WorldWideScience

Sample records for weakly interacting liquids

  1. Electrokinetic detection for X-ray spectra of weakly interacting liquids: n-decane and n-nonane

    Science.gov (United States)

    Lam, Royce K.; Shih, Orion; Smith, Jacob W.; Sheardy, Alex T.; Rizzuto, Anthony M.; Prendergast, David; Saykally, Richard J.

    2014-06-01

    The introduction of liquid microjets into soft X-ray absorption spectroscopy enabled the windowless study of liquids by this powerful atom-selective high vacuum methodology. However, weakly interacting liquids produce large vapor backgrounds that strongly perturb the liquid signal. Consequently, solvents (e.g., hydrocarbons, ethers, ketones, etc.) and solutions of central importance in chemistry and biology have been inaccessible by this technology. Here we describe a new detection method, upstream detection, which greatly reduces the vapor phase contribution to the X-ray absorption signal while retaining important advantages of liquid microjet sample introduction (e.g., minimal radiation damage). The effectiveness of the upstream detection method is demonstrated in this first study of room temperature liquid hydrocarbons: n-nonane and n-decane. Good agreement with first principles' calculations indicates that the eXcited electron and Core Hole theory adequately describes the subtle interactions in these liquids that perturb the electronic structure of the unoccupied states probed in core-level experiments.

  2. Electrokinetic detection for X-ray spectra of weakly interacting liquids: n-decane and n-nonane

    International Nuclear Information System (INIS)

    Lam, Royce K.; Smith, Jacob W.; Sheardy, Alex T.; Rizzuto, Anthony M.; Saykally, Richard J.; Shih, Orion; Prendergast, David

    2014-01-01

    The introduction of liquid microjets into soft X-ray absorption spectroscopy enabled the windowless study of liquids by this powerful atom-selective high vacuum methodology. However, weakly interacting liquids produce large vapor backgrounds that strongly perturb the liquid signal. Consequently, solvents (e.g., hydrocarbons, ethers, ketones, etc.) and solutions of central importance in chemistry and biology have been inaccessible by this technology. Here we describe a new detection method, upstream detection, which greatly reduces the vapor phase contribution to the X-ray absorption signal while retaining important advantages of liquid microjet sample introduction (e.g., minimal radiation damage). The effectiveness of the upstream detection method is demonstrated in this first study of room temperature liquid hydrocarbons: n-nonane and n-decane. Good agreement with first principles’ calculations indicates that the eXcited electron and Core Hole theory adequately describes the subtle interactions in these liquids that perturb the electronic structure of the unoccupied states probed in core-level experiments

  3. Electrokinetic detection for X-ray spectra of weakly interacting liquids: n-decane and n-nonane

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Royce K.; Smith, Jacob W.; Sheardy, Alex T.; Rizzuto, Anthony M.; Saykally, Richard J., E-mail: saykally@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Shih, Orion [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Prendergast, David [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-06-21

    The introduction of liquid microjets into soft X-ray absorption spectroscopy enabled the windowless study of liquids by this powerful atom-selective high vacuum methodology. However, weakly interacting liquids produce large vapor backgrounds that strongly perturb the liquid signal. Consequently, solvents (e.g., hydrocarbons, ethers, ketones, etc.) and solutions of central importance in chemistry and biology have been inaccessible by this technology. Here we describe a new detection method, upstream detection, which greatly reduces the vapor phase contribution to the X-ray absorption signal while retaining important advantages of liquid microjet sample introduction (e.g., minimal radiation damage). The effectiveness of the upstream detection method is demonstrated in this first study of room temperature liquid hydrocarbons: n-nonane and n-decane. Good agreement with first principles’ calculations indicates that the eXcited electron and Core Hole theory adequately describes the subtle interactions in these liquids that perturb the electronic structure of the unoccupied states probed in core-level experiments.

  4. Weak interactions

    International Nuclear Information System (INIS)

    Ogava, S.; Savada, S.; Nakagava, M.

    1983-01-01

    The problem of the use of weak interaction laws to study models of elementary particles is discussed. The most typical examples of weak interaction is beta-decay of nucleons and muons. Beta-interaction is presented by quark currents in the form of universal interaction of the V-A type. Universality of weak interactions is well confirmed using as examples e- and μ-channels of pion decay. Hypothesis on partial preservation of axial current is applicable to the analysis of processes with pion participation. In the framework of the model with four flavours lepton decays of hadrons are considered. Weak interaction without lepton participation are also considered. Properties of neutral currents are described briefly

  5. Weak interactions with nuclei

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1983-01-01

    Nuclei provide systems where the strong, electomagnetic, and weak interactions are all present. The current picture of the strong interactions is based on quarks and quantum chromodynamics (QCD). The symmetry structure of this theory is SU(3)/sub C/ x SU(2)/sub W/ x U(1)/sub W/. The electroweak interactions in nuclei can be used to probe this structure. Semileptonic weak interactions are considered. The processes under consideration include beta decay, neutrino scattering and weak neutral-current interactions. The starting point in the analysis is the effective Lagrangian of the Standard Model

  6. Weak interactions

    International Nuclear Information System (INIS)

    Chanda, R.

    1981-01-01

    The theoretical and experimental evidences to form a basis for Lagrangian Quantum field theory for Weak Interactions are discussed. In this context, gauge invariance aspects of such interactions are showed. (L.C.) [pt

  7. Electromagnetic current in weak interactions

    International Nuclear Information System (INIS)

    Ma, E.

    1983-01-01

    In gauge models which unify weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current. The exact nature of such a component can be explored using e + e - experimental data. In recent years, the existence of a new component of the weak interaction has become firmly established, i.e., the neutral-current interaction. As such, it competes with the electromagnetic interaction whenever the particles involved are also charged, but at a very much lower rate because its effective strength is so small. Hence neutrino processes are best for the detection of the neutral-current interaction. However, in any gauge model which unifies weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current

  8. History of Weak Interactions

    Science.gov (United States)

    Lee, T. D.

    1970-07-01

    While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.

  9. Weak interactions

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1978-01-01

    Weak interactions are studied from a phenomenological point of view, by using a minimal number of theoretical hypotheses. Charged-current phenomenology, and then neutral-current phenomenology are discussed. This all is described in terms of a global SU(2) symmetry plus an electromagnetic correction. The intermediate-boson hypothesis is introduced and lower bounds on the range of the weak force are inferred. This phenomenology does not yet reconstruct all the predictions of the conventional SU(2)xU(1) gauge theory. To do that requires an additional assumption of restoration of SU(2) symmetry at asymptotic energies

  10. Dark-Matter Particles without Weak-Scale Masses or Weak Interactions

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kumar, Jason

    2008-01-01

    We propose that dark matter is composed of particles that naturally have the correct thermal relic density, but have neither weak-scale masses nor weak interactions. These models emerge naturally from gauge-mediated supersymmetry breaking, where they elegantly solve the dark-matter problem. The framework accommodates single or multiple component dark matter, dark-matter masses from 10 MeV to 10 TeV, and interaction strengths from gravitational to strong. These candidates enhance many direct and indirect signals relative to weakly interacting massive particles and have qualitatively new implications for dark-matter searches and cosmological implications for colliders

  11. Weak interactions in astrophysics and cosmology

    International Nuclear Information System (INIS)

    Taylor, R.J.

    1977-01-01

    There ar many problems in astrophysics and cosmology in which the form of the weak interactions, their strength or the number of weakly interacting particles, is very important. It is possible that astronomical observations may give some information about the weak interactions. In the conventional hot big bang cosmological theory the number of leptons with associated neutrinos influences the speed of expansion of the Universe and the chemical composition of pre-galactic matter. The strength of the weak interaction, as exemplified by the half-life of the neutron, has a similar effect. In addition, the form of the weak interactions will determine how effectively neutrino viscosity can smooth out irregularities in the early Universe. Because neutrinos have a very long mean free path, they can escape from the central region of stars whereas photons can only escape from the surface. In late stages of stellar evolution, neutrino luminosity is often believed to be much greater than photon luminosity. This can both accelerate the cooling of dying stars and influence the stages of stellar evolution leading to the onset of supernova explosions. In pre-super-novae it is even possible that very dense stellar cores can be opaque to neutrinos and that the absorption or scattering of neutrinos can cause the explosion. These results depend crucially on the form of the weak interactions, with the discovery of neutral currents being very important. Until the solar neutrino experiment has been reconciled with theory, the possible role of uncertainties in the weak interactions cannot be ignored. (author)

  12. Early Career: The search for weakly interacting dark matter with liquid xenon

    International Nuclear Information System (INIS)

    Hall, Carter

    2017-01-01

    We report results from a search for weakly interacting dark matter particles obtained with the LUX experiment. LUX was located at a depth of 4850 feet at the Sanford Underground Research Facility in Lead, South Dakota from 2013 through 2016. It found no evidence for dark matter particle interactions and set new constraints on the properties of such particles for masses between 6 GeV and 100 TeV. The work reported here also characterized the performance of such experiments by developing a new calibration technique based upon a tritium beta decay source.

  13. Early Career: The search for weakly interacting dark matter with liquid xenon

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Carter [Univ. of Maryland, College Park, MD (United States). Dept. of Physics

    2017-02-08

    We report results from a search for weakly interacting dark matter particles obtained with the LUX experiment. LUX was located at a depth of 4850 feet at the Sanford Underground Research Facility in Lead, South Dakota from 2013 through 2016. It found no evidence for dark matter particle interactions and set new constraints on the properties of such particles for masses between 6 GeV and 100 TeV. The work reported here also characterized the performance of such experiments by developing a new calibration technique based upon a tritium beta decay source.

  14. A search for weakly interacting dark matter with the LUX experiment

    International Nuclear Information System (INIS)

    INIS-FR--11-0141/Pt.1-25

    2010-01-01

    Cosmological and astrophysical measurements indicate that our galaxy is filled with a new type of matter previously unknown to physics. This 'dark matter' apparently has no electromagnetic or strong interactions, but an interaction of the strength of the weak nuclear force is strongly suggested by the data. The LUX collaboration is attempting to detect the faint signature of weakly interacting dark matter as it passes through the earth. The experiment searches for recoiling atomic nuclei in a target consisting of 350 kg of liquefied xenon. LUX is the largest experiment of its type ever attempted, and it is expected to improve upon current experimental sensitivities by two orders of magnitude. The experiment is being assembled at the Sanford Underground Science and Engineering Laboratory (SUSEL) in Lead, South Dakota, USA, and first data is expected in 2011. We report on the status of LUX and the prospects for future large-scale dark matter searches with liquid xenon. (author)

  15. Nuclear beta decay and the weak interaction

    International Nuclear Information System (INIS)

    Kean, D.C.

    1975-11-01

    Short notes are presented on various aspects of nuclear beta decay and weak interactions including: super-allowed transitions, parity violation, interaction strengths, coupling constants, and the current-current formalism of weak interaction. (R.L.)

  16. A polyacrylamide-based silica stationary phase for the separation of carbohydrates using alcohols as the weak eluent in hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Cai, Jianfeng; Cheng, Lingping; Zhao, Jianchao; Fu, Qing; Jin, Yu; Ke, Yanxiong; Liang, Xinmiao

    2017-11-17

    A hydrophilic interaction liquid chromatography (HILIC) stationary phase was prepared by a two-step synthesis method, immobilizing polyacrylamide on silica sphere particles. The stationary phase (named PA, 5μm dia) was evaluated using a mixture of carbohydrates in HILIC mode and the column efficiency reached 121,000Nm -1 . The retention behavior of carbohydrates on PA stationary phase was investigated with three different organic solvents (acetonitrile, ethanol and methanol) employed as the weak eluent. The strongest hydrophilicity of PA stationary phase was observed in both acetonitrile and methanol as the weak eluent, when compared with another two amide stationary phases. Attributing to its high hydrophilicity, three oligosaccharides (xylooligosaccharide, fructooligosaccharide and chitooligosaccharides) presented good retention on PA stationary phase using alcohols/water as mobile phase. Finally, PA stationary phase was successfully applied for the purification of galactooligosaccharides and saponins of Paris polyphylla. It is feasible to use safer and cheaper alcohols to replace acetonitrile as the weak eluent for green analysis and purification of polar compounds on PA stationary phase. Copyright © 2017. Published by Elsevier B.V.

  17. Luttinger liquid behavior of weakly disordered quantum wires

    International Nuclear Information System (INIS)

    Palevski, A.; Levy, E.; Karpovski, M.; Tsukernik, A.; Dwir, B.; Kapon, E.

    2005-01-01

    Full Text:The talk will be devoted to the electronic transport in quantum nano wires. The temperature dependence of the conductance in long V-groove quantum wires fabricated in GaAs/AlGaAs heterostructures is consistent with recent theories given within the framework of the Luttinger liquid model, in the limit of weakly disordered wires. We show that for the relatively small amount of disorder in our quantum wires, the value of the interaction parameter g is g=0.66, which is the expected value for GaAs. However, samples with a higher level of disorder show conductance with stronger temperature dependence, which exceeds the range of validity of a perturbation theory. Trying to fit such data with perturbation-theory models leads inevitably to wrong (lower) values of g

  18. Weak-interacting holographic QCD

    International Nuclear Information System (INIS)

    Gazit, D.; Yee, H.-U.

    2008-06-01

    We propose a simple prescription for including low-energy weak-interactions into the frame- work of holographic QCD, based on the standard AdS/CFT dictionary of double-trace deformations. As our proposal enables us to calculate various electro-weak observables involving strongly coupled QCD, it opens a new perspective on phenomenological applications of holographic QCD. We illustrate efficiency and usefulness of our method by performing a few exemplar calculations; neutron beta decay, charged pion weak decay, and meson-nucleon parity non-conserving (PNC) couplings. The idea is general enough to be implemented in both Sakai-Sugimoto as well as Hard/Soft Wall models. (author)

  19. Study of weak interaction with p-p colliding beam

    International Nuclear Information System (INIS)

    Arafune, Jiro; Sugawara, Hirotaka

    1975-01-01

    Weak interaction in the energy range of TRISTAN project is discussed. The cross-section of production of weak boson in p-p reaction was calculated with the parton model. The observation of weak boson may be possible. The production rate of neutral weak boson was also estimated on the basis of the Weinberg model, and was almost same as that of weak boson. The method of observation of weak boson is suggested. The direct method is the observation of lepton pair due to the decay of neutral weak boson. It is expected that the spectrum of decay products (+ -) in the decay of weak boson shows a characteristic feature, and it shows the existence of weak boson. Weak interaction makes larger contribution in case of large momentum transfer than electromagnetic interaction. When the momentum transfer is larger than 60 GeV/c, the contribution of weak interaction is dominant over the others. Therefore, the experiments at high energy will give informations concerning the relations among the interactions of elementary particles. Possibility of study on the Higgs scalar meson is also discussed. (Kato, T.)

  20. Weak point disorder in strongly fluctuating flux-line liquids

    Indian Academy of Sciences (India)

    We consider the effect of weak uncorrelated quenched disorder (point defects) on a strongly fluctuating flux-line liquid. We use a hydrodynamic model which is based on mapping the flux-line system onto a quantum liquid of relativistic charged bosons in 2 + 1 dimensions [P Benetatos and M C Marchetti, Phys. Rev. B64 ...

  1. Weak-interaction contributions to hyperfine splitting and Lamb shift

    International Nuclear Information System (INIS)

    Eides, M.I.

    1996-01-01

    Weak-interaction contributions to hyperfine splitting and the Lamb shift in hydrogen and muonium are discussed. The problem of sign of the weak-interaction contribution to HFS is clarified, and simple physical arguments that make this sign evident are presented. It is shown that weak-interaction contributions to HFS in hydrogen and muonium have opposite signs. A weak-interaction contribution to the Lamb shift is obtained. copyright 1996 The American Physical Society

  2. Cosmology and the weak interaction

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1989-12-01

    The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N ν ∼ 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs

  3. Cosmology and the weak interaction

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Fermi National Accelerator Lab., Batavia, IL (USA)):(Chicago Univ., IL (USA))

    1989-12-01

    The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.

  4. The weak interaction in nuclear, particle and astrophysics

    International Nuclear Information System (INIS)

    Grotz, K.; Klapdor, H.V.

    1989-01-01

    This book is an introduction to the concepts of weak interactions and their importance and consequences for nuclear physics, particle physics, neutrino physics, astrophysics and cosmology. After a general introduction to elementary particles and interactions the Fermi theory of weak interactions is described together with its connection with nuclear structure and beta decay including the double beta decay. Then, after a general description of gauge theories the Weinberg-Salam theory of the electroweak interactions is introduced. Thereafter the weak interactions are considered in the framework of grand unification. Then the physics of neutrinos is discussed. Thereafter connections of weak interactions with astrophysics are considered with special regards to the gravitational collapse and the synthesis of heavy elements in the r-process. Finally, the connections of grand unified theories and cosmology are considered. (HSI) With 141 figs., 39 tabs

  5. Weak-interaction rates in stellar conditions

    Science.gov (United States)

    Sarriguren, Pedro

    2018-05-01

    Weak-interaction rates, including β-decay and electron captures, are studied in several mass regions at various densities and temperatures of astrophysical interest. In particular, we study odd-A nuclei in the pf-shell region, which are involved in presupernova formations. Weak rates are relevant to understand the late stages of the stellar evolution, as well as the nucleosynthesis of heavy nuclei. The nuclear structure involved in the weak processes is studied within a quasiparticle proton-neutron random-phase approximation with residual interactions in both particle-hole and particle-particle channels on top of a deformed Skyrme Hartree-Fock mean field with pairing correlations. First, the energy distributions of the Gamow-Teller strength are discussed and compared with the available experimental information, measured under terrestrial conditions from charge-exchange reactions. Then, the sensitivity of the weak-interaction rates to both astrophysical densities and temperatures is studied. Special attention is paid to the relative contribution to these rates of thermally populated excited states in the decaying nucleus and to the electron captures from the degenerate electron plasma.

  6. Reduction of weak interaction rates in neutron stars by nucleon spin fluctuations: Degenerate case

    International Nuclear Information System (INIS)

    Raffelt, G.; Strobel, T.

    1997-01-01

    Nucleon spin fluctuations in a dense medium reduce the open-quotes naiveclose quotes values of weak interaction rates (neutrino opacities, neutrino emissivities). We extend previous studies of this effect to the degenerate case which is appropriate for neutron stars a few ten seconds after formation. If neutron-neutron interactions by a one-pion exchange potential are the dominant cause of neutron spin fluctuations, a perturbative calculation of weak interaction rates is justified for T approx-lt 3m/(4πα π 2 )∼1MeV, where m is the neutron mass and α π ∼15 the pion fine-structure constant. At higher temperatures, the application of Landau close-quote s theory of Fermi liquids is no longer justified; i.e., the neutrons cannot be viewed as simple quasiparticles in any obvious sense. copyright 1997 The American Physical Society

  7. Structure and weak hydrogen bonds in liquid acetaldehyde

    Directory of Open Access Journals (Sweden)

    Cordeiro Maria A. M.

    2004-01-01

    Full Text Available Monte Carlo simulations have been performed to investigate the structure and hydrogen bonds formation in liquid acetaldehyde. An all atom model for the acetaldehyde have been optimized in the present work. Theoretical values obtained for heat of vaporisation and density of the liquid are in good agreement with experimental data. Graphics of radial distribution function indicate a well structured liquid compared to other similar dipolar organic liquids. Molecular mechanics minimization in gas phase leads to a trimer of very stable structure. The geometry of this complex is in very good agreement with the rdf. The shortest site-site correlation is between oxygen and the carbonyl hydrogen, suggesting that this correlation play a important role in the liquid structure and properties. The OxxxH average distance and the C-HxxxO angle obtained are characteristic of weak hydrogen bonds.

  8. Introduction to weak interactions

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    An account is first given of the electromagnetic interactions of complex, scalar, vector and spinor fields. It is shown that the electromagnetic field may be considered as a gauge field. Yang-Mills fields and the field theory invariant with respect to the non-Abelian gauge transformation group are then described. The construction, owing to this invariance principle, of conserved isospin currents associated with gauge fields is also demonstrated. This is followed by a historical survey of the development of the weak interaction theory, established at first to describe beta disintegration processes by analogy with electrodynamics. The various stages are mentioned from the discovery of principles and rules and violation of principles, such as those of invariance with respect to spatial reflection and charge conjugation to the formulation of the effective current-current Lagrangian and research on the structure of weak currents [fr

  9. About some distinguishing features of weak interactions

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    1999-01-01

    It is shown that, in contrast to strong and electromagnetic theories, additive conserved numbers (such as lepton, aromatic and another numbers) and γ 5 anomaly do not appear in the standard weak interaction theory. It means that in this interaction the additive numbers cannot be conserved. These results are the consequence of specific character of the weak interaction: the right components of spinors do not participate in this interaction. The schemes of violation of the aromatic and lepton numbers were considered

  10. Introduction to unification of electromagnetic and weak interactions

    International Nuclear Information System (INIS)

    Martin, F.

    1980-01-01

    After reviewing the present status of weak interaction phenomenology we discuss the basic principles of gauge theories. Then we show how Higgs mechanism can give massive quanta of interaction. The so-called 'Weinberg-Salam' model, which unifies electromagnetic and weak interactions, is described. We conclude with a few words on unification with strong interactions and gravity [fr

  11. Proposed ripplon induced weak localization of electrons over liquid helium

    International Nuclear Information System (INIS)

    Dahm, A.J.

    1997-01-01

    Ripplon induced weak localization is proposed for electrons on a liquid helium surface. Ripplon scattering is quasi-elastic, the ripplon are quasi-static relative to the electron velocity, and the relative change in occupation number of the ripplon state in a scattering event is small. Conditions for the observation of ripplon induced weak localization are calculated

  12. Weak interactions of the b quark

    International Nuclear Information System (INIS)

    Branco, G.C.; Mohapatra, R.N.

    1978-01-01

    In weak-interaction models with two charged W bosons of comparable mass, there exists a novel possibility for the weak interactions of the b quark, in which the (u-barb)/sub R/ current occurs with maximal strength. It is noted that multimuon production in e + e - annihilation at above Q 2 > or approx. = (12 GeV) 2 will distinguish this scheme from the conventional one. We also present a Higgs system that leads naturally to this type of coupling, in a class of gauge models

  13. CPT non-invariance and weak interactions

    International Nuclear Information System (INIS)

    Hsu, J.P.

    1973-01-01

    In this talk, I will describe a possible violation of CPT invariance in the domain of weak interactions. One can construct a model of weak interactions which, in order to be consistent with all experimental data, must violate CPT maximally. The model predicts many specific results for decay processes which could be tested in the planned neutral hyperon beam or neutrino beam at NAL. The motivations and the physical idea in the model are explained and the implications of the model are discussed. (U.S.)

  14. Spin effects in the weak interaction

    International Nuclear Information System (INIS)

    Freedman, S.J.; Chicago Univ., IL; Chicago Univ., IL

    1990-01-01

    Modern experiments investigating the beta decay of the neutron and light nuclei are still providing important constraints on the theory of the weak interaction. Beta decay experiments are yielding more precise values for allowed and induced weak coupling constants and putting constraints on possible extensions to the standard electroweak model. Here we emphasize the implications of recent experiments to pin down the strengths of the weak vector and axial vector couplings of the nucleon

  15. Weak interaction potentials of nucleons in the Weinberg-Salam model

    International Nuclear Information System (INIS)

    Lobov, G.A.

    1979-01-01

    Weak interaction potentials of nucleons due to the nonet vector meson exchange are obtained in the Weinberg-Salam model using the vector-meson dominance. Contribution from the hadronic neutral currents to the weak interaction potential due to the charged pion exchange is obtained. The isotopic structure of the obtained potentials, that is unambiguous in the Weinberg-Salam model, is investigated. Enhancement of the nucleon weak interaction in nuclei resulting from the hadronic neutral currents is discussed. A nuclear one-particle weak interaction potential is presented that is a result of averaging of the two-particle potential over the states of the nuclear core. An approach to the nucleon weak interaction based on the quark model, is discussed. Effects of the nucleon weak interaction in the radiative capture of a thermal neutron by a proton, are considered

  16. Light weakly interacting massive particles

    Science.gov (United States)

    Gelmini, Graciela B.

    2017-08-01

    Light weakly interacting massive particles (WIMPs) are dark matter particle candidates with weak scale interaction with the known particles, and mass in the GeV to tens of GeV range. Hints of light WIMPs have appeared in several dark matter searches in the last decade. The unprecedented possible coincidence into tantalizingly close regions of mass and cross section of four separate direct detection experimental hints and a potential indirect detection signal in gamma rays from the galactic center, aroused considerable interest in our field. Even if these hints did not so far result in a discovery, they have had a significant impact in our field. Here we review the evidence for and against light WIMPs as dark matter candidates and discuss future relevant experiments and observations.

  17. Weak interaction: past answers, present questions

    International Nuclear Information System (INIS)

    Ne'eman, Y.

    1977-02-01

    A historical sketch of the weak interaction is presented. From beta ray to pion decay, the V-A theory of Marshak and Sudarshan, CVC principle of equivalence, universality as an algebraic condition, PCAC, renormalized weak Hamiltonian in the rehabilitation of field theory, and some current issues are considered in this review. 47 references

  18. Information flow between weakly interacting lattices of coupled maps

    Energy Technology Data Exchange (ETDEWEB)

    Dobyns, York [PEAR, Princeton University, Princeton, NJ 08544-5263 (United States); Atmanspacher, Harald [Institut fuer Grenzgebiete der Psychologie und Psychohygiene, Wilhelmstr. 3a, 79098 Freiburg (Germany)]. E-mail: haa@igpp.de

    2006-05-15

    Weakly interacting lattices of coupled maps can be modeled as ordinary coupled map lattices separated from each other by boundary regions with small coupling parameters. We demonstrate that such weakly interacting lattices can nevertheless have unexpected and striking effects on each other. Under specific conditions, particular stability properties of the lattices are significantly influenced by their weak mutual interaction. This observation is tantamount to an efficacious information flow across the boundary.

  19. Information flow between weakly interacting lattices of coupled maps

    International Nuclear Information System (INIS)

    Dobyns, York; Atmanspacher, Harald

    2006-01-01

    Weakly interacting lattices of coupled maps can be modeled as ordinary coupled map lattices separated from each other by boundary regions with small coupling parameters. We demonstrate that such weakly interacting lattices can nevertheless have unexpected and striking effects on each other. Under specific conditions, particular stability properties of the lattices are significantly influenced by their weak mutual interaction. This observation is tantamount to an efficacious information flow across the boundary

  20. Theoretical status of weak and electromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, L. K.

    1980-07-01

    An extended simple version of the Weinberg gauge model is proposed to bring together weak and electromagnetic interactions under one theory. The essential features of the standard SU/sub 2/ (operating on)U/sub 1/ gauge scheme with four leptons and four quark flavours is recalled. Charged-current and neutral current interactions are described. Non-leptonic decays of strange particles are studied. The treatment is extended to 6-leptons and 6-quark flavours. The short comings of this model are discussed. Speculations on the unification of strong, weak and electromagnetic interactions are made.

  1. Current problems in the weak interactions

    International Nuclear Information System (INIS)

    Pais, A.

    1977-01-01

    Some reasons are discussed showing why the recent SU(2) x U(1) gauge theory of weak and electromagnetic interactions is not a complete theory of these interactions, Lepton theory, charm, and the CP problem are considered. 60 references

  2. Fermi and the Theory of Weak Interactions

    Indian Academy of Sciences (India)

    IAS Admin

    Quantum Field Theory created by Dirac and used by Fermi to describe weak ... of classical electrodynamics (from which the electric field and magnetic field can be obtained .... Universe. However, thanks to weak interactions, this can be done.

  3. Weak interactions and presupernova evolution

    International Nuclear Information System (INIS)

    Aufderheide, M.B.; State Univ. of New York

    1991-01-01

    The role of weak interactions, particularly electron capture and β - decay, in presupernova evolution is discussed. The present uncertainty in these rates is examined and the possibility of improving the situation is addressed. 12 refs., 4 figs

  4. Weak interaction rates

    International Nuclear Information System (INIS)

    Sugarbaker, E.

    1995-01-01

    I review available techniques for extraction of weak interaction rates in nuclei. The case for using hadron charge exchange reactions to estimate such rates is presented and contrasted with alternate methods. Limitations of the (p,n) reaction as a probe of Gamow-Teller strength are considered. Review of recent comparisons between beta-decay studies and (p,n) is made, leading to cautious optimism regarding the final usefulness of (p,n)- derived GT strengths to the field of astrophysics. copyright 1995 American Institute of Physics

  5. Weak interaction and nucleus: the relationship keeps on

    International Nuclear Information System (INIS)

    Martino, J.; Frere, J.M.; Naviliat-Cuncic, O.; Volpe, C.; Marteau, J.; Lhuillier, D.; Vignaud, D.; Legac, R.; Marteau, J.; Legac, R.

    2003-01-01

    This document gathers the lectures made at the Joliot-Curie international summer school in 2003 whose theme, that year, was the relationship between weak interaction and nucleus. There were 8 contributions whose titles are: 1) before the standard model: from beta decay to neutral currents; 2) the electro-weak theory and beyond; 3) testing of the standard model at low energies; 4) description of weak processes in nuclei; 5) 20.000 tonnes underground, an approach to the neutrino-nucleus interaction; 6) parity violation from atom to nucleon; 7) how neutrinos got their masses; and 8) CP symmetry

  6. The structure of weak interaction

    International Nuclear Information System (INIS)

    Zee, A.

    1977-01-01

    The effect of introducing righthanded currents on the structure of weak interaction is discussed. The ΔI=1/2 rule is in the spotlight. The discussion provides an interesting example in which the so-called Iizuka-Okubo-Zweing rule is not only evaded, but completely negated

  7. Weak interaction contribution to the energy spectrum of two-lepton system

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1995-01-01

    The contribution of neutral currents to the weak interaction quasi-potential of two leptons is investigated. The exact expression for the weak interaction operator of the system for arbitrary biding energies in one-boson approximation is obtained. The weak interaction contribution to the S-levels displacement of hydrogen-like atom. 14 refs

  8. Quantum mechanical calculations on weakly interacting complexes

    NARCIS (Netherlands)

    Heijmen, T.G.A.

    1998-01-01

    Symmetry-adapted perturbation theory (SAPT) has been applied to compute the intermolecular potential energy surfaces and the interaction-induced electrical properties of weakly interacting complexes. Asymptotic (large R) expressions have been derived for the contributions to the collision-induced

  9. Weak interactions at high energies

    International Nuclear Information System (INIS)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references

  10. Weak Molecular Interactions in Clathrin-Mediated Endocytosis

    Directory of Open Access Journals (Sweden)

    Sarah M. Smith

    2017-11-01

    Full Text Available Clathrin-mediated endocytosis is a process by which specific molecules are internalized from the cell periphery for delivery to early endosomes. The key stages in this step-wise process, from the starting point of cargo recognition, to the later stage of assembly of the clathrin coat, are dependent on weak interactions between a large network of proteins. This review discusses the structural and functional data that have improved our knowledge and understanding of the main weak molecular interactions implicated in clathrin-mediated endocytosis, with a particular focus on the two key proteins: AP2 and clathrin.

  11. Weak interactions, quark masses and spontaneous violation of parity

    International Nuclear Information System (INIS)

    Kingsley, R.L.

    1976-09-01

    A six quark model is discussed for the weak interactions of hadrons in which parity is violated spontaneously in an SU(2) x U(1) gauge theory. Quarks with very small masses are required and their weak interactions approximate those of the Weinberg-Salam model. Suppression of strangeness-changing neutral currents requires at least seven quarks. (author)

  12. Weak neutral-current interactions

    International Nuclear Information System (INIS)

    Barnett, R.M.

    1978-08-01

    The roles of each type of experiment in establishing uniquely the values of the the neutral-current couplings of u and d quarks are analyzed together with their implications for gauge models of the weak and electromagnetic interactions. An analysis of the neutral-current couplings of electrons and of the data based on the assumption that only one Z 0 boson exists is given. Also a model-independent analysis of parity violation experiments is discussed. 85 references

  13. ISOLTRAP Mass Measurements for Weak-Interaction Studies

    International Nuclear Information System (INIS)

    Kellerbauer, A.; Delahaye, P.; Herlert, A.; Audi, G.; Guenaut, C.; Lunney, D.; Beck, D.; Herfurth, F.; Kluge, H.-J.; Mukherjee, M.; Rodriguez, D.; Weber, C.; Yazidjian, C.; Blaum, K.; Bollen, G.; Schwarz, S.; George, S.; Schweikhard, L.

    2006-01-01

    The conserved-vector-current (CVC) hypothesis of the weak interaction and the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix are two fundamental postulates of the Standard Model. While existing data on CVC supports vector current conservation, the unitarity test of the CKM matrix currently fails by more than two standard deviations. High-precision mass measurements performed with the ISOLTRAP experiment at ISOLDE/CERN provide crucial input for these fundamental studies by greatly improving our knowledge of the decay energy of super-allowed β decays. Recent results of mass measurements on the β emitters 18Ne, 22Mg, 34Ar, and 74Rb as pertaining to weak-interaction studies are presented

  14. Crossover to Fermi-liquid behavior for weakly-coupled Luttinger liquids in the anisotropic large-dimension limit

    OpenAIRE

    Arrigoni, E.

    1999-01-01

    We study the problem of the crossover from one- to higher-dimensional metals by considering an array of Luttinger liquids (one-dimensional chains) coupled by a weak interchain hopping {\\tp.} We evaluate the exact asymptotic low-energy behavior of the self-energy in the anisotropic infinite-dimension limit. This limit extends the dinamical mean field concept to the case of a chain embedded in a self-consistent medium. The system flows to a Fermi-liquid fixed point for energies below the dimens...

  15. Weak interactions in clobazam–lactose mixtures examined by differential scanning calorimetry: Comparison with the captopril–lactose system

    International Nuclear Information System (INIS)

    Toscani, S.; Cornevin, L.; Burgot, G.

    2012-01-01

    Highlights: ► Thermodynamic and kinetic parameters of weak interactions in binary systems by DSC. ► Energy-barrier decrease for lactose dehydration induced by clobazam. ► Recrystallisation of metastable liquid clobazam induced by anhydrous alpha lactose. ► Decrease of lactose dehydration temperature in binary mixtures with captopril. ► Increase of lactose dehydration enthalpy in binary mixtures with captopril. - Abstract: The thermal behaviour of binary mixtures of two drugs (clobazam and captopril, respectively) and a pharmaceutical excipient (lactose monohydrate) was measured with differential scanning calorimetry to determine thermodynamic and kinetic parameters (dehydration and melting enthalpies and dehydration and glass-transition activation energies) which might be affected by intermolecular interactions. A kinetic study showed that lactose dehydration is not a single-step conversion and that clobazam contributed to reduce the energy barrier for the bulk dehydration of the excipient. On the other hand, the physical interactions between metastable liquid clobazam and crystalline anhydrous α-lactose obtained from monohydrate dehydration gave rise to the recrystallisation of clobazam. In the captopril–lactose system, the liquid captopril influenced the lactose dehydration: a sharp increase of the dehydration enthalpy and a concurrent reduction of the dehydration temperature were observed. Finally, it turned out that solid-phase transitions were enhanced by the contact with a liquid phase.

  16. Weak interactions at the SSC

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1986-03-01

    Prospects for the study of standard model weak interactions at the SSC are reviewed, with emphasis on the unique capability of the SSC to study the mechanism of electroweak symmetry breaking whether the associated new quanta are at the TeV scale or higher. Symmetry breaking by the minimal Higgs mechanism and by related strong interaction dynamical variants is summarized. A set of measurements is outlined that would calibrate the proton structure functions and the backgrounds to new physics. The ability to measure the three weak gauge boson vertex is found to complement LEP II, with measurements extending to larger Q 2 at a comparable statistical level in detectable decays. B factory physics is briefly reviewed as one example of a possible broad program of high statistics studies of sub-TeV scale phenomena. The largest section of the talk is devoted to the possible manifestations of symmetry breaking in the WW and ZZ production cross sections. Some new results are presented bearing on the ability to detect high mass WW and ZZ pairs. The principal conclusion is that although nonstandard model scenarios are typically more forgiving, the capability to study symmetry breaking in the standard model (and in related strong interaction dynamical variants) requires achieving the SSC design goals of √ s,L = 40Tev, 10 33 cm -2 sec -1 . 28 refs., 5 figs

  17. Investigation of Ion-Solvent Interactions in Nonaqueous Electrolytes Using in Situ Liquid SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanyan; Su, Mao; Yu, Xiaofei; Zhou, Yufan; Wang, Jungang; Cao, Ruiguo; Xu, Wu; Wang, Chongmin; Baer, Donald R.; Borodin, Oleg; Xu, Kang; Wang, Yanting; Wang, Xue-Lin; Xu, Zhijie; Wang, Fuyi; Zhu, Zihua

    2018-02-06

    Ion-solvent interactions in non-aqueous electrolytes are of fundamental interest and practical importance, yet debates regarding ion preferential solvation and coordination numbers persist. In this work, in situ liquid SIMS was used to examine ion-solvent interactions in three representative electrolytes, i.e., lithium hexafluorophosphate (LiPF6) at 1.0 M in ethylene carbonate (EC)-dimethyl carbonate (DMC), and lithium bis(fluorosulfonyl)imide (LiFSI) at both low (1.0 M) and high (4.0 M) concentrations in 1,2-dimethoxyethane (DME). In the positive ion mode, solid molecular evidence strongly supports the preferential solvation of Li+ by EC. Besides, from the negative spectra, we also found that PF6- forms association with EC, which has been neglected by previous studies due to the relatively weak interaction. While in both LiFSI in DME electrolytes, no evidence shows that FSI- is associated with DME. Furthermore, strong salt ion cluster signals were observed in the 1.0 M LiPF6 in EC-DMC electrolyte, suggesting that a significant amount of Li+ ions stay in vicinity of anions. In sharp comparison, weak ion cluster signals were detected in dilute LiFSI in DME electrolyte, suggesting most ions are well separated, in agreement with our molecular dynamics (MD) simulation results. These findings indicate that with virtues of little bias on detecting positive and negative ions and the capability of directly analyzing concentrated electrolytes, in situ liquid SIMS is a powerful tool that can provide key evidence for improved understanding on the ion-solvent interactions in non-aqueous electrolytes. Therefore, we anticipate wide applications of in situ liquid SIMS on investigations of various ion-solvent interactions in the near future.

  18. Recollections on the establishment of the weak-interaction notion

    International Nuclear Information System (INIS)

    Pontecorvo, B.M.

    1989-01-01

    The author postulated a muon-electron symmetry as early as 1947 and this gave an early hint of a universal weak interaction and its involvement in particle decay. He also suggested families of leptons. Starting in 1947, a number of new unstable particles were discovered, some electrically neutral and some charged. Some had slow decays, such as the kaon and lambda ''strange'', which could not be explained using the strong interaction. The author was partially responsible for explaining hyperon and kaon decay via the weak interaction, for any four fermions, and for the idea of pair production. (UK)

  19. Gauge theories of the weak interactions

    International Nuclear Information System (INIS)

    Quinn, H.

    1978-08-01

    Two lectures are presented on the Weinberg--Salam--Glashow--Iliopoulos--Maiani gauge theory for weak interactions. An attempt is made to give some impressions of the generality of this model, how it was developed, variations found in the literature, and the status of the standard model. 21 references

  20. History of the weak interactions

    International Nuclear Information System (INIS)

    Lee, T.D.

    1987-01-01

    At the 'Jackfest' marking the 65th birthday of Jack Steinberger (see July/August 1986 issue, page 29), T.D. Lee gave an account of the history of the weak interactions. This edited version omits some of Lee's tributes to Steinberger, but retains the impressive insight into the subtleties of a key area of modern physics by one who played a vital role in its development. (orig./HSI).

  1. Weak interaction models with spontaneously broken left-right symmetry

    International Nuclear Information System (INIS)

    Mohapatra, R.H.

    1978-01-01

    The present status of weak interaction models with spontaneously broken left-right symmetry is reviewed. The theoretical basis for asymptotic parity conservation, manifest left-right symmetry in charged current weak interactions, natural parity conservation in neutral currents and CP-violation in the context of SU(2)/sub L/ circled x SU (2)/sub R/ circled x U(1) models are outlined in detail. Various directions for further research in the theoretical and experimental side are indicated

  2. Weak interactions in clobazam-lactose mixtures examined by differential scanning calorimetry: Comparison with the captopril-lactose system

    Energy Technology Data Exchange (ETDEWEB)

    Toscani, S. [Departement de Chimie - UMR 6226, Faculte des Sciences, Universite de Rennes 1, Batiment 10B, 263 avenue du General Leclerc, F-35042 Rennes Cedex (France); Cornevin, L. [Universite de Rennes 1, Faculte de Pharmacie, 2 Avenue Leon Bernard, F-35043 Rennes Cedex (France); Burgot, G., E-mail: Gwenola.burgot@univ-rennes1.fr [Universite de Rennes 1, Faculte de Pharmacie, Laboratoire de Chimie Analytique, EA 1274 ' Mouvement, sports, sante' , 2 Avenue Leon Bernard, F-35043 Rennes Cedex (France); CHGR Rennes, Pole Medico-Technique Pharmacie, F-35703 Rennes Cedex (France)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer Thermodynamic and kinetic parameters of weak interactions in binary systems by DSC. Black-Right-Pointing-Pointer Energy-barrier decrease for lactose dehydration induced by clobazam. Black-Right-Pointing-Pointer Recrystallisation of metastable liquid clobazam induced by anhydrous alpha lactose. Black-Right-Pointing-Pointer Decrease of lactose dehydration temperature in binary mixtures with captopril. Black-Right-Pointing-Pointer Increase of lactose dehydration enthalpy in binary mixtures with captopril. - Abstract: The thermal behaviour of binary mixtures of two drugs (clobazam and captopril, respectively) and a pharmaceutical excipient (lactose monohydrate) was measured with differential scanning calorimetry to determine thermodynamic and kinetic parameters (dehydration and melting enthalpies and dehydration and glass-transition activation energies) which might be affected by intermolecular interactions. A kinetic study showed that lactose dehydration is not a single-step conversion and that clobazam contributed to reduce the energy barrier for the bulk dehydration of the excipient. On the other hand, the physical interactions between metastable liquid clobazam and crystalline anhydrous {alpha}-lactose obtained from monohydrate dehydration gave rise to the recrystallisation of clobazam. In the captopril-lactose system, the liquid captopril influenced the lactose dehydration: a sharp increase of the dehydration enthalpy and a concurrent reduction of the dehydration temperature were observed. Finally, it turned out that solid-phase transitions were enhanced by the contact with a liquid phase.

  3. Left--right symmetric gauge theories of weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Sidhu, D.P.

    1978-01-01

    We review the recent progress in spontaneously broken left-right symmetric gauge theories of weak and electromagnetic interactions. Recently gauge theories based on the group SU(2)/Sub L/ x SU(2)/sub R/ x U(1) have been proposed as serious candidates for a unified description of the weak and electromagnetic interactions. Such theories have a number of attractive features which are not shared by the standard SU(2) x U(1) theories. Parity violation as well as CP-violation are spontaneous in origin and, therefore, theories are parity conserving before spontaneous breakdown of the symmetry and also afterwards at asymptotic energies. The asymmetry in low energy charged current weak interaction, i.e., predominance of left-handed charged current interactions over the right-handed ones, is a consequence of the symmetry breaking thus leading to a conceptually different picture of weak interaction at low energies. Another appealing feature of these theories is the beauty and richness of the structure of weak neutral current interactions. One can have a parity conserving structure of the neutral currents (one neutral boson (Z/sub V/) has pure vector and the other (Z/sub A/) pure axial vector coupling to quarks and leptons) which is natural in the technical sense of the word. Models of this type provide the most elegant explanation of the failure to find parity violation in atoms at the level predicted on the basis of the Weinberg-Salam model. In spite of manifestly parity conserving neutral current interactions, ν/sub μ/N and anti ν/sub μ/N (also ν/sub μ/e and anti ν/sub μ/e) neutral current cross-sections have to be unequal in these theories because of the definite parity and charge conjugation of the Z-bosons

  4. Weak turbulence theory for beam-plasma interaction

    Science.gov (United States)

    Yoon, Peter H.

    2018-01-01

    The kinetic theory of weak plasma turbulence, of which Ronald C. Davidson was an important early pioneer [R. C. Davidson, Methods in Nonlinear Plasma Theory, (Academic Press, New York, 1972)], is a venerable and valid theory that may be applicable to a large number of problems in both laboratory and space plasmas. This paper applies the weak turbulence theory to the problem of gentle beam-plasma interaction and Langmuir turbulence. It is shown that the beam-plasma interaction undergoes various stages of physical processes starting from linear instability, to quasilinear saturation, to mode coupling that takes place after the quasilinear stage, followed by a state of quasi-static "turbulent equilibrium." The long term quasi-equilibrium stage is eventually perturbed by binary collisional effects in order to bring the plasma to a thermodynamic equilibrium with increased entropy.

  5. Parity violation in nuclei: studies of the weak nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Mcdonald, A.B.

    1980-03-01

    The Weinberg-Salam Unified Model of weak and electromagnetic interactions has been very successful in explaining parity violation and neutral current effects in neutrino-nucleon, electron-nucleon and neutrino-electron interactions. A wide variety of nuclear physics parity violation experiments are in progress to measure effects of the weak nucleon-nucleon interaction in few nucleon systems and certain heavier nuclei where enhancements are expected. The current status of these experiments will be reviewed, including details of an experiment at Chalk River to search for parity violation in the photodisintegration of deuterium and an extension of our previous measurements of parity mixing in 21 Ne. The interpretation of results in terms of basic models of the weak interaction will be discussed. (Auth)

  6. Weak neutral currents discovery: a giant step for particle physics

    International Nuclear Information System (INIS)

    Pullia, A.; Vialle, J.P.

    2010-01-01

    Subatomic particles interact with different kinds of forces (strong, electromagnetic, weak and gravitational). In case of the weak force, the interaction is due to the exchange of intermediate charged (W +,- ) and neutral (Z 0 ) bosons. These cases are referred as 'charged currents' and 'neutral currents', respectively. The evidence for such weak neutral currents appeared in the Gargamelle international collaboration whose aim was to study in-depth neutrino interactions (and thus weak interactions) through the use of a giant heavy liquid bubble chamber at CERN. In a collaboration meeting in March 1972, the Milan team showed the first hints of neutral currents in neutrino interactions with at least one pion outgoing. In 1974, 2 new leptonic neutral current candidate events were found in Gargamelle films and the Fermilab team confirmed the result a few months later. (A.C.)

  7. Nanoparticles in ionic liquids: interactions and organization.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2015-07-28

    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  8. Weak interaction and nucleus: the relationship keeps on; Interaction faible et noyau: l'histoire continue

    Energy Technology Data Exchange (ETDEWEB)

    Martino, J [Subatech, Ecole des Mines de Nantes, 44 - Nantes (France); Frere, J M; Naviliat-Cuncic, O; Volpe, C; Marteau, J; Lhuillier, D; Vignaud, D; Legac, R; Marteau, J; Legac, R

    2003-07-01

    This document gathers the lectures made at the Joliot-Curie international summer school in 2003 whose theme, that year, was the relationship between weak interaction and nucleus. There were 8 contributions whose titles are: 1) before the standard model: from beta decay to neutral currents; 2) the electro-weak theory and beyond; 3) testing of the standard model at low energies; 4) description of weak processes in nuclei; 5) 20.000 tonnes underground, an approach to the neutrino-nucleus interaction; 6) parity violation from atom to nucleon; 7) how neutrinos got their masses; and 8) CP symmetry.

  9. Global low-energy weak solution and large-time behavior for the compressible flow of liquid crystals

    Science.gov (United States)

    Wu, Guochun; Tan, Zhong

    2018-06-01

    In this paper, we consider the weak solution of the simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows in R3. When the initial data are of small energy and initial density is positive and essentially bounded, we prove the existence of a global weak solution in R3. The large-time behavior of a global weak solution is also established.

  10. A connection between the strong and weak interactions

    International Nuclear Information System (INIS)

    Treiman, S.B.

    1989-01-01

    By studying weak scattering reactions (such as pion-nucleon scattering), the author and his colleague Marvin L Goldberger became renowned in the 1950s for work on dispersion relations. As a result of their collaboration a remarkable and unexpected connection was found between strong and weak interaction quantities. Agreement with experiment was good. Work by others found the same result, but via the partially conserved axial reactor current relation between the axial current divergence and the canonical pion field. (UK)

  11. Weak interactions at high energies. [Lectures, review

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references. (JFP)

  12. Recollections on the establishment of the weak interaction notion

    International Nuclear Information System (INIS)

    Pontecorvo, B.

    1985-01-01

    The generalization of conception of weak interaction to the processes where strange particles discovered is given. Indepene dently of Pais, the author came to an idea of pair production of new (strange) particles. In Dubna the experiments have been performed on the search for processes of production of the same pair of Λ-particles in nucleon-nucleon collisions. To interprete negative results of these experiments the author suggested a scheme based on an assumption that the isotopic spin is conserved in strong interaction and is not conserved in the weak one. It followed from this scheme, in particularly, that K 0 and anti K 0 - different particles

  13. Constraints on the dark matter and dark energy interactions from weak lensing bispectrum tomography

    Energy Technology Data Exchange (ETDEWEB)

    An, Rui [School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Feng, Chang [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Wang, Bin, E-mail: an_rui@sjtu.edu.cn, E-mail: chang.feng@uci.edu, E-mail: wang_b@sjtu.edu.cn [Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, Yangzhou 225009 (China)

    2017-10-01

    We estimate uncertainties of cosmological parameters for phenomenological interacting dark energy models using weak lensing convergence power spectrum and bispectrum. We focus on the bispectrum tomography and examine how well the weak lensing bispectrum with tomography can constrain the interactions between dark sectors, as well as other cosmological parameters. Employing the Fisher matrix analysis, we forecast parameter uncertainties derived from weak lensing bispectra with a two-bin tomography and place upper bounds on strength of the interactions between the dark sectors. The cosmic shear will be measured from upcoming weak lensing surveys with high sensitivity, thus it enables us to use the higher order correlation functions of weak lensing to constrain the interaction between dark sectors and will potentially provide more stringent results with other observations combined.

  14. Inelastic multiple scattering of interacting bosons in weak random potentials

    International Nuclear Information System (INIS)

    Geiger, Tobias

    2013-01-01

    Within the present thesis we develop a diagrammatic scattering theory for interacting bosons in a three-dimensional, weakly disordered potential. Based on a microscopic N-body scattering theory, we identify the relevant diagrams including elastic and inelastic collision processes that are sufficient to describe quantum transport in the regime of weak disorder. By taking advantage of the statistical properties of the weak disorder potential, we demonstrate how the N-body dynamics can be reduced to a nonlinear integral equation of Boltzmann type for the single-particle diffusive flux. A presently available alternative description - based on the Gross-Pitaevskii equation - only includes elastic collisions. In contrast, we show that far from equilibrium the presence of inelastic collisions - even for weak interaction strength - must be accounted for and can induce the full thermalization of the single-particle current. In addition, we also determine the coherent corrections to the incoherent transport, leading to the effect of coherent backscattering. For the first time, we are able to analyze the influence of inelastic collisions on the coherent backscattering signal, which lead to an enhancement of the backscattered cone in a narrow spectral window, even for increasing non-linearity. With a short recollection of the presently available experimental techniques we furthermore show how an immediate implementation of our suggested setup with confined Bose-Einstein condensates can be accomplished. Thereby, the emergence of collective and/or thermodynamic behavior from fundamental, microscopic constituents can also be assessed experimentally. In a second part of this thesis, we present first results for light scattering off strongly interacting Rydberg atoms trapped in a one-dimensional, chain-like configuration. In order to monitor the time-dependence of this interacting many-body system, we devise a weak measurement scenario for which we derive a master equation for the

  15. Weak interaction and nucleus: the relationship keeps on; Interaction faible et noyau: l'histoire continue

    Energy Technology Data Exchange (ETDEWEB)

    Martino, J. [Subatech, Ecole des Mines de Nantes, 44 - Nantes (France); Frere, J.M.; Naviliat-Cuncic, O.; Volpe, C.; Marteau, J.; Lhuillier, D.; Vignaud, D.; Legac, R.; Marteau, J.; Legac, R

    2003-07-01

    This document gathers the lectures made at the Joliot-Curie international summer school in 2003 whose theme, that year, was the relationship between weak interaction and nucleus. There were 8 contributions whose titles are: 1) before the standard model: from beta decay to neutral currents; 2) the electro-weak theory and beyond; 3) testing of the standard model at low energies; 4) description of weak processes in nuclei; 5) 20.000 tonnes underground, an approach to the neutrino-nucleus interaction; 6) parity violation from atom to nucleon; 7) how neutrinos got their masses; and 8) CP symmetry.

  16. Unification of electromagnetic, strong and weak interaction

    International Nuclear Information System (INIS)

    Duong Van Phi; Duong Anh Duc

    1993-09-01

    The Unification of Electromagnetic, Strong and Weak Interactions is realized in the framework of the Quantum Field Theory, established in an 8-dimensional Unified Space. Two fundamental, spinor and vector field equations are considered. The first of the matter particles and the second is of the gauge particles. Interaction Lagrangians are formed from the external and internal currents and the external and internal vector field operators. Generators of the local gauge transformations are the combinations of the matrices of the first field equation. (author). 15 refs

  17. NMR characterization of weak interactions between RhoGDI2 and fragment screening hits.

    Science.gov (United States)

    Liu, Jiuyang; Gao, Jia; Li, Fudong; Ma, Rongsheng; Wei, Qingtao; Wang, Aidong; Wu, Jihui; Ruan, Ke

    2017-01-01

    The delineation of intrinsically weak interactions between novel targets and fragment screening hits has long limited the pace of hit-to-lead evolution. Rho guanine-nucleotide dissociation inhibitor 2 (RhoGDI2) is a novel target that lacks any chemical probes for the treatment of tumor metastasis. Protein-observed and ligand-observed NMR spectroscopy was used to characterize the weak interactions between RhoGDI2 and fragment screening hits. We identified three hits of RhoGDI2 using streamlined NMR fragment-based screening. The binding site residues were assigned using non-uniformly sampled C α - and H α -based three dimensional NMR spectra. The molecular docking to the proposed geranylgeranyl binding pocket of RhoGDI2 was guided by NMR restraints of chemical shift perturbations and ligand-observed transferred paramagnetic relaxation enhancement. We further validated the weak RhoGDI2-hit interactions using mutagenesis and structure-affinity analysis. Weak interactions between RhoGDI2 and fragment screening hits were delineated using an integrated NMR approach. Binders to RhoGDI2 as a potential anti-cancer target have been first reported, and their weak interactions were depicted using NMR spectroscopy. Our work highlights the powerfulness and the versatility of the integrative NMR techniques to provide valuable structural insight into the intrinsically weak interactions between RhoGDI2 and the fragment screening hits, which could hardly be conceived using other biochemical techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Gauge theory of weak, electromagnetic and dual electromagnetic interactions

    International Nuclear Information System (INIS)

    Soln, J.

    1980-01-01

    An SU 2 x U 1 algebra, in addition to the ordinary electric charge, also establishes the existence of the dual electric charge. This is taken as an indication of the existence of dual electromagnetic interactions in nature. Here, the unification of weak, electromagnetic and dual electromagnetic interactions is performed. The Yang-Mills-type group which contains the electromagnetic, dual electromagnetic and weak currents is SUsub(L,2) x U 1 x U' 1 . The masses of vector mesons are generated through the Higgs-Kibble mechanism. A simple consistency requirement suggests that dual electromagnetism and ordinary electromagnetism have the same strengths, leading the theory to a rather good agreement with experiments. (author)

  19. Theory and Applications of Weakly Interacting Markov Processes

    Science.gov (United States)

    2018-02-03

    between a node and its neighbor is inversely 3 proportional to the total number of neighbors of that node. Such stochastic systems arise in many different...jumps and models with simultaneous jumps that arise in applications. (1.ii.d) Uniform in Time Interacting Particle Approximations for Nonlinear...problems. (1.iv.a) Diffusion Approximations for Controlled Weakly Interacting Large Finite State Systems with Simultaneous Jumps [25]. We consider a rate

  20. Identification of interfaces involved in weak interactions with application to F-actin-aldolase rafts.

    Science.gov (United States)

    Hu, Guiqing; Taylor, Dianne W; Liu, Jun; Taylor, Kenneth A

    2018-03-01

    Macromolecular interactions occur with widely varying affinities. Strong interactions form well defined interfaces but weak interactions are more dynamic and variable. Weak interactions can collectively lead to large structures such as microvilli via cooperativity and are often the precursors of much stronger interactions, e.g. the initial actin-myosin interaction during muscle contraction. Electron tomography combined with subvolume alignment and classification is an ideal method for the study of weak interactions because a 3-D image is obtained for the individual interactions, which subsequently are characterized collectively. Here we describe a method to characterize heterogeneous F-actin-aldolase interactions in 2-D rafts using electron tomography. By forming separate averages of the two constituents and fitting an atomic structure to each average, together with the alignment information which relates the raw motif to the average, an atomic model of each crosslink is determined and a frequency map of contact residues is computed. The approach should be applicable to any large structure composed of constituents that interact weakly and heterogeneously. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Review of liquid-tank interaction analysis technique

    International Nuclear Information System (INIS)

    1977-12-01

    Based on a literature survey, various models of increasing sophistication and complexity are presented which might be used to assess the liquid tank interaction effects due to sloshing of contained high level radioactive liquid waste in storage tanks at the NFS site. In addition, the effects of liquid damping, tank bending modes, and nonlinearity of the sloshing liquid are discussed. The results of the survey indicate that due to the compexities encountered in adequately modeling the system, due to the approximations which must be made as regards the tank boundary conditions, and due to the assumptions which must be made regarding the liquid waste dynamic character, the liquid tank interaction at NFS can not be adequately theoretically modeled. It is therefore recommended that experimental scale model tests be performed to assess the effects of liquid tank interaction during seismic excitation of the NFS waste tanks

  2. Measurement of the weak nucleon-nucleon interaction by polarized cold neutron capture on protons

    Directory of Open Access Journals (Sweden)

    Alarcon R.

    2014-03-01

    Full Text Available The NPDGamma Experiment at the Spallation Neutron Source at Oak Ridge National Laboratory is measuring the parity-odd correlation between the neutron spin and the direction of the emitted photon in the capture of polarized cold neutrons on protons. A parity violating asymmetry from this process is directly related to the strength of the hadronic weak interaction between nucleons. The experiment was run first with heavier nuclear targets to check systematic effects, false asymmetries, and backgrounds. Since early 2012 the experiment has been collecting data with a 16-liter liquid parahydrogen target. Data taking will continue through 2013 until statistics for a 10−8 asymmetry measurement are expected. The experiment performance will be discussed as well as the status of the asymmetry measurements.

  3. ΔS=O weak interactions at the quark level

    International Nuclear Information System (INIS)

    McKellar, B.H.J.

    1987-01-01

    The calculation of short distance gluon exchange corrections to the ΔS=O weak interaction at the quark level is described. Results are given for the coefficients of the 36 independent 4 quark operators involving ud, d, and s quarks explicitly, and for the 16 independent operators which remain when s quarks are eliminated and only u and d quarks explicitly occur in the operators. There is considerable uncertainty in the interpretation of parity violating phenomena in nuclei at the moment, as will be clear from the proceedings of this workshop. There is of course a possibility that our nuclear structure calculations are incomplete, but what I want to emphasize here is the fact that the existing calculations of the weak coupling constants at the hadronic level have been based on an inadequate quark level description. Little of what I have to say is new. I refer you to various papers by Rober Miller and myself on ΔS=1 interactions and ΔS=O interactions at the quark level, and to our review. However the only attempt to calculate observable effects using a quark level Hamiltonian with all of the necessary structure is that of Goldman and Preston and their work was a high energy rather than a low energy application. This paper is a pedagogical discussion of the basic physics of this ΔS=O weak Hamiltonian at the quark level, and is designed to encourage its use in future calculations of the weak hadronic coupling constants. Some previously unpublished results on a simplified approximate form of the ΔS=O Hamiltonian are given here to facilitate use of this quark level Hamiltonian in future calculations. (author)

  4. Quantum Butterfly Effect in Weakly Interacting Diffusive Metals

    Directory of Open Access Journals (Sweden)

    Aavishkar A. Patel

    2017-09-01

    Full Text Available We study scrambling, an avatar of chaos, in a weakly interacting metal in the presence of random potential disorder. It is well known that charge and heat spread via diffusion in such an interacting disordered metal. In contrast, we show within perturbation theory that chaos spreads in a ballistic fashion. The squared anticommutator of the electron-field operators inherits a light-cone-like growth, arising from an interplay of a growth (Lyapunov exponent that scales as the inelastic electron scattering rate and a diffusive piece due to the presence of disorder. In two spatial dimensions, the Lyapunov exponent is universally related at weak coupling to the sheet resistivity. We are able to define an effective temperature-dependent butterfly velocity, a speed limit for the propagation of quantum information that is much slower than microscopic velocities such as the Fermi velocity and that is qualitatively similar to that of a quantum critical system with a dynamical critical exponent z>1.

  5. Weak interactions of quarks and leptons: experimental status

    International Nuclear Information System (INIS)

    Wojcicki, S.

    1984-09-01

    The present experimental status of weak interactions is discussed with emphasis on the problems and questions and on the possible lines of future investigations. Major topics include; (1) the quark mixing matrix, (2) CP violation, (3) rare decays, (4) the lepton sector, and (5) right handed currents. 118 references

  6. From the discovery of the weak interactions to that of its mediators

    International Nuclear Information System (INIS)

    Conversi, M.

    1985-01-01

    After a brief outline of 'prehistory' of the field of weak interactions, this article recalls the main steps occurred, in our understanding of nature at the deepest level, in the fifty years elapsed between the 1933 discovery of the Fermi weak force and the 1983 discovery of its mediators at CERN, the European Organization for Nuclear Research. Emphasis is given, on one side, to the spectacular predicting power of the gauge theories which have unified electromagnetic and weak interactions, and, on the other side, to the exceptional achievement by the European Physics Community, which by developing a project of extreme technical complexity through a team work of unprecedented size, has made it possible to reveal the carriers of the weak force, the heaviest subnuclear objects thus far observed by man

  7. From the discovery of the weak interactions to that of its mediators

    Energy Technology Data Exchange (ETDEWEB)

    Conversi, M

    1985-01-01

    After a brief outline of 'prehistory' of the field of weak interactions, this article recalls the main steps occurred, in our understanding of nature at the deepest level, in the fifty years elapsed between the 1933 discovery of the Fermi weak force and the 1983 discovery of its mediators at CERN, the European Organization for Nuclear Research. Emphasis is given, on one side, to the spectacular predicting power of the gauge theories which have unified electromagnetic and weak interactions, and, on the other side, to the exceptional achievement by the European Physics Community, which by developing a project of extreme technical complexity through a team work of unprecedented size, has made it possible to reveal the carriers of the weak force, the heaviest subnuclear objects thus far observed by man. 42 refs.

  8. Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids

    International Nuclear Information System (INIS)

    Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md. Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2013-01-01

    The stabilization energies for the formation (E form ) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G ** level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E form for the [dema][CF 3 SO 3 ] and [dmpa][CF 3 SO 3 ] complexes (−95.6 and −96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF 3 SO 3 ] complex (−81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl − , BF 4 − , TFSA − anions. The anion has contact with the N–H bond of the dema + or dmpa + cations in the most stable geometries of the dema + and dmpa + complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0–18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E form for the less stable geometries for the dema + and dmpa + complexes are close to those for the most stable etma + complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N–H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA − anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF 3 SO 3 ] ionic liquid

  9. Neutral currents and the gauge group of weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Rajpoot, S.

    1977-12-01

    In considering the question of neutral current parity conversation, models of weak and electromagnetic interactions based on the gauge sub group SU(2)sub(L)xSU(2)sub(R)x(U) 1 are examined. The thesis is presented in the following sections: (1) Introduction. (2) Natural left-right symmetric theory and its neutral current phenomenology. (3) Effects of neutral weak currents in electron-positron annihilation. (4) Dilepton production in pp and anti pp collisions as a probe to the nature of the neutral current interaction. (U.K.)

  10. Effects of weak localization in quasi-one-dimensional electronic system over liquid helium

    CERN Document Server

    Kovdrya, Y Z; Gladchenko, S P

    2001-01-01

    One measured rho sub x sub x magnetoresistance of a quasi-one-dimensional electronic system over liquid helium within gas scattering range (1.3-2.0 K temperature range). It is shown that with increase of magnetic field the magnetoresistance is reduced at first and them upon passing over minimum it begins to increase from rho sub x sub x approx B sup 2 law. One anticipated that the negative magnetoresistance detected in the course of experiments resulted from the effects of weak localization. The experiment results are in qualitative conformity with the theoretical model describing processes of weak localization in single-dimensional nondegenerate electronic systems

  11. Challenges and dreams: physics of weak interactions essential to life.

    Science.gov (United States)

    Chien, Peter; Gierasch, Lila M

    2014-11-05

    Biological systems display stunning capacities to self-organize. Moreover, their subcellular architectures are dynamic and responsive to changing needs and conditions. Key to these properties are manifold weak "quinary" interactions that have evolved to create specific spatial networks of macromolecules. These specific arrangements of molecules enable signals to be propagated over distances much greater than molecular dimensions, create phase separations that define functional regions in cells, and amplify cellular responses to changes in their environments. A major challenge is to develop biochemical tools and physical models to describe the panoply of weak interactions operating in cells. We also need better approaches to measure the biases in the spatial distributions of cellular macromolecules that result from the integrated action of multiple weak interactions. Partnerships between cell biologists, biochemists, and physicists are required to deploy these methods. Together these approaches will help us realize the dream of understanding the biological "glue" that sustains life at a molecular and cellular level. © 2014 Chien and Gierasch. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Colloidal Interactions of Quantum Dots in Apolar Liquids

    NARCIS (Netherlands)

    van Rijssel, J.

    2013-01-01

    In this thesis, the main topic is the interactions of nanoparticles in apolar liquids. These includes both the colloidal interactions between nanoparticles and the interaction of the nanoparticles with an external potential from a liquid/air interface or a magnetic field. The understanding of these

  13. Pre-relaxation in weakly interacting models

    Science.gov (United States)

    Bertini, Bruno; Fagotti, Maurizio

    2015-07-01

    We consider time evolution in models close to integrable points with hidden symmetries that generate infinitely many local conservation laws that do not commute with one another. The system is expected to (locally) relax to a thermal ensemble if integrability is broken, or to a so-called generalised Gibbs ensemble if unbroken. In some circumstances expectation values exhibit quasi-stationary behaviour long before their typical relaxation time. For integrability-breaking perturbations, these are also called pre-thermalisation plateaux, and emerge e.g. in the strong coupling limit of the Bose-Hubbard model. As a result of the hidden symmetries, quasi-stationarity appears also in integrable models, for example in the Ising limit of the XXZ model. We investigate a weak coupling limit, identify a time window in which the effects of the perturbations become significant and solve the time evolution through a mean-field mapping. As an explicit example we study the XYZ spin-\\frac{1}{2} chain with additional perturbations that break integrability. One of the most intriguing results of the analysis is the appearance of persistent oscillatory behaviour. To unravel its origin, we study in detail a toy model: the transverse-field Ising chain with an additional nonlocal interaction proportional to the square of the transverse spin per unit length (2013 Phys. Rev. Lett. 111 197203). Despite being nonlocal, this belongs to a class of models that emerge as intermediate steps of the mean-field mapping and shares many dynamical properties with the weakly interacting models under consideration.

  14. Preliminary experimental study of liquid lithium water interaction

    International Nuclear Information System (INIS)

    You, X.M.; Tong, L.L.; Cao, X.W.

    2015-01-01

    Highlights: • Explosive reaction occurs when lithium temperature is over 300 °C. • The violence of liquid lithium water interaction increases with the initial temperature of liquid lithium. • The interaction is suppressed when the initial water temperature is above 70 °C. • Steam explosion is not ignorable in the risk assessment of liquid lithium water interaction. • Explosion strength of liquid lithium water interaction is evaluated by explosive yield. - Abstract: Liquid lithium is the best candidate for a material with low Z and low activation, and is one of the important choices for plasma facing materials in magnetic fusion devices. However, liquid lithium reacts violently with water under the conditions of loss of coolant accidents. The release of large heats and hydrogen could result in the dramatic increase of temperature and pressure. The lithium–water explosion has large effect on the safety of fusion devices, which is an important content for the safety assessment of fusion devices. As a preliminary investigation of liquid lithium water interaction, the test facility has been built and experiments have been conducted under different conditions. The initial temperature of lithium droplet ranged from 200 °C to 600 °C and water temperature was varied between 20 °C and 90 °C. Lithium droplets were released into the test section with excess water. The shape of lithium droplet and steam generated around the lithium were observed by the high speed camera. At the same time, the pressure and temperature in the test section were recorded during the violent interactions. The preliminary experimental results indicate that the initial temperature of lithium and water has an effect on the violence of liquid lithium water interaction.

  15. Preliminary experimental study of liquid lithium water interaction

    Energy Technology Data Exchange (ETDEWEB)

    You, X.M.; Tong, L.L.; Cao, X.W., E-mail: caoxuewu@sjtu.edu.cn

    2015-10-15

    Highlights: • Explosive reaction occurs when lithium temperature is over 300 °C. • The violence of liquid lithium water interaction increases with the initial temperature of liquid lithium. • The interaction is suppressed when the initial water temperature is above 70 °C. • Steam explosion is not ignorable in the risk assessment of liquid lithium water interaction. • Explosion strength of liquid lithium water interaction is evaluated by explosive yield. - Abstract: Liquid lithium is the best candidate for a material with low Z and low activation, and is one of the important choices for plasma facing materials in magnetic fusion devices. However, liquid lithium reacts violently with water under the conditions of loss of coolant accidents. The release of large heats and hydrogen could result in the dramatic increase of temperature and pressure. The lithium–water explosion has large effect on the safety of fusion devices, which is an important content for the safety assessment of fusion devices. As a preliminary investigation of liquid lithium water interaction, the test facility has been built and experiments have been conducted under different conditions. The initial temperature of lithium droplet ranged from 200 °C to 600 °C and water temperature was varied between 20 °C and 90 °C. Lithium droplets were released into the test section with excess water. The shape of lithium droplet and steam generated around the lithium were observed by the high speed camera. At the same time, the pressure and temperature in the test section were recorded during the violent interactions. The preliminary experimental results indicate that the initial temperature of lithium and water has an effect on the violence of liquid lithium water interaction.

  16. Effect of confining walls on the interaction between particles in a nematic liquid crystal

    CERN Document Server

    Fukuda, J I; Yokoyama, H

    2003-01-01

    We investigate theoretically how the confining walls of a nematic cell affect the interaction of particles mediated by the elastic deformation of a nematic liquid crystal. We consider the case where strong homeotropic or planar anchoring is imposed on the flat parallel walls so that the director on the wall surfaces is fixed and uniform alignment is achieved in the bulk. This set-up is more realistic experimentally than any other previous theoretical studies concerning the elastic-deformation-mediated interactions that assume an infinite medium. When the anchoring on the particle surfaces is weak, an exact expression of the interaction between two particles can be obtained. The two-body interaction can be regarded as the interaction between one particle and an infinite array of 'mirror images' of the other particle. We also obtain the 'self-energy' of one particle, the interaction of a particle with confining walls, which is interpreted along the same way as the interaction of one particle with its mirror ima...

  17. Weakly interacting massive particles and stellar structure

    International Nuclear Information System (INIS)

    Bouquet, A.

    1988-01-01

    The existence of weakly interacting massive particles (WIMPs) may solve both the dark matter problem and the solar neutrino problem. Such particles affect the energy transport in the stellar cores and change the stellar structure. We present the results of an analytic approximation to compute these effects in a self-consistent way. These results can be applied to many different stars, but we focus on the decrease of the 8 B neutrino flux in the case of the Sun

  18. Deep inelastic inclusive weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Adler, S.L.

    1976-01-01

    The theory of deep inelastic inclusive interactions is reviewed, emphasizing applications to electromagnetic and weak charged current processes. The following reactions are considered: e + N → e + X, ν + N → μ - + X, anti ν + N → μ + + X where X denotes a summation over all final state hadrons and the ν's are muon neutrinos. After a discussion of scaling, the quark-parton model is invoked to explain the principle experimental features of deep inelastic inclusive reactions

  19. Observation of interactions between hydrophilic ionic liquid and water on wet agar gels by FE-SEM and its mechanism

    International Nuclear Information System (INIS)

    Takahashi, Chisato; Shirai, Takashi; Fuji, Masayoshi

    2012-01-01

    Highlights: ► The mechanism of SEM observation of agar gel using ionic liquid was investigated. ► Weak hydrogen bond between ionic liquid and water exist even under vacuum condition. ► Ionic liquid binding ability with water is useful for observing wet material using FE-SEM. ► We could optimize the water concentrations of sample of IL and wet material mixtures. ► SEM observation of fine morphology of agar gel in optimum water content. - Abstract: In the present study, an attempt is made to understand the mechanism of field emission electron microscopy (FE-SEM) observation of wet agar gel using a typical hydrophilic ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate; [BMIM][BF 4 ]. The IL interaction with water molecules within agar gel during sample preparation condition for FE-SEM observation was investigated using Raman spectroscopy. Results showed that water molecules within agar gel form weak hydrogen bond such as BF 4 − ⋯HOH⋯BF 4 − by interaction with BF 4 − of IL, and, it remained stable even under vacuum condition at 60 °C, 24 h. This interaction was found to be helpful for IL displacement of the water molecules within agar gel. From this study, it was found that the exact morphology of gel materials in FE-SEM condition can be observed by optimization of water concentrations of IL and gel mixtures. Thus, using IL, agar gel or any other material under wet condition can be observed without drying in FE-SEM chamber, and, present result gives an insight to the mechanism of FE-SEM observation of agar gel using IL without any conducting coating.

  20. Formal identity of gravitational and weakly interacting recession

    International Nuclear Information System (INIS)

    Muheim, J.T.

    1982-01-01

    The author discusses the construction of models using the five elementary constants esub(s), h/2π, G, c and ksub(B) which can produce a macro or micro world with exacticity. All physical processes in nature determine the gravitational universe recession. A diagram is presented comparing the gravitational and weakly interacting recession. The Big-Bang model is discussed. (A.N.K.)

  1. Cosmological constraints on the properties of weakly interacting massive particles

    International Nuclear Information System (INIS)

    Steigman, G.; Turner, M.S.

    1984-10-01

    Considerations of the age and density of, as well as the evolution of structure in, the Universe lead to constraints on the masses and lifetimes of weakly interacting massive particles (WIMPs). 26 references

  2. Cosmological constraints on the properties of weakly interacting massive particles

    Energy Technology Data Exchange (ETDEWEB)

    Steigman, G.; Turner, M.S.

    1984-10-01

    Considerations of the age and density of, as well as the evolution of structure in, the Universe lead to constraints on the masses and lifetimes of weakly interacting massive particles (WIMPs). 26 references.

  3. Super symmetry in strong and weak interactions

    International Nuclear Information System (INIS)

    Seshavatharam, U.V.S.; Lakshminarayana, S.

    2010-01-01

    For strong interaction two new fermion mass units 105.32 MeV and 11450 MeV are assumed. Existence of "Integral charge quark bosons", "Integral charge effective quark fermions", "Integral charge (effective) quark fermi-gluons" and "Integral charge quark boso-gluons" are assumed and their masses are estimated. It is noticed that, characteristic nuclear charged fermion is X s · 105.32 = 938.8 MeV and corresponding charged boson is X s (105.32/x) = 415.0 where X s = 8.914 is the inverse of the strong coupling constant and x = 2.26234 is a new number by using which "super symmetry" can be seen in "strong and weak" interactions. 11450 MeV fermion and its boson of mass = 11450/x = 5060 MeV plays a crucial role in "sub quark physics" and "weak interaction". 938.8 MeV strong fermion seems to be the proton. 415 MeV strong boson seems to be the mother of the presently believed 493,496 and 547 MeV etc, strange mesons. With 11450 MeV fermion "effective quark-fermi-gluons" and with 5060 MeV boson "quark boso-gluon masses" are estimated. "Effective quark fermi-gluons" plays a crucial role in ground state charged baryons mass generation. Light quark bosons couple with these charged baryons to form doublets and triplets. "Quark boso-gluons" plays a crucial role in ground state neutral and charged mesons mass generation. Fine and super-fine rotational levels can be given by [I or (I/2)] power(1/4) and [I or (I/2)] power(1/12) respectively. Here, I = n(n+1) and n = 1, 2, 3, … (author)

  4. Weakly interacting topological insulators: Quantum criticality and the renormalization group approach

    Science.gov (United States)

    Chen, Wei

    2018-03-01

    For D -dimensional weakly interacting topological insulators in certain symmetry classes, the topological invariant can be calculated from a D - or (D +1 ) -dimensional integration over a certain curvature function that is expressed in terms of single-particle Green's functions. Based on the divergence of curvature function at the topological phase transition, we demonstrate how a renormalization group approach circumvents these integrations and reduces the necessary calculation to that for the Green's function alone, rendering a numerically efficient tool to identify topological phase transitions in a large parameter space. The method further unveils a number of statistical aspects related to the quantum criticality in weakly interacting topological insulators, including correlation function, critical exponents, and scaling laws, that can be used to characterize the topological phase transitions driven by either interacting or noninteracting parameters. We use 1D class BDI and 2D class A Dirac models with electron-electron and electron-phonon interactions to demonstrate these principles and find that interactions may change the critical exponents of the topological insulators.

  5. Proceedings of Summer Institute on Particle Physics: the weak interaction

    International Nuclear Information System (INIS)

    Mosher, A.

    1981-01-01

    The SLAC Summer Institute on Particle Physics held its eighth session on July 28-August 8, 1980, and the focus of the meeting was The Weak Interaction. Following the now traditional format, the first seven days of the Institute were spent with the mornings given to pedagogic lectures on the experimental and theoretical foundations of the topic. This year included a very stimulating and successful series on the physics of particle detectors. In the afternoons were seminars on the various experimental tools being designed or constructed to further probe the Weak Interaction, followed by lively discussion of the morning's lectures. Again, following the usual format, the school led into a three-day topical conference at which the most recent theoretical and experimental results were presented and discussed. Abstracts of twenty-seven items from the Institute were prepared separately for the data base

  6. Three-quark forces and the role of meson exchanges in weak NN interaction

    International Nuclear Information System (INIS)

    Grach, I.; Shmatikov, M.

    1989-01-01

    The contribution of weak three-quark forces involving meson exchanges to the longitudinal analyzing power A L in the low-energy pp-scattering is calculated. The nonrelativistic potential model is used for the desorption of strong quark interactions while their weak coupling is described by the Weinberg-Salam lagrangian. The dominant mechanism of parity violation in the NN system (provided the one-pion exchange is forbidden by selection rules) is the contact interaction of quarks. 17 refs.; 3 figs

  7. Seebeck effect on a weak link between Fermi and non-Fermi liquids

    Science.gov (United States)

    Nguyen, T. K. T.; Kiselev, M. N.

    2018-02-01

    We propose a model describing Seebeck effect on a weak link between two quantum systems with fine-tunable ground states of Fermi and non-Fermi liquid origin. The experimental realization of the model can be achieved by utilizing the quantum devices operating in the integer quantum Hall regime [Z. Iftikhar et al., Nature (London) 526, 233 (2015), 10.1038/nature15384] designed for detection of macroscopic quantum charged states in multichannel Kondo systems. We present a theory of thermoelectric transport through hybrid quantum devices constructed from quantum-dot-quantum-point-contact building blocks. We discuss pronounced effects in the temperature and gate voltage dependence of thermoelectric power associated with a competition between Fermi and non-Fermi liquid behaviors. High controllability of the device allows to fine tune the system to different regimes described by multichannel and multi-impurity Kondo models.

  8. Discovery of the charged vector bosons (W+-) conveying weak interaction

    International Nuclear Information System (INIS)

    Kiss, D.

    1983-01-01

    The unified Weinberg-Salam-Glashow theory of weak and electromagnetic interactions assumes the existence of two charged (W) and one neutral (Z) intermediate vector bosons of the unified electroweak interaction. These particles were discovered at the end of 1982 with the CERN's SPS proton-antiproton colliding beams. Technical aspects of the production and detection of W and Z bosons, the first results and their importance are described in detail. (D.Gy.)

  9. Relativistic rapprochement of weak and strong interactions

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1995-01-01

    On the basis of the relativistic Yukawa potentials for the nuclear (quark) field and the field of intermediate vector W-, Z-bosons, it is shown that the interactions described by them increase differently with growing velocity (the weak one increases more rapidly). According to the estimates, they are compared (at distances of the 'action radius' of nuclear forces) at an energy of about 10 12 GeV (10 6 GeV for the pion field) what is smaller than the corresponding value in the model of 'grand unification'. 3 refs., 2 tabs

  10. Weak interactions in hot nucleon matter

    International Nuclear Information System (INIS)

    Cowell, S.; Pandharipande, V.R.

    2006-01-01

    The reaction rates for electron capture, neutrino absorption, and neutrino scattering in hot asymmetric nuclear matter are calculated with two-body effective interactions and one-body effective weak operators obtained from realistic models of nuclear forces by use of correlated basis theory. The infinite system is modeled in a box with periodic boundary conditions, and the one-quasiparticle quasi-hole response functions are calculated with a large microcanonical sample and the Tamm-Dancoff approximation. Results for matter at a temperature of 10 MeV, proton fraction 0.4, and densities ρ=(1/2),1,(3/2)ρ 0 , where ρ 0 is the equilibrium density of symmetric nuclear matter, are presented to illustrate the method. In general, the strength of the response is shifted to higher-energy transfers when compared with that of a noninteracting Fermi gas. The shift in the response and the weakness of effective operators as compared with the bare operators significantly reduce the cross sections for electron capture and neutrino scattering by factors of ∼2.5-3.5. In contrast, the symmetry energy enhances the neutrino absorption reaction rate relative to the Fermi gas. However, this reaction rate is still quite small because of Pauli blocking

  11. Progress at the WITCH experiment towards weak interaction studies

    CERN Document Server

    Tandecki, Michaël

    A measurement of the $\\beta$–ν angular correlation in nuclear $\\beta$- decay is a good probe to search for physics beyond the Standard Model, independent of assumptions like parity, charge and time reversal violation. The WITCH (Weak Interaction Trap for Charged Particles) experiment will measure this correlation with the aim of further constraining the possible existence of scalar currents in the weak interaction or find a positive indication. The setup is located at ISOLDE/CERN and consists of a double Penning trap system combined with a retardation spectrometer to probe the energy of the recoil ions from the $\\beta$- decay. The shape of the recoil ion energy spectrum allows to determine the $\\beta$–ν angular correlation coefficient, $a$. Past experiments have allowed to measure this parameter with a precision of 0.5–1 %. The aim of the WITCH experiment is to measure $a$ with a precision of about 0.5 %.\\\\ A first step towards this goal has already been taken in 2006 with the measurement of a recoil ...

  12. Applications of on-line weak affinity interactions in free solution capillary electrophoresis

    DEFF Research Database (Denmark)

    Heegaard, Niels H H; Nissen, Mogens H; Chen, David D Y

    2002-01-01

    The impressive selectivity offered by capillary electrophoresis can in some cases be further increased when ligands or additives that engage in weak affinity interactions with one or more of the separated analytes are added to the electrophoresis buffer. This on-line affinity capillary...... electrophoresis approach is feasible when the migration of complexed molecules is different from the migration of free molecules and when separation conditions are nondenaturing. In this review, we focus on applying weak interactions as tools to enhance the separation of closely related molecules, e.g., drug...... enantiomers and on using capillary electrophoresis to characterize such interactions quantitatively. We describe the equations for binding isotherms, illustrate how selectivity can be manipulated by varying the additive concentrations, and show how the methods may be used to estimate binding constants. On...

  13. Influence of weak anchoring upon the alignment of smectic A liquid crystals with surface pretilt

    International Nuclear Information System (INIS)

    De Vita, R; Stewart, I W

    2008-01-01

    Equilibrium configurations for smectic A liquid crystals in a 'bookshelf' geometry are determined from a nonlinear continuum model under strong and weak anchoring conditions at the boundary for the usual director n. Natural boundary conditions are derived for n and the smectic layer normal a when a preferred director orientation n p , which generally induces a director pretilt, is prescribed on the boundaries. Two key aspects are examined via the nonlinear equilibrium equations: the separation of n from a and the influence of weak anchoring. The orientations of n and a relative to n p may differ significantly and depend very much upon the magnitude of the anchoring strength. These results from a nonlinear theory are natural and novel developments of previous classical linearized models for which n ≡ a. Comparisons are also drawn between solutions for strong and weak anchoring conditions

  14. Retention prediction and hydrophobicity estimation of weak acidic compounds by reversed-phase liquid chromatography using acetic and perchloric acids as ion suppressors.

    Science.gov (United States)

    Han, Shu-ying; Ming, Xin; Qi, Zheng-chun; Sheng, Dong; Lian, Hong-zhen

    2010-11-01

    Simple acids are usually applied to suppress the ionization of weakly ionizable acidic analytes in reversed-phase liquid chromatography. The purpose of this study is to investigate the retention behavior of various weak acidic compounds (monoprotic, diprotic, triprotic, and tetraprotic acids) using acetic or perchloric acid as ion suppressor in a binary hydroorganic mobile phase. The apparent n-octanol-water partition coefficient (K(ow)") was proposed to calibrate the n-octanol-water partition coefficient (K(ow)) of weak acidic compound. LogK(ow)" was found to have a better linear correlation with logk(w), the logarithm of the retention factor obtained by extrapolating to neat aqueous fraction of the mobile phase, for all weakly ionizable acidic compounds. This straightforward relationship offers a potential medium for direct measurement of K(ow) data of weak acidic analytes and can be used to predict retention behavior of these compounds in the ion suppression reversed-phase liquid chromatographic mode.

  15. Weak Interaction processes in core-collapse supernova

    International Nuclear Information System (INIS)

    Martinez-Pinedo, Gabriel

    2008-01-01

    In this manuscript we review the role that weak interaction processes play in supernova. This includes electron captures and inelastic neutrino-nucleus scattering (INNS). Electron captures during the collapse occur mainly in heavy nuclei, however the proton contribution is responsible for the convergence of different models to a 'norm' stellar trajectory. Neutrino-nucleus cross sections at supernova neutrino energies can be determined from precise data on the magnetic dipole strength. The results agree well with large-scale shell-model calculations. When incorporated in core-collapse simulations INNS increases the neutrino opacities noticeably and strongly reduces the high-energy part of the supernova spectrum

  16. A new interface weak-capacitance detection ASIC of capacitive liquid level sensor in the rocket

    Science.gov (United States)

    Yin, Liang; Qin, Yao; Liu, Xiao-Wei

    2017-11-01

    A new capacitive liquid level sensing interface weak-capacitance detection ASIC has been designed. This ASIC realized the detection of the output capacitance of the capacitive liquid level sensor, which converts the output capacitance of the capacitive liquid level sensor to voltage. The chip is fabricated in a standard 0.5μm CMOS process. The test results show that the linearity of capacitance detection of the ASIC is 0.05%, output noise is 3.7aF/Hz (when the capacitance which will be detected is 40 pF), the stability of capacitance detection is 7.4 × 10-5pF (1σ, 1h), the output zero position temperature coefficient is 4.5 uV/∘C. The test results prove that this interface ASIC can meet the requirement of high accuracy capacitance detection. Therefore, this interface ASIC can be applied in capacitive liquid level sensing and capacitive humidity sensing field.

  17. Constraining the interacting dark energy models from weak gravity conjecture and recent observations

    International Nuclear Information System (INIS)

    Chen Ximing; Wang Bin; Pan Nana; Gong Yungui

    2011-01-01

    We examine the effectiveness of the weak gravity conjecture in constraining the dark energy by comparing with observations. For general dark energy models with plausible phenomenological interactions between dark sectors, we find that although the weak gravity conjecture can constrain the dark energy, the constraint is looser than that from the observations.

  18. Influence of weak anchoring upon the alignment of smectic A liquid crystals with surface pretilt

    Energy Technology Data Exchange (ETDEWEB)

    De Vita, R [Department of Engineering Science and Mechanics, Virginia Tech, 230 Norris Hall, Blacksburg, VA 24061 (United States); Stewart, I W [Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH (United Kingdom)], E-mail: devita@vt.edu, E-mail: i.w.stewart@strath.ac.uk

    2008-08-20

    Equilibrium configurations for smectic A liquid crystals in a 'bookshelf' geometry are determined from a nonlinear continuum model under strong and weak anchoring conditions at the boundary for the usual director n. Natural boundary conditions are derived for n and the smectic layer normal a when a preferred director orientation n{sub p}, which generally induces a director pretilt, is prescribed on the boundaries. Two key aspects are examined via the nonlinear equilibrium equations: the separation of n from a and the influence of weak anchoring. The orientations of n and a relative to n{sub p} may differ significantly and depend very much upon the magnitude of the anchoring strength. These results from a nonlinear theory are natural and novel developments of previous classical linearized models for which n {identical_to} a. Comparisons are also drawn between solutions for strong and weak anchoring conditions.

  19. Weakly hydrated surfaces and the binding interactions of small biological solutes.

    Science.gov (United States)

    Brady, John W; Tavagnacco, Letizia; Ehrlich, Laurent; Chen, Mo; Schnupf, Udo; Himmel, Michael E; Saboungi, Marie-Louise; Cesàro, Attilio

    2012-04-01

    Extended planar hydrophobic surfaces, such as are found in the side chains of the amino acids histidine, phenylalanine, tyrosine, and tryptophan, exhibit an affinity for the weakly hydrated faces of glucopyranose. In addition, molecular species such as these, including indole, caffeine, and imidazole, exhibit a weak tendency to pair together by hydrophobic stacking in aqueous solution. These interactions can be partially understood in terms of recent models for the hydration of extended hydrophobic faces and should provide insight into the architecture of sugar-binding sites in proteins.

  20. Thermodynamic identities and particle number fluctuations in weakly interacting Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Illuminati, Fabrizio [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14415, Potsdam (Germany); Dipartimento di Fisica, Universita di Salerno, and INFM, Unita di Salerno, I-84081 Baronissi SA (Italy); Navez, Patrick [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14415, Potsdam (Germany); Institute of Materials Science, Demokritos NCSR, POB 60228, 15310 Athens (Greece); Wilkens, Martin [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14415, Potsdam (Germany)

    1999-08-14

    We derive exact thermodynamic identities relating the average number of condensed atoms and the root-mean-square fluctuations determined in different statistical ensembles for the weakly interacting Bose gas confined in a box. This is achieved by introducing the concept of auxiliary partition functions for model Hamiltonians that do conserve the total number of particles. Exploiting such thermodynamic identities, we provide the first, completely analytical prediction of the microcanonical particle number fluctuations in the weakly interacting Bose gas. Such fluctuations, as a function of the volume V of the box are found to behave normally, in contrast with the anomalous scaling behaviour V{sup 4/3} of the fluctuations in the ideal Bose gas. (author). Letter-to-the-editor.

  1. Elucidating the weak protein-protein interaction mechanisms behind the liquid-liquid phase separation of a mAb solution by different types of additives.

    Science.gov (United States)

    Wu, Guoliang; Wang, Shujing; Tian, Zhou; Zhang, Ning; Sheng, Han; Dai, Weiguo; Qian, Feng

    2017-11-01

    Liquid-liquid phase separation (LLPS) has long been observed during the physical stability investigation of therapeutic protein formulations. The buffer conditions and the presence of various excipients are thought to play important roles in the formulation development of monoclonal antibodies (mAbs). In this study, the effects of several small-molecule excipients (histidine, alanine, glycine, sodium phosphate, sodium chloride, sorbitol and sucrose) with diverse physical-chemical properties on LLPS of a model IgG1 (JM2) solutions were investigated by multiple techniques, including UV-vis spectroscopy, circular dichroism, differential scanning calorimetry/fluorimetry, size exclusion chromatography and dynamic light scattering. The LLPS of JM2 was confirmed to be a thermodynamic equilibrium process with no structural changes or irreversible aggregation of proteins. Phase diagrams of various JM2 formulations were constructed, suggesting that the phase behavior of JM2 was dependent on the solution pH, ionic strength and the presence of other excipients such as glycine, alanine, sorbitol and sucrose. Furthermore, we demonstrated that for this mAb, the interaction parameter (k D ) determined at low protein concentration appeared to be a good predictor for the occurrence of LLPS at high concentration. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Weak interactions - formulae, results, and derivations

    Energy Technology Data Exchange (ETDEWEB)

    Pietschmann, H

    1983-01-01

    The purpose of this book is to provide experimental and theoretical physicists working in the field of weak interactions with a reference work which includes all the formulae and results needed in actual research. The derivation of these formulae is also given in detail for some typical examples to facilitate their use. New developments in unified gauge theories have been included as well as the decay processes of the new particles such as intermediate bosons and tau-lepton. In order to supply the research worker with a convenient working aid, frequently occurring mathematical formulae as well as phase space integrals and the Dirac algebra have been included. Treatment of field operators - also with respect to discrete transformations C, P, T and G - as well as products of invariant functions are provided. Particular emphasis has been placed on the Lagrangian of unified electroweak interactions. The major portion of the work is, of course, devoted to formulae for decay processes and scattering cross-sections. Useful formulae in e/sup +/e/sup -/ reactions and a small dictionary for translations into other forms for the space-time metric are collected in appendices.

  3. Effective interactions and elementary excitations in quantum liquids

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    The effective interactions which provide a wavevector and frequency dependent restoring force for collective modes in quantum liquids are derived for the helium liquids by means of physical arguments and sum rule and continuity considerations. A simple model is used to take into account mode-mode coupling between collective and multiparticle excitations, and the results for the zero-temperature liquid 4 He phonon-maxon-roton spectrum are shown to compare favorably with experiment and with microscopic calculation. The role played by spin-dependent backflow in liquid 3 He is analyzed, and a physical interpretation of its variation with density and spin-polarization is presented. A progress report is given on recent work on effective interactions and elementary excitations in nuclear matter, with particular attention to features encountered in the latter system which have no counterparts in the helium liquids

  4. Reconstructing weak values without weak measurements

    International Nuclear Information System (INIS)

    Johansen, Lars M.

    2007-01-01

    I propose a scheme for reconstructing the weak value of an observable without the need for weak measurements. The post-selection in weak measurements is replaced by an initial projector measurement. The observable can be measured using any form of interaction, including projective measurements. The reconstruction is effected by measuring the change in the expectation value of the observable due to the projector measurement. The weak value may take nonclassical values if the projector measurement disturbs the expectation value of the observable

  5. Influence of effective electron interaction on critical current of Josephson weak links

    International Nuclear Information System (INIS)

    Kupriyanov, M.Yu.; Likharev, K.K.; Lukichev, V.F.

    1981-01-01

    On the basis of microscopic theory of superconductivity, the dc Josphson effect in weak links of the type of variable thickness bridges or high ohmic interlayer sandwiches is studied. The Isub(C)Rsub(N) product is calculatied as a function of temperature T and weak link length L for various amplitudes and both signs of effective electron-electron interaction constant lambda. If the weak link material is superconducting with critical temperature Tsub(C) > 0 (lambda > 0), the maximum value of Isub(C)Rsub(N) product (under condition of the singlevalued Isub(S)(phi) relationship) can be achieved at L approx. <= 3xisup(*) when Tsub(C) approx. <= Tsub(CS)/2, and at L=(4 / 6)xisup(*) when Tsub(C) = Tsub(CS). Electron repulsion inside the weak link (lambda < 0) results in some reduction of the Isub(C)Rsub(N) product in comparison with the case of 'really normal' weak link material (lambda = 0). (orig.)

  6. Liquid nitrogen - water interaction experiments for fusion reactor accident scenarios

    International Nuclear Information System (INIS)

    Duckworth, R.; Murphy, J.; Pfotenhauer, J.; Corradini, M.

    2001-01-01

    With the implementation of superconducting magnets in fusion reactors, the possibility exists for the interaction between water and cryogenic systems. The interaction between liquid nitrogen and water was investigated experimentally and numerically. The rate of pressurization and peak pressure were found to be driven thermodynamically by the expansion of the water and the boil-off of the liquid nitrogen and did not have a vapor explosion nature. Since the peak pressure was small in comparison to previous work with stratified geometries, the role of the geometry of the interacting fluids has been shown to be significant. Comparisons of the peak pressure and the rate of pressurization with respect to the ratio of the liquid nitrogen mass to water mass reveal no functional dependence as was observed in the liquid helium-water experiments. A simple thermodynamic model provides a fairly good description of the pressure rise data. From the data, the model will allow one to extract the interaction area of the water. As with previous liquid helium-water interaction experiments, more extensive investigation of the mass ratio and interaction geometry is needed to define boundaries between explosive and non-explosive conditions. (authors)

  7. Electro-weak theory

    International Nuclear Information System (INIS)

    Deshpande, N.G.

    1980-01-01

    By electro-weak theory is meant the unified field theory that describes both weak and electro-magnetic interactions. The development of a unified electro-weak theory is certainly the most dramatic achievement in theoretical physics to occur in the second half of this century. It puts weak interactions on the same sound theoretical footing as quantum elecrodynamics. Many theorists have contributed to this development, which culminated in the works of Glashow, Weinberg and Salam, who were jointly awarded the 1979 Nobel Prize in physics. Some of the important ideas that contributed to this development are the theory of beta decay formulated by Fermi, Parity violation suggested by Lee and Yang, and incorporated into immensely successful V-A theory of weak interactions by Sudarshan and Marshak. At the same time ideas of gauge invariance were applied to weak interaction by Schwinger, Bludman and Glashow. Weinberg and Salam then went one step further and wrote a theory that is renormalizable, i.e., all higher order corrections are finite, no mean feat for a quantum field theory. The theory had to await the development of the quark model of hadrons for its completion. A description of the electro-weak theory is given

  8. Weak interaction in a three nucleon system: search for an asymmetry in radiative capture n-d

    International Nuclear Information System (INIS)

    Avenier, M.

    1982-01-01

    Experimental determination of the weak interaction rate in a three nucleon neutron-deuteron system: this weak interaction is observed through pseudoscalar parameters such as the asymetric angular distribution of the capture photon in relation with the system polarization. Orientation of the system is achieved by use of a polarized cold neutron beam. This phenomena is explained as a result of weak coupling between nucleons and mesons. Measurements of the gamma asymmetries observed when tests are conducted with or without heavy water and effects of depolarization are discussed [fr

  9. Biospecific protein immobilization for rapid analysis of weak protein interactions using self-interaction nanoparticle spectroscopy.

    Science.gov (United States)

    Bengali, Aditya N; Tessier, Peter M

    2009-10-01

    "Reversible" protein interactions govern diverse biological behavior ranging from intracellular transport and toxic protein aggregation to protein crystallization and inactivation of protein therapeutics. Much less is known about weak protein interactions than their stronger counterparts since they are difficult to characterize, especially in a parallel format (in contrast to a sequential format) necessary for high-throughput screening. We have recently introduced a highly efficient approach of characterizing protein self-association, namely self-interaction nanoparticle spectroscopy (SINS; Tessier et al., 2008; J Am Chem Soc 130:3106-3112). This approach exploits the separation-dependent optical properties of gold nanoparticles to detect weak self-interactions between proteins immobilized on nanoparticles. A limitation of our previous work is that differences in the sequence and structure of proteins can lead to significant differences in their affinity to adsorb to nanoparticle surfaces, which complicates analysis of the corresponding protein self-association behavior. In this work we demonstrate a highly specific approach for coating nanoparticles with proteins using biotin-avidin interactions to generate protein-nanoparticle conjugates that report protein self-interactions through changes in their optical properties. Using lysozyme as a model protein that is refractory to characterization by conventional SINS, we demonstrate that surface Plasmon wavelengths for gold-avidin-lysozyme conjugates over a range of solution conditions (i.e., pH and ionic strength) are well correlated with lysozyme osmotic second virial coefficient measurements. Since SINS requires orders of magnitude less protein and time than conventional methods (e.g., static light scattering), we envision this approach will find application in large screens of protein self-association aimed at either preventing (e.g., protein aggregation) or promoting (e.g., protein crystallization) these

  10. Forty years of the establishment of the induced weak pseudoscalar interaction

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1998-03-01

    The author describes his work on the muon capture by light nuclei through the interaction of muons with protons via a virtual pion exchange. Although the resulting capture rate was an order of magnitude slower that the experimental available data, the calculation showed that the pion exchange between muons and protons gives rise to an induced weak pseudoscalar coupling which has to be added to the Feynman-Gell-Mann-Sudarshan-Marshak V-A interaction. (author)

  11. Weak interactions physics: from its birth to the eletroweak model

    International Nuclear Information System (INIS)

    Lopes, J.L.

    1987-01-01

    A review of the evolution of weak interaction physics from its beginning (Fermi-Majorana-Perrin) to the eletroweak model (Glashow-Weinberg-Salam). Contributions from Brazilian physicists are specially mentioned as well as the first prediction of electroweak-unification, of the neutral intermediate vector Z 0 and the first approximate value of the mass of the W-bosons. (Author) [pt

  12. Localization of weakly interacting Bose gas in quasiperiodic potential

    International Nuclear Information System (INIS)

    Ray, Sayak; Pandey, Mohit; Ghosh, Anandamohan; Sinha, Subhasis

    2016-01-01

    We study the localization properties of weakly interacting Bose gas in a quasiperiodic potential. The Hamiltonian of the non-interacting system reduces to the well known ‘Aubry–André model’, which shows the localization transition at a critical strength of the potential. In the presence of repulsive interaction we observe multi-site localization and obtain a phase diagram of the dilute Bose gas by computing the superfluid fraction and the inverse participation ratio. We construct a low-dimensional classical Hamiltonian map and show that the onset of localization is manifested by the chaotic phase space dynamics. The level spacing statistics also identify the transition to localized states resembling a Poisson distribution that are ubiquitous for both non-interacting and interacting systems. We also study the quantum fluctuations within the Bogoliubov approximation and compute the quasiparticle energy spectrum. Enhanced quantum fluctuation and multi-site localization phenomenon of non-condensate density are observed above the critical coupling of the potential. We briefly discuss the effect of the trapping potential on the localization of matter wave. (paper)

  13. Thermodynamics of interaction of ionic liquids with lipid monolayer.

    Science.gov (United States)

    Bhattacharya, G; Mitra, S; Mandal, P; Dutta, S; Giri, R P; Ghosh, S K

    2018-06-01

    Understanding the interaction of ionic liquids with cellular membrane becomes utterly important to comprehend the activities of these liquids in living organisms. Lipid monolayer formed at the air-water interface is employed as a model system to follow this interaction by investigating important thermodynamic parameters. The penetration kinetics of the imidazolium-based ionic liquid 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM][BF4]) into the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid layer is found to follow the Boltzmann-like equation that reveals the characteristic time constant which is observed to be the function of initial surface pressure. The enthalpy and entropy calculated from temperature-dependent pressure-area isotherms of the monolayer show that the added ionic liquids bring about a disordering effect in the lipid film. The change in Gibbs free energy indicates that an ionic liquid with longer chain has a far greater disordering effect compared to an ionic liquid with shorter chain. The differential scanning calorimetric measurement on a multilamellar vesicle system shows the main phase transition temperature to shift to a lower value, which, again, indicates the disordering effect of the ionic liquid on lipid membrane. All these studies fundamentally point out that, when ionic liquids interact with lipid molecules, the self-assembled structure of a cellular membrane gets perturbed, which may be the mechanism of these molecules having adverse effects on living organisms.

  14. Heavy flavour decays and the structure of weak interactions

    International Nuclear Information System (INIS)

    Bigi, I.

    1984-01-01

    The so-called Standard Model has been developed describing the electro-weak interactions by an SU(2) L xU(1) gauge theory the community's almost unanimous choice of the candidate theory for the strong interactions is QCD based on an SU(3) gauge theory. It is very instructive to recall the similarities and differences of these two theoretical frameworks. Both are based on non-abelian gauge theories with spin -1/2 matter fields and spin -1 radiation fields the latter being the carriers of the forces. Beyond this basic correspondence there are however crucial differences which I sketch under the headings ''computational tools'' and ''predictive power''; there exist of course correlations between these two items. (orig./HSI)

  15. Diquark condensate and quark interaction with instanton liquid

    International Nuclear Information System (INIS)

    Zinov'ev, G.M.; Molodtsov, S.V.

    2003-01-01

    The interaction of light quarks and instanton liquid is analyzed at finite density of quark/baryon matter and in the phase of nonzero values of diquark (color) condensate. It is shown that instanton liquid perturbation produced by such an interaction results in an essential increase of the critical value of quark chemical potential μ c which provokes the perceptible increase of quark matter density around the expected onset of the color superconductivity phase [ru

  16. Detection of light-matter interaction in the weak-coupling regime by quantum light

    Science.gov (United States)

    Bin, Qian; Lü, Xin-You; Zheng, Li-Li; Bin, Shang-Wu; Wu, Ying

    2018-04-01

    "Mollow spectroscopy" is a photon statistics spectroscopy, obtained by scanning the quantum light scattered from a source system. Here, we apply this technique to detect the weak light-matter interaction between the cavity and atom (or a mechanical oscillator) when the strong system dissipation is included. We find that the weak interaction can be measured with high accuracy when exciting the target cavity by quantum light scattered from the source halfway between the central peak and each side peak. This originally comes from the strong correlation of the injected quantum photons. In principle, our proposal can be applied into the normal cavity quantum electrodynamics system described by the Jaynes-Cummings model and an optomechanical system. Furthermore, it is state of the art for experiment even when the interaction strength is reduced to a very small value.

  17. Instability of collective strong-interaction phenomena in hadron production as a possible origin of the weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1975-12-01

    A systematic calculus of long-range Regge cut effects in multiparticle production is constructed in the form of an infrared-divergent stochastic field theory. Total cross sections and two-body overlap integrals in such a theory may depend very sensitively upon internal quantum-numbers of incident particles, resulting in a strong symmetry breaking at ultra-high energies. Such symmetry violations will influence low energy processes through dispersion relations, and a bootstrap of weak interactions becomes possible. A rough analytic estimate of the scale of thresholds for such effects yields a BCS-type gap equation, which expresses the scale of weak and electromagnetic couplings in terms of purely strong-interaction parameters

  18. First results of the CERN Resonant Weakly Interacting sub-eV Particle Search (CROWS)

    CERN Document Server

    Betz, M; Gasior, M; Thumm, M; Rieger, S W

    2013-01-01

    The CERN Resonant Weakly Interacting sub-eV Particle Search probes the existence of weakly interacting sub-eV particles like axions or hidden sector photons. It is based on the principle of an optical light shining through the wall experiment, adapted to microwaves. Critical aspects of the experiment are electromagnetic shielding, design and operation of low loss cavity resonators, and the detection of weak sinusoidal microwave signals. Lower bounds are set on the coupling constant g=4.5 x 10$^{-8}$ GeV$^{-1}$ for axionlike particles with a mass of m$_a$=7.2 $\\mu$eV. For hidden sector photons, lower bounds are set for the coupling constant $\\chi$=4.1 x 10$^{^-9}$ at a mass of m$\\gamma$=10.8 $\\mu$eV. For the latter we are probing a previously unexplored region in the parameter space.

  19. Weak interactions in deuterons: exchange currents and nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Dautry, F.; Rho, M.; Riska, D.O.

    1976-01-01

    While the meson-exchange electromagnetic current has been tested with an impressive success in the two-nucleon system, nothing much is known about the reliability of the exchange currents in weak interactions. This question is studied using muon absorption in the deuteron, μ - + d→n + n + γ. The meson-exchange current, previously derived in parallel to those of the electromagnetic interaction, is checked for consistency against the p-wave piece of the p + p→d + π + process near threshold and then tested with the total capture rate for which some (though not so accurate) data are available. The same Hamiltonian is then used to calculate the matrix elements for the solar neutrino processes p + p→d + e + + γ and p + p + e - → d + γ in the hope that they would be measured and help resolve the solar neutrino puzzle. Finally a detailed analysis is made of the differential capture rate dGAMMA/dEsub(n), Esub(n) being the kinematic energy in the c.m. of the two neutrons, in the expectation that it will be used to pin down the ever elusive n-n scattering length. (Auth.)

  20. Weak-interaction processes in stars: applications to core-collapse supernovae

    International Nuclear Information System (INIS)

    Martinez-Pinedo, G.

    2003-01-01

    The role of weak-interaction processes in core collapse and neutrino nucleosynthesis is reviewed. Recent calculations of the electron capture rates for nuclei with mass numbers A=65-112 show that, contrarily to previous assumptions, during core collapse electron capture is dominated by captures on heavy nuclei. Astrophysical simulations demonstrate that these rates have an important impact on the collapse. Neutrinos emitted by the collapsing core can interact with the overlying shells of the star producing substantial nuclear transmutations. This process known as ν-process seems to be responsible for the production of 138 La by charged current neutrino interactions with 138 Ba. The ν-process is then sensitive to the spectra of different neutrino species and to neutrino oscillations. (orig.)

  1. SQUIDs in thermal detectors of weakly interacting particles

    International Nuclear Information System (INIS)

    Trofimov, V.N.

    1991-01-01

    The application of four different types of SQUID-assisted thermometers for cryogenic thermal detectors of weakly interacting particles is analyzed with two of them for the first time. The classic resistive thermometer is considered as well for the comparison. Original results of testing the detector with working temperature of 1K and thermocouple thermometer with SQUID are given. The conclusion is made that temperature resolution of 10 -10 kHz -1/2 or energy sensitivity of 1-10 eV per 1 kg of detector mass can be achieved when using the SQUID-assisted thermometers. 12 refs.; 7 figs.; 1 tab

  2. Limits on Interactions between Weakly Interacting Massive Particles and Nucleons Obtained with CsI(Tl) Crystal Detectors

    International Nuclear Information System (INIS)

    Lee, H. S.; Bhang, H. C.; Choi, J. H.; Kim, D. W.; Kim, S. C.; Kim, S. K.; Kwak, J. W.; Lee, J.; Lee, J. H.; Lee, M. J.; Lee, S. J.; Myung, S. S.; Ryu, S.; Dao, H.; Li, J.; Li, X.; Li, Y. J.; Yue, Q.; Zhu, J. J.; Hahn, I. S.

    2007-01-01

    The Korea Invisible Mass Search (KIMS) experiment presents new limits on the weakly interacting massive particle (WIMP)-nucleon cross section using data from an exposure of 3409 kg·d taken with low-background CsI(Tl) crystals at the Yangyang Underground Laboratory. The most stringent limit on the spin-dependent interaction for a pure proton case is obtained. The DAMA signal region for both spin-independent and spin-dependent interactions for the WIMP masses greater than 20 GeV/c 2 is excluded by the single experiment with crystal scintillators

  3. Quenching of weak interactions in nucleon matter

    International Nuclear Information System (INIS)

    Cowell, S.; Pandharipande, V.R.

    2003-01-01

    We have calculated the one-body Fermi and Gamow-Teller charge-current and vector and axial-vector neutral-current nuclear matrix elements in nucleon matter at densities of 0.08, 0.16, and 0.24 fm -3 and proton fractions ranging from 0.2 to 0.5. The correlated states for nucleon matter are obtained by operating on Fermi-gas states by a symmetrized product of pair correlation operators determined from variational calculations with the Argonne-v18 and Urbana-IX two- and three-nucleon interactions. The squares of the charge- current matrix elements are found to be quenched by 20-25 % by the short-range correlations in nucleon matter. Most of the quenching is due to spin-isospin correlations induced by the pion exchange interactions which change the isospins and spins of the nucleons. A large part of it can be related to the probability for a spin-up proton quasiparticle to be a bare spin-up/down proton/neutron. Within the interval considered, the charge-current matrix elements do not have significant dependence on the matter density, proton fraction, and magnitudes of nucleon momenta; however, they do depend on momentum transfer. The neutral-current matrix elements have a significant dependence on the proton fraction. We also calculate the matrix elements of the nuclear Hamiltonian in the same correlated basis. These provide relatively mild effective interactions that give the variational energies in the Hartree-Fock approximation. The calculated two-nucleon effective interaction describes the spin-isospin susceptibilities of nuclear and neutron matter fairly accurately. However terms greater than or equal to three-body terms are necessary to reproduce the compressibility. Realistic calculations of weak interaction rates in nucleon matter can presumably be carried out using the effective operators and interactions studied here. All presented results use the simple two-body cluster approximation to calculate the correlated basis matrix elements. This allows for a clear

  4. Introduction to the gauge theories unifying the electromagnetic and weak interactions

    International Nuclear Information System (INIS)

    Pham Xuan-Yem.

    An elementary introduction to unified gauge theories of electromagnetic and weak interactions is presented. The Goldstone theorem and the Higgs mechanism are discussed. The Weinberg-Salam model as well as the Georgi-Glashow ones are explained in details. One emphasizes on the experimental consequences of the Weinberg-Salam model (neutral current) [fr

  5. Effects of Parallel Channel Interactions, Steam Flow, Liquid Subcool ...

    African Journals Online (AJOL)

    Tests were performed to examine the effects of parallel channel interactions, steam flow, liquid subcool and channel heat addition on the delivery of liquid from the upper plenum into the channels and lower plenum of Boiling Water Nuclear Power Reactors during reflood transients. Early liquid delivery into the channels, ...

  6. Quantum liquids get thin

    Science.gov (United States)

    Ferrier-Barbut, Igor; Pfau, Tilman

    2018-01-01

    A liquid exists when interactions that attract its constituent particles to each other are counterbalanced by a repulsion acting at higher densities. Other characteristics of liquids are short-range correlations and the existence of surface tension (1). Ultracold atom experiments provide a privileged platform with which to observe exotic states of matter, but the densities are far too low to obtain a conventional liquid because the atoms are too far apart to create repulsive forces arising from the Pauli exclusion principle of the atoms' internal electrons. The observation of quantum liquid droplets in an ultracold mixture of two quantum fluids is now reported on page 301 of this issue by Cabrera et al. (2) and a recent preprint by Semeghini et al. (3). Unlike conventional liquids, these liquids arise from a weak attraction and repulsive many-body correlations in the mixtures.

  7. Control of Chain Walking by Weak Neighbouring Group Interac-tions in Unsymmetric Catalysts

    KAUST Repository

    Falivene, Laura; Wiedemann, Thomas; Gö ttker-Schnetmann, Inigo; Caporaso, Lucia; Cavallo, Luigi; Mecking, Stefan

    2017-01-01

    A combined theoretical and experimental study shows how weak attractive interactions of a neighbouring group can strongly promote chain walking and chain transfer. This accounts for the previously observed very different micro-structures obtained

  8. Is neutrino produced in standard weak interactions a Dirac or Majorana particle?

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    2010-01-01

    This work considers the following problem: what type (Dirac or Majorana) of neutrinos is produced in standard weak interactions? It is concluded that only Dirac neutrinos but not Majorana neutrinos can be produced in these interactions. Then neutrino interacts with W ± and Z bosons but neutrinoless double beta decay is absent. It means that this neutrino will be produced in another type of interaction. Namely, Majorana neutrino will be produced in the interaction which differentiates spin projections but cannot differentiate neutrino (particle) from antineutrino (antiparticle). Then neutrino will interact with W ± bosons and neutrinoless double beta decay will arise. But interaction with Z boson will be absent. Such an interaction has not been discovered yet. Therefore, experiments with very high precision are important to detect the neutrinoless double decays if they are realized in the Nature

  9. A G/NARRLI Effort. Measuring the Ionization Yield of Low-Energy Nuclear Recoils in Liquid Argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Tenzing Henry Yatish [Univ. of California, Berkeley, CA (United States)

    2014-01-01

    Liquid argon has long been used for particle detection due to its attractive drift properties, ample abundance, and reasonable density. The response of liquid argon to lowenergy O(102 -1044 eV) interactions is, however, largely unexplored. Weakly interacting massive particles such as neutrinos and hypothetical dark-matter particles (WIMPs) are predicted to coherently scatter on atomic nuclei, leaving only an isolated low-energy nuclear recoil as evidence. The response of liquid argon to low-energy nuclear recoils must be studied to determine the sensitivity of liquid argon based detectors to these unobserved interactions. Detectors sensitive to coherent neutrino-nucleus scattering may be used to monitor nuclear reactors from a distance, to detect neutrinos from supernova, and to test the predicted behavior of neutrinos. Additionally, direct detection of hypothetical weakly interacting dark matter would be a large step toward understanding the substance that accounts for nearly 27% of the universe. In this dissertation I discuss a small dual-phase (liquid-gas) argon proportional scintillation counter built to study the low-energy regime and several novel calibration and characterization techniques developed to study the response of liquid argon to low-energy O(102 -104 eV) interactions.

  10. Solution Phase Measurement of Both Weak Sigma and C-H---X- Hydrogen Bonding Interactions in Synthetic Anion Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, Mr. Orion B. [University of Oregon; Sather, Mr. Aaron C [University of Oregon; Hay, Benjamin [ORNL; Meisner, Mr. Jeffrey S. [University of Oregon; Johnson, Prof. Darren W. [University of Oregon

    2008-01-01

    A series of tripodal receptors preorganize electron-deficient aromatic rings to bind halides in organic solvents using weak sigma anion-to-arene interactions or C-H---X- hydrogen bonds. 1H NMR spectroscopy proves to be a powerful technique for quantifying binding in solution, and determining the interaction motifs, even in cases of weak binding.

  11. Modeling nuclear weak-interaction processes with relativistic energy density functionals

    International Nuclear Information System (INIS)

    Paar, N.; Marketin, T.; Vale, D.; Vretenar, D.

    2015-01-01

    Relativistic energy density functionals have become a standard framework for nuclear structure studies of ground state properties and collective excitations over the entire nuclide chart. In this paper, we review recent developments in modeling nuclear weak-interaction processes: Charge-exchange excitations and the role of isoscalar proton–neutron pairing, charged-current neutrino–nucleus reactions relevant for supernova evolution and neutrino detectors and calculation of β-decay rates for r-process nucleosynthesis. (author)

  12. Prediction for neutrino-electron cross-sections in Weinberg's model for weak interactions

    NARCIS (Netherlands)

    Hooft, G. 't

    1971-01-01

    Weinberg's theory of purely leptonic weak interactions can be tested in neutrino-electron scattering experiments. Cross-sections must be measured as a function of the energy of the recoil electron. If Weinberg's theory is correct, then the masses of the intermediate vector bosons can be derived from

  13. Conserving gapless mean-field theory for weakly interacting Bose gases

    International Nuclear Information System (INIS)

    Kita, Takafumi

    2006-01-01

    This paper presents a conserving gapless mean-field theory for weakly interacting Bose gases. We first construct a mean-field Luttinger-Ward thermodynamic functional in terms of the condensate wave function Ψ and the Nambu Green's function G for the quasiparticle field. Imposing its stationarity respect to Ψ and G yields a set of equations to determine the equilibrium for general non-uniform systems. They have a plausible property of satisfying the Hugenholtz-Pines theorem to provide a gapless excitation spectrum. Also, the corresponding dynamical equations of motion obey various conservation laws. Thus, the present mean-field theory shares two important properties with the exact theory: 'conserving' and 'gapless'. The theory is then applied to a homogeneous weakly interacting Bose gas with s-wave scattering length a and particle mass m to clarify its basic thermodynamic properties under two complementary conditions of constant density n and constant pressure p. The superfluid transition is predicted to be first-order because of the non-analytic nature of the order-parameter expansion near T c inherent in Bose systems, i.e., the Landau-Ginzburg expansion is not possible here. The transition temperature T c shows quite a different interaction dependence between the n-fixed and p-fixed cases. In the former case T c increases from the ideal gas value T 0 as T c /T 0 =1+2.33an 1/3 , whereas it decreases in the latter as T c /T 0 =1-3.84a(mp/2πℎ 2 ) 1/5 . Temperature dependences of basic thermodynamic quantities are clarified explicitly. (author)

  14. Interaction between liquid droplets and heated surface

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, B I [Research and Engineering Centre, LWR Nuclear Plants Safety, Elektrogorsk (Russian Federation); Vasiliev, N I [Research and Engineering Centre, LWR Nuclear Plants Safety, Elektrogorsk (Russian Federation); Guguchkin, V V [Research and Engineering Centre, LWR Nuclear Plants Safety, Elektrogorsk (Russian Federation)

    1993-06-01

    In this paper, experimental methods and investigation results of interaction between droplets of different liquids and a heated surface are presented. Wetted area, contact time period and transition boundary from wetted to non-wetted interaction regimes are experimentally evaluated. A simple connection of the wetted area value and contact time period with the heat removal efficiency is shown. (orig.)

  15. A Universe without Weak Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Harnik, Roni; Kribs, Graham D.; Perez, Gilad

    2006-04-07

    A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical ''Weakless Universe'' is matched to our Universe by simultaneously adjusting Standard Model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the Weakless Universe suggests that the anthropic principle does not determine the scale of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multi-parameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe.

  16. A Universe without Weak Interactions

    International Nuclear Information System (INIS)

    Harnik, R

    2006-01-01

    A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical ''Weakless Universe'' is matched to our Universe by simultaneously adjusting Standard Model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the Weakless Universe suggests that the anthropic principle does not determine the scale of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multi-parameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe

  17. A universe without weak interactions

    International Nuclear Information System (INIS)

    Harnik, Roni; Kribs, Graham D.; Perez, Gilad

    2006-01-01

    A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical ''weakless universe'' is matched to our Universe by simultaneously adjusting standard model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the weakless universe suggests that the anthropic principle does not determine the scale of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multiparameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe

  18. Weak interaction effects in e+e- annihilation with polarised beams

    International Nuclear Information System (INIS)

    Simard, R.

    1977-01-01

    Although the standard gauge model of weak and electromagnetic interactions based on the work of Salam and Weinberg has met with great success, there are experimental facts that will require its extension or its modification to a new gauge model; the discovery of a heavy lepton at SLAC and the absence of parity violation in atoms that is expected from the neutral weak current coupling to electrons are discussed. Three tests are proposed that bear on these questions. First, heavy lepton production in e + e - annihilation when one of the incident beams is longitudinally polarized is considered and the purely leptonic decay of this heavy lepton is examined. An asymmetry in the inclusive angular distribution of one charged lepton (electron or muon) is important in determining the structure of weak interactions of the heavy lepton. In fact, this angular asymmetry easily distinguishes between the cases V - A and V + A for the heavy lepton current. Then, the decay channel L → ν/sub L/ + one hadron is considered (L = heavy lepton) under the same experimental set-up and the inclusive one-hadron angular distribution examined. Parity nonconservation in the decay of the heavy lepton causes a conspicuous forward-backward asymmetry in the cos theta distribution of the inclusive hadron spectrum near the high energy end that can be distinguished easily from other sources of asymmetry. It is easy then to discover the chirality (V - A or V + A) of the heavy lepton current. Finally a test is proposed which provides unambigous and clear evidence for parity violation in e + e - annihilation. It consists in measuring a possible left-right asymmetry of inclusive hadron production with highly transversely polarized e + e - incident beams. If observed, this asymmetry provides evidence of a parity violating neutral current coupling to electrons

  19. Nonlinear localized excitations in magnets with a weak exchange interaction as a soliton problem

    International Nuclear Information System (INIS)

    Gvozdikova, M.V.; Kovalev, A.S.

    1998-01-01

    The spin dynamics of soliton-like localized excitations in a discrete ferromagnet chain with an easy axis anisotropy and a weak exchange interaction is studied. The connection of these excitations with longwave magnetic solitons is discussed. The localized excitation frequency dependence on exchange interaction is found for a fixed number of spin deviation. It is shown that this dependence modifies essentially when the exchange interaction becomes comparable with an anisotropy value

  20. Chiral Responsive Liquid Quantum Dots.

    Science.gov (United States)

    Zhang, Jin; Ma, Junkai; Shi, Fangdan; Tian, Demei; Li, Haibing

    2017-08-01

    How to convert the weak chiral-interaction into the macroscopic properties of materials remains a huge challenge. Here, this study develops highly fluorescent, selectively chiral-responsive liquid quantum dots (liquid QDs) based on the hydrophobic interaction between the chiral chains and the oleic acid-stabilized QDs, which have been designated as (S)-1810-QDs. The fluorescence spectrum and liquidity of thermal control demonstrate the fluorescence properties and the fluidic behavior of (S)-1810-QDs in the solvent-free state. Especially, (S)-1810-QDs exhibit a highly chiral-selective response toward (1R, 2S)-2-amino-1,2-diphenyl ethanol. It is anticipated that this study will facilitate the construction of smart chiral fluidic sensors. More importantly, (S)-1810-QDs can become an attractive material for chiral separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Liquid gallium jet-plasma interaction studies in ISTTOK tokamak

    International Nuclear Information System (INIS)

    Gomes, R.B.; Fernandes, H.; Silva, C.; Sarakovskis, A.; Pereira, T.; Figueiredo, J.; Carvalho, B.; Soares, A.; Duarte, P.; Varandas, C.; Lielausis, O.; Klyukin, A.; Platacis, E.; Tale, I.; Alekseyv, A.

    2009-01-01

    Liquid metals have been pointed out as a suitable solution to solve problems related to the use of solid walls submitted to high power loads allowing, simultaneously, an efficient heat exhaustion process from fusion devices. The most promising candidate materials are lithium and gallium. However, lithium has a short liquid state temperature range when compared with gallium. To explore further this property, ISTTOK tokamak is being used to test the interaction of a free flying liquid gallium jet with the plasma. ISTTOK has been successfully operated with this jet without noticeable discharge degradation and no severe effect on the main plasma parameters or a significant plasma contamination by liquid metal. Additionally the response of an infrared sensor, intended to measure the jet surface temperature increase during its interaction with the plasma, has been studied. The jet power extraction capability is extrapolated from the heat flux profiles measured in ISTTOK plasmas.

  2. Charged weak currents

    International Nuclear Information System (INIS)

    Turlay, R.

    1979-01-01

    In this review of charged weak currents I shall concentrate on inclusive high energy neutrino physics. There are surely still things to learn from the low energy weak interaction but I will not discuss it here. Furthermore B. Tallini will discuss the hadronic final state of neutrino interactions. Since the Tokyo conference a few experimental results have appeared on charged current interaction, I will present them and will also comment on important topics which have been published during the last past year. (orig.)

  3. Uniaxial negative thermal expansion facilitated by weak host-guest interactions.

    Science.gov (United States)

    Engel, Emile R; Smith, Vincent J; Bezuidenhout, Charl X; Barbour, Leonard J

    2014-04-25

    A nitromethane solvate of 18-crown-6 was investigated by means of variable-temperature single-crystal X-ray diffraction in response to a report of abnormal unit cell contraction. Exceptionally large positive thermal expansion in two axial directions and negative thermal expansion along the third was confirmed. The underlying mechanism relies exclusively on weak electrostatic interactions to yield a linear thermal expansion coefficient of -129 × 10(-6) K(-1), the largest negative value yet observed for an organic inclusion compound.

  4. Chiral-model of weak-interaction form factors and magnetic moments of octet baryons

    International Nuclear Information System (INIS)

    Kubodera, K.; Kohyama, Y.; Tsushima, K.; Yamaguchi, T.

    1989-01-01

    For baryon spectroscopy, magnetic moments and weak interaction form factors provide valuable information, and the impressive amount of available experimental data on these quantities for the octet baryons invites detailed investigations. The authors of this paper have made extensive studies of the weak-interaction form factors and magnetic moments of the octet baryons within the framework of the volume-type cloudy-bag model (v-type CBM). The clouds of all octet mesons have been included. Furthermore, we have taken into account in a unified framework various effects that were so far only individually discussed in the literature. Thus, the gluonic effects, center-of-mass (CM0 corrections, and recoil corrections have been included). In this talk, after giving a brief summary of some salient features of the results, we discuss a very interesting application of our model to the problem of the spin content of nucleons

  5. Electrical and thermal transport in the quasiatomic limit of coupled Luttinger liquids

    Science.gov (United States)

    Szasz, Aaron; Ilan, Roni; Moore, Joel E.

    2017-02-01

    We introduce a new model for quasi-one-dimensional materials, motivated by intriguing but not yet well-understood experiments that have shown two-dimensional polymer films to be promising materials for thermoelectric devices. We consider a two-dimensional material consisting of many one-dimensional systems, each treated as a Luttinger liquid, with weak (incoherent) coupling between them. This approximation of strong interactions within each one-dimensional chain and weak coupling between them is the "quasiatomic limit." We find integral expressions for the (interchain) transport coefficients, including the electrical and thermal conductivities and the thermopower, and we extract their power law dependencies on temperature. Luttinger liquid physics is manifested in a violation of the Wiedemann-Franz law; the Lorenz number is larger than the Fermi liquid value by a factor between γ2 and γ4, where γ ≥1 is a measure of the electron-electron interaction strength in the system.

  6. Weak interaction rates for Kr and Sr waiting-point nuclei under rp-process conditions

    International Nuclear Information System (INIS)

    Sarriguren, P.

    2009-01-01

    Weak interaction rates are studied in neutron deficient Kr and Sr waiting-point isotopes in ranges of densities and temperatures relevant for the rp process. The nuclear structure is described within a microscopic model (deformed QRPA) that reproduces not only the half-lives but also the Gamow-Teller strength distributions recently measured. The various sensitivities of the decay rates to both density and temperature are discussed. Continuum electron capture is shown to contribute significantly to the weak rates at rp-process conditions.

  7. Solar-bound weakly interacting massive particles a no-frills phenomenology

    CERN Document Server

    Collar, J I

    1999-01-01

    The case for a stable population of solar-bound Earth-crossing Weakly Interacting Massive Particles (WIMPs) is reviewed. A practical general expression for their speed distribution in the laboratory frame is derived under basic assumptions. If such a population exists -even with a conservative phase-space density-, the next generation of large-mass, low-threshold underground bolometers should bring about a sizable enhancement in WIMP sensitivity. Finally, a characteristic yearly modulation in their recoil signal, arising from the ellipticity of the Earth's orbit, is presented.

  8. The weak π − π interaction originated resonant tunneling and fast switching in the carbon based electronic devices

    Directory of Open Access Journals (Sweden)

    Jun He

    2012-03-01

    Full Text Available By means of the nonequilibrium Green's functions and the density functional theory, we have investigated the electronic transport properties of C60 based electronic device with different intermolecular interactions. It is found that the electronic transport properties vary with the types of the interaction between two C60 molecules. A fast electrical switching behavior based on negative differential resistance has been found when two molecules are coupled by the weak π − π interaction. Compared to the solid bonding, the weak interaction is found to induce resonant tunneling, which is responsible for the fast response to the applied electric field and hence the velocity of switching.

  9. Quantum liquid droplets in a mixture of Bose-Einstein condensates

    Science.gov (United States)

    Cabrera, C. R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L.

    2018-01-01

    Quantum droplets are small clusters of atoms self-bound by the balance of attractive and repulsive forces. Here, we report on the observation of droplets solely stabilized by contact interactions in a mixture of two Bose-Einstein condensates. We demonstrate that they are several orders of magnitude more dilute than liquid helium by directly measuring their size and density via in situ imaging. We show that the droplets are stablized against collapse by quantum fluctuations and that they require a minimum atom number to be stable. Below that number, quantum pressure drives a liquid-to-gas transition that we map out as a function of interaction strength. These ultradilute isotropic liquids remain weakly interacting and constitute an ideal platform to benchmark quantum many-body theories.

  10. Phase transitions in ideal and weakly interacting Bose gases with a finite number of particles confined in a box

    International Nuclear Information System (INIS)

    Wang Jianhui; Ma Yongli

    2009-01-01

    We generalize the scheme to characterize phase transitions of finite systems in a complex temperature plane and approach the classifications of phase transitions in ideal and weakly interacting Bose gases of a finite number of particles, confined in a cubic box of volume L 3 with different boundary conditions. For this finite ideal Bose system, by extending the classification parameters to all regions, we predict that the phase transition for periodic boundary conditions is of second order, while the transition in Dirichlet boundary conditions is of first order. For a weakly interacting Bose gas with periodic boundary conditions, we discuss the effects of finite particle numbers and inter-particle interactions on the nature of the phase transitions. We show that this homogenous weakly interacting Bose gas undergoes a second-order phase transition, which is in accordance with universality arguments for infinite systems. We also discuss the dependence of transition temperature on interaction strengths and particle numbers.

  11. Strong FANCA/FANCG but weak FANCA/FANCC interaction in the yeast 2-hybrid system.

    Science.gov (United States)

    Reuter, T; Herterich, S; Bernhard, O; Hoehn, H; Gross, H J

    2000-01-15

    Three of at least 8 Fanconi anemia (FA) genes have been cloned (FANCA, FANCC, FANCG), but their functions remain unknown. Using the yeast 2-hybrid system and full-length cDNA, the authors found a strong interaction between FANCA and FANCG proteins. They also obtained evidence for a weak interaction between FANCA and FANCC. Neither FANCA nor FANCC was found to interact with itself. These results support the notion of a functional association between the FA gene products. (Blood. 2000;95:719-720)

  12. Molecular interactions and thermal transport in ionic liquids with carbon nanomaterials.

    Science.gov (United States)

    França, João M P; Nieto de Castro, Carlos A; Pádua, Agílio A H

    2017-07-05

    We used molecular dynamics simulation to study the effect of suspended carbon nanomaterials, nanotubes and graphene sheets, on the thermal conductivity of ionic liquids, an issue related to understanding the properties of nanofluids. One important aspect that we developed is an atomistic model of the interactions between the organic ions and carbon nanomaterials, so we did not rely on existing force fields for small organic molecules or assume simple combining rules to describe the interactions at the liquid/material interface. Instead, we used quantum calculations with a density functional suitable for non-covalent interactions to parameterize an interaction model, including van der Waals terms and also atomic partial charges on the materials. We fitted a n-m interaction potential function with n values of 9 or 10 and m values between 5 and 8, so a 12-6 Lennard-Jones function would not fit the quantum calculations. For the atoms of ionic liquids and carbon nanomaterials interacting among themselves, we adopted existing models from the literature. We studied the imidazolium ionic liquids [C 4 C 1 im][SCN], [C 4 C 1 im][N(CN) 2 ], [C 4 C 1 im][C(CN) 3 ] and [C 4 C 1 im][(CF 3 SO 2 ) 2 N]. Attraction is stronger for cations (than for anions) above and below the π-system of the nanomaterials, whereas anions show stronger attraction for the hydrogenated edges. The ordering of ions around and inside (7,7) and (10,10) single-walled nanotubes, and near a stack of graphene sheets, was analysed in terms of density distribution functions. We verified that anions are found, as well as cations, in the first interfacial layer interacting with the materials, which is surprising given the interaction potential surfaces. The thermal conductivity of the ionic liquids and of composite systems containing one nanotube or one graphene stack in suspension was calculated using non-equilibrium molecular dynamics. Thermal conductivity was calculated along the axis of the nanotube and

  13. Numerical simulation of the gas-liquid interaction of a liquid jet in supersonic crossflow

    Science.gov (United States)

    Li, Peibo; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo

    2017-05-01

    The gas-liquid interaction process of a liquid jet in supersonic crossflow with a Mach number of 1.94 was investigated numerically using the Eulerian-Lagrangian method. The KH (Kelvin-Helmholtz) breakup model was used to calculate the droplet stripping process, and the secondary breakup process was simulated by the competition of RT (Rayleigh-Taylor) breakup model and TAB (Taylor Analogy Breakup) model. A correction of drag coefficient was proposed by considering the compressible effects and the deformation of droplets. The location and velocity models of child droplets after breakup were improved according to droplet deformation. It was found that the calculated spray features, including spray penetration, droplet size distribution and droplet velocity profile agree reasonably well with the experiment. Numerical results revealed that the streamlines of air flow could intersect with the trajectory of droplets and are deflected towards the near-wall region after they enter into spray zone around the central plane. The analysis of gas-liquid relative velocity and droplet deformation suggested that the breakup of droplets mainly occurs around the front region of the spray where gathered a large number of droplets with different sizes. The liquid trailing phenomenon of jet spray which has been discovered by the previous experiment was successfully captured, and a reasonable explanation was given based on the analysis of gas-liquid interaction process.

  14. A mathematical model for the Fermi weak interaction

    CERN Document Server

    Amour, L; Guillot, J C

    2006-01-01

    We consider a mathematical model of the Fermi theory of weak interactions as patterned according to the well-known current-current coupling of quantum electrodynamics. We focuss on the example of the decay of the muons into electrons, positrons and neutrinos but other examples are considered in the same way. We prove that the Hamiltonian describing this model has a ground state in the fermionic Fock space for a sufficiently small coupling constant. Furthermore we determine the absolutely continuous spectrum of the Hamiltonian and by commutator estimates we prove that the spectrum is absolutely continuous away from a small neighborhood of the thresholds of the free Hamiltonian. For all these results we do not use any infrared cutoff or infrared regularization even if fermions with zero mass are involved.

  15. Resonant tunneling and persistent current of a non-interacting and weakly interacting one-dimensional electron gas

    International Nuclear Information System (INIS)

    Krive, I.V.; Sandstroem, P.

    1997-01-01

    The persistent current for a one-dimensional ring with two tunneling barriers is considered in the limit of weakly interacting electrons. In addition to small off-resonance current, there are two kinds of resonant behaviour; (i) a current independent of the barrier transparency (true resonance) and (ii) a current analogous to the one for a ring with only single barrier (''semi''-resonance). For a given barrier transparency the realization of this or that type of resonant behaviour depends both on the geometrical factor (the ratio of interbarrier distance to a ring circumference) and on the strength of electron-electron interaction. It is shown that repulsive interaction favours the ''semi''-resonance behaviour. For a small barrier transparency the ''semi''-resonance peaks are easily washed out by temperature whereas the true resonance peaks survive. (author). 22 refs, 2 figs

  16. Expanded calculation of weak-interaction-mediated neutrino cooling rates due to 56Ni in stellar matter

    International Nuclear Information System (INIS)

    Nabi, Jameel-Un

    2010-01-01

    An accurate estimate of the neutrino cooling rates is required in order to study the various stages of stellar evolution of massive stars. Neutrino losses from proto-neutron stars play a crucial role in deciding whether these stars would be crushed into black holes or explode as supernovae. Both pure leptonic and weak-interaction processes contribute to the neutrino energy losses in stellar matter. At low temperatures and densities, the characteristics of the early phase of presupernova evolution, cooling through neutrinos produced via the weak interaction, are important. Proton-neutron quasi-particle random phase approximation (pn-QRPA) theory has recently been used with success for the calculation of stellar weak-interaction rates of fp-shell nuclide. The lepton-to-baryon ratio (Y e ) during early phases of stellar evolution of massive stars changes substantially, mainly due to electron captures on 56 Ni. The stellar matter is transparent to the neutrinos produced during the presupernova evolution of massive stars. These neutrinos escape the site and assist the stellar core in maintaining a lower entropy. Here, an expanded calculation of weak-interaction-mediated neutrino and antineutrino cooling rates due to 56 Ni in stellar matter using the pn-QRPA theory is presented. This detailed scale is appropriate for interpolation purposes and is of greater utility for simulation codes. The calculated rates are compared with earlier calculations. During the relevant temperature and density regions of stellar matter the reported rates show few differences compared with the shell model rates and might contribute in fine-tuning of the lepton-to-baryon ratio during the presupernova phases of stellar evolution of massive stars.

  17. Are Sb4n (n>1) clusters weakly interacting tetrahedra?

    International Nuclear Information System (INIS)

    Kumar, V.

    1993-03-01

    The electronic and atomic structure of Sb 4 and Sb 8 clusters is studied using the ab-initio molecular dynamics method in the local density approximation. While for Sb 4 we obtain a regular tetrahedron to be about 2.0 eV lower in energy than a bent rhombus, for Sb 8 two structures, (1) two weakly interaction tetrahedra and (2) a bent rhombus interacting with a stretched tetrahedron, obtained from the simulated annealing lie only within about 0.1 eV indicating the importance of the bent rhombus structure for larger clusters. As compared to two isolated tetrahedra, the binding energy of Sb 8 is about 0.5 eV. Our results are thus in excellent agreement with the experimental data which show predominantly the abundance of tetramers above room temperature. (author). 18 refs, 5 figs, 1 tab

  18. Ionic Liquid Gating Control of RKKY Interaction in FeCoB/Ru/FeCoB and (Pt/Co)2/Ru/(Co/Pt)2 Multilayers.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qu; Wang, Lei; Zhou, Ziyao; Wang, Liqian; Zhang, Yijun; Zhao, Shishun; Dong, Guohua; Cheng, Yuxin; Min, Tai; Hu, Zhongqiang; Chen, Wei; Xia, Ke; Liu, Ming

    2018-03-07

    To overcome the fundamental challenge of the weak natural response of antiferromagnetic materials under a magnetic field, voltage manipulation of antiferromagnetic interaction is developed to realize ultrafast, high-density, and power efficient antiferromagnetic spintronics. Here, we report a low voltage modulation of Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction via ionic liquid gating in synthetic antiferromagnetic multilayers of FeCoB/Ru/FeCoB and (Pt/Co)2/Ru/(Co/Pt)2. At room temperature, the distinct voltage control of transition between antiferromagnetic and ferromagnetic ordering is realized and up to 80% of perpendicular magnetic moments manage to switch with a small-applied voltage bias of 2.5 V. We related this ionic liquid gating-induced RKKY interaction modification to the disturbance of itinerant electrons inside synthetic antiferromagnetic heterostructure and the corresponding change of its Fermi level. Voltage tuning of RKKY interaction may enable the next generation of switchable spintronics between antiferromagnetic and ferromagnetic modes with both fundamental and practical perspectives.

  19. Dynamic interactions of Leidenfrost droplets on liquid metal surface

    Science.gov (United States)

    Ding, Yujie; Liu, Jing

    2016-09-01

    Leidenfrost dynamic interaction effects of the isopentane droplets on the surface of heated liquid metal were disclosed. Unlike conventional rigid metal, such conductive and deformable liquid metal surface enables the levitating droplets to demonstrate rather abundant and complex dynamics. The Leidenfrost droplets at different diameters present diverse morphologies and behaviors like rotation and oscillation. Depending on the distance between the evaporating droplets, they attract and repulse each other through the curved surfaces beneath them and their vapor flows. With high boiling point up to 2000 °C, liquid metal offers a unique platform for testing the evaporating properties of a wide variety of liquid even solid.

  20. Weak carbonyl-methyl intermolecular interactions in acetone clusters explored by IR plus VUV spectroscopy

    International Nuclear Information System (INIS)

    Guan, Jiwen; Hu, Yongjun; Xie, Min; Bernstein, Elliot R.

    2012-01-01

    Highlights: ► The carbonyl overtone of acetone clusters is observed by IR-VUV spectroscopy. ► Acetone molecules in the dimer are stacked with an antiparallel way. ► The structure of the acetone trimer and the tetramer are the cyclic structures. ► The carbonyl groups would interact with the methyl groups in acetone clusters. ► These weak interactions are further confirmed by H/D substitution experiment. -- Abstract: Size-selected IR–VUV spectroscopy is employed to detect vibrational characteristics in the region 2850 ∼ 3550 cm −1 of neutral acetone and its clusters (CH 3 COCH 3 ) n (n = 1–4). Features around 3440 cm −1 in the spectra of acetone monomer and its clusters are assigned to the carbonyl stretch (CO) overtone. These features red-shift from 3455 to 3433 cm −1 as the size of the clusters increases from the monomer to the tetramer. Based on calculations, the experimental IR spectra in the C=O overtone region suggest that the dominant structures for the acetone trimer and tetramer should be cyclic in the supersonic expansion sample. This study also suggests that the carbonyl groups interact with the methyl groups in the acetone clusters. These weak interactions are further confirmed by the use of deuterium substitution.

  1. Effective interactions, elementary excitations, and transport in the helium liquids

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    Polarization potentials, the self-consistent fields which describe the primary consequences of the strong atom-atom interaction in the helium liquids, are developed for liquid 4 He and 3 He. Emphasis is placed on the common physical origin of the effective interactions in all helium liquids, and the hierarchy of physical effects (very short-range atomic correlations, zero point motion, and the Pauli principle) which determine their strength is reviewed. An overview is then given of the application of polarization potential theory to experiment, including the phonon-maxon-roton spectra of 4 He and 3 He- 4 He mixtures, the phonon-maxon spectrum of normal and spin-polarized 3 He, and the transport properties of superfluid 4 He and of normal and spin-polarized 3 He

  2. Soil-structure interaction effects for laterally excited liquid-tank system

    International Nuclear Information System (INIS)

    Tang, Yu; Veletsos, A.S.

    1992-01-01

    Following a brief review of the mechanical model for liquid-storage tanks which permits consideration of the effects of tank and ground flexibility, and lateral and rocking base excitations, the effects of both kinematic and inertia interaction effects on the response of the tank-liquid system are examined and elucidated. The free-field motion is defined by a power spectral density function and an incoherence function, which characterizes the spatial variability of the ground motion due to the vertically incident incoherence waves. The quantities examined are the ensemble means of the peak values of the response. The results are compared with those obtained for no soil-structure interaction and for kinematic interaction to elucidate the nature and relative importance of the two interactions. Only the impulsive actions are examined, the convective actions are for all practical purposes unaffected by both kinematic and inertia interactions. It is shown that the major reduction of the response is attributed to inertia interaction. 20 refs

  3. Can one really observe signatures of the weak interaction with multi-TeV colliding hadron rings

    International Nuclear Information System (INIS)

    Halzen, F.

    1977-01-01

    We discuss two possible signatures of weak interactions in multi-TeV hadron-hadron collisions: (i) production of the weak boson W/sup plus-or-minus/ and its neutral partner Z; (ii) observation of secondaries with transverse momentum so large that they cannot be electromagnetic or strong in origin. After summarizing theoretical prejudices on the properties of weak bosons and their production mechanism, we calculate their actual experimental signature, i.e., the momentum distributions of their decay lepton, as well as the competing backgrounds. Contrary to popular belief, we conclude that the weak-boson signature is not expected to be pronounced and backgrounds could be severe (especially the production of direct photons). Our calculation reinforces the case for antiproton-proton storage rings

  4. Reduction of silanophilic interactions in liquid chromatography with the use of ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    MarszaII, MichaI Piotr [Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk (Poland); Baczek, Tomasz [Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk (Poland); Kaliszan, Roman [Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk (Poland)]. E-mail: roman.kaliszan@amg.gda.pl

    2005-08-22

    A suppression of silanophilic interactions by the selected ionic liquids added to the mobile phase in thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) is reported. Acetonitrile was used as the eluent, alone or with various concentrations of water and phosphoric buffer pH 3. Selectivity of the normal (NP) and the reversed (RP) stationary phase material was examined using a series of proton-acceptor basic drugs analytes. The ionic liquids studied appeared to significantly affect analyte retention in NP-TLC, RP-TLC and RP-HPLC systems tested. Consequently, the increased separation selectivity was attained. Due to ionic liquid additives to eluent even analytes could be chromatographed, which were not eluted from the silica-based stationary phase materials with 100% of acetonitrile in the mobile phase. Addition of ionic liquid already in very small concentration (0.5%, v/v) could reduce the amount of acetonitrile used during the optimization of basic analytes separations in TLC and HPLC systems. Moreover, the influence of temperature on the separation of basic analytes was demonstrated and considered in practical HPLC method development.

  5. Reduction of silanophilic interactions in liquid chromatography with the use of ionic liquids

    International Nuclear Information System (INIS)

    MarszaII, MichaI Piotr; Baczek, Tomasz; Kaliszan, Roman

    2005-01-01

    A suppression of silanophilic interactions by the selected ionic liquids added to the mobile phase in thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) is reported. Acetonitrile was used as the eluent, alone or with various concentrations of water and phosphoric buffer pH 3. Selectivity of the normal (NP) and the reversed (RP) stationary phase material was examined using a series of proton-acceptor basic drugs analytes. The ionic liquids studied appeared to significantly affect analyte retention in NP-TLC, RP-TLC and RP-HPLC systems tested. Consequently, the increased separation selectivity was attained. Due to ionic liquid additives to eluent even analytes could be chromatographed, which were not eluted from the silica-based stationary phase materials with 100% of acetonitrile in the mobile phase. Addition of ionic liquid already in very small concentration (0.5%, v/v) could reduce the amount of acetonitrile used during the optimization of basic analytes separations in TLC and HPLC systems. Moreover, the influence of temperature on the separation of basic analytes was demonstrated and considered in practical HPLC method development

  6. Pair potentials in liquid metals

    International Nuclear Information System (INIS)

    Faber, T.E.

    1980-01-01

    The argument which justifies the use of a pair potential to describe the structure-dependent term in the energy of liquid metals is briefly reviewed. Because there is an additional term in the energy which depends upon volume rather than structure, and because the pair potential itself is volume-dependent, the relationship between pair potential and observable properties such as pressure, bulk modulus and pair distribution function is more complicated for liquid metals than it is for molecular liquids. Perhaps for this reason, the agreement between pair potentials inferred from observable properties and pair potentials calculated by means of pseudo-potential theory is still far from complete. The pair potential concept is applicable only to simple liquid metals, in which the electron-ion interaction is weak. No attempt is made to discuss liquid transition and rare-earth metals, which are not simple in this sense. (author)

  7. Weak decays of stable particles

    International Nuclear Information System (INIS)

    Brown, R.M.

    1988-09-01

    In this article we review recent advances in the field of weak decays and consider their implications for quantum chromodynamics (the theory of strong interactions) and electroweak theory (the combined theory of electromagnetic and weak interactions), which together form the ''Standard Model'' of elementary particles. (author)

  8. Light weakly interacting particles. Constraints and connection to dark matter

    International Nuclear Information System (INIS)

    Andreas, Sarah

    2013-07-01

    The so far unknown particle nature of dark matter is a main motivation for extending the Standard Model of particle physics. A recently promoted approach to solving this puzzle is the concept of hidden sectors. Since the interactions of such sectors with the visible sector are very weak, so are the current experimental bounds. Hidden sectors might even contain sub-GeV scale particles that have so far escaped detection. In this thesis, we study the phenomenology of Weakly Interacting Slim Particles (WISPs) as well as their connection to dark matter in different Standard Model extensions. In the Next-to-Minimal Supersymmetric Standard Model (NMSSM), a light CPodd Higgs, arising from spontaneous breaking of approximate symmetries, represents an example of a WISP. Light gauge bosons of an extra U(1) symmetry in a hidden sector are other well motivated candidates for WISPs and called hidden photons. Such light hidden photons appear naturally in supersymmetry or string theory and might resolve the observed deviation in the muon anomalous magnetic moment from predictions. Moreover, scenarios in which hidden sector dark matter interacts via a light hidden photon with the visible sector exhibit appealing features in view of recent astrophysical anomalies. We study how the coupling of the CP-odd Higgs A 0 to fermions can be constrained by current measurements for the case where the A 0 is lighter than two muons. Analysing measurements of different rare and radiative meson decays, the muon anomalous magnetic moment as well as results from beam dump and reactor experiments, we severely constrain the CP-odd Higgs to be heavier than 210 MeV or to couple to fermions four orders of magnitude weaker than the Standard Model Higgs. These results apply more generally to the coupling of an axion-like particle to matter. Hidden photons can be constrained by experiments since they couple to charged Standard Model particles via kinetic mixing with the ordinary photon. We derive several

  9. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities

    Science.gov (United States)

    2017-01-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced, is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, cedIP, where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, cedC+A, where the ionic vapour constituents are isolated ions. A cedIP dataset is presented for 64 ILs. For the first time an experimental cedC+A, a measure of the strength of the total intermolecular interaction for an IL, is presented. cedC+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between cedIP and the inverse of the molecular volume. A good linear correlation is found between IL cedIP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to cedIP. These findings show that cedIP is very important for understanding IL intermolecular interactions, in spite of cedIP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined. PMID:29308254

  10. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities.

    Science.gov (United States)

    Lovelock, Kevin R J

    2017-12-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced , is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, ced IP , where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, ced C+A , where the ionic vapour constituents are isolated ions. A ced IP dataset is presented for 64 ILs. For the first time an experimental ced C+A , a measure of the strength of the total intermolecular interaction for an IL, is presented. ced C+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between ced IP and the inverse of the molecular volume. A good linear correlation is found between IL ced IP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to ced IP . These findings show that ced IP is very important for understanding IL intermolecular interactions, in spite of ced IP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined.

  11. Short versus long range interactions and the size of two-body weakly bound objects

    International Nuclear Information System (INIS)

    Lombard, R.J.; Volpe, C.

    2003-01-01

    Very weakly bound systems may manifest intriguing ''universal'' properties, independent of the specific interaction which keeps the system bound. An interesting example is given by relations between the size of the system and the separation energy, or scaling laws. So far, scaling laws have been investigated for short-range and long-range (repulsive) potentials. We report here on scaling laws for weakly bound two-body systems valid for a larger class of potentials, i.e. short-range potentials having a repulsive core and long-range attractive potentials. We emphasize analogies and differences between the short- and the long-range case. In particular, we show that the emergence of halos is a threshold phenomenon which can arise when the system is bound not only by short-range interactions but also by long-range ones, and this for any value of the orbital angular momentum l. These results enlarge the image of halo systems we are accustomed to. (orig.)

  12. Numerical investigation on liquid sheets interaction characteristics of liquid-liquid coaxial swirling jets in bipropellant thruster

    International Nuclear Information System (INIS)

    Ding, Jia-Wei; Li, Guo-Xiu; Yu, Yu-Song

    2016-01-01

    Highlights: • A LES-VOF model is conducted to simulate atomization of coaxial swirling jets. • Structure and flow field of coaxial swirling jets are investigated. • Merging process occurs at the nozzle exit and generates additional perturbation. • The Rayleigh mode instability dominates the breakup of ligaments. - Abstract: Spray atomization process of a liquid-liquid coaxial swirl injector in bipropellant thruster has been investigated using volume of fluid (VOF) method coupled with large eddy simulation methodology. With fine grid resolution, detailed flow field of interacted liquid sheet has been captured and analyzed. For coaxial swirling jet, static pressure drop in the region between the liquid sheets makes two liquid sheets to approach each other and merge. A strong pressure, velocity and turbulent fluctuations are calculated near the contact position of two coaxial jets. Simulation results indicate that additional perturbations are generated due to strong radial and axial shear effects between coaxial jets. Observation of droplet formation process reveals that the Rayleigh mode instability dominates the breakup of the ligament. Droplet diameter and distribution have been investigated quantitatively. The mean diameter of the coaxial jets is between that of the inner and the outer jets. Compared with the individual swirling jets, wider size distributions of droplets are produced in the coaxial jets.

  13. Dynamic high pressure induced strong and weak hydrogen bonds enhanced by pre-resonance stimulated Raman scattering in liquid water.

    Science.gov (United States)

    Wang, Shenghan; Fang, Wenhui; Li, Fabing; Gong, Nan; Li, Zhanlong; Li, Zuowei; Sun, Chenglin; Men, Zhiwei

    2017-12-11

    355 nm pulsed laser is employed to excite pre-resonance forward stimulated Raman scattering (FSRS) of liquid water at ambient temperature. Due to the shockwave induced dynamic high pressure, the obtained Raman spectra begin to exhibit double peaks distribution at 3318 and 3373 cm -1 with the input energy of 17 mJ,which correspond with OH stretching vibration with strong and weak hydrogen (H) bonds. With laser energy rising from 17 to 27 mJ, the Stokes line at 3318 cm -1 shifts to 3255 and 3230 cm -1 because of the high pressure being enlarged. When the energy is up to 32 mJ, only 3373 cm -1 peak exists. The strong and weak H bond exhibit quite different energy dependent behaviors.

  14. Weak interactions from 1950-1960: a quantitative bibliometric study of the formation of a field

    International Nuclear Information System (INIS)

    White, D.H.; Sullivan, D.

    1986-01-01

    A quantitative technique is illustrated which uses publication statistics from a bibliography of citations in the area of weak interactions to provide a view of trends and patterns in the development of the field during the period from 1950 to 1960. An overview is given of what the physicists working in weak interactions during this period were doing as indicated by an analysis of the subjects of their papers. The dominant problems and concerns are discussed. Focus is then turned to the events surrounding the emergence of the tau/theta particle puzzle, the discovery of parity nonconservation, and the resolution offered by the V-A theory. Displaying the data from the citation index in unusual ways highlights dominant issues of the period, especially the close relationship between theory and experiment in the latter half of the decade. 64 refs., 14 figs

  15. Implications of experiment on gauge theories of the weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Barnett, R.M.

    1977-06-01

    In this review the phenomenology of four new models for gauge theories of the weak and electromagnetic interactions is discussed that are extensions of SU(2) x U(1) models. Included are the neutral-current phenomenology (neutrino-proton deep-inelastic, neutrino-proton elastic, neutrino-electron elastic, and atomic parity violation). The charged-current neutrino scattering includes the y-dependence, the ratio of anti ν to ν cross sections, and di- and trilepton production. 80 references

  16. Theoretical investigation of the weak interaction between graphene and alcohol solvents

    Science.gov (United States)

    Wang, Haining; Chen, Sian; Lu, Shanfu; Xiang, Yan

    2017-05-01

    The dispersion of graphene in five different alcohol solvents was investigated by evaluating the binding energy between graphene and alcohol molecules using DFT-D method. The calculation showed the most stable binding energy appeared at the distance of ∼3.5 Å between graphene and alcohol molecules and increased linearly as changing the alcohol from methanol to 1-pentanol. The weak interaction was further graphically illustrated using the reduced density gradient method. The theoretical study revealed alcohols with more carbon atoms could be a good starting point for screening suitable solvents for graphene dispersion.

  17. New approach to nonleptonic weak interactions. I. Derivation of asymptotic selection rules for the two-particle weak ground-state-hadron matrix elements

    International Nuclear Information System (INIS)

    Tanuma, T.; Oneda, S.; Terasaki, K.

    1984-01-01

    A new approach to nonleptonic weak interactions is presented. It is argued that the presence and violation of the Vertical BarΔIVertical Bar = 1/2 rule as well as those of the quark-line selection rules can be explained in a unified way, along with other fundamental physical quantities [such as the value of g/sub A/(0) and the smallness of the isoscalar nucleon magnetic moments], in terms of a single dynamical asymptotic ansatz imposed at the level of observable hadrons. The ansatz prescribes a way in which asymptotic flavor SU(N) symmetry is secured levelwise for a certain class of chiral algebras in the standard QCD model. It yields severe asymptotic constraints upon the two-particle hadronic matrix elements of nonleptonic weak Hamiltonians as well as QCD currents and their charges. It produces for weak matrix elements the asymptotic Vertical BarΔIVertical Bar = 1/2 rule and its charm counterpart for the ground-state hadrons, while for strong matrix elements quark-line-like approximate selection rules. However, for the less important weak two-particle vertices involving higher excited states, the Vertical BarΔIVertical Bar = 1/2 rule and its charm counterpart are in general violated, providing us with an explicit source of the violation of these selection rules in physical processes

  18. Weak Localization and Antilocalization in Topological Materials with Impurity Spin-Orbit Interactions

    Science.gov (United States)

    Hankiewicz, Ewelina M.; Culcer, Dimitrie

    2017-01-01

    Topological materials have attracted considerable experimental and theoretical attention. They exhibit strong spin-orbit coupling both in the band structure (intrinsic) and in the impurity potentials (extrinsic), although the latter is often neglected. In this work, we discuss weak localization and antilocalization of massless Dirac fermions in topological insulators and massive Dirac fermions in Weyl semimetal thin films, taking into account both intrinsic and extrinsic spin-orbit interactions. The physics is governed by the complex interplay of the chiral spin texture, quasiparticle mass, and scalar and spin-orbit scattering. We demonstrate that terms linear in the extrinsic spin-orbit scattering are generally present in the Bloch and momentum relaxation times in all topological materials, and the correction to the diffusion constant is linear in the strength of the extrinsic spin-orbit. In topological insulators, which have zero quasiparticle mass, the terms linear in the impurity spin-orbit coupling lead to an observable density dependence in the weak antilocalization correction. They produce substantial qualitative modifications to the magnetoconductivity, differing greatly from the conventional Hikami-Larkin-Nagaoka formula traditionally used in experimental fits, which predicts a crossover from weak localization to antilocalization as a function of the extrinsic spin-orbit strength. In contrast, our analysis reveals that topological insulators always exhibit weak antilocalization. In Weyl semimetal thin films having intermediate to large values of the quasiparticle mass, we show that extrinsic spin-orbit scattering strongly affects the boundary of the weak localization to antilocalization transition. We produce a complete phase diagram for this transition as a function of the mass and spin-orbit scattering strength. Throughout the paper, we discuss implications for experimental work, and, at the end, we provide a brief comparison with transition metal

  19. Light weakly interacting particles. Constraints and connection to dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Sarah

    2013-07-15

    The so far unknown particle nature of dark matter is a main motivation for extending the Standard Model of particle physics. A recently promoted approach to solving this puzzle is the concept of hidden sectors. Since the interactions of such sectors with the visible sector are very weak, so are the current experimental bounds. Hidden sectors might even contain sub-GeV scale particles that have so far escaped detection. In this thesis, we study the phenomenology of Weakly Interacting Slim Particles (WISPs) as well as their connection to dark matter in different Standard Model extensions. In the Next-to-Minimal Supersymmetric Standard Model (NMSSM), a light CPodd Higgs, arising from spontaneous breaking of approximate symmetries, represents an example of a WISP. Light gauge bosons of an extra U(1) symmetry in a hidden sector are other well motivated candidates for WISPs and called hidden photons. Such light hidden photons appear naturally in supersymmetry or string theory and might resolve the observed deviation in the muon anomalous magnetic moment from predictions. Moreover, scenarios in which hidden sector dark matter interacts via a light hidden photon with the visible sector exhibit appealing features in view of recent astrophysical anomalies. We study how the coupling of the CP-odd Higgs A{sup 0} to fermions can be constrained by current measurements for the case where the A{sup 0} is lighter than two muons. Analysing measurements of different rare and radiative meson decays, the muon anomalous magnetic moment as well as results from beam dump and reactor experiments, we severely constrain the CP-odd Higgs to be heavier than 210 MeV or to couple to fermions four orders of magnitude weaker than the Standard Model Higgs. These results apply more generally to the coupling of an axion-like particle to matter. Hidden photons can be constrained by experiments since they couple to charged Standard Model particles via kinetic mixing with the ordinary photon. We derive

  20. Neutron star formation and the weak interaction

    International Nuclear Information System (INIS)

    Burrows, A.

    1986-01-01

    The only known direct diagnostic of the central event is its neutrino emission. The imprint of the entire internal evolution is stamped on the spectrum, mix of flavors, luminosities, and features of the accompanying neutrino burst. Detection and scrutiny of this neutrino signal will test theories concerning stellar collapse, type II supernovae, and the formation of neutron stars in ways impossible by other means. Despite the fact that an incredible 3x10 53 ergs may be emitted in neutrinos after the initiation of collapse, the very weakness of the neutrino/matter interaction that allows them to penetrate the stellar envelope and escape makes their detection at the Earth very difficult. Though neutrino astronomy is not yet a mature discipline, the physical theories of collapse have progressed to a sufficient degree that specific and detailed predictions can be made about the neutrino emissions that with future detector technology might be tested. The time seems propitious to summarize and review what is known and suspected about the neutrino signature of collapse, the potential for its detection, and how it can be used to test our ideas about the death of massive stars and the birth of neutrino stars. (orig./BBOE)

  1. How to separate ionic liquids: Use of Hydrophilic Interaction Liquid Chromatography and mixed mode phases

    International Nuclear Information System (INIS)

    Lamouroux, C.

    2011-01-01

    This chromatographic study deals with the development of a convenient and versatile method to separate Room Temperature Ionic Liquids. Different modes of chromatography were studied. The study attempts to answer the following question: 'what were the most important interactions for the separation of ionic liquids?'. The results show that the essential interactions to assure a good retention of RTILs are the ionic ones and that hydrophobic interactions play a role in the selectivity of the separation. The separation of five imidazolium salt with a traditional dial columns in Hydrophilic Interaction Chromatography (HILIC) was demonstrated. It shows that neutral diol grafted column allows an important retention that we assume is due to the capability of diol to develop a thick layer of water. Furthermore, stationary phase based on mixed interaction associating ion exchange and hydrophobic properties were studied. Firstly, it will be argued that it is possible to separate RTILs with a convenient retention and resolution according to a reverse phase elution with the Primesep columns made of a brush type long alkyl chain with an embedded negatively charged functional group. Secondly, a successful separation of RTILs in HILIC mode with a mixed phase column containing a cationic exchanger and a hydrophobic octyl chain length will be demonstrated. (author)

  2. Numerical investigation of interaction between rising bubbles in a viscous liquid

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ik Roh [Korea Institute of Marine Science and Technology Promotion, Seoul (Korea, Republic of); Shin Seung Won [Hongik University, Seoul (Korea, Republic of)

    2016-07-15

    The rising behavior of bubbles undergoing bubble-bubble interaction in a viscous liquid is studied using a two-dimensional direct numerical simulation. Level contour reconstruction method (LCRM), one of the connectivity-free front tracking methods, is applied to describe a moving interface accurately under highly deformable conditions. This work focuses on the effects of bubble size on the interaction of two bubbles rising side-by-side in a stagnant liquid. Several characteristics of bubble-bubble interaction are analyzed quantitatively as supported by energy analysis. The results showed clear differences between small and large bubbles with respect to their interaction behavior in terms of lateral movement, vortex intensity, suppression of surface deformation, and viscous dissipation rate. Distributions of vorticity and viscous dissipation rate near the bubble interfaces also differed depending on the size of the bubbles. Strong vortices from large bubbles triggered oscillation in bubble-bubble interaction and played a dominant role in the interaction process as the size of bubbles increases.

  3. I. A model for the magnetic equation of state of liquid 3He. II. An induced interaction model for a two-component Fermi liquid

    International Nuclear Information System (INIS)

    Sanchez-Castro, C.R.

    1988-01-01

    This dissertation is divided in six chapters. Chapter 1 is an introduction to the rest of the dissertation. In it, the author presents the different models for the magnetic equation state of liquid 3 He, a derivation of the induced interaction equations for a one component Fermi liquid, and discuss the basic hamiltonian describing the heavy fermion compounds. In Chapter 2 and Chapter 3, he presents a complete discussion of the thermodynamics and Landau theory of a spin polarized Fermi liquid. A phenomenological model is then developed to predict the polarization dependence of the longitudinal Landau parameters in liquid 3 He. This model predicts a new magnetic equation of state and the possibility of liquid 3 He being 'nearly metamagnetic' at high pressures. Chapter 4 contains a microscopic calculation of the magnetic field dependence of the Landau parameters in a strongly correlated Fermi system using the induced interaction model. The system he studied consists of a single component Fermi liquid with parabolic energy bands, and a large on-site repulsive interaction. In Chapter 5, he presents a complete discussion of the Landau theory of a two component Fermi liquid. Then, he generalizes the induced interaction equations to calculate Landau parameters and scattering amplitudes for an arbitrary, spin polarized, two component Fermi liquid. The resulting equations are used to study a model for the heavy fermion Fermi liquid state: a two band electronic system with an antiferromagnetic interaction between the two bands. Chapter 6 contains the concluding remarks of the dissertation

  4. Femtosecond laser-plasma interaction with prepulse-generated liquid metal microjets

    International Nuclear Information System (INIS)

    Uryupina, D. S.; Ivanov, K. A.; Savel'ev, A. B.; Volkov, R. V.; Brantov, A. V.; Bychenkov, V. Yu.; Povarnitsyn, M. E.; Tikhonchuk, V. T.

    2012-01-01

    Ultrashort laser pulse interaction with a microstructured surface of a melted metal is a promising source of hard x-ray radiation. Microstructuring is achieved by a weak prepulse that produces narrow high-density microjets. As an x-ray source, the interaction of the main laser pulse with such jets is shown to be nearly two orders of magnitude more efficient than the interaction with ordinary metal targets. This paper presents the results of optical and x-ray studies of laser-plasma interaction physics under such conditions supported by numerical simulations of microjet formation and fast-electron generation.

  5. Femtosecond laser-plasma interaction with prepulse-generated liquid metal microjets

    Energy Technology Data Exchange (ETDEWEB)

    Uryupina, D. S.; Ivanov, K. A.; Savel' ev, A. B.; Volkov, R. V. [Faculty of Physics and International Laser Center of M.V. Lomonosov Moscow State University, 119991 Moscow, Leninskie Gory (Russian Federation); Brantov, A. V.; Bychenkov, V. Yu. [P. N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow (Russian Federation); Povarnitsyn, M. E. [Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Tikhonchuk, V. T. [CELIA, University of Bordeaux - CNRS - CEA, 33405 Talence (France)

    2012-01-15

    Ultrashort laser pulse interaction with a microstructured surface of a melted metal is a promising source of hard x-ray radiation. Microstructuring is achieved by a weak prepulse that produces narrow high-density microjets. As an x-ray source, the interaction of the main laser pulse with such jets is shown to be nearly two orders of magnitude more efficient than the interaction with ordinary metal targets. This paper presents the results of optical and x-ray studies of laser-plasma interaction physics under such conditions supported by numerical simulations of microjet formation and fast-electron generation.

  6. A new facility for studying plasma interacting with flowing liquid lithium surface

    International Nuclear Information System (INIS)

    Cao, X.; Ou, W.; Tian, S.; Wang, C.; Zhu, Z.; Wang, J.; Gou, F.; Yang, D.; Chen, S.

    2014-01-01

    A new facility to study plasmas interacting with flowing liquid lithium surface was designed and is constructing in Sichuan University. The integrated setup includes the liquid lithium circulating part and linear high density plasma generator. The circulating part is consisted of main loop, on-line monitor system, lithium purification system and temperature programmed desorption system. In our group a linear high density plasma generator was built in 2012. Three coils were mounted along the vessel to produce an axial magnetic field inside. The magnetic field strength is up to 0.45 T and work continuously. Experiments on plasmas interacting with free flowing liquid lithium surface will be performed

  7. Additional neutral vector boson in the 7-dimensional theory of gravy-electro-weak interactions

    International Nuclear Information System (INIS)

    Gavrilov, V.R.

    1988-01-01

    Possibilities of manifestation of an additional neutron vector boson, the existence of which is predicted by the 7-dimensional theory of gravy-electro-weak interactions, are analyzed. A particular case of muon neutrino scattering on a muon is considered. In this case additional neutral current manifests both at high and at relatively low energies of particle collisions

  8. Recent developments in weak interactions and e+e- annihilation. An elementary introduction to 'charm'

    International Nuclear Information System (INIS)

    Pham, Xuan-Yem.

    1976-01-01

    The recent developments about 'charm', a new quantum number postulated in the framework of models unifying electromagnetic and weak interactions are briefly reviewed. Many experimental facts seem to support this hypothesis. A proliferation of quarks, and their right-handed currents are also discussed in the light of some new experimental data on anti-neutrino scattering [fr

  9. 3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds

    Science.gov (United States)

    Leckey, C.; Hinders, M.

    2011-01-01

    Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.

  10. Correlation function of weakly interacting bosons in a disordered lattice

    Energy Technology Data Exchange (ETDEWEB)

    Deissler, B; Lucioni, E; Modugno, M; Roati, G; Tanzi, L; Zaccanti, M; Inguscio, M; Modugno, G, E-mail: deissler@lens.unifi.it, E-mail: modugno@lens.unifi.it [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, 50019 Sesto Fiorentino (Italy)

    2011-02-15

    One of the most important issues in disordered systems is the interplay of the disorder and repulsive interactions. Several recent experimental advances on this topic have been made with ultracold atoms, in particular the observation of Anderson localization and the realization of the disordered Bose-Hubbard model. There are, however, still questions as to how to differentiate the complex insulating phases resulting from this interplay, and how to measure the size of the superfluid fragments that these phases entail. It has been suggested that the correlation function of such a system can give new insights, but so far very little experimental investigation has been performed. Here, we show the first experimental analysis of the correlation function for a weakly interacting, bosonic system in a quasiperiodic lattice. We observe an increase in the correlation length as well as a change in the shape of the correlation function in the delocalization crossover from Anderson glass to coherent, extended state. In between, the experiment indicates the formation of progressively larger coherent fragments, consistent with a fragmented BEC, or Bose glass.

  11. Correlation function of weakly interacting bosons in a disordered lattice

    International Nuclear Information System (INIS)

    Deissler, B; Lucioni, E; Modugno, M; Roati, G; Tanzi, L; Zaccanti, M; Inguscio, M; Modugno, G

    2011-01-01

    One of the most important issues in disordered systems is the interplay of the disorder and repulsive interactions. Several recent experimental advances on this topic have been made with ultracold atoms, in particular the observation of Anderson localization and the realization of the disordered Bose-Hubbard model. There are, however, still questions as to how to differentiate the complex insulating phases resulting from this interplay, and how to measure the size of the superfluid fragments that these phases entail. It has been suggested that the correlation function of such a system can give new insights, but so far very little experimental investigation has been performed. Here, we show the first experimental analysis of the correlation function for a weakly interacting, bosonic system in a quasiperiodic lattice. We observe an increase in the correlation length as well as a change in the shape of the correlation function in the delocalization crossover from Anderson glass to coherent, extended state. In between, the experiment indicates the formation of progressively larger coherent fragments, consistent with a fragmented BEC, or Bose glass.

  12. Dynamic analysis of liquid storage tank including hydrodynamic interaction by boundary element method

    International Nuclear Information System (INIS)

    Hwang, I.T.; Ting, K.

    1987-01-01

    Dynamic response of liquid storage tanks considering the hydrodynamic interactions due to earthquake ground motion has been extensively studied. Several finite element procedures, such as Balendra et. al. (1982) and Haroun (1983), have been devoted to investigate the dynamic interaction between the deformable wall of the tank and the liquid. Further, if the geometry of the storage tank can not be described by axi-symmetric case, the tank wall and the fluid domain must be discretized by three dimensional finite elements to investigate the fluid-structure-interactions. Thus, the need of large computer memory and expense of vast computer time usually make this analysis impractical. To demonstrate the accuracy and reliability of the solution technique developed herein, the dynamic behavior of ground-supported, deformed, cylindrical tank with incompressible fluid conducted by Haroun (1983) are analyzed. Good correlations of hydrodynamic pressure distribution between the computed results with the referenced solutions are noted. The fluid compressibility significantly affects the hydrodynamic pressures of the liquid-tank-interactions and the work which is done on this discussion is still little attention. Thus, the influences of the compressibility of the liquid on the reponse of the liquid storage due to ground motion are then drawn. By the way, the complex-valued frequency response functions for hydrodynamic forces of Haroun's problem are also displayed. (orig./GL)

  13. Positronium interactions in liquids and porous substances

    International Nuclear Information System (INIS)

    Ganguly, Bichitra; Gangopadhyay, Debarshi; Dutta, Dhanadeep; Chatterjee, Sujib; Mukherjee, Tapas; Dutta Roy, Binayak

    2007-01-01

    Positronium (Ps) is an important chemical probe for any given medium since it can interact with a variety of molecular electronic system to yield information, relevant to the understanding of underlying mechanistic processes, when subjected to the changes in physical parameters. In this article, its interaction is focused on two media that are important from the perspective of bio-chemical and technological studies, namely Ps-electron acceptor bound state formation in liquids (specially hydrogen bonding solvents) and also on a variety of porous material which are applicable in chemical/biochemical separations and other applications in technology. The underlying physical phenomenology in each case is separately dealt with giving suitable examples

  14. Electrical and thermal transport in the quasi-atomic limit of coupled Luttinger liquids

    OpenAIRE

    Szasz, Aaron; Ilan, Roni; Moore, Joel E.

    2016-01-01

    We introduce a new model for quasi one-dimensional materials, motivated by intriguing but not yet well-understood experiments that have shown two-dimensional polymer films to be promising materials for thermoelectric devices. We consider a two-dimensional material consisting of many one-dimensional systems, each treated as a Luttinger liquid, with weak (incoherent) coupling between them. This approximation of strong interactions within each one-dimensional chain and weak coupling between them...

  15. Some peculiarities of interactions of weakly bound lithium nuclei at near-barrier energies

    Science.gov (United States)

    Kabyshev, A. M.; Kuterbekov, K. A.; Sobolev, Yu G.; Penionzhkevich, Yu E.; Kubenova, M. M.; Azhibekov, A. K.; Mukhambetzhan, A. M.; Lukyanov, S. M.; Maslov, V. A.; Kabdrakhimova, G. D.

    2018-02-01

    This paper presents new experimental data on the total cross sections of 9Li + 28Si reactions at low energies as well as the analysis of previously obtained data for 6,7Li. Based on a large collection of data (authors’ and literature data) we carried out a comparative analysis of the two main experimental interaction cross sections (angular distributions of the differential cross sections and total reaction cross sections) for weakly bound lithium (6-9Li, 11Li) nuclei in the framework of Kox parameterization and the macroscopic optical model. We identified specific features of these interactions and predicted the experimental trend in the total reaction cross sections for Li isotopes at energies close to the Coulomb barrier.

  16. Weak interactions between water and clathrate-forming gases at low pressures

    Energy Technology Data Exchange (ETDEWEB)

    Thurmer, Konrad; Yuan, Chunqing; Kimmel, Gregory A.; Kay, Bruce D.; Smith, R. Scott

    2015-11-01

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10-1 mbar methane or 10-5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10-5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water-gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~43 K and isobutane desorbs near ~100 K. Similar desorption temperatures were observed for desorption from amorphous solid water.

  17. The CERN Resonant Weakly Interacting Sub-eV Particle Search (CROWS)

    CERN Document Server

    Betz, Michael; Gasior, Marek; Thumm, Manfred

    The subject of this thesis is the design, implementation and first results of the ``CERN Resonant WISP Search'' (CROWS) experiment, which probes the existence of Weakly Interacting Sub-eV Particles (WISPs) using microwave techniques. Axion Like Particles and Hidden Sector Photons are two well motivated members of the WISP family. Their existence could reveal the composition of cold dark matter in the universe and explain a large number of astrophysical phenomena. Particularly, the discovery of an axion would solve a long standing issue in the standard model, known as the ``strong CP problem''. Despite their strong theoretical motivation, the hypothetical particles have not been observed in any experiment so far. One way to probe the existence of WISPs is to exploit their interaction with photons in a ``light shining through the wall'' experiment. A laser beam is guided through a strong magnetic field in the ``emitting region'' of the experiment. This provides photons, which can convert into hypothetical Axi...

  18. Measuring the Weak Charge of the Proton via Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Donald C. [Univ. of Virginia, Charlottesville, VA (United States)

    2015-10-01

    The Qweak experiment which ran in Hall C at Jefferson Lab in Newport News, VA, and completed data taking in May 2012, measured the weak charge of the proton QpW via elastic electron-proton scattering. Longitudinally polarized electrons were scattered from an unpolarized liquid hydrogen target. The helicity of the electron beam was flipped at approximately 1 kHz between left and right spin states. The Standard Model predicts a small parity-violating asymmetry of scattering rates between right and left helicity states due to the weak interaction. An initial result using 4% of the data was published in October 2013 [1] with a measured parity-violating asymmetry of -279 ± 35(stat) ± 31 (syst) ppb. This asymmetry, along with other data from parity-violating electron scattering experiments, provided the world's first determination of the weak charge of the proton. The weak charge of the proton was found to be pW = 0.064 ± 0.012, in good agreement with the Standard Model prediction of pW(SM) = 0.0708 ± 0.0003[2].

  19. Chiral realization of the non-leptonic weak interactions

    International Nuclear Information System (INIS)

    Ecker, G.

    1990-01-01

    After a short introduction to chiral perturbation theory an attempt to relate the strong and the non-leptonic weak low-energy constants is reviewed. The weak deformation model is stimulated both by the geometrical structure of chiral perturbation theory and by phenomenological considerations. Applications to the radiative decays K → πγγ and K L → γe + e - are discussed. (Author) 38 refs., 4 figs

  20. Lectures on weak interactions: from Fermi-Majorana-Perrin to Glasgow-Weinberg-Salam and some contributions from Latin American physicists

    International Nuclear Information System (INIS)

    Lopes, J.L.

    1987-01-01

    Historical aspects on the development of the physics of weak interactions which, after about forty years, converged with quantum electrodynamics to give birth ot the first model of unification of interactions, the so-called electroweak standard model, are presented. (L.C.) [pt

  1. Permanent Electric Dipole-Dipole Interactions in Lyotropic Polypeptide Liquid Crystals

    OpenAIRE

    MORI, Norio; Norio, MORI; Research Associate, Department of Industrial Chemistry

    1981-01-01

    The interaction energy between two adjacent α-helical molecules was calculated taking into account for permanent electric dipoles locating orl the helical core of a polymer mainchain in order to explain the cholesteric structure of lyotropic polypeptide liquid crystals. It was concluded that the dipole-dipole interactions were responsible for the formation of the cholesteric structure.

  2. Second class weak currents

    International Nuclear Information System (INIS)

    Delorme, J.

    1978-01-01

    The definition and general properties of weak second class currents are recalled and various detection possibilities briefly reviewed. It is shown that the existing data on nuclear beta decay can be consistently analysed in terms of a phenomenological model. Their implication on the fundamental structure of weak interactions is discussed [fr

  3. Strange-particle production via the weak interaction

    International Nuclear Information System (INIS)

    Adera, G. B.; Van Der Ventel, B. I. S.; Niekerk, D. D. van; Mart, T.

    2010-01-01

    The differential cross sections for the neutrino-induced weak charged current production of strange particles in the threshold energy region are presented. The general representation of the weak hadronic current is newly developed in terms of eighteen unknown invariant amplitudes to parametrize the hadron vertex. The Born-term approximation is used for the numerical calculations in the framework of the Cabibbo theory and SU(3) symmetry. For unpolarized octet baryons four processes are investigated, whereas in the case of polarized baryons only one process is chosen to study the sensitivity of the differential cross section to the various polarizations of the initial-state nucleon and the final-state hyperon.

  4. Weak strange particle production: advantages and difficulties

    International Nuclear Information System (INIS)

    Angelescu, Tatiana; Baker, O.K.

    2002-01-01

    Electromagnetic strange particle production developed at Jefferson Laboratory was an important source of information on strange particle electromagnetic formfactors and induced and transferred polarization. The high quality of the beam and the detection techniques involved could be an argument for detecting strange particles in weak interactions and answer questions about cross sections, weak formfactors, neutrino properties, which have not been investigated yet. The paper analyses some aspects related to the weak lambda production and detection with the Hall C facilities at Jefferson Laboratory and the limitations in measuring the weak interaction quantities. (authors)

  5. Interactions between two superconducting weak links in the stationary (V = 0) states

    International Nuclear Information System (INIS)

    Way, Y.S.; Hsu, K.S.; Kao, Y.H.

    1977-01-01

    Effects of interaction between two superconducting weak links (SWL) at V = 0 have been calculated using the Ginzburg-Landau theory. Variations of the critical current of one SWL affected by dc current in a neighboring SWL are found in good qualitative agreement with a recent experiment. The current-phase relation of the combined system is computed for various separations between the two SWL7's; it is shown explicitly that the system behaves as a single SWL when the spacing between links is comparable to the coherence length

  6. Antiparallel Self-Association of a γ,α-Hybrid Peptide: More Relevance of Weak Interactions.

    Science.gov (United States)

    Venugopalan, Paloth; Kishore, Raghuvansh

    2015-08-01

    To learn how a preorganized peptide-based molecular template, together with diverse weak non-covalent interactions, leads to an effective self-association, we investigated the conformational characteristics of a simple γ,α-hybrid model peptide, Boc-γ-Abz-Gly-OMe. The single-crystal X-ray diffraction analysis revealed the existence of a fully extended β-strand-like structure stabilized by two non-conventional C-H⋅⋅⋅O=C intramolecular H-bonds. The 2D (1) H NMR ROESY experiment led us to propose that the flat topology of the urethane-γ-Abz-amide moiety is predominantly preserved in a non-polar environment. The self-association of the energetically more favorable antiparallel β-strand-mimic in solid-state engenders an unusual 'flight of stairs' fabricated through face-to-face and edge-to-edge Ar⋅⋅⋅Ar interactions. In conjunction with FT-IR spectroscopic analysis in chloroform, we highlight that conformationally semi-rigid γ-Abz foldamer in appositely designed peptides may encourage unusual β-strand or β-sheet-like self-association and supramolecular organization stabilized via weak attractive forces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Interaction of In(I) and Tl(I) cations with 2,6-diaryl pyridine ligands: cation encapsulation within a very weakly interacting N/arene host environment.

    Science.gov (United States)

    Mansaray, Hassanatu B; Tang, Christina Y; Vidovic, Dragoslav; Thompson, Amber L; Aldridge, Simon

    2012-12-03

    The interaction of 2,6-dimesitylpyridine with Tl(I) and In(I) cations has been investigated with a view to developing tractable molecular M(I) compounds which are soluble in organic media. In stark contrast to isosteric and isoelectronic terphenyl systems, complexes featuring the [(2,6-Mes(2)py)M](+) fragment feature very weak metal-ligand interactions in the solid state, as revealed by M-N distances of the order of 2.45 Å (M = In) and 2.64 Å (M = Tl). While additional weak π interactions are observed with arene solvate molecules in these systems, the related 2:1 complex [(2,6-Mes(2)py)(2)In][BAr(f)(4)] features an In(I) center wholly encapsulated by the bulky Mes(2)py donors, and even longer In-N distances [2.586(6) and 2.662(5) Å]. These contacts are about 0.5 Å greater than the sum of the respective covalent radii (2.13 Å) and provide evidence for an effectively "naked" In(I) cation stabilized to a minor extent by orbital interactions.

  8. Nuclear electric quadrupole interactions in liquids entrapped in cavities

    Energy Technology Data Exchange (ETDEWEB)

    Furman, Gregory B., E-mail: gregoryf@bgu.ac.il; Meerovich, Victor M.; Sokolovsky, Vladimir L. [Ben Gurion University of the Negev, Physics Department (Israel)

    2016-12-15

    Liquids entrapped in cavities and containing quadrupole nuclei are considered. The interaction of the quadrupole moment of a nucleus with the electric field gradient is studied. In such a system, molecules are in both rotational and translational Brownian motions which are described by the diffusion equation. Solving this equation, we show that the intra- and intermolecular nuclear quadrupole interactions are averaged to zero in cavities with the size larger than several angstroms.

  9. Randomly organized lipids and marginally stable proteins: a coupling of weak interactions to optimize membrane signaling.

    Science.gov (United States)

    Rice, Anne M; Mahling, Ryan; Fealey, Michael E; Rannikko, Anika; Dunleavy, Katie; Hendrickson, Troy; Lohese, K Jean; Kruggel, Spencer; Heiling, Hillary; Harren, Daniel; Sutton, R Bryan; Pastor, John; Hinderliter, Anne

    2014-09-01

    Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Parity violation in atoms and implications for unified models of weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Jarlskog, C.

    1976-07-01

    Parity violation experiments in atoms are probing structure of the weak neutral current couplings of the electrons and the quarks in the same range as the neutrino interactions are measuring couplings of neutrinos and quarks. In addition, leptonic neutral currents determine couplings of neutrinos and electrons. Therefore the three type of experiments give complete information and impose strong restrictions on theoretical possibilities. (BJ) [de

  11. Short-pulse laser interactions with disordered materials and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L. [Univ. of California, Berkeley, CA (United States)

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  12. Control of Chain Walking by Weak Neighbouring Group Interac-tions in Unsymmetric Catalysts

    KAUST Repository

    Falivene, Laura

    2017-12-20

    A combined theoretical and experimental study shows how weak attractive interactions of a neighbouring group can strongly promote chain walking and chain transfer. This accounts for the previously observed very different micro-structures obtained in ethylene polymerization by [κ2-N,O-{(2,6-(3\\',5\\'-R2C6H3)2C6H3-N=C(H)-(3,5-X,Y2-2-O-C6H2)}]NiCH3(pyridine)], namely hyperbranched oligomers for remote substituents R = CH3 versus. high molecular weight polyethylene for R = CF3. From a full mechanistic consideration the alkyl olefin complex with the growing chain cis to the salicylaldiminato oxygen donor is identified as the key species. Alternative to ethylene chain growth by insertion in this species, decoordination of the monomer to form a cis ß-agostic complex provides an entry into branching and chain transfer pathways. This release of monomer is promoted and made competitive by a weak η2-coordination of the distal aryl rings to the metal center, operative only for the case of sufficiently electron rich aryls. This concept for controlling chain walking is underlined by catalysts with other weakly coordinating furane and thio-phene motifs, which afford highly branched oligomers with > 120 branches per 1000 carbon atoms.

  13. Plasma-liquid interactions: a review and roadmap

    Czech Academy of Sciences Publication Activity Database

    Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J. P.; Ceriani, E.; Fernandez Rivas, D.; Foster, J.E.; Garrick, S.C.; Gorbanev, Y.; Hamaguchi, S.; Iza, F.; Jablonowski, H.; Klímová, E.; Kolb, J.; Krčma, F.; Lukeš, Petr; Machala, Z.; Marinov, I.; Mariotti, D.; Mededovic Thagard, S.; Minakata, D.; Neyts, E.C.; Pawlat, J.; Petrovic, Z.Lj.; Pflieger, R.; Reuter, S.; Schram, D.C.; Schröter, S.; Shiraiwa, M.; Tarabová, B.; Tsai, P.A.; Verlet, J.R.R.; von Woedtke, T.; Wilson, K.R.; Yasui, K.; Zvereva, G.

    2016-01-01

    Roč. 25, č. 5 (2016), č. článku 053002. ISSN 0963-0252 Grant - others:European Cooperation in Science and Technology(XE) COST TD1208 Institutional support: RVO:61389021 Keywords : non-equilibrium plasma * plasma–liquid interaction * diagnostics * modeling * reaction rate data sets * multiphase chemistry * photolysis Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.302, year: 2016 http://iopscience.iop.org/article/10.1088/0963-0252/25/5/053002/meta

  14. INTERACTION OF LIQUID FLAT SCREENS WITH GAS FLOW RESTRICTED BY CHANNEL WALLS

    Directory of Open Access Journals (Sweden)

    S. T. Aksentiev

    2005-01-01

    Full Text Available The paper gives description of physical pattern of liquid screen interaction that are injected from the internal walls of a rectangular channel with gas flow. Criterion dependences for determination of intersection coordinates of external boundaries with longitudinal channel axis and factor of liquid screen head resistance.

  15. Measurement of the parity nonconserving neutral weak interaction in atomic thallium

    International Nuclear Information System (INIS)

    Bucksbaum, P.H.

    1980-11-01

    This thesis describes an experiment to measure parity nonconservation in atomic thallium. A frequency doubled, flashlamp pumped tunable dye laser is used to excite the 6P/sub 1/2/(F = 0) → 7P/sub 1/2/(F = 1) transition at 292.7 nm, with circularly polarized light. An electrostatic field E of 100 to 300 V/cm causes this transition to occur via Stark induced electric dipole. Two field free transitions may also occur: a highly forbidden magnetic dipole M, and a parity nonconserving electric dipole epsilon/sub P/. The latter is presumed to be due to the presence of a weak neutral current interaction between the 6p valence electron and the nucleus, as predicted by gauge theories which unite the electromagnetic and weak interactions. Both M and epsilon/sub P/ interfere with the Stark amplitude βE to produce a polarization of the 7P/sub 1/2/ state. This is measured with a circularly polarized infrared laser beam probe, tuned to the 7P/sub 1/2/ → 8S/sub 1/2/ transition. This selectively excites m/sub F/ = +1 or -1 components of the 7P/sub 1/2/ state, and the polarization is seen as an asymmetry in 8S → 6P/sub 3/2/ fluorescence when the probe helicity is reversed. The polarization due to M is Δ/sub M/ = -2M/(BETAE). It is used to calibrate the analyzing efficiency. The polarization due to epsilon/sub P/ is Δ/sub P/ = 2i epsilon/sub P//(βE), and can be distinguished from Δ/sub M/ by its properties under reversal of the 292.7 nm photon helicity and reversal of the laser direction. A preliminary measurement yielded a parity violation in agreement with the gauge theory of Weinberg and Salam

  16. Studies on Molecular Interaction in Ternary Liquid Mixtures

    Directory of Open Access Journals (Sweden)

    R. Uvarani

    2010-01-01

    Full Text Available Ultrasonic velocity, density and viscosity for the ternary liquid mixtures of cyclohexanone with 1-propanol and 1-butanol in carbon tetrachloride were measured at 303 K. The acoustical parameters and their excess values were calculated. The trends in the variation of these excess parameters were used to discuss the nature and strength of the interactions present between the component molecules.

  17. Concluding remarks and outlook: Europhysics conference on flavor-mixing in weak interactions

    International Nuclear Information System (INIS)

    Chau, L.L.

    1984-01-01

    Some comments are offered on the present knowledge of the mixing matrix of Kobayashi and Maskawa and of the dynamics of nonleptonic decay. Also, remarks are made concerning CP violation. Plans for research from 1984 to 1989 are listed briefly. The history of studies on weak interactions is briefly reviewed, and several unanswered questions are stated, such as where are the truth particles, how may they be discovered, what is the mass-generating mechanism for the gauge bosons, how many Z 0 's and W's are there, do neutrinos have mass, and how long do protons live

  18. Microsphere Wetting, Meniscus Structure, and Capillary Interactions on a Curved Liquid Interface

    Science.gov (United States)

    Kim, Paul; Dinsmore, Anthony; Hoagland, David; Russell, Thomas

    A small spherical microparticle on a cylindrically curved liquid interface locally induces a quadrupolar interface deformation to maintain a constant contact angle about its wetted periphery. Measured by optical profilometry, this deformation was compared to a recent theoretical expression, and good agreement was noted for contact line shape, particle vertical position, and deformation vs. (distance, angle, particle size, interfacial curvature). Interface quadrupoles lead to particle capillary interactions in analogy to 2D electrostatic quadrupoles, and as one consequence, spheres on a cylindrical interface assemble tetragonally, i.e., into a square lattice. This assembly was monitored in the optical microscope, with particles interacting as predicted, into a square lattice aligned with the underlying cylindrical axis. These particles and assemblies were driven to the middle of the curved interface by capillary interaction with pinned liquid contact lines on each side of the liquid cylindrical section used in the experiments. These phenomena can inform the directed interfacial assembly of micro-sized spherical objects, with potential application in fabrication of functional devices and materials, encapsulation, and emulsification.

  19. Introduction to unified theories of weak, electromagnetic and strong interactions - SU(5)

    International Nuclear Information System (INIS)

    Billoire, Alain; Morel, Andre.

    1980-11-01

    These notes correspond to a series of lectures given at Salay during winter 1979-1980. They are meant to be an introduction to the so-called grand unified theories of weak, electromagnetic and strong interactions. In a first part, we recall in a very elementary way the standard SU(2) model of electroweak interactions, putting the emphasis on the questions which are left open by this model and which unified theories help to answer. In part II, we explain in a systematic way how unified theories can be constructed, and develop the SU(5) model in great detail. Other models, like SO(10) and E 6 , are not presented, because SU(5) is the simplest one and has been subject to the deepest investigations up to now. Also it appears that most concepts and general results are not specific to any particular symmetry group [fr

  20. Study of the weak localization in high quality two dimensional p-GaAs/AIGaAs systems

    International Nuclear Information System (INIS)

    Yasin, C.E.; Simmons, M.Y.; Hamilton, A.R.; Pepper, M.; Ritchie, D.A.

    2002-01-01

    Full text: Despite numerous experimental and theoretical work over the past ∼ 30 years, the nature of the ground state in 2D semiconductor systems remains a subject of controversy. Does the anomalous 'metallic' behavior observed at B = 0 imply the existence of a new 2D 'metallic' ground state or can it be explained within the conventional Fermi liquid theory? To address this question, we have investigated the single particle phase coherent 'weak localization' effect in high quality 2D p-GaAs systems that shows an apparent ' metallic' behavior at B = 0. We have performed detailed temperature dependent magnetoresistance measurements at different carrier densities and fit the experimental data to various models of weak localization in order to extract the phase coherence time, τ φ . We find that as the sample quality increases the mean free path increases, and weak localization must be treated beyond the diffusion approximation, making the data analysis more complex. Our result shows that when these more complex models are applied to the experimental data the systems are well described by Fermi liquid theory despite the strong interactions (r s ∼ 20), indicating that there is no 'metallic' phase in 2D at B = 0

  1. Coulomb-like elastic interaction induced by symmetry breaking in nematic liquid crystal colloids.

    Science.gov (United States)

    Lee, Beom-Kyu; Kim, Sung-Jo; Kim, Jong-Hyun; Lev, Bohdan

    2017-11-21

    It is generally thought that colloidal particles in a nematic liquid crystal do not generate the first multipole term called deformation elastic charge as it violates the mechanical equilibrium. Here, we demonstrate theoretically and experimentally that this is not the case, and deformation elastic charges, as well as dipoles and quadrupoles, can be induced through anisotropic boundary conditions. We report the first direct observation of Coulomb-like elastic interactions between colloidal particles in a nematic liquid crystal. The behaviour of two spherical colloidal particles with asymmetric anchoring conditions induced by asymmetric alignment is investigated experimentally; the interaction of two particles located at the boundary of twist and parallel aligned regions is observed. We demonstrate that such particles produce deformation elastic charges and interact by Coulomb-like interactions.

  2. A density functional theory study on the interactions between dibenzothiophene and tetrafluoroborate-based ionic liquids.

    Science.gov (United States)

    Lin, Jin; Lü, Renqing; Wu, Chongchong; Xiao, Ye; Liang, Fei; Famakinwa, Temilola

    2017-04-01

    The interactions between dibenzothiophene (DBT) and N-butyl-N-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), N-butyl-N-methylmorpholinium tetrafluoroborate ([Bmmorpholinium][BF 4 ]), N-butyl-N-methylpiperdinium tetrafluoroborate ([BMPiper][BF 4 ]), N-butyl-N-methylpyrrolidinium tetrafluoroborate ([BMPyrro][BF 4 ]), and N-butylpyridinium tetrafluoroborate ([BPY][BF 4 ]) were investigated using density functional theory approach. Geometric, electron, and topological properties were analyzed using natural bond orbital, atoms in molecules theory, and noncovalent interaction methods in order to understand intermolecular interactions between DBT and ionic liquids. The result shows that hydrogen bond and van der Waals interactions are widespread in all the ionic liquids-DBT systems. Ion-π interactions between DBT and cation or anion are also observed, while π + -π interactions are only found in the [BMIM][BF 4 ]-DBT and [BPY][BF 4 ]-DBT systems. The order of interaction energy is [BPY][BF4]-DBT > [BMIM][BF 4 ]-DBT > [BMPiper][BF 4 ]-DBT > [BMPyrro][BF 4 ]-DBT > [BMmorpholinum][BF 4 ]-DBT. The energies between DBT and the two ionic liquids containing aromatic cations are significantly higher.

  3. Some tests of the basic properties of the neutral weak interaction. II. With massive neutrinos

    International Nuclear Information System (INIS)

    Dass, G.V.; Babu, P.R.

    1983-01-01

    Assuming a general nonderivative point interaction, and Born approximation, the angular distributions for neutrino scatterings by electrons are written, using only simple considerations, allowing all leptons to have nonzero mass. Our distributions have been previously obtained for some special cases, from general considerations by Bell et al., or in the results of explicit calculations. Applications to (i) determination of the Lorentz structure of the neutral weak interaction, and (ii) tests of lepton locality are considered. For illustration, two explicit calculations are given; one of these could hold for heavy lepton production, and the other for scattering of very low energy cosmic neutrinos

  4. Decay properties of heavy leptons in the supersymmetric model of weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Egorian, Ed.

    1979-01-01

    Decay properties of heavy leptons in the SU(2)xSU(2)xU(1) supersymmetric model of weak and electromagnetic interactions are studied. l anti νsub(e)ν leptonic and ν(νsup(c))h semihadronic decays, where l are leptons and h are hadrons, are considered. The partial and total decay rates and the production in p anti p collision of one of them are estimated for various values of its mass

  5. Weak interaction studies from nuclear beta decay

    International Nuclear Information System (INIS)

    Morita, M.

    1981-01-01

    The studies performed at the theoretical nuclear physics division of the Laboratory of Nuclear Studies, Osaka University, are reported. Electron spin density and internal conversion process, nuclear excitation by electron transition, beta decay, weak charged current, and beta-ray angular distributions in oriented nuclei have been studied. The relative intensity of internal conversion electrons for the case in which the radial wave functions of orbital electrons are different for electron spin up and down was calculated. The calculated value was in good agreement with the experimental one. The nuclear excitation following the transition of orbital electrons was studied. The calculated probability of the nuclear excitation of Os 189 was 1.4 x 10 - 7 in conformity with the experimental value 1.7 x 10 - 7 . The second class current and other problems on beta-decay have been extensively studied, and described elsewhere. Concerning weak charged current, the effects of all induced terms, the time component of main axial vector, all partial waves of leptons, Coulomb correction for the electrons in finite size nuclei, and radiative correction were studied. The beta-ray angular distribution for the 1 + -- 0 + transition in oriented B 12 and N 12 was investigated. In this connection, investigation on the weak magnetism to include all higher order corrections for the evaluation of the spectral shape factors was performed. Other works carried out by the author and his collaborators are also explained. (Kato, T.)

  6. Advances in the measurement of weak magnetic fields

    International Nuclear Information System (INIS)

    Li Damin; Huang Minzhe.

    1992-01-01

    The state-of-art and general features of instruments for measuring weak magnetic fields (such as the non-directional magnetometer, induced coil magnetometer, proton magnetometer, optical pumping magnetometer, flux-gate magnetometer and superconducting quantum magnetometer) are briefly described. Emphasis is laid on the development of a novel technique used in the flux-gate magnetometer and the liquid nitrogen SQUID. Typical applications of the measuring techniques for weak magnetic fields are given

  7. Standard and non-standard weak interactions

    International Nuclear Information System (INIS)

    Leurer, M.

    1985-12-01

    This work consists of independent chapters, all deal with weak interactions. The first chapter deals with left-right symmetric theories. Two main versions of these theories are discussed and compared. In addition, the K - K-bar mixing term is analysed: it has been known for several years now that in a left-right symmetric model there are new contributions to the mixing of kaons. We show that in the most appealing left-right symmetric model - the new contributions add up constructively. Consequently, we may derive reliable bounds on the mass of the right-handed gauge boson and the average mass of the (unavoidable) physical Higgs scalars. We also show that the new contributions are proportional to a new CP violating phase. While all previous treatments of the K - K-bar system were limited to the minimal model, we are able to show that our results hold also in the general case of nonminimal models. The second chapter deals with the possibility that W and Z are composite. Three experimental tests are discussed: (i) Universality -if W is composite then its coupling to the fermions is expected to deviate from universality. Since such deviations were not yet seen -we derive a lower bound on the compositeness scale. (ii) Possible enhancement of the reaction p-bar+p→Z 0 +γ+any - we show that if Z 0 is composite then the cross section for the above process might be considerably enhanced and this effect can be measured at CERN and Fermilab.(iii) The eeγ events of the 1983 run in CERN - we show that in contradiction to suggestions made in several papers, these events may not be explained by a composite-Z decaying through a scalar. In the last chapter we discuss the quark mixing angles

  8. Nanopore wall-liquid interaction under scope of molecular dynamics study: Review

    Science.gov (United States)

    Tsukanov, A. A.; Psakhie, S. G.

    2017-12-01

    The present review is devoted to the analysis of recent molecular dynamics based on the numerical studies of molecular aspects of solid-fluid interaction in nanoscale channels. Nanopore wall-liquid interaction plays the crucial role in such processes as gas separation, water desalination, liquids decontamination, hydrocarbons and water transport in nano-fractured geological formations. Molecular dynamics simulation is one of the most suitable tools to study molecular level effects occurred in such multicomponent systems. The nanopores are classified by their geometry to four groups: nanopore in nanosheet, nanotube-like pore, slit-shaped nanopore and soft-matter nanopore. The review is focused on the functionalized nanopores in boron nitride nanosheets as novel selective membranes and on the slit-shaped nanopores formed by minerals.

  9. Weak localization and electron-electron interaction in modulation doped GaAs/AlGaAs heterostructures

    International Nuclear Information System (INIS)

    Taboryski, R.; Lindelof, P.E.

    1990-01-01

    The first heterostructure wafer only had one electronic subband at the GaAs/AlGaAs interface populated. Weak localization magnetoresistance was interpreted by a theory valid to relatively high magnetic fields and also valid for electrons with a long mean free path. The adjustable parameter in fitting the magnetoresistance was in each case the phasebreaking relaxation time, which could then subsequently be plotted as a function of temperature. The temperature dependence of the phasebreaking rate could be interpreted on the basic of existing theories, but the residual relaxation rate at the lowest temperature remains so far unexplained. Already at low magnetic fields the weak localization magnetoresistance saturates, indicating a complete quench of weak localization. We find that the value of saturation (i.e. the total weak localization at the appropriate temperature) was smaller than predicted by the existing theories. At magnetic fields of the order of the inverse electron mobility, a quadratic magnetoresistance show up in our experiments. This quadratic magnetoresistance corresponds to corrections to the conductivity of the order of e 2 /h. Whereas we find that the temperature dependence of this conductivity correction is well in agreement with predicted effects of electron-electron interaction, the dependence on mobility, which we can measure via our ion implantation, is larger than any existing theory predicts, yet still in the ballpark of the conductance quantum. (orig./BHO)

  10. An upper bound on right-chiral weak interactions

    International Nuclear Information System (INIS)

    Stephenson, G.J.; Goldman, T.; Maltman, K.

    1990-01-01

    Weak vertex corrections to the quark-gluon vertex functions produce differing form-factor corrections for quarks of differing chiralities. These differences grow with increasing four-momentum transfer in the gluon leg. Consequently, inclusive polarized proton--proton scattering to a final state jet should show a large parity-violating asymmetry at high energies. The absence of large signals at sufficiently high energies can be interpreted as being due to balancing vertex corrections from a right-handed weak vector boson of limited mass, and limits on the strength of such signals can, in principle, give upper bounds on that mass. 2 refs

  11. An upper bound on right-Chiral weak interactions

    International Nuclear Information System (INIS)

    Stephenson, G.J.; Goldman, T.; Maltman, K.

    1990-01-01

    Weak vertex corrections to the quark-gluon vertex functions produce differing form-factor corrections for quarks of differing chiralities. These differences grow with increasing four-momentum transfer in the gluon leg. Consequently, inclusive polarized proton-proton scattering to a final state jet should show a large parity-violating asymmetry at high energies. The absence of large signals at sufficiently high energies can be interpreted as being due to balancing vertex corrections from a right-handed weak vector boson of limited mass, and limits on the strength of such signals can, in principle, give upper bounds on that mass

  12. The weak interactions from 1950 to 1960: a quantitative bibliometric study of the formation of a field

    International Nuclear Information System (INIS)

    White, D.H.; Sullivan, D.

    1989-01-01

    A collaborative group of scientists and sociologists report on a bibliometric study of the literature on weak interactions between 1950 and 1960. The dominant problems of the period are discussed and the history of key events such as the discovery of parity violation in 1956 is examined. They also track the development of this area as a separate field of study in particle physics following the study of beta and muon decay, and the discovery of pions, kaons and hyper ions from cosmic rays. The study notes the surprising result that large numbers of scientists focused on a surprisingly small number of topics, such as kaon decay, the tau-theta puzzle and mixed states of the neutral kaon in 1956. In 1957, the topic was parity non-conservation. In 1959 it was V-A theory, the general theory of weak interactions. These discoveries obviously depended on advances in particle accelerators which occurred in this decade. (UK)

  13. Quasi-continuous transition from a Fermi liquid to a spin liquid in κ-(ET)2Cu2(CN)3.

    Science.gov (United States)

    Furukawa, Tetsuya; Kobashi, Kazuhiko; Kurosaki, Yosuke; Miyagawa, Kazuya; Kanoda, Kazushi

    2018-01-22

    The Mott metal-insulator transition-a manifestation of Coulomb interactions among electrons-is known as a discontinuous transition. Recent theoretical studies, however, suggest that the transition is continuous if the Mott insulator carries a spin liquid with a spinon Fermi surface. Here, we demonstrate the case of a quasi-continuous Mott transition from a Fermi liquid to a spin liquid in an organic triangular-lattice system κ-(ET) 2 Cu 2 (CN) 3 . Transport experiments performed under fine pressure tuning have found that as the Mott transition is approached, the Fermi liquid coherence temperature continuously falls to the scale of kelvins, with a divergent quasi-particle decay rate on the metal side, and the charge gap continuously closes on the insulator side. A Clausius-Clapeyron analysis provides thermodynamic evidence for the extremely weak first-order nature of the transition. These results provide additional support for the existence of a spinon Fermi surface, which becomes an electron Fermi surface when charges are delocalized.

  14. Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex.

    Science.gov (United States)

    Ortega-Roldan, Jose Luis; Jensen, Malene Ringkjøbing; Brutscher, Bernhard; Azuaga, Ana I; Blackledge, Martin; van Nuland, Nico A J

    2009-05-01

    The description of the interactome represents one of key challenges remaining for structural biology. Physiologically important weak interactions, with dissociation constants above 100 muM, are remarkably common, but remain beyond the reach of most of structural biology. NMR spectroscopy, and in particular, residual dipolar couplings (RDCs) provide crucial conformational constraints on intermolecular orientation in molecular complexes, but the combination of free and bound contributions to the measured RDC seriously complicates their exploitation for weakly interacting partners. We develop a robust approach for the determination of weak complexes based on: (i) differential isotopic labeling of the partner proteins facilitating RDC measurement in both partners; (ii) measurement of RDC changes upon titration into different equilibrium mixtures of partially aligned free and complex forms of the proteins; (iii) novel analytical approaches to determine the effective alignment in all equilibrium mixtures; and (iv) extraction of precise RDCs for bound forms of both partner proteins. The approach is demonstrated for the determination of the three-dimensional structure of the weakly interacting CD2AP SH3-C:Ubiquitin complex (K(d) = 132 +/- 13 muM) and is shown, using cross-validation, to be highly precise. We expect this methodology to extend the remarkable and unique ability of NMR to study weak protein-protein complexes.

  15. Theory and phenomenology of strong and weak interaction high energy physics: Progress report, May 1, 1987-April 30, 1988

    International Nuclear Information System (INIS)

    Carruthers, P.; Thews, R.L.

    1988-01-01

    This paper contains progress information on the following topics in High Energy Physics: strong, electromagnetic, and weak interactions; aspects of quark-gluon models for hadronic interactions, decays, and structure; the dynamical generation of a mass gap and the role and truthfulness of perturbation theory; statistical and dynamical aspects of hadronic multiparticle production; and realization of chiral symmetry and temperature effects in supersymmetric theories

  16. Weak values in collision theory

    Science.gov (United States)

    de Castro, Leonardo Andreta; Brasil, Carlos Alexandre; Napolitano, Reginaldo de Jesus

    2018-05-01

    Weak measurements have an increasing number of applications in contemporary quantum mechanics. They were originally described as a weak interaction that slightly entangled the translational degrees of freedom of a particle to its spin, yielding surprising results after post-selection. That description often ignores the kinetic energy of the particle and its movement in three dimensions. Here, we include these elements and re-obtain the weak values within the context of collision theory by two different approaches, and prove that the results are compatible with each other and with the results from the traditional approach. To provide a more complete description, we generalize weak values into weak tensors and use them to provide a more realistic description of the Stern-Gerlach apparatus.

  17. Interactions of ionic liquids and acetone: thermodynamic properties, quantum-chemical calculations, and NMR analysis.

    Science.gov (United States)

    Ruiz, Elia; Ferro, Victor R; Palomar, Jose; Ortega, Juan; Rodriguez, Juan Jose

    2013-06-20

    The interactions between ionic liquids (ILs) and acetone have been studied to obtain a further understanding of the behavior of their mixtures, which generally give place to an exothermic process, mutual miscibility, and negative deviation of Raoult's law. COSMO-RS was used as a suitable computational method to systematically analyze the excess enthalpy of IL-acetone systems (>300), in terms of the intermolecular interactions contributing to the mixture behavior. Spectroscopic and COSMO-RS results indicated that acetone, as a polar compound with strong hydrogen bond acceptor character, in most cases, establishes favorable hydrogen bonding with ILs. This interaction is strengthened by the presence of an acidic cation and an anion with dispersed charge and non-HB acceptor character in the IL. COSMO-RS predictions indicated that gas-liquid and vapor-liquid equilibrium data for IL-acetone systems can be finely tuned by the IL selection, that is, acting on the intermolecular interactions between the molecular and ionic species in the liquid phase. NMR measurements for IL-acetone mixtures at different concentrations were also carried out. Quantum-chemical calculations by using molecular clusters of acetone and IL species were finally performed. These results provided additional evidence of the main role played by hydrogen bonding in the behavior of systems containing ILs and HB acceptor compounds, such as acetone.

  18. Stability of Dirac Liquids with Strong Coulomb Interaction.

    Science.gov (United States)

    Tupitsyn, Igor S; Prokof'ev, Nikolay V

    2017-01-13

    We develop and apply the diagrammatic Monte Carlo technique to address the problem of the stability of the Dirac liquid state (in a graphene-type system) against the strong long-range part of the Coulomb interaction. So far, all attempts to deal with this problem in the field-theoretical framework were limited either to perturbative or random phase approximation and functional renormalization group treatments, with diametrically opposite conclusions. Our calculations aim at the approximation-free solution with controlled accuracy by computing vertex corrections from higher-order skeleton diagrams and establishing the renormalization group flow of the effective Coulomb coupling constant. We unambiguously show that with increasing the system size L (up to ln(L)∼40), the coupling constant always flows towards zero; i.e., the two-dimensional Dirac liquid is an asymptotically free T=0 state with divergent Fermi velocity.

  19. Fundamental quark, lepton correspondence and dynamics with weak decay interactions

    International Nuclear Information System (INIS)

    Van der Spuy, E.

    1977-10-01

    A nonlinear fermion-field equation of motion and its (in principle) exact solutions, making use of the previously developed technique of infinite component free spinor fields, are discussed. It is shown to be essential for the existence of the solutions to introduce the isosymmetry breaking mechanism by coupling the isospin polarization of the domain of the universe of such particle fields to the field isospin. The essential trigger for the isosymmetry breaking mechanism is the existence of the electromagnetic interaction and the photon fields, carrying an infinite range isospin polarization change in the domain. A quartet of proton, neutron, lambda and charmed quark field solutions, with their respective characteristic Regge trajectories and primary isospin quantum numbers, and a quartet of lepton fields electron neutrino, electron, muon, muon nutrino, are shown to emerge naturally. The equations of motion of the quark and lepton propagators are deduced. The complicated charge nature of the quarks and the need for quark confinement is discussed and a correspondence principle is established between the quark and lepton field solutions. The correspondence is such that the dynamics of the leptons on their own appears to be compatible with quantum electrodynamics on the one hand, and on the other hand permits a natural GIM-Cabibbo weak decay interaction with a Cibibbo angle equal to the domain isospin polarization-change phase angle

  20. Weak interactions and exchange currents in light nuclei. Theoretical and experimental aspects

    International Nuclear Information System (INIS)

    Guichon, P.

    1980-01-01

    The influence of meson exchange currents in the nuclear weak interaction is investigated theoretically and experimentally. The hypothesis of current algebra and partial conservation of axial current are used, through Adler-Dothan theorem, to derive the one pion exchange correction to the impulse approximation. Calculations are performed for partial transitions in the 1p-shell nuclei and in 16 O. The corrections are generally small except for the (0 + →0 - ) transition in 16 O where the large correction to the time component of the axial current can show up, due to selection rules. The measurement of the muon capture rate for this transition is described and an interpretation in term of exchange currents is proposed [fr

  1. Quantifying Protein-Carbohydrate Interactions Using Liquid Sample Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Yao, Yuyu; Shams-Ud-Doha, Km; Daneshfar, Rambod; Kitova, Elena N.; Klassen, John S.

    2015-01-01

    The application of liquid sample desorption electrospray ionization mass spectrometry (liquid sample DESI-MS) for quantifying protein-carbohydrate interactions in vitro is described. Association constants for the interactions between lysozyme and β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc and β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc, and between a single chain antibody and α-D-Galp-(1 → 2)-[α-D-Abep-(1 → 3)]-α-D-Manp-OCH3 and β-D-Glcp-(1 → 2)-[α-D-Abep-(1 → 3)]-α-D-Manp-OCH3 measured using liquid sample DESI-MS were found to be in good agreement with values measured by isothermal titration calorimetry and the direct ESI-MS assay. The reference protein method, which was originally developed to correct ESI mass spectra for the occurrence of nonspecific ligand-protein binding, was shown to reliably correct liquid sample DESI mass spectra for nonspecific binding. The suitability of liquid sample DESI-MS for quantitative binding measurements carried out using solutions containing high concentrations of the nonvolatile biological buffer phosphate buffered saline (PBS) was also explored. Binding of lysozyme to β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc in aqueous solutions containing up to 1× PBS was successfully monitored using liquid sample DESI-MS; with ESI-MS the binding measurements were limited to concentrations less than 0.02 X PBS.

  2. Search for a tensor component in the weak interaction Hamiltonian

    CERN Document Server

    Soti, Gergely

    The search for physics beyond the standard model can, besides in high-energy experiments such as the ones at the LHC accelerator, also be carried out at lower energies. Measurements of correlation coefficients in neutron and nuclear b decay constitute a reliable and model-independent method for such efforts. The topic of this thesis is the precision measurement of the beta asymmetry parameter A. It was measured in the decay of 67Cu, which proceeds via a pure Gamow-Teller b transition, thus its A parameter is sensitive to possible tensor type currents in the weak interaction. The experiment was performed at the NICOLE setup in ISOLDE (CERN), using the technique of low temperature nuclear orientation. The b particles were observed with custom made planar high purity germanium detectors operating at around 10 K. The beta asymmetry of 68Cu was measured on-line for normalization purposes. Geant4 simulations were used to gain control over systematic effects such as electron scattering on the particle detectors. As...

  3. Effective interactions between concentration fluctuations and charge transfer in chemically ordering liquid alloys

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1992-08-01

    The correlations between long-wavelength fluctuations of concentration in a liquid binary alloy are determined by a balance between an elastic strain free energy and an Ornstein-Zernike effective interaction. The latter is extracted from thermodynamic data in the case of the Li-Pb system, which is well known to chemically order with stoichiometric composition corresponding to Li 4 Pb. Strong attractive interactions between concentration fluctuations near the composition of chemical ordering originate from electronic charge transfer, which is estimated from the electron-ion partial structure factors as functions of composition in the liquid alloy. (author). 20 refs, 2 figs

  4. P-odd effects observed in the reactions with neutrons and isospin structure of weak nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Smotritskij, L.M.

    2001-01-01

    Application of resonance phase for two quasi-stationary states with similar spin and unlike parity is shown to enable to coordinate the experimentally observed signed dependence of P-odd effects in neutron reactions with the theory. The developed approach enables to obtain information on isospin structure of a weak nucleon-nucleon interaction [ru

  5. Waves reflected by solid wall and wave interaction in vapour bubbly liquids

    International Nuclear Information System (INIS)

    Duong, N.H.; Nguyen, V.T.

    2004-01-01

    The vapour bubbly liquids are met in many natural and industrial processes, including in energy equipment. In the nuclear power plants this kind of medium appears in reactor cores (PWR, BWR and etc.), in turbine generators and in heat transfer loops. Due to some circumstances (for example, a hit caused by detonations or strong collisions) the pressure waves can appear in the bubbly liquid medium contained in those facilities. These waves propagate in the mixtures and interact with themselves and with structures. It is important that what will occur during mentioned above processes. The knowledge of this kind processes will be useful for analysing the different sorts of the processes occurred in the energy facilities where the vapor bubbly liquids are used as working or heat transfer medium, like nuclear power plants, and also useful in finding the measures for prevention of unfavourable phenomena (for example, during wave interactions maybe appear too high pressures, which could lead into damages of facilities and etc.) and safety operating the equipment. From the physical point of view, the waves in this kind of medium are interesting that owing to non-linear, dispersion and dissipation effects the wave patterns in them may be diverse and easy altered. In the paper the investigation results of the waves reflected by solid wall or structure of the moderate intensity shock waves, and the behaviour of pressure in the process of wave interaction in some mixtures of liquid with vapour bubbles (of radium ∼1 mm) are presented. (author)

  6. 78 FR 71817 - Liquidity Coverage Ratio: Liquidity Risk Measurement, Standards, and Monitoring

    Science.gov (United States)

    2013-11-29

    ... senior representatives of bank supervisory authorities and central banks from Argentina, Australia..., 2012). B. Background The recent financial crisis demonstrated significant weaknesses in the liquidity... conditions and the declining availability of liquidity during the financial crisis illustrated both the speed...

  7. Final State Interaction on non Mesonic Hyperon Weak Decay Spectra of Λ12C

    International Nuclear Information System (INIS)

    Gonzalez, I.; Rodriguez, O.; Deppman, A.; Duarte, S.; Krmpotic, F.

    2011-01-01

    In the present work, we study the one nucleon induced non mesonic hyperon weak decay (NMWD)(ΛΝ → ηΝ) on the Λ 12 C hypernuclei with corresponding transition rates given by Γ ρ ≡ Γ (Λρ → ηρ) and Γ η ≡ Γ (Λη → ηη) respectively. The whole nuclear process is described by using a connection of two models, one to describe the primary non mesonic weak decay in the nuclear environment and another one to follows the time evolution of the outgoing of nucleons from nuclear system, to consider the Final State Interaction (FSI). The Independent-Particle Shell-Model (IPSM) is used to depict the dynamic of the primary decay by mean of the exchange of π and + Κ mesons with usual parameterization. A time dependent multicolisional intranuclear cascade approach implemented on the CRISP (Collaboration Rio-Sao Paulo) code incorporates the FSI to the Γ η /Γ ρ ratio calculation and the behaviour of these value with the coulomb barrier as well as to the observable nucleon kinetic energy spectra and also to angular correlation determinations. Recent KEK and FINUDA experiments on one- and two-nucleon non mesonic weak decay (NMWD) spectra in Λ 12 C hypernuclei are analyzed theoretically and the effect of FSI is determined within our model scenery. (Author)

  8. Composite weak bosons

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, M.

    1988-04-01

    Dynamical mechanism of composite W and Z is studied in a 1/N field theory model with four-fermion interactions in which global weak SU(2) symmetry is broken explicitly by electromagnetic interaction. Issues involved in such a model are discussed in detail. Deviation from gauge coupling due to compositeness and higher order loop corrections are examined to show that this class of models are consistent not only theoretically but also experimentally.

  9. Interaction effects in liquids with low electron densities

    International Nuclear Information System (INIS)

    Warren, W.W. Jr.

    1987-01-01

    The author discusses two complementary classes of systems in which strong electron-electron or electron-ion interactions appear at low electron densities. The first are the expanded liquid alkali metals (cesium) in which electron correlation effects have a profound effect on the magnetic properties on the metallic side of the metal-nonmetal transition. The second group are molten alkali halides containing low densities of localized electrons introduced, say, by dissolution of small amounts of excess metal. (Auth.)

  10. Crystal structure of dimethylformamidium bis(trifluoromethanesulfonylamide: an ionic liquid

    Directory of Open Access Journals (Sweden)

    Allan Jay P. Cardenas

    2016-09-01

    Full Text Available At 100 K, the title molecular salt, C3H8NO+·C2F6NO4S2−, has orthorhombic (P212121 symmetry; the amino H atom of bis(trifluoromethanesulfonylamine (HNTf2 was transferred to the basic O atom of dimethylformamide (DMF when the ionic liquid components were mixed. The structure displays an O—H...N hydrogen bond, which links the cation to the anion, which is reinforced by a non-conventional C—H...O interaction, generating an R22(7 loop. A further very weak C—H...O interaction generates an [001] chain.

  11. Characterization of a novel weak interaction between MUC1 and Src-SH3 using nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunasekara, Nirosha [Department of Laboratory Medicine and Pathology, University of Alberta, 5B4.21 WCM Health Science Centre, 8440-112th Street, Edmonton, Alberta, Canada T6G 2R7 (Canada); Sykes, Brian, E-mail: brian.sykes@ualberta.ca [Department of Biochemistry, 4-19B Medical Sciences Bldg., University of Alberta Edmonton, Alberta, Canada T6G 2H7 (Canada); Hugh, Judith, E-mail: judithh@ualberta.ca [Department of Laboratory Medicine and Pathology, University of Alberta, 5B4.21 WCM Health Science Centre, 8440-112th Street, Edmonton, Alberta, Canada T6G 2R7 (Canada)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer MUC1 binds the Src-SH3 domain potentially triggering Src dependent cell migration. Black-Right-Pointing-Pointer NMR Spectroscopy was used to monitor MUC1-CD and Src SH3 domain titrations. Black-Right-Pointing-Pointer MUC1-CD peptides bind with a low affinity (K{sub d} of 2-3 mM) to a non-canonical site. Black-Right-Pointing-Pointer Weak interactions may mediate dynamic processes like migration. Black-Right-Pointing-Pointer The MUC1-CD and Src-SH3 interaction may be a prime target to inhibit cell migration. -- Abstract: Breast cancer causes death through cancer cell migration and subsequent metastasis to distant organs. In vitro, the MUC1 mucin can mediate breast cancer cell migration by binding to intercellular adhesion molecule-1 (ICAM-1). This migration is dependent on MUC1 cytoplasmic domain (MUC1-CD) activation of the non-receptor tyrosine kinase, Src, possibly through competitive displacement of an inhibitory Src intramolecular SH3 binding. Therefore, we characterized the binding site and affinity of the MUC1-CD for Src-SH3 using multidimensional nuclear magnetic resonance (NMR) spectroscopy to monitor the titration of the {sup 15}N labeled Src-SH3 domain with synthetic native and mutant peptides of MUC1-CD. The results revealed that the dissociation constant (K{sub d}) for the interaction of the native MUC1-CD peptides and Src-SH3 domain was weak with a K{sub d} of 2-3 mM. Notably, the SH3 residues most perturbed upon peptide binding were located outside the usual hydrophobic binding cleft in a previously described alternate binding site on the Src-SH3, suggesting that MUC1-CD binds to a non-canonical site. The binding characteristics outlined here suggest that the interaction between Src-SH3 and MUC1-CD represents a novel weak electrostatic interaction of the type which is increasingly recognized as important in transient and dynamic protein complexes required for cell migration and signal transduction. As such, this

  12. Liquidity (risk) concepts: definitions and interactions

    OpenAIRE

    Nikolaou, Kleopatra

    2009-01-01

    We discuss the notion of liquidity and liquidity risk within the financial system. We distinguish between three different liquidity types, central bank liquidity, funding and market liquidity and their relevant risks. In order to understand the workings of financial system liquidity, as well as the role of the central bank, we bring together relevant literature from different areas and review liquidity linkages among these three types in normal and turbulent times. We stress that the root of ...

  13. Development of a chemically defined medium for studying foodborne bacterial-fungal interactions

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing; Honoré, Anders Hans; Vogensen, Finn Kvist

    2015-01-01

    judged by ultra-performance liquid chromatography/mass spectrometry) a chemically defined interaction medium (CDIM) was developed. The medium supported growth of antifungal cultures such as Lactobacillus paracasei and Propionibacterium freudenreichii, as well as spoilage moulds and yeasts isolated from...... fermented milk products. Both strong and weak antifungal interactions observed in milk could be reproduced in CDIM. The medium seems suitable for studying antifungal activity of bacterial cultures....

  14. Weakly Interacting Symmetric and Anti-Symmetric States in the Bilayer Systems

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Tomaka, G.; Ploch, D.

    We have studied the parallel magneto-transport in DQW-structures of two different potential shapes: quasi-rectangular and quasi-triangular. The quantum beats effect was observed in Shubnikov-de Haas (SdH) oscillations for both types of the DQW structures in perpendicular magnetic filed arrangement. We developed a special scheme for the Landau levels energies calculation by means of which we carried out the necessary simulations of beating effect. In order to obtain the agreement between our experimental data and the results of simulations, we introduced two different quasi-Fermi levels which characterize symmetric and anti-symmetric states in DQWs. The existence of two different quasi Fermi-Levels simply means, that one can treat two sub-systems (charge carriers characterized by symmetric and anti-symmetric wave functions) as weakly interacting and having their own rate of establishing the equilibrium state.

  15. Membrane interactions of ionic liquids and imidazolium salts.

    Science.gov (United States)

    Wang, Da; Galla, Hans-Joachim; Drücker, Patrick

    2018-06-01

    Room-temperature ionic liquids (RTILs) have attracted considerable attention in recent years due to their versatile properties such as negligible volatility, inflammability, high extractive selectivity and thermal stability. In general, RTILs are organic salts with a melting point below ~100 °C determined by the asymmetry of at least one of their ions. Due to their amphiphilic character, strong interactions with biological materials can be expected. However, rising attention has appeared towards their similarity and interaction with biomolecules. By employing structural modifications, the biochemical properties of RTILs can be designed to mimic lipid structures and to tune their hydrophobicity towards a lipophilic behavior. This is evident for the interaction with lipid-membranes where some of these compounds present membrane-disturbing effects or cellular toxicity. Moreover, they can form micelles or lipid-like bilayer structures by themselves. Both aspects, cellular effects and membrane-forming capacities, of a novel class of lipophilic imidazolium salts will be discussed.

  16. Plasma interaction with liquid lithium: Measurements of retention and erosion

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.J. E-mail: mbaldwin@ferp.ucsd.edu; Doerner, R.P.; Luckhardt, S.C.; Seraydarian, R.; Whyte, D.G.; Conn, R.W

    2002-11-01

    This paper reports on recent studies of high flux deuterium and helium plasma interaction with liquid lithium in the Pisces-B edge plasma simulator facility. Deuterium retention is explored as a function of plasma ion fluence in the range 6x10{sup 19}-4x10{sup 22} atoms cm{sup -2} and exposure temperatures of 523-673 K. The results are consistent with full uptake of the deuterium ions incident on the liquid metal surface, independent of the temperature of the liquid lithium. Full uptake continues until the sample is volumetrically converted to lithium deuteride. Helium retention is not observed for fluences up to 5x10{sup 21} He atoms cm{sup -2}. Measurements of the erosion of lithium are found to be consistent with physical sputtering for the lithium solid phase. However, a mechanism that provides an increased evaporative-like yield and is related to ion impact events on the surface, dominates during the liquid phase leading to an enhanced loss rate for liquid lithium that is greater than the expected loss rate due to evaporation at elevated temperatures. Further, the material loss rate is found to depend linearly on the incident ion flux, even at very high temperature.

  17. Effective field theory and weak non-leptonic interactions

    International Nuclear Information System (INIS)

    Miller, R.D.C.

    1982-06-01

    The techniques of Ovrut and Schnitzer (1981) are used to calculate the finite decoupling renormalisation constants resulting from heavy fermion decoupling in a non-abelian gauge theory exhibiting broken flavour symmetry. The results of this calculation are applied to realistic, massive QCD. The decoupling information may be absorbed into renormalisation group (R.G.) invariants. Working in the Landau gauge R.G. invariants are derived for the running coupling constants and running quark masses of effective QCD in the modified minimal subtraction scheme (for effective QCD with 3 to 8 flavours). This work is then applied to the major part of the thesis; a complete derivation of the effective weak non-leptonic sector of the standard model (SU(3)/sub c/ x SU(2) x U(1)), that is the construction of all effective weak non-leptonic Hamiltonians resulting from the standard model when all quark generations above the third along with the W and Z are explicitily decoupled. The form of decoupling in the work of Gilman and Wise (1979) has been adopted. The weak non-leptonic sector naturally decomposes into flavour changing and flavour conserving sectors relative to anomalous dimension calculations. The flavour changing sector further decomposes into penguin free and penguin generating sectors. Individual analyses of these three sectors are given. All sectors are analysed uniformly, based upon a standard model with n generations

  18. Second sound in a two-dimensional Bose gas: From the weakly to the strongly interacting regime

    Science.gov (United States)

    Ota, Miki; Stringari, Sandro

    2018-03-01

    Using Landau's theory of two-fluid hydrodynamics, we investigate first and second sounds propagating in a two-dimensional (2D) Bose gas. We study the temperature and interaction dependence of both sound modes and show that their behavior exhibits a deep qualitative change as the gas evolves from the weakly interacting to the strongly interacting regime. Special emphasis is placed on the jump of both sounds at the Berezinskii-Kosterlitz-Thouless transition, caused by the discontinuity of the superfluid density. We find that the excitation of second sound through a density perturbation becomes weaker and weaker as the interaction strength increases as a consequence of the decrease in the thermal expansion coefficient. Our results could be relevant for future experiments on the propagation of sound on the Bose-Einstein condensate (BEC) side of the BCS-BEC crossover of a 2D superfluid Fermi gas.

  19. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    Science.gov (United States)

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    2018-04-01

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.

  20. Low-temperature conductivity of weakly interacting quantum spin Hall edges in strained-layer InAs/GaInSb

    Science.gov (United States)

    Li, Tingxin; Wang, Pengjie; Sullivan, Gerard; Lin, Xi; Du, Rui-Rui

    2017-12-01

    We report low-temperature transport measurements in strained InAs /G a0.68I n0.32Sb quantum wells, which supports time-reversal symmetry-protected helical edge states. The temperature and bias voltage dependence of the helical edge conductance for devices of various sizes are consistent with the theoretical expectation of a weakly interacting helical edge state. Moreover, we found that the magnetoresistance of the helical edge states is related to the edge interaction effect and the disorder strength.

  1. Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn4 single-molecule magnets

    Science.gov (United States)

    Wernsdorfer, W.; Bhaduri, S.; Vinslava, A.; Christou, G.

    2005-12-01

    A Mn4 single-molecule magnet (SMM), with a well-isolated spin ground state of S=9/2 , is used as a model system to study Landau-Zener (LZ) tunneling in the presence of weak intermolecular dipolar and exchange interactions. The anisotropy constants D and B are measured with minor hysteresis loops. A transverse field is used to tune the tunnel splitting over a large range. Using the LZ and inverse LZ method, it is shown that these interactions play an important role in the tunnel rates. Three regions are identified: (i) at small transverse fields, tunneling is dominated by single tunnel transitions, (ii) at intermediate transverse fields, the measured tunnel rates are governed by reshuffling of internal fields, and (iii) at larger transverse fields, the magnetization reversal starts to be influenced by the direct relaxation process, and many-body tunnel events may occur. The hole digging method is used to study the next-nearest-neighbor interactions. At small external fields, it is shown that magnetic ordering occurs which does not quench tunneling. An applied transverse field can increase the ordering rate. Spin-spin cross-relaxations, mediated by dipolar and weak exchange interactions, are proposed to explain additional quantum steps.

  2. Superconducting correlations in the one-band Hubbard model with intermediate on-site and weak attractive intersite interactions

    International Nuclear Information System (INIS)

    Jain, K.P.; Ramakumar, R.; Chancey, C.C.

    1990-01-01

    In this paper, we analyze a simple extended Hubbard model with an intermediate on-site interaction (both repulsive and attractive) and a weak intersite attractive interaction. Following Hubbard decoupling approximations and introducing Hubbard subband operators, we obtain a generalized gap function for singlet s-wave pairing that explicitly depends on the Hubbard subband energies. For the on-site repulsive-interaction case, we find that the superconductivity is not destroyed in the intermediate-interaction regime, contrary to the prediction of a Hartree-Fock mean-field treatment. The essential consequence of the on-site repulsion is the formation of the Hubbard subbands separated by the Mott-Hubbard gap, and it is within these subbands that pairing induced by the intersite interaction occurs. For the attractive on-site interaction case, the on-site pairing amplitude is found to be proportional to the bandwidth, and the gap function has contributions from both on-site and intersite pairing. The relevance of the model to high-temperature superconductivity is discussed

  3. Observation of Spin Polarons in a Tunable Fermi Liquid of Ultracold Atoms

    Science.gov (United States)

    Zwierlein, Martin

    2009-05-01

    We have observed spin polarons, dressed spin down impurities in a spin up Fermi sea of ultracold atoms via tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom dressed with a spin up cloud constitutes the spin- or Fermi polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The spectra allow us to directly measure the polaron energy and the quasi-particle residue Z. The polarons are found to be only weakly interacting with each other, and can thus be identified with the quasi-particles of Landau's Fermi liquid theory. At a critical interaction strength, we observe a transition from spin one-half polarons to spin zero molecules. At this point the Fermi liquid undergoes a phase transition into a superfluid Bose liquid.

  4. Electronic charge rearrangement at metal/organic interfaces induced by weak van der Waals interactions

    Science.gov (United States)

    Ferri, Nicola; Ambrosetti, Alberto; Tkatchenko, Alexandre

    2017-07-01

    Electronic charge rearrangements at interfaces between organic molecules and solid surfaces play a key role in a wide range of applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. It is common to utilize electrostatics and Pauli pushback to control the interface electronic properties, while the ubiquitous van der Waals (vdW) interactions are often considered to have a negligible direct contribution (beyond the obvious structural relaxation). Here, we apply a fully self-consistent Tkatchenko-Scheffler vdW density functional to demonstrate that the weak vdW interactions can induce sizable charge rearrangements at hybrid metal/organic systems (HMOS). The complex vdW correlation potential smears out the interfacial electronic density, thereby reducing the charge transfer in HMOS, changes the interface work functions by up to 0.2 eV, and increases the interface dipole moment by up to 0.3 Debye. Our results suggest that vdW interactions should be considered as an additional control parameter in the design of hybrid interfaces with the desired electronic properties.

  5. PP-16 WEAK ACID REFLUX A TRIGGER FOR RECURRENT RESPIRATORY DISEASES IN CHILDREN.

    Science.gov (United States)

    Kostovski, Aco; Zdraveska, Nikolina

    2015-10-01

    The main advantage of multichannel intraluminar impedance (MII) compared with pH monitoring is its ability to detect both acid and non-acid gastroesophageal reflux (GER) and to determine the characteristics of reflux (liquid or gas). To compare the value of pH monitoring and MII for diagnosis of GER in children who present with refractory respiratory symptoms. A prospective study that included 37 patients, aged 4.25 ± 3.15 years, using combined MII-pH monitoring was performed. Patients were referred for investigation because of suspected GER as the etiology of recurrent respiratory diseases, including recurrent obstructive bronchitis, recurrent pneumonia, laryngitis, and chronic cough. We analyzed the percentage of time during which the pH was less than 4, the numeric and percentile values of acid, weak acid, and non-acid reflux episodes, and the values of liquid and mixed reflux. Diagnostic values were determined separately for pH monitoring and MII using Fisher's exact test. Reflux was detected in 31 patients. pH monitoring was positive in 20 patients (% time during which pH acid and weak acid reflux episodes, 3 had only acid reflux, 8 had weak acid reflux, and 3 had non-acid reflux. Sixteen patients had mixed (liquid and gas) reflux, and 14 had both liquid and mixed reflux. This study suggests that significant numbers of GER include weak acid reflux that cannot be detected by pH probes alone. The weak acid reflux could be a trigger for recurrent respiratory symptoms. Combining pH with MII monitoring is a valuable diagnostic method for diagnosing GER in children.

  6. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ruiz, F. J.; Blas, F. J., E-mail: felipe@uhu.es [Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Física Aplicada, Universidad de Huelva, 21007 Huelva (Spain); Moreno-Ventas Bravo, A. I. [Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Geología, Universidad de Huelva, 21007 Huelva (Spain)

    2015-09-14

    with a desorption of the molecules at the interface, a direct consequence of a combination of the weak dispersive interactions between unlike species of the symmetrical binary mixture, and the presence of an interfacial region separating the two immiscible liquid phases in coexistence.

  7. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    International Nuclear Information System (INIS)

    Martínez-Ruiz, F. J.; Blas, F. J.; Moreno-Ventas Bravo, A. I.

    2015-01-01

    molecules at the interface, a direct consequence of a combination of the weak dispersive interactions between unlike species of the symmetrical binary mixture, and the presence of an interfacial region separating the two immiscible liquid phases in coexistence

  8. Lattice model of ionic liquid confined by metal electrodes

    Science.gov (United States)

    Girotto, Matheus; Malossi, Rodrigo M.; dos Santos, Alexandre P.; Levin, Yan

    2018-05-01

    We study, using Monte Carlo simulations, the density profiles and differential capacitance of ionic liquids confined by metal electrodes. To compute the electrostatic energy, we use the recently developed approach based on periodic Green's functions. The method also allows us to easily calculate the induced charge on the electrodes permitting an efficient implementation of simulations in a constant electrostatic potential ensemble. To speed up the simulations further, we model the ionic liquid as a lattice Coulomb gas and precalculate the interaction potential between the ions. We show that the lattice model captures the transition between camel-shaped and bell-shaped capacitance curves—the latter characteristic of ionic liquids (strong coupling limit) and the former of electrolytes (weak coupling). We observe the appearance of a second peak in the differential capacitance at ≈0.5 V for 2:1 ionic liquids, as the packing fraction is increased. Finally, we show that ionic size asymmetry decreases substantially the capacitance maximum, when all other parameters are kept fixed.

  9. An SU(3)xU(1) theory of weak-electromagnetic interactions with charged boson mixing

    International Nuclear Information System (INIS)

    Singer, M.

    1978-01-01

    An SU(3)xU(1) gauge theory of weak electromagnetic interactions is proposed in which the charged bosons mix with each other. The model naturally ensures e-μ and quark-lepton universality in couplings, and the charged boson mixing permits an equal number of leptons and quark flavours. There are no new stable leptons. All the fermions are placed in triplets and singlets and the theory is vector-like and hence free of anomalies. In addition one of the charged bosons can have a mass less than 43 GeV. Discrete symmetries and specific choices for Higgs fields are postulated to obtain the appropriate boson and fermion masses. Calculations for the decay of the tau particle, which is described as a heavy electron, are given. Multimuon events are discussed as are neutrino neutral currents. Calculations are also given for testing asymmetries in e-hadron scattering due to weak electron neutral currents along with other phenomenology of the model

  10. Renormalization of the weakly-interacting spin chains in a field

    International Nuclear Information System (INIS)

    Sznajd, J.

    2002-01-01

    In quasi-one-dimensional magnets made of spin chains with the intrachain coupling J, the much weaker interchain coupling J>> J may trigger the low temperature phase transition. However, in high temperature the one-dimensional character of such systems is responsible for observed phenomena. For example the maxima of the susceptibility in some compounds can be connected rather with their low dimensionality than indicates a phase transition. In some of the quasi-1D magnets such as (C 6 H 11 NH 3 )CuBr 3 or KEr(Mo0 4 ) 2 the existence of the long range magnetic order in low temperature is good established, however, in others for example Yb 4 As 3 [1] or UX 3 (X = S, Se,Te) it is still an open question. So, it seems to be important to have a method which allows to control the influence of the weak interchain interaction on the thermodynamic behavior of quasi-one-dimensional systems especially in the presence of external magnetic field. 2J it is

  11. Quantitation of Metformin in Human Plasma and Urine by Hydrophilic Interaction Liquid Chromatography and Application to a Pharmacokinetic Study

    DEFF Research Database (Denmark)

    Nielsen, Flemming; Hougaard Christensen, Mette Marie; Brøsen, Kim

    2014-01-01

    : We describe an analytical method for the quantification of the widely used antihyperglycemic agent, metformin, in human plasma and urine. The separation was performed using isocratic hydrophilic interaction liquid chromatography on a Luna hydrophilic interaction liquid chromatography column (125...

  12. Mass matrices of weak interaction, quark flavour mixing and exponential form of Cabibbo-Kobayashi-Maskawa matrix

    International Nuclear Information System (INIS)

    Dattoli, G.; Torre, A.

    1995-01-01

    The quark mixing matrix is diagonalized. The use of the exponential parametrization leads to straightforward results, obtained in exact form, without simplifying assumptions. In this study, it is defined weak interaction eigenstates in the sense of Fritzch and Planckl. The relevant mass matrices are derived and are shown to belong to Barnhill canonical forms. It is proven that, at lowest order, these matrices exhibit a democratic structure. The mechanism of democracy breaking is finally discussed

  13. Production of neutral heavy leptons by neutrinos in the E7 gauge model of weak interactions

    International Nuclear Information System (INIS)

    Bottino, A.; Kim, C.W.

    1977-11-01

    An attempt, is made, in the framework of the Guersey-Sikivie gauge model of weak interactions based on the E7 group, to explain the recently observed neutrino-production of a relatively long-lived neutral heavy lepton in SKAT bubble chamber experiment. It is shown that a lepton assignment with mixings among neutral leptons can explain the SKAT event. This lepton assignment is also shown to be consistent with other well-known experiments

  14. Studies on the interactions between bovine {beta}-lactoglobulin and chitosan at the solid-liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Campina, Jose M., E-mail: jpina@fc.up.p [Centro de Investigacao em Quimica (CIQ), Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Souza, Hileia K.S., E-mail: hsouza@fe.up.p [REQUIMTE, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Borges, Joao, E-mail: jborges@fc.up.p [Centro de Investigacao em Quimica (CIQ), Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Martins, Ana, E-mail: amartins@fc.up.p [Centro de Investigacao em Quimica (CIQ), Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Goncalves, Maria Pilar, E-mail: pilarg@fe.up.p [REQUIMTE, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Silva, Fernando, E-mail: afssilva@fc.up.p [Centro de Investigacao em Quimica (CIQ), Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2010-12-01

    Chitosan ultrathin films have been formed on polycrystalline Au substrates using the LbL technique with the purpose of studying its interaction with bovine {beta}-lactoglobulin ({beta}-LG) at the solid-liquid interface. The immobilization of chitosan was followed by Quartz Crystal Microbalance with energy dissipation (QCM-D), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The behavior of the chitosan films in the presence of {beta}-LG solutions with different bulk concentrations ([{beta}-LG]), ionic strength (I), and pH has been investigated using the same techniques plus Atomic Force Microscopy (AFM). The results showed that for pHs lower than protein's pI, weak intermolecular forces (H bonding, Van der Waals, hydrophobic, etc.) are established between {beta}-LG and chitosan (especially close to the pI) leading to low coverage nonspecific adsorption. On the contrary when pH > pI, strong ionic bonding through attractive electrostatic interactions lead to high coverage adsorbed phases composed of large {beta}-LG aggregates. The adsorption process was shown to consist of a relatively fast step (in which these interactions are predominant) which is followed, once the {beta}-LG monolayer is exceeded, by the slow formation of thicker and increasingly viscoelastic films through {beta}-LG self-aggregation. QCM-D and AFM experiments unveiled the role of [{beta}-LG] and I on the formation of these aggregates. The adsorption isotherm built from impedance data in the medium-low [{beta}-LG] range (0.001-0.3 mg mL{sup -1}), showed good fitting to the Langmuir model confirming that the formation of one {beta}-LG monolayer is achieved in this concentration range.

  15. Studies on the interactions between bovine β-lactoglobulin and chitosan at the solid-liquid interface

    International Nuclear Information System (INIS)

    Campina, Jose M.; Souza, Hileia K.S.; Borges, Joao; Martins, Ana; Goncalves, Maria Pilar; Silva, Fernando

    2010-01-01

    Chitosan ultrathin films have been formed on polycrystalline Au substrates using the LbL technique with the purpose of studying its interaction with bovine β-lactoglobulin (β-LG) at the solid-liquid interface. The immobilization of chitosan was followed by Quartz Crystal Microbalance with energy dissipation (QCM-D), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The behavior of the chitosan films in the presence of β-LG solutions with different bulk concentrations ([β-LG]), ionic strength (I), and pH has been investigated using the same techniques plus Atomic Force Microscopy (AFM). The results showed that for pHs lower than protein's pI, weak intermolecular forces (H bonding, Van der Waals, hydrophobic, etc.) are established between β-LG and chitosan (especially close to the pI) leading to low coverage nonspecific adsorption. On the contrary when pH > pI, strong ionic bonding through attractive electrostatic interactions lead to high coverage adsorbed phases composed of large β-LG aggregates. The adsorption process was shown to consist of a relatively fast step (in which these interactions are predominant) which is followed, once the β-LG monolayer is exceeded, by the slow formation of thicker and increasingly viscoelastic films through β-LG self-aggregation. QCM-D and AFM experiments unveiled the role of [β-LG] and I on the formation of these aggregates. The adsorption isotherm built from impedance data in the medium-low [β-LG] range (0.001-0.3 mg mL -1 ), showed good fitting to the Langmuir model confirming that the formation of one β-LG monolayer is achieved in this concentration range.

  16. Eight supramolecular assemblies constructed from bis(benzimidazole) and organic acids through strong classical hydrogen bonding and weak noncovalent interactions

    Science.gov (United States)

    Jin, Shouwen; Wang, Daqi

    2014-05-01

    Eight crystalline organic acid-base adducts derived from alkane bridged bis(N-benzimidazole) and organic acids (2,4,6-trinitrophenol, p-nitrobenzoic acid, m-nitrobenzoic acid, 3,5-dinitrobenzoic acid, 5-sulfosalicylic acid and oxalic acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the eight compounds five are organic salts (1, 4, 6, 7 and 8) and the other three (2, 3, and 5) are cocrystals. In all of the adducts except 1 and 8, the ratio of the acid and the base is 2:1. All eight supramolecular assemblies involve extensive intermolecular classical hydrogen bonds as well as other noncovalent interactions. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, all the complexes displayed 3D framework structure. The results presented herein indicate that the strength and directionality of the classical N+-H⋯O-, O-H⋯O, and O-H⋯N hydrogen bonds (ionic or neutral) and other nonbonding associations between acids and ditopic benzimidazoles are sufficient to bring about the formation of cocrystals or organic salts.

  17. Three-body interactions in liquid and solid hydrogen: Evidence from vibrational spectroscopy

    Science.gov (United States)

    Hinde, Robert

    2008-03-01

    In the cryogenic low-density liquid and solid phases of H2 and D2, the H2 and D2 molecules retain good rotational and vibrational quantum numbers that characterize their internal degrees of freedom. High-resolution infrared and Raman spectroscopic experiments provide extremely sensitive probes of these degrees of freedom. We present here fully-first-principles calculations of the infrared and Raman spectra of liquid and solid H2 and D2, calculations that employ a high-quality six-dimensional coupled-cluster H2-H2 potential energy surface and quantum Monte Carlo treatments of the single-molecule translational degrees of freedom. The computed spectra agree very well with experimental results once we include three-body interactions among the molecules, interactions which we also compute using coupled-cluster quantum chemical methods. We predict the vibrational spectra of liquid and solid H2 at several temperatures and densities to provide a framework for interpreting recent experiments designed to search for superfluid behavior in small H2 droplets. We also present preliminary calculations of the spectra of mixed H2/D2 solids that show how positional disorder affects the spectral line shapes in these systems.

  18. Bringing to Light Hidden Elasticity in the Liquid State Using In-Situ Pretransitional Liquid Crystal Swarms.

    Directory of Open Access Journals (Sweden)

    Philipp Kahl

    Full Text Available The present work reveals that at the sub-millimeter length-scale, molecules in the liquid state are not dynamically free but elastically correlated. It is possible to "visualize" these hidden elastic correlations by using the birefringent properties of pretransitional swarms persistent in liquids presenting a weak first order transition. The strategy consists in observing the optical response of the isotropic phase of mesogenic fluids to a weak (low energy mechanical excitation. We show that a synchronized optical response is observable at frequencies as low as 0.01Hz and at temperatures far away from any phase transition (up to at least 15°C above the transition. The observation of a synchronized optical signal at very low frequencies points out a collective response and supports the existence of long-range elastic (solid-like correlations existing at the sub-millimeter length-scale in agreement to weak solid-like responses already identified in various liquids including liquid water. This concept of elastically linked molecules differs deeply with the academic view of molecules moving freely in the liquid state and has profound consequences on the mechanisms governing collective effects as glass formation, gelation and transport, or synchronized processes in physiological media.

  19. Monolayer self-assembly at liquid-solid interfaces: chirality and electronic properties of molecules at surfaces

    International Nuclear Information System (INIS)

    Amabilino, David B; Gomar-Nadal, Elba; Veciana, Jaume; Rovira, Concepcio; Iavicoli, Patrizia; PuigmartI-Luis, Josep; Feyter, Steven De; Abdel-Mottaleb, Mohamed M; Mamdouh, Wael; Psychogyiopoulou, Krystallia; Xu Hong; Lazzaroni, Roberto; Linares, Mathieu; Minoia, Andrea

    2008-01-01

    The spontaneous formation of supramolecular assemblies at the boundary between solids and liquids is a process which encompasses a variety of systems with diverse characteristics: chemisorbed systems in which very strong and weakly reversible bonds govern the assembly and physisorbed aggregates which are dynamic thanks to the weaker interactions between adsorbate and surface. Here we review the interest and advances in the study of chiral systems at the liquid-solid interface, and also the application of this configuration for the study of systems of interest in molecular electronics, self-assembled from the bottom up

  20. Weak Deeply Virtual Compton Scattering

    International Nuclear Information System (INIS)

    Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin

    2006-01-01

    We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities

  1. Bunched soliton states in weakly coupled sine-Gordon systems

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Samuelsen, Mogens Rugholm; Lomdahl, P. S.

    1990-01-01

    The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results.......The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results....

  2. A weakly compressible formulation for modelling liquid-gas sloshing

    CSIR Research Space (South Africa)

    Heyns, Johan A

    2012-09-01

    Full Text Available This study presents the development and extension of free-surface modelling techniques with the purpose of improving the modelling accuracy for liquid-gas sloshing. Considering high density ratio fluids under low Mach number conditions...

  3. Thermophysical properties of simple liquid metals: A brief review of theory

    Science.gov (United States)

    Stroud, David

    1993-01-01

    In this paper, we review the current theory of the thermophysical properties of simple liquid metals. The emphasis is on thermodynamic properties, but we also briefly discuss the nonequilibrium properties of liquid metals. We begin by defining a 'simple liquid metal' as one in which the valence electrons interact only weakly with the ionic cores, so that the interaction can be treated by perturbation theory. We then write down the equilibrium Hamiltonian of a liquid metal as a sum of five terms: the bare ion-ion interaction, the electron-electron interaction, the bare electron-ion interaction, and the kinetic energies of electrons and ions. Since the electron-ion interaction can be treated by perturbation, the electronic part contributes in two ways to the Helmholtz free energy: it gives a density-dependent term which is independent of the arrangement of ions, and it acts to screen the ion-ion interaction, giving rise to effective ion-ion pair potentials which are density-dependent, in general. After sketching the form of a typical pair potential, we briefly enumerate some methods for calculating the ionic distribution function and hence the Helmholtz free energy of the liquid: monte Carlo simulations, molecular dynamics simulations, and thermodynamic perturbation theory. The final result is a general expression for the Helmholtz free energy of the liquid metal. It can be used to calculate a wide range of thermodynamic properties of simple metal liquids, which we enumerate. They include not only a range of thermodynamic coefficients of both metals and alloys, but also many aspects of the phase diagram, including freezing curves of pure elements and phase diagrams of liquid alloys (including liquidus and solidus curves). We briefly mention some key discoveries resulting from previous applications of this method, and point out that the same methods work for other materials not normally considered to be liquid metals (such as colloidal suspensions, in which the

  4. Ballistic Evaporation and Solvation of Helium Atoms at the Surfaces of Protic and Hydrocarbon Liquids.

    Science.gov (United States)

    Johnson, Alexis M; Lancaster, Diane K; Faust, Jennifer A; Hahn, Christine; Reznickova, Anna; Nathanson, Gilbert M

    2014-11-06

    Atomic and molecular solutes evaporate and dissolve by traversing an atomically thin boundary separating liquid and gas. Most solutes spend only short times in this interfacial region, making them difficult to observe. Experiments that monitor the velocities of evaporating species, however, can capture their final interactions with surface solvent molecules. We find that polarizable gases such as N2 and Ar evaporate from protic and hydrocarbon liquids with Maxwell-Boltzmann speed distributions. Surprisingly, the weakly interacting helium atom emerges from these liquids at high kinetic energies, exceeding the expected energy of evaporation from salty water by 70%. This super-Maxwellian evaporation implies in reverse that He atoms preferentially dissolve when they strike the surface at high energies, as if ballistically penetrating into the solvent. The evaporation energies increase with solvent surface tension, suggesting that He atoms require extra kinetic energy to navigate increasingly tortuous paths between surface molecules.

  5. Gossip and Distributed Kalman Filtering: Weak Consensus Under Weak Detectability

    Science.gov (United States)

    Kar, Soummya; Moura, José M. F.

    2011-04-01

    The paper presents the gossip interactive Kalman filter (GIKF) for distributed Kalman filtering for networked systems and sensor networks, where inter-sensor communication and observations occur at the same time-scale. The communication among sensors is random; each sensor occasionally exchanges its filtering state information with a neighbor depending on the availability of the appropriate network link. We show that under a weak distributed detectability condition: 1. the GIKF error process remains stochastically bounded, irrespective of the instability properties of the random process dynamics; and 2. the network achieves \\emph{weak consensus}, i.e., the conditional estimation error covariance at a (uniformly) randomly selected sensor converges in distribution to a unique invariant measure on the space of positive semi-definite matrices (independent of the initial state.) To prove these results, we interpret the filtered states (estimates and error covariances) at each node in the GIKF as stochastic particles with local interactions. We analyze the asymptotic properties of the error process by studying as a random dynamical system the associated switched (random) Riccati equation, the switching being dictated by a non-stationary Markov chain on the network graph.

  6. Adaptation of the TH Epsilon Mu formalism for the analysis of the equivalence principle in the presence of the weak and electroweak interaction

    Science.gov (United States)

    Fennelly, A. J.

    1981-01-01

    The TH epsilon mu formalism, used in analyzing equivalence principle experiments of metric and nonmetric gravity theories, is adapted to the description of the electroweak interaction using the Weinberg-Salam unified SU(2) x U(1) model. The use of the TH epsilon mu formalism is thereby extended to the weak interactions, showing how the gravitational field affects W sub mu (+ or -1) and Z sub mu (0) boson propagation and the rates of interactions mediated by them. The possibility of a similar extension to the strong interactions via SU(5) grand unified theories is briefly discussed. Also, using the effects of the potentials on the baryon and lepton wave functions, the effects of gravity on transition mediated in high-A atoms which are electromagnetically forbidden. Three possible experiments to test the equivalence principle in the presence of the weak interactions, which are technologically feasible, are then briefly outline: (1) K-capture by the FE nucleus (counting the emitted X-ray); (2) forbidden absorption transitions in high-A atoms' vapor; and (3) counting the relative Beta-decay rates in a suitable alpha-beta decay chain, assuming the strong interactions obey the equivalence principle.

  7. Exchange Enhancement of the Electron-Phonon Interaction: The Case of Weakly Doped Two-Dimensional Multivalley Semiconductors

    Science.gov (United States)

    Pamuk, Betül; Zoccante, Paolo; Baima, Jacopo; Mauri, Francesco; Calandra, Matteo

    2018-04-01

    The effect of the exchange interaction on the vibrational properties and on the electron-phonon coupling were investigated in several recent works. In most of the cases, exchange tends to enhance the electron-phonon interaction, although the motivations for such behaviour are not completely understood. Here we consider the class of weakly doped two-dimensional multivalley semiconductors and we demonstrate that a more global picture emerges. In particular we show that in these systems, at low enough doping, even a moderate electron-electron interaction enhances the response to any perturbation inducing a valley polarization. If the valley polarization is due to the electron-phonon coupling, the electron-electron interaction results in an enhancement of the superconducting critical temperature. We demonstrate the applicability of the theory by performing random phase approximation and first principles calculations in transition metal chloronitrides. We find that exchange is responsible for the enhancement of the superconducting critical temperature in LixZrNCl and that much larger Tcs could be obtained in intercalated HfNCl if the synthesis of cleaner samples could remove the Anderson insulating state competing with superconductivity.

  8. Wetting, meniscus structure, and capillary interactions of microspheres bound to a cylindrical liquid interface.

    Science.gov (United States)

    Kim, Paul Y; Dinsmore, Anthony D; Hoagland, David A; Russell, Thomas P

    2018-03-14

    Wetting, meniscus structure, and capillary interactions for polystyrene microspheres deposited on constant curvature cylindrical liquid interfaces, constructed from nonvolatile ionic or oligomeric liquids, were studied by optical interferometry and optical microscopy. The liquid interface curvature resulted from the preferential wetting of finite width lines patterned onto planar silicon substrates. Key variables included sphere diameter, nominal (or average) contact angle, and deviatoric interfacial curvature. Menisci adopted the quadrupolar symmetry anticipated by theory, with interfacial deformation closely following predicted dependences on sphere diameter and nominal contact angle. Unexpectedly, the contact angle was not constant locally around the contact line, the nominal contact angle varied among seemingly identical spheres, and the maximum interface deviation did not follow the predicted dependence on deviatoric interfacial curvature. Instead, this deviation was up to an order-of-magnitude larger than predicted. Trajectories of neighboring microspheres visually manifested quadrupole-quadrupole interactions, eventually producing square sphere packings that foreshadow interfacial assembly as a potential route to hierarchical 2D particle structures.

  9. (Surfactant + polymer) interaction parameter studied by (liquid + liquid) equilibrium data of quaternary aqueous solution containing surfactant, polymer, and salt

    Energy Technology Data Exchange (ETDEWEB)

    Foroutan, Masumeh [Physical Chemistry Department, School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran (Iran, Islamic Republic of)], E-mail: foroutan@khayam.ut.ac.ir; Heidari, Nosrat; Mohammadlou, Maryam [Chemistry Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of); Sojahrood, Amin Jafari [Physics Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of)

    2009-02-15

    (Liquid + liquid) equilibrium (LLE) data of quaternary aqueous system containing polyoxyethylene (20) cetyl ether (with abbreviation name Brij 58, non-ionic surfactant), diammonium hydrogen phosphate, and poly ethylene glycol (PEG) with three molar masses {l_brace}M{sub W} = (1000, 6000, and 35,000) g . mol{sup -1}{r_brace} have been determined experimentally at T = 313.15 K. Furthermore, the Flory-Huggins theory with two electrostatic terms (Debye-Hueckel and Pitzer-Debye-Hueckel equations) have been used to calculate the phase behavior of the quaternary systems and (surfactant + polymer) interaction parameter as well as interaction parameters between other species. Temperature dependency of the parameters of the Flory-Huggins theory has been obtained. Also an effort have been done to show that addition of PEG as well as increasing the temperature can shift the binodal curves of the ternary aqueous system containing surfactant and salt to lower mole fraction of salt. Also the effect of polymer molar mass on the binodal diagram displacement has been discussed.

  10. Crystal structure of dimethylformamidium bis(trifluoromethanesulfonyl)amide: an ionic liquid

    OpenAIRE

    Allan Jay P. Cardenas; Molly O'Hagan

    2016-01-01

    At 100?K, the title mol?ecular salt, C3H8NO+?C2F6NO4S2 ?, has ortho?rhom?bic (P212121) symmetry; the amino H atom of bis?(tri?fluoro?methane?sulfon?yl)amine (HNTf2) was transferred to the basic O atom of di?methyl?formamide (DMF) when the ionic liquid components were mixed. The structure displays an O?H?N hydrogen bond, which links the cation to the anion, which is reinforced by a non-conventional C?H?O inter?action, generating an R 2 2(7) loop. A further very weak C?H?O inter?action generate...

  11. Weak hydrogen bonding interactions influence slip system activity and compaction behavior of pharmaceutical powders.

    Science.gov (United States)

    Khomane, Kailas S; Bansal, Arvind K

    2013-12-01

    Markedly different mechanical behavior of powders of polymorphs, cocrystals, hydrate/anhydrate pairs, or structurally similar molecules has been attributed to the presence of active slip planes system in their crystal structures. Presence of slip planes in the crystal lattice allows easier slip under the applied compaction pressure. This allows greater plastic deformation of the powder and results into increased interparticulate bonding area and greater tensile strength of the compacts. Thus, based on this crystallographic feature, tableting performance of the active pharmaceutical ingredients can be predicted. Recently, we encountered a case where larger numbers of CH···O type interactions across the proposed slip planes hinder the slip and thus resist plastic deformation of the powder under the applied compaction pressure. Hence, attention must be given to these types of interactions while identifying slip planes by visualization method. Generally, slip planes are visualized as flat layers often strengthened by a two-dimensional hydrogen-bonding network within the layers or planes. No hydrogen bonding should exist between these layers to consider them as slip planes. Moreover, one should also check the presence of CH···O type interactions across these planes. Mercury software provides an option for visualization of these weak hydrogen bonding interactions. Hence, caution must be exercised while selecting appropriate solid form based on this crystallographic feature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. International symposium on weak and electromagnetic interactions in nuclei

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1989-01-01

    The purpose of the symposium is to study the implications of the Standard Model (and its extensions) in the realm of low-energy physics. The atomic nucleus constitutes a laboratory where these questions can be investigated. Low and medium-energy accelerators, reactors and other facilities continue to play an important role in this field. The electroweak sector of the Standard Model has benefited much from these investigations. Weak and electromagnetic interactions are also used to probe nuclear and hadronic structures and also new states of nuclear matter (the strong sector of the Standard Model). These studies cannot be dissociated from the fundamental questions raised in the realm of high-energy physics, astrophysics and cosmology. The symposium is therefore intended to be a meeting ground for low, medium-, and high-energy physicists, astrophysicists and cosmologists, who are tackling common problems in many different ways. That is the summary. By now most of the expert speakers have come, given their talks, and left, I assume that those of you who are still here would like to have some framework in which to put the things you have heard in the last week, and in addition gain some perspective on where we are and where we are going. That is what I am going to try and do in this talk

  13. 20F beta spectrum shape and weak interaction tests

    Science.gov (United States)

    Voytas, Paul; George, Elizabeth; Chuna, Thomas; Naviliat-Cuncic, Oscar; Hughes, Max; Huyan, Xueying; Minamisono, Kei; Paulauskas, Stanley

    2016-09-01

    Precision measurements of the shape of beta spectra can test our understanding of the weak interaction. We are carrying out a measurement of the shape of the energy spectrum of β particles from 20F decay. The primary motivation is to test the so-called strong form of the conserved vector current (CVC) hypothesis. The measurement should also enable us to place competitive limits on the contributions of exotic tensor couplings in beta decay. We aim to achieve a relative precision better than 3% on the linear contribution to the shape. This represents an order of magnitude improvement compared to previous experiments in 20F. In order to control systematic effects, we are using a technique that takes advantage of high energy radioactive beams at the NSCL to implant the decaying nuclei in scintillation detectors deeply enough that the emitted beta particles cannot escape. The β-particle energy is measured with the implantation detector after switching off the implantation beam. Ancillary detectors are used to identify the 1.633-MeV γ-rays following the 20F β decay for coincidence measurements in order to tag the transition of interest and to reduce backgrounds. We report on the status of the analysis. Supported in part with Awards from the NSCL PAC and the National Science Foundation under Grant No. PHY-1506084.

  14. Local structural ordering in surface-confined liquid crystals

    Science.gov (United States)

    Śliwa, I.; Jeżewski, W.; Zakharov, A. V.

    2017-06-01

    The effect of the interplay between attractive nonlocal surface interactions and attractive pair long-range intermolecular couplings on molecular structures of liquid crystals confined in thin cells with flat solid surfaces has been studied. Extending the McMillan mean field theory to include finite systems, it has been shown that confining surfaces can induce complex orientational and translational ordering of molecules. Typically, local smectic A, nematic, and isotropic phases have been shown to coexist in certain temperature ranges, provided that confining cells are sufficiently thick, albeit finite. Due to the nonlocality of surface interactions, the spatial arrangement of these local phases can display, in general, an unexpected complexity along the surface normal direction. In particular, molecules located in the vicinity of surfaces can still be organized in smectic layers, even though nematic and/or isotropic order can simultaneously appear in the interior of cells. The resulting surface freezing of smectic layers has been confirmed to occur even for rather weak surface interactions. The surface interactions cannot, however, prevent smectic layers from melting relatively close to system boundaries, even when molecules are still arranged in layers within the central region of the system. The internal interfaces, separating individual liquid-crystal phases, are demonstrated here to form fronts of local finite-size transitions that move across cells under temperature changes. Although the complex molecular ordering in surface confined liquid-crystal systems can essentially be controlled by temperature variations, specific thermal properties of these systems, especially the nature of the local transitions, are argued to be strongly conditioned to the degree of molecular packing.

  15. Chromatographic retention prediction and octanol-water partition coefficient determination of monobasic weak acidic compounds in ion-suppression reversed-phase liquid chromatography using acids as ion-suppressors.

    Science.gov (United States)

    Ming, Xin; Han, Shu-ying; Qi, Zheng-chun; Sheng, Dong; Lian, Hong-zhen

    2009-08-15

    Although simple acids, replacing buffers, have been widely applied to suppress the ionization of weakly ionizable acidic analytes in reversed-phase liquid chromatography (RPLC), none of the previously reported works focused on the systematic studies about the retention behavior of the acidic solutes in this ion-suppression RPLC mode. The subject of this paper was therefore to investigate the retention behavior of monobasic weak acidic compounds using acetic, perchloric and phosphoric acids as the ion-suppressors. The apparent octanol-water partition coefficient (K" ow) was proposed to calibrate the octanol-water partition coefficient (K(ow)) of these weak acidic compounds, which resulted in a better linear correlation with log k(w), the logarithm of the hypothetical retention factor corresponding to neat aqueous fraction of hydroorganic mobile phase. This log K" ow-log k w linear correlation was successfully validated by the results of monocarboxylic acids and monohydrating phenols, and moreover by the results under diverse experimental conditions for the same solutes. This straightforward relationship not only can be used to effectively predict the retention values of weak acidic solutes combined with Snyder-Soczewinski equation, but also can offer a promising medium for directly measuring K(ow) data of these compounds via Collander equation. In addition, the influence of the different ion-suppressors on the retention of weak acidic compounds was also compared in this RPLC mode.

  16. Study of interaction of electromagnetic waves with thin rotating cylindrical shell of conductor in vicinity of weakly gravitating string

    International Nuclear Information System (INIS)

    Muminov, A.T.

    2004-01-01

    Full text: As it shown in the work [1,2], interaction of electromagnetic wave with rotating cylindrical shell of conductor leads to an interesting phenomenon of energy transmission from rotating body to the wave. We study influence of the gravitational field of the string on the process of interaction of electromagnetic waves with infinitesimally thin conducting cylindrical shell. Since in the outer space and inside the shell electromagnetic field satisfies source free Maxwell equations we start with constructing the most general solutions of this equation. Then we match the fields on the cylinder with account of boundary conditions on it. Matching the fields gives expressions for reflection factors of cylindrical waves for two cases of polarization. The reflection factors for distinct wave polarizations show the ratio of outgoing energy flux to in going one. Curved cylindrical symmetric space-time with weakly gravitating string-like source is described by static metric: δs 2 = f(r)δt 2 - h(r)(δz 2 + δr 2 ) - l(r)δψ 2 ; f(r) = r ε ; h(r) = r -ε ; l(r) = r 2 /f(r). Which corresponds to low line density of mass ε on the string. The metric is particular case of Lewis metric [3,4] with zero angular momentum of the string and its weak gravity. The boundary value problem for electromagnetic waves interaction with thin conducting rotating cylindrical shell in static cylindrical metric with weakly gravitating string has been solved analytically. It is found that character of dependence of the factors on Ω at ω R<<1 and ΩR<<1 approximation remains the same as in flat space-time ε =0. Analysis of expressions for the reflection factors in frames of considered approximation has been done

  17. Simultaneous measurement of dynamic force and spatial thin film thickness between deformable and solid surfaces by integrated thin liquid film force apparatus.

    Science.gov (United States)

    Zhang, Xurui; Tchoukov, Plamen; Manica, Rogerio; Wang, Louxiang; Liu, Qingxia; Xu, Zhenghe

    2016-11-09

    Interactions involving deformable surfaces reveal a number of distinguishing physicochemical characteristics that do not exist in interactions between rigid solid surfaces. A unique fully custom-designed instrument, referred to as integrated thin liquid film force apparatus (ITLFFA), was developed to study the interactions between one deformable and one solid surface in liquid. Incorporating a bimorph force sensor with interferometry, this device allows for the simultaneous measurement of the time-dependent interaction force and the corresponding spatiotemporal film thickness of the intervening liquid film. The ITLFFA possesses the specific feature of conducting measurement under a wide range of hydrodynamic conditions, with a displacement velocity of deformable surfaces ranging from 2 μm s -1 to 50 mm s -1 . Equipped with a high speed camera, the results of a bubble interacting with hydrophilic and partially hydrophobic surfaces in aqueous solutions indicated that ITLFFA can provide information on interaction forces and thin liquid film drainage dynamics not only in a stable film but also in films of the quick rupture process. The weak interaction force was extracted from a measured film profile. Because of its well-characterized experimental conditions, ITLFFA permits the accurate and quantitative comparison/validation between measured and calculated interaction forces and temporal film profiles.

  18. Turbulence of Weak Gravitational Waves in the Early Universe.

    Science.gov (United States)

    Galtier, Sébastien; Nazarenko, Sergey V

    2017-12-01

    We study the statistical properties of an ensemble of weak gravitational waves interacting nonlinearly in a flat space-time. We show that the resonant three-wave interactions are absent and develop a theory for four-wave interactions in the reduced case of a 2.5+1 diagonal metric tensor. In this limit, where only plus-polarized gravitational waves are present, we derive the interaction Hamiltonian and consider the asymptotic regime of weak gravitational wave turbulence. Both direct and inverse cascades are found for the energy and the wave action, respectively, and the corresponding wave spectra are derived. The inverse cascade is characterized by a finite-time propagation of the metric excitations-a process similar to an explosive nonequilibrium Bose-Einstein condensation, which provides an efficient mechanism to ironing out small-scale inhomogeneities. The direct cascade leads to an accumulation of the radiation energy in the system. These processes might be important for understanding the early Universe where a background of weak nonlinear gravitational waves is expected.

  19. Hypernuclear weak decay and the ΔI = 1/2 rule

    International Nuclear Information System (INIS)

    Barnes, P.D.

    1987-01-01

    Recent measurements of the weak decay of Λ hypernuclei are reported and discussed in the context of the weak hyperon-baryon effective Hamiltonian. The results are compared to predictions of both meson exchange and quark-quark weak interaction models. 14 refs., 4 figs., 2 tabs

  20. Investigations on interactions between the flowing liquid lithium limiter and plasmas

    International Nuclear Information System (INIS)

    Ren, J.; Zuo, G.Z.; Hu, J.S.; Sun, Z.; Li, J.G.; Zakharov, L.E.; Ruzic, D.N.; Xu, W.Y.

    2016-01-01

    Two different designs of flowing liquid lithium limiter were first tested for power exhaust and particle removal in HT-7 in 2012 autumn campaign. During the experiments, the reliability and compatibility of the limiters within Tokamak were experimentally demonstrated, and some positive results were achieved. It was found that the flowing liquid lithium limiter was effective for suppressing H concentration and led to a low ratio of H/(H + D). O impurity was slightly decreased by using limiters as well as when using a Li coating. A significant increase of the wall retention ratio was also observed which resulted from the outstanding D particles pumping ability of flowing liquid lithium limiters. The strong interaction between plasma and lithium surface could cause lithium ejection into plasma and lead to disruptions. The stable plasmas produced by uniform Li flow were in favor of lithium control. While the limiters were applied with a uniform Li flow, the normal plasma was easy to be obtained, and the energy confinement time increased from ∼0.025 s to 0.04 s. Furthermore, it was encouraging to note that the application of flowing liquid lithium limiters could further improve the confinement of plasma by ∼10% on the basis of Li coating. These remarkable results will help for the following design of flowing liquid lithium limiter in EAST to improve the plasma operation.

  1. Polar silica-based stationary phases. Part II- Neutral silica stationary phases with surface bound maltose and sorbitol for hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Rathnasekara, Renuka; El Rassi, Ziad

    2017-07-28

    Two neutral polyhydroxylated silica bonded stationary phases, namely maltose-silica (MALT-silica) and sorbitol-silica (SOR-silica), have been introduced and chromatographically characterized in hydrophilic interaction liquid chromatography (HILIC) for a wide range of polar compounds. The bonding of the maltose and sorbitol to the silica surface was brought about by first converting bare silica to an epoxy-activated silica surface via reaction with γ-glycidoxypropyltrimethoxysilane (GPTMS) followed by attaching maltose and sorbitol to the epoxy surface in the presence of the Lewis acid catalyst BF 3 .ethereate. Both silica based columns offered the expected retention characteristics usually encountered for neutral polar surface. The retention mechanism is majorly based on solute' differential partitioning between an organic rich hydro-organic mobile phase (e.g., ACN rich mobile phase) and an adsorbed water layer on the surface of the stationary phase although additional hydrogen bonding was also responsible in some cases for solute retention. The MALT-silica column proved to be more hydrophilic and offered higher retention, separation efficiency and resolution than the SOR-silica column among the tested polar solutes such as derivatized mono- and oligosaccharides, weak phenolic acids, cyclic nucleotide monophosphate and nucleotide-5'-monophosphates, and weak bases, e.g., nucleobases and nucleosides. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Kinetic energy and added mass of hydrodynamically interacting gas bubbles in liquid

    NARCIS (Netherlands)

    Kok, Jacobus B.W.

    1988-01-01

    By averaging the basic equations on microscale, expressions are derived for the effective added mass density and the kinetic energy density of a mixture of liquid and gas bubbles. Due to hydrodynamic interaction between the bubbles there appears to be a difference between the effective added mass

  3. Modulated growth, stability and interactions of liquid-like coacervate assemblies of elastin.

    Science.gov (United States)

    Muiznieks, Lisa D; Cirulis, Judith T; van der Horst, Astrid; Reinhardt, Dieter P; Wuite, Gijs J L; Pomès, Régis; Keeley, Fred W

    2014-06-01

    Elastin self-assembles from monomers into polymer networks that display elasticity and resilience. The first major step in assembly is a liquid-liquid phase separation known as coacervation. This process represents a continuum of stages from initial phase separation to early growth of droplets by coalescence and later "maturation" leading to fiber formation. Assembly of tropoelastin-rich globules is on pathway for fiber formation in vivo. However, little is known about these intermediates beyond their size distribution. Here we investigate the contribution of sequence and structural motifs from full-length tropoelastin and a set of elastin-like polypeptides to the maturation of coacervate assemblies, observing their growth, stability and interaction behavior, and polypeptide alignment within matured globules. We conclude that maturation is driven by surface properties, leading to stabilization of the interface between the hydrophobic interior and aqueous solvent, potentially through structural motifs, and discuss implications for droplet interactions in fiber formation. Copyright © 2014. Published by Elsevier B.V.

  4. Fluid structure interaction modeling of liquid sloshing phenomena in flexible tanks

    International Nuclear Information System (INIS)

    Nicolici, S.; Bilegan, R.M.

    2013-01-01

    Highlights: ► We used Ansys Workbench package to study sloshing phenomena in liquid containers. ► The interaction liquid–structure is modeled considering full and one-way coupling. ► The results obtained with the FSI models were compared against design codes. ► The results have shown that the sloshing is influenced by tank wall elasticity. -- Abstract: The present paper is concerned with the problem of modeling the fluid–structure interaction (FSI) in partially filled liquid containers. The study focuses on the sloshing phenomena and on the coupling computational fluid dynamics (CFD) analysis with the finite element stress analysis (FEA) used to predict the sloshing wave amplitude, convective mode frequency, pressure exerted on the walls and the effect of sloshing on the anchoring points forces. The interaction between fluids (water and air) and tank wall is modeled considering full and one-way coupling. Using the time history of an earthquake excitation, the results of the FSI model are compared with those obtained employing simplified mechanical models given in design codes. The coupling phenomenon was found to influence the sloshing effect, the impulsive pressure being amplified by the wall elasticity. The applied FSI methodology proves to be feasible in analyzing a 3D full coupled CFD/FEA storage tank subjected to a long time history excitation

  5. Interaction of Ionic Liquids with Lipid Biomembrane: Implication from Supramolecular Assembly to Cytotoxicity

    Science.gov (United States)

    Jing, Benxin; Lan, Nan; Zhu, Y. Elaine

    2013-03-01

    An explosion in the research activities using ionic liquids (ILs) as new ``green'' chemicals in several chemical and biomedical processes has resulted in the urgent need to understand their impact in term of their transport and toxicity towards aquatic organisms. Though a few experimental toxicology studies have reported that some ionic liquids are toxic with increased hydrophobicity of ILs while others are not, our understanding of the molecular level mechanism of IL toxicity remains poorly understood. In this talk, we will discuss our recent study of the interaction of ionic liquids with model cell membranes. We have found that the ILs could induce morphological change of lipid bilayers when a critical concentration is exceeded, leading to the swelling and tube-like formation of lipid bilayers. The critical concentration shows a strong dependence on the length of hydrocarbon tails and hydrophobic counterions. By SAXS, Langmuir-Blodgett (LB) and fluorescence microscopic measurement, we have confirmed that tube-like lipid complexes result from the insertion of ILs with long hydrocarbon chains to minimize the hydrophobic interaction with aqueous media. This finding could give insight to the modification and adoption of ILs for the engineering of micro-organisms.

  6. Left-right symmetry in weak interactions: present status

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1983-01-01

    The basic features of the left-right symmetric electroweak theory are reviewed. The experimental situation regarding the scale M/sub R/ of the breakdown of parity is summarized. I further discuss in detail the connection with weak and strong CP violation and especially, grand unification. Also covered are the issues of cosmological domain walls and the compositeness of quarks and leptons. 57 references

  7. The chiral anomaly in non-leptonic weak interactions

    International Nuclear Information System (INIS)

    Bijnens, J.; Pich, A.; Ecker, G.

    1992-01-01

    The interplay between the chiral anomaly and the non-leptonic weak hamiltonian is studied. The structure of the corresponding effective lagrangian of odd intrinsic parity is established. It is shown that the factorizable contributions (leading in 1/N C ) to that lagrangian can be calculated without free parameters. As a first application, the decay K + →π + π 0 γ is investigated. (orig.)

  8. Impact of water dilution and cation tail length on ionic liquid characteristics: Interplay between polar and non-polar interactions

    International Nuclear Information System (INIS)

    Hegde, Govind A.; Bharadwaj, Vivek S.; Kinsinger, Corey L.; Schutt, Timothy C.; Pisierra, Nichole R.; Maupin, C. Mark

    2016-01-01

    The recalcitrance of lignocellulosic biomass poses a major challenge that hinders the economical utilization of biomass for the production of biofuel, plastics, and chemicals. Ionic liquids have become a promising solvent that addresses many issues in both the pretreatment process and the hydrolysis of the glycosidic bond for the deconstruction of cellulosic materials. However, to make the use of ionic liquids economically viable, either the cost of ionic liquids must be reduced, or a less expensive solvent (e.g., water) may be added to reduce the overall amount of ionic liquid used in addition to reducing the viscosity of the binary liquid mixture. In this work, we employ atomistic molecular dynamics simulations to investigate the impact of water dilution on the overall liquid structure and properties of three imidazolium based ionic liquids. It is found that ionic liquid-water mixtures exhibit characteristics that can be grouped into two distinct regions, which are a function of the ionic liquid concentration. The trends observed in each region are found to correlate with the ordering in the local structure of the ionic liquid that arises from the dynamic interactions between the ion pairs. Simulation results suggest that there is a high level of local ordering in the molecular structure at high concentrations of ionic liquids that is driven by the aggregation of the cationic tails and the anion-water interactions. It is found that as the concentration of ionic liquids in the binary mixture is decreased, there is a point at which the competing self and cross interaction energies between the ionic liquid and water shifts away from a cation-anion dominated regime, which results in a significant change in the mixture properties. This break point, which occurs around 75% w/w ionic liquids, corresponds to the point at which water molecules percolate into the ionic liquid network disrupting the ionic liquids’ nanostructure. It is observed that as the cationic alkyl

  9. Nonlinear waves and weak turbulence

    CERN Document Server

    Zakharov, V E

    1997-01-01

    This book is a collection of papers on dynamical and statistical theory of nonlinear wave propagation in dispersive conservative media. Emphasis is on waves on the surface of an ideal fluid and on Rossby waves in the atmosphere. Although the book deals mainly with weakly nonlinear waves, it is more than simply a description of standard perturbation techniques. The goal is to show that the theory of weakly interacting waves is naturally related to such areas of mathematics as Diophantine equations, differential geometry of waves, Poincaré normal forms, and the inverse scattering method.

  10. Staggering towards a calculation of weak amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, S.R.

    1988-09-01

    An explanation is given of the methods required to calculate hadronic matrix elements of the weak Hamiltonians using lattice QCD with staggered fermions. New results are presented for the 1-loop perturbative mixing of the weak interaction operators. New numerical techniques designed for staggered fermions are described. A preliminary result for the kaon B parameter is presented. 24 refs., 3 figs.

  11. Superconductivity in a Fermi liquid from repulsive interactions: The role of electron–phonon interaction

    International Nuclear Information System (INIS)

    Fan, J.D.; Malozovsky, Y.M.

    2013-01-01

    Highlights: • The sign reversal of pair interaction in momentum space is proved. • It is also shown that electron-phonon interaction in fact leads to the pairing-break effect. • Transition temperature into superconductivity depends on competition between electron-phonon and Coulomb interactions. • Calculated exponent α of the isotope effect shows the possibility equal to, greater or less than 0.5, and even negative. -- Abstract: Based on our previously proven theorem that the interaction between a pair of quasiparticles in the normal Fermi liquid has an opposite sign to the interaction between particles, we consider pair correlation between a pair of quasiparticles when the interaction between particles is repulsive. For the convenience of statements, we have presented in this article once again the proof of the theorem in terms of an exact equation for the thermodynamic potential due to interaction between particles and based on the Green’s function method. Further, we have derived the Landau expansion of the thermodynamic potentials in terms of the variation of the quasiparticle distribution function. We have also derived the expansion of the thermodynamic potential in terms of the variation of an exact single particle (not quasiparticles), these derivations lead to the relationship between the interaction function for two quasiparticles and the interaction energy between two particles as shown. According to the proven theorem the interaction between a pair of quasiparticles is attractive in this case, the pairing – Cooper’s pairing between a pair of quasiparticles is possible. We solve the Bethe–Salpeter type equation for paring of two quasiparticles when both interactions – the Coulomb repulsive and electron–phonon interaction are present. We show that the electron–phonon interaction, in fact, leads to the pair breaking effect, in contrast to the common belief that electron–phonon interaction is the main mechanism for Cooper’s pair

  12. Does a network structure exist in molecular liquid SnI4 and GeI4?

    Science.gov (United States)

    Sakagami, Takahiro; Fuchizaki, Kazuhiro

    2017-04-01

    The existence of a network structure consisting of electrically neutral tetrahedral molecules in liquid SnI4 and GeI4 at ambient pressure was examined. The liquid structures employed for the examination were obtained from a reverse Monte Carlo analysis. The structures were physically interpreted by introducing an appropriate intermolecular interaction. A ‘bond’ was then defined as an intermolecular connection that minimizes the energy of intermolecular interaction. However, their ‘bond’ energy is too weak for the ‘bond’ and the resulting network structure to be defined statically. The vertex-to-edge orientation between the nearest molecules is so ubiquitous that almost all of the molecules in the system can take part in the network, which is reflected in the appearance of a prepeak in the structure factor.

  13. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang [High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000 (China); Luo, Xisheng, E-mail: xluo@ustc.edu.cn [Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026 (China)

    2015-06-15

    The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF{sub 6} surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into three branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.

  14. Cohesion-Induced Stabilization in Stick-Slip Dynamics of Weakly Wet, Sheared Granular Fault Gouge

    Science.gov (United States)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2018-03-01

    We use three-dimensional discrete element calculations to study stick-slip dynamics in a weakly wet granular layer designed to simulate fault gouge. The granular gouge is constituted by 8,000 spherical particles with a polydisperse size distribution. At very low liquid content, liquids impose cohesive and viscous forces on particles. Our simulations show that by increasing the liquid content, friction increases and granular layer shows higher recurrence time between slip events. We also observe that slip events exhibit larger friction drop and layer compaction in wet system compared to dry. We demonstrate that a small volume of liquid induces cohesive forces between wet particles that are responsible for an increase in coordination number leading to a more stable arrangement of particles. This stabilization is evidenced with 2 orders of magnitude lower particle kinetic energy in wet system during stick phase. Similar to previous experimental studies, we observe enhanced frictional strength for wet granular layers. In experiments, the physicochemical processes are believed to be the main reason for such behavior; we show, however, that at low confining stresses, the hydromechanical effects of induced cohesion are sufficient for observed behavior. Our simulations illuminate the role of particle interactions and demonstrate the conditions under which induced cohesion plays a significant role in fault zone processes, including slip initiation, weakening, and failure.

  15. Mixed-symmetry superconductivity in two-dimensional Fermi liquids

    International Nuclear Information System (INIS)

    Musaelian, K.A.; Betouras, J.; Chubukov, A.V.; Joynt, R.

    1996-01-01

    We consider a two-dimensional (2D) isotropic Fermi liquid with attraction in both s and d channels and examine the possibility of a superconducting state with mixed s and d symmetry of the gap function. We show that both in the weak-coupling limit and at strong coupling, a mixed s+id symmetry state is realized in a certain range of interaction. Phase transitions between the mixed and the pure symmetry states are second order. We also show that there is no stable mixed s+d symmetry state at any coupling. copyright 1996 The American Physical Society

  16. A quantitative analysis of weak intermolecular interactions & quantum chemical calculations (DFT) of novel chalcone derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Chavda, Bhavin R., E-mail: chavdabhavin9@gmail.com; Dubey, Rahul P.; Patel, Urmila H. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat (India); Gandhi, Sahaj A. [Bhavan’s Shri I.L. Pandya Arts-Science and Smt. J.M. shah Commerce College, Dakar, Anand -388001, Gujarat, Indian (India); Barot, Vijay M. [P. G. Center in Chemistry, Smt. S. M. Panchal Science College, Talod, Gujarat 383 215 (India)

    2016-05-06

    The novel chalcone derivatives have widespread applications in material science and medicinal industries. The density functional theory (DFT) is used to optimized the molecular structure of the three chalcone derivatives (M-I, II, III). The observed discrepancies between the theoretical and experimental (X-ray data) results attributed to different environments of the molecules, the experimental values are of the molecule in solid state there by subjected to the intermolecular forces, like non-bonded hydrogen bond interactions, where as isolated state in gas phase for theoretical studies. The lattice energy of all the molecules have been calculated using PIXELC module in Coulomb –London –Pauli (CLP) package and is partitioned into corresponding coulombic, polarization, dispersion and repulsion contributions. Lattice energy data confirm and strengthen the finding of the X-ray results that the weak but significant intermolecular interactions like C-H…O, Π- Π and C-H… Π plays an important role in the stabilization of crystal packing.

  17. The microjet-film interaction: the interaction and resulting shapes of a liquid microjet impacting a soap film

    Science.gov (United States)

    Chan, Jau Tung; Lee, Jie Liang; Tjeng, Vincent; Yeo, Ye; Tan, Guoxian

    2014-11-01

    The International Young Physicists’ Tournament (IYPT) is a worldwide annual competition for high-school students. This paper is adapted from the solution to problem 8, Jet and Film, as presented by the Singapore Team at the 26th IYPT, Taipei, Taiwan. The impact of liquid microjets on stable soap films was investigated. Two steady regimes were observed: refraction (where the microjet penetrates the soap film and is deflected) and absorption (where the microjet merges with the soap film and forms vertical undulating patterns on the soap film surface). This phenomenon has potential applications in controlling the trajectory of a liquid microjet in air. Although Kirstetter et al (2012) investigated this interaction by using the same liquid for both the microjet and the soap film, this paper extends their work by using different liquids for the microjet and the soap film. In addition, the need for a small-angle approximation of Snell’s law is removed for the refraction regime, and an alternative expression is proposed for the force exerted by the soap film on the microjet in the absorption regime that accounts for the dependence of the wavelength of the undulating patterns on the angle of incidence of the microjet on the soap film. Empirical data support these improved theoretical predictions.

  18. The microjet-film interaction: the interaction and resulting shapes of a liquid microjet impacting a soap film

    International Nuclear Information System (INIS)

    Chan, Jau Tung; Tan, Guoxian; Lee, Jie Liang; Tjeng, Vincent; Yeo, Ye

    2014-01-01

    The International Young Physicists’ Tournament (IYPT) is a worldwide annual competition for high-school students. This paper is adapted from the solution to problem 8, Jet and Film, as presented by the Singapore Team at the 26th IYPT, Taipei, Taiwan. The impact of liquid microjets on stable soap films was investigated. Two steady regimes were observed: refraction (where the microjet penetrates the soap film and is deflected) and absorption (where the microjet merges with the soap film and forms vertical undulating patterns on the soap film surface). This phenomenon has potential applications in controlling the trajectory of a liquid microjet in air. Although Kirstetter et al (2012) investigated this interaction by using the same liquid for both the microjet and the soap film, this paper extends their work by using different liquids for the microjet and the soap film. In addition, the need for a small-angle approximation of Snell’s law is removed for the refraction regime, and an alternative expression is proposed for the force exerted by the soap film on the microjet in the absorption regime that accounts for the dependence of the wavelength of the undulating patterns on the angle of incidence of the microjet on the soap film. Empirical data support these improved theoretical predictions. (paper)

  19. Thermodynamics of a Fermi liquid beyond the low-energy limit

    International Nuclear Information System (INIS)

    Chubukov, A.V.; Maslov, D.L.; Gangadharaiah, S.; Glazman, L.I.

    2005-05-01

    We consider the non-analytic temperature dependences of the specific heat coefficient, C(T)/T and spin susceptibility, X s (T), of 2D interacting fermions beyond the weak-coupling limit. We demonstrate within the Luttinger-Ward formalism that the leading temperature dependences of C(T)/T and X s (T) are linear in T, and are described by the Fermi liquid theory. We show that these temperature dependences are universally determined by the states near the Fermi level and, for a generic interaction, are expressed via the spin and charge components of the exact backscattering amplitude of quasi- particles. We compare our theory to recent experiments on monolayers of He 3 . (author)

  20. Finding the best density functional approximation to describe interaction energies and structures of ionic liquids in molecular dynamics studies

    Science.gov (United States)

    Perlt, Eva; Ray, Promit; Hansen, Andreas; Malberg, Friedrich; Grimme, Stefan; Kirchner, Barbara

    2018-05-01

    Ionic liquids raise interesting but complicated questions for theoretical investigations due to the fact that a number of different inter-molecular interactions, e.g., hydrogen bonding, long-range Coulomb interactions, and dispersion interactions, need to be described properly. Here, we present a detailed study on the ionic liquids ethylammonium nitrate and 1-ethyl-3-methylimidazolium acetate, in which we compare different dispersion corrected density functional approximations to accurate local coupled cluster data in static calculations on ionic liquid clusters. The efficient new composite method B97-3c is tested and has been implemented in CP2K for future studies. Furthermore, tight-binding based approaches which may be used in large scale simulations are assessed. Subsequently, ab initio as well as classical molecular dynamics simulations are conducted and structural analyses are presented in order to shed light on the different short- and long-range structural patterns depending on the method and the system size considered in the simulation. Our results indicate the presence of strong hydrogen bonds in ionic liquids as well as the aggregation of alkyl side chains due to dispersion interactions.

  1. A rapid hydrophilic interaction liquid chromatographic determination of glimepiride in pharmaceutical formulations

    Directory of Open Access Journals (Sweden)

    Si Zhou

    2017-09-01

    Full Text Available Glimepiride is one of the most widely prescribed antidiabetic drugs and contains both hydrophobic and hydrophilic functional groups in its molecules, and thus could be analyzed by either reversed-phase high performance liquid chromatography (HPLC or hydrophilic interaction liquid chromatography (HILIC. In the literature, however, only reversed-phase HPLC has been reported. In this study, a simple, rapid and accurate hydrophilic interaction liquid chromatographic method was developed for the determination of glimepiride in pharmaceutical formulations. The analytical method comprised a fast ultrasound-assisted extraction with acetonitrile as a solvent followed by HILIC separation and quantification using a Waters Spherisorb S5NH2 hydrophilic column with a mobile phase consisting of acetonitrile and aqueous acetate buffer (5.0 mM. The retention time of glimepiride increased slightly with decrease of mobile phase pH value from 6.8 to 5.8 and of acetonitrile content from 60% to 40%, indicating that both hydrophilic, ionic, and hydrophobic interactions were involved in the HILIC retention and elution mechanisms. Quantitation was carried out with a mobile phase of 40% acetonitrile and 60% aqueous acetate buffer (5.0 mM at pH 6.3, by relating the peak area of glimepiride to that of the internal standard, with a detection limit of 15.0 μg/L. UV light absorption responses at 228 nm were linear over a wide concentration range from 50.0 μg/L to 6.00 mg/L. The recoveries of the standard added to pharmaceutical tablet samples were 99.4–103.0% for glimepiride, and the relative standard deviation for the analyte was less than 1.0%. This method has been successfully applied to determine the glimepiride contents in pharmaceutical formulations.

  2. The correlation between fragility, density, and atomic interaction in glass-forming liquids.

    Science.gov (United States)

    Wang, Lijin; Guan, Pengfei; Wang, W H

    2016-07-21

    The fragility that controls the temperature-dependent viscous properties of liquids as the glass transition is approached, in various glass-forming liquids with different softness of the repulsive part of atomic interactions at different densities, is investigated by molecular dynamic simulations. We show that the landscape of fragility in purely repulsive systems can be separated into three regions denoted as RI, RII, and RIII, respectively, with qualitatively disparate dynamic behaviors: RI which can be described by "softness makes strong glasses," RII where fragility is independent of softness and can only be tuned by density, and RIII with constant fragility, suggesting that density plays an unexpected role for understanding the repulsive softness dependence of fragility. What is more important is that we unify the long-standing inconsistence with respect to the repulsive softness dependence of fragility by observing that a glass former can be tuned more fragile if nonperturbative attraction is added into it. Moreover, we find that the vastly dissimilar influences of attractive interaction on fragility could be estimated from the structural properties of related zero-temperature glasses.

  3. Interaction of slow electrons with high-pressure gases ('Quasi-liquids'): synthesis of our knowledge on slow electron-molecule interactions. Progress report

    International Nuclear Information System (INIS)

    McCorkle, D.L.; Christophorou, L.G.

    1985-01-01

    A crucial step in our efforts to develop not only a coherent picture of radiation interaction with matter, but also to understand radiation effects and mechanisms, as well as the effects of chemical pollutants and toxic compounds, is to relate the often abundant knowledge on isolated molecules (low pressure gases) to that on liquids or solids. To understand the roles of the physical and chemical properties of molecules in biological reactions, we must know how these isolated-molecule properties change as molecules are embedded in gradually thicker and thicker (denser and denser) gaseous and, finally, liquid environments. The work initiated by us both at the Physics Department of The University of Tennessee and at the Oak Ridge National Laboratory addresses itself to this question. At both places, high pressure (40 to approx.8000 kPa) electron swarm experiments are currently in operation yielding information as to the effects of the density and nature of the environment on fundamental electron-molecule interaction processes at densities intermediate to those corresponding to low pressure gases and liquids, and the gradual transition from isolated molecule to condensed phase behavior

  4. Quasistatic remanence in Dzyaloshinskii-Moriya interaction driven weak ferromagnets and piezomagnets

    Science.gov (United States)

    Pattanayak, Namrata; Bhattacharyya, Arpan; Nigam, A. K.; Cheong, Sang-Wook; Bajpai, Ashna

    2017-09-01

    We explore remanent magnetization (μ ) as a function of time and temperature, in a variety of rhombohedral antiferromagnets (AFMs) which are also weak ferromagnets (WFMs) and piezomagnets (PzMs). These measurements, across samples with length scales ranging from nano to bulk, firmly establish the presence of a remanence that is quasistatic in nature and exhibits a counterintuitive magnetic field dependence. These observations unravel an ultraslow magnetization relaxation phenomenon related to this quasistatic remanence. This feature is also observed in a defect-free single crystal of α -Fe2O3 , which is a canonical WFM and PzM. Notably, α -Fe2O3 is not a typical geometrically frustrated AFM, and in single crystal form it is also devoid of any size or interface effects, which are the usual suspects for a slow magnetization relaxation phenomenon. The underlying pinning mechanism appears exclusive to those AFMs which either are symmetry allowed WFMs, driven by Dzyaloshinskii-Moriya interaction, or can generate this trait by tuning of size and interface. The qualitative features of the quasistatic remanence indicate that such WFMs are potential piezomagnets, in which magnetization can be tuned by stress alone.

  5. Geometric phase topology in weak measurement

    Science.gov (United States)

    Samlan, C. T.; Viswanathan, Nirmal K.

    2017-12-01

    The geometric phase visualization proposed by Bhandari (R Bhandari 1997 Phys. Rep. 281 1-64) in the ellipticity-ellipse orientation basis of the polarization ellipse of light is implemented to understand the geometric aspects of weak measurement. The weak interaction of a pre-selected state, acheived via spin-Hall effect of light (SHEL), results in a spread in the polarization ellipticity (η) or ellipse orientation (χ) depending on the resulting spatial or angular shift, respectively. The post-selection leads to the projection of the η spread in the complementary χ basis results in the appearance of a geometric phase with helical phase topology in the η - χ parameter space. By representing the weak measurement on the Poincaré sphere and using Jones calculus, the complex weak value and the geometric phase topology are obtained. This deeper understanding of the weak measurement process enabled us to explore the techniques’ capabilities maximally, as demonstrated via SHEL in two examples—external reflection at glass-air interface and transmission through a tilted half-wave plate.

  6. Qweak: First Direct Measurement of the Proton’s Weak Charge

    Directory of Open Access Journals (Sweden)

    Androic D.

    2017-01-01

    Full Text Available The Qweak experiment, which took data at Jefferson Lab in the period 2010 - 2012, will precisely determine the weak charge of the proton by measuring the parity-violating asymmetry in elastic e-p scattering at 1.1 GeV using a longitudinally polarized electron beam and a liquid hydrogen target at a low momentum transfer of Q2 = 0.025 (GeV/c2. The weak charge of the proton is predicted by the Standard Model and any significant deviation would indicate physics beyond the Standard Model. The technical challenges and experimental apparatus for measuring the weak charge of the proton will be discussed, as well as the method of extracting the weak charge of the proton. The results from a small subset of the data, that has been published, will also be presented. Furthermore an update will be given of the current status of the data analysis.

  7. Predictions of baryon form factors for the electromagnetic and weak interaction

    International Nuclear Information System (INIS)

    Kiehlmann, H.D.

    1978-05-01

    The electromagnetic and weak form factors of the baryon matrix elements (with B the nucleon or the Λ(1232)-resonance) are determined via sumrules by the experimentally known form factors of the nucleon matrix element for momentum transfers 0 2 2 . The operator Jμ denotes either the electromagnetic current or the weak hypercharge-conserving current of the I. class. The sumrules are derived from the superconvergence of properly chosen reaction amplitudes. The results allow an absolute determination of the cross sections of a series of peripheral reactions. An important and interesting consequence for the considered matrix elements of the weak current is that the properties of CVC of PCAC follow from the sumrules without additional assumptions. Finally the predictions of relativistic SU(6)-models are checked. One gets surprisingly a good confirmation of the essential results of these models, the reliability of which has almost been unknown on account of a series of speculative assumptions. (orig.) [de

  8. Wetting behavior of nonpolar nanotubes in simple dipolar liquids for varying nanotube diameter and solute-solvent interactions

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Malay Kumar; Chandra, Amalendu, E-mail: amalen@iitk.ac.in [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2015-01-21

    Atomistic simulations of model nonpolar nanotubes in a Stockmayer liquid are carried out for varying nanotube diameter and nanotube-solvent interactions to investigate solvophobic interactions in generic dipolar solvents. We have considered model armchair type single-walled nonpolar nanotubes with increasing radii from (5,5) to (12,12). The interactions between solute and solvent molecules are modeled by the well-known Lennard-Jones and repulsive Weeks-Chandler-Andersen potentials. We have investigated the density profiles and microscopic arrangement of Stockmayer molecules, orientational profiles of their dipole vectors, time dependence of their occupation, and also the translational and rotational motion of solvent molecules in confined environments of the cylindrical nanopores and also in their external peripheral regions. The present results of structural and dynamical properties of Stockmayer molecules inside and near atomistically rough nonpolar surfaces including their wetting and dewetting behavior for varying interactions provide a more generic picture of solvophobic effects experienced by simple dipolar liquids without any specific interactions such as hydrogen bonds.

  9. Weak hadronic currents in compensation theory

    International Nuclear Information System (INIS)

    Pappas, R.C.

    1975-01-01

    Working within the framework of a compensation theory of strong and weak interactions, it is shown that: (1) an axial vector baryon number current can be included in the weak current algebra if certain restrictions on the K-meson strong couplings are relaxed; (2) the theory does not permit the introduction of strange currents of the chiral form V + A; and (3) the assumption that the superweak currents of the theory cannot contain certain CP conserving terms can be justified on the basis of compensation requirements

  10. New Paradigm for Plasma Crystal Formation with weak grain interaction

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Morfill, G.E.

    2005-01-01

    New results for non-linear grain screening, non-linear ion drag and non-linear collective attractions appropriate for existing experiments are used for the first time together to explain the observed phenomena of plasma condensation. Based on the physics of collective non-linear grain attraction a paradigm for plasma crystal formation is formulated according to which plasma the crystal formation is due to localization of grains in weak non-linear collective attraction wells. Nonlinearity in screening is an important feature of new paradigm and takes into account that the grain charges are large. The physical consequence of large non-linearity is the presence of relative large attraction potential well at distances several times larger then the non-linear screening radius. Calculated location of the potential well is of the order of the observed inter-grain distances in plasma crystals and the calculated deepness of the potential well determining the temperature of phase transition is close to that observed. The calculations of the deepness of the attraction collective well and the critical value of the coupling constant are performed using an assumption that the collective attraction length is larger than the non-linear screening length. The concept of collective grain interaction in complex plasmas is considered for the case where the non-linear screening is fully determining the collective attraction well

  11. Exotic Quantum Phases and Phase Transitions of Strongly Interacting Electrons in Low-Dimensional Systems

    Science.gov (United States)

    Mishmash, Ryan V.

    Experiments on strongly correlated quasi-two-dimensional electronic materials---for example, the high-temperature cuprate superconductors and the putative quantum spin liquids kappa-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2---routinely reveal highly mysterious quantum behavior which cannot be explained in terms of weakly interacting degrees of freedom. Theoretical progress thus requires the introduction of completely new concepts and machinery beyond the traditional framework of the band theory of solids and its interacting counterpart, Landau's Fermi liquid theory. In full two dimensions, controlled and reliable analytical approaches to such problems are severely lacking, as are numerical simulations of even the simplest of model Hamiltonians due to the infamous fermionic sign problem. Here, we attempt to circumvent some of these difficulties by studying analogous problems in quasi-one dimension. In this lower dimensional setting, theoretical and numerical tractability are on much stronger footing due to the methods of bosonization and the density matrix renormalization group, respectively. Using these techniques, we attack two problems: (1) the Mott transition between a Fermi liquid metal and a quantum spin liquid as potentially directly relevant to the organic compounds kappa-(BEDT-TTF)2Cu 2(CN)3 and EtMe3Sb[Pd(dmit)2] 2 and (2) non-Fermi liquid metals as strongly motivated by the strange metal phase observed in the cuprates. In both cases, we are able to realize highly exotic quantum phases as ground states of reasonable microscopic models. This lends strong credence to respective underlying slave-particle descriptions of the low-energy physics, which are inherently strongly interacting and also unconventional in comparison to weakly interacting alternatives. Finally, working in two dimensions directly, we propose a new slave-particle theory which explains in a universal way many of the intriguing experimental results of the triangular lattice organic spin

  12. The influence of liquid/vapor phase change onto the Nusselt number

    Science.gov (United States)

    Popescu, Elena-Roxana; Colin, Catherine; Tanguy, Sebastien

    2017-11-01

    In spite of its significant interest in various fields, there is currently a very few information on how an external flow will modify the evaporation or the condensation of a liquid surface. Although most applications involve turbulent flows, the simpler configuration where a laminar superheated or subcooled vapor flow is shearing a saturated liquid interface has still never been solved. Based on a numerical approach, we propose to characterize the interaction between a laminar boundary layer of a superheated or subcooled vapor flow and a static liquid pool at saturation temperature. By performing a full set of simulations sweeping the parameters space, correlations are proposed for the first time on the Nusselt number depending on the dimensionless numbers that characterize both vaporization and condensation. As attended, the Nusselt number decreases or increases in the configurations involving respectively vaporization or condensation. More unexpected is the behaviour of the friction of the vapor flow on the liquid pool, for which we report that it is weakly affected by the phase change, despite the important variation of the local flow structure due to evaporation or condensation.

  13. Measurement of the β-asymmetry parameter of Cu67 in search for tensor-type currents in the weak interaction

    Science.gov (United States)

    Soti, G.; Wauters, F.; Breitenfeldt, M.; Finlay, P.; Herzog, P.; Knecht, A.; Köster, U.; Kraev, I. S.; Porobic, T.; Prashanth, P. N.; Towner, I. S.; Tramm, C.; Zákoucký, D.; Severijns, N.

    2014-09-01

    Background: Precision measurements at low energy search for physics beyond the standard model in a way complementary to searches for new particles at colliders. In the weak sector the most general β-decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor, and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear β decay are on the level of several percent. Purpose: Extracting new information on tensor coupling constants by measuring the β-asymmetry parameter in the pure Gamow-Teller decay of Cu67, thereby testing the V-A structure of the weak interaction. Method: An iron sample foil into which the radioactive nuclei were implanted was cooled down to mK temperatures in a 3He-4He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic β radiation was observed with planar high-purity germanium detectors operating at a temperature of about 10 K. An on-line measurement of the β asymmetry of Cu68 was performed as well for normalization purposes. Systematic effects were investigated using geant4 simulations. Results: The experimental value, Ã=0.587(14), is in agreement with the standard model value of 0.5991(2) and is interpreted in terms of physics beyond the standard model. The limits obtained on possible tensor-type charged currents in the weak interaction Hamiltonian are -0.045<(CT+CT')/CA<0.159 (90% C.L.). Conclusions: The obtained limits are comparable to limits from other correlation measurements in nuclear β decay and contribute to further constraining tensor coupling constants.

  14. Gas-liquid transition in the model of particles interacting at high energy

    International Nuclear Information System (INIS)

    Bondarenko, S.; Komoshvili, K.

    2013-01-01

    An application of the ideas of the inertial confinement fusion process in the case of particles interacting at high energy is investigated. A possibility of the gas-liquid transition in the gas is considered using different approaches. In particular, a shock wave description of interactions between particles is studied and a self-similar solution of Euler's equation is discussed. Additionally, the Boltzmann equation is solved for a self-consistent field (Vlasov's equation) in the linear approximation for the case of a gas under external pressure and the corresponding change of the Knudsen number of the system is calculated. (orig.)

  15. Interactions of solid and liquid lithium with steady state hydrogen and helium plasmas

    International Nuclear Information System (INIS)

    Hirooka, Y.; Nishikawa, M.; Ohgaki, H.; Ohtsuka, Y.

    2005-01-01

    A variety of innovative Plasma-Facing Component (PFC) concepts, employing moving solid or liquid surfaces, have recently been proposed in order to resolve technical issues, associated with the applications of currently used PFCs in future steady state fusion devices. As the first step to evaluate the concept using flowing-liquids for PFCs, steady state hydrogen and helium plasma interactions with solid and standing liquid lithium have been investigated in the present work, using the H α and He-I spectroscopy at the ion bombarding energies up to 150eV and at the lithium temperatures between room temperature and 480 deg C. Data indicate that hydrogen recycling over liquid lithium is clearly reduced, relative to that over solid lithium, whereas helium recycling does not show the same trend. From the kinetic analysis of these recycling time constant data, the activation energies for the overall recycling processes have been evaluated to be 0.02±0.01eV, both for hydrogen and helium plasmas. Also, it has been found that the activation energy is nearly independent of ion bombarding energy. (author)

  16. Search for a light Higgs boson decaying to long-lived weakly-interacting particles in proton-proton collisions at $\\sqrt{s}$ = 7 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imbault, Didier; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-01

    A search for the decay of a light Higgs (120 - 140 GeV) to a pair of weakly-interacting, long-lived particles in 1.94 fb${^-1}$ of proton-proton collisions at $\\sqrt{s}$ = 7 TeV recorded in 2011 by the ATLAS detector is presented. The search strategy requires that both long-lived particles decay inside the muon spectrometer. No excess of events is observed above the expected background and limits on the Higgs boson production times branching ratio to weakly-interacting, long-lived particles are derived as a function of the particle proper decay length.

  17. Search for a light Higgs boson decaying to long-lived weakly interacting particles in proton-proton collisions at sqrt[s] = 7 TeV with the ATLAS detector.

    Science.gov (United States)

    Aad, G; Abbott, B; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abouzeid, O S; Abramowicz, H; Abreu, H; Acerbi, E; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Aderholz, M; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahsan, M; Aielli, G; Akdogan, T; Akesson, T P A; Akimoto, G; Akimov, A V; Akiyama, A; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral, P; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Andrieux, M-L; Anduaga, X S; Angerami, A; Anghinolfi, F; Anisenkov, A; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoun, S; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J-F; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnault, C; Artamonov, A; Artoni, G; Arutinov, D; Asai, S; Asfandiyarov, R; Ask, S; Asman, B; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Aubert, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Bachy, G; Backes, M; Backhaus, M; Badescu, E; Bagnaia, P; Bahinipati, S; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baker, S; Banas, E; Banerjee, P; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barashkou, A; Barbaro Galtieri, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; da Costa, J Barreiro Guimarães; Barrillon, P; Bartoldus, R; Barton, A E; Bartsch, V; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Beale, S; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, S; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Beloborodova, O; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Benchouk, C; Bendel, M; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertella, C; Bertin, A; Bertinelli, F; Bertolucci, F; Besana, M I; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blazek, T; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V B; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogdanchikov, A; Bogouch, A; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Bolnet, N M; Bona, M; Bondarenko, V G; Bondioli, M; Boonekamp, M; Boorman, G; Booth, C N; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Botterill, D; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozhko, N I; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, W K; Brown, G; Brown, H; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Buat, Q; Bucci, F; Buchanan, J; Buchanan, N J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cambiaghi, M; Cameron, D; Caminada, L M; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carrillo Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernandez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N F; Cataldi, G; Cataneo, F; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cauz, D; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Cevenini, F; Chafaq, A; Chakraborty, D; Chan, K; Chapleau, B; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, T; Chen, X; Cheng, S; Cheplakov, A; Chepurnov, V F; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Cheung, S L; Chevalier, L; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chizhov, M V; Choudalakis, G; Chouridou, S; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciba, K; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciobotaru, M D; Ciocca, C; Ciocio, A; Cirilli, M; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Cleland, W; Clemens, J C; Clement, B; Clement, C; Clifft, R W; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coe, P; Cogan, J G; Coggeshall, J; Cogneras, E; Colas, J; Colijn, A P; Collins, N J; Collins-Tooth, C; Collot, J; Colon, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Consonni, M; Consorti, V; Constantinescu, S; Conta, C; Conventi, F; Cook, J; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Costin, T; Côté, D; Coura Torres, R; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Crescioli, F; Cristinziani, M; Crosetti, G; Crupi, R; Crépé-Renaudin, S; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M; Curtis, C J; Cuthbert, C; Cwetanski, P; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Silva, P V M; Da Via, C; Dabrowski, W; Dai, T; Dallapiccola, C; Dam, M; Dameri, M; Damiani, D S; Danielsson, H O; Dannheim, D; Dao, V; Darbo, G; Darlea, G L; Daum, C; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, E; Davies, M; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Dawson, J W; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lotto, B; de Mora, L; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dean, S; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Degenhardt, J; Dehchar, M; Del Papa, C; Del Peso, J; Del Prete, T; Delemontex, T; Deliyergiyev, M; Dell'acqua, A; Dell'asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delruelle, N; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Devetak, E; Deviveiros, P O; Dewhurst, A; Dewilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diblen, F; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobbs, M; Dobinson, R; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Donadelli, M; Donega, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dosil, M; Dotti, A; Dova, M T; Dowell, J D; Doxiadis, A D; Doyle, A T; Drasal, Z; Drees, J; Dressnandt, N; Drevermann, H; Driouichi, C; Dris, M; Dubbert, J; Dube, S; Duchovni, E; Duckeck, G; Dudarev, A; Dudziak, F; Dührssen, M; Duerdoth, I P; Duflot, L; Dufour, M-A; Dunford, M; Duran Yildiz, H; Duxfield, R; Dwuznik, M; Dydak, F; Düren, M; Ebenstein, W L; Ebke, J; Eckweiler, S; Edmonds, K; Edwards, C A; Edwards, N C; Ehrenfeld, W; Ehrich, T; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Eppig, A; Erdmann, J; Ereditato, A; Eriksson, D; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrington, S M; Farthouat, P; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Fazio, S; Febbraro, R; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Fellmann, D; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Ferland, J; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferrer, A; Ferrer, M L; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filippas, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fischer, P; Fisher, M J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Flores Castillo, L R; Flowerdew, M J; Fokitis, M; Fonseca Martin, T; Forbush, D A; Formica, A; Forti, A; Fortin, D; Foster, J M; Fournier, D; Foussat, A; Fowler, A J; Fowler, K; Fox, H; Francavilla, P; Franchino, S; Francis, D; Frank, T; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, F; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Gan, K K; Gao, Y S; Gapienko, V A; Gaponenko, A; Garberson, F; Garcia-Sciveres, M; García, C; García Navarro, J E; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Garvey, J; Gatti, C; Gaudio, G; Gaumer, O; Gaur, B; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gayde, J-C; Gazis, E N; Ge, P; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gilbert, L M; Gilewsky, V; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giunta, M; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glitza, K W; Glonti, G L; Goddard, J R; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Göttfert, T; Goldfarb, S; Golling, T; Golovnia, S N; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; Gonidec, A; Gonzalez, S; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Gorokhov, S A; Goryachev, V N; Gosdzik, B; Gosselink, M; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenshaw, T; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grinstein, S; Grishkevich, Y V; Grivaz, J-F; Groh, M; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guarino, V J; Guest, D; Guicheney, C; Guida, A; Guindon, S; Guler, H; Gunther, J; Guo, B; Guo, J; Gupta, A; Gusakov, Y; Gushchin, V N; Gutierrez, A; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hadavand, H K; Hadley, D R; Haefner, P; Hahn, F; Haider, S; Hajduk, Z; Hakobyan, H; Hall, D; Haller, J; Hamacher, K; Hamal, P; Hamer, M; Hamilton, A; Hamilton, S; Han, H; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, K; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Hatch, M; Hauff, D; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawes, B M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hawkins, D; Hayakawa, T; Hayashi, T; Hayden, D; Hayward, H S; Haywood, S J; Hazen, E; He, M; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, R C W; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Henry-Couannier, F; Hensel, C; Henß, T; Hernandez, C M; Hernández Jiménez, Y; Herrberg, R; Hershenhorn, A D; Herten, G; Hertenberger, R; Hervas, L; Hessey, N P; Higón-Rodriguez, E; Hill, D; Hill, J C; Hill, N; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holder, M; Holmgren, S O; Holy, T; Holzbauer, J L; Homma, Y; Hong, T M; Hooft van Huysduynen, L; Horazdovsky, T; Horn, C; Horner, S; Hostachy, J-Y; Hou, S; Houlden, M A; Hoummada, A; Howarth, J; Howell, D F; Hristova, I; Hrivnac, J; Hruska, I; Hryn'ova, T; Hsu, P J; Hsu, S-C; Huang, G S; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Hughes-Jones, R E; Huhtinen, M; Hurst, P; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibbotson, M; Ibragimov, I; Ichimiya, R; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Imbault, D; Imori, M; Ince, T; Inigo-Golfin, J; Ioannou, P; Iodice, M; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishikawa, A; Ishino, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakubek, J; Jana, D K; Jankowski, E; Jansen, E; Jansen, H; Jantsch, A; Janus, M; Jarlskog, G; Jeanty, L; Jelen, K; Jen-La Plante, I; Jenni, P; Jeremie, A; Jež, P; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, G; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansen, L G; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T W; Jones, T J; Jonsson, O; Joram, C; Jorge, P M; Joseph, J; Jovin, T; Ju, X; Jung, C A; Jungst, R M; Juranek, V; Jussel, P; Juste Rozas, A; Kabachenko, V V; Kabana, S; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kaiser, S; Kajomovitz, E; Kalinin, S; Kalinovskaya, L V; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Kar, D; Karagounis, M; Karagoz, M; Karnevskiy, M; Karr, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kazanin, V A; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Kekelidze, G D; Kennedy, J; Kenney, C J; Kenyon, M; Kepka, O; Kerschen, N; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Kholodenko, A G; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, N; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, M S; Kim, P C; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; Kirk, J; Kirsch, L E; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kittelmann, T; Kiver, A M; Kladiva, E; Klaiber-Lodewigs, J; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimek, P; Klimentov, A; Klingenberg, R; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Kluth, S; Knecht, N S; Kneringer, E; Knobloch, J; Knoops, E B F G; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Köneke, K; König, A C; Koenig, S; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kokott, T; Kolachev, G M; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Kollar, D; Kollefrath, M; Kolya, S D; Komar, A A; Komori, Y; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konstantinidis, N; Kootz, A; Koperny, S; Korcyl, K; Kordas, K; Koreshev, V; Korn, A; Korol, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotamäki, M J; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J; Kraus, J K; Kreisel, A; Krejci, F; Kretzschmar, J; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruth, A; Kubota, T; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kundu, N; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Labbe, J; Lablak, S; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laisne, E; Lamanna, M; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Landsman, H; Lane, J L; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larionov, A V; Larner, A; Lasseur, C; Lassnig, M; Laurelli, P; Lavrijsen, W; Laycock, P; Lazarev, A B; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Lebel, C; Lecompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, M; Legendre, M; Leger, A; Legeyt, B C; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leite, M A L; Leitner, R; Lellouch, D; Leltchouk, M; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leontsinis, S; Leroy, C; Lessard, J-R; Lesser, J; Lester, C G; Leung Fook Cheong, A; Levêque, J; Levin, D; Levinson, L J; Levitski, M S; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, H; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Lifshitz, R; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Linnemann, J T; Lipeles, E; Lipinsky, L; Lipniacka, A; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, M; Liu, S; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Loken, J; Lombardo, V P; Long, R E; Lopes, L; Lopez Mateos, D; Lorenz, J; Losada, M; Loscutoff, P; Lo Sterzo, F; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luijckx, G; Lumb, D; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundquist, J; Lungwitz, M; Lutz, G; Lynn, D; Lys, J; Lytken, E; Ma, H; Ma, L L; Macana Goia, J A; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Mackeprang, R; Madaras, R J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Magnoni, L; Magradze, E; Mahalalel, Y; Mahboubi, K; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V; Malyukov, S; Mameghani, R; Mamuzic, J; Manabe, A; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Mangeard, P S; Manhaes de Andrade Filho, L; Manjavidze, I D; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Manz, A; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marin, A; Marino, C P; Marroquim, F; Marshall, R; Marshall, Z; Martens, F K; Marti-Garcia, S; Martin, A J; Martin, B; Martin, B; Martin, F F; Martin, J P; Martin, Ph; Martin, T A; Martin, V J; Martin Dit Latour, B; Martin-Haugh, S; Martinez, M; Martinez Outschoorn, V; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massaro, G; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mathes, M; Matricon, P; Matsumoto, H; Matsunaga, H; Matsushita, T; Mattravers, C; Maugain, J M; Maurer, J; Maxfield, S J; Maximov, D A; May, E N; Mayne, A; Mazini, R; Mazur, M; Mazzanti, M; Mazzoni, E; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; McFayden, J A; McGlone, H; McHedlidze, G; McLaren, R A; McLaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Mendoza Navas, L; Meng, Z; Mengarelli, A; Menke, S; Menot, C; Meoni, E; Mercurio, K M; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Meyer, T C; Meyer, W T; Miao, J; Michal, S; Micu, L; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Miller, R J; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Miralles Verge, L; Misiejuk, A; Mitrevski, J; Mitrofanov, G Y; Mitsou, V A; Mitsui, S; Miyagawa, P S; Miyazaki, K; Mjörnmark, J U; Moa, T; Mockett, P; Moed, S; Moeller, V; Mönig, K; Möser, N; Mohapatra, S; Mohr, W; Mohrdieck-Möck, S; Moisseev, A M; Moles-Valls, R; Molina-Perez, J; Monk, J; Monnier, E; Montesano, S; Monticelli, F; Monzani, S; Moore, R W; Moorhead, G F; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morii, M; Morin, J; Morley, A K; Mornacchi, G; Morozov, S V; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mudrinic, M; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Mueller, T; Muenstermann, D; Muir, A; Munwes, Y; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagano, K; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Nanava, G; Napier, A; Narayan, R; Nash, M; Nation, N R; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nebot, E; Nechaeva, P Yu; Negri, A; Negri, G; Nektarijevic, S; Nelson, A; Nelson, S; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neusiedl, A; Neves, R M; Nevski, P; Newman, P R; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicolas, L; Nicquevert, B; Niedercorn, F; Nielsen, J; Niinikoski, T; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolaev, K; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsen, H; Nilsson, P; Ninomiya, Y; Nisati, A; Nishiyama, T; Nisius, R; Nodulman, L; Nomachi, M; Nomidis, I; Nordberg, M; Nordkvist, B; Norton, P R; Novakova, J; Nozaki, M; Nozka, L; Nugent, I M; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nyman, T; O'Brien, B J; O'Neale, S W; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Oda, S; Odaka, S; Odier, J; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Ohshita, H; Ohsugi, T; Okada, S; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olcese, M; Olchevski, A G; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Omachi, C; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlov, I; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Osuna, C; Otero Y Garzon, G; Ottersbach, J P; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Paleari, C P; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panes, B; Panikashvili, N; Panitkin, S; Pantea, D; Panuskova, M; Paolone, V; Papadelis, A; Papadopoulou, Th D; Paramonov, A; Park, W; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N; Pater, J R; Patricelli, S; Pauly, T; Pecsy, M; Pedraza Morales, M I; Peleganchuk, S V; Peng, H; Pengo, R; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Persembe, S; Perus, A; Peshekhonov, V D; Peters, K; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Phan, A; Phillips, P W; Piacquadio, G; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Ping, J; Pinto, B; Pirotte, O; Pizio, C; Plamondon, M; Pleier, M-A; Pleskach, A V; Poblaguev, A; Poddar, S; Podlyski, F; Poggioli, L; Poghosyan, T; Pohl, M; Polci, F; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomarede, D M; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Posch, C; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Pretzl, K; Pribyl, L; Price, D; Price, J; Price, L E; Price, M J; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Qian, Z; Qin, Z; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radescu, V; Radics, B; Radloff, P; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Randrianarivony, K; Ratoff, P N; Rauscher, F; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reichold, A; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Reljic, D; Rembser, C; Ren, Z L; Renaud, A; Renkel, P; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richards, A; Richter, R; Richter-Was, E; Ridel, M; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robinson, M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Rodriguez, D; Roe, A; Roe, S; Røhne, O; Rojo, V; Rolli, S; Romaniouk, A; Romano, M; Romanov, V M; Romeo, G; Romero Adam, E; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosenbaum, G A; Rosenberg, E I; Rosendahl, P L; Rosenthal, O; Rosselet, L; Rossetti, V; Rossi, E; Rossi, L P; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubinskiy, I; Ruckert, B; Ruckstuhl, N; Rud, V I; Rudolph, C; Rudolph, G; Rühr, F; Ruggieri, F; Ruiz-Martinez, A; Rumiantsev, V; Rumyantsev, L; Runge, K; Rurikova, Z; Rusakovich, N A; Rust, D R; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Ryadovikov, V; Ryan, P; Rybar, M; Rybkin, G; Ryder, N C; Rzaeva, S; Saavedra, A F; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sanchez, A; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sandvoss, S; Sankey, D P C; Sansoni, A; Santamarina Rios, C; Santoni, C; Santonico, R; Santos, H; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sartisohn, G; Sasaki, O; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, L; Saxon, D H; Says, L P; Sbarra, C; Sbrizzi, A; Scallon, O; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schäfer, U; Schaepe, S; Schaetzel, S; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schlereth, J L; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, M; Schöning, A; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schroeder, C; Schroer, N; Schuh, S; Schuler, G; Schultes, J; Schultz-Coulon, H-C; Schulz, H; Schumacher, J W; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Schwindt, T; Schwoerer, M; Scott, W G; Searcy, J; Sedov, G; Sedykh, E; Segura, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Selbach, K E; Seliverstov, D M; Sellden, B; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Seuster, R; Severini, H; Sevior, M E; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaver, L; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shichi, H; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shupe, M A; Sicho, P; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simmons, B; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K; Skubic, P; Skvorodnev, N; Slater, M; Slavicek, T; Sliwa, K; Sloper, J; Smakhtin, V; Smirnov, S Yu; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snuverink, J; Snyder, S; Soares, M; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solc, J; Soldatov, E; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Soni, N; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soukharev, A; Spagnolo, S; Spanò, F; Spighi, R; Spigo, G; Spila, F; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahl, T; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staude, A; Stavina, P; Stavropoulos, G; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stevenson, K; Stewart, G A; Stillings, J A; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strang, M; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Strube, J; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Soh, D A; Su, D; Subramania, Hs; Succurro, A; Sugaya, Y; Sugimoto, T; Suhr, C; Suita, K; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Sushkov, S; Susinno, G; Sutton, M R; Suzuki, Y; Suzuki, Y; Svatos, M; Sviridov, Yu M; Swedish, S; Sykora, I; Sykora, T; Szeless, B; Sánchez, J; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanaka, Y; Tanasijczuk, A J; Tani, K; Tannoury, N; Tappern, G P; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tatarkhanov, M; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teinturier, M; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Testa, M; Teuscher, R J; Thadome, J; Therhaag, J; Theveneaux-Pelzer, T; Thioye, M; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomson, E; Thomson, M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timoshenko, S; Tipton, P; Tique Aires Viegas, F J; Tisserant, S; Toczek, B; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokunaga, K; Tokushuku, K; Tollefson, K; Tomoto, M; Tompkins, L; Toms, K; Tong, G; Tonoyan, A; Topfel, C; Topilin, N D; Torchiani, I; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Trinh, T N; Tripiana, M F; Trischuk, W; Trivedi, A; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Ueno, R; Ugland, M; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Underwood, D G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valenta, J; Valente, P; Valentinetti, S; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; van der Graaf, H; van der Kraaij, E; Van Der Leeuw, R; van der Poel, E; van der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vanadia, M; Vandelli, W; Vandoni, G; Vaniachine, A; Vankov, P; Vannucci, F; Varela Rodriguez, F; Vari, R; Varnes, E W; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vegni, G; Veillet, J J; Vellidis, C; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Virchaux, M; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vlasov, N; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobiev, A P; Vorwerk, V; Vos, M; Voss, R; Voss, T T; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Wagner, W; Wagner, P; Wahlen, H; Wakabayashi, J; Walbersloh, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, J C; Wang, R; Wang, S M; Warburton, A; Ward, C P; Warsinsky, M; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Weber, M; Weber, M S; Weber, P; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Wellenstein, H; Wells, P S; Wen, M; Wenaus, T; Wendler, S; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Weydert, C; Whalen, K; Wheeler-Ellis, S J; Whitaker, S P; White, A; White, M J; Whitehead, S R; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wolter, M W; Wolters, H; Wong, W C; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, C; Wright, M; Wrona, B; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wunstorf, R; Wynne, B M; Xella, S; Xiao, M; Xie, S; Xie, Y; Xu, C; Xu, D; Xu, G; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Y; Yang, Z; Yanush, S; Yao, Y; Yasu, Y; Ybeles Smit, G V; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Young, C; Youssef, S; Yu, D; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaets, V G; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zanello, L; Zarzhitsky, P; Zaytsev, A; Zeitnitz, C; Zeller, M; Zeman, M; Zemla, A; Zendler, C; Zenin, O; Zeniš, T; Zinonos, Z; Zenz, S; Zerwas, D; Zevi Della Porta, G; Zhan, Z; Zhang, D; Zhang, H; Zhang, J; Zhang, X; Zhang, Z; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zheng, S; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhuravlov, V; Zieminska, D; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Zivković, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; Zolnierowski, Y; Zsenei, A; Zur Nedden, M; Zutshi, V; Zwalinski, L

    2012-06-22

    A search for the decay of a light Higgs boson (120-140 GeV) to a pair of weakly interacting, long-lived particles in 1.94 fb(-1) of proton-proton collisions at sqrt[s] = 7 TeV recorded in 2011 by the ATLAS detector is presented. The search strategy requires that both long-lived particles decay inside the muon spectrometer. No excess of events is observed above the expected background and limits on the Higgs boson production times branching ratio to weakly interacting, long-lived particles are derived as a function of the particle proper decay length.

  18. Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects

    Science.gov (United States)

    Poddar, Antarip; Dhar, Jayabrata; Chakraborty, Suman

    2017-07-01

    Advent of nematic liquid crystal flows has attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electro-osmosis stands as one of the efficient flow actuation mechanisms through narrow confinements. In the present study, we explore the electrically actuated flow of an ordered nematic fluid with ionic inclusions, taking into account the influences from surface-induced elasticity and electrical double layer (EDL) phenomena. Toward this, we devise the coupled flow governing equations from fundamental free-energy analysis, considering the contributions from first- and second-order elastic, dielectric, flexoelectric, charged surface polarization, ionic and entropic energies. The present study focuses on the influence of surface charge and elasticity effects in the resulting linear electro-osmosis through a slit-type microchannel whose surfaces are chemically treated to display a homeotropic-type weak anchoring state. An optical periodic stripe configuration of the nematic director has been observed, especially for higher electric fields, wherein the Ericksen number for the dynamic study is restricted to the order of unity. Contrary to the isotropic electrolytes, the EDL potential in this case was found to be dependent on the external field strength. Through a systematic investigation, we brought out the fact that the wavelength of the oscillating patterns is dictated mainly by the external field, while the amplitude depends on most of the physical variables ranging from the anchoring strength and the flexoelectric coefficients to the surface charge density and electrical double layer thickness.

  19. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    Energy Technology Data Exchange (ETDEWEB)

    Hantao Ji; William Fox; David Pace; H.L. Rappaport

    2004-05-13

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed.

  20. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    International Nuclear Information System (INIS)

    Hantao Ji; William Fox; David Pace; Rappaport, H.L.

    2004-01-01

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed

  1. Gasdynamics of H II regions. V. The interaction of weak R ionization fronts with dense clouds

    Energy Technology Data Exchange (ETDEWEB)

    Tenorio-Tagle, G; Bedijn, P J

    1981-06-01

    The interaction of weak R-type ionization fronts with a density enhancement is calculated numerically as a function of time within the framework of the champagne model of the evolution of H II regions. Calculations are performed under the assumption of plane-parallel geometry for various relative densities of the cloud in which the exciting star is formed and a second cloud with which an ionization front from the first cloud interacts. The supersonic ionization front representing the outer boundary of an H II region experiencing the champagne phase is found to either evolve into a D-type front or remain of type R, depending on the absolute number of photons leaving the H II region that undergoes the champagne phase. Recombinations in the ionized gas eventually slow the ionization front, however photon fluxes allow it to speed up again, resulting in oscillatory propagation of the front. Front-cloud interactions are also shown to lead to the development of a backward-facing shock, a forward-facing shock, and a density maximum in the ionized gas. The results can be used to explain the origin of bright rims in H II regions.

  2. Atmospheric pressure plasma jets interacting with liquid covered tissue: touching and not-touching the liquid

    International Nuclear Information System (INIS)

    Norberg, Seth A; Johnsen, Eric; Tian, Wei; Kushner, Mark J

    2014-01-01

    In the use of atmospheric pressure plasma jets in biological applications, the plasma-produced charged and neutral species in the plume of the jet often interact with a thin layer of liquid covering the tissue being treated. The plasma-produced reactivity must then penetrate through the liquid layer to reach the tissue. In this computational investigation, a plasma jet created by a single discharge pulse at three different voltages was directed onto a 200 µm water layer covering tissue followed by a 10 s afterglow. The magnitude of the voltage and its pulse length determined if the ionization wave producing the plasma plume reached the surface of the liquid. When the ionization wave touches the surface, significantly more charged species were created in the water layer with H 3 O + aq , O 3 − aq , and O 2 − aq being the dominant terminal species. More aqueous OH aq , H 2 O 2aq , and O 3aq were also formed when the plasma plume touches the surface. The single pulse examined here corresponds to a low repetition rate plasma jet where reactive species would be blown out of the volume between pulses and there is not recirculation of flow or turbulence. For these conditions, N x O y species do not accumulate in the volume. As a result, aqueous nitrites, nitrates, and peroxynitrite, and the HNO 3aq and HOONO aq , which trace their origin to solvated N x O y , have low densities. (paper)

  3. Liquid Lithium Limiter Effects on Tokamak Plasmas and Plasma-Liquid Surface Interactions

    Energy Technology Data Exchange (ETDEWEB)

    R. Kaita; R. Majeski; R. Doerner; G. Antar; M. Baldwin; R. Conn; P. Efthimion; M. Finkenthal; D. Hoffman; B. Jones; S. Krashenninikov; H. Kugel; S. Luckhardt; R. Maingi; J. Menard; T. Munsat; D. Stutman; G. Taylor; J. Timberlake; V. Soukhanovskii; D. Whyte; R. Woolley; L. Zakharov

    2002-10-15

    We present results from the first experiments with a large area liquid lithium limiter in a magnetic fusion device, and its effect on improving plasma performance by reducing particle recycling. Using large area liquid metal surfaces in any major fusion device is unlikely before a test on a smaller scale. This has motivated its demonstration in the CDX-U spherical torus with a unique, fully toroidal lithium limiter. The highest current discharges were obtained with a liquid lithium limiter. There was a reduction in recycling, as indicated by a significant decrease in the deuterium-alpha emission and oxygen radiation. How these results might extrapolate to reactors is suggested in recycling/retention experiments with liquid lithium surfaces under high-flux deuterium and helium plasma bombardment in PISCES-B. Data on deuterium atoms retained in liquid lithium indicate retention of all incident ions until full volumetric conversion to lithium deuteride. The PISCES-B results also show a material loss mechanism that lowers the maximum operating temperature compared to that for the liquid surface equilibrium vapor pressure. This may restrict the lithium temperature in reactors.

  4. Liquid Lithium Limiter Effects on Tokamak Plasmas and Plasma-Liquid Surface Interactions

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Baldwin, M.; Conn, R.; Efthimion, P.; Finkenthal, M.; Hoffman, D.; Jones, B.; Krashenninikov, S.; Kugel, H.; Luckhardt, S.; Maingi, R.; Menard, J.; Munsat, T.; Stutman, D.; Taylor, G.; Timberlake, J.; Soukhanovskii, V.; Whyte, D.; Woolley, R.; Zakharov, L.

    2002-01-01

    We present results from the first experiments with a large area liquid lithium limiter in a magnetic fusion device, and its effect on improving plasma performance by reducing particle recycling. Using large area liquid metal surfaces in any major fusion device is unlikely before a test on a smaller scale. This has motivated its demonstration in the CDX-U spherical torus with a unique, fully toroidal lithium limiter. The highest current discharges were obtained with a liquid lithium limiter. There was a reduction in recycling, as indicated by a significant decrease in the deuterium-alpha emission and oxygen radiation. How these results might extrapolate to reactors is suggested in recycling/retention experiments with liquid lithium surfaces under high-flux deuterium and helium plasma bombardment in PISCES-B. Data on deuterium atoms retained in liquid lithium indicate retention of all incident ions until full volumetric conversion to lithium deuteride. The PISCES-B results also show a material loss mechanism that lowers the maximum operating temperature compared to that for the liquid surface equilibrium vapor pressure. This may restrict the lithium temperature in reactors

  5. Liquid lithium limiter effects on tokamak plasmas and plasma-liquid surface interactions

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Doerner, R.

    2003-01-01

    We present results from the first experiments with a large area liquid lithium limiter in a magnetic fusion device, and its effect on improving plasma performance by reducing particle recycling. Using large area liquid metal surfaces in any major fusion device is unlikely before a test on a smaller scale. This has motivated its demonstration in the CDX-U spherical torus with a unique, fully toroidal lithium limiter. The highest current discharges were obtained with a liquid lithium limiter. There was a reduction in recycling, as indicated by a significant decrease in the deuterium-alpha emission and oxygen radiation. How these results might extrapolate to reactors is suggested in recycling/retention experiments with liquid lithium surfaces under high-flux deuterium and helium plasma bombardment in PISCES-B. Data on deuterium atoms retained in liquid lithium indicate retention of all incident ions until full volumetric conversion to lithium deuteride. The PISCES-B results also show a material loss mechanism that lowers the maximum operating temperature compared to that for the liquid surface equilibrium vapor pressure. This may restrict the lithium temperature in reactors. (author)

  6. p -wave superconductivity in weakly repulsive 2D Hubbard model with Zeeman splitting and weak Rashba spin-orbit coupling

    Science.gov (United States)

    Hugdal, Henning G.; Sudbø, Asle

    2018-01-01

    We study the superconducting order in a two-dimensional square lattice Hubbard model with weak repulsive interactions, subject to a Zeeman field and weak Rashba spin-orbit interactions. Diagonalizing the noninteracting Hamiltonian leads to two separate bands, and by deriving an effective low-energy interaction we find the mean field gap equations for the superconducting order parameter on the bands. Solving the gap equations just below the critical temperature, we find that superconductivity is caused by Kohn-Luttinger-type interaction, while the pairing symmetry of the bands is indirectly affected by the spin-orbit coupling. The dominating attractive momentum channel of the Kohn-Luttinger term depends on the filling fraction n of the system, and it is therefore possible to change the momentum dependence of the order parameter by tuning n . Moreover, n also determines which band has the highest critical temperature. Rotating the magnetic field changes the momentum dependence from states that for small momenta reduce to a chiral px±i py type state for out-of-plane fields, to a nodal p -wave-type state for purely in-plane fields.

  7. Comprehensive analysis of pharmaceutical products using simultaneous mixed-mode (ion-exchange/reversed-phase) and hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Kazarian, Artaches A; Nesterenko, Pavel N; Soisungnoen, Phimpha; Burakham, Rodjana; Srijaranai, Supalax; Paull, Brett

    2014-08-01

    Liquid chromatographic assays were developed using a mixed-mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve-mediated column switching and was based upon a single high-performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion-exchange, (ii) mixed-mode interactions under an applied dual gradient (reversed-phase/ion-exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed-mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well-resolved unknown peaks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electric field effect on exchange interaction in ultrathin Co films with ionic liquids

    Science.gov (United States)

    Ishibashi, Mio; Yamada, Kihiro T.; Shiota, Yoichi; Ando, Fuyuki; Koyama, Tomohiro; Kakizakai, Haruka; Mizuno, Hayato; Miwa, Kazumoto; Ono, Shimpei; Moriyama, Takahiro; Chiba, Daichi; Ono, Teruo

    2018-06-01

    Electric-field modulations of magnetic properties have been extensively studied not only for practical applications but also for fundamental interest. In this study, we investigated the electric field effect on the exchange interaction in ultrathin Co films with ionic liquids. The exchange coupling J was characterized from the direct magnetization measurement as a function of temperature using Pt/ultrathin Co/MgO structures. The trend of the electric field effect on J is in good agreement with that of the theoretical prediction, and a large change in J by applying a gate voltage was observed by forming an electric double layer using ionic liquids.

  9. The correlation between fragility, density, and atomic interaction in glass-forming liquids

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijin; Guan, Pengfei, E-mail: pguan@csrc.ac.cn [Beijing Computational Science Research Center, Beijing 100193 (China); Wang, W. H. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-07-21

    The fragility that controls the temperature-dependent viscous properties of liquids as the glass transition is approached, in various glass-forming liquids with different softness of the repulsive part of atomic interactions at different densities, is investigated by molecular dynamic simulations. We show that the landscape of fragility in purely repulsive systems can be separated into three regions denoted as R{sub I,} R{sub II}, and R{sub III}, respectively, with qualitatively disparate dynamic behaviors: R{sub I} which can be described by “softness makes strong glasses,” R{sub II} where fragility is independent of softness and can only be tuned by density, and R{sub III} with constant fragility, suggesting that density plays an unexpected role for understanding the repulsive softness dependence of fragility. What is more important is that we unify the long-standing inconsistence with respect to the repulsive softness dependence of fragility by observing that a glass former can be tuned more fragile if nonperturbative attraction is added into it. Moreover, we find that the vastly dissimilar influences of attractive interaction on fragility could be estimated from the structural properties of related zero-temperature glasses.

  10. The correlation between fragility, density, and atomic interaction in glass-forming liquids

    International Nuclear Information System (INIS)

    Wang, Lijin; Guan, Pengfei; Wang, W. H.

    2016-01-01

    The fragility that controls the temperature-dependent viscous properties of liquids as the glass transition is approached, in various glass-forming liquids with different softness of the repulsive part of atomic interactions at different densities, is investigated by molecular dynamic simulations. We show that the landscape of fragility in purely repulsive systems can be separated into three regions denoted as R I, R II , and R III , respectively, with qualitatively disparate dynamic behaviors: R I which can be described by “softness makes strong glasses,” R II where fragility is independent of softness and can only be tuned by density, and R III with constant fragility, suggesting that density plays an unexpected role for understanding the repulsive softness dependence of fragility. What is more important is that we unify the long-standing inconsistence with respect to the repulsive softness dependence of fragility by observing that a glass former can be tuned more fragile if nonperturbative attraction is added into it. Moreover, we find that the vastly dissimilar influences of attractive interaction on fragility could be estimated from the structural properties of related zero-temperature glasses.

  11. Kinetics and mechanisms of interactions of nitrogen and carbon monoxide with liquid niobium

    International Nuclear Information System (INIS)

    Park, H.G.

    1990-01-01

    The kinetics and mechanisms of interactions of N 2 and CO with liquid niobium were investigated in the temperature range of 2,700 to 3,000 K in samples levitated in N 2 /Ar and CO/Ar streams. The nitrogen absorption and desorption processes were found to be second-order with respect to nitrogen concentration, indicating that the rate controlling step is either the adsorption of nitrogen molecules on the liquid surface or dissociation of absorbed nitrogen molecules into adsorbed atoms. The carbon and oxygen dissolution in liquid niobium from CO gas is an exothermic process and the solubilities of carbon and oxygen (C Ce , C Oe in at%) are related to the temperature and the partial pressure of CO. The reaction CO → [C] + [O] along with the evaporation of niobium oxide takes place during C and O dissolution, whereas C and O desorption occurs via CO evolution only

  12. Study of weak neutral-current effects in (e,e'X) reactions

    International Nuclear Information System (INIS)

    Kleppinger, W.E.

    1985-01-01

    In electron scattering from nuclei, in addition to the usual electromagnetic interaction, unified models of the electromagnetic and weak interactions predict an additional weak neutral-current interaction. When this additional interaction is included, a parity-violating contribution to the cross section due to the interference of the electromagnetic and neutral-weak currents, is present. The purpose of this work was to examine how these effects can be explored in (e,e'X) reactions with polarized incident electrons, where in addition to detecting the scattered electron, a decay particle X, emitted by the excited target nucleus, is also detected. It is found that new interference terms appear in the cross section that are not present in inelastic (e,e') scattering. A model calculation that assumed that the target was excited to a single, intermediate resonance indicates that the angular distribution of X is sensitive to these new terms. Results of this work have been published

  13. Thermodynamics of hydrogen bonding and van der Waals interactions of organic solutes in solutions of imidazolium based ionic liquids: “Structure-property” relationships

    International Nuclear Information System (INIS)

    Varfolomeev, Mikhail A.; Khachatrian, Artashes A.; Akhmadeev, Bulat S.; Solomonov, Boris N.

    2016-01-01

    Highlights: • Solution enthalpies of organic solutes in imidazolium based ionic liquids were measured. • van der Waals interactions scale of imidazolium based ionic liquids was proposed. • Enthalpies of solvation of organic solutes in ionic liquids were determined. • Hydrogen bond enthalpies of organic solutes with ionic liquids were calculated. • Relationships between structure of ionic liquids and thermochemical data were obtained. - Abstract: In the present work thermochemistry of intermolecular interactions of organic compounds in solutions of imidazolium based ionic liquids (ILs) has been studied using solution calorimetry method. Enthalpies of solution at infinite dilution of non-polar (alkanes, aromatic hydrocarbons) and polar (alcohols, amides, and etc.) organic solutes in two ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium trifluoromethanesulfonate were measured at 298.15 K. The scale of van der Waals interactions of imidazolium based ILs has been proposed on the basis of solution enthalpies of n-alkanes in their media. The effect of the cation and anion structure of ILs on the enthalpies of solvation was analyzed. Enthalpies of hydrogen bonding of organic solutes with imidazolium based ILs were determined. It has been shown that these values are close to zero for proton acceptor solutes. At the same time, enthalpies of hydrogen bonding of proton donor solutes with ionic liquids are increased depending the anion: tetrafluoroborate ≈ bis(trifluoromethylsulfonyl)imide < 2-(2-methoxyethoxy)ethyl sulfate < trifluoromethanesulfonate. Enthalpies of van der Waals interactions and hydrogen bonding in the solutions of imidazolium based ionic liquids were compared with the same data for molecular solvents.

  14. Thermodynamics of hydrogen bonding and van der Waals interactions of organic solutes in solutions of imidazolium based ionic liquids: “Structure-property” relationships

    Energy Technology Data Exchange (ETDEWEB)

    Varfolomeev, Mikhail A., E-mail: vma.ksu@gmail.com; Khachatrian, Artashes A.; Akhmadeev, Bulat S.; Solomonov, Boris N.

    2016-06-10

    Highlights: • Solution enthalpies of organic solutes in imidazolium based ionic liquids were measured. • van der Waals interactions scale of imidazolium based ionic liquids was proposed. • Enthalpies of solvation of organic solutes in ionic liquids were determined. • Hydrogen bond enthalpies of organic solutes with ionic liquids were calculated. • Relationships between structure of ionic liquids and thermochemical data were obtained. - Abstract: In the present work thermochemistry of intermolecular interactions of organic compounds in solutions of imidazolium based ionic liquids (ILs) has been studied using solution calorimetry method. Enthalpies of solution at infinite dilution of non-polar (alkanes, aromatic hydrocarbons) and polar (alcohols, amides, and etc.) organic solutes in two ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium trifluoromethanesulfonate were measured at 298.15 K. The scale of van der Waals interactions of imidazolium based ILs has been proposed on the basis of solution enthalpies of n-alkanes in their media. The effect of the cation and anion structure of ILs on the enthalpies of solvation was analyzed. Enthalpies of hydrogen bonding of organic solutes with imidazolium based ILs were determined. It has been shown that these values are close to zero for proton acceptor solutes. At the same time, enthalpies of hydrogen bonding of proton donor solutes with ionic liquids are increased depending the anion: tetrafluoroborate ≈ bis(trifluoromethylsulfonyl)imide < 2-(2-methoxyethoxy)ethyl sulfate < trifluoromethanesulfonate. Enthalpies of van der Waals interactions and hydrogen bonding in the solutions of imidazolium based ionic liquids were compared with the same data for molecular solvents.

  15. Positronium annihilation in liquids in the framework of non-local interaction

    International Nuclear Information System (INIS)

    Mukherjee, Tapas; Dutta, Dhanadeep

    2012-01-01

    In the bubble model of ortho positronium (o-Ps) annihilation in liquid the origin of the trapping of o-Ps is the electron-exchange repulsive interaction between the electron of o-Ps and the electron of the medium. The corresponding effective interaction is non-local in nature. However, in the prevalent bubble model, this effective interaction is usually treated as local (model) potential (sharp or smooth). In the present study, we have taken an approach to consider this trapping interaction as non-local in nature, which is included through a model separable non-local function to tackle the problem in analytically solvable manner. The analytical calculations show that this non-local interaction effectively acts as a gauge potential in the energy of the Ps atom in parameter (bubble radius) space. The computed bubble variables obtained using experimental Ps annihilation data are shown. A comparison between the present data with the calculated results using prevalent bubble model has been presented. Discussions have been made on the input parameter dependencies of the computed data. - Highlights: ► Bubble model has been modified by considering positronium-atom non-local interaction. ► No straight forward correlation between bubble size and effective potential is observed. ► Non-local potential acts as a guage potential.

  16. Energetic electron precipitation in weak to moderate corotating interaction region-driven storms

    Science.gov (United States)

    Ødegaard, Linn-Kristine Glesnes; Tyssøy, Hilde Nesse; Søraas, Finn; Stadsnes, Johan; Sandanger, Marit Irene

    2017-03-01

    High-energy electron precipitation from the radiation belts can penetrate deep into the mesosphere and increase the production rate of NOx and HOx, which in turn will reduce ozone in catalytic processes. The mechanisms for acceleration and loss of electrons in the radiation belts are not fully understood, and most of the measurements of the precipitating flux into the atmosphere have been insufficient for estimating the loss cone flux. In the present study the electron flux measured by the NOAA POES Medium Energy Proton and Electron Detectors 0° and 90° detectors is combined together with theory of pitch angle diffusion by wave-particle interaction to quantify the electron flux lost below 120 km altitude. Using this method, 41 weak and moderate geomagnetic storms caused by corotating interaction regions during 2006-2010 are studied. The dependence of the energetic electron precipitation fluxes upon solar wind parameters and geomagnetic indices is investigated. Nine storms give increased precipitation of >˜750 keV electrons. Nineteen storms increase the precipitation of >˜300 keV electrons, but not the >˜750 keV population. Thirteen storms either do not change or deplete the fluxes at those energies. Storms that have an increase in the flux of electrons with energy >˜300 keV are characterized by an elevated solar wind velocity for a longer period compared to the storms that do not. Storms with increased precipitation of >˜750 keV flux are distinguished by higher-energy input from the solar wind quantified by the ɛ parameter and corresponding higher geomagnetic activity.

  17. Detailed spectra of high power broadband microwave radiation from interactions of relativistic electron beams with weakly magnetized plasmas

    International Nuclear Information System (INIS)

    Kato, K.G.; Benford, G.; Tzach, D.

    1983-01-01

    Prodigious quantities of microwave energy are observed uniformly across a wide frequency band when a relativistic electron beam (REB) penetrates a plasma. Measurement calculations are illustrated. A model of Compton-like boosting of ambient plasma waves by beam electrons, with collateral emission of high frequency photons, qualitatively explain the spectra. A transition in spectral behavior is observed from the weak to strong turbulence theories advocated for Type III solar burst radiation, and further into the regime the authors characterize as super-strong REB-plasma interactions

  18. Ground-state and dynamical properties of two-dimensional dipolar Fermi liquids

    International Nuclear Information System (INIS)

    Abedinpour, Saeed H.; Asgari, Reza; Tanatar, B.; Polini, Marco

    2014-01-01

    We study the ground-state properties of a two-dimensional spin-polarized fluid of dipolar fermions within the Euler–Lagrange Fermi-hypernetted-chain approximation. Our method is based on the solution of a scattering Schrödinger equation for the “pair amplitude” √(g(r)), where g(r) is the pair distribution function. A key ingredient in our theory is the effective pair potential, which includes a bosonic term from Jastrow–Feenberg correlations and a fermionic contribution from kinetic energy and exchange, which is tailored to reproduce the Hartree–Fock limit at weak coupling. Very good agreement with recent results based on quantum Monte Carlo simulations is achieved over a wide range of coupling constants up to the liquid-to-crystal quantum phase transition. Using the fluctuation–dissipation theorem and a static approximation for the effective inter-particle interactions, we calculate the dynamical density–density response function, and furthermore demonstrate that an undamped zero-sound mode exists for any value of the interaction strength, down to infinitesimally weak couplings. -- Highlights: •We have studied the ground state properties of a strongly correlated two-dimensional fluid of dipolar fermions. •We have calculated the effective inter-particle interaction and the dynamical density–density response function. •We have shown that an undamped zero sound mode exists at any value of the interaction strength

  19. Ionic liquids behave as dilute electrolyte solutions

    Science.gov (United States)

    Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.

    2013-01-01

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin–Landau–Verwey–Overbeek theory with an additive repulsive steric (entropic) ion–surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high–free-ion density ionic liquids and ionic liquid blends. PMID:23716690

  20. Interaction of proteins with ionic liquid, alcohol and DMSO and in situ generation of gold nano-clusters in a cell.

    Science.gov (United States)

    Nandi, Somen; Parui, Sridip; Halder, Ritaban; Jana, Biman; Bhattacharyya, Kankan

    2018-06-01

    In this review, we give a brief overview on how the interaction of proteins with ionic liquids, alcohols and dimethyl sulfoxide (DMSO) influences the stability, conformational dynamics and function of proteins/enzymes. We present experimental results obtained from fluorescence correlation spectroscopy on the effect of ionic liquid or alcohol or DMSO on the size (more precisely, the diffusion constant) and conformational dynamics of lysozyme, cytochrome c and human serum albumin in aqueous solution. The interaction of ionic liquid with biomolecules (e.g. protein, DNA etc.) has emerged as a current frontier. We demonstrate that ionic liquids are excellent stabilizers of protein and DNA and, in some cases, cause refolding of a protein already denatured by chemical denaturing agents. We show that in ethanol-water binary mixture, proteins undergo non-monotonic changes in size and dynamics with increasing ethanol content. We also discuss the effect of water-DMSO mixture on the stability of proteins. We demonstrate how large-scale molecular dynamics simulations have revealed the molecular origin of this observed phenomenon and provide a microscopic picture of the immediate environment of the biomolecules. Finally, we describe how favorable interactions of ionic liquids may be utilized for in situ generation of fluorescent gold nano-clusters for imaging a live cell.

  1. A new front-face optical cell for measuring weak fluorescent emissions with time resolution in the picosecond time scale.

    Science.gov (United States)

    Gryczynski, Z; Bucci, E

    1993-11-01

    Recent developments of ultrafast fluorimeters allow measuring time-resolved fluorescence on the picosecond time scale. This implies one is able to monitor lifetimes and anisotropy decays of highly quenched systems and of systems that contain fluorophores having lifetimes in the subnanosecond range; both systems that emit weak signals. The combination of weak signals and very short lifetimes makes the measurements prone to distortions which are negligible in standard fluorescence experiments. To cope with these difficulties, we have designed a new optical cell for front-face optics which offers to the excitation beam a horizontal free liquid surface in the absence of interactions with optical windows. The new cell has been tested with probes of known lifetimes and anisotropies. It proved very useful in detecting tryptophan fluorescence in hemoglobin. If only diluted samples are available, which cannot be used in front-face optics, regular square geometry can still be utilized by inserting light absorbers into a cuvette of 1 cm path length.

  2. Experimental investigations on weakly polar liquid crystal-aerosil composites

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Chethan V; Prasad, S Krishna; Yelamaggad, C V [Centre for Liquid Crystal Research, Jalahalli, Bangalore 560013 (India)

    2006-01-25

    We have carried out differential scanning calorimetric and dielectric studies on composites of hydrophilic aerosil with a liquid crystal that does not possess a terminal polar group. While the shift in the nematic-isotropic transition temperature is in agreement with the general behaviour observed for such composites, the dielectric studies show, contrary to the commonly observed feature, that there is a systematic increase in the relaxation frequency associated with the rotation of the molecules around their short axis, as the aerosil concentration in the composite is increased.

  3. One-dimensional Brownian motion of charged nanoparticles along microtubules: a model system for weak binding interactions.

    Science.gov (United States)

    Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko

    2010-04-21

    Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Search for weakly interacting massive particles with the Cryogenic Dark Matter Search experiment

    Energy Technology Data Exchange (ETDEWEB)

    Saab, Tarek [Stanford U.

    2002-01-01

    From individual galaxies, to clusters of galaxies, to in between the cushions of your sofa, Dark Matter appears to be pervasive on every scale. With increasing accuracy, recent astrophysical measurements, from a variety of experiments, are arriving at the following cosmological model : a flat cosmology (Ωk = 0) with matter and energy densities contributing roughly 1/3 and 2/3 (Ωm = 0.35, ΩΛ = 0.65). Of the matter contribution, it appears that only ~ 10% (Ωb ~ 0.04) is attributable to baryons. Astrophysical measurements constrain the remaining matter to be non-realtivistic, interacting primarily gravitationally. Various theoretical models for such Dark Matter exist. A leading candidate for the non-baryonic matter are Weakly Interacting Massive Particles (dubbed WIMPS). These particles, and their relic density may be naturally explained within the framework of Super-Symmetry theories. SuperSymmetry also offers predictions as to the scattering rates of WIMPs with baryonic matter allowing for the design and tailoring of experiments that search specifically for the WIMPs. The Cryogenic Dark Matter Search experiment is searching for evidence of WIMP interactions in crystals of Ge and Si. Using cryogenic detector technology to measure both the phonon and ionization response to a particle recoil the CDMS detectors are able to discriminate between electron and nuclear recoils, thus reducing the large rates of electron recoil backgrounds to levels with which a Dark Matter search is not only feasible, but far-reaching. This thesis will describe in some detail the physical principles behind the CDMS detector technology, highlighting the final step in the evolution of the detector design and characterization techniques. In addition, data from a 100 day long exposure of the current run at the Stanford Underground Facility will be presented, with focus given to detector performance as well as to the implications on allowable WIMP mass - cross-section parameter space.

  5. Weak localization behavior observed in graphene grown on germanium substrate

    Directory of Open Access Journals (Sweden)

    Yinbo Sun

    2018-04-01

    Full Text Available Two dimensional electron systems (2DES usually show the weak localization behavior in consequence of electron interaction in the limited dimension. Distinct from other 2DES, the monolayer graphene, due to the chirality, exhibits unique weak localization behavior sensitive to not only inelastic but also elastic carrier scattering. Grain boundaries, which usually exist in monolayer graphene, are apparently related to the elastic carrier scattering process, thus affecting the weak localization behavior. However, their effect is scarcely studied due to the lack of an ideal platform. Here, a complementary system consisting of both single-crystalline graphene grown on Ge (110 and poly-crystalline graphene grown on Ge (111 is constructed. From the comparison of magnetoresistivity measurements, the weak localization effect is found to be greatly enhanced for the poly-crystalline graphene on Ge(111 compared to the single-crystalline graphene on Ge(110. The degraded transport performance in graphene/Ge(111 is due to the presence of grain boundary in poly-crystalline graphene, which results in the enhanced elastic intervalley scattering. In addition, the inelastic scattering originating from the strong electron-electron interaction at low temperature also contributes to weak localization of poly-crystalline graphene/Ge(111.

  6. Correlation effects on the nonmesonic weak decay of the Λ hyperon in nuclear matter

    Science.gov (United States)

    Robertson, N. J.; Dickhoff, W. H.

    2005-08-01

    The nonmesonic weak decay of a Λ hyperon is studied in nuclear matter. Special emphasis is placed on a consistent treatment of correlations introduced by the strong interaction on its weak counterpart. The latter is described by the exchange of mesons between the initial ΛN state and the final NN one. The weak decay is studied in terms of the weak self-energy, which allows a systematic evaluation of short-range and tensor correlation effects that are determined by a realistic hyperon-nucleon interaction. The admixture of ΣN components through the strong interaction is also included in the calculation of the Λ decay properties. Calculations for the ratio of the neutron-induced partial width to the corresponding proton-induced one, Γn/Γp, are discussed in connection with recent experimental results.

  7. Acceleration of criticality analysis solution convergence by matrix eigenvector for a system with weak neutron interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Yasushi; Takada, Tomoyuki; Kuroishi, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kadotani, Hiroyuki [Shizuoka Sangyo Univ., Iwata, Shizuoka (Japan)

    2003-03-01

    In the case of Monte Carlo calculation to obtain a neutron multiplication factor for a system of weak neutron interaction, there might be some problems concerning convergence of the solution. Concerning this difficulty in the computer code calculations, theoretical derivation was made from the general neutron transport equation and consideration was given for acceleration of solution convergence by using the matrix eigenvector in this report. Accordingly, matrix eigenvector calculation scheme was incorporated together with procedure to make acceleration of convergence into the continuous energy Monte Carlo code MCNP. Furthermore, effectiveness of acceleration of solution convergence by matrix eigenvector was ascertained with the results obtained by applying to the two OECD/NEA criticality analysis benchmark problems. (author)

  8. Post hoc support vector machine learning for impedimetric biosensors based on weak protein-ligand interactions.

    Science.gov (United States)

    Rong, Y; Padron, A V; Hagerty, K J; Nelson, N; Chi, S; Keyhani, N O; Katz, J; Datta, S P A; Gomes, C; McLamore, E S

    2018-04-30

    Impedimetric biosensors for measuring small molecules based on weak/transient interactions between bioreceptors and target analytes are a challenge for detection electronics, particularly in field studies or in the analysis of complex matrices. Protein-ligand binding sensors have enormous potential for biosensing, but achieving accuracy in complex solutions is a major challenge. There is a need for simple post hoc analytical tools that are not computationally expensive, yet provide near real time feedback on data derived from impedance spectra. Here, we show the use of a simple, open source support vector machine learning algorithm for analyzing impedimetric data in lieu of using equivalent circuit analysis. We demonstrate two different protein-based biosensors to show that the tool can be used for various applications. We conclude with a mobile phone-based demonstration focused on the measurement of acetone, an important biomarker related to the onset of diabetic ketoacidosis. In all conditions tested, the open source classifier was capable of performing as well as, or better, than the equivalent circuit analysis for characterizing weak/transient interactions between a model ligand (acetone) and a small chemosensory protein derived from the tsetse fly. In addition, the tool has a low computational requirement, facilitating use for mobile acquisition systems such as mobile phones. The protocol is deployed through Jupyter notebook (an open source computing environment available for mobile phone, tablet or computer use) and the code was written in Python. For each of the applications, we provide step-by-step instructions in English, Spanish, Mandarin and Portuguese to facilitate widespread use. All codes were based on scikit-learn, an open source software machine learning library in the Python language, and were processed in Jupyter notebook, an open-source web application for Python. The tool can easily be integrated with the mobile biosensor equipment for rapid

  9. Detectability of weakly interacting massive particles in the Sagittarius dwarf tidal stream

    International Nuclear Information System (INIS)

    Freese, Katherine; Gondolo, Paolo; Newberg, Heidi Jo

    2005-01-01

    Tidal streams of the Sagittarius dwarf spheroidal galaxy (Sgr) may be showering dark matter onto the solar system and contributing ∼(0.3-23)% of the local density of our galactic halo. If the Sagittarius galaxy contains dark matter in the form of weakly interacting massive particles (WIMPs), the extra contribution from the stream gives rise to a steplike feature in the energy recoil spectrum in direct dark matter detection. For our best estimate of stream velocity (300 km/s) and direction (the plane containing the Sgr dwarf and its debris), the count rate is maximum on June 28 and minimum on December 27 (for most recoil energies), and the location of the step oscillates yearly with a phase opposite to that of the count rate. In the CDMS experiment, for 60 GeV WIMPs, the location of the step oscillates between 35 and 42 keV, and for the most favorable stream density, the stream should be detectable at the 11σ level in four years of data with 10 keV energy bins. Planned large detectors like XENON, CryoArray, and the directional detector DRIFT may also be able to identify the Sgr stream

  10. Relaxation and coarsening of weakly-interacting breathers in a simplified DNLS chain

    Science.gov (United States)

    Iubini, Stefano; Politi, Antonio; Politi, Paolo

    2017-07-01

    The discrete nonlinear Schrödinger (DNLS) equation displays a parameter region characterized by the presence of localized excitations (breathers). While their formation is well understood and it is expected that the asymptotic configuration comprises a single breather on top of a background, it is not clear why the dynamics of a multi-breather configuration is essentially frozen. In order to investigate this question, we introduce simple stochastic models, characterized by suitable conservation laws. We focus on the role of the coupling strength between localized excitations and background. In the DNLS model, higher breathers interact more weakly, as a result of their faster rotation. In our stochastic models, the strength of the coupling is controlled directly by an amplitude-dependent parameter. In the case of a power-law decrease, the associated coarsening process undergoes a slowing down if the decay rate is larger than a critical value. In the case of an exponential decrease, a freezing effect is observed that is reminiscent of the scenario observed in the DNLS. This last regime arises spontaneously when direct energy diffusion between breathers and background is blocked below a certain threshold.

  11. Chiral perturbation theory approach to hadronic weak amplitudes

    International Nuclear Information System (INIS)

    Rafael, E. de

    1989-01-01

    We are concerned with applications to the non-leptonic weak interactions in the sector of light quark flavors: u, d and s. Both strangeness changing ΔS=1 and ΔS=2 non-leptonic transitions can be described as weak perturbations to the strong effective chiral Lagrangian; the chiral structure of the weak effective Lagrangian being dictated by the transformation properties of the weak non-leptonic Hamiltonian of the Standard Model under global SU(3) Left xSU(3) Right rotations of the quark-fields. These lectures are organized as follows. Section 2 gives a review of the basic properties of chiral symmetry. Section 3 explains the effective chiral realization of the non-leptonic weak Hamiltonian of the Standard Model to lowest order in derivatives and masses. Section 4 deals with non-leptonic weak transitions in the presence of electromagnetism. Some recent applications to radiative kaon decays are reviewed and the effect of the so called electromagnetic penguin like diagrams is also discussed. Section 5 explains the basic ideas of the QCD-hadronic duality approach to the evaluation of coupling constants of the non-leptonic chiral weak Lagrangian. (orig./HSI)

  12. PREDICTION OF THE MIXING ENTHALPIES OF BINARY LIQUID ALLOYS BY MOLECULAR INTERACTION VOLUME MODEL

    Institute of Scientific and Technical Information of China (English)

    H.W.Yang; D.P.Tao; Z.H.Zhou

    2008-01-01

    The mixing enthalpies of 23 binary liquid alloys are calculated by molecular interaction volume model (MIVM), which is a two-parameter model with the partial molar infinite dilute mixing enthalpies. The predicted values are in agreement with the experimental data and then indicate that the model is reliable and convenient.

  13. Measurement of the beta-asymmetry parameter of Cu-67 in search for tensor-type currents in the weak interaction

    OpenAIRE

    Soti, Gergely; Breitenfeldt, Martin; Finlay, Paul; Herzog, P; Knecht, Andreas; Koester, U; Kraev, I. S; Porobic, Tomica; Prashanth, P. N; Towner, I. S; Tramm, C; Zakoucky, D; Severijns, Nathal; Wauters, F

    2014-01-01

    The experimental value, ˜A = 0.587(14), is in agreement with the standard model value of 0.5991(2) and is interpreted in terms of physics beyond the standard model. The limits obtained on possible tensor-type charged currents in the weak interaction Hamiltonian are −0.045 < (C_T + C'_T)/CA < 0.159 (90% C.L.). The obtained limits are comparable to limits from other correlation measurements in nuclear β decay and contribute to further constraining tensor coupling constants.

  14. Measurement of the $\\beta$-asymmetry parameter of $^{67}$Cu in search for tensor type currents in the weak interaction

    CERN Document Server

    Soti, G.; Breitenfeldt, M.; Finlay, P.; Herzog, P.; Knecht, A.; Köster, U.; Kraev, I.S.; Porobic, T.; Prashanth, P.N.; Towner, I.S.; Tramm, C.; Zákoucký, D.; Severijns, N.

    2014-01-01

    Precision measurements at low energy search for physics beyond the Standard Model in a way complementary to searches for new particles at colliders. In the weak sector the most general $\\beta$ decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear $\\beta$ decay are on the level of several percent. The goal of this paper is extracting new information on tensor coupling constants by measuring the $\\beta$-asymmetry parameter in the pure Gamow-Teller decay of $^{67}$Cu, thereby testing the V-A structure of the weak interaction. An iron sample foil into which the radioactive nuclei were implanted was cooled down to milliKelvin temperatures in a $^3$He-$^4$He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic $\\beta$ radiation was observed with planar high purity germanium d...

  15. Weak localization in few-layer black phosphorus

    International Nuclear Information System (INIS)

    Du, Yuchen; Neal, Adam T; Zhou, Hong; Ye, Peide D

    2016-01-01

    We have conducted a comprehensive investigation into the magneto-transport properties of few-layer black phosphorus in terms of phase coherence length, phase coherence time, and mobility via weak localization measurement and Hall-effect measurement. We present magnetoresistance data showing the weak localization effect in bare p-type few-layer black phosphorus and reveal its strong dependence on temperature and carrier concentration. The measured weak localization agrees well with the Hikami–Larkin–Nagaoka model and the extracted phase coherence length of 104 nm at 350 mK, decreasing as ∼T −0.513+−0.053 with increased temperature. Weak localization measurement allows us to qualitatively probe the temperature-dependent phase coherence time τ ϕ , which is in agreement with the theory of carrier interaction in the diffusive regime. We also observe the universal conductance fluctuation phenomenon in few-layer black phosphorus within moderate magnetic field and low temperature regime. (paper)

  16. Interaction Studies between Newly Synthesized Photosensitive Polymer and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    In Tae Kim

    2015-01-01

    Full Text Available In this information age, different kinds of photosensitive materials have been used in the manufacture of information storage devices. But these photosensitive materials have the bane of low diffraction efficiency. In order to solve this problem, we have synthesized a novel photosensitive polymer from epoxy-based azopolymers (with three types of azochromophores. Furthermore, we have studied the interaction between this newly synthesized azopolymer and ionic liquids (ILs. For this purpose, we have used the ammonium and imidazolium families of ILs, such as diethylammonium dihydrogen phosphate (DEAP, tributylammonium methyl sulfate (TBMS, triethylammonium 4-aminotoluene-3-sulfonic acid (TASA, and 1-methylimidazolium chloride ([Mim]Cl. To investigate the molecular interaction between azopolymer and ILs, we have used the following spectroscopic methods of analysis: UV-visible spectroscopy, photoluminescence (PL spectroscopy, Fourier transformed infrared spectroscopy (FT-IR, and confocal Raman spectroscopy. In this study, we have developed new photosensitive materials by combining polymer with ILs.

  17. New experimental possibility to search for the ratio of a possible T-violating amplitude to the weak-interaction amplitude in polarized neutron transmission through a polarized nuclear target

    CERN Document Server

    Lukashevich, V V; Dallman, David

    2011-01-01

    This paper considers a spin-dependent neutron interaction with optical potentials (fields) from the strong interaction, the weak interaction, and an assumed T-violating interaction. The vector sum of these fields and their interferences determines an effective field of the target with an angular position in space due to polar and azimuthal angles. The phase of the azimuthal component is found to be the sum of two angles. The tangent of the first angle is equal to the ratio of the T-violating forward-scattering amplitude D to the weak-interaction amplitude C. The quantity is of interest. The tangent of the second angle depends on the spin rotation in the residual pseudomagnetic field of the target, and it can be treated as a background effect. This paper shows that the second angle has different signs in measurements with polarized and unpolarized neutrons; thus, two measurements allow it to be compensated for. In addition, the use of the Ramsey method of separated oscillatory fields for measurement of the neu...

  18. Proximate Kitaev quantum spin liquid behavior in α-RuCl{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nagler, Stephen [Quantum Condensed Matter Division, Oak Ridge National Laboratory (United States)

    2016-07-01

    The magnetic semiconductor α-RuCl{sub 3} is composed of very weakly coupled honeycomb layers of edge-sharing RuCl{sub 6} octahedra. The Ru{sup 3+} ion has 5d electrons in a low spin state, and the system is expected to have an effective J = 1/2 single ion ground state with an interacting spin Hamiltonian containing Kitaev-like terms. Inelastic neutron scattering on powders and single crystals has been used to determine the energy scale of the magnetic interactions and the overall form of the magnetic fluctuations. The results indicate that the Kitaev term is significant. Moreover, detailed measurements of the response show evidence for the fractionalized excitations that are characteristic of the Kitaev Quantum Spin-liquid.

  19. Drastic fall-off of the thermal conductivity for disordered lattices in the limit of weak anharmonic interactions

    International Nuclear Information System (INIS)

    Huveneers, François

    2013-01-01

    We study the thermal conductivity, at fixed positive temperature, of a disordered lattice of harmonic oscillators, weakly coupled to each other through anharmonic potentials. The interaction is controlled by a small parameter ϵ > 0. We rigorously show, in two slightly different setups, that the conductivity has a non-perturbative origin. This means that it decays to zero faster than any polynomial in ϵ as ϵ → 0. It is then argued that this result extends to a disordered chain studied by Dhar and Lebowitz (2008 Phys. Rev. Lett. 100 134301), and to a classic spin chain recently investigated by Oganesyan, Pal and Huse (2009 Phys. Rev. B 80 115104). (paper)

  20. Symmetry structure in discrete models of biochemical systems: natural subsystems and the weak control hierarchy in a new model of computation driven by interactions.

    Science.gov (United States)

    Nehaniv, Chrystopher L; Rhodes, John; Egri-Nagy, Attila; Dini, Paolo; Morris, Eric Rothstein; Horváth, Gábor; Karimi, Fariba; Schreckling, Daniel; Schilstra, Maria J

    2015-07-28

    Interaction computing is inspired by the observation that cell metabolic/regulatory systems construct order dynamically, through constrained interactions between their components and based on a wide range of possible inputs and environmental conditions. The goals of this work are to (i) identify and understand mathematically the natural subsystems and hierarchical relations in natural systems enabling this and (ii) use the resulting insights to define a new model of computation based on interactions that is useful for both biology and computation. The dynamical characteristics of the cellular pathways studied in systems biology relate, mathematically, to the computational characteristics of automata derived from them, and their internal symmetry structures to computational power. Finite discrete automata models of biological systems such as the lac operon, the Krebs cycle and p53-mdm2 genetic regulation constructed from systems biology models have canonically associated algebraic structures (their transformation semigroups). These contain permutation groups (local substructures exhibiting symmetry) that correspond to 'pools of reversibility'. These natural subsystems are related to one another in a hierarchical manner by the notion of 'weak control'. We present natural subsystems arising from several biological examples and their weak control hierarchies in detail. Finite simple non-Abelian groups are found in biological examples and can be harnessed to realize finitary universal computation. This allows ensembles of cells to achieve any desired finitary computational transformation, depending on external inputs, via suitably constrained interactions. Based on this, interaction machines that grow and change their structure recursively are introduced and applied, providing a natural model of computation driven by interactions.

  1. Superparamagnetic relaxation of weakly interacting particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Tronc, Elisabeth

    1994-01-01

    The influence of particle interactions on the superparamagnetic relaxation time has been studied by Mossbauer spectroscopy in samples of maghemite (gamma-Fe2O3) particles with different particle sizes and particle separations. It is found that the relaxation time decreases with decreasing particl...

  2. Systemic Liquidity Shocks and Banking Sector Liquidity Characteristics on the Eve of Liquidity Coverage Ratio Application - The Case of the Czech Republic1

    Directory of Open Access Journals (Sweden)

    Brůna Karel

    2016-01-01

    Full Text Available The paper contains an analysis of the economic and regulatory concept of bank liquidity in the context of systemic liquidity shock. A formal model analysis shows that the application of liquidity coverage ratio (LCR based on Basel III will lead to a significant adaptation of banks liquidity management. LCR causes a change in bank’s liquidity allocation and funding to be less effective and more costly and restrictive for providing credits comparing with economic determinants. It is demonstrated that the application of LCR underestimates actual liquidity position of a bank and leads to allocation ineffectiveness. The empirical part contains simulation of impacts of systemic liquidity shock on the banking sector’s ability to withstand the unfavourable credit shock while solvency is maintained. The results confirm the robustness of the Czech banking system ensuing from the systemic surplus of liquidity, high volume of bank capital and its high profitability. The estimations of the VAR model show that the relations between liquidity characteristics of banks, sources of aggregate liquidity shock, interbank market illiquidity and the credit facilities of the Czech National Bank are relatively weak, supporting the conclusion that the banks face liquidity shocks of non-persistent character.

  3. Phase Behaviour, Interactions, and Structural Studies of (Amines+Ionic Liquids) Binary Mixtures

    Czech Academy of Sciences Publication Activity Database

    Jacquemin, J.; Bendová, Magdalena; Sedláková, Zuzana; Holbrey, J.D.; Mullan, C.L.; Youngs, T.G.A.; Pison, L.; Wagner, Zdeněk; Aim, Karel; Costa Gomes, M.F.; Hardacre, Ch.

    2012-01-01

    Roč. 13, č. 7 (2012), s. 1825-1835 ISSN 1439-4235 R&D Projects: GA ČR GP203/09/P141; GA ČR GA104/07/0444; GA AV ČR IAA400720710; GA ČR GP104/06/P066 Grant - others:QUILL(GB) EP/D029538 Institutional research plan: CEZ:AV0Z40720504 Keywords : amines * interactions * ionic liquids Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.349, year: 2012

  4. Study of Separation and Identification of the Active Ingredients in Gardenia jasminoides Ellis Based on a Two-Dimensional Liquid Chromatography by Coupling Reversed Phase Liquid Chromatography and Hydrophilic Interaction Liquid Chromatography.

    Science.gov (United States)

    Zhou, Xuan; Chen, Cen; Ye, Xiaolan; Song, Fenyun; Fan, Guorong; Wu, Fuhai

    2017-01-01

    In this paper, by coupling reversed phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC), a two-dimensional liquid chromatography system was developed for separation and identification of the active ingredients in Gardenia jasminoides Ellis (GJE). By applying the semi-preparative C18 column as the first dimension and the core-shell column as the second dimension, a total of 896 peaks of GJE were separated. Among the 896 peaks, 16 active ingredients including geniposide, gardenoside, gardoside, etc. were identified by mass spectrometry analysis. The results indicated that the proposed two-dimensional RPLC/HILIC system was an effective method for the analysis of GJE and might hold a high potential to become a useful tool for analysis of other complex mixtures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Singular perturbation theory for interacting fermions in two dimensions

    International Nuclear Information System (INIS)

    Chubukov, A.V.; Maslov, D.L.; Gangadharaiah, S.; Glazman, L.I.

    2004-11-01

    We consider a system of interacting fermions in two dimensions beyond the second-order perturbation theory in the interaction. It is shown that the mass-shell singularities in the self-energy, arising already at the second order of the perturbation theory, manifest a nonperturbative effect: an interaction with the zero-sound mode. Resuming the perturbation theory for a weak, short-range interaction and accounting for a finite curvature of the fermion spectrum, we eliminate the singularities and obtain the results for the quasi-particle self-energy and the spectral function to all orders in the interaction with the zero-sound mode. A threshold for emission of zero-sound waves leads a non-monotonic variation of the self-energy with energy (or momentum) near the mass shell. Consequently, the spectral function has a kink-like feature. We also study in detail a non-analytic temperature dependence of the specific heat, C(T) ∝T 2 . It turns out that although the interaction with the collective mode results in an enhancement of the fermion self-energy, this interaction does not affect the non-analytic term in C(T) due to a subtle cancellation between the contributions from the real and imaginary parts of the self-energy. For a short-range and weak interaction, this implies that the second-order perturbation theory suffices to determine the non-analytic part of C(T). We also obtain a general form of the non-analytic term in C(T), valid for the case of a generic Fermi liquid, i.e., beyond the perturbation theory. (author)

  6. Probing the Interaction of Ionic Liquids with CO2: A Raman Spectroscopy and Ab Initio Study

    National Research Council Canada - National Science Library

    Eucker, IV, William

    2008-01-01

    ...) with selected ionic liquids (ILs). Raman spectroscopy and first principle quantum mechanical calculations were performed on selected IL solvents in contact with CO2 in the effort to discover how the solvents interact with the gas. ILs are salts...

  7. Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review.

    Science.gov (United States)

    Jandera, Pavel; Hájek, Tomáš

    2018-01-01

    Hydrophilic interaction liquid chromatography on polar columns in aqueous-organic mobile phases has become increasingly popular for the separation of many biologically important compounds in chemical, environmental, food, toxicological, and other samples. In spite of many new applications appearing in literature, the retention mechanism is still controversial. This review addresses recent progress in understanding of the retention models in hydrophilic interaction liquid chromatography. The main attention is focused on the role of water, both adsorbed by the column and contained in the bulk mobile phase. Further, the theoretical retention models in the isocratic and gradient elution modes are discussed. The dual hydrophilic interaction liquid chromatography reversed-phase retention mechanism on polar columns is treated in detail, especially with respect to the practical use in one- and two-dimensional liquid chromatography separations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Extrapolating Weak Selection in Evolutionary Games

    Science.gov (United States)

    Wu, Bin; García, Julián; Hauert, Christoph; Traulsen, Arne

    2013-01-01

    In evolutionary games, reproductive success is determined by payoffs. Weak selection means that even large differences in game outcomes translate into small fitness differences. Many results have been derived using weak selection approximations, in which perturbation analysis facilitates the derivation of analytical results. Here, we ask whether results derived under weak selection are also qualitatively valid for intermediate and strong selection. By “qualitatively valid” we mean that the ranking of strategies induced by an evolutionary process does not change when the intensity of selection increases. For two-strategy games, we show that the ranking obtained under weak selection cannot be carried over to higher selection intensity if the number of players exceeds two. For games with three (or more) strategies, previous examples for multiplayer games have shown that the ranking of strategies can change with the intensity of selection. In particular, rank changes imply that the most abundant strategy at one intensity of selection can become the least abundant for another. We show that this applies already to pairwise interactions for a broad class of evolutionary processes. Even when both weak and strong selection limits lead to consistent predictions, rank changes can occur for intermediate intensities of selection. To analyze how common such games are, we show numerically that for randomly drawn two-player games with three or more strategies, rank changes frequently occur and their likelihood increases rapidly with the number of strategies . In particular, rank changes are almost certain for , which jeopardizes the predictive power of results derived for weak selection. PMID:24339769

  9. Binary liquid-liquid equilibria of aniline-paraffin and furfural-paraffin systems

    Energy Technology Data Exchange (ETDEWEB)

    Sen, S.C.; Maity, S.; Ganguli, K.; Ray, P. (Calcutta Univ., (India))

    1991-12-01

    Liquid-liquid-equilibria (L-L-E) of hydrocarbon containing systems are of considerable commercial importance to refineries. But prediction of L-L-E of such systems is extremely difficult owing to the complex nature of the petroleum fluids. For treating such complex mixtures, a continuous component method is appropriate and for representing such liquids, a group contribution model like the UNIFAC is extremely convenient. It is, however, necessary to determine the appropriate group interaction parameters, and also to test the applicability of the UNIFAC method to these cases. Binary liquid-liquid-equilibria data for several aniline-paraffin and furfural-paraffin systems have been taken. These data along with data for other aniline-hydrocarbon and furfural-hydrocarbon systems from literature have been correlated using the UNIFAC model. The UNIFAC group interaction parameters have been found to have a linear temperature dependence. The CH{sub 2} groups in cyclo and non-cyclo paraffins require different interaction parameters. It was also found that a scaling of the combinatorial term is necessary for higher molecular weight hydrocarbons. 13 refs., 12 figs., 5 tabs.

  10. P-odd effects in πN-scattering at low energies and determination of the isotopical structure of the weak nonleptonic interaction

    International Nuclear Information System (INIS)

    Gershtein, S.S.; Folomeshkin, V.N.; Khlopov, M.Yu.

    1974-01-01

    P-odd effects in the πN-scattering on a target polarized along and again a pion beam have been considered. The P-odd correlations are intensified by interference of weak and strong interactions, whose amplitude is great in the energy range of the order of 100 to 300 MeV. When measuring cross-section differences of the πN-scattering at meson factories, it is possible to hope that the Lobashow integral method may be used in this range. The P-odd amplitudes have been calculated in the approximation of low-energy pions from the P-odd πNN vertex. High-energy meson effects are taken account of in the model of a rho-meson exchange. A kinematic analysis shows that the P-odd effects in a backward charge exchange reaction are sensitive to the presence of neutral currents. Investigation of the P-odd effects in a forward (elastica and with charge exchange) πN-scattering makes it possible to establish the isotopic structure of the nonlepton weak interaction and in particular to check the assumption of an intensified rho-meson exchange which has been offered by. Danilov to explain the high value of circular polarization of γ-quanta in the np → dγ reaction

  11. Effect of intermolecular dipole-dipole interactions on interfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronene derivatives.

    Science.gov (United States)

    Mu, Zhongcheng; Shao, Qi; Ye, Jun; Zeng, Zebing; Zhao, Yang; Hng, Huey Hoon; Boey, Freddy Yin Chiang; Wu, Jishan; Chen, Xiaodong

    2011-02-15

    Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.

  12. Doubly excited circular Ba(6pj, 21c) states: e-e interaction effects in weak external fields

    International Nuclear Information System (INIS)

    Chen, L.; Cheret, M.; Poirier, M.; Roussel, F.; Bolzinger, T.; Spiess, G.

    1992-01-01

    The behaviour of doubly excited circular atoms in weak parallel electric and magnetic fields has been studied. The Hamiltonian, including the e-e interaction between the two excited electrons, Stark and Zeeman effects, is diagonalized in a truncated basis. The Rydberg electron, initially in a circular state, experiences a mixing of its orbital and magnetic quantum numbers, due to the presence of the external fields and to the excitation of the inner electron. This mixing depends on the spatial symmetry of the excited core and on the amplitude of the electric field. It can be detected by the field-ionization method which provides a new way for studying non-autoionizing doubly excited states. (orig.)

  13. On Interactions of Oscillation Modes for a Weakly Non-Linear Undamped Elastic Beam with AN External Force

    Science.gov (United States)

    BOERTJENS, G. J.; VAN HORSSEN, W. T.

    2000-08-01

    In this paper an initial-boundary value problem for the vertical displacement of a weakly non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends of the beam is studied. The initial-boundary value problem can be regarded as a simple model describing oscillations of flexible structures like suspension bridges or iced overhead transmission lines. Using a two-time-scales perturbation method an approximation of the solution of the initial-boundary value problem is constructed. Interactions between different oscillation modes of the beam are studied. It is shown that for certain external excitations, depending on the phase of an oscillation mode, the amplitude of specific oscillation modes changes.

  14. Weakly and strongly coupled Belousov-Zhabotinsky patterns

    Science.gov (United States)

    Weiss, Stephan; Deegan, Robert D.

    2017-02-01

    We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.

  15. Corporate governance and liquidity

    DEFF Research Database (Denmark)

    Farooq, Omar; Derrabi, Mohamed; Naciri, Monir

    2012-01-01

    This paper examines the impact of corporate governance mechanisms on liquidity in the MENA region, i.e. Morocco, Egypt, Saudi Arabia, United Arab Emirates, Jordan, Kuwait, and Bahrain. Using turnover as a proxy for liquidity, we document significant difference in liquidity between the pre......- and the post-crisis periods in the MENA region. In addition, our results show that bulk of this reduction in turnover can be explained due to weaknesses of corporate governance mechanisms. For example, that dividend payout ratio and choice of auditors – proxies for agency problems – can explain the entire...... difference in liquidity between the two periods. Furthermore, our results indicate that more than 50% of this difference between the two periods can be explained by operational and informational complexity of a firm – proxy for transparency. We argue that poor corporate governance mechanisms increase...

  16. Evaluation of Soil-Structure Interaction on the Seismic Response of Liquid Storage Tanks under Earthquake Ground Motions

    Directory of Open Access Journals (Sweden)

    Mostafa Farajian

    2017-03-01

    Full Text Available Soil-structure interaction (SSI could affect the seismic response of structures. Since liquid storage tanks are vital structures and must continue their operation under severe earthquakes, their seismic behavior should be studied. Accordingly, the seismic response of two types of steel liquid storage tanks (namely, broad and slender, with aspect ratios of height to radius equal to 0.6 and 1.85 founded on half-space soil is scrutinized under different earthquake ground motions. For a better comparison, the six considered ground motions are classified, based on their pulse-like characteristics, into two groups, named far and near fault ground motions. To model the liquid storage tanks, the simplified mass-spring model is used and the liquid is modeled as two lumped masses known as sloshing and impulsive, and the interaction of fluid and structure is considered using two coupled springs and dashpots. The SSI effect, also, is considered using a coupled spring and dashpot. Additionally, four types of soils are used to consider a wide variety of soil properties. To this end, after deriving the equations of motion, MATLAB programming is employed to obtain the time history responses. Results show that although the SSI effect leads to a decrease in the impulsive displacement, overturning moment, and normalized base shear, the sloshing (or convective displacement is not affected by such effects due to its long period.

  17. A Study on the Violent Interactions of an Immiscible Drop impacting on a Superheated Pool

    KAUST Repository

    Alchalabi, Mohamad

    2014-05-01

    ABSTRACT A Study on the Violent Interactions of an Immiscible Drop Impacting on a Superheated Pool Mohamad Alchalabi The interactions between two immiscible liquids of different temperatures can be violent to the extent of causing harm to individuals, or damage to equipment, especially when used in the industry. Only a few studies investigated these interactions but they could not produce the violent interactions often reported by the industry, and therefore their results did not help much to develop clear understanding of the dynamics of these interactions. In this work, a high speed imaging system operated at 100,000 frames per second was utilized to record the events and phenomena taking place upon the impact of Perfluorohexane droplet at room temperature onto a hot soybean oil pool at temperatures as high as 300 ºC. The impact velocity was varied by varying the height of the droplet before it pinches off under its own weight. The recorded events identified the occurrence of vortex ring vapor explosions, weak and strong nucleate boiling, and film boiling. An impact velocity vs. oil temperature diagram identifying the regions in which each of these phenomena takes place was generated, and the dynamics driving their occurrences were explored. The vortex ring vapor explosions were found to become less violent as the impact velocity was increased, which was attributed to the existence of a smaller amount of liquid Perfluorohexane within the rings at high speed impacts, which does evaporate but does not expand violently. Weak nucleate boiling occurred at very high impact velocities relatively. As the temperature is increased, however, they start 5 turning into strong nucleate boiling. The strong nucleate boiling usually starts right upon impact, and when the temperature of the oil at one impact velocity is increased, it starts turning into film boiling, in which the liquid Perfluorohexane is covered by a vapor layer of its own vapor.

  18. Enhanced optoelastic interaction range in liquid crystals with negative dielectric anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Simoni, F.; Lalli, S.; Lucchetti, L. [Dipartimento di Scienze e Ingegneria della Materia, dell' Ambiente ed Urbanistica and CNISM, Università Politecnica delle Marche, Ancona (Italy); Criante, L. [Center for Nano Science and Technology-PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano (Italy); Brasselet, E. [Univ. Bordeaux and CNRS, Laboratoire Ondes et Matière d' Aquitaine, UMR 5798, F-33400 Talence (France)

    2014-01-06

    We demonstrate that the long-range interaction between surface-functionalized microparticles immersed a nematic liquid crystal—a “nematic colloid”—and a laser-induced “ghost colloid” can be enhanced by a low-voltage quasistatic electric field when the nematic mesophase has a negative dielectric anisotropy. The optoelastic trapping distance is shown to be enhanced by a factor up to 2.5 in presence of an electric field. Experimental data are quantitatively described with a theoretical model accounting for the spatial overlap between the orientational distortions around the microparticle and those induced by the trapping light beam itself.

  19. Neutral-current weak interactions at an EIC

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.X.; Deshpande, A.; Kumar, K.S.; Riordan, S. [Stony Brook University, Department of Physics and Astronomy, Stony Brook, NY (United States); Huang, J. [Brookhaven National Lab, Physics Department, Upton, NY (United States)

    2017-03-15

    A simulation study of measurements of neutral current structure functions of the nucleon at the future high-energy and high-luminosity polarized electron-ion collider (EIC) is presented. A new series of γ-Z interference structure functions, F{sub 1}{sup γZ}, F{sub 3}{sup γZ}, g{sub 1}{sup γZ}, g{sub 5}{sup γZ} become accessible via parity-violating asymmetries in polarized electron-nucleon deep inelastic scattering (DIS). Within the context of the quark-parton model, they provide a unique and, in some cases, yet-unmeasured combination of unpolarized and polarized parton distribution functions. The uncertainty projections for these structure functions using electron-proton collisions are considered for various EIC beam energy configurations. Also presented are uncertainty projections for measurements of the weak mixing angle sin{sup 2} θ{sub W} using electron-deuteron collisions which cover a much higher Q{sup 2} than that accessible in fixed target measurements. QED and QCD radiative corrections and effects of detector smearing are included with the calculations. (orig.)

  20. Crystal–liquid interfacial free energy and thermophysical properties of pure liquid Ti using electrostatic levitation: Hypercooling limit, specific heat, total hemispherical emissivity, density, and interfacial free energy

    International Nuclear Information System (INIS)

    Lee, Geun Woo; Jeon, Sangho; Park, Cheolmin; Kang, Dong-Hee

    2013-01-01

    Highlights: • Thermophysical properties of liquid Ti are obtained by electrostatic levitation. • How to measure the thermophysical properties is shown with non-contact method. • Hypercooling limit of liquid Ti guarantying homogeneous nucleation is 341 K. • Accurate ratio C p /ε T of the liquid Ti is obtained with weak temperature dependence. • Interfacial free energy of Ti is estimated with the thermophysical parameters. -- Abstract: Thermophysical properties of liquid Ti are measured by a newly developed electrostatic levitation. In this study, we measure a hypercooling limit (ΔT hyp ), specific heat (C p ), total hemispherical emissivity (ε T ), and density (ρ) of liquid Ti. The ΔT hyp of the liquid Ti is 341 K. The C p of the liquid Ti shows very weak temperature dependence during supercooling. The ε T and ρ of the liquid Ti are given by 0.329 and ρ(T) (g/cm 3 ) = (4.16 − 2.36) · 10 −4 (T − T m ). Finally, the interfacial free energy is estimated with the measured thermophysical parameters. The interfacial free energy is 0.164 J/m 2 , and Turnbull’s coefficient is 0.48

  1. Increase of weakly acidic gas esophagopharyngeal reflux (EPR) and swallowing-induced acidic/weakly acidic EPR in patients with chronic cough responding to proton pump inhibitors.

    Science.gov (United States)

    Kawamura, O; Shimoyama, Y; Hosaka, H; Kuribayashi, S; Maeda, M; Nagoshi, A; Zai, H; Kusano, M

    2011-05-01

    Gastro-esophageal reflux disease (GERD)-related chronic cough (CC) may have multifactorial causes. To clarify the characteristics of esophagopharyngeal reflux (EPR) events in CC patients whose cough was apparently influenced by gastro-esophageal reflux (GER), we studied patients with CC clearly responding to full-dose proton pump inhibitor (PPI) therapy (CC patients). Ten CC patients, 10 GERD patients, and 10 healthy controls underwent 24-h ambulatory pharyngo-esophageal impedance and pH monitoring. Weakly acidic reflux was defined as a decrease of pH by >1 unit with a nadir pH >4. In six CC patients, monitoring was repeated after 8 weeks of PPI therapy. The number of each EPR event and the symptom association probability (SAP) were calculated. Symptoms were evaluated by a validated GERD symptom questionnaire. Weakly acidic gas EPR and swallowing-induced acidic/weakly acidic EPR only occurred in CC patients, and the numbers of such events was significantly higher in the CC group than in the other two groups (P pump inhibitor therapy abolished swallowing-induced acidic/weakly acidic EPR, reduced weakly acidic gas EPR, and improved symptoms (all P gas EPR and swallowing-induced acidic/weakly acidic EPR. A direct effect of acidic mist or liquid refluxing into the pharynx may contribute to chronic cough, while cough may also arise indirectly from reflux via a vago-vagal reflex in some patients. © 2011 Blackwell Publishing Ltd.

  2. Calculating exclusion limits for weakly interacting massive particle direct detection experiments without background subtraction

    International Nuclear Information System (INIS)

    Green, Anne M.

    2002-01-01

    Competitive limits on the weakly interacting massive particle (WIMP) spin-independent scattering cross section are currently being produced by 76 Ge detectors originally designed to search for neutrinoless double beta decay, such as the Heidelberg-Moscow and IGEX experiments. In the absence of background subtraction, limits on the WIMP interaction cross section are set by calculating the upper confidence limit on the theoretical event rate, given the observed event rate. The standard analysis technique involves calculating the 90% upper confidence limit on the number of events in each bin, and excluding any set of parameters (WIMP mass and cross section) which produces a theoretical event rate for any bin which exceeds the 90% upper confidence limit on the event rate for that bin. We show that, if there is more than one energy bin, this produces exclusion limits that are actually at a lower degree of confidence than 90%, and are hence erroneously tight. We formulate criteria which produce true 90% confidence exclusion limits in these circumstances, including calculating the individual bin confidence limit for which the overall probability that no bins exceed this confidence limit is 90% and calculating the 90% minimum confidence limit on the number of bins which exceed their individual bin 90% confidence limits. We then compare the limits on the WIMP cross section produced by these criteria with those found using the standard technique, using data from the Heidelberg-Moscow and IGEX experiments

  3. Bunched soliton states in weakly coupled sine-Gordon systems

    International Nuclear Information System (INIS)

    Gronbech-Jensen, N.; Samuelsen, M.R.; Lomdahl, P.S.; Blackburn, J.A.

    1990-01-01

    The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results

  4. A NOVEL APPROACH IN THE WEAKLY INTERACTING MASSIVE PARTICLE QUEST: CROSS-CORRELATION OF GAMMA-RAY ANISOTROPIES AND COSMIC SHEAR

    International Nuclear Information System (INIS)

    Camera, Stefano; Fornasa, Mattia; Fornengo, Nicolao; Regis, Marco

    2013-01-01

    Both cosmic shear and cosmological gamma-ray emission stem from the presence of dark matter (DM) in the universe: DM structures are responsible for the bending of light in the weak-lensing regime and those same objects can emit gamma rays, either because they host astrophysical sources (active galactic nuclei or star-forming galaxies) or directly by DM annihilations (or decays, depending on the properties of the DM particle). Such gamma rays should therefore exhibit strong correlation with the cosmic shear signal. In this Letter, we compute the cross-correlation angular power spectrum of cosmic shear and gamma rays produced by the annihilation/decay of weakly interacting massive particle DM, as well as by astrophysical sources. We show that this observable provides novel information on the composition of the extragalactic gamma-ray background (EGB), since the amplitude and shape of the cross-correlation signal strongly depend on which class of sources is responsible for the gamma-ray emission. If the DM contribution to the EGB is significant (at least in a definite energy range), although compatible with current observational bounds, its strong correlation with the cosmic shear makes such signal potentially detectable by combining Fermi Large Area Telescope data with forthcoming galaxy surveys, like the Dark Energy Survey and Euclid. At the same time, the same signal would demonstrate that the weak-lensing observables are indeed due to particle DM matter and not to possible modifications of general relativity.

  5. A Novel Approach in the Weakly Interacting Massive Particle Quest: Cross-correlation of Gamma-Ray Anisotropies and Cosmic Shear

    Science.gov (United States)

    Camera, Stefano; Fornasa, Mattia; Fornengo, Nicolao; Regis, Marco

    2013-07-01

    Both cosmic shear and cosmological gamma-ray emission stem from the presence of dark matter (DM) in the universe: DM structures are responsible for the bending of light in the weak-lensing regime and those same objects can emit gamma rays, either because they host astrophysical sources (active galactic nuclei or star-forming galaxies) or directly by DM annihilations (or decays, depending on the properties of the DM particle). Such gamma rays should therefore exhibit strong correlation with the cosmic shear signal. In this Letter, we compute the cross-correlation angular power spectrum of cosmic shear and gamma rays produced by the annihilation/decay of weakly interacting massive particle DM, as well as by astrophysical sources. We show that this observable provides novel information on the composition of the extragalactic gamma-ray background (EGB), since the amplitude and shape of the cross-correlation signal strongly depend on which class of sources is responsible for the gamma-ray emission. If the DM contribution to the EGB is significant (at least in a definite energy range), although compatible with current observational bounds, its strong correlation with the cosmic shear makes such signal potentially detectable by combining Fermi Large Area Telescope data with forthcoming galaxy surveys, like the Dark Energy Survey and Euclid. At the same time, the same signal would demonstrate that the weak-lensing observables are indeed due to particle DM matter and not to possible modifications of general relativity.

  6. A NOVEL APPROACH IN THE WEAKLY INTERACTING MASSIVE PARTICLE QUEST: CROSS-CORRELATION OF GAMMA-RAY ANISOTROPIES AND COSMIC SHEAR

    Energy Technology Data Exchange (ETDEWEB)

    Camera, Stefano [CENTRA, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Lisboa (Portugal); Fornasa, Mattia [School of Physics and Astronomy, University of Nottingham, Nottingham (United Kingdom); Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica, Universita di Torino and INFN, Torino (Italy)

    2013-07-01

    Both cosmic shear and cosmological gamma-ray emission stem from the presence of dark matter (DM) in the universe: DM structures are responsible for the bending of light in the weak-lensing regime and those same objects can emit gamma rays, either because they host astrophysical sources (active galactic nuclei or star-forming galaxies) or directly by DM annihilations (or decays, depending on the properties of the DM particle). Such gamma rays should therefore exhibit strong correlation with the cosmic shear signal. In this Letter, we compute the cross-correlation angular power spectrum of cosmic shear and gamma rays produced by the annihilation/decay of weakly interacting massive particle DM, as well as by astrophysical sources. We show that this observable provides novel information on the composition of the extragalactic gamma-ray background (EGB), since the amplitude and shape of the cross-correlation signal strongly depend on which class of sources is responsible for the gamma-ray emission. If the DM contribution to the EGB is significant (at least in a definite energy range), although compatible with current observational bounds, its strong correlation with the cosmic shear makes such signal potentially detectable by combining Fermi Large Area Telescope data with forthcoming galaxy surveys, like the Dark Energy Survey and Euclid. At the same time, the same signal would demonstrate that the weak-lensing observables are indeed due to particle DM matter and not to possible modifications of general relativity.

  7. Multi-scale coarse-graining of non-conservative interactions in molecular liquids

    International Nuclear Information System (INIS)

    Izvekov, Sergei; Rice, Betsy M.

    2014-01-01

    A new bottom-up procedure for constructing non-conservative (dissipative and stochastic) interactions for dissipative particle dynamics (DPD) models is described and applied to perform hierarchical coarse-graining of a polar molecular liquid (nitromethane). The distant-dependent radial and shear frictions in functional-free form are derived consistently with a chosen form for conservative interactions by matching two-body force-velocity and three-body velocity-velocity correlations along the microscopic trajectories of the centroids of Voronoi cells (clusters), which represent the dissipative particles within the DPD description. The Voronoi tessellation is achieved by application of the K-means clustering algorithm at regular time intervals. Consistently with a notion of many-body DPD, the conservative interactions are determined through the multi-scale coarse-graining (MS-CG) method, which naturally implements a pairwise decomposition of the microscopic free energy. A hierarchy of MS-CG/DPD models starting with one molecule per Voronoi cell and up to 64 molecules per cell is derived. The radial contribution to the friction appears to be dominant for all models. As the Voronoi cell sizes increase, the dissipative forces rapidly become confined to the first coordination shell. For Voronoi cells of two and more molecules the time dependence of the velocity autocorrelation function becomes monotonic and well reproduced by the respective MS-CG/DPD models. A comparative analysis of force and velocity correlations in the atomistic and CG ensembles indicates Markovian behavior with as low as two molecules per dissipative particle. The models with one and two molecules per Voronoi cell yield transport properties (diffusion and shear viscosity) that are in good agreement with the atomistic data. The coarser models produce slower dynamics that can be appreciably attributed to unaccounted dissipation introduced by regular Voronoi re-partitioning as well as by larger

  8. Multi-scale coarse-graining of non-conservative interactions in molecular liquids

    Energy Technology Data Exchange (ETDEWEB)

    Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M. [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

    2014-03-14

    A new bottom-up procedure for constructing non-conservative (dissipative and stochastic) interactions for dissipative particle dynamics (DPD) models is described and applied to perform hierarchical coarse-graining of a polar molecular liquid (nitromethane). The distant-dependent radial and shear frictions in functional-free form are derived consistently with a chosen form for conservative interactions by matching two-body force-velocity and three-body velocity-velocity correlations along the microscopic trajectories of the centroids of Voronoi cells (clusters), which represent the dissipative particles within the DPD description. The Voronoi tessellation is achieved by application of the K-means clustering algorithm at regular time intervals. Consistently with a notion of many-body DPD, the conservative interactions are determined through the multi-scale coarse-graining (MS-CG) method, which naturally implements a pairwise decomposition of the microscopic free energy. A hierarchy of MS-CG/DPD models starting with one molecule per Voronoi cell and up to 64 molecules per cell is derived. The radial contribution to the friction appears to be dominant for all models. As the Voronoi cell sizes increase, the dissipative forces rapidly become confined to the first coordination shell. For Voronoi cells of two and more molecules the time dependence of the velocity autocorrelation function becomes monotonic and well reproduced by the respective MS-CG/DPD models. A comparative analysis of force and velocity correlations in the atomistic and CG ensembles indicates Markovian behavior with as low as two molecules per dissipative particle. The models with one and two molecules per Voronoi cell yield transport properties (diffusion and shear viscosity) that are in good agreement with the atomistic data. The coarser models produce slower dynamics that can be appreciably attributed to unaccounted dissipation introduced by regular Voronoi re-partitioning as well as by larger

  9. An efficient hydrophilic interaction liquid chromatography separation of 7 phospholipid classes based on a diol column

    NARCIS (Netherlands)

    Zhu, C.; Dane, A.; Spijksma, G.; Wang, M.; Greef, J. van der; Luo, G.; Hankemeier, T.; Vreeken, R.J.

    2012-01-01

    A hydrophilic interaction liquid chromatography (HILIC) - ion trap mass spectrometry method was developed for separation of a wide range of phospholipids. A diol column which is often used with normal phase chromatography was adapted to separate different phospholipid classes in HILIC mode using a

  10. Weak measurements and quantum weak values for NOON states

    Science.gov (United States)

    Rosales-Zárate, L.; Opanchuk, B.; Reid, M. D.

    2018-03-01

    Quantum weak values arise when the mean outcome of a weak measurement made on certain preselected and postselected quantum systems goes beyond the eigenvalue range for a quantum observable. Here, we propose how to determine quantum weak values for superpositions of states with a macroscopically or mesoscopically distinct mode number, that might be realized as two-mode Bose-Einstein condensate or photonic NOON states. Specifically, we give a model for a weak measurement of the Schwinger spin of a two-mode NOON state, for arbitrary N . The weak measurement arises from a nondestructive measurement of the two-mode occupation number difference, which for atomic NOON states might be realized via phase contrast imaging and the ac Stark effect using an optical meter prepared in a coherent state. The meter-system coupling results in an entangled cat-state. By subsequently evolving the system under the action of a nonlinear Josephson Hamiltonian, we show how postselection leads to quantum weak values, for arbitrary N . Since the weak measurement can be shown to be minimally invasive, the weak values provide a useful strategy for a Leggett-Garg test of N -scopic realism.

  11. Weak interaction corrections to hadronic top quark pair production; Korrekturen der schwachen Wechselwirkung zur hadronischen Topquark-Paarproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Fuecker, M.

    2007-05-15

    This thesis presents the calculation of the Standard Model weak-interaction corrections of order {alpha}{sub s}{sup 2}{alpha} to hadronic top-quark pair production. The one-loop weak corrections to top antitop production due to gluon fusion and uark antiquark annihilation are computed. Also the order {alpha}{sub s}{sup 2}{alpha} corrections to top antitop production due to quark gluon and antiquark gluon scattering in the Standard Model are calculated. In this complete weak-corrections of order {alpha}{sub s}{sup 2}{alpha} to gg, q anti q, gq, and g anti q induced hadronic t anti t production the top and antitop polarizations and spin-correlations are fully taken into account. For the Tevatron and the LHC the weak contributions to the cross section, to the transverse top-momentum (p{sub T}) distributions, and to the top antitop invariant mass (M{sub t} {sub anti} {sub t}) distributions are analyzed. At the LHC the corrections to the distributions can be of the order of -10 percent compared with the leading-order results, for p{sub T}>1500 GeV and M{sub t} {sub anti} {sub t}>3000 GeV, respectively. At the Tevatron the corrections are -4 percent for p{sub T}>600 GeV and M{sub t} {sub anti} {sub t}>1000 GeV. This thesis also considers parity-even top antitop spin correlations of the form d{sigma}(++)+d{sigma}(--)-d{sigma}(+-)-d{sigma}(-+), where the first and second argument denotes the top and antitop spin projection onto a given reference axis. This spin asymmetries are computed as a function of M{sub t} {sub anti} {sub t}. At the LHC the weak corrections are of order of -10 percent for M{sub t} {sub anti} {sub t}>1000 GeV for all analyzed reference axes. At the Tevatron the corrections are in the range of 5 percent at threshold and -5 percent for M{sub t} {sub anti} {sub t}>1000 GeV. Apart from parity-even spin asymmetries also the Standard Model predictions for parity violating effects in topquark pair production are calculated. This thesis analyzes parity

  12. The Nature of the Interactions in Triethanolammonium-Based Ionic Liquids. A Quantum Chemical Study.

    Science.gov (United States)

    Fedorova, Irina V; Safonova, Lyubov P

    2018-05-10

    Structural features and interionic interactions play a crucial role in determining the overall stability of ionic liquids and their physicochemical properties. Therefore, we performed high-level quantum-chemical study of different cation-anion pairs representing the building units of protic ionic liquids based on triethanolammonium cation and anions of sulfuric, nitric, phosphoric, and phosphorus acids to provide essential insight into these phenomena at the molecular level. It was shown that every structure is stabilized through multiple H bonds between the protons in the N-H and O-H groups of the cation and different oxygen atoms of the anion acid. Using atoms in molecules topological parameters and natural bond orbital analysis, we determined the nature and strength of these interactions. Our calculations suggest that the N-H group of the cation has more proton donor-like character than the O-H group that makes the N-H···O hydrogen bonds stronger. A close relation between the binding energies of these ion pairs and experimental melting points was established: the smaller the absolute value of the binding energy between ions, the lower is the melting point.

  13. Interaction of Liquid Film Flow of Direct Vessel Injection Under the Cross Directional Gas Flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-sol; Lee, Jae-young [Handong Global University, Pohang (Korea, Republic of); Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In order to obtain a proper scaling law of the flow, local information of the flow was investigated experimentally and also numerically. A series of experiments were conducted in the 1/20 modified linear scaled plate type test rig to analyze a liquid film from ECC water injection through the DVI nozzle to the downcomer wall. The present study investigates liquid film flow generated in a downcomer of direct vessel injection (DVI) system which is employed as an emergency core cooling (ECC) system during a loss of coolant accident in the Korea nuclear power plant APR1400. During the late reflooding, complicated multi-phase flow phenomena including the wavy film flow, film breakup, entrainment, liquid film shift due to interfacial drag and gas jet impingement occur. A confocal chromatic sensor was used to measure the local instantaneous liquid film thickness and a hydraulic jump in the film flow and boundaries of the film flow. It was found that CFD analysis results without surface tension model showed some difference with the data in surface tension dominated flow region. For the interaction between a liquid film and gas shear flow, CFD results make a good agreement with the real liquid film dynamics in the case of low film Reynolds number or low Weber number flow. In the 1/20 scaled plate type experiment and simulation, the deformed spreading profile results seem to accord with each other at the relatively low We and Re regime.

  14. Observation of electron weak localization and correlation effects in disordered graphene

    Institute of Scientific and Technical Information of China (English)

    TAN ChangLing; TAN ZhenBing; MA Li; QU FanMing; YANG Fan; CHEN Jun; LIU GuangTong; YANG HaiFang; YANG ChangLi; LU Li

    2009-01-01

    We have studied the electron transport properties of a disordered graphene sample,where the disorder was intentionally strengthened by Ga+ ion irradiation.The magneto-conductance of the sample exhibits a typical two-dimensional electron weak localization behavior,with electron-electron interaction as the dominant dephasing mechanism.The absence of electron anti-weak localization in the sample implies strong intersublattice and/or intervalley scattering caused by the disorders.The temperature and bias-voltage dependencies of conductance clearly reveal the suppression of conductance at low ener-gies,indicating opening of a Coulomb gap due to electron-electron interaction in the disordered gra-phene sample.

  15. Observation of electron weak localization and correlation effects in disordered graphene

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We have studied the electron transport properties of a disordered graphene sample, where the disorder was intentionally strengthened by Ga+ ion irradiation. The magneto-conductance of the sample exhibits a typical two-dimensional electron weak localization behavior, with electron-electron interaction as the dominant dephasing mechanism. The absence of electron anti-weak localization in the sample implies strong intersublattice and/or intervalley scattering caused by the disorders. The temperature and bias-voltage dependencies of conductance clearly reveal the suppression of conductance at low energies, indicating opening of a Coulomb gap due to electron-electron interaction in the disordered graphene sample.

  16. Weak interactions and gauge theories

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1979-12-01

    The status of the electroweak gauge theory, also known as quantum asthenodynamics (QAD), is examined. The major result is that the standard WS-GIM model describes the data well, although one should still look for signs of further complexity and better tests of its gauge theory aspect. A second important result is that the measured values of the three basic coupling constants of present-energy physics, g/sub s/, g, and √(5/3)g' of SU(3)/sub c/ x SU(2) 2 x U(1), are compatible with the idea that these interactions are unified at high energies. Much of the paper deals with open questions, and it takes up the following topics: the status of QAD, the scalar meson spectrum, the fermion spectrum, CP violation, and decay dynamics. 118 references, 20 figures

  17. Storing Data from Qweak--A Precision Measurement of the Proton's Weak Charge

    Science.gov (United States)

    Pote, Timothy

    2008-10-01

    The Qweak experiment will perform a precision measurement of the proton's parity violating weak charge at low Q-squared. The experiment will do so by measuring the asymmetry in parity-violating electron scattering. The proton's weak charge is directly related to the value of the weak mixing angle--a fundamental quantity in the Standard Model. The Standard Model makes a firm prediction for the value of the weak mixing angle and thus Qweak may provide insight into shortcomings in the SM. The Qweak experiment will run at Thomas Jefferson National Accelerator Facility in Newport News, VA. A database was designed to hold data directly related to the measurement of the proton's weak charge such as detector and beam monitor yield, asymmetry, and error as well as control structures such as the voltage across photomultiplier tubes and the temperature of the liquid hydrogen target. In order to test the database for speed and stability, it was filled with fake data that mimicked the data that Qweak is expected to collect. I will give a brief overview of the Qweak experiment and database design, and present data collected during these tests.

  18. Interaction of Liquid Sodium With 304 Stainless Steel

    National Research Council Canada - National Science Library

    Moberly, John

    1968-01-01

    The effect of a liquid sodium environment on 304 stainless steel has important engineering significance because of the potential use of this liquid-metal solid-metal system in fast breeder reactors...

  19. Crystal structure of di-methyl-formamidium bis-(tri-fluoro-methane-sulfon-yl)amide: an ionic liquid.

    Science.gov (United States)

    Cardenas, Allan Jay P; O'Hagan, Molly

    2016-09-01

    At 100 K, the title mol-ecular salt, C 3 H 8 NO + ·C 2 F 6 NO 4 S 2 - , has ortho-rhom-bic ( P 2 1 2 1 2 1 ) symmetry; the amino H atom of bis-(tri-fluoro-methane-sulfon-yl)amine (HNTf 2 ) was transferred to the basic O atom of di-methyl-formamide (DMF) when the ionic liquid components were mixed. The structure displays an O-H⋯N hydrogen bond, which links the cation to the anion, which is reinforced by a non-conventional C-H⋯O inter-action, generating an R 2 2 (7) loop. A further very weak C-H⋯O inter-action generates an [001] chain.

  20. Properties of Organic Liquids when Simulated with Long-Range Lennard-Jones Interactions.

    Science.gov (United States)

    Fischer, Nina M; van Maaren, Paul J; Ditz, Jonas C; Yildirim, Ahmet; van der Spoel, David

    2015-07-14

    In order to increase the accuracy of classical computer simulations, existing methodologies may need to be adapted. Hitherto, most force fields employ a truncated potential function to model van der Waals interactions, sometimes augmented with an analytical correction. Although such corrections are accurate for homogeneous systems with a long cutoff, they should not be used in inherently inhomogeneous systems such as biomolecular and interface systems. For such cases, a variant of the particle mesh Ewald algorithm (Lennard-Jones PME) was already proposed 20 years ago (Essmann et al. J. Chem. Phys. 1995, 103, 8577-8593), but it was implemented only recently (Wennberg et al. J. Chem. Theory Comput. 2013, 9, 3527-3537) in a major simulation code (GROMACS). The availability of this method allows surface tensions of liquids as well as bulk properties to be established, such as density and enthalpy of vaporization, without approximations due to truncation. Here, we report on simulations of ≈150 liquids (taken from a force field benchmark: Caleman et al. J. Chem. Theory Comput. 2012, 8, 61-74) using three different force fields and compare simulations with and without explicit long-range van der Waals interactions. We find that the density and enthalpy of vaporization increase for most liquids using the generalized Amber force field (GAFF, Wang et al. J. Comput. Chem. 2004, 25, 1157-1174) and the Charmm generalized force field (CGenFF, Vanommeslaeghe et al. J. Comput. Chem. 2010, 31, 671-690) but less so for OPLS/AA (Jorgensen and Tirado-Rives, Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6665-6670), which was parametrized with an analytical correction to the van der Waals potential. The surface tension increases by ≈10(-2) N/m for all force fields. These results suggest that van der Waals attractions in force fields are too strong, in particular for the GAFF and CGenFF. In addition to the simulation results, we introduce a new version of a web server, http

  1. Liquid-phase characterization of molecular interactions in polyunsaturated and n-fatty acid methyl esters by (1)H low-field nuclear magnetic resonance.

    Science.gov (United States)

    Meiri, Nitzan; Berman, Paula; Colnago, Luiz Alberto; Moraes, Tiago Bueno; Linder, Charles; Wiesman, Zeev

    2015-01-01

    To identify and develop the best renewable and low carbon footprint biodiesel substitutes for petroleum diesel, the properties of different biodiesel candidates should be studied and characterized with respect to molecular structures versus biodiesel liquid property relationships. In our previous paper, (1)H low-field nuclear magnetic resonance (LF-NMR) relaxometry was investigated as a tool for studying the liquid-phase molecular packing interactions and morphology of fatty acid methyl esters (FAMEs). The technological potential was demonstrated with oleic acid and methyl oleate standards having similar alkyl chains but different head groups. In the present work, molecular organization versus segmental and translational movements of FAMEs in their pure liquid phase, with different alkyl chain lengths (10-20 carbons) and degrees of unsaturation (0-3 double bonds), were studied with (1)H LF-NMR relaxometry and X-ray, (1)H LF-NMR diffusiometry, and (13)C high-field NMR. Based on density values and X-ray measurements, it was proposed that FAMEs possess a liquid crystal-like order above their melting point, consisting of random liquid crystal aggregates with void spaces between them, whose morphological properties depend on chain length and degree of unsaturation. FAMEs were also found to exhibit different degrees of rotational and translational motions, which were rationalized by chain organization within the clusters, and the degree and type of molecular interactions and temperature effects. At equivalent fixed temperature differences from melting point, saturated FAME molecules were found to have similar translational motion regardless of chain length, expressed by viscosity, self-diffusion coefficients, and spin-spin (T 2) (1)H LF-NMR. T 2 distributions suggest increased alkyl chain rigidity, and reduced temperature response of the peaks' relative contribution with increasing unsaturation is a direct result of the alkyl chain's morphological packing and molecular

  2. Measurement of interactions between solid particles, liquid droplets, and/or gas bubbles in a liquid using an integrated thin film drainage apparatus.

    Science.gov (United States)

    Wang, Louxiang; Sharp, David; Masliyah, Jacob; Xu, Zhenghe

    2013-03-19

    A novel device was designed to measure drainage dynamics of thin liquid films confined between a solid particle, an immiscible liquid droplet, and/or gas bubble. Equipped with a bimorph force sensor, a computer-interfaced video capture, and a data acquisition system, the newly designed integrated thin film drainage apparatus (ITFDA) allows for the direct and simultaneous measurements of force barrier, true film drainage time, and bubble/droplet deformation under a well-controlled external force, receding and advancing contact angles, capillary force, and adhesion (detachment) force between an air bubble or oil droplet and a solid, a liquid, or an air bubble in an immiscible liquid. Using the diaphragm of a high-frequency speaker as the drive mechanism for the air bubble or oil droplet attached to a capillary tube, this newly designed device is capable of measuring forces over a wide range of hydrodynamic conditions, including bubble approach and retract velocities up to 50 mm/s and displacement range up to 1 mm. The results showed that the ITFDA was capable of measuring hydrodynamic resistance, film drainage time, and other important physical parameters between air bubbles and solid particles in aqueous solutions. As an example of illustrating the versatility, the ITFDA was also applied to other important systems such as interactions between air bubble and oil droplet, two air bubbles, and two oil droplets in an aqueous solution.

  3. Light Readout for a 1 ton Liquid Argon Dark Matter Detector

    CERN Document Server

    Boccone, Vittorio; Baudis, Laura; Otyugova, Polina; Regenfus, Christian

    2010-01-01

    Evidence for dark matter (DM) has been reported using astronomical observations in systems such as the Bullet cluster. Weakly interactive massive particles (WIMPs), in particular the lightest neutralino, are the most popular DM candidates within the Minimal Supersymmetric Standard Model (MSSM). Many groups in the world are focussing their attention on the direct detection of DM in the laboratory. The detectors should have large target masses and excellent noise rejection capabilities because of the small cross section between DM and ordinary matter (σWIMP−nucleon < 4 · 10−8 pb). Noble liquids are today considered to be one of the best options for large-size DM experiments, as they have a relatively low ionization energy, good scintillation properties and long electron lifetime. Moreover noble liquid detectors are easily scalable to large masses. This thesis deals with the development of a large (1 ton) LAr WIMP detector (ArDM) which could measure simultaneously light and charge from the scintilla...

  4. Nature of the anomalies in the supercooled liquid state of the mW model of water

    Science.gov (United States)

    Holten, Vincent; Limmer, David T.; Molinero, Valeria; Anisimov, Mikhail A.

    2013-05-01

    The thermodynamic properties of the supercooled liquid state of the mW model of water show anomalous behavior. Like in real water, the heat capacity and compressibility sharply increase upon supercooling. One of the possible explanations of these anomalies, the existence of a second (liquid-liquid) critical point, is not supported by simulations for this model. In this work, we reproduce the anomalies of the mW model with two thermodynamic scenarios: one based on a non-ideal "mixture" with two different types of local order of the water molecules, and one based on weak crystallization theory. We show that both descriptions accurately reproduce the model's basic thermodynamic properties. However, the coupling constant required for the power laws implied by weak crystallization theory is too large relative to the regular backgrounds, contradicting assumptions of weak crystallization theory. Fluctuation corrections outside the scope of this work would be necessary to fit the forms predicted by weak crystallization theory. For the two-state approach, the direct computation of the low-density fraction of molecules in the mW model is in agreement with the prediction of the phenomenological equation of state. The non-ideality of the "mixture" of the two states never becomes strong enough to cause liquid-liquid phase separation, also in agreement with simulation results.

  5. Nature of the anomalies in the supercooled liquid state of the mW model of water.

    Science.gov (United States)

    Holten, Vincent; Limmer, David T; Molinero, Valeria; Anisimov, Mikhail A

    2013-05-07

    The thermodynamic properties of the supercooled liquid state of the mW model of water show anomalous behavior. Like in real water, the heat capacity and compressibility sharply increase upon supercooling. One of the possible explanations of these anomalies, the existence of a second (liquid-liquid) critical point, is not supported by simulations for this model. In this work, we reproduce the anomalies of the mW model with two thermodynamic scenarios: one based on a non-ideal "mixture" with two different types of local order of the water molecules, and one based on weak crystallization theory. We show that both descriptions accurately reproduce the model's basic thermodynamic properties. However, the coupling constant required for the power laws implied by weak crystallization theory is too large relative to the regular backgrounds, contradicting assumptions of weak crystallization theory. Fluctuation corrections outside the scope of this work would be necessary to fit the forms predicted by weak crystallization theory. For the two-state approach, the direct computation of the low-density fraction of molecules in the mW model is in agreement with the prediction of the phenomenological equation of state. The non-ideality of the "mixture" of the two states never becomes strong enough to cause liquid-liquid phase separation, also in agreement with simulation results.

  6. Studies on thermo-acoustic parameters in binary liquid mixtures of phosphinic acid (Cyanex 272) with different diluents at temperature 303.15 K: an ultrasonic study

    International Nuclear Information System (INIS)

    Kamila, Susmita; Jena, Satyaban; Swain, Bipin Bihari

    2005-01-01

    Acoustical investigations for the binary mixtures of phosphinic acid (Cyanex 272), used as liquid-liquid extractant, have been made in various diluents such as benzene, toluene, and xylene from ultrasonic velocity and density measurements at temperature 303.15 K and atmospheric pressure. This study involves evaluation of different thermo-acoustic parameters along with the excess properties, which are interpreted in the light of molecular interaction between a polar extractant, Cyanex 272 with non-polar diluent, benzene and weakly polar diluents, toluene and xylene. The excess values are correlated using Redlich-Kister polynomial equation, and corresponding adjustable parameters are derived

  7. Introduction to gauge theories of the strong, weak, and electromagnetic interactions

    International Nuclear Information System (INIS)

    Quigg, C.

    1980-07-01

    The plan of these notes is as follows. Chapter 1 is devoted to a brief evocative review of current beliefs and prejudices that form the context for the discussion to follow. The idea of Gauge Invariance is introduced in Chapter 2, and the connection between conservation laws and symmetries of the Lagrangian is recalled. Non-Abelian gauge field theories are constructed in Chapter 3, by analogy with the familiar case of electromagnetism. The Yang-Mills theory based upon isospin symmetry is constructed explicitly, and the generalization is made to other gauge groups. Chapter 4 is concerned with spontaneous symmetry breaking and the phenomena that occur in the presence or absence of local gauge symmetries. The existence of massless scalar fields (Goldstone particles) and their metamorphosis by means of the Higgs mechanism are illustrated by simple examples. The Weinberg-Salam model is presented in Chapter 5, and a brief resume of applications to experiment is given. Quantum Chromodynamics, the gauge theory of colored quarks and gluons, is developed in Chapter 6. Asymptotic freedom is derived schematically, and a few simple applications of perturbative QCD ae exhibited. Details of the conjectured confinement mechanism are omitted. The strategy of grand unified theories of the strong, weak, and electromagnetic interactions is laid out in Chapter 7. Some properties and consequences of the minimal unifying group SU(5) are presented, and the gauge hierarchy problem is introduced in passing. The final chapter contains an essay on the current outlook: aspirations, unanswered questions, and bold scenarios

  8. Time-dependent local potential in a Tomonaga-Luttinger liquid

    Science.gov (United States)

    Kamar, Naushad Ahmad; Giamarchi, Thierry

    2017-12-01

    We study the energy deposition in a one-dimensional interacting quantum system with a pointlike potential modulated in amplitude. The pointlike potential at position x =0 has a constant part and a small oscillation in time with a frequency ω . We use bosonization, renormalization group, and linear response theory to calculate the corresponding energy deposition. It exhibits a power law behavior as a function of the frequency that reflects the Tomonaga-Luttinger liquid (TLL) nature of the system. Depending on the interactions in the system, characterized by the TLL parameter K of the system, a crossover between weak and strong coupling for the backscattering due to the potential is possible. We compute the frequency scale ω*, at which such crossover exists. We find that the energy deposition due to the backscattering shows different exponents for K >1 and K <1 . We discuss possible experimental consequences, in the context of cold atomic gases, of our theoretical results.

  9. Weak antilocalization in Cd3As2 thin films.

    Science.gov (United States)

    Zhao, Bo; Cheng, Peihong; Pan, Haiyang; Zhang, Shuai; Wang, Baigeng; Wang, Guanghou; Xiu, Faxian; Song, Fengqi

    2016-03-03

    Recently, it has been theoretically predicted that Cd3As2 is a three dimensional Dirac material, a new topological phase discovered after topological insulators, which exhibits a linear energy dispersion in the bulk with massless Dirac fermions. Here, we report on the low-temperature magnetoresistance measurements on a ~50 nm-thick Cd3As2 film. The weak antilocalization under perpendicular magnetic field is discussed based on the two-dimensional Hikami-Larkin-Nagaoka (HLN) theory. The electron-electron interaction is addressed as the source of the dephasing based on the temperature-dependent scaling behavior. The weak antilocalization can be also observed while the magnetic field is parallel to the electric field due to the strong interaction between the different conductance channels in this quasi-two-dimensional film.

  10. The interaction between diamond like carbon (DLC coatings and ionic liquids under boundary lubrication conditions

    Directory of Open Access Journals (Sweden)

    K. Milewski

    2017-01-01

    Full Text Available The aim of the study was to analyse antiwear DLC coatings produced by physical vapour deposition. The a-C:H coatings were deposited on steel elements designed to operate under friction conditions. The coating structure was studied by observing the surface topography with a scanning electron microscope (SEM and a profilometer. The friction and wear properties of the coatings were examined using a ball-on-disc tribotester. The lubricants tested were two types of ionic liquids (1-butyl-3-methylimidazolium tetrafluoroborate and trihexyltetradecylphosphonium bis(trifluoromethy-lsulphonyl amide. The experimental data was used to select ionic liquids with the best tribological properties to operate under lubricated friction conditions and interact with DLC coatings.

  11. Search for Dark Matter Interactions using Ionization Yield in Liquid Xenon

    Science.gov (United States)

    Uvarov, Sergey

    Cosmological observations overwhelmingly support the existence of dark matter which constitutes 87% of the universe's total mass. Weakly Interacting Massive Particles (WIMPs) are a prime candidate for dark matter, and the Large Underground Xenon (LUX) experiment aims to a direct-detection of a WIMP-nucleon interaction. The LUX detector is a dual-phase xenon time-projection chamber housed 4,850 feet underground at Sanford Underground Research Facility in Lead, South Dakota. We present the ionization-only analysis of the LUX 2013 WIMP search data. In the 1.04 x 104 kg-days exposure, thirty events were observed out of the 24.8 expected from radioactive backgrounds. We employ a cut-and-count method to set a 1-sided 90% C.L. upper limit for spin-independent WIMP-nucleon cross-sections. A zero charge yield for nuclear-recoils below 0.7 keV is included upper limit calculation. This ionization-only analysis excludes an unexplored region of WIMP-nucleon cross-section for low-mass WIMPs achieving 1.56 x 10-43 cm2 WIMP-nucleon cross-section exclusion for a 5.1 GeV/ c2 WIMP.

  12. Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials

    Science.gov (United States)

    Pontalier, Q.; Lhoumeau, M.; Milne, A. M.; Longbottom, A. W.; Frost, D. L.

    2018-04-01

    Experiments show that when a high-explosive charge with embedded particles or a charge surrounded by a layer of liquid or granular material is detonated, the flow generated is perturbed by the motion of the particles and the blast wave profile differs from that of an ideal Friedlander form. Initially, the blast wave overpressure is reduced due to the energy dissipation resulting from compaction, fragmentation, and heating of the particle bed, and acceleration of the material. However, as the blast wave propagates, particle-flow interactions collectively serve to reduce the rate of decay of the peak blast wave overpressure. Computations carried out with a multiphase hydrocode reproduce the general trends observed experimentally and highlight the transition between the particle acceleration/deceleration phases, which is not accessible experimentally, since the particles are obscured by the detonation products. The dependence of the particle-blast interaction and the blast mitigation effectiveness on the mitigant to explosive mass ratio, the particle size, and the initial solid volume fraction is investigated systematically. The reduction in peak blast overpressure is, as in experiments, primarily dependent on the mass ratio of material to explosive, with the particle size, density, and initial porosity of the particle bed playing secondary roles. In the near field, the blast overpressure decreases sharply with distance as the particles are accelerated by the flow. When the particles decelerate due to drag, energy is returned to the flow and the peak blast overpressure recovers and reaches values similar to that of a bare explosive charge for low mass ratios. Time-distance trajectory plots of the particle and blast wave motion with the pressure field superimposed, illustrate the weak pressure waves generated by the motion of the particle layer which travel upstream and perturb the blast wave motion. Computation of the particle and gas momentum flux in the multiphase

  13. Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials

    Science.gov (United States)

    Pontalier, Q.; Lhoumeau, M.; Milne, A. M.; Longbottom, A. W.; Frost, D. L.

    2018-05-01

    Experiments show that when a high-explosive charge with embedded particles or a charge surrounded by a layer of liquid or granular material is detonated, the flow generated is perturbed by the motion of the particles and the blast wave profile differs from that of an ideal Friedlander form. Initially, the blast wave overpressure is reduced due to the energy dissipation resulting from compaction, fragmentation, and heating of the particle bed, and acceleration of the material. However, as the blast wave propagates, particle-flow interactions collectively serve to reduce the rate of decay of the peak blast wave overpressure. Computations carried out with a multiphase hydrocode reproduce the general trends observed experimentally and highlight the transition between the particle acceleration/deceleration phases, which is not accessible experimentally, since the particles are obscured by the detonation products. The dependence of the particle-blast interaction and the blast mitigation effectiveness on the mitigant to explosive mass ratio, the particle size, and the initial solid volume fraction is investigated systematically. The reduction in peak blast overpressure is, as in experiments, primarily dependent on the mass ratio of material to explosive, with the particle size, density, and initial porosity of the particle bed playing secondary roles. In the near field, the blast overpressure decreases sharply with distance as the particles are accelerated by the flow. When the particles decelerate due to drag, energy is returned to the flow and the peak blast overpressure recovers and reaches values similar to that of a bare explosive charge for low mass ratios. Time-distance trajectory plots of the particle and blast wave motion with the pressure field superimposed, illustrate the weak pressure waves generated by the motion of the particle layer which travel upstream and perturb the blast wave motion. Computation of the particle and gas momentum flux in the multiphase

  14. Scientific method, analyzed by means of examples from weak interaction physics

    International Nuclear Information System (INIS)

    Pietschmann, H.

    1975-01-01

    Following K. POPPER, the logic of science is briefly reviewed. The decay of the long lived K meson into muon pairs is considered and limits for its branching ratio are computed. It is used - together with the discovery of weak neutral currents - to demonstrate the logic of scientific discovery on special examples. (Auth.)

  15. Compressive strength of brick masonry made with weak mortars

    DEFF Research Database (Denmark)

    Pedersen, Erik Steen; Hansen, Klavs Feilberg

    2013-01-01

    in the joint will ensure a certain level of load-carrying capacity. This is due to the interaction between compression in the weak mortar and tension in the adjacent bricks. This paper proposes an expression for the compressive strength of masonry made with weak lime mortars (fm... of masonry depends only on the strength of the bricks. A compression failure in masonry made with weak mortars occurs as a tension failure in the bricks, as they seek to prevent the mortar from being pressed out of the joints. The expression is derived by assuming hydrostatic pressure in the mortar joints......, which is the most unfavourable stress distribution with respect to tensile stresses in bricks. The expression is compared with the results of compression tests of masonry made with weak mortars. It can take into account bricks with arbitrary dimensions as well as perforated bricks. For a stronger mortar...

  16. Condensation coefficient of water in a weak condensation state

    International Nuclear Information System (INIS)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-01-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  17. Condensation coefficient of water in a weak condensation state

    Science.gov (United States)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-07-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  18. Nonmesonic weak decay of the hypertriton

    International Nuclear Information System (INIS)

    Bennhold, C.; Ramos, A.; Aruliah, D.A.; Oelfke, U.

    1992-01-01

    The nonmesonic weak decay of Λ 3 H is evaluated microscopically in the pion exchange model. The correlated three-body wave function of the hypertriton is approximated by a bound Λ-deuteron system obtained by averaging the YN interaction over the deuteron wave function. The relevant matrix elements are calculated in momentum space. The resulting decay rate is 4.9% of the free Λ decay rate

  19. Theoretical insights into the interaction between RunPt13-n (n=4, 7 and 9) clusters and [BMIM]+ based ionic liquids: Effect of anion.

    Science.gov (United States)

    Cheng, Ping; Yang, Yongpeng; Huang, Shiping

    2017-06-01

    Density functional theory has been performed to systematically study the interactions between Ru n Pt 13-n (n=4, 7 and 9) clusters and [BMIM] + based ionic liquids. Ionic liquids [BMIM][Br], [BMIM][BF 4 ], [BMIM][PF 6 ], [BMIM][CF 3 SO 3 ], and [BMIM][NTf 2 ] have different effects on the stability of Ru 7 Pt 6 . Ionic liquids with median size anions of PF 6 - and CF 3 SO 3 - can better improve the stability of Ru 7 Pt 6 than those with the small anions of Br - and BF 4 - and large anion of NTf 2 - . Based on negative relaxation energies, the stabilities of Ru 4 Pt 9 , Ru 7 Pt 6 , and Ru 9 Pt 4 are all enhanced after interacting with [BMIM][CF 3 SO 3 ]. The stability enhanced degree is in agreement with the interaction strength. For Ru 7 Pt 6 -n{[BMIM][CF 3 SO 3 ]} (n=1, 2, 3, 4), the interaction between ionic liquid and cluster plays the primary role in stabilizing the cluster in Ru 7 Pt 6 -[BMIM][CF 3 SO 3 ]. With the increase of the number of [BMIM][CF 3 SO 3 ], the role of the interaction in stabilizing the cluster is getting weaker, while the role of steric protection is getting more important. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A Spectral-SAR Model for the Anionic-Cationic Interaction in Ionic Liquids: Application to Vibrio fischeri Ecotoxicity

    Directory of Open Access Journals (Sweden)

    Vasile Ostafe

    2007-08-01

    Full Text Available Within the recently launched the spectral-structure activity relationship (S-SARanalysis, the vectorial anionic-cationic model of a generic ionic liquid is proposed, alongwith the associated algebraic correlation factor in terms of the measured and predictedactivity norms. The reliability of the present scheme is tested by assessing the Hanschfactors, i.e. lipophylicity, polarizability and total energy, to predict the ecotoxicityendpoints of wide types of ionic liquids with ammonium, pyridinium, phosphonium,choline and imidazolium cations on the aquatic bacteria Vibrio fischeri. The results, whileconfirming the cationic dominant influence when only lipophylicity is considered,demonstrate that the anionic effect dominates all other more specific interactions. It wasalso proved that the S-SAR vectorial model predicts considerably higher activity for theionic liquids than for its anionic and cationic subsystems separately, in all consideredcases. Moreover, through applying the least norm-correlation path principle, the completetoxicological hierarchies are presented, unfolding the ecological rules of combined cationicand anionic influences in ionic liquid toxicity.

  1. Estimates of the Attenuation Rates of Baroclinic Tidal Energy Caused by Resonant Interactions Among Internal Waves based on the Weak Turbulence Theory

    Science.gov (United States)

    Onuki, Y.; Hibiya, T.

    2016-02-01

    The baroclinic tides are thought to be the dominant energy source for turbulent mixing in the ocean interior. In contrast to the geography of the energy conversion rates from the barotropic to baroclinic tides, which has been clarified in recent numerical studies, the global distribution of the energy sink for the resulting low-mode baroclinic tides remains obscure. A key to resolve this issue is the resonant wave-wave interactions, which transfer part of the baroclinic tidal energy to the background internal wave field enhancing the local energy dissipation rates. Recent field observations and numerical studies have pointed out that parametric subharmonic instability (PSI), one of the resonant interactions, causes significant energy sink of baroclinic tidal energy at mid-latitudes. The purpose of this study is to analyze the quantitative aspect of PSI to demonstrate the global distribution of the intensity of resonant wave interactions, namely, the attenuation rate of low-mode baroclinic tidal energy. Our approach is basically following the weak turbulence theory, which is the standard theory for resonant wave-wave interactions, where techniques of singular perturbation and statistical physics are employed. This study is, however, different from the classical theory in some points; we have reformulated the weak turbulence theory to be applicable to low-mode internal waves and also developed its numerical calculation method so that the effects of stratification profile and oceanic total depth can be taken into account. We have calculated the attenuation rate of low-mode baroclinic tidal waves interacting with the background Garrett-Munk internal wave field. The calculated results clearly show the rapid attenuation of baroclinic tidal energy at mid-latitudes, in agreement with the results from field observations and also show the zonal inhomogeneity of the attenuation rate caused by the density structures associated with the subtropical gyre. This study is expected

  2. Theory of weak interactions and related topics. Progress report, January 1, 1982-February 28, 1983

    International Nuclear Information System (INIS)

    Marshak, R.E.

    1985-08-01

    Progress is reported in these areas: B-L vs V-A gauge groups; work on neutron oscillations; preon models of quarks and leptons; partial unification theory (PUT); extensions of standard electroweak group; composite weak bosons; quasi-solitons in electroweak gauge groups; and weak CP nonconservation. 18 refs

  3. Semileptonic weak and electromagnetic interactions in nuclei: recoil polarization in muon capture

    International Nuclear Information System (INIS)

    Rosenfelder, R.

    1979-01-01

    An analysis of the polarization of the recoiling nucleus following the capture of polarized muons by nuclei is performed. New general expressions for arbitrary nuclear spin are obtained in terms of the same reduced matrix elements which govern inelastic electron scattering and β-decay. As an application the A = 12 system is considered and uncertainties in the nuclear structure are studied by using different sets of one-body density matrices. With the canonical values of the weak form factors (i.e. absence of second-class currents) a fairly good agreement with the experimental data is achieved including the inelastic form factor at high momentum transfers and the recently measured average 12 B polarization. Implications of the new corrected value of the average polarization on weak form factors and nuclear structure are discussed. (Auth.)

  4. High-Performance Liquid Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Vestal, Marvin L.

    1984-01-01

    Reviews techniques for online coupling of high-performance liquid chromatography with mass spectrometry, emphasizing those suitable for application to nonvolatile samples. Also summarizes the present status, strengths, and weaknesses of various techniques and discusses potential applications of recently developed techniques for combined liquid…

  5. Theoretical Study on Interactions between N-Butylpyridinium Nitrate and Thiophenic Compounds

    International Nuclear Information System (INIS)

    Lue, Renqing; Wang, Shutao; Lu, Yukun; Liu, Dong

    2013-01-01

    By using density functional theory calculations, we have performed a systemic study on the electronic structures and topological properties of interactions between N-butylpyridinium nitrate ([BPY] + [NO 3 ] - ) and thiophene (TS), benzothiophene (BT), dibenzothiophene (DBT), naphthalene (NAP). The most stable structure of [BPY] + [NO 3 ] - ion pair indicates that hydrogen bonding interactions between oxygen atoms on [NO 3 ] - anion and C2-H2 on pyridinium ring play a dominating role in the formation of ion pair. The occurrence of hydrogen bonding, π···H-C, and π···π interactions between [BPY] + [NO 3 ] - and TS, BT, DBT, NAP has been corroborated at the molecular level. But hydrogen bonding and π···π interactions between [BPY] + [NO 3 ] - and NAP are weak in terms of structural properties and NBO, AIM analyses. DBT is prior to adsorption on N-butylpyridinium nitrate ionic liquid

  6. Pulsed laser-induced liquid jet: evolution from shock/bubble interaction to neurosurgical application

    Science.gov (United States)

    Nakagawa, A.; Kumabe, T.; Ogawa, Y.; Hirano, T.; Kawaguchi, T.; Ohtani, K.; Nakano, T.; Sato, C.; Yamada, M.; Washio, T.; Arafune, T.; Teppei, T.; Atsushi, K.; Satomi, S.; Takayama, K.; Tominaga, T.

    2017-01-01

    The high-speed liquid (water) jet has distinctive characteristics in surgical applications, such as tissue dissection without thermal damage and small blood vessel preservation, that make it advantageous over more conventional instruments. The continuous pressurized jet has been used since the first medical application of water jets to liver surgery in the 1980s, but exhibited drawbacks partly related to the excess water supply required and unsuitability for application to microsurgical instruments intended for deep, narrow lesions (endoscopic instrumentation and catheters) due to limitations in miniaturization of the device. To solve these issues, we initiated work on the pulsed micro-liquid jet. The idea of the pulsed micro-liquid jet originated from the observation of tissue damage by shock/bubble interactions during extracorporeal shock wave lithotripsy and evolved into experimental application for recanalization of cerebral embolisms in the 1990s. The original method of generating the liquid jet was based on air bubble formation and microexplosives as the shock wave source, and as such could not be applied clinically. The air bubble was replaced by a holmium:yttrium-aluminum-garnet (Ho:YAG) laser-induced bubble. Finally, the system was simplified and the liquid jet was generated via irradiation from the Ho:YAG laser within a liquid-filled tubular structure. A series of investigations revealed that this pulsed laser-induced liquid jet (LILJ) system has equivalent dissection and blood vessel preservation characteristics, but the amount of liquid usage has been reduced to less than 2 μ l per shot and can easily be incorporated into microsurgical, endoscopic, and catheter devices. As a first step in human clinical studies, we have applied the LILJ system for the treatment of skull base tumors through the transsphenoidal approach in 9 patients (7 pituitary adenomas and 2 chordomas), supratentorial glioma (all high grade glioma) in 8 patients, including one with

  7. Determination of the n-octanol/water partition coefficients of weakly ionizable basic compounds by reversed-phase high-performance liquid chromatography with neutral model compounds.

    Science.gov (United States)

    Liang, Chao; Han, Shu-ying; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin

    2014-11-01

    A strategy to utilize neutral model compounds for lipophilicity measurement of ionizable basic compounds by reversed-phase high-performance liquid chromatography is proposed in this paper. The applicability of the novel protocol was justified by theoretical derivation. Meanwhile, the linear relationships between logarithm of apparent n-octanol/water partition coefficients (logKow '') and logarithm of retention factors corresponding to the 100% aqueous fraction of mobile phase (logkw ) were established for a basic training set, a neutral training set and a mixed training set of these two. As proved in theory, the good linearity and external validation results indicated that the logKow ''-logkw relationships obtained from a neutral model training set were always reliable regardless of mobile phase pH. Afterwards, the above relationships were adopted to determine the logKow of harmaline, a weakly dissociable alkaloid. As far as we know, this is the first report on experimental logKow data for harmaline (logKow = 2.28 ± 0.08). Introducing neutral compounds into a basic model training set or using neutral model compounds alone is recommended to measure the lipophilicity of weakly ionizable basic compounds especially those with high hydrophobicity for the advantages of more suitable model compound choices and convenient mobile phase pH control. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Search for weakly interacting dark matter particles with low temperature detectors capable of simultaneously measuring ionization and heat

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenschein, Andrew Harry [UC, Santa Barbara

    1999-01-01

    Lots of gravitating material that doesn't emit or absorb light seems to be required in all sensible accounts of the dynamics of large-scale structures in the universe. The nature and extent of this mysterious "dark matter" has been one of the central puzzles in cosmology over the last decade. This dissertation describes an experiment that tests one possibility, that the dark matter is in the form of undiscovered Weakly Interacting Massive Particles (WIMPs) produced as a thermal relic of the big bang. In this chapter, we will review the most important observations that suggest the dark matter must exist and discuss the forms it could take.

  9. Josephson current and Andreev level dynamics in nanoscale superconducting weak links

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Aldo

    2014-11-15

    In this thesis we focus on the interplay between proximity induced superconducting correlations and Coulomb interactions in a Josephson junction: i.e., in a system where two superconductors modeled as two s-wave superconductors at a phase difference φ are contacted by means of a weak link, in our case a quantum dot located in the contact. In the first part we study the Josephson current-phase relation for a multi-level quantum dot tunnel-contacted by two conventional s-waves superconductors. We determine in detail the conditions for observing a finite anomalous Josephson current, i.e. a supercurrent flowing at zero phase difference in a two-level dot with spin-orbit interactions, a weak magnetic (Zeeman) field, and in the presence of Coulomb interactions. This leads to an onset behavior I{sub a}∝sgn(B), interpreted as the sign of an incipient spontaneous breakdown of time-reversal symmetry. Moreover, we will provide conditions for realizing spatially separated - but topologically unprotected - Majorana bound states, whose signature in the system will be detectable via the current-phase relation. In the second part of the thesis, we address the Andreev bound state population dynamics in superconducting weak links (a superconducting 'atomic contact'), in which a poisoning mechanism due to the trapping of single quasiparticles can occur. Our motivation is that quantum coherent superconducting circuits are the most promising candidates for future large-scale quantum information processing devices. Moreover, quasiparticle poisoning has recently been observed in devices which contain a short superconducting weak link with few transport channels. We discuss a novel charge imbalance effect in the continuum quasiparticle population, which is due to phase fluctuations of the environment weakly coupled to the superconducting contact. This coupling enters the system as a transition rate connecting continuum quasiparticles and the Andreev bound state system. The

  10. Electromagnetic weak turbulence theory revisited

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); Ziebell, L. F. [Instituto de Fisica, UFRGS, Porto Alegre, RS (Brazil); Gaelzer, R.; Pavan, J. [Instituto de Fisica e Matematica, UFPel, Pelotas, RS (Brazil)

    2012-10-15

    The statistical mechanical reformulation of weak turbulence theory for unmagnetized plasmas including fully electromagnetic effects was carried out by Yoon [Phys. Plasmas 13, 022302 (2006)]. However, the wave kinetic equation for the transverse wave ignores the nonlinear three-wave interaction that involves two transverse waves and a Langmuir wave, the incoherent analogue of the so-called Raman scattering process, which may account for the third and higher-harmonic plasma emissions. The present paper extends the previous formalism by including such a term.

  11. Experimentation at LEP: weak-electromagnetic interference, QED and two-photon physics

    International Nuclear Information System (INIS)

    Davier, M.

    1979-01-01

    The energy range opened by LEP will permit a clean and direct study of the weak interaction. Of particular importance are those effects resulting from the interference between the weak and the electromagnetic (EM) currents: it is shown that they give access to the basic couplings which can be measured unambiguously. The paper is in three parts. The first and major section deals with the weak interaction experiments. Most of the calculations and estimates rely on the Weinberg-Salam model as a realistic guide of what might happen. The second section is devoted to 2γ processes. On one hand they constitute an interesting physics study which has been assessed both from theory and experiment and appears promising. On the other hand, they can generate background to many annihilation channels and this aspect has been studied in detail. The last section presents a brief look at short distance tests of Quantum Electrodynamics (QED) - a restricted, but important area of research at LEP. (Auth.)

  12. Enhancing robustness of multiparty quantum correlations using weak measurement

    International Nuclear Information System (INIS)

    Singh, Uttam; Mishra, Utkarsh; Dhar, Himadri Shekhar

    2014-01-01

    Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol

  13. Enhancing robustness of multiparty quantum correlations using weak measurement

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Uttam, E-mail: uttamsingh@hri.res.in [Quantum Information and Computation Group, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Mishra, Utkarsh, E-mail: utkarsh@hri.res.in [Quantum Information and Computation Group, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Dhar, Himadri Shekhar, E-mail: dhar.himadri@gmail.com [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2014-11-15

    Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol.

  14. Hydrophilic interaction liquid chromatography in the speciation analysis of selenium.

    Science.gov (United States)

    Sentkowska, Aleksandra; Pyrzynska, Krystyna

    2018-02-01

    The hydrophilic interaction liquid chromatography (HILIC) coupled to mass spectrometry was employed to study retention behavior of selected selenium compounds using two different HILIC stationary phases: silica and zwitterionic. Two organic solvents - acetonitrile and methanol - were compared as a component of mobile phase. Separation parameters such as a content of organic modifier, the eluent pH and inorganic buffer concentration were investigated. Based on all observations, methanol seems to be beneficial for the separation of studied compounds. The optimal HILIC separation method involved silica column and eluent composed of 85% MeOH and CH 3 COONH 4 (8 mM, pH 7) was compared to RP method in terms of time of the single run, the separation efficiency and limit of detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Nonlocal electrostatics in ionic liquids: The key to an understanding of the screening decay length and screened interactions

    Science.gov (United States)

    Kjellander, Roland

    2016-09-01

    Screened electrostatic interactions in ionic liquids are investigated by means of exact statistical mechanical analysis combined with physical arguments that enhance the transparency and conceptual accessibility of the analysis and results. The constituent ions and immersed particles in the liquid can have arbitrary shapes and any internal charge distributions. The decay of the screened electrostatic potential and the free energy of interaction in ionic liquids can be exponentially damped oscillatory (like in molten simple salts) as well as plain exponential and long-ranged (like in dilute electrolyte solutions). Both behaviors are in agreement with the exact statistical mechanical analysis and reasons for their appearances are investigated. Exact but surprisingly simple expressions for the decay parameter κ of the screened electrostatics are obtained, which replace the classical expression for the Debye-Hückel parameter κDH (the reciprocal Debye length). The expressions are applicable both for cases with plain exponential and oscillatory behaviors. The key importance of nonlocal electrostatics is thereby demonstrated explicitly. Dielectric properties of ionic liquids and other electrolytes are investigated, in particular the static dielectric function ɛ ˜ ( k ) and some effective relative permittivities ( Er eff and Er ∗ ), which take roles that the dielectric constant ɛr has for polar liquids consisting of electroneutral molecules. The dielectric constant in the latter case, which is the limit of ɛ ˜ ( k ) when the wave number k → 0, can be expressed solely in terms of dipolar features of the molecules. In contrast to this, the effective dielectric permittivities of ionic liquids have contributions also from quadrupolar, octupolar, and higher multipolar features of the constituent ions. The "dielectric constant" of electrolytes does not exist since ɛ ˜ ( k ) → ∞ when k → 0, a well-known effect of perfect screening. The effective relative

  16. Eckhaus and Benjamin-Feir instabilities near a weakly inverted bifurcation

    International Nuclear Information System (INIS)

    Brand, H.R.; Deissler, R.J.

    1992-01-01

    We investigate how the criteria for two prototype instabilities in one-dimensional pattern-forming systems, namely for the Eckhaus instability and for the Benjamin-Feir instability, change as one goes from a continuous bifurcation to a spatially periodic or spatially and/or time-periodic state to the corresponding weakly inverted, i.e., hysteretic, cases. We also give the generalization to two-dimensional patterns in systems with anisotropy as they arise, for example, for hydrodynamic instabilities in nematic liquid crystals

  17. Monopole correlations in holographically flavored liquids

    NARCIS (Netherlands)

    Iqbal, N.

    2015-01-01

    Many-body systems with a conserved U(1) current in (2+1) dimensions may be probed by weakly gauging this current and studying correlation functions of magnetic monopole operators in the resulting dynamical gauge theory. We study such monopole correlations in holographic liquids with fundamental

  18. The nature of interactions between [Cu2Cl3]−-based ionic liquid and thiophene – A theoretical study

    Directory of Open Access Journals (Sweden)

    Renqing Lü

    2016-05-01

    Full Text Available In an effort to deepen the understanding of nature of interactions between CuCl-based ionic liquids and thiophene, the electronic and topological properties of interactions between 1-butyl-3-methylimidazolium ([BMIM]+[Cu2Cl3]− and thiophene (TS have been investigated by the density functional theory. The occurrence of interactions caused by resonance effects between virtual orbitals of Cu and virtual orbitals of thiophene has been corroborated at the molecular level.

  19. Influence of rubbing-alignment on microwave modulation induced by liquid crystal

    Directory of Open Access Journals (Sweden)

    Wenjiang Ye

    2015-06-01

    Full Text Available The microwave modulation induced by liquid crystal is decided by the liquid crystal director distribution under an external applied voltage. The rubbing-alignment of substrate has an effect on the liquid crystal director, which must result in the change of microwave phase-shift. To illustrate the influence of rubbing-alignment on the microwave phase-shift, the microwave modulation property of twisted nematic liquid crystal is researched adopting the elastic theory of liquid crystal and the finite-difference iterative method. The variations of microwave phase-shift per unit-length for different pre-tilt and pre-twist angles of liquid crystal on the substrate surface and anchoring energy strengths with the applied voltage are numerically simulated. The result indicates that with the increase of pre-tilt angle and with the decrease of anchoring energy strength the weak anchoring twisted cell with pre-twisted angle 90° relative to the strong anchoring non-twisted cell can increase the microwave phase-shift per unit-length. As a result, for achieving the maximum microwave modulation, the weak anchoring twisted cell with pre-tilt angle 5° and anchoring energy strength 1×10−5J/m2 should be selected, which provides a reliably theoretical foundation for the design of liquid crystal microwave modulator.

  20. Transition from weak wave turbulence regime to solitonic regime

    Science.gov (United States)

    Hassani, Roumaissa; Mordant, Nicolas

    2017-11-01

    The Weak Turbulence Theory (WTT) is a statistical theory describing the interaction of a large ensemble of random waves characterized by very different length scales. For both weak non-linearity and weak dispersion a different regime is predicted where solitons propagate while keeping their shape unchanged. The question under investigation here is which regime between weak turbulence or soliton gas does the system choose ? We report an experimental investigation of wave turbulence at the surface of finite depth water in the gravity-capillary range. We tune the wave dispersion and the level of nonlinearity by modifying the depth of water and the forcing respectively. We use space-time resolved profilometry to reconstruct the deformed surface of water. When decreasing the water depth, we observe a drastic transition between weak turbulence at the weakest forcing and a solitonic regime at stronger forcing. We characterize the transition between both states by studying their Fourier Spectra. We also study the efficiency of energy transfer in the weak turbulence regime. We report a loss of efficiency of angular transfer as the dispersion of the wave is reduced until the system bifurcates into the solitonic regime. This project has recieved funding from the European Research Council (ERC, Grant Agreement No. 647018-WATU).

  1. Rapid quantification of imidazolium-based ionic liquids by hydrophilic interaction liquid chromatography: Methodology and an investigation of the retention mechanisms.

    Science.gov (United States)

    Hawkins, Cory A; Rud, Anna; Guthrie, Margaret L; Dietz, Mark L

    2015-06-26

    The separation of nine N,N'-dialkylimidazolium-based ionic liquids (ILs) by an isocratic hydrophilic interaction high-performance liquid chromatographic method using an unmodified silica column was investigated. The chosen analytical conditions using a 90:10 acetonitrile-ammonium formate buffer mobile phase on a high-purity, unmodified silica column were found to be efficient, robust, and sensitive for the determination of ILs in a variety of solutions. The retention window (k' = 2-11) was narrower than that of previous methods, resulting in a 7-min runtime for the nine IL homologues. The lower limit of quantification of the method, 2-3 μmol L(-1), was significantly lower than those reported previously for HPLC-UV methods. The effects of systematically modifying the IL cation alkyl chain length, column temperature, and mobile-phase water and buffer content on solute retention were examined. Cation exchange was identified as the dominant retention mechanism for most of the solutes, with a distinct (single methylene group) transition to a dominant partitioning mode at the highest solute polarity. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. [Separation and purification of the components in Trachelospermum jasminoides by two dimensional hydrophilic interaction liquid chromatography- reversed-phase liquid chromatography].

    Science.gov (United States)

    Jia, Youmei; Cai, Jianfeng; Xin, Huaxia; Feng, Jiatao; Fu, Yanhui; Fu, Qing; Jin, Yu

    2017-06-08

    A preparative two dimensional hydrophilic interaction liquid chromatography/reversed-phase liquid chromatography (Pre-2D-HILIC/RPLC) method was established to separate and purify the components in Trachelospermum jasminoides . The pigments and strongly polar components were removed from the crude extract after the active carbon decolorization and solid phase extraction processes. A Click XIon column (250 mm×20 mm, 10 μm) was selected as stationary phase and water-acetonitrile as mobile phases in the first dimensional HILIC. Finally, 15 fractions were collected under UV-triggered mode. In the second dimensional RPLC, a C18 column (250 mm×20 mm, 5 μm) was selected and water-acetonitrile was used as mobile phases. As a result, 14 compounds with high purity were obtained, which were further identified by mass spectrometry (MS) and nuclear magnetic resonance (NMR). Finally, 11 lignan compounds and three flavonoid compounds were obtained. The method has a good orthogonality, and can improve the resolution and the peak capacity. It is significant for the separation of complex components from Trachelospermum jasminoides .

  3. Polarization as a tool for studying the physics of weak interactions

    International Nuclear Information System (INIS)

    Soffer, J.

    1983-01-01

    Realistic possibilities exist now to obtain high-energy polarized proton beams with high luminosity and to measure the polarization of a stored beam. This will be our motivation to discuss parity violating weak effects in inclusive hadron and jet production with polarized beams. There are also interesting predictions for helicity asymmetries in W +- and Z production in pp and pantip collisions

  4. Polarization as a tool for studying the physics of weak interactions

    International Nuclear Information System (INIS)

    Soffer, J.

    1983-01-01

    Realistic possibilities exist now to obtain high-energy polarized proton beams with high luminosity and to measure the polarization of a stored beam. This will be our motivation to discuss parity violating weak effects in inclusive hadron and jet production with polarized beams. There are also interesting predictions for helicity asymmetries in Wsup(+-) and Z production in pp and panti p collisions. (orig.)

  5. Core-softened fluids, water-like anomalies, and the liquid-liquid critical points.

    Science.gov (United States)

    Salcedo, Evy; de Oliveira, Alan Barros; Barraz, Ney M; Chakravarty, Charusita; Barbosa, Marcia C

    2011-07-28

    Molecular dynamics simulations are used to examine the relationship between water-like anomalies and the liquid-liquid critical point in a family of model fluids with multi-Gaussian, core-softened pair interactions. The core-softened pair interactions have two length scales, such that the longer length scale associated with a shallow, attractive well is kept constant while the shorter length scale associated with the repulsive shoulder is varied from an inflection point to a minimum of progressively increasing depth. The maximum depth of the shoulder well is chosen so that the resulting potential reproduces the oxygen-oxygen radial distribution function of the ST4 model of water. As the shoulder well depth increases, the pressure required to form the high density liquid decreases and the temperature up to which the high-density liquid is stable increases, resulting in the shift of the liquid-liquid critical point to much lower pressures and higher temperatures. To understand the entropic effects associated with the changes in the interaction potential, the pair correlation entropy is computed to show that the excess entropy anomaly diminishes when the shoulder well depth increases. Excess entropy scaling of diffusivity in this class of fluids is demonstrated, showing that decreasing strength of the excess entropy anomaly with increasing shoulder depth results in the progressive loss of water-like thermodynamic, structural and transport anomalies. Instantaneous normal mode analysis was used to index the overall curvature distribution of the fluid and the fraction of imaginary frequency modes was shown to correlate well with the anomalous behavior of the diffusivity and the pair correlation entropy. The results suggest in the case of core-softened potentials, in addition to the presence of two length scales, energetic, and entropic effects associated with local minima and curvatures of the pair interaction play an important role in determining the presence of water

  6. Periodic modulation-based stochastic resonance algorithm applied to quantitative analysis for weak liquid chromatography-mass spectrometry signal of granisetron in plasma

    Science.gov (United States)

    Xiang, Suyun; Wang, Wei; Xiang, Bingren; Deng, Haishan; Xie, Shaofei

    2007-05-01

    The periodic modulation-based stochastic resonance algorithm (PSRA) was used to amplify and detect the weak liquid chromatography-mass spectrometry (LC-MS) signal of granisetron in plasma. In the algorithm, the stochastic resonance (SR) was achieved by introducing an external periodic force to the nonlinear system. The optimization of parameters was carried out in two steps to give attention to both the signal-to-noise ratio (S/N) and the peak shape of output signal. By applying PSRA with the optimized parameters, the signal-to-noise ratio of LC-MS peak was enhanced significantly and distorted peak shape that often appeared in the traditional stochastic resonance algorithm was corrected by the added periodic force. Using the signals enhanced by PSRA, this method extended the limit of detection (LOD) and limit of quantification (LOQ) of granisetron in plasma from 0.05 and 0.2 ng/mL, respectively, to 0.01 and 0.02 ng/mL, and exhibited good linearity, accuracy and precision, which ensure accurate determination of the target analyte.

  7. Studies on transport behaviour of a binary liquid mixture of ethanol and toluene at 298.15K in terms of viscosity models

    Science.gov (United States)

    Purohit, Suresh; Suthar, Shyam Sunder; Vyas, Mahendra; Beniwal, Ram Chandra

    2018-05-01

    The main transport properties of liquid or liquid mixtures are viscosity, diffusion, transference and electrical conductance. Viscosities of various liquid mixtures have been studied and their analyses have also been done by the help of some parameters. For each solution, the excess thermodynamic properties (YE) have been investigated. These excess thermodynamic properties are excess molar volume (VE), viscosity deviation (Δη) and excess Gibbs free energy of activation of viscous flow (ΔG*E). These parameters provide us the important information about interaction between molecules. For example, the negative value of VE and positive value of Δη shows the strong interaction between the solute and solvent molecules while positive value of VE and negative value of Δη shows the weak interaction between solute and solvent molecules. Above parameters and their discussion have been made in our earlier paper. In the present research paper, the viscosity data have been correlated with the equations of Grunberg and Nissan, Hind et al., Tamura and Kurata Katti. The excess values have been correlated using Redlich-Kister polynomial equation to obtain their coefficients and standard deviations. It has been found that in all cases, the data obtained fitted with the values correlated by the corresponding models very well. The results are interpreted in terms of molecular interactions occurring in the solution.

  8. Critical potentials, leptons, and weak currents

    International Nuclear Information System (INIS)

    Smith, P.F.; Lewin, J.D.

    1977-12-01

    A theoretical study is made of the interaction of very strong localised electromagnetic potentials with charged leptons, and with the vacuum state. The principal objective is to investigate the phenomena which occur when the potential reaches or exceeds the critical value at which bound levels are drawn into the lower continuum. The behaviour of bound and continuum solutions of the Dirac equation for the specific model of a short range potential well in an arbitrarily large bounded volume is examined in detail. Vacuum polarisation effects are computed by summation over the infinite set of single particle levels, and special attention is given to the behaviour of the overall charge distribution as the potential strength increases through the critical value. The most significant features of the results are (a) the formation of highly localised electron or muon bound states, (b) similar critical potential strengths for electrons and muons, and (c) redefinition of the vacuum by one charge unit at the critical potential. These features are analogous to some properties of leptonic and hadronic weak currents, and the hypothesis is proposed that strong short range potentials may provide a possible mediating mechanism for the weak interaction and also a lepton confinement mechanism within the structure of hadrons. (author)

  9. A new approach to study interaction parameters in cyanobiphenyl liquid crystal binary systems

    International Nuclear Information System (INIS)

    Javadian, Soheila; Dalir, Nima; Gilani, Ali Ghanadzadeh; Kakemam, Jamal; Yousefi, Ali

    2015-01-01

    Highlights: • The phase transition of 7CB and 5CB liquid crystals studied using the DSC. • This work includes the determination of the eutectic in the 7CB/5CB mixture. • The excess functions and interaction parameters calculated in the 7CB/5CB mixtures. • The P ∗ randomicity parameter used to describe the phase transitions of C–N and N–I. • A small amount of P ∗ showed a non-random identity of the C–N phase transition. - Abstract: The phase transition of heptylcyanobiphenyl 7CB and pentylcyanobiphenyl 5CB liquid crystals was investigated using the differential scanning calorimetry DSC technique. Then, the phase transition of different compositions of 7CB/5CB binary mixture was studied to determine the eutectic point. The phase diagram of mentioned binary system in 7CB mole fraction of 0.45 at T = 273.45 K is in good agreement with that of predicted from Schroder–van Laar equation. The thermodynamic excess functions and interaction parameters were calculated to describe the phase transition physically using the non-random mixing for the first time. The P ∗ randomicity parameter was used to describe the phase transitions of C–N and N–I in which a small amount of P ∗ shows a non-random identity of C–N phase transition. Contrarily, the P ∗ is greater in N–I phase transition showing a random mixing process

  10. A method for the computation of turbulent polymeric liquids including hydrodynamic interactions and chain entanglements

    Energy Technology Data Exchange (ETDEWEB)

    Kivotides, Demosthenes, E-mail: demosthenes.kivotides@strath.ac.uk

    2017-02-12

    An asymptotically exact method for the direct computation of turbulent polymeric liquids that includes (a) fully resolved, creeping microflow fields due to hydrodynamic interactions between chains, (b) exact account of (subfilter) residual stresses, (c) polymer Brownian motion, and (d) direct calculation of chain entanglements, is formulated. Although developed in the context of polymeric fluids, the method is equally applicable to turbulent colloidal dispersions and aerosols. - Highlights: • An asymptotically exact method for the computation of polymer and colloidal fluids is developed. • The method is valid for all flow inertia and all polymer volume fractions. • The method models entanglements and hydrodynamic interactions between polymer chains.

  11. Iridates and RuCl3 - from Heisenberg antiferromagnets to potential Kitaev spin-liquids

    Science.gov (United States)

    van den Brink, Jeroen

    The observed richness of topological states on the single-electron level prompts the question what kind of topological phases can develop in more strongly correlated, many-body electron systems. Correlation effects, in particular intra- and inter-orbital electron-electron interactions, are very substantial in 3 d transition-metal compounds such as the copper oxides, but the spin-orbit coupling (SOC) is weak. In 5 d transition-metal compounds such as iridates, the interesting situation arises that the SOC and Coulomb interactions meet on the same energy scale. The electronic structure of iridates thus depends on a strong competition between the electronic hopping amplitudes, local energy-level splittings, electron-electron interaction strengths, and the SOC of the Ir 5d electrons. The interplay of these ingredients offers the potential to stabilise relatively well-understood states such as a 2D Heisenberg-like antiferromagnet in Sr2IrO4, but in principle also far more exotic ones, such a topological Kitaev quantum spin liquid, in (hyper)honeycomb iridates. I will discuss the microscopic electronic structures of these iridates, their proximity to idealized Heisenberg and Kitaev models and our contributions to establishing the physical factors that appear to have preempted the realization of quantum spin liquid phases so far and include a discussion on the 4d transition metal chloride RuCl3. Supported by SFB 1143 of the Deutsche Forschungsgemeinschaft.

  12. Vectorlike interactions of leptons and quarks

    International Nuclear Information System (INIS)

    Fritzsch, H.

    1976-07-01

    A vectorlike theory of hadronic weak interactions can only be constructed if there exist more than 4 quark flavours and more than 4 leptons. Any vectorlike theory implies the existence of right-handed weak currents. Typically those currents are relevant for the weak interactions of heavy leptons. The experimental consequences of some typical vectorlike models are discussed. (BJ) [de

  13. Effective adsorption of hexavalent chromium through a three center (3c) co-operative interaction with an ionic liquid and biopolymer

    International Nuclear Information System (INIS)

    Santhana Krishna Kumar, A.; Gupta, Timsi; Kakan, Shruti Singh; Kalidhasan, S.; Manasi,; Rajesh, Vidya; Rajesh, N.

    2012-01-01

    Highlights: ► Tetraoctylammoniumbromide impregnated chitosan was prepared by ultrasonication. ► Physico-chemical characterization of the adsorbent was studied in detail. ► The sorbent has an adsorption capacity of 63.69 mg g −1 for chromium(VI). ► The mechanism involves a three center interaction with positive co-operative effect. ► Adsorbent is effectively regenerated with ammonium hydroxide. - Abstract: Biopolymers as well as ionic liquids are known for their potential applications. In this work, we report the utility of chitosan as an excellent platform for impregnating the ionic liquid, tetraoctylammonium bromide by ultrasonication and its subsequent adsorption for chromium(VI). The effective mass transfer due to sonication coupled with the hydrogen bonding interaction between chitosan-ionic liquid and the electrostatic interaction involving the amino groups in chitosan and hexavalent chromium governs this three center (3c) co-operative mechanism. The adsorption followed a pseudo second order kinetics with a Langmuir adsorption capacity of 63.69 mg g −1 . Various isotherm models were used to correlate the experimental data and the adsorption process is exothermic with a decreased randomness at the solid–solution interface. The thermodynamics of the spontaneous adsorption process could be explained through a positive co-operative effect between the host (chitosan) and the guest (ionic liquid). The adsorbed chromium(VI) could be converted to ammonium chromate using ammonium hydroxide, thereby regenerating the adsorbent. The method could be translated into action in the form of practical application to a real sample containing chromium.

  14. Weakly clopen functions

    International Nuclear Information System (INIS)

    Son, Mi Jung; Park, Jin Han; Lim, Ki Moon

    2007-01-01

    We introduce a new class of functions called weakly clopen function which includes the class of almost clopen functions due to Ekici [Ekici E. Generalization of perfectly continuous, regular set-connected and clopen functions. Acta Math Hungar 2005;107:193-206] and is included in the class of weakly continuous functions due to Levine [Levine N. A decomposition of continuity in topological spaces. Am Math Mon 1961;68:44-6]. Some characterizations and several properties concerning weakly clopenness are obtained. Furthermore, relationships among weak clopenness, almost clopenness, clopenness and weak continuity are investigated

  15. Implications of neutrino masses and mixing for weak processes

    International Nuclear Information System (INIS)

    Shrock, R.E.

    1981-01-01

    A general theory is presented of weak processes involving neutrinos which consistently incorporates the possibility of nonzero neutrino masses and associated lepton mixing. The theory leads to new tests for and bounds on such masses and mixing. These tests make use of (π,K)/sub l2/ decay, nuclear β decay, and μ and tau decays, among others. New experiments at SIN and KEK to apply the tests are mentioned. Further, some implications are discussed for (1) the analysis of the spectral parameters in leptonic decays to determine the Lorentz structure of the weak leptonic couplings; (2) fundamental weak interaction constants such as G/sub μ/, G/sub V/', f/sub π/, f/sub K/, V/sub uq/, q = d or s, m/sub W/, and m/sub Z/; and (3) neutrino propagation

  16. Liquid phase formation due to solid/solid chemical interaction and its modelling: applications to zircaloy/stainless steel system

    International Nuclear Information System (INIS)

    Garcia, E.A.; Piotrkowski, R.; Denis, A.; Kovacs, J.

    1992-01-01

    The chemical interaction at high temperatures between Zircaloy (Zry) and stainless steel (SS) and the liquid phase formation due to eutectic reactions were studied. In a previous work the Zry/Inconel system was modelled assuming that the kinetics of phase growth is controlled by diffusion. The same model and the obtained Zr diffusion coefficient in the liquid phase were applied in the present work. In order to obtain an adequate description of the Zry/SS the major component of both alloys and also Cr and Ni had to be considered. (author)

  17. Charged current weak interaction of polarized muons

    International Nuclear Information System (INIS)

    Smadja, G.; Vesztergombi, G.

    1983-01-01

    The polarization of the muon beam can be used to test the presence of right-handed couplings in charged current interaction of muons in process μ+N->#betta#+X. The experimental feasibility and the limits which can be obtained on the mass of right-handed intermediate boson are discussed. (orig.)

  18. Quasiparticle Breakdown in a Quantum Spin Liquid

    International Nuclear Information System (INIS)

    Stone, Matthew B.; Zalinznyak, I.; Hong, T.; Broholm, C.L.; Reich, D.H.

    2006-01-01

    Much of modern condensed matter physics is understood in terms of elementary excitations, or quasiparticles -- fundamental quanta of energy and momentum. Various strongly interacting atomic systems are successfully treated as a collection of quasiparticles with weak or no interactions. However, there are interesting limitations to this description: in some systems the very existence of quasiparticles cannot be taken for granted. Like unstable elementary particles, quasiparticles cannot survive beyond a threshold where certain decay channels become allowed by conservation laws; their spectrum terminates at this threshold. Such quasiparticle breakdown was first predicted for an exotic state of matter -- super-fluid 4 He at temperatures close to absolute zero, a quantum Bose liquid where zero-point atomic motion precludes crystallization. Here we show, using neutron scattering, that quasiparticle breakdown can also occur in a quantum magnet and, by implication, in other systems with Bose quasiparticles. We have measured spin excitations in a two-dimensional quantum magnet, piperazinium hexachlorodicuprate (PHCC), in which spin-1/2 copper ions form a non-magnetic quantum spin liquid, and find remarkable similarities with excitations in superfluid 4 He. We observe a threshold momentum beyond which the quasiparticle peak merges with the two-quasiparticle continuum. It then acquires a finite energy width and becomes indistinguishable from a leading-edge singularity, so that excited states are no longer quasiparticles but occupy a wide band of energy. Our findings have important ramifications for understanding excitations with gapped spectra in many condensed matter systems, ranging from band insulators to high-transition-temperature superconductors.

  19. Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX Data

    Science.gov (United States)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bradley, A.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; de Viveiros, L.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Ott, R. A.; Palladino, K. J.; Pangilinan, M.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2016-04-01

    We present constraints on weakly interacting massive particles (WIMP)-nucleus scattering from the 2013 data of the Large Underground Xenon dark matter experiment, including 1.4 ×104 kg day of search exposure. This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium β source and from kinematically constrained nuclear recoils down to 1.1 keV. Sensitivity, especially to low-mass WIMPs, is enhanced compared to our previous results which modeled the signal only above a 3 keV minimum energy. Under standard dark matter halo assumptions and in the mass range above 4 GeV c-2 , these new results give the most stringent direct limits on the spin-independent WIMP-nucleon cross section. The 90% C.L. upper limit has a minimum of 0.6 zb at 33 GeV c-2 WIMP mass.

  20. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.

    Science.gov (United States)

    Kosionis, Spyridon G; Terzis, Andreas F; Sadeghi, Seyed M; Paspalakis, Emmanuel

    2013-01-30

    We study optical effects in a hybrid system composed of a semiconductor quantum dot and a spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use modified nonlinear density matrix equations for the description of the optical properties of the system and obtain a closed-form expression for the linear susceptibilities of the quantum dot, the metal nanoparticle, and the total system. We then investigate the dependence of the susceptibility on the interparticle distance as well as on the material parameters of the hybrid system. We find that the susceptibility of the quantum dot exhibits optical transparency for specific frequencies. In addition, we show that there is a range of frequencies of the applied field for which the susceptibility of the semiconductor quantum dot leads to gain. This suggests that in such a hybrid system quantum coherence can reverse the course of energy transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by the presence of the quantum dot.