IF region. IFs become unstable to distortional perturbations due to gas expansion across the fronts, exactly analogous to the Darrieus-Landau instability of ablation fronts in terrestrial flames. The growth rate of the IF instability is proportional linearly to the perturbation wavenumber as well as the upstream flow ...

  4. Modeling of Ionization Physics with the PIC Code OSIRIS

    Energy Technology Data Exchange (ETDEWEB)

    Deng, S.; Tsung, F.; Lee, S.; Lu, W.; Mori, W.B.; Katsouleas, T.; Muggli, P.; Blue, B.E.; Clayton, C.E.; O' Connell, C.; Dodd, E.; Decker, F.J.; Huang, C.; Hogan, M.J.; Hemker, R.; Iverson, R.H.; Joshi, C.; Ren, C.; Raimondi, P.; Wang, S.; Walz, D.; /Southern California U. /UCLA /SLAC

    2005-09-27

    When considering intense particle or laser beams propagating in dense plasma or gas, ionization plays an important role. Impact ionization and tunnel ionization may create new plasma electrons, altering the physics of wakefield accelerators, causing blue shifts in laser spectra, creating and modifying instabilities, etc. Here we describe the addition of an impact ionization package into the 3-D, object-oriented, fully parallel PIC code OSIRIS. We apply the simulation tool to simulate the parameters of the upcoming E164 Plasma Wakefield Accelerator experiment at the Stanford Linear Accelerator Center (SLAC). We find that impact ionization is dominated by the plasma electrons moving in the wake rather than the 30 GeV drive beam electrons. Impact ionization leads to a significant number of trapped electrons accelerated from rest in the wake.

  5. Simulating plasma production from hypervelocity impacts

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Alex, E-mail: alexcf@stanford.edu; Close, Sigrid [Stanford University, Aeronautics and Astronautics, 496 Lomita Mall, Stanford, California 94305 (United States); Mathias, Donovan [NASA Ames Research Center, Bldg. 258, Moffett Field, California 94035 (United States)

    2015-09-15

    Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-produced plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30–72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent

  6. Evaluating a Contribution of the Knock-on Deuterons to the Neutron Yield in the Experiments with Weakly Collisional Plasma Jets (Part 2)

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-08

    Part 1 of this note considered the kinematics of large-angle scattering (LAS) of the deuterons on the counter-streaming carbon ions, with both flows having the same velocity V. Due to a large mass ratio mC/mD, the backscattered deuterons have high velocity of up to (24/7)V. This significantly increases the cross-section for the neutron production in the collisions between the back-scattered and incoming deuterons and may provide significant contribution to the total neutron yield, despite the smallness of a large-angle Coulomb cross-section. This effect becomes particularly important when only one of the colliding streams is made of CD, whereas the other stream is made of CH. Part 1 evaluated the neutron yield produced by this mechanism and have found that its relative role increases for higher plasma densities and lower velocities. Part 2 discusses signatures of this effect which can be used to identify it experimentally and also discusses in some more detail its spatio-temporal characteristics. It goes without saying that a complete quantitative assessment should be based on numerical simulations accounting for the large-angle scattering.

  7. Study of a recombination X-ray laser scheme in a H-like nitrogen plasma created by optical field induced ionization; Etude de la faisabilite d'un laser X en recombinaison dans un plasma d'azote hydrogenoide cree par effet tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Hulin, S

    2001-07-01

    Thanks to their high brightness and short wavelength, X ray lasers are interesting diagnostics in many experiments because they can efficiently probe dense plasmas. Furthermore their mono-chromaticity and collimation make them interesting tools in plasma physics but also in many biology or chemistry experiments. The effective use of this diagnostic is mainly depending on its dimensions and cost. For this reason, research on X ray laser is now focused on the reduction of cost and the realization of table-top facilities. One of these research axis, based on the optical field induced ionization (OFI) of the plasma, is presented in this work. An ultra-short (60 fs) high-brightness (10{sup 19} W/cm{sup 2}) Ti:Sapphire (790 nm) laser is focused into a nitrogen pulsed gas jet. A dense (10{sup 20} cm{sup -3}) plasma of fully stripped nitrogen is created by the way. During the fast recombination of the plasma some population inversions between levels of principal quantum number 2 and 1 (2.4 nm) and 3 and 2 (13.4 nm) can occur depending on the plasma parameters. The creation of the plasma by OFI, laser-plasma interaction dominated by relativistic self-focusing, and recombination dynamics are studied by numerical simulations on one hand and experiments on the other hand. Temperature measurements and numerical simulations show a strong heating, destructive for the laser scheme, which can be explained by Raman instability growing. Nevertheless plasma X ray emission in the 2-20 nm range show a strong increase with the electronic density of the 13.4 nm line intensity. This behavior is consistent with a laser effect but is not detected on the 2.4 nm transition line. (author)

  8. Two-photon ionization of colliding atoms

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.

    1977-09-01

    Semiclassical expressions of two-photon ionization of two colliding atoms are derived for a wide range of electromagnetic field intensity and detunings from the isolated atom line. The dependence of the ionization yield on the details of the interaction potential of the system is derived. This process promises an extremely sensitive method for studying line broadening on the far wing, especially when absorption or fluorescence becomes very weak.

  9. Investigation of Plasmas Having Complex, Dynamic Evolving Morphology

    Energy Technology Data Exchange (ETDEWEB)

    Bellan, Paul M. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2017-01-03

    Three different types of plasmas have been investigated using both experimental and theoretical methods. The first type of plasma is dense, highly ionized, governed by magnetohydrodynamics, and highly dynamic. This plasma is relevant to solar coronal loops, astrophysical jets, and other situations where strong magnetic forces act on the plasma. A well-diagnosed laboratory experiment creates a magnetohydrodynamically driven highly collimated plasma jet. This jet undergoes a kink instability such that it rapidly develops a corkscrew shape. The kink causes lateral acceleration of the jet, and this lateral acceleration drives a Rayleigh-Taylor instability that in turn chokes the current flowing in the jet and causes a magnetic reconnection. The magnetic reconnection causes electron and ion heating as well as emission of whistler waves. This entire sequence of events has been observed, measured in detail, and related to theoretical models. The second type of plasma is a transient rf-produced plasma used as a seed plasma for the magnetohydrodynamic experiments described above. Detailed atomic physics ionization processes have been investigated and modeled. The third type of plasma that has been studied is a dusty plasma where the dust particles are spontaneously growing ice grains. The rapid growth of the ice grains to large size and their highly ordered alignment has been investigated as well as collective motion of the ice grains, including well-defined flows on the surface of nested toroids. In addition to the experimental work described above, several related theoretical models have been developed, most notably a model showing how a complex interaction between gravity and magnetic fields on extremely weakly ionized plasma in an accretion disk provides an electric power source that can drive astrophysical jets associated with the accretion disk. Eighteen papers reporting this work have been published in a wide variety of journals.

  10. Laser Desorption Ionization Quadrupole Ion Trap Time-of-Flight Mass Spectrometry of Au m Fe n +/- Clusters Generated from Gold-Iron Nanoparticles and their Giant Nanoflowers. Electrochemical and/or Plasma Assisted Synthesis

    Science.gov (United States)

    Mawale, Ravi Madhukar; Ausekar, Mayuri Vilas; Pavliňák, David; Galmiz, Oleksandr; Kubáček, Pavel; Havel, Josef

    2017-02-01

    Gold nanoparticles (NP) with average diameter 100 nm synthesized from tetrachloroauric acid solution using stainless steel as a reducing agent were found to contain iron. Applying simultaneously high frequency (HF) plasma discharge in solution during the electrochemical reduction, giant gold-iron nanoflowers with average size 1000-5000 nm were formed. Scanning electron microscopy (SEM) shows the morphology of the nanopowders produced as polygonal yet nearly spherical, whereas iron content in both products determined by energy dispersive X-ray analysis (EDX) was found to be at 2.5 at. %. Laser desorption ionization (LDI) of both nanomaterials and mass spectrometric analysis show the formation of Au m Fe n +/- ( m = 1-35; n = 1-3) clusters. Structure of few selected clusters in neutral or monocharged forms were computed by density functional theory (DFT) calculations and it was found that typical distances of an iron nucleus from adjacent gold nuclei lie in the interval 2.5 to 2.7 Å. Synthetized Au-Fe nanoparticles were found stable for at least 2 mo at room temperature (even in aqueous solution) without any stabilizing agent. Produced Au-Fe nanoparticles in combination with standard MALDI matrices enhance ionization of peptides and might find use in nanomedicine.

  11. Development and validation of a sensitive gas chromatography-ammonia chemical ionization mass spectrometry method for the determination of tabun enantiomers in hemolysed blood and plasma of different species.

    Science.gov (United States)

    Tenberken, Oliver; Worek, Franz; Thiermann, Horst; Reiter, Georg

    2010-05-15

    The aim of this study was to develop and validate a fast, sensitive and easily applicable GC-MS assay for the chiral quantification of the highly toxic organophosphorus compound tabun (O-ethyl-N,N-dimethylphosphoramidocyanidate, GA) in hemolysed swine blood for further use in toxicokinetic and toxicodynamic studies. These requirements were fulfilled best by a GC-MS assay with positive chemical ionization with ammonia (GC-PCI-MS). Separation was carried out on a beta-cyclodextrin capillary column (Supelco BetaDex 225) after reversed phase (C18) solid-phase extraction. The limit of detection was 1 pg/ml for each enantiomer (approximately 500 fg on column) and the limit of quantification 5 pg/ml. The GC-PCI-MS method was applied for the quantification of tabun enantiomers in spiked swine blood after hemolysis and in spiked plasma of different species including humans.

  12. Study of Coupling between a Plasma Source and Plasma Fluctuations

    Science.gov (United States)

    Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Rogers, Anthony; Skiff, Fred

    2014-10-01

    An experimental study on the coupling between a plasma source and plasma fluctuations in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional is presented. Typical plasma conditions are n ~1010 cm-3 Te ~ 3 eV and B ~ 1 kG. Amplitude Modulation (AM) of the inductively-coupled RF plasma source is produced near the fundamental-mode ion-acoustic wave frequency (~1 kHz) to study the effects of the source-wave interaction and plasma production. Density fluctuation measurements are implemented using Laser-Induced Fluorescence techniques and Langmuir probes. We apply coherent detection with respect to the wave frequency to obtain the perturbed ion distribution function associated with the waves. Measurements of fluctuating I-V traces from a Langmuir probe array and antenna current load are also used to show the effects of the interaction. We would like to acknowledge DOE DE-FG02-99ER54543 for their financial support throughout this research.

  13. Advanced plasma diagnostics for plasma processing

    Science.gov (United States)

    Malyshev, Mikhail Victorovich

    1999-10-01

    A new, non-intrusive, non-perturbing diagnostic method was developed that can be broadly applied to low pressure, weakly ionized plasmas and glow discharges-trace rare gases optical emission spectroscopy (TRG-OES). The method is based on a comparison of intensities of atomic emission from trace amounts of inert gases (He, Ne, Ar, Kr, and Xe) that are added to the discharge to intensities calculated from the theoretical model. The model assumes a Maxwellian electron energy distribution function (EEDF), computes the population of emitting levels both from the ground state and the metastable states of rare gases, and from the best fit between theory and experiment determines electron temperature (Te). Subject to conditions, TRG-OES can also yield electron density or its upper or lower limit. From the comparison of the emission from levels excited predominantly by high energy electrons to that excited by low energy electrons, information about the EEDF can be obtained. The use of TRG-OES also allows a traditionally qualitative actinometry technique (determination of concentration of radical species in plasma through optical emission) to become a precise quantitative method by including Te and rare gases metastables effects. A combination of TRG-OES, advanced actinometry, and Langmuir probe measurements was applied to several different plasma reactors and regimes of operation. Te measurements and experiments to correct excitation cross section were conducted in a laboratory helical resonator. Two chamber configuration of a commercial (Lam Research) metal etcher were studied to determine the effects of plasma parameters on plasma-induced damage. Two different methods (RF inductive coupling and ultra-high frequency coupling) for generating a plasma in a prototype reactor were also studied. Pulsed plasmas, a potential candidate to eliminate the plasma-induced damage to microelectronics devices that occurs in manufacturing due to differential charging of the wafer, have

  14. Measurement of the ionization state and electron temperature of plasma during the ablation stage of a wire-array Z pinch using absorption spectroscopy.

    Science.gov (United States)

    Ivanov, V V; Hakel, P; Mancini, R C; Chittenden, J P; Anderson, A; Durmaz, T; Wiewior, P; Papp, D; Altemara, S D; Astanovitskiy, A L; Chalyy, O

    2011-06-03

    Wire-array plasmas were investigated in the nonradiative ablation stage via x-ray absorption spectroscopy. A laser-produced Sm plasma was used to backlight Al wire arrays. The Sm spectrum was simultaneously observed by two spectrometers: one recorded the unattenuated spectrum and the other the transmission spectrum with 1.45-1.55 keV K-shell absorption lines. Analysis of absorption spectra revealed electron temperature in the range of 10-30 eV and the presence of F-, O-, N- and C-like Al ions in the absorbing plasma. A comparison of this electron temperature with the postprocessed absorption spectra of a 2D MHD simulation yields results in general agreement with the data analysis.

  15. On Weak Regular *-semigroups

    Institute of Scientific and Technical Information of China (English)

    Yong Hua LI; Hai Bin KAN; Bing Jun YU

    2004-01-01

    In this paper, a special kind of partial algebras called projective partial groupoids is defined.It is proved that the inverse image of all projections of a fundamental weak regular *-semigroup under the homomorphism induced by the maximum idempotent-separating congruence of a weak regular *-semigroup has a projective partial groupoid structure. Moreover, a weak regular *-product which connects a fundamental weak regular *-semigroup with corresponding projective partial groupoid is defined and characterized. It is finally proved that every weak regular *-product is in fact a weak regular *-semigroup and any weak regular *-semigroup is constructed in this way.

  16. A UFLC-MS/MS method with a switching ionization mode for simultaneous quantitation of polygalaxanthone III, four ginsenosides and tumulosic acid in rat plasma: application to a comparative pharmacokinetic study in normal and Alzheimer's disease rats.

    Science.gov (United States)

    Lv, Chunxiao; Li, Qing; Zhang, Yaowen; Sui, Zhenyu; He, Bosai; Xu, Huarong; Yin, Yidi; Chen, Xiaohui; Bi, Kaishun

    2013-08-01

    A fast, sensitive and reliable ultra fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method has been developed and validated for simultaneous quantitation of polygalaxanthone III (POL), ginsenoside Rb1 (GRb1), ginsenoside Rd (GRd), ginsenoside Re (GRe), ginsenoside Rg1 (GRg1) and tumulosic acid (TUM) in rat plasma after oral administration of Kai-Xin-San, which plays an important role for the treatment of Alzheimer's disease (AD). The plasma samples were extracted by liquid-liquid extraction using ethyl acetate-isopropanol (1:1, v/v) with salidrdoside as internal standard (IS). Good chromatographic separation was achieved using gradient elution with the mobile phase consisting of methanol and 0.01% acetic acid in water. The tandem mass spectrometric detection was performed in multiple reaction monitoring mode on 4000Q UFLC-MS/MS system with turbo ion spray source in a negative and positive switching ionization mode. The lower limits of quantification were 0.2-1.5 ng/ml for all the analytes. Both intra-day and inter-day precision and accuracy of analytes were well within acceptance criteria (±15%). The mean absolute extraction recoveries of analytes and IS from rat plasma were all more than 60.0%. The validated method has been successfully applied to comparing pharmacokinetic profiles of analytes in normal and AD rat plasma. The results indicated that no significant differences in pharmacokinetic parameters of GRe, GRg1 and TUM were observed between the two groups, while the absorption of POL and GRd in AD group were significantly higher than those in normal group; moreover, the GRb1 absorbed more rapidly in model group. The different characters of pharmacokinetics might be caused by pharmacological effects of the analytes.

  17. Efficient generation of highly ionized calcium and titanium plasma columns for collisionally excited soft-x-ray lasers in a fast capillary discharge

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, J.J.; Cortazar, O.D.; Tomasel, F.G.; Szapiro, B.T. (Department of Electrical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States))

    1993-10-01

    Fast discharges through 1.5-mm-diam capillaries have produced dense Ca and Ti plasma columns with an abundance of Ne-like ions, which are of interest for the development of small-scale, collisionally excited soft-x-ray lasers. Current pulses of 30 ns full width at half maximum and peak currents of less than 70 kA produced plasmas with line emission from ions with charge up to the F-like state. Line emission at the wavelengths of the 3[ital p]-3[ital s] and 3[ital d]-3[ital p] transitions of the Ne-like ions has been observed.

  18. Electrospray ionization-ion mobility spectrometry as a detection system for three-phase hollow fiber microextraction technique and simultaneous determination of trimipramine and desipramine in urine and plasma samples.

    Science.gov (United States)

    Jafari, M T; Saraji, M; Sherafatmand, H

    2011-04-01

    A novel method based on three-phase hollow fiber microextraction technique (HF-LPME) coupled with electrospray ionization-ion mobility spectrometry (ESI-IMS) was developed for the simultaneous determination of two antidepressant drugs (trimipramine and desipramine) in urine and plasma samples. The effects of various parameters such as type of organic solvent, composition of donor and acceptor phase, stirring rate, salt addition, extraction time, and temperature were investigated. Under the optimized conditions, the relative standard deviation was in the range of 5-6%, and the method quantitation limit (MQL) of utilizing HF-LPME/ESI-IMS was 5 μg/L for both drugs. The relative recoveries obtained by the proposed method from urine and plasma samples were in the range 94% to 97% for trimipramine and 92% to 96% for desipramine. Finally, the feasibility of the proposed method was successfully confirmed by extraction and determination of trace amounts of trimipramine and desipramine in biological samples without any significant matrix effect.

  19. Simultaneous determination of corosolic acid and euscaphic acid in the plasma of normal and diabetic rat after oral administration of extract of Potentilla discolor Bunge by high-performance liquid chromatography/electrospray ionization mass spectrometry.

    Science.gov (United States)

    Li, Jing-jing; Li, Yi; Bai, Min; Tan, Jing-fu; Wang, Qiang; Yang, Jie

    2014-05-01

    Potentilla discolor Bunge has been used for diabetes in China for a long time. Corosolic acid (CA) and euscaphic acid (EA), with significant anti-diabetic activity, are two major triterpenoids in P. discolor. In this study, a specific, sensitive and convenient LC-MS method has been developed for simultaneous determination of CA and EA in the plasma of normal and diabetic rats after oral administration of the extract of P. discolor. The chromatographic separation was achieved using an Alltima C18 column (53 × 7.0 mm, i.d., 3 µm) with a mobile phase composed of 0.1% formic acid water and 0.1% formic acid acetonitrile at a flow rate of 1.0 mL/min. The detection was performed by MS with electrospray ionization interface in negative selected ion monitoring mode. All the validation data, such as specificity, linearity (r(2)  > 0.9991 within 0.025-10.0 µg/mL), lower limit of quantitation (2.5 ng/mL), precision (intra- and inter-day <14.7%), accuracy (<15.0%), recovery (85.7-110.8%) and stability were determined and all of them were within the required limits. This method was successfully applied for the evaluation of the pharmacokinetic behaviors of these two compounds in the plasma of normal and diabetic rats.

  20. Extraction of methocarbamol from human plasma with a polypyrrole/multiwalled carbon nanotubes composite decorated with magnetic nanoparticles as an adsorbent followed by electrospray ionization ion mobility spectrometry detection.

    Science.gov (United States)

    Saraji, Mohammad; Khayamian, Taghi; Hashemian, Zahra

    2014-12-01

    In this work, a polypyrrole/multiwalled carbon nanotubes composite decorated with Fe3 O4 nanoparticles was chemically synthesized and applied as a novel adsorbent for the extraction of methocarbamol from human plasma. Electrospray ionization ion mobility spectrometry was used for the determination of the analyte. The properties of the magnetic-modified adsorbent were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform IR spectroscopy, and X-ray diffraction. The effects of experimental parameters on the extraction efficiency of the sorbent were investigated. Under the optimized conditions, the linear dynamic range was found to be 2-150 ng/mL with the detection limit of 0.9 ng/mL. The relative standard deviation was 5.3% for three replicate measurements of methocarbamol in plasma sample. The extraction efficiency of the sorbent for the determination of different drugs with various polarities was also compared to that of Fe3 O4 -polypyrrole and Fe3 O4 -multiwalled carbon nanotubes sorbents. Finally, the method was used for the determination of methocarbamol in blood samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Multifluid Modeling of the Partially Ionized Chromosphere with Effects of Impact Ionization, Radiative Recombination and Charge Exchange

    Science.gov (United States)

    Maneva, Y. G.; Poedts, D. S.; Alvarez Laguna, A.; Lani, A.

    2015-12-01

    Neutrals play an important role in the evolution of the weakly ionized solar chromosphere where the number density of neutrals can vastly exceed the number density of protons. Therefore modeling the neutral-ion interactions and studying the effect of neutrals on the ambient plasma properties is an important task for better understanding the observed emission lines and the propagation of disturbances from the photosphere to the transition region and the corona. To pursue this goal we have developed two-fluid and three-fluid simulation setups to study the interaction between electrons, ions and neutrals in a reactive gravitationally stratified collisional media. The model considers the electrons and ions within the resistive MHD approach with Coulomb collisions and anisotropic heat flux determined by Braginskii's transport coefficients. The electromagnetic fields are evolved according to the full Maxwell equations, allowing for propagation of higher frequency waves neglected by the standard MHD approximation. Separate mass, momentum and energy conservation equations are considered for the neutrals and the interaction between the different fluids is determined by the chemical reactions, such as impact ionization, radiative recombination and charge exchange, provided as additional source terms. To initialize the system we consider an ideal gas equation of state with equal initial temperatures for the electrons, ions and the neutrals and different density profiles. The initial temperature and density profiles are height-dependent and follow VAL C atmospheric model for the solar chromosphere. We have searched for a chemical and collisional equilibrium between the ions and the neutrals in the hydrostatic case to avoid unphysical outflows and artificial heating induced by initial pressure imbalances. Next we consider ion-neutral interactions in magnetized plasma with an initial magnetic profile, corresponding to emerging magnetic funnel. Finally we include an external

  2. The H[subscript 3]PO[subscript 4] Acid Ionization Reactions: A Capstone Multiconcept Thermodynamics General Chemistry Laboratory Exercise

    Science.gov (United States)

    Nyasulu, Frazier; Barlag, Rebecca; Wise, Lindy; McMills, Lauren

    2013-01-01

    The thermodynamic properties of weak acid ionization reactions are determined. The thermodynamic properties are corresponding values of the absolute temperature (T), the weak acid equilibrium constant (K[subscript a]), the enthalpy of ionization (delta[subscript i]H[degrees]), and the entropy of ionization (delta[subscript i]S[degrees]). The…

  3. MHD power generation with fully ionized seed

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, H.; Shioda, S.

    1977-01-01

    Recovery of power density in the regime of fully ionized seed has been demonstrated experimentally using an MHD disk generator with the effective Hall parameter up to 5.0 when the seed was fully ionized. The experiments were conducted with a shock-heated and potassium-seeded argon plasma under the following conditions: stagnation gas pressure = 0.92 atm, stagnation gas temperature = 2750 K, flow Mach number = 2.5, and seed fraction = 1.4 x 10/sup -5/. Measurements of electron-number density and spectroscopic observations of both potassium and argon lines confirmed that the recovery of power output was due to the reduction of ionization instability. This fact indicates that the successful operation of a disk generator utilizing nonequilibrium ionization seems to be possible and that the suppression of ionization instability can also provide higher adiabatic efficiency. Furthermore, the lower seed fraction offers technological advantages related to seed problems.

  4. Simultaneous determination of six alkaloid components in rat plasma and its application to pharmacokinetic study of Danmu preparations by an ultra fast liquid chromatography-electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Yin, Rong; Chen, Jiaquan; Zhao, Yonggang; Jia, Xiaobin; Zhang, Zhiyuan; Feng, Liang; Wang, Hui; Wang, Jingjing; Zhu, Fenxia

    2015-03-01

    Danmu injection and Danmu tablet are two widely used traditional Chinese medicine made of Nauclea officinalis (commonly known as Danmu), in which the alkaloids are the major active substances. In this paper, an ultra fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method was developed for simultaneous determination and the pharmacokinetic characteristics study of six main active alkaloids (naucleamide A-10-O-β-d-glucopyranosid, naucleamide G, pumiloside, 3-epi-pumiloside, strictosamide and vincosamide) of the two above-mentioned Danmu preparations in rat plasma. In the course of the experiment, following sample preparation by protein precipitation with methanol-ethyl acetate (2:1, v/v), the nitrogen-dried extraction was reconstituted in methanol and assayed on a C18 column using a gradient elution program with mobile phase consisting of acetonitrile and water containing 0.1% formic acid. The MS detection was performed in positive ionization mode with selected ion transitions. The established method was fully validated and proved to be sensitive and specific with lower limits of quantification (LLOQs) all less than 0.32ng/mL in rat plasma and matrix effects ranged from 88.87 to 108.27%. Good linearities of six alkaloids were obtained in respective concentration ranges (r(2)>0.995). The average extract recoveries for each compound at three quality control concentration levels were no less than 79.70%, and the precision and accuracy were within the acceptable limits. The validated method was successfully applied to the pharmacokinetic study of six alkaloid components of Danmu injection and tablet in rat plasma. The obtained results may be helpful to reveal the action mechanism and guide the clinical application of Danmu preparations.

  5. Development and validation of a UHPLC-MS/MS assay for colistin methanesulphonate (CMS) and colistin in human plasma and urine using weak-cation exchange solid-phase extraction.

    Science.gov (United States)

    Zhao, Miao; Wu, Xiao-Jie; Fan, Ya-Xin; Guo, Bei-Ning; Zhang, Jing

    2016-05-30

    A rapid ultra high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) assay method was developed for determination of CMS and formed colistin in human plasma and urine. After extraction on a 96-well SPE Supra-Clean Weak Cation Exchange (WCX) plate, the eluents were mixed and injected into the UHPLC-MS/MS system directly. A Phonomenex Kinetex XB-C18 analytical column was employed with a mobile phase consisting of solution "A" (acetonitrile:methanol, 1:1, v/v) and solution "B" (0.1% formic acid in water, v/v). The flow rate was 0.4 mL/min with gradient elution over 3.5 min. Ions were detected in ESI positive ion mode and the precursor-product ion pairs were m/z 390.7/101.3 for colistin A, m/z 386.0/101.2 for colistin B, and m/z 402.3/101.2 for polymyxin B1 (IS), respectively. The lower limit of quantification (LLOQ) was 0.0130 and 0.0251 mg/L for colistin A and colistin B in both plasma and urine with accuracy (relative error, %) <± 12.6% and precision (relative standard deviation, %) <± 10.8%. Stability of CMS was demonstrated in biological samples before and during sample treatment, and in the extract. This new analytical method provides high-throughput treatment and optimized quantification of CMS and colistin, which offers a highly efficient tool for the analysis of a large number of clinical samples as well as routine therapeutic drug monitoring.

  6. Relativistic soliton-like collisionless ionization wave

    Science.gov (United States)

    Arefiev, Alexey; McCormick, Matthew; Quevedo, Hernan; Bengtson, Roger; Ditmire, Todd

    2014-10-01

    It has been observed in recent experiments with laser-irradiated gas jets that a plasma filament produced by the laser and containing energetic electrons can launch a relativistic ionization wave into ambient gas. Here we present a self-consistent theory that explains how a collisionless ionization wave can propagate in a self-sustaining regime. A population of hot electrons necessarily generates a sheath electric field at the plasma boundary. This field penetrates the ambient gas, ionizing the gas atoms and thus causing the plasma boundary to expand. We show that the motion of the newly generated electrons can form a potential well adjacent to the plasma boundary. The outwards motion of the well causes a bunch of energetic electrons to become trapped, while allowing the newly generated electrons to escape into the plasma without retaining much energy. The resulting soliton-like ionizing field structure propagates outwards with a bunch of hot electrons that maintain a strong sheath field despite significant plasma expansion. We also present 1D and 2D particle-in-cell simulations that illustrate the described mechanism. The simulations were performed using HPC resources provided by the Texas Advanced Computing Center. This work was supported by NNSA Contract No. DE-FC52-08NA28512 and U.S. DOE Contract No. DE-FG02-04ER54742.

  7. Modeling the early ionization of dielectrics by ultrashort laser pulses

    OpenAIRE

    Bourgeade, Antoine; Mézel, Candice; Saut, Olivier

    2010-01-01

    International audience; In this paper, we present a model for propagation of intense and ultrashort laser pulses ionizing dielectrics. We consider early ion- ization so that this process is sufficiently weak to avoid requiring a complete description of the ionization process (e.g. the use of ki- netic equations which are very expensive from a computational point of view). As the intensity of the field is small, one photon ioniza- tion is neglected. Ionization may only occur through multi-phot...

  8. Cofinitely weak supplemented modules

    OpenAIRE

    Alizade, Rafail; Büyükaşık, Engin

    2003-01-01

    We prove that a module M is cofinitely weak supplemented or briefly cws (i.e., every submodule N of M with M/N finitely generated, has a weak supplement) if and only if every maximal submodule has a weak supplement. If M is a cws-module then every M-generated module is a cws-module. Every module is cws if and only if the ring is semilocal. We study also modules, whose finitely generated submodules have weak supplements.

  9. GENERALIZED WEAK FUNCTIONS

    Institute of Scientific and Technical Information of China (English)

    丁夏畦; 罗佩珠

    2004-01-01

    In this paper the authors introduce some new ideas on generalized numbers and generalized weak functions. They prove that the product of any two weak functions is a generalized weak function. So in particular they solve the problem of the multiplication of two generalized functions.

  10. Surface Wave Propagation in non--ideal plasmas

    CERN Document Server

    Pandey, B P

    2015-01-01

    The properties of surface waves in a partially ionized, compressible magnetized plasma slab are investigated in this work. The waves are affected by the nonideal magnetohydrodynamic effects which causes finite drift of the magnetic field in the medium. When the magnetic field drift is ignored, the characteristics of the wave propagation in a partially ionized plasma fluid is similar to the fully ionized ideal MHD except now the propagation properties depend on the fractional ionization as well as on the compressibility of the medium. The phase velocity of the sausage and kink waves increases marginally (by a few percent) due to the compressibility of the medium in both ideal as well as Hall diffusion dominated regimes. However, unlike ideal regime, only waves below certain cut off frequency can propagate in the medium in Hall dominated regime. This cut off for a thin slab has a weak dependence on the plasma beta whereas for thick slab no such dependence exists. More importantly, since the cut off is introduce...

  11. Plasma research and applications in the lighting industry

    Science.gov (United States)

    Sommerer, Timothy

    1999-11-01

    Plasmas are at the heart of modern high-efficiency general-purpose light sources: fluorescent lamps and high-intensity discharge lamps. In fluorescent lamps a weakly ionized positive column discharge in a mixture of a rare-gas (few torr) and mercury vapor (few mtorr) converts electrical power into mercury atomic radiation (254 and 185 nm) with an efficiency around two-thirds. The atoms and ions remain near room temperature, while the electrons are non-Maxwellian with an average energy near 1 eV. A phosphor then downconverts the mercury radiation into a spectrum of visible light. The monochromatic yellow low-pressure sodium lamps used in street lighting have an analogous neon-sodium discharge that emits directly into the visible on the sodium D lines. In high-intensity discharge (HID) lamps visible light is generated directly by a weakly ionized arc where all species are in approximate thermal equilibrium, at least near the arc core. Typical total gas pressures are 0.5--50 atm and typical peak temperatures are 5000 K. Mercury accounts for the overwhelming majority of the atoms in the vapor, but the visible light is produced by comparatively small numbers of other metals such as sodium, scandium, thallium, indium, tin, and some of the lanthanides. In many lamps a significant fraction of the emitting species can be ionized, but the presence of a large ``buffer'' gas background means that ionization fractions are typically less than 10-3. Current topics of potential interest to this audience include breakdown and lamp starting; plasma-wall interactions (which are nonequilibrium regions even in HID arcs); plasma-electrode sheaths (which can be fully ionized); induction drive (electrodeless lamps); and radiation transport.

  12. Plasma physics and fusion plasma electrodynamics

    CERN Document Server

    Bers, Abraham

    2016-01-01

    Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...

  13. Advanced Kinetic-Based Modeling Applied to Plasma and Neutral Flows

    Science.gov (United States)

    2012-09-01

    equilibrium; ion, electron, and neutral temperatures strongly differ, and the electron distribution function is non - Maxwellian Strong impact of...density, MHD plasma High temperature, Te ~ 10 – 1000 eV Non -equilibrium Chemical (Air) / Ionization mechanisms Neutral gas entrainment MSNW FRC...thermal non -equilibrium ni weakly depends on U Electron T is very important Number of charge exchange reactions for T=10eV and U=20km/s was found to

  14. The influence of Hall drift to the ionization efficiency of anode layer Hall plasma accelerator%霍尔漂移对阳极层霍尔等离子体加速器电离效率的影响

    Institute of Scientific and Technical Information of China (English)

    耿少飞; 唐德礼; 邱孝明; 聂军伟; 于毅军

    2012-01-01

    The Hall drift of electrons in anode layer plasma accelerator is analyzed based on Lorentz transformation.It is shown that Hall drift does not exist always in the cross-field.If the ratio of E to B is lager than light speed,Hall drift will disappear.The further analysis shows that the Hall drift is not always in the form of gyration.It is also in the forms of wave and straight line,depending on electric-magnetic field configuration and initial energy of electrons.The electric-magnetic configuration determines the speed of drift,and then affects electron energy.This can determine the ionization efficiency in discharge.A numerical simulation using the Particle-in-Cell method is performed.The result indicates that a nice ratio of E and B will produce high ionization efficiency(for argon,this value is about 4×10~6).This value will change with working gas according to the ionization cross section determined by electron energy.%以洛伦兹变换方法为基础,分析了阳极层霍尔等离子体加速器中电子的霍尔漂移,结果表明在交叉场中,霍尔漂移并不总是存在的,E/B的比值大于光速时,霍尔漂移将不存在.进一步的分析表明,霍尔漂移也并不总是回旋形式的,不同的电磁场配置以及不同的电子初始能量将带来不同形式的漂移,包括回旋形式,波浪线形式,甚至直线形式.电磁场的配置也决定着霍尔漂移的速度,在很大程度上影响着电子的能量,这就决定了放电时的电离效率.对不同电磁场配置进行数值模拟发现,合理的电磁场比值能够得到更好的电离效率(对于氩,这个数值大约为4×10~6).不同的气体,根据其电离碰撞截面与电子能量的关系,都有不同的合理比值.

  15. Influence of one- and two-dimensional gel electrophoresis procedure on metal-protein bindings examined by electrospray ionization mass spectrometry, inductively coupled plasma mass spectrometry, and ultrafiltration.

    Science.gov (United States)

    Schmidt, Anne-Christine; Störr, Bianca; Kummer, Nicolai-Alexeji

    2011-08-15

    Three independent methods, (i) electrospray ionization mass spectrometry (ESI-MS), (ii) carrying out the complete protein preparation procedure required for protein gel electrophoresis (GE) including extraction, precipitation, washing, and desalting with subsequent microwave digestion of the produced protein fractions for metal content quantification, and (iii) ultrafiltration for separating protein-bound and unbound metal fractions, were employed to elucidate the influences of protein sample preparation and GE running conditions on metal-protein bindings. A treatment of the protein solution with acetone instead of trichloroacetic acid or ammonium sulfate for precipitate formation led to a strongly enhanced metal binding capacity. The desalting step of the resolubilized protein sample caused a metal loss between 10 and 35%. The omission of some extraction buffer additives led to a diminished metal binding capacity of protein fractions obtained from the sample preparation procedure for GE, whereas a tenside addition to the protein solution inhibited metal-protein bindings. The binding stoichiometry of Cu and Zn-protein complexes determined by ESI-MS was influenced by the type of the metal salt which was applied to the protein solution. A higher pH value of the sample solution promoted the metal ion complexation by the proteins. Ultrafiltration experiments revealed a higher Cu- and Zn-binding capacity of the model protein lysozyme in both resolubilization buffers for 1D- and 2D-GE compared to the protein extraction buffer. Strongly diminished metal binding capacities of lysozyme were recorded in the running buffer of 1D-GE and in the gel staining solutions.

  16. Ultra-performance liquid chromatography electrospray ionization-tandem mass spectrometry method for the simultaneous determination of itraconazole and hydroxy itraconazole in human plasma

    Institute of Scientific and Technical Information of China (English)

    Ashish Dwivedi; Bhupinder Singh; Sandeep Sharma; R.S. Lokhandae; Naveen Dubey

    2014-01-01

    A highly sensitive, selective, and precise ultra-performance liquid chromatography tandem mass spectrometry method was developed and validated for simultaneous quantification of itraconazole and hydroxy itraconazole in human plasma by a single liquid-liquid extraction step. The precursor to product ion transitions of m/z 705.3/392.3, m/z 721.2/408.3 and m/z 708.2/435.4 were used to detect and quantify itraconazole, hydroxy itraconazole and itraconazole-d3 respectively. The lower limit of quantitation was found to be 0.500 ng/mL for itraconazole and 1.00 ng/mL for hydroxy itraconazole. The mean recoveries for itraconazole and hydroxy itraconazole were found to be 100.045% and 100.021%, respectively. This developed method with a chromatographic run time of 2.0 min was successfully applied to a bioequivalence study of 100 mg itraconazole capsule.

  17. A sensitive and robust lc-ms/ms method with monolithic column and electrospray ionization for the quantitation of efavirenz in human plasma: application to a bioequivalence study

    Directory of Open Access Journals (Sweden)

    Danilo Cesar Galindo Bedor

    2011-01-01

    Full Text Available An LC-MS/MS method has been developed for the determination of efavirenz (EFZ in human plasma using hydrochlorothiazide as internal standard (I.S.. An ESI negative mode with multiple reaction-monitoring was used monitoring the transitions m/z 313.88→69.24 (EFZ and 296.02→204.76 (I.S.. Samples were extracted using liquid-liquid extraction. The total run time was 2.0 min. The separation was achieved with HPLC-RP using a monolithic column. The assay was linear in the concentration range of 100 - 5000 ng mL-1. The mean recovery was 83%. Intra- and inter-day precision were < 9.5% and < 8.9%, respectively and accuracy was in the range ± 8.33%. The method was successfully applied to a bioequivalence study.

  18. Plasma Heating Suring a Coronal Mass Ejection Observed by SOHO

    CERN Document Server

    Murphy, N A; Korreck, K E

    2011-01-01

    We perform a time-dependent ionization analysis to constrain plasma heating requirements during a fast partial halo coronal mass ejection (CME) observed on 2000 June 28 by the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the Solar and Heliospheric Observatory (SOHO). We use two methods to derive densities from the UVCS measurements, including a density sensitive O V line ratio at 1213.85 and 1218.35 Angstroms, and radiative pumping of the O VI 1032,1038 doublet by chromospheric emission lines. The most strongly constrained feature shows cumulative plasma heating comparable to or greater than the kinetic energy, while features observed earlier during the event show cumulative plasma heating comparable to or less than the kinetic energy. SOHO Michelson Doppler Imager (MDI) observations are used to estimate the active region magnetic energy. We consider candidate plasma heating mechanisms and provide constraints when possible. Because this CME was associated with a relatively weak flare, the contribution b...

  19. Validation of a liquid chromatography-electrospray ionization-tandem mass spectrometry method for determination of all-trans retinoic acid in human plasma and its application to a bioequivalence study.

    Science.gov (United States)

    Peng, Jing-Bo; Luo, Chen-Hui; Wang, Yi-Cheng; Huang, Wei-Hua; Chen, Yao; Zhou, Hong-Hao; Tan, Zhi-Rong

    2014-01-17

    A sensitive, reliable and specific LC-MS-MS method was developed and validated for the identification and quantitation of all-trans retinoic acid (ATRA) in human plasma. Acitretin was used as the internal standard (IS). After liquid-liquid extraction of 500 μL plasma with methyl tert-butyl ether (MTBE), ATRA and the IS were chromatographed on a HyPURITY C18 column (150 mm×2.1 mm, 5 μm) with the column temperature set at 40 °C. The mobile phase was consisted of 40% phase A (MTBE-methanol-acetic acid, 50:50:0.5, v/v) and 60% phase B (water-methanol-acetic acid, 50:50:0.5, v/v) with a flow rate of 0.3 mL/min. The API 4000 triple quadrupole mass spectrometer was operated in multiple reaction monitoring (MRM) mode via the positive electrospray ionization interface using the transition m/z 301.4→123.1 for ATRA and m/z 326.9→177.1 for IS, respectively. The calibration curve was linear over the range of 0.45-217.00 ng/mL (r≥0.999) with a lower limit of quantitation (LLOQ) of 0.45 ng/mL. The intra- and inter-day precisions values were below 8% relative standard deviation and the accuracy was from 98.98% to 106.19% in terms of relative error. The validated method was successfully applied in a bioequivalence study of ATRA in Chinese healthy volunteers.

  20. Validation of a Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry Method for Determination of All-Trans Retinoic Acid in Human Plasma and Its Application to a Bioequivalence Study

    Directory of Open Access Journals (Sweden)

    Jing-Bo Peng

    2014-01-01

    Full Text Available A sensitive, reliable and specific LC-MS-MS method was developed and validated for the identification and quantitation of all-trans retinoic acid (ATRA in human plasma. Acitretin was used as the internal standard (IS. After liquid-liquid extraction of 500 μL plasma with methyl tert-butyl ether (MTBE, ATRA and the IS were chromatographed on a HyPURITY C18 column (150 mm × 2.1 mm, 5 μm with the column temperature set at 40 °C. The mobile phase was consisted of 40% phase A (MTBE–methanol–acetic acid, 50:50:0.5, v/v and 60% phase B (water–methanol–acetic acid, 50:50:0.5, v/v with a flow rate of 0.3 mL/min. The API 4000 triple quadrupole mass spectrometer was operated in multiple reaction monitoring (MRM mode via the positive electrospray ionization interface using the transition m/z 301.4 → 123.1 for ATRA and m/z 326.9 → 177.1 for IS, respectively. The calibration curve was linear over the range of 0.45–217.00 ng/mL (r ≥ 0.999 with a lower limit of quantitation (LLOQ of 0.45 ng/mL. The intra- and inter-day precisions values were below 8% relative standard deviation and the accuracy was from 98.98% to 106.19% in terms of relative error. The validated method was successfully applied in a bioequivalence study of ATRA in Chinese healthy volunteers.

  1. Quantification of 3α-hydroxytibolone in human plasma by high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS: Application in a bioequivalence study in healthy postmenopausal volunteers

    Directory of Open Access Journals (Sweden)

    Lucas Azevedo Portela

    2016-06-01

    Full Text Available A sensitive, specific and fast method to quantify 3α-hydroxytibolone in human plasma using deuterated 3α-hydroxytibolone (d5 as internal standard is described. The analyte and the internal standard were extracted from plasma (900 μL by liquid-liquid extraction using ethyl ether/hexane (50/50, v/v and ammonium hydroxide (50%. The extracts were analyzed by high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry without derivatization. Chromatography was performed isocratically on a Gemini-NX™ C18 5 μm (150 × 4.6 mm i. d. column. The method had a chromatographic run time of 3.75 min and a linear calibration curve over the range 1–100 ng/mL. The limit of quantification validated was 1 ng/mL. This method was used to assess the bioequivalence between two different tibolone oral formulations: Livolon (1.25 mg tablet provided by Biolab Sanus Farmacêutica (Brazil, as the test formulation, and Libiam™ (1.25 mg tablet produced by Libbs Farmacêutica (Brazil, as the reference formulation. A single 3.75 mg dose of each formulation was administered to 46 postmenopausal female healthy volunteers. The study was conducted in an open, randomized, two-period crossover balanced design with a 2 week washout interval between the doses. The 90% confidence interval for Cmax, AUC(0-last and AUC(0-inf individual test/reference ratios were 97.48–111.51, 95.35–103.20 and 96.42–103.86, respectively. It is concluded that Livolon (1.25 mg tablet is bioequivalent to Libiam™ (1.25 mg tablet, with regards to both rate and extent of absorption.

  2. Simultaneous determination of diosmin and diosmetin in human plasma by ion trap liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry: Application to a clinical pharmacokinetic study.

    Science.gov (United States)

    Campanero, Miguel Angel; Escolar, Manuel; Perez, Guiomar; Garcia-Quetglas, Emilio; Sadaba, Belen; Azanza, Jose Ramon

    2010-03-11

    Diosmetin (3',5,7-trihydroxy-4'-methoxyflavone) is the aglycone of the flavonoid glycoside diosmin (3',5,7-trihydroxy-4'-methoxyflavone-7-ramnoglucoside). Diosmin is hydrolyzed by enzymes of intestinal micro flora before absorption of its aglycone diosmetin. A specific, sensitive, precise, accurate and robust HPLC assay for the simultaneous determination of diosmin and diosmetin in human plasma was developed and validated. Plasma samples were incubated with beta-glucuronidase/sulphatase. The analytes were isolated by liquid-liquid extraction with tert-butyl methyl ether at pH 2, and separated on a C(18) reversed-phase column using a mixture of methanol/1% formic acid (58:42, v/v) at a flow rate of 0.5ml/min. APCI in the positive ion mode and multiple reaction monitoring (MRM) method was employed. The selected transitions for diosmin, diosmetin and the internal standard (7-ethoxycoumarin) at m/z were: 609.0-->463.0, 301.2-->286.1 and 191, respectively. A good linearity was found in the range of 0.25-500ng/ml (R(2)>0.992) for both compounds. The intra-batch assay precision (CV) for diosmin and diosmetin ranged from 1.5% to 11.2% and from 2.8% to 12.5%, respectively, and the inter-batch precision were from 5.2% to 11.5% and 8.5% to 9.8%, respectively. The accuracy was well within the acceptable range the accuracies (from -2.7% to 4.2% and -1.6% to 3.5% for diosmin and diosmetin, respectively). The mean recoveries of diosmin, diosmetin and the internal standard were 87.5%, 89.2% and 67.2%. Stability studies showed that diosmin and diosmetin were stable in different conditions. Finally, the method was successfully applied to the pharmacokinetic study of diosmin in healthy volunteers following a single oral administration (Daflon).

  3. Analysis of metal-binding proteins separated by non-denaturating gel electrophoresis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    Science.gov (United States)

    Becker, J Susanne; Mounicou, Sandra; Zoriy, Miroslav V; Becker, J Sabine; Lobinski, Ryszard

    2008-09-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have become established as very efficient and sensitive biopolymer and elemental mass spectrometric techniques for studying metal-binding proteins (metalloproteins) in life sciences. Protein complexes present in rat tissues (liver and kidney) were separated in their native state in the first dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, nickel, chromium, cadmium and lead, were detected by scanning the gel bands using quadrupole LA-ICP-MS with and without collision cell as a microanalytical technique. Several proteins were identified by using MALDI-TOF-MS together with a database search. For example, on one protein band cut from the BN-PAGE gel and digested with the enzyme trypsin, two different proteins - protein FAM44B and cathepsin B precursor - were identified. By combining biomolecular and elemental mass spectrometry, it was possible to characterize and identify selected metal-binding rat liver and kidney tissue proteins.

  4. Speciation of manganese binding to biomolecules in pine nuts (Pinus pinea) by two-dimensional liquid chromatography coupled to ultraviolet and inductively coupled plasma mass spectrometry detectors followed by identification by electrospray ionization mass spectrometry.

    Science.gov (United States)

    Arias-Borrego, Ana; García-Barrera, Tamara; Gómez-Ariza, José L

    2008-10-01

    Advances in analytical methodology for speciation of manganese in pine nuts are presented in this work. The approach is based on the use of orthogonal chromatographic systems, namely size-exclusion chromatography (SEC) of the extracts and strong anion exchange (IEC) of the fractions collected by the first column. In both columns, manganese elution is first monitored by a quadrupole inductively coupled plasma mass spectrometry (ICP-MS) instrument equipped with an octopole reaction cell and an ultraviolet (UV) detector. SEC is performed by using two columns covering the molecular weight range from pine nuts samples and the presence of Mn-citrate is confirmed by nanoelectrospray ionization quadrupole time-of-flight mass spectrometry (nESI-QqTOF-MS). In the same fraction, a third Mn-containing peak is detected in the IEC-UV-ICP-MS chromatogram. This peak corresponds to a protein containing Mn that was later submitted to a tryptic digestion and analyzed by nESI-QqTOF. The MS/MS data of a doubly charged peptide are used to obtain the sequence of the protein with the Mascot search engine. The peak turned out to be isocitrate dehydrogenase, a protein commonly associated with Mn.

  5. On Weakly Semicommutative Rings*

    Institute of Scientific and Technical Information of China (English)

    CHEN WEI-XING; CUI SHU-YING

    2011-01-01

    A ring R is said to be weakly scmicommutative if for any a, b ∈ R,ab = 0 implies aRb C_ Nil(R), where Nil(R) is the set of all nilpotcnt elements in R.In this note, we clarify the relationship between weakly semicommutative rings and NI-rings by proving that the notion of a weakly semicommutative ring is a proper generalization of NI-rings. We say that a ring R is weakly 2-primal if the set of nilpotent elements in R coincides with its Levitzki radical, and prove that if R is a weakly 2-primal ring which satisfies oα-condition for an endomorphism α of R (that is, ab = 0 (←→) aα(b) = 0 where a, b ∈ R) then the skew polynomial ring R[π; αα]is a weakly 2-primal ring, and that if R is a ring and I is an ideal of R such that I and R/I are both weakly semicommutative then R is weakly semicommutative.Those extend the main results of Liang et al. 2007 (Taiwanese J. Math., 11(5)(2007),1359-1368) considerably. Moreover, several new results about weakly semicommutative rings and NI-rings are included.

  6. Ionization Energies of Lanthanides

    Science.gov (United States)

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  7. Idiopathic isolated orbicularis weakness

    Science.gov (United States)

    MacVie, O P; Majid, M A; Husssin, H M; Ung, T; Manners, R M; Ormerod, I; Pawade, J; Harrad, R A

    2012-01-01

    Purpose Orbicularis weakness is commonly associated with seventh nerve palsy or neuromuscular and myopathic conditions such as myotonic dystrophy and myasethenia gravis. We report four cases of idiopathic isolated orbicularis weakness. Methods All four cases were female and the presenting symptoms of ocular irritation and epiphora had been present for over 7 years in three patients. All patients had lagophthalmos and three had ectropion. Three patients underwent full investigations which excluded known causes of orbicularis weakness. Two patients underwent oribularis oculi muscle biopsy and histological confirmation of orbicularis atrophy. Results All patients underwent surgery to specifically address the orbicularis weakness with satisfactory outcomes and alleviation of symptoms in all cases. Isolated orbicularis weakness may be a relatively common entity that is frequently overlooked. Conclusion Early recognition of this condition may lead to better management and prevent patients undergoing unnecessary surgical procedures. PMID:22322997

  8. Quantitative determination of isorhamnetin, quercetin and kaempferol in rat plasma by liquid chromatography with electrospray ionization tandem mass spectrometry and its application to the pharmacokinetic study of isorhamnetin.

    Science.gov (United States)

    Lan, Ke; Jiang, Xuehua; He, Jianling

    2007-01-01

    A simple and sensitive liquid chromatography/tandem mass spectrometry method was developed and validated for the quantification of quercetin, kaempferol and isorhamnetin in rat plasma. After being treated with beta-glucuronidase and sulfatase, the analytes were extracted by liquid/liquid extraction with the internal standard (IS; baicalein). The chromatographic separation was performed on a Diamonsil C(18) column with a mobile phase consisting of 2% formic acid/methanol (10:90, v/v) at a flow rate of 1.00 mL/min, with a split of 200 microL to the mass spectrometer. Validation results indicated that the lower limit of quantification (LLOQ) was 1 ng . mL(-1). The assay exhibited a linear range of 1-200 ng . mL(-1) and gave a correlation coefficient of 0.9980 or better for each analyte. Quality control samples (1, 5, 20 and 100 ng . mL(-1)) in six replicates from each of three different runs demonstrated an intra-assay precision (RSD) of 1.1-8.9%, an inter-assay precision of 1.6-10.8%, and an overall accuracy (bias) of isorhamnetin after oral application in rats equipped with a jugular catheter. After oral dosing of isorhamnetin, the mean values (n = 10) of C(max) were 57.8, 64.8 and 75.2 ng . mL(-1) which were achieved at a T(max) of 8.0, 6.4 and 7.2 h for oral doses of 0.25, 0.5 and 1.0 mg . kg(-1) body weight, respectively. The corresponding mean values for isorhamnetin area under the curver (AUC) from 0 to 60 h were 838.2, 1262.8, 1623.4 ng . h . mL(-1). Our results further demonstrated that the samples analyzed showed isorhamnetin could not be transformed into quercetin or kaempferol in rats, indicating that the demethylation of the 3'-oxymethyl group of isorhamnetin does not occur in Wistar rats.

  9. Simultaneous liquid chromatographic-electrospray ionization mass spectrometric quantification of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) and its metabolites 3,4-dihydroxymethamphetamine, 4-hydroxy-3-methoxymethamphetamine and 3,4-methylenedioxyamphetamine in squirrel monkey and human plasma after acidic conjugate cleavage

    Science.gov (United States)

    Mueller, Melanie; Peters, Frank T.; Huestis, Marilyn A.; Ricaurte, George A.; Maurer, Hans H.

    2009-01-01

    3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy) is a psychoactive drug with abuse liability and neurotoxic potential. Specimen preparation of a recently presented LC–MS assay with electrospray ionization for quantifying MDMA and its main metabolites in squirrel monkey plasma was modified to include acidic hydrolysis to obtain total 3,4-dihydroxymethamphetamine and 4-hydroxy-3-methoxymethamphetamine. Method re-validation for squirrel monkey plasma and full validation for human plasma showed selectivity for all analytes. Recoveries were ≥71.0%. Changed specimen preparation or matrix did not affect accuracy or precision. No instability was observed after repeated freezing or in processed samples. Plasma MDMA and metabolites quantification, derived pharmacokinetic and toxicokinetic data and neurotoxicity research will benefit from this validated method. PMID:19131196

  10. No-Hair Theorem for Weak Pulsar

    CERN Document Server

    Gruzinov, Andrei

    2015-01-01

    It is proposed that there exists a class of pulsars, called weak pulsars, for which the large-scale magnetosphere, and hence the gamma-ray emission, are independent of the detailed pattern of plasma production. The weak pulsar magnetosphere and its gamma-ray emission are uniquely determined by just three parameters: spin, dipole, and the spin-dipole angle. We calculate this supposedly unique pulsar magnetosphere in the axisymmetric case. The magnetosphere is found to be very close to (although interestingly not fully identical with) the magnetosphere we have previously calculated, explaining the phenomenological success of the old calculation. We offer only a highly tentative proof of this "Pulsar No-Hair Theorem". Our analytics, while convincing in its non-triviality, is incomplete, and counts only as a plausibility argument. Our numerics, while complete, is dubious. The plasma flow in the weak pulsar magnetosphere turns out to be even more intricate than what we have previously proposed: some particles, aft...

  11. Rapid Hydrophilization of Model Polyurethane/Urea (PURPEG) Polymer Scaffolds Using Oxygen Plasma Treatment

    OpenAIRE

    Rok Zaplotnik; Alenka Vesel; Gregor Primc; Xiangyu Liu; Chen, Kevin C; Chiju Wei; Kaitian Xu; Miran Mozetic

    2016-01-01

    Polyurethane/urea copolymers based on poly(ethylene glycol) (PURPEG) were exposed to weakly ionized, highly reactive low-pressure oxygen plasma to improve their sorption kinetics. The plasma was sustained with an inductively coupled radiofrequency generator operating at various power levels in either E-mode (up to the forward power of 300 W) or H-mode (above 500 W). The treatments that used H-mode caused nearly instant thermal degradation of the polymer samples. The density of the charged par...

  12. Formation of Polar Ionospheric Tongue of Ionization during Minor Geomagnetic Disturbed Conditions

    Science.gov (United States)

    Liu, J.; Wang, W.; Burns, A. G.; Yue, X.; Zhang, S.; Zhang, Y.

    2015-12-01

    Previous investigations of ionospheric storm-enhanced density (SED) and tongue of ionization (TOI) focused mostly on the behavior of TOI during intense geomagnetic storms. Little attention has been paid to the spatial and temporal variations of TOI during weak to moderate geomagnetic disturbed conditions. we investigate the source and development of TOI during a moderate geomagnetic storm on 14 October 2012.Multi-instrumental observations including GPS total electron content (TEC), Defense Meteorological SatelliteProgram(DMSP) in situ measured total ion concentration and ion drift velocity, SuperDARN measured polar ionconvection patterns, and electron density profiles from the Poker Flat Incoherent Scatter Radar (PFISR) have been utilized in the current analysis. GPS TEC maps show salient TOI structures persisting for about 5 h over high latitudes of North America on 14 October 2012 in the later recovery phase of the storm when the magnitudes of IMF By and Bz were less than 5 nT. The PFISR electron density profiles indicate that the extra ionization for TEC enhancements mainly occurred in the topside ionosphere with no obvious changes in the bottom side ionosphere and vertical plasma drifts. Additionally, there were no signatures of penetration electric fields in the equatorial electrojet data and upward ion drifts at high latitudes. At the same time, strong subauroral polarization streams with ion drift speeds exceeding 2.5 km/s carried sunward fluxes and migrated toward lower latitudes for about 5° based on the DMSP cross-track driftmeasurements. Based on those measurements,we postulate that the combined effects of initial build-up of ionization at midlatitudes through daytime production of ionization and equatorward (or less poleward than normal daytime) neutral wind reducing downward diffusion along the inclined filed lines, and an expanded polar ion convection pattern and its associated horizontal plasma transport are important in the formation of the TOI.

  13. Weak decays. [Lectures, phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Wojcicki, S.

    1978-11-01

    Lectures are given on weak decays from a phenomenological point of view, emphasizing new results and ideas and the relation of recent results to the new standard theoretical model. The general framework within which the weak decay is viewed and relevant fundamental questions, weak decays of noncharmed hadrons, decays of muons and the tau, and the decays of charmed particles are covered. Limitation is made to the discussion of those topics that either have received recent experimental attention or are relevant to the new physics. (JFP) 178 references

  14. Weakly asymptotically hyperbolic manifolds

    CERN Document Server

    Allen, Paul T; Lee, John M; Allen, Iva Stavrov

    2015-01-01

    We introduce a class of "weakly asymptotically hyperbolic" geometries whose sectional curvatures tend to $-1$ and are $C^0$, but are not necessarily $C^1$, conformally compact. We subsequently investigate the rate at which curvature invariants decay at infinity, identifying a conformally invariant tensor which serves as an obstruction to "higher order decay" of the Riemann curvature operator. Finally, we establish Fredholm results for geometric elliptic operators, extending the work of Rafe Mazzeo and John M. Lee to this setting. As an application, we show that any weakly asymptotically hyperbolic metric is conformally related to a weakly asymptotically hyperbolic metric of constant negative curvature.

  15. Mass spectrometry of solid samples in open air using combined laser ionization and ambient metastable ionization

    Science.gov (United States)

    He, X. N.; Xie, Z. Q.; Gao, Y.; Hu, W.; Guo, L. B.; Jiang, L.; Lu, Y. F.

    2012-01-01

    Mass spectrometry of solid samples in open air was carried out using combined laser ionization and metastable ionization time-of-flight mass spectrometry (LI-MI-TOFMS) in ambient environment for qualitative and semiquantitative (relative analyte information, not absolute information) analysis. Ambient metastable ionization using a direct analysis in realtime (DART) ion source was combined with laser ionization time-of-flight mass spectrometry (LI-TOFMS) to study the effects of combining metastable and laser ionization. A series of metallic samples from the National Institute of Standards and Technology (NIST 494, 495, 498, 499, and 500) and a pure carbon target were characterized using LI-TOFMS in open air. LI-MI-TOFMS was found to be superior to laser-induced breakdown spectroscopy (LIBS). Laser pulse energies between 10 and 200 mJ at the second harmonic (532 nm) of an Nd:YAG laser were applied in the experiment to obtain a high degree of ionization in plasmas. Higher laser pulse energy improves signal intensities of trace elements (such as Fe, Cr, Mn, Ni, Ca, Al, and Ag). Data were analyzed by numerically calculating relative sensitivity coefficients (RSCs) and limit of detections (LODs) from mass spectrometry (MS) and LIBS spectra. Different parameters, such as boiling point, ionization potential, RSC, LOD, and atomic weight, were shown to analyze the ionization and MS detection processes in open air.

  16. Strange Weak Values

    CERN Document Server

    Hosoya, Akio

    2010-01-01

    We develop a formal theory of the weak values with emphasis on the consistency conditions and a probabilistic interpretation in the counter-factual processes. We present the condition for the choice of the post-selected state to give a negative weak value of a given projection operator and strange values of an observable in general. The general framework is applied to Hardy's paradox and the spin $1/2$ system to explicitly address the issues of counter-factuality and strange weak values. The counter-factual arguments which characterize the paradox specifies the pre-selected state and a complete set of the post-selected states clarifies how the strange weak values emerge.

  17. Dynamics of pre-ionized fast capillary discharge

    Science.gov (United States)

    Hübner, J.; Vrba, P.; Straus, J.; Jancarek, A.; Nevrkla, M.

    2014-05-01

    The goal of this work is to determine the best conditions for pre-ionization of the nitrogen filled capillary plasma column applying an external exponentially damped or high-frequency alternating current. As we supposed, optimal pre-ionization conditions are achieved when the plasma is quiescent, motionless and isothermal, near the local thermodynamical equilibrium. At the time of optimal conditions for the pre-ionization plasma column, the main pulse is applied. This approach enables us to estimate the influence of such prepared plasma on the value of emitted energy during the main current pulse. For modeling of plasma during the pre-pulse and main pulse, the magneto-hydro-dynamics (MHD) NPINCH code [1] and the radiative-MHD Z* code [2] were used. The computer results are used for further improvement of x-ray-ultraviolet-capillary sources designed in IPP ASCR and CTU FNSPE laboratories in Prague.

  18. External ionization mechanisms for advanced thermionic converters

    Science.gov (United States)

    Hatziprokopiou, M. E.

    Ion generation and recombination mechanisms in the cesium plasma were investigated as they pertain to the advanced mode thermionic energy converters. The changes in plasma density and temperature within the converter were studied under the influence of several promising auxiliary ionization candidate sources. Three novel approaches of external cesium ion generation were investigated in some detail, namely vibrationally excited N2 as an energy source of ionization of Cs ions in a DC discharge, microwave power as a means of resonant sustenance of the cesium plasma, and ion generation in a pulse N2-Cs mixture. The experimental data obtained and discussed in this work show that all three techniques--i.e. the non-LTE high-voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave power--have considerable promise as schemes in auxiliary ion generation applicable to the advanced thermionic energy converter.

  19. Laboratory simulation of cometary neutral gas ionization

    Science.gov (United States)

    Chang, Tsuey-Fen; Rahman, H. U.; White, R. S.

    1989-01-01

    The laboratory simulation of the interaction of the solar wind with a comet is used to study the cometary neural gas ionization. The experiment is carried out in the UCR T-1 facility with an ice ball as the comet model. Photographs and data are taken with a variety of values of the solar wind velocity, interplanetary magnetic field (IMF), and comet configurations. The results show that the cometary neutral gas ionization depends on both the velocity of the solar wind and the interplanetary magnetic field. The plasma cloud surrounding the comet is visible only when the solar wind velocity and IMF are both above certain minimum values. This velocity dependent phenomena is explained by Alfven's critical ionization velocity effect. The critical magnetic field may be explained by assuming two stream lower hybrid instability as a triggering mechanism for the ionization of the neutral gas by plasma flow. Critical upper and lower limits for the magnetic field, required by anomalous ionization, are also derived that satisfy the experimental observations.

  20. Reviews of plasma physics

    CERN Document Server

    2008-01-01

    "Reviews of Plasma Physics Volume 24," edited by V.D. Shafranov, presents two reviews from the cutting-edge of Russian plasma physics research. The first review by V.A. Rozhansky devoted to the mechanisms of transverse conductivity and generation of self-consistent electric fields in strongly ionized magnetized plasma. The second review by O.G. Bakunin considers numerous aspects of turbulent transport in plasma and fluids. This review is focused on scaling arguments for describing anomalous diffusion in the presence of complex structures. These topics are especially important for fusion plasma research, plasma astrophysics, discharge physics, and turbulence