Correlation function of weakly interacting bosons in a disordered lattice
Energy Technology Data Exchange (ETDEWEB)
Deissler, B; Lucioni, E; Modugno, M; Roati, G; Tanzi, L; Zaccanti, M; Inguscio, M; Modugno, G, E-mail: deissler@lens.unifi.it, E-mail: modugno@lens.unifi.it [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, 50019 Sesto Fiorentino (Italy)
2011-02-15
One of the most important issues in disordered systems is the interplay of the disorder and repulsive interactions. Several recent experimental advances on this topic have been made with ultracold atoms, in particular the observation of Anderson localization and the realization of the disordered Bose-Hubbard model. There are, however, still questions as to how to differentiate the complex insulating phases resulting from this interplay, and how to measure the size of the superfluid fragments that these phases entail. It has been suggested that the correlation function of such a system can give new insights, but so far very little experimental investigation has been performed. Here, we show the first experimental analysis of the correlation function for a weakly interacting, bosonic system in a quasiperiodic lattice. We observe an increase in the correlation length as well as a change in the shape of the correlation function in the delocalization crossover from Anderson glass to coherent, extended state. In between, the experiment indicates the formation of progressively larger coherent fragments, consistent with a fragmented BEC, or Bose glass.
Ren, Jing; He, Hong-Jian
2014-01-01
We study gravitational interactions of Higgs boson through the unique dimension-4 operator $\\xi H^\\dag H R$, with $H$ the Higgs doublet and $R$ the Ricci scalar curvature. We analyze the effect of this dimensionless nonminimal coupling $\\xi$ on weak gauge boson scattering in both Jordan and Einstein frames. We demonstrate that the weak boson scattering amplitudes computed in both frames are equal in flat background. We explicitly establish the longitudinal-Goldstone equivalence theorem with nonzero $\\xi$ coupling in both frames, and analyze the unitarity constraints. We further extend our study to Higgs inflation, and quantitatively derive the perturbative unitarity bounds via coupled channel analysis, under the large field background at the inflation scale. We analyze the unitarity constraints on the parameter space in both the conventional Higgs inflation and the improved models in light of the recent BICEP2 data.
Energy Technology Data Exchange (ETDEWEB)
Suzuki, M.
1988-04-01
Dynamical mechanism of composite W and Z is studied in a 1/N field theory model with four-fermion interactions in which global weak SU(2) symmetry is broken explicitly by electromagnetic interaction. Issues involved in such a model are discussed in detail. Deviation from gauge coupling due to compositeness and higher order loop corrections are examined to show that this class of models are consistent not only theoretically but also experimentally.
Supersymmetric Higgs bosons in weak boson fusion.
Hollik, Wolfgang; Plehn, Tilman; Rauch, Michael; Rzehak, Heidi
2009-03-06
We compute the complete supersymmetric next-to-leading-order corrections to the production of a light Higgs boson in weak-boson fusion. The size of the electroweak corrections is of similar order as the next-to-leading-order corrections in the standard model. The supersymmetric QCD corrections turn out to be significantly smaller than expected and than their electroweak counterparts. These corrections are an important ingredient to a precision analysis of the (supersymmetric) Higgs sector at the LHC, either as a known correction factor or as a contribution to the theory error.
Energy Technology Data Exchange (ETDEWEB)
Dehesa, J.S.; Gomez, J.M.G.; Ros, J.
1982-01-01
These proceedings contain the lectures and articles presented at the named autumn school. These concern the interacting boson model in connection with other collective models. Separated abstracts were prepared for the articles in these proceedings.
Anomalous Gauge Boson Interactions
Energy Technology Data Exchange (ETDEWEB)
Barklow, Timothy L
2003-06-16
We discuss the direct measurement of the trilinear vector boson couplings in present and future collider experiments. The major goals of such experiments will be the confirmation of the Standard Model (SM) predictions and the search for signals of new physics. We review our current theoretical understanding of anomalous trilinear gauge-boson self interactions. If the energy scale of the new physics is {approx} 1 TeV, these low energy anomalous couplings are expected to be no larger than {Omicron}(10{sup -2}). Constraints from high precision measurements at LEP and low energy charged and neutral current processes are critically reviewed.
Anomalous gauge boson interactions
Energy Technology Data Exchange (ETDEWEB)
Aihara, H. [Lawrence Berkeley Lab., CA (United States); Barklow, T. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Baur, U. [State Univ. of New York, Buffalo, NY (United States). Dept. of Physics]|[Florida State Univ., Tallahassee, FL (United States). Dept. of Physics] [and others
1995-03-01
We discuss the direct measurement of the trilinear vector boson couplings in present and future collider experiments. The major goals of such experiments will be the confirmation of the Standard Model (SM) predictions and the search for signals of new physics. We review our current theoretical understanding of anomalous trilinear gauge-boson self interactions. If the energy scale of the new physics is {approximately} 1 TeV, these low energy anomalous couplings are expected to be no larger than {Omicron}(10{sup {minus}2}). Constraints from high precision measurements at LEP and low energy charged and neutral current processes are critically reviewed.
Weak neutral-current interactions
Energy Technology Data Exchange (ETDEWEB)
Barnett, R.M.
1978-08-01
The roles of each type of experiment in establishing uniquely the values of the the neutral-current couplings of u and d quarks are analyzed together with their implications for gauge models of the weak and electromagnetic interactions. An analysis of the neutral-current couplings of electrons and of the data based on the assumption that only one Z/sup 0/ boson exists is given. Also a model-independent analysis of parity violation experiments is discussed. 85 references. (JFP)
Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imbault, Didier; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz
2012-01-01
A search for the decay of a light Higgs (120 - 140 GeV) to a pair of weakly-interacting, long-lived particles in 1.94 fb${^-1}$ of proton-proton collisions at $\\sqrt{s}$ = 7 TeV recorded in 2011 by the ATLAS detector is presented. The search strategy requires that both long-lived particles decay inside the muon spectrometer. No excess of events is observed above the expected background and limits on the Higgs boson production times branching ratio to weakly-interacting, long-lived particles are derived as a function of the particle proper decay length.
Search for a Higgs Boson Decaying to Weak Boson Pairs at LEP
Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M
2003-01-01
A Higgs particle produced in association with a Z boson and decaying into weak boson pairs is searched for in 336.4 1/pb of data collected by the L3 experiment at LEP at centre-of-mass energies from 200 to 209 GeV. Limits on the branching fraction of the Higgs boson decay into two weak bosons as a function of the Higgs mass are derived. These results are combined with the L3 search for a Higgs boson decaying to photon pairs. A Higgs produced with a Standard Model e+e- --> Zh cross section and decaying only into electroweak boson pairs is excluded at 95% CL for a mass below 107 GeV.
Weak interactions at high energies. [Lectures, review
Energy Technology Data Exchange (ETDEWEB)
Ellis, J.
1978-08-01
Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references. (JFP)
Composite Weak Vector Bosons in a Left-Right Symmetric Preon Model : Particles and fields
Motoo, SEKIGUTI; Shin, ISHIDA; Hiroaki, WADA; Atomic Energy Research Institute, College of Science and Technology Nihon University
1996-01-01
We take the viewpoint that the standard model is a low energy effective theory among composite quarks, leptons and weak bosons in a left-right (LR) symmetric preon model with a hypercolor SU(N)_ gauge interaction. Starting from NJL-type interactions with glohal SU(2)_L × SU(2)_R symmetry, we construct the composite weak vector bosons from a pair of spinor preons and derive their effective interactions with quarks and leptons, which are essentially identical, at the tree diagram level, to thos...
Fermi and the Theory of Weak Interactions
Indian Academy of Sciences (India)
IAS Admin
The history of weak interactions starting with. Fermi's creation of the beta decay theory and culminating in its modern avatar in the form of the electroweak gauge theory is described. Dis- coveries of parity violation, matter{antimatter asymmetry, W and Z bosons and neutrino mass are highlighted. Introduction. Sun gives us ...
Fermi and the Theory of Weak Interactions
Rajasekaran, G.
2014-01-01
The history of weak interactions starting with Fermi's creation of the beta decay theory and culminating in its modern avatar in the form of the electroweak gauge theory is described. Discoveries of parity violation, matter-antimatter asymmetry, W and Z bosons and neutrino mass are highlighted.
Lee, T. D.
1970-07-01
While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.
Ultra-weak sector, Higgs boson mass, and the dilaton
Directory of Open Access Journals (Sweden)
Kyle Allison
2014-11-01
Full Text Available The Higgs boson mass may arise from a portal coupling to a singlet field σ which has a very large VEV f≫mHiggs. This requires a sector of “ultra-weak” couplings ζi, where ζi≲mHiggs2/f2. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of σ in the ζi→0 limit. The singlet field σ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman–Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.
Determination of the masses of electrical weak gauge bosons with L3
Rosenbleck, Christian
2006-01-01
This thesis presents the measurement of the masses of the carriers of the weak force in the Standard Model of Particle Physics, the gauge bosons W and Z. The masses are determined using the kinematics of the bosons' decay products. The data were collected by the L3 experiment at the Large Electron Positron Collider (LEP) at centre-of-mass energies, sqrt(s), between 183 GeV and 209 GeV in the years 1997 to 2000. The mass of the Z-boson, mZ, is already known very precisely: The L3 collaboration determined it to be mZ = 91.1898 +- 0.0031 GeV from a scan of the Z resonance. Therefore the main aim of this analysis is not the determination of the numerical value of mZ; instead the analysis is used to cross-check the measurement of the W boson mass since the methods are similar. Alternatively, the analysis can be used to measure the mean centre-of-mass energy at the L3 interaction point. The Z-boson mass is determined to be mZ = 91.272 +- 0.046 GeV. If interpreted as measurement of the centre-of-mass energy, this va...
Higgs boson production in association with a photon via weak boson fusion
Arnold, Ken; Jäger, Barbara; Zeppenfeld, Dieter
2011-01-01
We present next-to-leading order QCD corrections to Higgs production in association with a photon via weak boson fusion at a hadron collider. Utilizing the fully flexible parton level Monte-Carlo program VBFNLO, we find small overall corrections, while the shape of some distributions is sensitive to radiative contributions in certain regions of phase-space. Residual scale uncertainties at next-to-leading order are at the few-percent level. Being perturbatively well under control and exhibiting kinematic features that allow to distinguish it from potential backgrounds, this process can serve as a valuable source of information on the $Hb\\bar{b}$ Yukawa coupling.
Single particle degrees of freedom in the interacting boson model
Scholten, O.
1985-01-01
An overview is given of different aspects of the Interacting Boson Fermion Model, the extension of the interacting Boson Model to odd mass nuclei. The microscopic model for the coupling of single-particle degrees of freedom to the system of bosons is outlined and the interaction between the bosons
Weak interactions of elementary particles
Okun, Lev Borisovich
1965-01-01
International Series of Monographs in Natural Philosophy, Volume 5: Weak Interaction of Elementary Particles focuses on the composition, properties, and reactions of elementary particles and high energies. The book first discusses elementary particles. Concerns include isotopic invariance in the Sakata model; conservation of fundamental particles; scheme of isomultiplets in the Sakata model; universal, unitary-symmetric strong interaction; and universal weak interaction. The text also focuses on spinors, amplitudes, and currents. Wave function, calculation of traces, five bilinear covariants,
Bounds on dark matter interactions with electroweak gauge bosons
Energy Technology Data Exchange (ETDEWEB)
Cotta, R. C.; Hewett, J. L.; Le, M. -P.; Rizzo, T. G.
2013-12-01
We investigate scenarios in which dark matter interacts with the Standard Model primarily through electroweak gauge bosons. We employ an effective field theory framework wherein the Standard Model and the dark matter particle are the only light states in order to derive model-independent bounds. Bounds on such interactions are derived from dark matter production by weak boson fusion at the LHC, indirect detection searches for the products of dark matter annihilation and from the measured invisible width of the Z^{ 0} . We find that limits on the UV scale, Λ , reach weak scale values for most operators and values of the dark matter mass, thus probing the most natural scenarios in the weakly interacting massive particle dark matter paradigm. Our bounds suggest that light dark matter ( m_{ χ} ≲ m_{ Z} / 2 or m _{χ} ≲ 100 – 200 GeV , depending on the operator) cannot interact only with the electroweak gauge bosons of the Standard Model, but rather requires additional operator contributions or dark sector structure to avoid overclosing the Universe.
Cosmology and the weak interaction
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N. (Fermi National Accelerator Lab., Batavia, IL (USA)):(Chicago Univ., IL (USA))
1989-12-01
The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.
Search for a new weakly interacting particle
Decamp, D.; Deschizeaux, B.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Alemany, R.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Gaitan, V.; Garrido, Ll.; Mato, P.; Ll. M., Mir; Pacheco, A.; Catanesi, M. G.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Gao, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Lou, J.; Qiao, C.; Ruan, T.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhao, W.; Atwood, W. B.; Bird, F.; Blucher, E.; Bonvicini, G.; Bossi, F.; Brown, D.; Burnett, T. H.; Drevermann, H.; Dydak, F.; Forty, R. W.; Grab, C.; Hagelberg, R.; Haywood, S.; Hilgart, J.; Jost, B.; Kasemann, M.; Knobloch, J.; Lacourt, A.; Lançon, E.; Lehraus, I.; Lohse, T.; Marchioro, A.; Martinez, M.; Menary, S.; Minten, A.; Miotto, A.; Miguel, R.; Moser, H.-G.; Nash, J.; Palazzi, P.; Ranjard, F.; Redlinger, G.; Roth, A.; Rothberg, J.; Rotscheidt, H.; St. Denis, R.; Schlatter, D.; Takashima, M.; Talby, M.; Tejessy, W.; Wachsmuth, H.; Wasserbaech, S.; Wheeler, S.; Wiedenmann, W.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Falvard, A.; El Fellous, R.; Gay, P.; Harvey, J.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Proriol, J.; Prulhière, F.; Stimpfl, G.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nielsen, E. R.; Nilsson, B. S.; Efthymiopoulos, I.; Simopoulou, E.; Vayaki, A.; Badier, J.; Blondel, A.; Bonneaud, G.; Bourotte, J.; Braems, F.; Brient, J. C.; Fouque, G.; Gamess, A.; Guirlet, R.; Orteu, S.; Rosowsky, A.; Rougé, A.; Rumpf, M.; Tanaka, R.; Videau, H.; Candlin, D. J.; Veitch, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Campana, P.; Capon, G.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Nicoletti, G.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Zografou, P.; Altoon, B.; Boyle, O.; Halley, A. W.; Ten Have, I.; Hearns, J. L.; Lynch, J. G.; Morton, W. T.; Raine, C.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geiges, R.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Patton, S. J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Taylor, G.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Keemer, N. R.; Nuttall, M.; Patel, A.; Rowlingson, B. S.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Barczewski, T.; Bauerdick, L. A. T.; Kleinknecht, K.; Renk, B.; Roehn, S.; Sander, H.-G.; Schmelling, M.; Schmidt, H.; Steeg, F.; Albanese, J.-P.; Aubert, J.-J.; Benchouk, C.; Bernard, V.; Bonissent, A.; Courvoisier, D.; Etienne, F.; Papalexiou, S.; Payre, P.; Pietrzyk, B.; Qian, Z.; Becker, H.; Blum, W.; Cattaneo, P.; Cowan, G.; Dehning, B.; Dietl, H.; Fernandez-Bosman, M.; Hansl-Kozanecka, T.; Jahn, A.; Kozanecki, W.; Lange, E.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Pan, Y.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Stierlin, U.; Thomas, J.; Wolf, G.; Bertin, V.; Boucrot, J.; Callot, O.; Chen, X.; Cordier, A.; Davier, M.; Ganis, G.; Grivaz, J.-F.; Heusse, Ph.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Zomer, F.; Amendolia, S. R.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Carpinelli, M.; Ciocci, M. A.; dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Ligabue, F.; Lusiani, A.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Moneta, L.; Palla, F.; Sanguinetti, G.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Carter, J. M.; Green, M. G.; March, P. V.; Medcalf, T.; Quazi, I. S.; Saich, M. R.; Strong, J. A.; Thomas, R. M.; West, L. R.; Wildish, T.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Klopfenstein, C.; Locci, E.; Loucatos, S.; Monnier, E.; Perez, P.; Perlas, J. A.; Perrier, F.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Vallage, B.; Ashman, J. G.; Booth, C. N.; Buttar, C.; Carney, R.; Cartwright, S.; Combley, F.; Dinsdale, M.; Dogru, M.; Hatfield, F.; Martin, J.; Parker, D.; Reeves, P.; Thompson, L. F.; Brandt, S.; Burkhardt, H.; Grupen, C.; Meinhard, H.; Mirabito, L.; Neugebauer, E.; Schäfer, U.; Seywerd, H.; Apollinari, G.; Giannini, G.; Gobbo, B.; Liello, F.; Ragusa, F.; Rolandi, L.; Stiegler, U.; Bellantoni, L.; Boudreau, J. F.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Deweerd, A. J.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jacobsen, J. E.; Jared, R. C.; Johnson, R. P.; Leclaire, B. W.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Walsh, A. M.; Wear, J. A.; Weber, F. V.; Whitney, M. H.; Sau, Lan, Wu; Zhou, Z. L.; Zobernig, G.
1991-06-01
A search for events of the type e+e--->l+l-X0, where X0 can be any weakly interacting particle which couples to the Z, has been performed with the ALEPH detector at LEP, by searching for acollinear lepton pairs. Such particles can be excluded up to a mass of 7.0 GeV/c2 for a value of the ratio of branching fractions, Br(Z-->X0l+l-)/Br(Z-->l+l-), greater than 2.5 × 10-3 if the X0 has third component of isospin, I3 greater than 1/2 and decays to a pair of virtual gauge bosons. When this analysis is combined with the previous results of the Higgs particle searches from ALEPH, this limit can be extended to an X0 mass of 60 GeV/c2.
Electroweak Measurements with Multiple Gauge Boson Interactions
Sood, A; The ATLAS collaboration
2014-01-01
This talk presents measurements from ATLAS and CMS that are sensitive interactions between EW gauge bosons. Included analyses sensitive to triple gauge couplings are EW $Z$ production, and $VV^{\\prime}$ cross sections where $V=W/Z$ and $V^{\\prime}=W/Z/\\gamma$, while $\\gamma\\gamma\\rightarrow WW$, $WV\\gamma$ where $V=W/Z$, and $W^{\\pm}W^{\\pm}jj$ production are present as probes of quartic gauge couplings.
$b\\bar{b}$ final states in Higgs production via weak boson fusion at the LHC
Mangano, Michelangelo L; Piccinini, Fulvio; Pittau, R; Polosa, Antonio
2003-01-01
We present a study of the Higgs production at the LHC via Weak Boson Fusion, with the Higgs boson decaying into a b-quark pair. A detailed partonic LO calculation of all the potential backgrounds is performed. We conclude that this channel for Higgs production can be extracted from the backgrounds, and present our estimates of the accuracy in the determination of the Hbb Yukawa coupling.
QCD with Weak Bosons and Jets with ATLAS
Kirsch, G
2008-01-01
The study of W and Z boson production in association with jets in $pp$ collisions at 14 TeV is an important element of the physics program within ATLAS. These processes are not only interesting in their own right as tests of perturbative quantum chromodynamics (QCD) at the LHC, but also constitute important backgrounds for both Standard Model and Beyond Standard Model physics processes. In these proceedings the benefits and theoretical motivations for the analysis of W/Z+jets events are presented and the experimental challenges briefly reviewed.
Electroweak Measurements with Multiple Gauge Boson Interactions
Sood, Alexander; The ATLAS collaboration
2014-01-01
These proceedings present measurements from ATLAS and CMS using proton-proton collisions with center-of-mass energies of 7 TeV and 8 TeV at the LHC that are sensitive to interactions between EW gauge bosons. Included analyses sensitive to triple gauge couplings are EW Z production, and $VV^{\\prime}$ cross sections where $V=W,Z$ and $V^{\\prime}=W,Z,γ$, while $\\gamma\\gamma \\rightarrow WW$, $WV\\gamma$ where $V=W,Z$, and $W^{\\pm}W^{\\pm}jj$ production are presented as probes of quartic gauge couplings.
1994-01-01
Bosonization is a useful technique for studying systems of interacting fermions in low dimensions. It has applications in both particle and condensed matter physics.This book contains reprints of papers on the method as used in these fields. The papers range from the classic work of Tomonaga in the 1950's on one-dimensional electron gases, through the discovery of fermionic solitons in the 1970's, to integrable systems and bosonization on Riemann surfaces. A four-chapter pedagogical introduction by the editor should make the book accessible to graduate students and experienced researchers alik
A Universe without Weak Interactions
Energy Technology Data Exchange (ETDEWEB)
Harnik, Roni; Kribs, Graham D.; Perez, Gilad
2006-04-07
A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical ''Weakless Universe'' is matched to our Universe by simultaneously adjusting Standard Model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the Weakless Universe suggests that the anthropic principle does not determine the scale of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multi-parameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe.
Configuration mixing in the sdg interacting boson model
Energy Technology Data Exchange (ETDEWEB)
Bouldjedri, A [Department of Physics, Faculty of Science, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria); Van Isacker, P [GANIL, BP 55027, F-14076 Caen cedex 5 (France); Zerguine, S [Department of Physics, Faculty of Science, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria)
2005-11-01
A wavefunction analysis of the strong-coupling limits of the sdg interacting boson model is presented. The analysis is carried out for two-boson states and allows us to characterize the boson configuration mixing in the different limits. Based on these results and those of a shell-model analysis of the sdg IBM, qualitative conclusions are drawn about the range of applicability of each limit.
Current problems in the weak interactions
Energy Technology Data Exchange (ETDEWEB)
Pais, A
1977-01-01
Some reasons are discussed showing why the recent SU(2) x U(1) gauge theory of weak and electromagnetic interactions is not a complete theory of these interactions, Lepton theory, charm, and the CP problem are considered. 60 references. (JFP)
Spin effects in the weak interaction
Energy Technology Data Exchange (ETDEWEB)
Freedman, S.J. (Argonne National Lab., IL (USA) Chicago Univ., IL (USA). Dept. of Physics Chicago Univ., IL (USA). Enrico Fermi Inst.)
1990-01-01
Modern experiments investigating the beta decay of the neutron and light nuclei are still providing important constraints on the theory of the weak interaction. Beta decay experiments are yielding more precise values for allowed and induced weak coupling constants and putting constraints on possible extensions to the standard electroweak model. Here we emphasize the implications of recent experiments to pin down the strengths of the weak vector and axial vector couplings of the nucleon.
NNLO QCD corrections to the transverse momentum distribution of weak gauge bosons arXiv
Gehrmann-De Ridder, A.; Glover, E.W.N.; Huss, A.; Walker, D.M.
The transverse momentum spectra of weak gauge bosons and their ratios probe the underlying dynamics and are crucial in testing our understanding of the Standard Model. They are an essential ingredient in precision measurements, such as the $\\mathrm{W}$-boson mass extraction. To fully exploit the potential of the LHC data, we compute the second-order (NNLO) QCD corrections to the inclusive-$p_\\mathrm{T}^\\mathrm{W}$ spectrum as well as to the ratios of spectra for $\\mathrm{W}^-/\\mathrm{W}^+$ and $\\mathrm{Z}/\\mathrm{W}$. We find that the inclusion of NNLO QCD corrections considerably improves the theoretical description of the experimental CMS data and results in a substantial reduction of the residual scale uncertainties.
GR@PPA 2.8: Initial-state jet matching for weak-boson production processes at hadron collisions
Odaka, Shigeru; Kurihara, Yoshimasa
2012-04-01
The initial-state jet matching method introduced in our previous studies has been applied to the event generation of single W and Z production processes and diboson (WW, WZ and ZZ) production processes at hadron collisions in the framework of the GR@PPA event generator. The generated events reproduce the transverse momentum spectra of weak bosons continuously in the entire kinematical region. The matrix elements (ME) for hard interactions are still at the tree level. As in previous versions, the decays of weak bosons are included in the matrix elements. Therefore, spin correlations and phase-space effects in the decay of weak bosons are exact at the tree level. The program package includes custom-made parton shower programs as well as ME-based hard interaction generators in order to achieve self-consistent jet matching. The generated events can be passed to general-purpose event generators to make the simulation proceed down to the hadron level. Catalogue identifier: ADRH_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADRH_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 112 146 No. of bytes in distributed program, including test data, etc.: 596 667 Distribution format: tar.gz Programming language: Fortran; with some included libraries coded in C and C++ Computer: All Operating system: Any UNIX-like system RAM: 1.6 Mega bytes at minimum Classification: 11.2 Catalogue identifier of previous version: ADRH_v2_0 Journal reference of previous version: Comput. Phys. Comm. 175 (2006) 665 External routines: Bash and Perl for the setup, and CERNLIB, ROOT, LHAPDF, PYTHIA according to the user's choice. Does the new version supersede the previous version?: No, this version supports only a part of the processes included in the previous versions. Nature of problem: We
One-mode bosonic Gaussian channels: a full weak-degradability classification
Caruso, F.; Giovannetti, V.; Holevo, A. S.
2006-12-01
A complete degradability analysis of one-mode bosonic Gaussian channels is presented. We show that apart from the class of channels which are unitarily equivalent to the channels with additive classical noise, these maps can be characterized in terms of weak- and/or anti-degradability. Furthermore a new set of channels which have null quantum capacity is identified. This is done by exploiting the composition rules of one-mode Gaussian maps and the fact that anti-degradable channels cannot be used to transfer quantum information.
Energy Technology Data Exchange (ETDEWEB)
Leite Lopes, J. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
1998-03-01
The author describes his first in 1958 at the unification of electromagnetic and weak interactions and his prediction in the same paper of the neutral Z{sub 0} boson which would be the intermediate quantum exchanged in an eventual electron-neutron weak interaction (as muonic neutrinos were not known at that time). In annex he transcribes copies of letters from Steven Weinberg, Abdus Salam and Bruno Pontecorvo and comments by C.N. Yang and J. Tiomno. (author) 24 refs., 5 figs.
Quantum mechanical calculations on weakly interacting complexes
Heijmen, T.G.A.
1998-01-01
Symmetry-adapted perturbation theory (SAPT) has been applied to compute the intermolecular potential energy surfaces and the interaction-induced electrical properties of weakly interacting complexes. Asymptotic (large R) expressions have been derived for the contributions to the collision-induced
Aaltonen, T.
2012-01-01
We combine searches by the CDF and D0 Collaborations for the associated production of a Higgs boson with a W or Z boson and subsequent decay of the Higgs boson to a bottom-antibottom quark pair. The data, originating from Fermilab Tevatron p-pbar collisions at sqrt{s}=1.96 TeV, correspond to integrated luminosities of up to 9.7 fb^-1. The searches are conducted for a Higgs boson with mass in the range 100-150 GeV/c^2. We observe an excess of events in the data compared with the background predictions, which is most significant in the mass range between 120 and 135 GeV/c^2. The largest local significance is 3.3 standard deviations, corresponding to a global significance of 3.1 standard deviations. We interpret this as evidence for the presence of a new particle consistent with the standard model Higgs boson, which is produced in association with a weak vector boson and decays to a bottom-antibottom quark pair.
IBAR: Interacting boson model calculations for large system sizes
Casperson, R. J.
2012-04-01
Scaling the system size of the interacting boson model-1 (IBM-1) into the realm of hundreds of bosons has many interesting applications in the field of nuclear structure, most notably quantum phase transitions in nuclei. We introduce IBAR, a new software package for calculating the eigenvalues and eigenvectors of the IBM-1 Hamiltonian, for large numbers of bosons. Energies and wavefunctions of the nuclear states, as well as transition strengths between them, are calculated using these values. Numerical errors in the recursive calculation of reduced matrix elements of the d-boson creation operator are reduced by using an arbitrary precision mathematical library. This software has been tested for up to 1000 bosons using comparisons to analytic expressions. Comparisons have also been made to the code PHINT for smaller system sizes. Catalogue identifier: AELI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 28 734 No. of bytes in distributed program, including test data, etc.: 4 104 467 Distribution format: tar.gz Programming language: C++ Computer: Any computer system with a C++ compiler Operating system: Tested under Linux RAM: 150 MB for 1000 boson calculations with angular momenta of up to L=4 Classification: 17.18, 17.20 External routines: ARPACK (http://www.caam.rice.edu/software/ARPACK/) Nature of problem: Construction and diagonalization of large Hamiltonian matrices, using reduced matrix elements of the d-boson creation operator. Solution method: Reduced matrix elements of the d-boson creation operator have been stored in data files at machine precision, after being recursively calculated with higher than machine precision. The Hamiltonian matrix is calculated and diagonalized, and the requested transition strengths are calculated
Excitations and stability of weakly interacting Bose gases with multibody interactions
Laghi, Danny; Macrı, Tommaso; Trombettoni, Andrea
2017-10-01
We consider weakly interacting bosonic gases with local and nonlocal multibody interactions. By using the Bogoliubov approximation, we first investigate contact interactions, studying the case in which the interparticle potential can be written as a sum of N -body δ interactions and then considering general contact potentials. Results for the quasiparticle spectrum and the stability are presented. We then examine nonlocal interactions, focusing on two different cases of three-body nonlocal interactions. Our results are used for systems with two- and three-body δ interactions and applied for realistic values of the trap parameters. Finally, the effect of conservative three-body terms in dipolar systems and soft-core potentials (that can be simulated with Rydberg dressed atoms) is also studied.
Processes with weak gauge boson pairs at hadron colliders. Precise predictions and future prospects
Energy Technology Data Exchange (ETDEWEB)
Salfelder, Lukas
2017-02-08
In the last years, scattering processes comprising pairs of the massive weak gauge bosons gain more and more attention. Those reactions provide particularly promising means to investigate the very mechanism responsible for electroweak symmetry breaking in the Standard Model of particle physics and to search for new physics entering via the weak sector of the theory. Precisely predicting the differential distributions of the final-state particles in realistic conditions is an essential prerequisite to potentially reveal tiny deviations induced by physics beyond the Standard Model. In this thesis we present a calculation of the next-to-leading order (NLO) electroweak corrections to W-boson pair production at CERNs Large Hadron Collider (LHC), as well as a detailed analysis of vector-boson scattering (VBS) processes at a future high-energy proton.proton collider. In particular, our calculation of the NLO electroweak corrections to the hadronic process pp→W{sup +}W{sup -}→4 leptons takes the leptonic W-boson decays as well as all off-shell effects fully into account and, thus, is the first prediction providing NLO accuracy everywhere in phase space. Employing realistic event selection criteria, we study the influence of the corrections in situations that are typical for the experimental analyses in the high-energy region and for Higgs-boson precision studies in the channel H→WW{sup *}, to which direct W-boson pair production represents an important irreducible background. We observe non-trivial distortions of the differential distributions that, if not properly included in upcoming analyses, could easily be misidentified as first signs of new physics. Furthermore, we compare our predictions to previous results obtained by employing the so-called double-pole approximation. At small and intermediate scales the two approaches show the expected agreement at the level of fractions of a percent, while in the TeV range the differences may easily reach several tens of
Phenomenological model of the weak interaction
Schunck, Franz E.
2008-01-01
We use the informations known so far about elementary particles in order to construct a simple model. We find a reason for the gyromagnetic factor of 2 for leptons and a vivid imagination for the weak interaction. By this, we understand, why the elementary particles with lowest mass are stable and all other unstable.
Dynamical theory of weak and electromagnetic interactions
Englert, F
1974-01-01
The gauge theory of unified weak and electromagnetic interactions is developed without the use of scalar mesons. It is shown that the Glashow Weinberg scheme is unrealistic, but that a similar such scheme is possible if one includes two pairs of leptons, identified with e-, νe and μ-, νμ.
Fermi and the Theory of Weak Interactions
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 1. Fermi and the Theory of Weak Interactions. G Rajasekaran. General Article Volume 19 Issue 1 January 2014 pp 18-44 ... Keywords. Fermi; beta decay; parity violation; electroweak theory; neutral current; quarks and leptons; neutrino mass.
Microscopic interacting boson model calculations for even–even ...
Indian Academy of Sciences (India)
In this study, we determined the most appropriate Hamiltonian that is needed for the present calculations of energy levels and (2) values of 128−138Ce nuclei which have a mass around ≅ 130 using the interacting boson model (IBM). Using the best-ﬁtted values of parameters in the Hamiltonian of the IBM-2, we have ...
On possible non-weak interactions between neutrinos
Okun, Lev Borisovich
1987-01-01
The author proposes a renormalizable model in which neutrinos possess a strong Yukawa interaction with a neutral isoscalar spinless boson. The author discusses the experimental consequences of the model. (14 refs).
Summary of the Hadronic Weak Interaction session
Bock, G.; Bryman, D. A.; Numao, T.
1993-07-01
We summarize and discuss present and future experiments on decays of light mesons and muons that were presented in the Hadronic Weak Interaction working group session of the Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Facilities. Precise measurements and rare-decay searches, which sense mass scales in the 1-1000 TeV region, are discussed in the context of the standard model and beyond.
Summary of the Hadronic Weak Interaction session
Energy Technology Data Exchange (ETDEWEB)
Bock, G. [Fermi National Accelerator Lab., Batavia, IL (United States); Bryman, D.A.; Numao, T. [British Columbia Univ., Vancouver, BC (Canada). TRIUMF Facility
1993-07-01
We summarize and discuss present and future experiments on decays of light mesons and muons that were presented in the Hadronic Weak Interaction working group session of the ``Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Facilities.`` Precise measurements and rare-decay searches, which sense mass scales in the 1--1000 TeV region, are discussed in the context of the standard model and beyond.
Francium Spectroscopy for Weak Interaction Studies
Orozco, Luis
2014-05-01
Francium, a radioactive element, is the heaviest alkali. Its atomic and nuclear structure makes it an ideal laboratory to study the weak interaction. Laser trapping and cooling in-line with the superconducting LINAC accelerator at Stony Brook opened the precision study of its atomic structure. I will present our proposal and progress towards weak interaction measurements at TRIUMF, the National Canadian Accelerator in Vancouver. These include the commissioning run of the Francium Trapping Facility, hyperfine anomaly measurements on a chain of Fr isotopes, the nuclear anapole moment through parity non-conserving transitions in the ground state hyperfine manifold. These measurements should shed light on the nucleon-nucleon weak interaction. This work is done by the FrPNC collaboration: S. Aubin College of William and Mary, J. A. Behr TRIUMF, R. Collister U. Manitoba, E. Gomez UASLP, G. Gwinner U. Manitoba, M. R. Pearson TRIUMF, L. A. Orozco UMD, M. Tandecki TRIUMF, J. Zhang UMD Supported by NSF and DOE from the USA; TRIUMF, NRC and NSERC from Canada; and CONACYT from Mexico
Energy transfer in the nonequilibrium spin-boson model: From weak to strong coupling.
Liu, Junjie; Xu, Hui; Li, Baowen; Wu, Changqin
2017-07-01
To explore energy transfer in the nonequilibrium spin-boson model (NESB) from weak to strong system-bath coupling regimes, we propose a polaron-transformed nonequilibrium Green's function (NEGF) method. By combining the polaron transformation, we are able to treat the system-bath coupling nonperturbatively, thus in direct contrast to conventionally used NEGF methods which take the system-bath coupling as a perturbation. The Majorana-fermion representation is further utilized to evaluate terms in the Dyson series. This method not only allows us to deal with weak as well as strong coupling regimes but also enables an investigation on the role of bias in the energy transfer. As an application of the method, we study an Ohmic NESB. For an unbiased spin system, our energy current result smoothly bridges predictions of two benchmarks, namely, the quantum master equation and the nonequilibrium noninteracting blip approximation, a considerable improvement over existing theories. In case of a biased spin system, we found a bias-induced nonmonotonic behavior of the energy conductance in the intermediate coupling regime, resulting from the resonant character of the energy transfer. This finding may offer a nontrivial quantum control knob over energy transfer at the nanoscale.
Constraints on quartic vector-boson interactions from Z physics
Brunstein, A; González-Garciá, M Concepción
1996-01-01
We obtain the constraints on possible anomalous quartic vector-boson vertices arising from the precision measurements at the Z pole. In the framework of SU(2)_L \\otimes U(1)_Y chiral Lagrangians, we examine all effective operators of order D=4 that lead to four-gauge-boson interactions but do not induce anomalous trilinear vertices. We constrain the anomalous quartic interactions by evaluating their one-loop corrections to the Z pole physics. Our analysis is performed in a generic R_\\xi gauge and it shows that only the operators that break the SU(2)_C custodial symmetry get limits close to the theoretical expectations. Our results also indicate that these anomalous couplings are already out of reach of the Next Linear e^+ e^- Collider, while the Large Hadron Collider could be able to further extend the bounds on some of these couplings.
Scanning tunneling spectroscopy on electron-boson interactions in superconductors
Schackert, Michael Peter
2015-01-01
This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.
Centrifugal stretching of 170Hf in the interacting boson model
Directory of Open Access Journals (Sweden)
Werner V.
2014-03-01
Full Text Available We present the results of a recent experiment to deduce lifetimes of members of the ground state rotational band of 170Hf, which show the effect of centrifugal stretching in this deformed isotope. Results are compared to the geometrical confined beta-soft(CBS rotor model, as well as to the interacting boson model (IBM. Two methods to correct for effects due to the finite valence space within the IBM are proposed.
Measurements of Gauge Boson Self-Interactions at CMS
CERN. Geneva
2013-01-01
A critical prediction of the Standard Model electroweak theory is the existence of triple and quartic gauge-boson self-interactions. The 2010-12 LHC run has resulted in a wealth of data in this sector, which can now be probed in many different production modes, both ordinary and potentially anomalous, with a sensitivity that is world-leading. In this seminar, recent CMS results are presented for: measurements of diboson production, with associated constraints on triple gauge boson couplings; the first LHC measurement of purely electroweak production of a Z with two forward jets; and two-photon production of W pairs, with the first LHC constraints on quartic gauge couplings.
Triple and quartic gauge boson couplings : Electroweak Bosons interactions at the LHC
Kupco, Alexander; The ATLAS collaboration
2017-01-01
The status of multi-bosons physics at LHC is reviewed. Recent results on cross-sections and anomalous couplings measurements are discussed for diboson, tribosons and vector boson scattering processes.
Bukov, Marin; Gopalakrishnan, Sarang; Knap, Michael; Demler, Eugene
2015-11-13
We explore prethermal Floquet steady states and instabilities of the weakly interacting two-dimensional Bose-Hubbard model subject to periodic driving. We develop a description of the nonequilibrium dynamics, at arbitrary drive strength and frequency, using a weak-coupling conserving approximation. We establish the regimes in which conventional (zero-momentum) and unconventional [(π,π)-momentum] condensates are stable on intermediate time scales. We find that condensate stability is enhanced by increasing the drive strength, because this decreases the bandwidth of quasiparticle excitations and thus impedes resonant absorption and heating. Our results are directly relevant to a number of current experiments with ultracold bosons.
Randomly interacting bosons on two spin levels
Mulhall, D.
2017-12-01
The problem of random interactions leading to regular spectra in shell model type simulations is described. The key results are reviewed alnog with a selection of the explanations. A model system of N particles on 2 spin levels having random 2-body collisions that conserve angular momentum is examined. Preliminary results are described, including the ground state spin distributions peaked at extreme values of angular momentum, signatures of rotational bands, and smooth parabolic yrast lines. A simple random matrix theory analysis shows signatures of quantum chaos in the level spacing distribution and the Δ3 statistic.
Clock spectroscopy of interacting bosons in deep optical lattices
Bouganne, R.; Bosch Aguilera, M.; Dareau, A.; Soave, E.; Beugnon, J.; Gerbier, F.
2017-11-01
We report on high-resolution optical spectroscopy of interacting bosonic 174Yb atoms in deep optical lattices with negligible tunneling. We prepare Mott insulator phases with singly- and doubly-occupied isolated sites and probe the atoms using an ultra-narrow ‘clock’ transition. Atoms in singly-occupied sites undergo long-lived Rabi oscillations. Atoms in doubly-occupied sites are strongly affected by interatomic interactions, and we measure their inelastic decay rates and energy shifts. We deduce from these measurements all relevant collisional parameters involving both clock states, in particular the intra- and inter-state scattering lengths.
Four weak gauge boson production at photon linear collider and heavy Higgs signal
Jikia, G.
1995-02-01
We study the signals and backgrounds for a heavy Higgs boson in the processes γγ → WWWW, γ → WWZZ at the proton linear collider. The results are based on the complete tree-level SM calculation for these reactions. We show that the invariant mass spectrum of central WW, ZZ pairs is sensitive to the signal from Higgs boson with a mass up to 1 TeV linear collider for integrated luminosity of 300 fb -1. At 1.5 TeV PLC Higgs boson with a mass up to 700 GeV can be studied. The nonresonant longitudinal gauge boson scattering ( mH = ∞) can be detected in photon-photon collisions at e+e- center-of-mass energy of 3 TeV.
The First Gauge Theory of Weak Interactions and the Prediction of Weak Neutral Currents
Bludman, S. A.
1992-01-01
The three theoretical and historical components of the Standard Model are the exact chiral gauge theory of weak interactions, electroweak unification, and the Higgs mechanism for spontaneous symmetry breaking. I put into historical perspective my 1958 invention of the first gauge theory of weak interactions, predicting weak neutral currents, and show how the fundamental differences between global and gauge symmetries and between partial flavour and exact gauge symmetries, emerged in the stron...
Information flow between weakly interacting lattices of coupled maps
Energy Technology Data Exchange (ETDEWEB)
Dobyns, York [PEAR, Princeton University, Princeton, NJ 08544-5263 (United States); Atmanspacher, Harald [Institut fuer Grenzgebiete der Psychologie und Psychohygiene, Wilhelmstr. 3a, 79098 Freiburg (Germany)]. E-mail: haa@igpp.de
2006-05-15
Weakly interacting lattices of coupled maps can be modeled as ordinary coupled map lattices separated from each other by boundary regions with small coupling parameters. We demonstrate that such weakly interacting lattices can nevertheless have unexpected and striking effects on each other. Under specific conditions, particular stability properties of the lattices are significantly influenced by their weak mutual interaction. This observation is tantamount to an efficacious information flow across the boundary.
Kramers systems with weak spin-dependent interactions
Energy Technology Data Exchange (ETDEWEB)
Radwanski, R.J. [Inst. of Physics and Informatics, Pedagogical University, 30-084, Krakow (Poland)]|[Center for Solid State Physics, Sw. Filip 5, 31-150, Krakow (Poland)
1995-02-09
Magnetic properties of a paramagnetic Kramers f{sup 3} subsystem under charge interactions of the hexagonal symmetry have been examined in the combination with weak spin-dependent (S-D) interactions for the case of the weakly-magnetic charge-formed ground state. The Kramers systems with weak S-D interactions exhibit particular phenomena like large specific heat at low temperatures. ((orig.)).
Light weakly interacting particles. Constraints and connection to dark matter
Energy Technology Data Exchange (ETDEWEB)
Andreas, Sarah
2013-07-15
The so far unknown particle nature of dark matter is a main motivation for extending the Standard Model of particle physics. A recently promoted approach to solving this puzzle is the concept of hidden sectors. Since the interactions of such sectors with the visible sector are very weak, so are the current experimental bounds. Hidden sectors might even contain sub-GeV scale particles that have so far escaped detection. In this thesis, we study the phenomenology of Weakly Interacting Slim Particles (WISPs) as well as their connection to dark matter in different Standard Model extensions. In the Next-to-Minimal Supersymmetric Standard Model (NMSSM), a light CPodd Higgs, arising from spontaneous breaking of approximate symmetries, represents an example of a WISP. Light gauge bosons of an extra U(1) symmetry in a hidden sector are other well motivated candidates for WISPs and called hidden photons. Such light hidden photons appear naturally in supersymmetry or string theory and might resolve the observed deviation in the muon anomalous magnetic moment from predictions. Moreover, scenarios in which hidden sector dark matter interacts via a light hidden photon with the visible sector exhibit appealing features in view of recent astrophysical anomalies. We study how the coupling of the CP-odd Higgs A{sup 0} to fermions can be constrained by current measurements for the case where the A{sup 0} is lighter than two muons. Analysing measurements of different rare and radiative meson decays, the muon anomalous magnetic moment as well as results from beam dump and reactor experiments, we severely constrain the CP-odd Higgs to be heavier than 210 MeV or to couple to fermions four orders of magnitude weaker than the Standard Model Higgs. These results apply more generally to the coupling of an axion-like particle to matter. Hidden photons can be constrained by experiments since they couple to charged Standard Model particles via kinetic mixing with the ordinary photon. We derive
Phase transitions in the sdg interacting boson model
Energy Technology Data Exchange (ETDEWEB)
Van Isacker, P. [Grand Accelerateur National d' Ions Lourds, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)], E-mail: isacker@ganil.fr; Bouldjedri, A.; Zerguine, S. [Department of Physics, PRIMALAB Laboratory, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria)
2010-05-15
A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole ({beta}{sub 2}), axial hexadecapole ({beta}{sub 4}) and triaxial ({gamma}{sub 2}). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)xU(9), the (prolate and oblate) deformed SU{sub {+-}}(3) and the {gamma}{sub 2}-soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.
Multi-Boson Interactions at the Run 1 LHC
Energy Technology Data Exchange (ETDEWEB)
Green, Daniel R. [Fermilab; Meade, Patrick [YITP, Stony Brook; Pleier, Marc-Andre [Brookhaven
2016-10-24
This review article covers results on the production of all possible electroweak boson pairs and 2-to-1 vector boson fusion (VBF) at the CERN Large Hadron Collider (LHC) in proton-proton collisions at a center-of-mass energy of 7 TeV and 8 TeV. The data was taken between 2010 and 2012. Limits on anomalous triple gauge couplings (aTGCs) then follow. In addition, data on electroweak triple gauge boson production and 2-to-2 vector boson scattering (VBS) yield limits on anomalous quartic gauge boson couplings (aQGCs). The LHC hosts two general purpose experiments, ATLAS and CMS, which both have reported limits on aTGCs and aQGCs which are herein summarized. The interpretation of these limits in terms of an effective field theory (EFT) is reviewed, and recommendations are made for testing other types of new physics using multi-gauge boson production.
Search for bosonic super-WIMP interactions with the XENON100 experiment
Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Capelli, C.; Cardoso, J. M. R.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Howlett, J.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Ramírez García, D.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.; Zhu, T.; Xenon Collaboration
2017-12-01
We present results of searches for vector and pseudoscalar bosonic super-weakly interacting massive particles (WIMPs), which are dark matter candidates with masses at the keV-scale, with the XENON100 experiment. XENON100 is a dual-phase xenon time projection chamber operated at the Laboratori Nazionali del Gran Sasso. A profile likelihood analysis of data with an exposure of 224.6 live days ×34 kg showed no evidence for a signal above the expected background. We thus obtain new and stringent upper limits in the (8 - 125 ) keV /c2 mass range, excluding couplings to electrons with coupling constants of ga e>3 ×10-13 for pseudo-scalar and α'/α >2 ×10-28 for vector super-WIMPs, respectively. These limits are derived under the assumption that super-WIMPs constitute all of the dark matter in our galaxy.
Neutron-proton pairing and double-β decay in the interacting boson model
Van Isacker, P.; Engel, J.; Nomura, K.
2017-12-01
Background: The interacting boson model has been used extensively to calculate the matrix elements governing neutrinoless double-β decay. Studies within other models—the shell model, the quasiparticle random-phase approximation, and nuclear energy-density functional theory—indicate that a good description of neutron-proton pairing is essential for accurate calculations of those matrix elements, even though the isotopes used in experiment have significantly more neutrons than protons. The usual interacting boson model is based only on like-particle pairs, however, and the extent to which it captures neutron-proton pairing is not clear. Purpose: To determine whether neutron-proton pairing should be explicitly included as neutron-proton bosons in interacting-boson-model calculations of neutrinoless double-β decay matrix elements. In this paper we restrict ourselves to nuclei in the lower half of the p f shell, where exact shell model calculations are possible. Method: An isospin-invariant version of the nucleon-pair shell model is applied to carry out shell-model calculations in a large space and in a collective subspace, and to define effective operators in the latter. A democratic mapping is then used to define corresponding boson operators for the interacting boson model, with and without an isoscalar neutron-proton pair boson. Results: Interacting-boson-model calculations with and without the isoscalar boson are carried out for nuclei near the beginning of the p f shell, with a realistic shell-model Hamiltonian and neutrinoless double-β -decay operator as the starting point. Energy spectra and double-β matrix elements are compared to those obtained in the underlying shell model. Conclusions: The isoscalar boson is not important for energy spectra but improves the results for the double-β matrix elements. To be useful at the level of precision we need, the mapping procedure must be further developed to better determine the dependence of the boson
Superparamagnetic relaxation of weakly interacting particles
DEFF Research Database (Denmark)
Mørup, Steen; Tronc, Elisabeth
1994-01-01
The influence of particle interactions on the superparamagnetic relaxation time has been studied by Mossbauer spectroscopy in samples of maghemite (gamma-Fe2O3) particles with different particle sizes and particle separations. It is found that the relaxation time decreases with decreasing particl...
Effective three-body interactions for bosons in a double-well confinement
Dobrzyniecki, Jacek; Li, Xikun; Nielsen, Anne E. B.; Sowiński, Tomasz
2018-01-01
When describing the low-energy physics of bosons in a double-well potential with a high barrier between the wells and sufficiently weak atom-atom interactions, one can, to a good approximation, ignore the high-energy states and thereby obtain an effective two-mode model. Here we show that the regime in which the two-mode model is valid can be extended by adding an on-site three-body interaction term and a three-body interaction-induced tunneling term to the two-mode Hamiltonian. These terms effectively account for virtual transitions to the higher-energy states. We determine appropriate strengths of the three-body terms by an optimization of the minimal value of the wave-function overlap within a certain time window. Considering different initial states with three or four atoms, we find that the resulting model accurately captures the dynamics of the system for parameters where the two-mode model without the three-body terms is poor. We also investigate the dependence of the strengths of the three-body terms on the barrier height and the atom-atom interaction strength. The optimal three-body interaction strengths depend on the initial state of the system.
Anharmonic double-{gamma} vibrations in nuclei and their description in the interacting boson model
Energy Technology Data Exchange (ETDEWEB)
Garcia-Ramos, J.E.; Alonso, C.E.; Arias, J.M. [Sevilla Univ. (Spain). Departamento de Fisica Atomica, Molecular y Nuclear; Van Isacker, P. [Grand Accelerateur National d`Ions Lourds, 14 - Caen (France)
1998-07-01
Double-{gamma} vibrations in deformed nuclei are studied in the context of the interacting boson model with special reference to their anharmonic character. It is shown that large anharmonicities can be obtained with interactions that are (at least) of three-body nature between the bosons. As an example the {gamma} vibrations of the nucleus {sub 68}{sup 166}Er{sub 98} are studied in detail. (author) 28 refs.
Schnoor, Ulrike; Lammers, Sabine
The scattering of electroweak gauge bosons is closely connected to the electroweak gauge symmetry and its spontaneous breaking through the Brout-Englert-Higgs mechanism. Since it contains triple and quartic gauge boson vertices, the measurement of this scattering process allows to probe the self-interactions of weak bosons. The contribution of the Higgs boson to the weak boson scattering amplitude ensures unitarity of the scattering matrix. Therefore, the scattering of massive electroweak gauge bosons is sensitive to deviations from the Standard Model prescription of the electroweak interaction and of the properties of the Higgs boson. At the Large Hadron Collider (LHC), the scattering of massive electroweak gauge bosons is accessible through the measurement of purely electroweak production of two jets and two gauge bosons. No such process has been observed before. Being the channel with the least amount of background from QCD-mediated production of the same final state, the most promising channel for the fi...
Directory of Open Access Journals (Sweden)
Christoph P. Hofmann
2016-03-01
Full Text Available The low-temperature properties of systems characterized by a spontaneously broken internal rotation symmetry, O(N→O(N−1, are governed by Goldstone bosons and can be derived systematically within effective Lagrangian field theory. In the present study we consider systems living in two spatial dimensions, and evaluate their partition function at low temperatures and weak external fields up to three-loop order. Although our results are valid for any such system, here we use magnetic terminology, i.e., we refer to quantum spin systems. We discuss the sign of the (pseudo-Goldstone boson interaction in the pressure, staggered magnetization, and susceptibility as a function of an external staggered field for general N. As it turns out, the d=2+1 quantum XY model (N=2 and the d=2+1 Heisenberg antiferromagnet (N=3, are rather special, as they represent the only cases where the spin-wave interaction in the pressure is repulsive in the whole parameter regime where the effective expansion applies. Remarkably, the d=2+1 XY model is the only system where the interaction contribution in the staggered magnetization (susceptibility tends to positive (negative values at low temperatures and weak external field.
The role of weak intermolecular CH… F interactions in ...
Indian Academy of Sciences (India)
Analysis of Cambridge Structural Database using these newly defined parameters reveals high propensity of C-H…F interactions in organic crystals. The present structural study suggests much larger role of fluorine driven intermolecular interactions that are even though weak, but possess significant ability to direct and alter ...
Microscopic interacting boson model calculations for even–even ...
Indian Academy of Sciences (India)
ing boson approximation (IBA) is fairly reliable for calculating spectra in the entire set of .... operators. The parameters ε, κ, χρ and CLρ are the free parameters that have been determined so as to reproduce as closely as possible the excitation energy ... parameters, mostly ε (ED) and κ (RKAP), have to be normalized.
Non-perturbative aspects in a weakly interacting Higgs sector
Maas, Axel
2012-01-01
Just like the weakly interacting QED can support non-perturbative phenomena, like atoms, so can the weak and Higgs interactions. Especially, there are strong field-theoretical arguments that only bound states can be the (quasi-)asymptotic physical degrees of freedom of this sector. After a brief review of these arguments, the 2-point, 3-point and 4-point correlation functions of the Higgs-W system are determined using lattice gauge theory. The results support a conjectured duality between elementary states and bound states for weak Higgs self-interactions. This leads to relations between the bound states and the experimentally observed particles. Interestingly, these may yield pseudo-scalar admixtures at the Higgs energy, and possibly a faint standard-model signal in the channel where a Kaluza-Klein graviton would be expected.
Weak Interaction Studies by Precision Experiments in Nuclear Beta Decay
Severijns, Nathal
The framework and formalism related to the study of symmetries and the structure of the weak interaction in nuclear -decay are presented and discussed. This is illustrated with a number of selected experiments in nuclear -decay addressing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix, the search for right-handed (V+A), scalar and tensor components in the weak interaction and the search for non-Standard Model sources of time reversal violation. Finally, an outlook is given on important progress in this field that can be expected for the near future.
Weak Molecular Interactions in Clathrin-Mediated Endocytosis
Smith, Sarah M.; Baker, Michael; Halebian, Mary; Smith, Corinne J.
2017-01-01
Clathrin-mediated endocytosis is a process by which specific molecules are internalized from the cell periphery for delivery to early endosomes. The key stages in this step-wise process, from the starting point of cargo recognition, to the later stage of assembly of the clathrin coat, are dependent on weak interactions between a large network of proteins. This review discusses the structural and functional data that have improved our knowledge and understanding of the main weak molecular interactions implicated in clathrin-mediated endocytosis, with a particular focus on the two key proteins: AP2 and clathrin.
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Leggat, Duncan; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Awad, Adel; Elgammal, Sherif; Mohamed, Amr; Salama, Elsayed; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Peltola, Timo; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Ruiz Alvarez, José David; Sabes, David; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Khvedelidze, Arsen; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schulte, Jan-Frederik; Verlage, Tobias; Weber, Hendrik; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Borras, Kerstin; Burgmeier, Armin; Campbell, Alan; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Seitz, Claudia; Spannagel, Simon; Stefaniuk, Nazar; Trippkewitz, Karim Damun; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Sander, Christian; Scharf, Christian; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Fink, Simon; Frensch, Felix; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Filipovic, Nicolas; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Dhingra, Nitish; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Jain, Sandhya; Kole, Gouranga; Kumar, Sanjeev; Mahakud, Bibhuprasad; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sarkar, Tanmay; Sur, Nairit; Sutar, Bajrang; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Kapoor, Anshul; Kothekar, Kunal; Rane, Aditee; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Maron, Gaetano; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Ventura, Sandro; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Schizzi, Andrea; Zanetti, Anna; Nam, Soon-Kwon; Butanov, Khakimjan; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Pak, Sang Il; Son, Dong-Chul; Yusupov, Hammid; Brochero Cifuentes, Javier Andres; Kim, Hyunsoo; Kim, Tae Jeong; Song, Sanghyeon; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Hong, Byung-Sik; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Hyunchul; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Traczyk, Piotr; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Chistov, Ruslan; Danilov, Mikhail; Markin, Oleg; Rusinov, Vladimir; Tarkovskii, Evgenii; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; Curras, Esteban; De Castro Manzano, Pablo; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Benhabib, Lamia; Berruti, Gaia Maria; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Knünz, Valentin; Kortelainen, Matti J; Kousouris, Konstantinos; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Piparo, Danilo; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lecomte, Pierre; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Yang, Yong; Chen, Kuan-Hsin; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Onengut, Gulsen; Ozdemir, Kadri; Polatoz, Ayse; Sunar Cerci, Deniz; Topakli, Huseyin; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Vardarlı, Fuat Ilkehan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Alimena, Juliette; Benelli, Gabriele; Berry, Edmund; Cutts, David; Ferapontov, Alexey; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Jesus, Orduna; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Paneva, Mirena Ivova; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Derdzinski, Mark; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Incandela, Joe; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; Suarez, Indara; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Nauenberg, Uriel; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Sun, Werner; Tan, Shao Min; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Wittich, Peter; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Lewis, Jonathan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Rossin, Roberto; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bein, Samuel; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Kalakhety, Himali; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Osherson, Marc; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Baringer, Philip; Bean, Alice; Bruner, Christopher; Castle, James; Kenny III, Raymond Patrick; Kropivnitskaya, Anna; Majumder, Devdatta; Malek, Magdalena; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Benvenuti, Alberto; Dahmes, Bryan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bartek, Rachel; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Knowlton, Dan; Kravchenko, Ilya; Meier, Frank; Monroy, Jose; Ratnikov, Fedor; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Bhattacharya, Saptaparna; Hahn, Kristan Allan; Kubik, Andrew; Low, Jia Fu; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Rupprecht, Nathaniel; Smith, Geoffrey; Taroni, Silvia; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Jung, Kurt; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Chou, John Paul; Contreras-Campana, Emmanuel; Gershtein, Yuri; Halkiadakis, Eva; Heindl, Maximilian; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Nash, Kevin; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Krutelyov, Vyacheslav; Mueller, Ryan; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Sarangi, Tapas; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Woods, Nathaniel
2017-02-20
The transverse momentum spectra of weak vector bosons are measured in the CMS experiment at the LHC. The measurement uses a sample of proton-proton collisions at $ \\sqrt{s} = $ 8 TeV, collected during a special low-luminosity running that corresponds to an integrated luminosity of 18.4 $\\pm$ 0.5 pb$^{-1}$. The production of W bosons is studied in both electron and muon decay modes, while the production of Z bosons is studied using only the dimuon decay channel. The ratios of $\\mathrm{ W }^{-}$ to $\\mathrm{ W }^{+}$ and Z to W differential cross sections are also measured. The measured differential cross sections and ratios are compared with theoretical predictions up to next-to-next leading order in QCD.
From Instantons To Sphalerons Thermal Baryon Non-conservation In The Weak Interactions
Frost, K L
1999-01-01
The Weinberg-Salam theory of the weak interactions predicts that net baryon number can be altered by non-perturbative topological transitions of SU(2) gauge fields. These topological transitions are intimately related with the existence and properties of topologically non-trivial solutions of the classical field equations of four- dimensional SU(2)-Higgs theory. As is well known, in this theory there is a static solution, the sphaleron, which represents the top of an energy barrier separating bosonic vacua with different baryon number. There are also instanton configurations in Euclidean space, which approach minimal action as the instanton size goes to zero, and represent tunneling from one vacuum to another. We solved numerically for periodic, spherically symmetric, classical solutions of SU(2)- Higgs theory in four-dimensional Euclidean space. In the limit of short periods, these solutions approach small instanton - anti- instanton superpositions while, for longer periods, the solutions merge with the stat...
Equilibrium thermodynamic properties of interacting two-component bosons in one dimension
Klauser, A.; Caux, J.S.
2011-01-01
The interplay of quantum statistics, interactions, and temperature is studied within the framework of the bosonic two-component theory with repulsive delta-function interaction in one dimension. We numerically solve the thermodynamic Bethe ansatz and obtain the equation of state as a function of
Weak interactions of quarks and leptons: experimental status
Energy Technology Data Exchange (ETDEWEB)
Wojcicki, S.
1984-09-01
The present experimental status of weak interactions is discussed with emphasis on the problems and questions and on the possible lines of future investigations. Major topics include; (1) the quark mixing matrix, (2) CP violation, (3) rare decays, (4) the lepton sector, and (5) right handed currents. 118 references. (WHK)
Large potential steps at weakly interacting metal-insulator interfaces
Bokdam, Menno; Brocks, G.; Kelly, Paul J.
2014-01-01
Potential steps exceeding 1 eV are regularly formed at metal|insulator interfaces, even when the interaction between the materials at the interface is weak physisorption. From first-principles calculations on metal|h−BN interfaces we show that these potential steps are only indirectly sensitive to
Sennett, Noah; Hinderer, Tanja; Steinhoff, Jan; Buonanno, Alessandra; Ossokine, Serguei
2017-07-01
Binary systems containing boson stars—self-gravitating configurations of a complex scalar field—can potentially mimic black holes or neutron stars as gravitational-wave sources. We investigate the extent to which tidal effects in the gravitational-wave signal can be used to discriminate between these standard sources and boson stars. We consider spherically symmetric boson stars within two classes of scalar self-interactions: an effective-field-theoretically motivated quartic potential and a solitonic potential constructed to produce very compact stars. We compute the tidal deformability parameter characterizing the dominant tidal imprint in the gravitational-wave signals for a large span of the parameter space of each boson star model, covering the entire space in the quartic case, and an extensive portion of interest in the solitonic case. We find that the tidal deformability for boson stars with a quartic self-interaction is bounded below by Λmin≈280 and for those with a solitonic interaction by Λmin≈1.3 . We summarize our results as ready-to-use fits for practical applications. Employing a Fisher matrix analysis, we estimate the precision with which Advanced LIGO and third-generation detectors can measure these tidal parameters using the inspiral portion of the signal. We discuss a novel strategy to improve the distinguishability between black holes/neutrons stars and boson stars by combining tidal deformability measurements of each compact object in a binary system, thereby eliminating the scaling ambiguities in each boson star model. Our analysis shows that current-generation detectors can potentially distinguish boson stars with quartic potentials from black holes, as well as from neutron-star binaries if they have either a large total mass or a large (asymmetric) mass ratio. Discriminating solitonic boson stars from black holes using only tidal effects during the inspiral will be difficult with Advanced LIGO, but third-generation detectors should
Search for the Scalar Component of Weak Interactions
Zakoucky, Dalibor
2014-01-01
Weak interactions ar e described by the Standard Model which postulates the basic assumption about the pure " V (ector) - A (xial vector)" character of the interaction. Nevertheless, even after half a century of development of the model and experimental testing of its fundamental i ngredients, experimental data still allow the existence of other types of weak interactions - e.g. scalar interactions are ruled out only on the 7% level. Experimental project WITCH ( W eak I nteraction T rap for CH arged particles) was set up at the isoto pe separator ISOLDE at CERN trying to probe the properties of the weak interaction in order to look for their forbidden (scalar, tensor) components or at least significantly improve their current experimental limits. Experimental setup consisting of a comb ination of 2 Penning traps and retardation spectrometer allows to catch the radioactive nuclei from ISOLDE separator, traps and cools them and lets them decay in rest and then probes the energy spectrum of recoiling nuclei whic...
Fundamental fermion interactions via vector bosons of unified SU(2 x SU(4 gauge fields
Directory of Open Access Journals (Sweden)
Eckart eMarsch
2016-02-01
Full Text Available Employing the fermion unification model based on the intrinsic SU(8 symmetry of a generalized Dirac equation, we discuss the fundamental interactions under the SU(8=SU(2$otimes$SU(4 symmetry group. The physics involved can describe all fermions, the leptons (electron and neutrino, and the coloured up and down quarks of the first generation in the standard model (SM by a complex SU(8 octet of Dirac spinor fields. The fermion interactions are found to be mediated by the unified SU(4 and SU(2 vector gauge boson fields, which include the photon, the gluons, and the bosons $Z$ and $W$ as well known from the SM, but also comprise new ones, namely three coloured $X$ bosons carrying a fractional hypercharge of $pm4/3$ and transmuting leptons into quarks and vice versa. The full covariant derivative of the model is derived and discussed. The Higgs mechanism gives mass to the $Z$ and $W$ bosons, but also permits one to derive the mass of the coloured $X$ boson, for which depending on the choice of the values of the coupling constant, the estimates are 35~GeV or 156~GeV, values that are well within reach of the LHC. The scalar Higgs field can also lend masses to the fermions and fix their physical values for given appropriate coupling constants to that field.
Theoretical & Experimental Research in Weak, Electromagnetic & Strong Interactions
Energy Technology Data Exchange (ETDEWEB)
Nandi, Satyanarayan [Oklahoma State Univ., Stillwater, OK (United States); Babu, Kaladi [Oklahoma State Univ., Stillwater, OK (United States); Rizatdinova, Flera [Oklahoma State Univ., Stillwater, OK (United States); Khanov, Alexander [Oklahoma State Univ., Stillwater, OK (United States); Haley, Joseph [Oklahoma State Univ., Stillwater, OK (United States)
2015-09-17
The conducted research spans a wide range of topics in the theoretical, experimental and phenomenological aspects of elementary particle interactions. Theory projects involve topics in both the energy frontier and the intensity frontier. The experimental research involves energy frontier with the ATLAS Collaboration at the Large Hadron Collider (LHC). In theoretical research, novel ideas going beyond the Standard Model with strong theoretical motivations were proposed, and their experimental tests at the LHC and forthcoming neutrino facilities were outlined. These efforts fall into the following broad categories: (i) TeV scale new physics models for LHC Run 2, including left-right symmetry and trinification symmetry, (ii) unification of elementary particles and forces, including the unification of gauge and Yukawa interactions, (iii) supersummetry and mechanisms of supersymmetry breaking, (iv) superworld without supersymmetry, (v) general models of extra dimensions, (vi) comparing signals of extra dimensions with those of supersymmetry, (vii) models with mirror quarks and mirror leptons at the TeV scale, (viii) models with singlet quarks and singlet Higgs and their implications for Higgs physics at the LHC, (ix) new models for the dark matter of the universe, (x) lepton flavor violation in Higgs decays, (xi) leptogenesis in radiative models of neutrino masses, (xii) light mediator models of non-standard neutrino interactions, (xiii) anomalous muon decay and short baseline neutrino anomalies, (xiv) baryogenesis linked to nucleon decay, and (xv) a new model for recently observed diboson resonance at the LHC and its other phenomenological implications. The experimental High Energy Physics group has been, and continues to be, a successful and productive contributor to the ATLAS experiment at the LHC. Members of the group performed search for gluinos decaying to stop and top quarks, new heavy gauge bosons decaying to top and bottom quarks, and vector-like quarks
Quantum Monte Carlo simulations of the Fermi-polaron problem and bosons with Gaussian interactions
Energy Technology Data Exchange (ETDEWEB)
Kroiss, Peter Michael
2017-02-01
This thesis deals with the application of current Quantum Monte Carlo algorithms to many-body systems of fermionic and bosonic species. The first part applies the diagrammatic Monte Carlo method to the Fermi polaron problem, a system of an impurity interacting resonantly with a homogeneous Fermi bath. It is numerically shown that the three particle-hole diagrams do not contribute significantly to the final answer in a quasi-two-dimensional setup, thus demonstrating a nearly perfect destructive interference of contributions in subspaces with higher-order particle-hole lines. Consequently, for strong-enough confinement in the third direction, the transition between the polaron and the molecule ground state is found to be in good agreement with the pure two-dimensional case and agrees very well with the one found by the wave-function approach in the two-particle-hole subspace. In three-dimensional Fermi-polaron systems with mass imbalance of impurity and bath atoms, polaron energy and quasiparticle residue can be accurately determined over a broad range of impurity masses. Furthermore, the spectral function of an imbalanced polaron demonstrates the stability of the quasiparticle and also allows us to locate the repulsive polaron as an excited state. The quantitative exactness of two-particle-hole wave functions is investigated, resulting in a relative lowering of polaronic energies in the mass-imbalance phase diagram. Tan's contact coefficient for the mass-balanced polaron system is found to be in good agreement with variational methods. Mass-imbalanced systems can be studied experimentally by ultracold atom mixtures such as {sup 6}Li-{sup 40}K. In the second part of the thesis, the ground state of a two-dimensional system of Bose particles of spin zero, interacting via a repulsive Gaussian-Core potential, is investigated by means of path integral Monte Carlo simulations. The quantum phase diagram is qualitatively identical to that of two-dimensional Yukawa
Quantum Butterfly Effect in Weakly Interacting Diffusive Metals
Patel, Aavishkar A.; Chowdhury, Debanjan; Sachdev, Subir; Swingle, Brian
2017-07-01
We study scrambling, an avatar of chaos, in a weakly interacting metal in the presence of random potential disorder. It is well known that charge and heat spread via diffusion in such an interacting disordered metal. In contrast, we show within perturbation theory that chaos spreads in a ballistic fashion. The squared anticommutator of the electron-field operators inherits a light-cone-like growth, arising from an interplay of a growth (Lyapunov) exponent that scales as the inelastic electron scattering rate and a diffusive piece due to the presence of disorder. In two spatial dimensions, the Lyapunov exponent is universally related at weak coupling to the sheet resistivity. We are able to define an effective temperature-dependent butterfly velocity, a speed limit for the propagation of quantum information that is much slower than microscopic velocities such as the Fermi velocity and that is qualitatively similar to that of a quantum critical system with a dynamical critical exponent z >1 .
Weak turbulence theory for beam-plasma interaction
Yoon, Peter H.
2018-01-01
The kinetic theory of weak plasma turbulence, of which Ronald C. Davidson was an important early pioneer [R. C. Davidson, Methods in Nonlinear Plasma Theory, (Academic Press, New York, 1972)], is a venerable and valid theory that may be applicable to a large number of problems in both laboratory and space plasmas. This paper applies the weak turbulence theory to the problem of gentle beam-plasma interaction and Langmuir turbulence. It is shown that the beam-plasma interaction undergoes various stages of physical processes starting from linear instability, to quasilinear saturation, to mode coupling that takes place after the quasilinear stage, followed by a state of quasi-static "turbulent equilibrium." The long term quasi-equilibrium stage is eventually perturbed by binary collisional effects in order to bring the plasma to a thermodynamic equilibrium with increased entropy.
Engineering interlocking DNA rings with weak physical interactions
Wu, Zai-Sheng; Shen, Zhifa; Tram, Kha; Li, Yingfu
2014-06-01
Catenanes are intriguing molecular assemblies for engineering unique molecular devices. The resident rings of a catenane are expected to execute unhindered rotation around each other, and to do so, they must have weak physical interactions with each other. Due to sequence programmability, DNA has become a popular material for nanoscale object engineering. However, current DNA catenanes, particularly in the single-stranded (ss) form, are synthesized through the formation of a linking duplex, which makes them less ideal as mobile elements for molecular machines. Herein we adopt a random library approach to engineer ssDNA [2] catenanes (two interlocked DNA rings) without a linking duplex. Results from DNA hybridization, double-stranded catenane synthesis and rolling circle amplification experiments signify that representative catenanes have weak physical interactions and are capable of operating as independent units. Our findings lay the foundation for exploring free-functioning interlocked DNA rings for the design of elaborate nanoscale machines based on DNA.
Claudia Marcelloni
2008-01-01
Signature of the CERN GoldenBook at CERN by Peters Higgs British theoretical physicist - He worked on proposals to unify the weak and the electromagnetic forces into a single electroweak theory, The Boson of Higgs.
Mona Schweizer
2008-01-01
Visit of Peters Higgs at Point 2 ALICE Experiment - British theoretical physicist, He worked on proposals to unify the weak and the electromagnetic forces into a single electroweak theory, The Boson of Higgs.
Strongly interacting bosons in a one-dimensional optical lattice at incommensurate densities
Lazarides, A.|info:eu-repo/dai/nl/315556668; Tieleman, O.|info:eu-repo/dai/nl/341386456; de Morais Smith, C.|info:eu-repo/dai/nl/304836346
2011-01-01
We investigate quantum phase transitions occurring in a system of strongly interacting ultracold bosons in a one-dimensional optical lattice. After discussing the commensurate-incommensurate transition, we focus on the phases appearing at an incommensurate filling. We find a rich phase diagram, with
Liang, Zhijun; The ATLAS collaboration
2017-01-01
A search for the bb¯ decay of the Standard Model Higgs boson produced through vector boson fusion in association with a high transverse energy (ET) photon has been conducted with the ATLAS detector. The high-ET photon provides a distinct signature for both triggering and reducing the large QCD jet background present in the inclusive bb¯jj signature. The talk will focus on new trigger strategy implemented in 2016 data taking to target the specific final state as well as the implementation of the multivariate strategy for the signal extraction. This analysis has been combined with a complementary analysis in the more inclusive bb¯jj final state, which results in a significant improvement in the sensitivity. Results with pp collision data collected in 2015 and 2016 at a centre-of-mass energy of 13 TeV are presented.
Introduction to weak interaction theories with dynamical symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Lane, K.D.; Peskin, M.E.
1980-07-01
A straightforward introduction to theories of the weak interactions with dynamical symmetry breaking-theories of technicolor or hypercolor is presented. The intent is to inform experimentalists, but also to goad theorists. The motivation for considering theories of this type is described. The structure that such a theory must possess, including new gauge interactions at mass scales of 1-100 TeV is then outlined. Despite their reliance on phenomena at such enormous energies, these theories contain new phenomena observable at currently accessible energies. Three such effects which are especially likely to be observed are described.
The ATLAS collaboration
2016-01-01
A search has been conducted for the $b\\bar b$ decay of the Standard Model Higgs boson produced through vector boson fusion in association with a photon and two jets. The search in this $b\\bar b \\gamma jj$ signature benefits from a large reduction of QCD jet background relative to the inclusive $b\\bar b j j$ signature and from the presence of a high-tranverse-momentum photon for triggering. Results are reported from the analysis of 12.6 fb$^{-1}$ of LHC proton-proton collision data at $\\sqrt{s} = 13$ TeV collected with the ATLAS detector. The observed 95\\% confidence level upper limit on the production cross section times branching ratio for a Higgs mass of 125 GeV is $4.0$ times the Standard Model expectation, and the expected upper limit is $6.0^{+2.3}_{-1.7}$. The measured signal strength is $\\mu=-3.9^{+2.8}_{-2.7}$ times the Standard Model value. The analysis methods are also used to search for $Z+\\gamma$ vector boson fusion production in the same $b\\bar b \\gamma j j$ signature. The observed upper limit on...
Nuclear structure of 76Ge from proton-neutron interacting boson model calculations
Zhang, DaLi; Mu, ChengFu
2018-01-01
The properties of low-lying states in 76Ge, especially the characteristics of the mixed-symmetry states, have been investigated within the neutron-proton interacting boson model (IBM-2). By considering the relative energy of d proton boson to be different from that of neutron boson, the low-lying positive parity levels and M1, E2 transition strengths have been calculated. The IBM-2 calculated results are in good agreement with the experimental data. Particularly, the mixed-symmetry states have been reproduced quite well. The calculation and systematic analysis demonstrated that the collective character of 76Ge lies closest to the SU*πv(3), with some possible Oπv(6) dynamic symmetry in IBM-2 viewpoint.
Limits Of Quantum Information In Weak Interaction Processes Of Hyperons.
Hiesmayr, B C
2015-07-06
We analyze the achievable limits of the quantum information processing of the weak interaction revealed by hyperons with spin. We find that the weak decay process corresponds to an interferometric device with a fixed visibility and fixed phase difference for each hyperon. Nature chooses rather low visibilities expressing a preference to parity conserving or violating processes (except for the decay Σ(+)→ pπ(0)). The decay process can be considered as an open quantum channel that carries the information of the hyperon spin to the angular distribution of the momentum of the daughter particles. We find a simple geometrical information theoretic interpretation of this process: two quantization axes are chosen spontaneously with probabilities where α is proportional to the visibility times the real part of the phase shift. Differently stated, the weak interaction process corresponds to spin measurements with an imperfect Stern-Gerlach apparatus. Equipped with this information theoretic insight we show how entanglement can be measured in these systems and why Bell's nonlocality (in contradiction to common misconception in literature) cannot be revealed in hyperon decays. Last but not least we study under which circumstances contextuality can be revealed.
Weak nuclear interactions in neon-21 and neon-18
Energy Technology Data Exchange (ETDEWEB)
Von Lintig, Richard David [Univ. of Washington, Seattle, WA (United States)
1981-01-01
The results of two experiments involving weak meson exchange among nucleons are reviewed. Measurements are described of the circular polarization of 2.789 MeV gamma rays associated with the 2.789/2.796 MeV parity mixed doublet in ^{21}Ne. Also reported are measurements of the 0^{+} - 0^{-} beta decay from ^{18}Ne to the 1.081 MeV 0^{-} state of ^{18}F, itself part of a spin-zero doublet of considerable interest for parity mixing. The significance of the results to the theory of weak non-leptonic interactions is examined. An argument is repeated that more careful interpretation of the results in terms of the fundamental weak interaction is needed. The circular polarization of the 2.789 MeV radiation from ^{21}Ne is (20 +- 26) x 10^{-4}, a small result in view of the enhancement of this effect due to narrow doublet separation and the forbidden character of the transition. Simultaneous measurements of the circular polarization of 2.439 MeV radiation, which should not exhibit the parity violating effect even if the 1/2^{-} (2.789 MeV) state contains a significant parity impurity, indicate an absence of bias in the measurements. The relative probability of the 0^{+} - 0^{-} (1.081 MeV) decay from ^{18}Ne is (2.26 ± .37) x 10^{-4}. The two-body (or meson exchange) contribution to this transition is the isospin analog of parity mixing between the 1042-keV (J^{π};T = 0^{+};1) and 1081-keV (J^{π};T = 0^{-};0) states of ^{18}F. The theoretical relation which has been shown to exist between these two weak interaction phenomena is recounted, so that the importance of the beta-decay measurement to non-leptonic weak interaction physics can be appreciated.
Aldaihan, S.; Krause, D. E.; Long, J. C.; Snow, W. M.
2017-05-01
Various theories beyond the Standard Model predict new particles with masses in the sub-eV range with very weak couplings to ordinary matter which can possess spin-dependent couplings to electrons and nucleons. Present laboratory constraints on exotic spin-dependent interactions with pseudoscalar and axial couplings for exchange boson masses between meV and eV are very poor compared to constraints on spin-independent interactions in the same mass range arising from spin-0 and spin-1 boson exchange. It is therefore interesting to analyze in a general way how one can use the strong experimental bounds on spin-independent interactions to also constrain spin-dependent interactions by considering higher-order exchange processes. The exchange of a pair of bosons between two fermions with spin-dependent couplings will possess contributions which flip spins twice and thereby generate a polarization-independent interaction energy which can add coherently between two unpolarized objects. In this paper we derive the dominant long-range contributions to the interaction energy between two nonrelativistic spin-1 /2 Dirac fermions from double exchange of spin-0 and spin-1 bosons proportional to couplings of the form gP4, gS2gP2, and gV2gA2 . Our results for gP4 are in agreement with previous calculations that have appeared in the literature. We demonstrate the usefulness of this analysis to constrain spin-dependent couplings by presenting the results of a reanalysis of data from a short-range gravity experiment to derive an improved constraint on (gPN)2, the pseudoscalar coupling for nucleons, in the range between 40 and 200 μ m of about a factor of 5 compared to previous limits. We hope that the expressions derived in this work will be employed by other researchers in the future to evaluate whether or not they can constrain exotic spin-dependent interactions from spin-independent measurements. The spin-independent contribution from 2-boson exchange with axial vector couplings
Francium Trapping Facility at TRIUMF for weak interaction studies
Zhang, J.; Orozco, L. A.; Collister, R.; Gwinner, G.; Tandecki, M.; Behr, J. A.; Pearson, M. R.; Gomez, E.; Aubin, S.; Frpnc Collaboration
2014-05-01
We present the current status of the Francium Trapping Facility at TRIUMF. After successfully commissioning the capture chamber we are now in the process of finishing the science chamber where weak interaction measurements on Fr will be performed. We require transfer of the cold atoms from the capture chamber to the science chamber where they can be re-trapped for precision spectroscopy. The modular design of the science chamber allows for microwave studies for the anapole moment measurement and optical studies for the weak charge measurements using atomic parity non-conservation. We will present our current status and the plans for the commissioning run of the science chamber. Work supported by NSERC and NRC from Canada, NSF and DOE from USA, CONACYT from Mexico.
Production of four-weak-bosons and heavy Higgs signals in TeV photon-photon collisions
Jikia, G.
1995-02-01
We have studied the signals for a heavy Higgs boson in the processes γγ → WWWW, and γγ → WWZZ at a photon linear collider. The results are based on the first complete tree-level calculation for these reactions. We show that, with a forward "spectator" W tag, and a central "spectator" W veto to suppress backgrounds from transverse W, Z production, the invariant mass spectrum of central WW, ZZ pairs is sensitive to Higgs bosons with a mass up to 1 TeV in a 2-TeV linear collider.
Quantum Butterfly Effect in Weakly Interacting Diffusive Metals
Directory of Open Access Journals (Sweden)
Aavishkar A. Patel
2017-09-01
Full Text Available We study scrambling, an avatar of chaos, in a weakly interacting metal in the presence of random potential disorder. It is well known that charge and heat spread via diffusion in such an interacting disordered metal. In contrast, we show within perturbation theory that chaos spreads in a ballistic fashion. The squared anticommutator of the electron-field operators inherits a light-cone-like growth, arising from an interplay of a growth (Lyapunov exponent that scales as the inelastic electron scattering rate and a diffusive piece due to the presence of disorder. In two spatial dimensions, the Lyapunov exponent is universally related at weak coupling to the sheet resistivity. We are able to define an effective temperature-dependent butterfly velocity, a speed limit for the propagation of quantum information that is much slower than microscopic velocities such as the Fermi velocity and that is qualitatively similar to that of a quantum critical system with a dynamical critical exponent z>1.
Progress at the WITCH experiment towards weak interaction studies
Tandecki, Michaël
A measurement of the $\\beta$–ν angular correlation in nuclear $\\beta$- decay is a good probe to search for physics beyond the Standard Model, independent of assumptions like parity, charge and time reversal violation. The WITCH (Weak Interaction Trap for Charged Particles) experiment will measure this correlation with the aim of further constraining the possible existence of scalar currents in the weak interaction or find a positive indication. The setup is located at ISOLDE/CERN and consists of a double Penning trap system combined with a retardation spectrometer to probe the energy of the recoil ions from the $\\beta$- decay. The shape of the recoil ion energy spectrum allows to determine the $\\beta$–ν angular correlation coefficient, $a$. Past experiments have allowed to measure this parameter with a precision of 0.5–1 %. The aim of the WITCH experiment is to measure $a$ with a precision of about 0.5 %.\\\\ A first step towards this goal has already been taken in 2006 with the measurement of a recoil ...
Majorana Representation and Mean Field Approach for Interacting-Boson System
Liu, Hao-Di; Fang, Jie; Zheng, Tai-Yu
2017-10-01
The Majorana representation, which represents a quantum state by stars on the Bloch sphere, provides us an intuitive tool to study the quantum evolution in high dimensional Hilbert space. In this work, we investigate the second quantized model and the mean-field model for the interacting-boson system in the Majorana representation. It is shown that the motions of states in the two models are same in the linear case. Furthermore, the contribution of the nonlinear interaction to the star motions in the second quantized model can be expressed by a single star part which is equal to the nonlinear part of the equation for the star in mean-field model under large boson number limit and an extra part caused by the correlation between stars. These differences and relations can not only be reflected by the population differences between the two boson modes in the two models, but also lie with the differences between the continuous changes of the second quantized evolution with the nonlinear interacting strength and the critical behavior of the mean-field evolution which related to the self-trapping effect. The reason of the difference between the two models is also discussed by an effective Hamiltonian. Supported by the National Natural Science Foundation of China under Grant Nos. 11405008, 11175044, and the Plan for Scientific and Technological Development of Jilin Province under Grant No. 20160520173JH
Particle-hole excitations in the interacting boson model; 4, the U(5)-SU(3) coupling
De Coster, C; Heyde, Kris L G; Jolie, J; Lehmann, H; Wood, J L
1999-01-01
In the extended interacting boson model (EIBM) both particle- and hole-like bosons are incorporated to encompass multi-particle-multi-hole excitations at and near to closed shells.We apply the group theoretical concepts of the EIBM to the particular case of two coexisting systems in the same nucleus exhibiting a U(5) (for the regular configurations) and an SU(3) symmetry (for the intruder configurations).Besides the description of ``global'' symmetry aspects in terms of I-spin , also the very specific local mixing effects characteristic for the U(5)-SU(3) symmetry coupling are studied.The model is applied to the Po isotopes and a comparison with a morerealistic calculation is made.
Mu, ChengFu; Zhang, DaLi
2018-01-01
We investigated the properties of low-lying states in 94Mo within the framework of the proton-neutron interacting boson model (IBM-2), with special focus on the characteristics of mixed-symmetry states. We calculated level energies and M1 and E2 transition strengths. The IBM-2 results agree with the available quantitative and qualitative experimental data on 94Mo. The properties of mixed-symmetry states can be well described by IBM-2 given that the energy of the d proton boson is different from that of the neutron boson, especially for the transition of B( M1; 4 2 + → 4 1 + ).
Equilibration Dynamics of Strongly Interacting Bosons in 2D Lattices with Disorder.
Yan, Mi; Hui, Hoi-Yin; Rigol, Marcos; Scarola, V W
2017-08-18
Motivated by recent optical lattice experiments [J.-y. Choi et al., Science 352, 1547 (2016)SCIEAS0036-807510.1126/science.aaf8834], we study the dynamics of strongly interacting bosons in the presence of disorder in two dimensions. We show that Gutzwiller mean-field theory (GMFT) captures the main experimental observations, which are a result of the competition between disorder and interactions. Our findings highlight the difficulty in distinguishing glassy dynamics, which can be captured by GMFT, and many-body localization, which cannot be captured by GMFT, and indicate the need for further experimental studies of this system.
Structure of Even-Even 218-230 Ra Isotopes within the Interacting Boson Approximation Model
Diab S. M.
2008-01-01
A good description of the excited positive and negative parity states of radium nuclei (Z=88, N=130-142) is achieved using the interacting boson approximation model (IBA-1). The potential energy surfaces, energy levels, parity shift, electromagnetic transition rates B(E1), B(E2) and electric monopole strength X(E0/E2) are calculated for each nucleus. The analysis of the eigenvalues of the model Hamiltonian reveals the presence of an interaction between the positive and negative parity bands. ...
Early LHC bound on the W{sup Prime} boson mass in the nonuniversal gauge interaction model
Energy Technology Data Exchange (ETDEWEB)
Kim, Yeong Gyun [Department of Science Education, Gwangju National University of Education, Gwangju 500-703 (Korea, Republic of); Lee, Kang Young, E-mail: kylee14214@gmail.com [Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of)
2012-01-05
We study the phenomenology of the heavy charged gauge boson and obtain the lower bounds on its mass with the early LHC data at 7 TeV center-of-mass energy in the nonuniversal gauge interaction model, in which the electroweak SU(2) gauge group depends upon the fermion family. We found that the direct bound with the early data of the LHC is already better than the indirect bound on the mass of the W{sup Prime} boson.
Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Balewski, J; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M
2014-08-15
We report measurements of single- and double-spin asymmetries for W^{±} and Z/γ^{*} boson production in longitudinally polarized p+p collisions at sqrt[s]=510 GeV by the STAR experiment at RHIC. The asymmetries for W^{±} were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05
Search for a tensor component in the weak interaction Hamiltonian
Soti, Gergely
The search for physics beyond the standard model can, besides in high-energy experiments such as the ones at the LHC accelerator, also be carried out at lower energies. Measurements of correlation coefficients in neutron and nuclear b decay constitute a reliable and model-independent method for such efforts. The topic of this thesis is the precision measurement of the beta asymmetry parameter A. It was measured in the decay of 67Cu, which proceeds via a pure Gamow-Teller b transition, thus its A parameter is sensitive to possible tensor type currents in the weak interaction. The experiment was performed at the NICOLE setup in ISOLDE (CERN), using the technique of low temperature nuclear orientation. The b particles were observed with custom made planar high purity germanium detectors operating at around 10 K. The beta asymmetry of 68Cu was measured on-line for normalization purposes. Geant4 simulations were used to gain control over systematic effects such as electron scattering on the particle detectors. As...
Ultrahigh energy neutrino interactions and weak-scale string theories
Kachelriess, M
2000-01-01
It has been suggested that ultrahigh energy neutrinos can acquire cross-sections approaching hadronic size if the string scale is as low as 1-10 TeV. In this case, the vertical air showers observed with energies above the Greisen-Zatsepin-Kuzmin cutoff at E approximately 6x10^{19} eV could be initiated by neutrinos which are the only known primaries able to travel long distances unimpeded. We have calculated the neutrino-nucleon cross-section due to the exchange of Kaluza-Klein excitations of the graviton in a field theoretical framework. We have found that the neutrino-nucleon cross section and the transferred energy per interaction are too small to explain vertical showers even in the most optimistic scenario. However, future cosmic ray experiments like AUGER or OWL which are able to observe horizontal air showers could have a potential to restrict or to discover weak-scale string physics comparable to LHC.
Weakly interacting sub-eV particle searches
Energy Technology Data Exchange (ETDEWEB)
Afanasev, A; Beard, K B; Biallas, G; Boyce, J; Hirshfield, J L; Jiang, Y; Kazakevitch, G; LaPointe, M A; Martin, A; Minarni, M; Ramdon, R; Shinn, Michelle D; Slocum, P
2010-08-01
We make use of the generation-regeneration or "light shining through a wall" technique in searches for optical-wavelength photons mixing with hypothetical hidden-sector paraphotons in the mass range between 10^-5 and 10^-2 electron volts for a mixing parameter greater than 10^-7 and in sensitive searches for scalar and pseudoscalar coupling of photons to light neutral bosons in the mass range of approximately 1.0 milli-electron volts and coupling strength greater than 10^-6 GeV-1. Additionally, there is an effort underway to use photons in the microwave region using this same technique to make a more sensitive measurement in the mass range of approximately 0.1 milli-electron volts. The equipment in the latter effort will be used to search for galactic halo axions in this same mass range.
Structure of Even-Even 218-230 Ra Isotopes within the Interacting Boson Approximation Model
Directory of Open Access Journals (Sweden)
Diab S. M.
2008-01-01
Full Text Available A good description of the excited positive and negative parity states of radium nuclei (Z=88, N=130-142 is achieved using the interacting boson approximation model (IBA-1. The potential energy surfaces, energy levels, parity shift, electromagnetic transition rates B(E1, B(E2 and electric monopole strength X(E0/E2 are calculated for each nucleus. The analysis of the eigenvalues of the model Hamiltonian reveals the presence of an interaction between the positive and negative parity bands. Due to this interaction the $Delta I = 1$ staggering effect, between the energies of the ground state band and the negative parity state band, is produced including beat patterns.
Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2016-01-01
We have previously introduced a hybrid strong/weak coupling model for jet quenching in heavy ion collisions that describes the production and fragmentation of jets at weak coupling, using PYTHIA, and describes the rate at which each parton in the jet shower loses energy as it propagates through the strongly coupled plasma, dE/dx, using an expression computed holographically at strong coupling. The model has a single free parameter that we fit to a single experimental measurement. We then confront our model with experimental data on many other jet observables, focusing here on boson-jet observables, finding that it provides a good description of present jet data. Next, we provide the predictions of our hybrid model for many measurements to come, including those for inclusive jet, dijet, photon-jet and Z-jet observables in heavy ion collisions with energy $\\sqrt{s}=5.02$ ATeV coming soon at the LHC. As the statistical uncertainties on near-future measurements of photon-jet observables are expected to be much sm...
The chiral anomaly in non-leptonic weak interactions
Bijnens, J; Pich, Antonio
1992-01-01
The interplay between the chiral anomaly and the non-leptonic weak Hamiltonian is studied. The structure of the corresponding effective Lagrangian of odd intrinsic parity is established. It is shown that the factorizable contributions (leading in $1/N_C$) to that Lagrangian can be calculated without free parameters. As a first application, the decay $K^+ \\ra \\pi^+ \\pi^0 \\gamma$ is investigated.
Coherent Destruction of Tunneling of Bosons with Effective Three-Body Interactions
Niu, Zhen-Xia; Yu, Zi-Fa; Xue, Ju-Kui
2015-06-01
The tunneling dynamics of dilute boson gases with three-body interactions in a periodically driven double wells are investigated both theoretically and numerically. In our findings, when the system is with only repulsive two-body interactions or only three-body interactions, the tunneling will be suppressed; while in the case of the coupling between two- and three-body interactions, the tunneling can be either suppressed or enhanced. Particularly, when attractive three-body interactions are twice large as repulsive two-body interactions, CDT occurs at isolated points of driving force, which is similar to the linear case. Considering different interaction, the system can experience different transformation from coherent tunneling to coherent destruction of tunneling (CDT). The quasi-energy of the system as the function of the periodically driving force shows a triangular structure, which provides a deep insight into the tunneling dynamics of the system. Supported by the National Natural Science Foundation of China under Grant Nos. 11274255 and 11305132, Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20136203110001, the Natural Science Foundation of Gansu Province under Grant No. 2011GS04358, and Creation of Science and Technology of Northwest Normal University under Grant Nos. NWNU-KJCXGC-03-48, NWNU-LKQN-12-12
Directory of Open Access Journals (Sweden)
Khalaf A. M.
2015-04-01
Full Text Available The interacting boson model (sd-IBM1 with intrinsic coherent state is used to study the shape phase transitions from spherical U(5 to prolate deformed SU(3 shapes in Nd- Sm isotopic chains. The Hamiltonian is written in the creation and annihilation form with one and two body terms.For each nucleus a fitting procedure is adopted to get the best model parameters by fitting selected experimental energy levels, B(E2 transi- tion rates and two-neutron separation energies with the calculated ones.The U(5-SU(3 IBM potential energy surfaces (PES’s are analyzed and the critical phase transition points are identified in the space of model parameters.In Nd-Sm isotopic chains nuclei evolve from spherical to deformed shapes by increasing the boson number. The nuclei 150 Nd and 152 Sm have been found to be close to critical points.We have also studied the energy ratios and the B(E2 values for yrast band at the critical points.
Dynamics of interacting bosons using the Herman-Kluk semiclassical initial value representation
Ray, Shouryya; Ostmann, Paula; Simon, Lena; Grossmann, Frank; Strunz, Walter T.
2016-04-01
Recent experimental progress in monitoring the dynamics of ultracold gases in optical lattices necessitates a quantitative theoretical description for a significant number of bosons. In the present paper, we investigate if time-dependent semiclassical initial value methodology, with propagators expressed as integrals over phase space and using classical trajectories, is suitable to describe interacting bosons, concentrating on a single mode. Despite the nonlinear contribution from the self-interaction, the corresponding classical dynamics allows for a largely analytical treatment of the semiclassical propagator. We find that application of the Herman-Kluk (HK) propagator conserves unitarity in the semiclassical limit, but a decay of the norm is seen for low particle numbers n. The frozen Gaussian approximation (FGA) (HK with unit prefactor) is explicitly shown to violate unitarity in the present system for non-vanishing interaction strength, even in the semiclassical limit. Furthermore, we show by evaluating the phase space integral in steepest descent approximation, that the HK propagator reproduces the exact spectrum correctly in the semiclassical limit (n\\to ∞ ). An error is, however, incurred in next-to-next-to-leading order (small parameter 1/n), as seen upon numerical evaluation of the integral and confirmed analytically by considering finite n corrections to the steepest descent calculations. The FGA, in contrast, is only accurate to lowest order, and an erroneous next-to-leading order term in the energy spectrum was found analytically. Finally, as an example application, we study the dynamics of wave packets by computing the time evolution of the Wigner function. While the often-used truncated Wigner approximation cannot capture any interferences present in the exact quantum mechanical solution (known analytically), we find that the HK approach, despite also using classical information only, reproduces the salient features of the exact solution correctly.
Energy Technology Data Exchange (ETDEWEB)
García-Ramos, J.E., E-mail: enrique.ramos@dfaie.uhu.es [Departamento de Física Aplicada, Universidad de Huelva, 21071 Huelva (Spain); Unidad Asociada de la Universidad de Huelva al IEM (CSIC), Madrid (Spain); Arias, J.M., E-mail: ariasc@us.es [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Apdo 1065, 41080 Sevilla (Spain); Unidad Asociada de la Universidad de Sevilla al IEM (CSIC), Madrid (Spain); Dukelsky, J., E-mail: dukelsky@iem.cfmac.csic.es [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain)
2014-09-07
We introduce the basic concepts of catastrophe theory needed to derive analytically the phase diagram of the proton–neutron interacting boson model (IBM-2). Previous studies [1–3] were based on numerical solutions. We here explain the whole IBM-2 phase diagram including the precise order of the phase transitions in terms of the cusp catastrophe.
Social Interactions and Well-Being: The Surprising Power of Weak Ties.
Sandstrom, Gillian M; Dunn, Elizabeth W
2014-07-01
Although we interact with a wide network of people on a daily basis, the social psychology literature has primarily focused on interactions with close friends and family. The present research tested whether subjective well-being is related not only to interactions with these strong ties but also to interactions with weak social ties (i.e., acquaintances). In Study 1, students experienced greater happiness and greater feelings of belonging on days when they interacted with more classmates than usual. Broadening the scope in Studies 2A and 2B to include all daily interactions (with both strong and weak ties), we again found that weak ties are related to social and emotional well-being. The current results highlight the power of weak ties, suggesting that even social interactions with the more peripheral members of our social networks contribute to our well-being. © 2014 by the Society for Personality and Social Psychology, Inc.
Casalderrey-Solana, Jorge; Milhano, Jose Guilherme; Pablos, Daniel; Rajagopal, Krishna
2016-01-01
We confront a hybrid strong/weak coupling model for jet quenching to data from LHC heavy ion collisions. The model combines the perturbative QCD physics at high momentum transfer and the strongly coupled dynamics of non- abelian gauge theories plasmas in a phenomenological way. By performing a full Monte Carlo simulation, and after fitting one single parameter, we successfully describe several jet observables at the LHC, including dijet and photon jet measurements. Within current theoretical and experimental uncertainties, we find that such observables show little sensitivity to the specifics of the microscopic energy loss mechanism. We also present a new observable, the ratio of the fragmentation function of inclusive jets to that of the associated jets in dijet pairs, which can discriminate among different medium models. Finally, we discuss the importance of plasma response to jet passage in jet shapes.
The FrPNC Experiment, weak interaction studies in Francium at TRIUMF
Gomez, E.; Aubin, S.; Collister, R.; Behr, J. A.; Gwinner, G.; Orozco, L. A.; Pearson, M. R.; Tandecki, M.; Sheng, D.; Zhang, J.
2012-09-01
Francium is an excellent system to study the nuclear weak force due to its large nucleus and relatively simple atomic structure. The FrPNC experiment has a facility to produce cold trapped atomic francium samples for parity non-conservation studies. We are preparing to measure both the nuclear spin independent and dependent parts of the weak interaction in francium. The first one gives information about weak neutral currents at low energies, while the second one is sensitive to weak interactions between nucleons. We present the current status of the experiment.
Effect of Finite-Range Interactions on Rapidly Rotating Ultracold Bosonic Atoms
Hamamoto, Nobukuni
2017-12-01
We investigate the effects of the finite-range interactions of six rotating ultracold bosonic atoms using a Gaussian-type interatomic interaction model. The model is analyzed numerically by exact diagonalization within the Lowest Landau Level (LLL) approximation and semiclassical approximation. The result of exact diagonalization shows that the ground-state angular momentum changes discretely with increasing angular velocity. For the short-range limit, the ground-state angular momentum and wavefunctions agree with those of the delta interaction evaluated by Bertsch and Papenbrock [https://doi.org/10.1103/PhysRevA.63.023616" xlink:type="simple">Phys. Rev. A 63, 023616 (2001)]. Different from the delta interaction, the ground-state angular momenta higher than 30, i.e., N(N - 1), are observed at a high angular frequency as a result of the finite-range two-body interactions. For the intermediate-range interaction, the sequence of ground-state angular momenta increases in steps of five, which was not found in previous works on the Gaussian interaction. For the long-range limit of Gaussian interaction, we find that the ground-state angular momenta increase in steps of six. These steps of the ground-state angular momentum according to the width of the Gaussian interactions are explained by semiclassical and classical analysis based on the rovibrating molecule picture. The increments of the ground-state angular momentum of five and six are explained by the semiclassical quantization condition of the rotational and vibrational modes of fivefold and sixfold molecules, respectively. Our analysis based on the classical model also confirms that the fivefold molecule picture is more stable than the sixfold molecule picture in the intermediate range of the Gaussian interaction. These results suggest that the Gaussian interaction model can be used to emulate and characterize interactions by their width as the model can reproduce various rotational states including the ground
Boos, Jens
2016-01-01
Coupling fermions to gravity necessarily leads to a non-renormalizable, gravitational four-fermion contact interaction. In this essay, we argue that augmenting the Einstein--Cartan Lagrangian with suitable kinetic terms quadratic in the gauge field strengths gives rise to new, massive propagating gravitational degrees of freedom. This is to be seen in close analogy to Fermi's effective four-fermion interaction and its emergent W and Z bosons.
Weak solutions for Euler systems with non-local interactions
Czech Academy of Sciences Publication Activity Database
Carrillo, J. A.; Feireisl, Eduard; Gwiazda, P.; Swierczewska-Gwiazda, A.
2017-01-01
Roč. 95, č. 3 (2017), s. 705-724 ISSN 0024-6107 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Euler system * dissipative solutions * Newtonian interaction Subject RIV: BA - General Mathematics Impact factor: 0.895, year: 2016 http://onlinelibrary.wiley.com/doi/10.1112/jlms.12027/abstract
Early history of gauge theories and weak interactions
Energy Technology Data Exchange (ETDEWEB)
Straumann, N. [Zurich Univ. (Switzerland). Inst. fuer Theoretische Physik
1996-11-01
The paper deals with Weyl`s attempt to unify gravitation and electromagnetism, Weyl`s 1929 classic `Electron and gravitation`, Yang-Mills theory, parity violation and 2-component neutrino, chiral invariance and universal V-A interaction. 3 figs., 38 refs.
String-localized massive vector bosons in self-interaction without ghosts and indefinite metric
Energy Technology Data Exchange (ETDEWEB)
Mund, Jens; Santos, Jose-Amancio dos [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil). Dept. de Fisica
2012-07-01
Full text: It is well-known that the Hilbert space representation of the massive vector boson B{sub {mu}}, the so-called Proca field, does not admit renormalizable self-interactions due to its bad UV behavior. In the usual approach to overcome this problem, one uses a different version A{sub {mu}} of the vector field living in an indefinite metric space and introduces a scalar partner (the Stueckelberg field), and ghosts. The unphysical degrees of freedom are divided out by requiring gauge (or BRST) invariance. The gauge principle is quite restrictive: In particular, it requires additional physical degrees of freedom in any model with self-interacting massive vector fields - the Higgs particles. I propose a version of the massive vector field A{sub {mu}} which is localized on Mandelstam strings extending to spacelike infinity. It acts in a Hilbert space without ghosts and has better UV-behavior than its point-localized counterpart B{sub {mu}}. It differs from the latter by the gradient of a string-localized scalar field, which is analogous to the Stueckelberg field but does not describe any new degrees of freedom. Suitably chosen interaction Lagrangians then differ from their point-localized (non-renormalizable) counterparts by a divergence. The crucial question is whether the divergence operator can be taken out of the time-ordered products. This amounts to a normalization condition for the time-ordered products. If it can be satisfied, then (an adapted version of) the Epstein-Glaser perturbative construction should lead to a renormalizable, unitary and local model. We are presently applying this strategy to massive QED and to models with self-interacting vector bosons, analogous to the Abelian and non-Abelian Higgs models. Our motivations are threefold: 1: the method might admit new models since it differs technically from the usual point-local Epstein-Glaser method; 2: the unitarity of the S-matrix is guaranteed since there are no unphysical sectors; 3
Geißler, Andreas; Vasić, Ivana; Hofstetter, Walter
2017-06-01
Recent experiments have shown that (quasi)crystalline phases of Rydberg-dressed quantum many-body systems in optical lattices (OL) are within reach. Rydberg systems naturally possess strong long-range interactions due to the large polarizability of Rydberg atoms. Thus a wide range of quantum phases has been predicted, such as a devil's staircase of lattice-incommensurate density wave phases as well as the more exotic lattice supersolid order for bosonic systems, as considered in our work. Guided by results in the "frozen"-gas limit, we study the ground-state phase diagram at finite hopping amplitudes and in the vicinity of resonant Rydberg driving while fully including the long-range tail of the van der Waals interaction. Simulations within real-space bosonic dynamical mean-field theory yield an extension of the devil's staircase into the supersolid regime where the competition of condensation and interaction leads to a sequence of crystalline phases.
The WITCH Experiment : towards weak interactions studies. Status and prospects
Kozlov, V.Yu.; Coeck, S.; Herbane, M.; Kraev, I.S.; Severijns, N.; Wauters, F.; Delahaye, P.; Herlert, A.; Wenander, F.; Zakoucky, D.
2006-01-01
Primary goal of the WITCH experiment is to test the Standard Model for a possible ad-mixture of a scalar or tensor type interaction in $\\beta$-decay. This information will be inferred from the shape of the recoil energy spectrum. The experimental set-up was completed and is under intensive commissioning at ISOLDE (CERN). It combines a Penning trap to store the ions and a retardation spectrometer to probe the recoil ion energy. A brief overview of the WITCH set-up and the results of commissioning tests performed until now are presented. Finally, perspectives of the physics program are reviewed.
Introduction to the Standard Model of the Electro-Weak Interactions
Iliopoulos, Jean
2014-01-01
These lectures notes cover the basic ideas of gauge symmetries and the phe- nomenon of spontaneous symmetry breaking which are used in the construc- tion of the Standard Model of the Electro-Weak Interactions.
WITCH, a Penning trap for weak interaction studies
Kozlov, V Yu
2005-01-01
This work is the completion of the installation of the WITCH set-up and the first tests and commissioning of it. The first goal of the WITCH experiment is to improve the present limit on a scalar interaction in nuclear $\\beta$-decay by determining the $\\beta$-neutrino angular correlation parameter $a$ via a precise measurement of the shape of the energy spectrum of the recoil ions. The development of the WITCH set-up and its installation at ISOLDE (CERN) were recently completed. The principle of WITCH is based on a combination of a Penning trap to confine the radioactive ions and a retardation spectrometer to probe the energy of the recoil ions resulting from $\\beta$-decays in the trap. Extensive computer simulations show that for a reasonable measurement time a precision on the $a$-parameter of 0.5% can be achieved. This corresponds to an upper limit for the scalar interaction constant Cs/Cv < 9% at 95% C.L. Designing and constructing a set-up as large and complex as the WITCH set-up takes time, several y...
Weak-scale string theories and ultrahigh energy neutrino interactions
Kachelriess, M
2001-01-01
We discuss if ultrahigh energy (UHE) neutrinos can be responsible for the observed vertical extensive air showers with energy ~10/sup 20/ e V. After briefly reviewing the proposal that the decay products from UHE neutrinos annihilations on relic neutrinos are the observed UHE primaries, we concentrate on the suggestion that UHE neutrinos can acquire cross-sections approaching hadronic size if the string scale is as low as approximately=10 TeV. In this case, the vertical air showers observed with energies above the Greisen-Zatsepin-Kuzmin cutoff at E approximately=6.10/sup 19/ eV could be initiated directly by neutrinos which are the only known primaries able to travel long distances unimpeded. We review the calculation of the neutrino- nucleon cross-section sigma /sub N nu //sup KK/ due to the exchange of Kaluza-Klein excitations of the graviton in a field theoretical framework and discuss the issue of unitarity. We find that sigma /sub N nu //sup KK/ and the transferred energy per interaction are too small t...
A search for invisible Higgs bosons produced in $e^{+} e^{-}$ interactions at LEP 2 energies
Abreu, P; Adye, T; Adzic, P; Albrecht, Z; Alderweireld, T; Alekseev, G D; Alemany, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amapane, N; Amato, S; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Beillière, P; Belokopytov, Yu A; Belous, K S; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, H M; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brenke, T; Brenner, R A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschbeck, Brigitte; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camporesi, T; Canale, V; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chierici, R; Shlyapnikov, P; Chochula, P; Chorowicz, V; Chudoba, J; Cieslik, K; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crépé, S; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Dris, M; Duperrin, A; Durand, J D; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Ferrer-Ribas, E; Ferro, F; Fichet, S; Firestone, A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grimm, H J; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Hansen, J; Harris, F J; Hedberg, V; Heising, S; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hughes, G J; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Kersevan, Borut P; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kinvig, A; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kriznic, E; Krstic, J; Krumshtein, Z; Kubinec, P; Kurowska, J; Kurvinen, K L; Lamsa, J; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Maltezos, S; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Meroni, C; Meyer, W T; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Moch, M; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Muresan, R; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Nassiakou, M; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nikolenko, M; Nomokonov, V P; Normand, Ainsley; Nygren, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Royon, C; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwemling, P; Schwering, B; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Siebel, M; Simard, L C; Simonetto, F; Sissakian, A N; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stanic, S; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tegenfeldt, F; Terranova, F; Thomas, J; Timmermans, J; Tinti, N; Tkatchev, L G; Todorova-Nová, S; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tzamarias, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Vollmer, C F; Voulgaris, G; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wolf, G; Yi, J; Yushchenko, O P; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G
1999-01-01
Searches for HZ production with the Higgs boson decaying into an invisible final state have been performed with the data collected by the DELPHI experiment up to the centre-of-mass energy of 183 GeV. The hadronic and muon pair final states of the Z boson were analysed. From the absence of signal, upper limits on the cross-section and the corresponding Higgs boson mass limits were set at 95\\% confidence level. The results are interpreted as excluded parameter regions in the framework of the minimal supersymmetric standard model and in the simplest Majoron model with one Higgs doublet and one Higgs singlet field.
CERN. Geneva
2014-01-01
Recent searches for new phenomena involving leptons and bosons from the ATLAS experiment will be presented. Resonances decaying into a pair of leptons or bosons are an obvious place to look for phenomena beyond the Standard Model. Searches for Dark Matter are presented using final states containing a single W or Z boson and missing transverse momentum. Leptons and photons can also play an important role in searches for black holes as will be demonstrated. Various models are considered to interpret the search results, such as Grand Unified Theories, Technicolor, more generic Composite Higgs models, or models of Extra Dimensions.
The Structure of Even-Even 218-230 Ra Isotopes within the Interacting Boson Approximation Model
Diab S. M.
2008-01-01
A good description of the excited positive and negative parity states of radium nuclei ( Z = 88, N = 130–142) is achieved using the interacting boson approximation model (IBA-1). The potential energy surfaces, energy levels, parity shift, electromagnetic tran- sition rates B ( E 1) , B ( E 2) and electric monopole strength X ( E 0 / E 2 ) are calculated for each nucleus. The analysis of the eigenvalues of the ...
Energy Technology Data Exchange (ETDEWEB)
Martino, J. [Subatech, Ecole des Mines de Nantes, 44 - Nantes (France); Frere, J.M.; Naviliat-Cuncic, O.; Volpe, C.; Marteau, J.; Lhuillier, D.; Vignaud, D.; Legac, R.; Marteau, J.; Legac, R
2003-07-01
This document gathers the lectures made at the Joliot-Curie international summer school in 2003 whose theme, that year, was the relationship between weak interaction and nucleus. There were 8 contributions whose titles are: 1) before the standard model: from beta decay to neutral currents; 2) the electro-weak theory and beyond; 3) testing of the standard model at low energies; 4) description of weak processes in nuclei; 5) 20.000 tonnes underground, an approach to the neutrino-nucleus interaction; 6) parity violation from atom to nucleon; 7) how neutrinos got their masses; and 8) CP symmetry.
Energy Technology Data Exchange (ETDEWEB)
Ye, Jinwu, E-mail: jy306@ccs.msstate.edu [Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048 (China); Department of Physics and Astronomy, Mississippi State University, P.O. Box 5167, MS 39762 (United States); Chen, Yan, E-mail: yanchen99@gmail.com [Department of Physics, Surface Physics Laboratory (National Key Laboratory) and Lab of Advanced Materials, Fudan University, Shanghai (China)
2013-04-11
By using the dual vortex method (DVM), we develop systematically a simple and effective scheme to use the vortex degree of freedoms on dual lattices to characterize the symmetry breaking patterns of the boson insulating states in the direct lattices. Then we apply our scheme to study quantum phases and phase transitions in an extended boson Hubbard model slightly away from 1/3 (2/3) filling on frustrated lattices such as triangular and Kagome lattice. In a triangular lattice at 1/3, we find a X-CDW, a stripe CDW phase which was found previously by a density operator formalism (DOF). Most importantly, we also find a new CDW-VB phase which has both local CDW and local VB orders, in sharp contrast to a bubble CDW phase found previously by the DOF. In the Kagome lattice at 1/3, we find a VBS phase and a 6-fold CDW phase. Most importantly, we also identify a CDW-VB phase which has both local CDW and local VB orders which was found in previous QMC simulations. We also study several other phases which are not found by the DVM. By analyzing carefully the saddle point structures of the dual gauge fields in the translational symmetry breaking sides and pushing the effective actions slightly away from the commensurate filling f=1/3(2/3), we classified all the possible types of supersolids and analyze their stability conditions. In a triangular lattice, there are X-CDW supersolid, stripe CDW supersolid, but absence of any valence bond supersolid (VB-SS). There are also a new kind of supersolid: CDW-VB supersolid. In a Kagome lattice, there are 6-fold CDW supersolid, stripe CDW supersolid, but absence of any valence bond supersolid (VB-SS). There are also a new kind of supersolid: CDW-VB supersolid. We show that independent of the types of the SS, the quantum phase transitions from solids to supersolids driven by a chemical potential are in the same universality class as that from a Mott insulator to a superfluid, therefore have exact exponents z=2, ν=1/2, η=0 (with
Chiral vortical effect for bosons
Avkhadiev, Artur; Sadofyev, Andrey V.
2017-08-01
The thermal contribution to the chiral vortical effect is believed to be related to the axial anomaly in external gravitational fields. We use the universality of the spin-gravity interaction to extend this idea to a wider set of phenomena. We consider the Kubo formula at weak coupling for the spin current of a vector field and derive a novel anomalous effect caused by the medium rotation: the chiral vortical effect for bosons. The effect consists in a spin current of vector bosons along the angular velocity of the medium. We argue that it has the same anomalous nature as in the fermionic case and show that this effect provides a mechanism for helicity transfer, from flow helicity to magnetic helicity.
Directory of Open Access Journals (Sweden)
Parks Allen D.
2016-09-01
Full Text Available Weak value amplification is a measurement technique where small quantum mechanical interactions are amplified and manifested macroscopically in the output of a measurement apparatus. It is shown here that the linear nature of weak value amplification provides a straightforward comparative methodology for using the value of a known small interaction to estimate the value of an unknown small interaction. The methodology is illustrated by applying it to quantify the unknown size of an optical Goos-Hänchen shift of a laser beam induced at a glass/gold interface using the known size of the shift at a glass/air interface.
Yeh, Yu-Fang
2016-01-01
Animation is one of the useful contemporary educational technologies in teaching complex subjects. There is a growing interest in proper use of learner-technology interaction to promote learning quality for different groups of learner needs. The purpose of this study is to investigate if an interaction approach supports weak learners, who have…
Number-squeezed and fragmented states of strongly interacting bosons in a double well
Corbo, Joel C.; DuBois, Jonathan L.; Whaley, K. Birgitta
2017-11-01
We present a systematic study of the phenomena of number squeezing and fragmentation for a repulsive Bose-Einstein condensate (BEC) in a three-dimensional double-well potential over a range of interaction strengths and barrier heights, including geometries that exhibit appreciable overlap in the one-body wave functions localized in the left and right wells. We compute the properties of the condensate with numerically exact, full-dimensional path-integral ground-state (PIGS) quantum Monte Carlo simulations and compare with results obtained from using two- and eight-mode truncated basis models. The truncated basis models are found to agree with the numerically exact PIGS simulations for weak interactions, but fail to correctly predict the amount of number squeezing and fragmentation exhibited by the PIGS simulations for strong interactions. We find that both number squeezing and fragmentation of the BEC show nonmonotonic behavior at large values of interaction strength a . The number squeezing shows a universal scaling with the product of number of particles and interaction strength (N a ), but no such universal behavior is found for fragmentation. Detailed analysis shows that the introduction of repulsive interactions not only suppresses number fluctuations to enhance number squeezing, but can also enhance delocalization across wells and tunneling between wells, each of which may suppress number squeezing. This results in a dynamical competition whose resolution shows a complex dependence on all three physical parameters defining the system: interaction strength, number of particles, and barrier height.
Broken Symmetries and the Higgs Boson
Directory of Open Access Journals (Sweden)
Horváth Dezső
2014-01-01
Full Text Available The 40 years old Standard Model, the theory of particle physics, seems to describe all experimental data very well. The theory is based on symmetries, some of them are broken, mostly by the weak interaction. All of its elementary particles were identified and studied apart from the Higgs boson until 2012, when the two main experiments of the Large Hadron Collider at CERN, CMS and ATLAS observed a new particle with properties close to those predicted for the Higgs boson. The discovery of the Higgs boson proves the validity of the Brout-Englert-Higgs mechanism of spontaneous symmetry breaking and François Englert and Peter Higgs received the 2013 Nobel Prize in Physics. There are several questions yet concerning the possible theoretical significance of the mass of the new particle.
Nomura, K.; Rodríguez-Guzmán, R.; Robledo, L. M.
2017-07-01
Spectroscopic properties of odd-mass nuclei are studied within the framework of the interacting boson-fermion model (IBFM) with parameters based on the Hartree-Fock-Bogoliubov (HFB) approximation. The parametrization D1M of the Gogny energy density functional (EDF) was used at the mean-field level to obtain the deformation energy surfaces for the considered nuclei in terms of the quadrupole deformations (β ,γ ). In addition to the energy surfaces, both single-particle energies and occupation probabilities were used as a microscopic input for building the IBFM Hamiltonian. Only three strength parameters for the particle-boson-core coupling are fitted to experimental spectra. The IBFM Hamiltonian is then used to compute the energy spectra and electromagnetic transition rates for selected odd-mass Eu and Sm nuclei as well as for 195Pt and 195Au. A reasonable agreement with the available experimental data is obtained for the considered odd-mass nuclei.
Directory of Open Access Journals (Sweden)
Xiaopeng Zhao
2014-10-01
Full Text Available Metamaterials are artificial media designed to control electromagnetic wave propagation. Due to resonance, most present-day metamaterials inevitably suffer from narrow bandwidth, extremely limiting their practical applications. On the basis of tailored properties, a metamaterial within which each distinct unit cell resonates at its inherent frequency and has almost no coupling effect with the other ones, termed as weak interaction system, can be formulated. The total response of a weak interaction system can be treated as an overlap of the single resonance spectrum of each type of different unit cells. This intriguing feature therefore makes it possible to accomplish multiband or broadband metamaterials in a simple way. By introducing defects into metamaterials to form a weak interaction system, multiband and broadband electromagnetic metamaterials have first been experimentally demonstrated by our group. The similar concept can also be readily extended to acoustic and seismic metamaterials.
n→π* Non-Covalent Interaction is Weak but Strong in Action
Singh, Santosh Kumar; Das, Aloke
2017-06-01
n→π* interaction is a newly discovered non-covalent interaction which involves delocalization of lone pair (n) electrons of an electronegative atom into π* orbital of a carbonyl group or an aromatic ring. It is widely observed in materials, biomolecules (protein, DNA, RNA), amino acids, neurotransmitter and drugs. However, due to its weak strength and counterintuitive nature its existence is debatable. Such weak interactions are often masked by solvent effects in condense phase or physiological conditions thereby, making it difficult to prove the presence of such weak interactions. Therefore, we have used isolated gas phase spectroscopy in combination with quantum chemical calculations to study n→π* interaction in several molecules where, our molecular systems are free from solvent effects or any external forces. Herein I will be discussing two of the molecular systems (phenyl formate and salicin) where, we have observed the significance of n→π* interaction in determining the conformational specificity of the molecules. We have proved the existence of n→π* interaction for the first time through IR spectroscopy by probing the carbonyl stretching frequency of phenyl formate. Our study is further pursued on a drug named salicin where, we have observed that its conformational preferences is ruled by n→π* interaction even though a strong hydrogen bonding interaction is present in the molecule. Our results show that n→π* interaction, in spite of its weak strength, should not be overlooked as it existence can play an important role in governing the structures of molecules like other strong non-covalent interactions do.
First results of the CERN Resonant Weakly Interacting sub-eV Particle Search (CROWS)
Betz, M; Gasior, M; Thumm, M; Rieger, S W
2013-01-01
The CERN Resonant Weakly Interacting sub-eV Particle Search probes the existence of weakly interacting sub-eV particles like axions or hidden sector photons. It is based on the principle of an optical light shining through the wall experiment, adapted to microwaves. Critical aspects of the experiment are electromagnetic shielding, design and operation of low loss cavity resonators, and the detection of weak sinusoidal microwave signals. Lower bounds are set on the coupling constant g=4.5 x 10$^{-8}$ GeV$^{-1}$ for axionlike particles with a mass of m$_a$=7.2 $\\mu$eV. For hidden sector photons, lower bounds are set for the coupling constant $\\chi$=4.1 x 10$^{^-9}$ at a mass of m$\\gamma$=10.8 $\\mu$eV. For the latter we are probing a previously unexplored region in the parameter space.
The experimental structure of199Au and the interacting boson-fermion model
Mayerhofer, Ulrich; von Egidy, T.; Jolie, J.; Börner, H. G.; Colvin, G.; Judge, S.; Krusche, B.; Robinson, S. J.; Schreckenbach, K.; Brant, S.; Paar, V.
1991-03-01
Gamma rays of199Au obtained after double neutron capture in197Au were measured at the ILL high flux reactor. A level scheme up to 1770 keV excitation energy is established. The result is compared with IBFM and Boson-Fermion-Symmetry calculations.
Interaction of a weak discontinuity with elementary waves of Riemann problema)
Radha, R.; Sharma, V. D.
2012-01-01
We study the interaction of a weak discontinuity wave with the elementary waves of the Riemann problem for the one-dimensional Euler equations governing the flow of ideal polytropic gases, and investigate the effects of initial states, and the shock strength on the jumps in shock acceleration and the reflected and transmitted waves.
Weakly Hydrated Surfaces and the Binding Interactions of Small Biological Solutes
Energy Technology Data Exchange (ETDEWEB)
Brady, J. W.; Tavagnacco, L.; Ehrlich, L.; Chen, M.; Schnupf, U.; Himmel, M. E.; Saboungi, M. L.; Cesaro, A.
2012-04-01
Extended planar hydrophobic surfaces, such as are found in the side chains of the amino acids histidine, phenylalanine, tyrosine, and tryptophan, exhibit an affinity for the weakly hydrated faces of glucopyranose. In addition, molecular species such as these, including indole, caffeine, and imidazole, exhibit a weak tendency to pair together by hydrophobic stacking in aqueous solution. These interactions can be partially understood in terms of recent models for the hydration of extended hydrophobic faces and should provide insight into the architecture of sugar-binding sites in proteins.
Weak interactions of colliding lepton beams with energy (10/sup 2/-10 /sup 3/) GeV
Dolgov, A D; Zakharov, V I
1972-01-01
Weak V-A interaction of colliding lepton beams at high energies is considered. It is shown that for colliding lepton antilepton beams, the contribution of weak interactions to the differential cross section of elastic scattering at angle theta =90 degrees prevails over that of electromagnetic interaction. The estimate of the weak cross section is based on the calculation of the imaginary part of the amplitude. A phenomenological description of the real art of the amplitude in the same approximation introduces a single unknown parameter. Provided the validity of dispersion relations with two subtractions is granted this parameter is related to the integral of total cross sections of ll and ll weak interactions.
Momentum-Space Entanglement Spectrum of Bosons and Fermions with Interactions
Lundgren, Rex; Blair, Jonathan; Greiter, Martin; Läuchli, Andreas; Fiete, Gregory A.; Thomale, Ronny
2014-12-01
We study the momentum space entanglement spectra of bosonic and fermionic formulations of the spin-1 /2 X X Z chain with analytical methods and exact diagonalization. We investigate the behavior of the entanglement gaps, present in both formulations, across quantum phase transitions in the X X Z chain. In both cases, finite size scaling suggests that the entanglement gap closure does not occur at the physical transition points. For bosons, we find that the entanglement gap observed in Thomale et al. [Phys. Rev. Lett. 105, 116805 (2010)] depends on the scaling dimension of the conformal field theory as varied by the X X Z anisotropy. For fermions, the infinite entanglement gap present at the X X point persists well past the phase transition at the Heisenberg point. We elaborate on how these shifted transition points in the entanglement spectra may support the numerical study of phase transitions in the momentum space density matrix renormalization group.
The Structure of Even-Even 218-230 Ra Isotopes within the Interacting Boson Approximation Model
Directory of Open Access Journals (Sweden)
Diab S. M.
2008-01-01
Full Text Available A good description of the excited positive and negative parity states of radium nuclei ( Z = 88, N = 130–142 is achieved using the interacting boson approximation model (IBA-1. The potential energy surfaces, energy levels, parity shift, electromagnetic tran- sition rates B ( E 1 , B ( E 2 and electric monopole strength X ( E 0 / E 2 are calculated for each nucleus. The analysis of the eigenvalues of the model Hamiltonian reveals the presence of an interaction between the positive and negative parity bands. Due to this interaction the I = 1 staggering e ect, between the energies of the ground state band and the negative parity state band, is produced including beat patterns.
Energy Technology Data Exchange (ETDEWEB)
Illuminati, Fabrizio [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14415, Potsdam (Germany); Dipartimento di Fisica, Universita di Salerno, and INFM, Unita di Salerno, I-84081 Baronissi SA (Italy); Navez, Patrick [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14415, Potsdam (Germany); Institute of Materials Science, Demokritos NCSR, POB 60228, 15310 Athens (Greece); Wilkens, Martin [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14415, Potsdam (Germany)
1999-08-14
We derive exact thermodynamic identities relating the average number of condensed atoms and the root-mean-square fluctuations determined in different statistical ensembles for the weakly interacting Bose gas confined in a box. This is achieved by introducing the concept of auxiliary partition functions for model Hamiltonians that do conserve the total number of particles. Exploiting such thermodynamic identities, we provide the first, completely analytical prediction of the microcanonical particle number fluctuations in the weakly interacting Bose gas. Such fluctuations, as a function of the volume V of the box are found to behave normally, in contrast with the anomalous scaling behaviour V{sup 4/3} of the fluctuations in the ideal Bose gas. (author). Letter-to-the-editor.
Geometry versus topology: Combined AIM, ELI-D, and ASF analysis of weak intramolecular interactions
Mebs, Stefan; Chilleck, Maren Annika
2014-01-01
The analysis of weak intramolecular interactions in a zincocene related compound uncovers a dependency of the Atoms In Molecules and Electron Localizability Indicator topology against the Ca-Ha⋯Hb and Ha⋯Hb-Cb angles: for sharp angles (<100°), no saddle point is generated. For medium angles (<120°), an ELI-D saddle point is formed. If one angle becomes larger than ca. 120°, an AIM bond critical point is generated. A virial path is exhibited if one angle exceeds ca. 130°. If an H atom is involved in more than one weak interaction, exceptions are found. No influence of the Ha⋯Hb distance is observed.
Sato, Chihiro
2014-01-01
Frontal affinity chromatography (FAC) is a simple and effective method that is applicable to the analysis of interactions between glycans and glycan-recognition proteins, including lectins, with weak affinity ranging from 10(-4) to 10(-6) (M) in terms of dissociation constant (Kd). Using conventional instruments, such as a high-performance liquid chromatography (HPLC) system equipped with pump, injector, (fluorescent) detector, and data recorder, the dissociation constants for weak glycan-based interactions can be easily determined with high throughput and accuracy. Notably, if the glycans are labeled with fluorescent dyes, only a small amount of glycans is required for the analysis. Fluorescent labeling of glycans is a common technique, and an increasing number of fluorescent-labeled glycans are commercially available. In this chapter, an advanced FAC method using fluorescent-labeled glycans is described.
Weak interactions from 1950-1960: a quantitative bibliometric study of the formation of a field
Energy Technology Data Exchange (ETDEWEB)
White, D.H.; Sullivan, D.
1986-01-01
A quantitative technique is illustrated which uses publication statistics from a bibliography of citations in the area of weak interactions to provide a view of trends and patterns in the development of the field during the period from 1950 to 1960. An overview is given of what the physicists working in weak interactions during this period were doing as indicated by an analysis of the subjects of their papers. The dominant problems and concerns are discussed. Focus is then turned to the events surrounding the emergence of the tau/theta particle puzzle, the discovery of parity nonconservation, and the resolution offered by the V-A theory. Displaying the data from the citation index in unusual ways highlights dominant issues of the period, especially the close relationship between theory and experiment in the latter half of the decade. 64 refs., 14 figs. (LEW)
Dynamics of dissipative coupled spins: decoherence, relaxation and effects of a spin-boson bath
Energy Technology Data Exchange (ETDEWEB)
Naegele, P; Campagnano, G; Weiss, U [II Institut fuer Theoretische Physik, Universitaet Stuttgart, D-70550 Stuttgart (Germany)], E-mail: naegele@theo2.physik.uni-stuttgart.de, E-mail: campagnano@theo2.physik.uni-stuttgart.de, E-mail: weiss@theo2.physik.uni-stuttgart.de
2008-11-15
We study the reduced dynamics of interacting spins, each coupled to its own bath of bosons. We derive the solution in analytic form in the white-noise limit and analyze the rich behaviors in diverse limits ranging from weak coupling and/or low temperature to strong coupling and/or high temperature. We also view the single spin as being coupled to a spin-boson environment and consider the regimes in which it is effectively nonlinear and in which it can be regarded as a resonant bosonic environment.
Mutka, Saniela; Njegić Džakula, Branka; Kovačević, Davor
2008-01-01
The effect of salt on the behaviour of bovine serum albumin (BSA) in solution and on the interactions between BSA and the weakly charged polyelectrolytes poly(allylamine hydrochloride) and poly(dimethylaminoethylmethacrylate) was investigated by potentiometric titrations. Titrations of pure BSA solution and of the BSA solution with the addition of polyelectrolyte were performed in the presence of different salts. Three electrolytes having the same anion and a different cation were used. lithi...
The explicit expression of the fugacity for weakly interacting Bose and Fermi gases
Dai, Wu-Sheng; Xie, Mi
2017-11-01
In this paper, we calculate the explicit expression for the fugacity for two- and three-dimensional weakly interacting Bose and Fermi gases from their equations of state in isochoric and isobaric processes, respectively, based on the mathematical result of the boundary problem of analytic functions—the homogeneous Riemann-Hilbert problem. We also discuss the Bose-Einstein condensation phase transition of three-dimensional hard-sphere Bose gases.
Lattice-Boltzmann simulation of laser interaction with weakly ionized helium plasmas.
Li, Huayu; Ki, Hyungson
2010-07-01
This paper presents a lattice Boltzmann method for laser interaction with weakly ionized plasmas considering electron impact ionization and three-body recombination. To simulate with physical properties of plasmas, the authors' previous work on the rescaling of variables is employed and the electromagnetic fields are calculated from the Maxwell equations by using the finite-difference time-domain method. To calculate temperature fields, energy equations are derived separately from the Boltzmann equations. In this way, we attempt to solve the full governing equations for plasma dynamics. With the developed model, the continuous-wave CO2 laser interaction with helium is simulated successfully.
Early Career: The search for weakly interacting dark matter with liquid xenon
Energy Technology Data Exchange (ETDEWEB)
Hall, Carter [Univ. of Maryland, College Park, MD (United States). Dept. of Physics
2017-02-08
We report results from a search for weakly interacting dark matter particles obtained with the LUX experiment. LUX was located at a depth of 4850 feet at the Sanford Underground Research Facility in Lead, South Dakota from 2013 through 2016. It found no evidence for dark matter particle interactions and set new constraints on the properties of such particles for masses between 6 GeV and 100 TeV. The work reported here also characterized the performance of such experiments by developing a new calibration technique based upon a tritium beta decay source.
Weak Interaction Models with New Quarks and Right-handed Currents
Wilczek, F. A.; Zee, A.; Kingsley, R. L.; Treiman, S. B.
1975-06-01
We discuss various weak interaction issues for a general class of models within the SU(2) x U(1) gauge theory framework, with special emphasis on the effects of right-handed, charged currents and of quarks bearing new quantum numbers. In particular we consider the restrictions on model building which are imposed by the small KL - KS mass difference and by the .I = = rule; and we classify various possibilities for neutral current interactions and, in the case of heavy mesons with new quantum numbers, various possibilities for mixing effects analogous to KL - KS mixing.
Energy Technology Data Exchange (ETDEWEB)
Sauerland, Philip
2011-04-15
The Standard Model of Particle Physics (SM) postulates the universal coupling of the three lepton families to the weak current. The most precise measurement of lepton universality in W decays comes from the four experiments at the Large Electron-Positron Collider (LEP). If one compares the couplings of muons and tau leptons to the charged weak current, there is a discrepancy of nearly three standard deviations w.r.t. the SM expectation. There are models beyond the SM, which could explain the violation of lepton universality with new physics processes, if it is more than a statistical fluctuation. The Large Hadron Collider (LHC) offers a great opportunity to study decays of the charged-weak gauge bosons at very high event rates and at unmatched collision energies. This thesis presents an analysis strategy to test lepton universality with the Compact Muon Solenoid experiment (CMS) at the LHC. The analysis focusses on the decays of the W{sup {+-}} boson to particles of the second and third lepton family. For this purpose detector-simulated proton-proton events are used. The identification and reconstruction of tau leptons is a difficult task at the LHC. The reconstruction is often restricted by the limited precision of the commonly used collinear approximation. The application of a kinematic fit to particular tau-decay modes can improve the experimental resolution and provides an efficient background suppression. The development of such a fit with kinematic constraints derived from the topology of the decay {tau} {yields} 3{pi}{sup {+-}} + {nu}{sub {tau}} is described. The kinematic fit of tau leptons is not limited to the test for lepton universality, but can be deployed by various physics analyses in a broad energy range of the tau leptons. The event topology of W{sup {+-}} decays with leptonic final states is studied. Two event selections are developed: one for the W{sup {+-}} {yields} {tau}{nu} and one for the W{sup {+-}} {yields} {mu}{nu} decay. A common online
Hoppensteadt, F C; Izhikevich, E M
1998-01-01
We consider all models of the thalamo-cortical system that satisfy the following two assumptions: (1) each cortical column is an autonomous oscillator; (2) connections between cortical columns and the thalamus are weak. Our goal is to deduce from these assumptions general principles of thalamo-cortical interactions that are independent of the equations describing the system. We find that the existence of synaptic connections between any two cortical columns does not guarantee that the columns interact: They interact only when there is a certain nearly resonant relation between their frequencies, which implies that the interactions are frequency modulated (FM). When the resonance relation holds, the cortical columns interact through phase modulations. Thus, communications between weakly connected cortical oscillators employ a principle similar to that in FM radio: The frequency of oscillation encodes the channel of communication, while the information is transmitted via phase modulations. If the thalamic input has an appropriate frequency, then it can dynamically link any two cortical columns, even those that have non-resonant frequencies and would otherwise be unlinked. Thus, by adjusting its temporal activity, the thalamus has control over information processing taking place in the cortex. Our results suggest that the mean firing rate (frequency) of periodically spiking neuron does not carry any information other than identifying a channel of communication. Information (i.e. neural code) is carried through modulations of interspike intervals.
Nap, R. J.; Tagliazucchi, M.; Szleifer, I.
2014-01-01
This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads
Nap, R J; Tagliazucchi, M; Szleifer, I
2014-01-14
This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads
Controlled-not gate with weakly coupled qubits: Dependence of fidelity on the form of interaction
Ghosh, Joydip; Geller, Michael R.
2010-05-01
An approach to the construction of the controlled-not quantum logic gate for a four-dimensional coupled-qubit model with weak but otherwise arbitrary coupling has been given recently [M. R. Geller , Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.81.012320 81, 012320 (2010)]. How does the resulting fidelity depend on the form of qubit-qubit coupling? In this paper we calculate intrinsic fidelity curves (fidelity in the absence of decoherence versus total gate time) for a variety of qubit-qubit interactions, including the commonly occurring isotropic Heisenberg and XY models, as well as randomly generated ones. For interactions not too close to that of the Ising model, we find that the fidelity curves do not significantly depend on the form of the interaction, and we calculate the resulting interaction-averaged fidelity curve for the non-Ising-like cases and a criterion for determining its applicability.
Partially composite Goldstone Higgs boson
DEFF Research Database (Denmark)
Alanne, Tommi; Franzosi, Diogo Buarque; Frandsen, Mads T.
2017-01-01
We consider a model of dynamical electroweak symmetry breaking with a partially composite Goldstone Higgs boson. The model is based on a strongly interacting fermionic sector coupled to a fundamental scalar sector via Yukawa interactions. The SU(4)×SU(4) global symmetry of these two sectors...... is broken to a single SU(4) via Yukawa interactions. Electroweak symmetry breaking is dynamically induced by condensation due to the strong interactions in the new fermionic sector which further breaks the global symmetry SU(4)→Sp(4). The Higgs boson arises as a partially composite state which is an exact...... Goldstone boson in the limit where SM interactions are turned off. Terms breaking the SU(4) global symmetry explicitly generate a mass for the Goldstone Higgs boson. The model realizes in different limits both (partially) composite Higgs and (bosonic) technicolor models, thereby providing a convenient...
One-loop analysis of the interactions between charmed mesons and Goldstone bosons
Energy Technology Data Exchange (ETDEWEB)
Yao, De-Liang [Institute for Advanced Simulation, Institut für Kernphysik andJülich Center for Hadron Physics, Forschungszentrum Jülich,Wilhelm-Johnen-Straße, D-52425 Jülich (Germany); Du, Meng-Lin [Helmholtz-Institut für Strahlen- und Kernphysik andBethe Center for Theoretical Physics, Universität Bonn,Nußallee 14-16, D-53115 Bonn (Germany); Guo, Feng-Kun [State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Science,Zhong Guan Cun East Street 55, Beijing 100190 (China); Helmholtz-Institut für Strahlen- und Kernphysik andBethe Center for Theoretical Physics, Universität Bonn,Nußallee 14-16, D-53115 Bonn (Germany); Meißner, Ulf-G. [Helmholtz-Institut für Strahlen- und Kernphysik andBethe Center for Theoretical Physics, Universität Bonn,Nußallee 14-16, D-53115 Bonn (Germany); Institute for Advanced Simulation, Institut für Kernphysik andJülich Center for Hadron Physics, Forschungszentrum Jülich,Wilhelm-Johnen-Straße, D-52425 Jülich (Germany)
2015-11-09
We derive the scattering amplitude for Goldstone bosons of chiral symmetry off the pseudoscalar charmed mesons up to leading one-loop order in a covariant chiral effective field theory, using the so-called extended-on-mass-shell renormalization scheme. Then we use unitarized chiral perturbation theory to fit to the available lattice data of the S-wave scattering lengths. The lattice data are well described. However, most of the low-energy constants determined from the fit bear large uncertainties. Lattice simulations in more channels are necessary to pin down these values which can then be used to make predictions in other processes related by chiral and heavy quark symmetries.
Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS
Energy Technology Data Exchange (ETDEWEB)
Agnese, R.; Anderson, Alan J.; Asai, M.; balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Beaty, John; Billard, J.; Borgland, A.; Bowles, M. A.; Brandt, D.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Cerdeno, D. G.; Chagani, H.; Chen, Y.; Cherry, M.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; DeVaney, D.; DeStefano, PC F.; Do Couto E Silva, E.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Hansen, S.; Harris, Harold R.; Hertel, S. A.; Hines, B. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kenany, S.; Kennedy, A.; Kiveni, M.; Koch, K.; Leder, A.; Loer, B.; Lopez Asamar, E.; Mahapatra, R.; Mandic, V.; Martinez, C.; McCarthy, K. A.; Mirabolfathi, M.; Moffatt, R. A.; Nelson, R. H.; Novak, L.; Page, K.; Partridge, R.; Pepin, M.; Phipps, A.; Platt, M.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Resch, R. W.; Ricci, Y.; Ruschman, M.; Saab, T.; Sadoulet, B.; Sander, J.; Schmitt, R.; Schneck, K.; Schnee, Richard; Scorza, A.; Seitz, D.; Serfass, B.; Shank, B.; Speller, D.; Tomada, A.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.
2014-06-01
We report a first search for weakly interacting massive particles (WIMPs) using the background rejection capabilities of SuperCDMS. An exposure of 577 kg-days was analyzed for WIMPs with mass < 30 GeV/c2, with the signal region blinded. Eleven events were observed after unblinding. We set an upper limit on the spin-independent WIMP-nucleon cross section of 1:2 10-42cm2 at 8 GeV/c2. This result is in tension with WIMP interpretations of recent experiments and probes new parameter space for WIMP-nucleon scattering for WIMP masses < 6 GeV/c2.
Two particle nonleptonic decays of D and F mesons and the structure of weak interactions
Voloshin, M B; Okun, Lev Borisovich
1975-01-01
The two particle nonleptonic decays of charmed D/sup +or-/, D/sup 0/, D/sup approximately 0/ and F/sup +or-/ mesons are examined within the framework of a unitary symmetry. The ratios between the amplitudes of various different decays, resulting from the unitary symmetry and the assumption that the hamiltonian of weak interactions takes the form of the product of the current multiplied by the current, are found. The consequences of the T-, U- and V-spin selection rules are considered. (9 refs).
Controlled-NOT gate with weakly coupled qubits: Dependence of fidelity on the form of interaction
Ghosh, Joydip; Geller, Michael R.
2010-01-01
An approach to the construction of the CNOT quantum logic gate for a 4-dimensional coupled-qubit model with weak but otherwise arbitrary coupling has been given recently [M. R. Geller et al., Phys. Rev. A, 012320 (2010)]. How does the resulting fidelity depend on the form of qubit-qubit coupling? In this paper we calculate intrinsic fidelity curves (fidelity in the absence of decoherence versus total gate time) for a variety of qubit-qubit interactions, including the commonly occurring isotro...
A linear model for amplitude modulation of Langmuir waves in weak electron-beam plasma interaction
Directory of Open Access Journals (Sweden)
K. Baumgärtel
2013-01-01
Full Text Available A simple linear approach to the phenomenon of amplitude modulation of Langmuir waves in weak beam plasma interaction is presented. During the short growth phase of the instability and within the longer period after saturation, the waves are described by their linear kinetic dispersion properties.The amplitude modulation appears as result of the beating of waves with different wavelengths and amplitudes that have grown from noise in the initial phase. The Langmuir wave fields are calculated via FFT (fast Fourier transform technique. The resulting waveforms in temporal representation are quite similar to those observed by spacecraft.
Control of Chain Walking by Weak Neighbouring Group Interac-tions in Unsymmetric Catalysts
Falivene, Laura
2017-12-20
A combined theoretical and experimental study shows how weak attractive interactions of a neighbouring group can strongly promote chain walking and chain transfer. This accounts for the previously observed very different micro-structures obtained in ethylene polymerization by [κ^{2-N,O-{(2,6-(3\\',5\\'-R2C6H3)2C6H3-N=C(H)-(3,5-X,Y2-2-O-C6H2)}]NiCH3(pyridine)], namely hyperbranched oligomers for remote substituents R = CH3 versus. high molecular weight polyethylene for R = CF3. From a full mechanistic consideration the alkyl olefin complex with the growing chain cis to the salicylaldiminato oxygen donor is identified as the key species. Alternative to ethylene chain growth by insertion in this species, decoordination of the monomer to form a cis ß-agostic complex provides an entry into branching and chain transfer pathways. This release of monomer is promoted and made competitive by a weak η2-coordination of the distal aryl rings to the metal center, operative only for the case of sufficiently electron rich aryls. This concept for controlling chain walking is underlined by catalysts with other weakly coordinating furane and thio-phene motifs, which afford highly branched oligomers with > 120 branches per 1000 carbon atoms.}
Connolly, Brian D.; Petry, Chris; Yadav, Sandeep; Demeule, Barthélemy; Ciaccio, Natalie; Moore, Jamie M.R.; Shire, Steven J.; Gokarn, Yatin R.
2012-01-01
Weak protein-protein interactions are thought to modulate the viscoelastic properties of concentrated antibody solutions. Predicting the viscoelastic behavior of concentrated antibodies from their dilute solution behavior is of significant interest and remains a challenge. Here, we show that the diffusion interaction parameter (kD), a component of the osmotic second virial coefficient (B2) that is amenable to high-throughput measurement in dilute solutions, correlates well with the viscosity of concentrated monoclonal antibody (mAb) solutions. We measured the kD of 29 different mAbs (IgG1 and IgG4) in four different solvent conditions (low and high ion normality) and found a linear dependence between kD and the exponential coefficient that describes the viscosity concentration profiles (|R| ≥ 0.9). Through experimentally measured effective charge measurements, under low ion normality where the electroviscous effect can dominate, we show that the mAb solution viscosity is poorly correlated with the mAb net charge (|R| ≤ 0.6). With this large data set, our results provide compelling evidence in support of weak intermolecular interactions, in contrast to the notion that the electroviscous effect is important in governing the viscoelastic behavior of concentrated mAb solutions. Our approach is particularly applicable as a screening tool for selecting mAbs with desirable viscosity properties early during lead candidate selection. PMID:22828333
Delauré, B J; Golovko, V V; Kozlov, V Yu; Phalet, T; Schuurmans, P; Severijns, N; Vereecke, B; Versyck, S; Beck, D; Quint, W; Ames, F; Reisinger, K; Forstner, O; Deutsch, J; Bollen, G; Schwarz, S
2003-01-01
The weak interaction trap for charged particles (WITCH) setup is being installed at the ISOLDE facility (CERN) to test the Standard Model of the electroweak interaction. This will be done by searching for scalar and tensor admixtures in nuclear $\\beta$-decay. The $\\beta$-neutrino angular correlation is an excellent probe to determine the possible strength of those non-Standard Model contributions. The WITCH setup combines the unique storage features of a Penning trap to produce a scattering free radioactive source with a retardation spectrometer to measure the recoil energy spectrum of the daughter nuclei after $\\beta$-decay with high precision. Physics beyond the Standard Model would lead to deviations from the expected spectral shape. (7 refs).
The CERN Resonant Weakly Interacting Sub-eV Particle Search (CROWS)
Betz, Michael; Gasior, Marek; Thumm, Manfred
The subject of this thesis is the design, implementation and first results of the ``CERN Resonant WISP Search'' (CROWS) experiment, which probes the existence of Weakly Interacting Sub-eV Particles (WISPs) using microwave techniques. Axion Like Particles and Hidden Sector Photons are two well motivated members of the WISP family. Their existence could reveal the composition of cold dark matter in the universe and explain a large number of astrophysical phenomena. Particularly, the discovery of an axion would solve a long standing issue in the standard model, known as the ``strong CP problem''. Despite their strong theoretical motivation, the hypothetical particles have not been observed in any experiment so far. One way to probe the existence of WISPs is to exploit their interaction with photons in a ``light shining through the wall'' experiment. A laser beam is guided through a strong magnetic field in the ``emitting region'' of the experiment. This provides photons, which can convert into hypothetical Axi...
Chavda, Bhavin R.; Gandhi, Sahaj A.; Dubey, Rahul P.; Patel, Urmila H.; Barot, Vijay M.
2016-05-01
The novel chalcone derivatives have widespread applications in material science and medicinal industries. The density functional theory (DFT) is used to optimized the molecular structure of the three chalcone derivatives (M-I, II, III). The observed discrepancies between the theoretical and experimental (X-ray data) results attributed to different environments of the molecules, the experimental values are of the molecule in solid state there by subjected to the intermolecular forces, like non-bonded hydrogen bond interactions, where as isolated state in gas phase for theoretical studies. The lattice energy of all the molecules have been calculated using PIXELC module in Coulomb -London -Pauli (CLP) package and is partitioned into corresponding coulombic, polarization, dispersion and repulsion contributions. Lattice energy data confirm and strengthen the finding of the X-ray results that the weak but significant intermolecular interactions like C-H…O, Π- Π and C-H… Π plays an important role in the stabilization of crystal packing.
The weak shall inherit: bacteriocin-mediated interactions in bacterial populations.
Majeed, Hadeel; Lampert, Adam; Ghazaryan, Lusine; Gillor, Osnat
2013-01-01
Evolutionary arms race plays a major role in shaping biological diversity. In microbial systems, competition often involves chemical warfare and the production of bacteriocins, narrow-spectrum toxins aimed at killing closely related strains by forming pores in their target's membrane or by degrading the target's RNA or DNA. Although many empirical and theoretical studies describe competitive exclusion of bacteriocin-sensitive strains by producers of bacteriocins, the dynamics among producers are largely unknown. We used a reporter-gene assay to show that the bacterial response to bacteriocins' treatment mirrors the inflicted damage Potent bacteriocins are lethal to competing strains, but at sublethal doses can serve as strong inducing agents, enhancing their antagonists' bacteriocin production. In contrast, weaker bacteriocins are less toxic to their competitors and trigger mild bacteriocin expression. We used empirical and numerical models to explore the role of cross-induction in the arms race between bacteriocin-producing strains. We found that in well-mixed, unstructured environments where interactions are global, producers of weak bacteriocins are selectively advantageous and outcompete producers of potent bacteriocins. However, in spatially structured environments, where interactions are local, each producer occupies its own territory, and competition takes place only in "no man's lands" between territories, resulting in much slower dynamics. The models we present imply that producers of potent bacteriocins that trigger a strong response in neighboring bacteriocinogenic strains are doomed, while producers of weak bacteriocins that trigger a mild response in bacteriocinogenic strains flourish. This counter-intuitive outcome might explain the preponderance of weak bacteriocin producers in nature. However, the described scenario is prolonged in spatially structured environments thus promoting coexistence, allowing migration and evolution, and maintaining
Weak interaction effects in e/sup +/e/sup -/ annihilation with polarised beams
Energy Technology Data Exchange (ETDEWEB)
Simard, R.
1977-11-02
Although the standard gauge model of weak and electromagnetic interactions based on the work of Salam and Weinberg has met with great success, there are experimental facts that will require its extension or its modification to a new gauge model; the discovery of a heavy lepton at SLAC and the absence of parity violation in atoms that is expected from the neutral weak current coupling to electrons are discussed. Three tests are proposed that bear on these questions. First, heavy lepton production in e/sup +/e/sup -/ annihilation when one of the incident beams is longitudinally polarized is considered and the purely leptonic decay of this heavy lepton is examined. An asymmetry in the inclusive angular distribution of one charged lepton (electron or muon) is important in determining the structure of weak interactions of the heavy lepton. In fact, this angular asymmetry easily distinguishes between the cases V - A and V + A for the heavy lepton current. Then, the decay channel L ..-->.. ..nu../sub L/ + one hadron is considered (L = heavy lepton) under the same experimental set-up and the inclusive one-hadron angular distribution examined. Parity nonconservation in the decay of the heavy lepton causes a conspicuous forward-backward asymmetry in the cos theta distribution of the inclusive hadron spectrum near the high energy end that can be distinguished easily from other sources of asymmetry. It is easy then to discover the chirality (V - A or V + A) of the heavy lepton current. Finally a test is proposed which provides unambigous and clear evidence for parity violation in e/sup +/e/sup -/ annihilation. It consists in measuring a possible left-right asymmetry of inclusive hadron production with highly transversely polarized e/sup +/e/sup -/ incident beams. If observed, this asymmetry provides evidence of a parity violating neutral current coupling to electrons.
Schwarzmüller, Florian; Eisenhauer, Nico; Brose, Ulrich
2015-05-01
Human activities may compromise biodiversity if external stressors such as nutrient enrichment endanger overall network stability by inducing unstable dynamics. However, some ecosystems maintain relatively high diversity levels despite experiencing continuing disturbances. This indicates that some intrinsic properties prevent unstable dynamics and resulting extinctions. Identifying these 'ecosystem buffers' is crucial for our understanding of the stability of ecosystems and an important tool for environmental and conservation biologists. In this vein, weak interactions have been suggested as stabilizing elements of complex systems, but their relevance has rarely been tested experimentally. Here, using network and allometric theory, we present a novel concept for a priori identification of species that buffer against externally induced instability of increased population oscillations via weak interactions. We tested our model in a microcosm experiment using a soil food-web motif. Our results show that large-bodied species feeding at the food web's base, so called 'trophic whales', can buffer ecosystems against unstable dynamics induced by nutrient enrichment. Similar to the functionality of chemical or mechanical buffers, they serve as 'biotic buffers' that take up stressor effects and thus protect fragile systems from instability. We discuss trophic whales as common functional building blocks across ecosystems. Considering increasing stressor effects under anthropogenic global change, conservation of these network-intrinsic biotic buffers may help maintain the stability and diversity of natural ecosystems. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Space inversion of spinors revisited: A possible explanation of chiral behavior in weak interactions
Pavšič, Matej
2010-08-01
We investigate a model in which spinors are considered as being embedded within the Clifford algebra that operates on them. In Minkowski space M1,3, we have four independent 4-component spinors, each living in a different minimal left ideal of Cl(1,3). We show that under space inversion, a spinor of one left ideal transforms into a spinor of another left ideal. This brings novel insight to the role of chirality in weak interactions. We demonstrate the latter role by considering an action for a generalized spinor field ψ that has not only a spinor index α but also an extra index i running over four ideals. The covariant derivative of ψ contains the generalized spin connection, the extra components of which are interpreted as the SU(2) gauge fields of weak interactions and their generalization. We thus arrive at a system that is left-right symmetric due to the presence of a “parallel sector”, postulated a long time ago, that contains mirror particles coupled to mirror SU(2) gauge fields.
Antiparallel Self-Association of a γ,α-Hybrid Peptide: More Relevance of Weak Interactions.
Venugopalan, Paloth; Kishore, Raghuvansh
2015-08-01
To learn how a preorganized peptide-based molecular template, together with diverse weak non-covalent interactions, leads to an effective self-association, we investigated the conformational characteristics of a simple γ,α-hybrid model peptide, Boc-γ-Abz-Gly-OMe. The single-crystal X-ray diffraction analysis revealed the existence of a fully extended β-strand-like structure stabilized by two non-conventional C-H⋅⋅⋅O=C intramolecular H-bonds. The 2D (1) H NMR ROESY experiment led us to propose that the flat topology of the urethane-γ-Abz-amide moiety is predominantly preserved in a non-polar environment. The self-association of the energetically more favorable antiparallel β-strand-mimic in solid-state engenders an unusual 'flight of stairs' fabricated through face-to-face and edge-to-edge Ar⋅⋅⋅Ar interactions. In conjunction with FT-IR spectroscopic analysis in chloroform, we highlight that conformationally semi-rigid γ-Abz foldamer in appositely designed peptides may encourage unusual β-strand or β-sheet-like self-association and supramolecular organization stabilized via weak attractive forces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dipole-dipole interaction in cavity QED: The weak-coupling, nondegenerate regime
Donaire, M.; Muñoz-Castañeda, J. M.; Nieto, L. M.
2017-10-01
We compute the energies of the interaction between two atoms placed in the middle of a perfectly reflecting planar cavity, in the weak-coupling nondegenerate regime. Both inhibition and enhancement of the interactions can be obtained by varying the size of the cavity. We derive exact expressions for the dyadic Green's function of the cavity field which mediates the interactions and apply time-dependent quantum perturbation theory in the adiabatic approximation. We provide explicit expressions for the van der Waals potentials of two polarizable atomic dipoles and the electrostatic potential of two induced dipoles. We compute the van der Waals potentials in three different scenarios: two atoms in their ground states, two atoms excited, and two dissimilar atoms with one of them excited. In addition, we calculate the phase-shift rate of the two-atom wave function in each case. The effect of the two-dimensional confinement of the electromagnetic field on the dipole-dipole interactions is analyzed. This effect depends on the atomic polarization. For dipole moments oriented parallel to the cavity plates, both the electrostatic and the van der Waals interactions are exponentially suppressed for values of the cavity width much less than the interatomic distance, whereas for values of the width close to the interatomic distance, the strength of both interactions is higher than their values in the absence of cavity. For dipole moments perpendicular to the plates, the strength of the van der Waals interaction decreases for values of the cavity width close to the interatomic distance, while it increases for values of the width much less than the interatomic distance with respect to its strength in the absence of cavity. We illustrate these effects by computing the dipole-dipole interactions between two alkali atoms in circular Rydberg states.
Rearrangements of interacting Fermi liquids
Yang, Rong-Yao; Jiang, Wei-Zhou
2012-01-01
The stability condition of Landau Fermi liquid theory may be broken when the interaction between particles is strong enough. In this case, the ground state is reconstructed to have a particle distribution different from the Fermi-step function. For specific instances, one case with the vector boson exchange and another with the relativistic heavy-ion collision are taken into consideration. With the vector boson exchange, we find that the relative weak interaction strength can lead to the grou...
Relativistic quantum dynamics of scalar bosons under a full vector Coulomb interaction
Energy Technology Data Exchange (ETDEWEB)
Castro, Luis B. [Universidade Federal do Maranhao (UFMA), Departamento de Fisica, Sao Luis, MA (Brazil); Oliveira, Luiz P. de [Universidade de Sao Paulo (USP), Instituto de Fisica, Sao Paulo, SP (Brazil); Garcia, Marcelo G. [Instituto Tecnologico de Aeronautica (ITA), Departamento de Fisica, Sao Jose dos Campos, SP (Brazil); Universidade Estadual de Campinas (UNICAMP), IMECC, Departamento de Matematica Aplicada, Campinas, SP (Brazil); Castro, Antonio S. de [Universidade Estadual Paulista (UNESP), Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)
2017-05-15
The relativistic quantum dynamics of scalar bosons in the background of a full vector coupling (minimal plus nonminimal vector couplings) is explored in the context of the Duffin-Kemmer-Petiau formalism. The Coulomb phase shift is determined for a general mixing of couplings and it is shown that the space component of the nonminimal coupling is a sine qua non condition for the exact closed-form scattering amplitude. It follows that the Rutherford cross section vanishes in the absence of the time component of the minimal coupling. Bound-state solutions obtained from the poles of the partial scattering amplitude show that the time component of the minimal coupling plays an essential role. The bound-state solutions depend on the nonminimal coupling and the spectrum consists of particles or antiparticles depending on the sign of the time component of the minimal coupling without chance for pair production even in the presence of strong couplings. It is also shown that an accidental degeneracy appears for a particular mixing of couplings. (orig.)
Non-equilibrium phase transitions in a driven-dissipative system of interacting bosons
Young, Jeremy T.; Foss-Feig, Michael; Gorshkov, Alexey V.; Maghrebi, Mohammad F.
2017-04-01
Atomic, molecular, and optical systems provide unique opportunities to study simple models of driven-dissipative many-body quantum systems. Typically, one is interested in the resultant steady state, but the non-equilibrium nature of the physics involved presents several problems in understanding its behavior theoretically. Recently, it has been shown that in many of these models, it is possible to map the steady-state phase transitions onto classical equilibrium phase transitions. In the language of Keldysh field theory, this relation typically only becomes apparent after integrating out massive fields near the critical point, leaving behind a single massless field undergoing near-equilibrium dynamics. In this talk, we study a driven-dissipative XXZ bosonic model and discover critical points at which two fields become gapless. Each critical point separates three different possible phases: a uniform phase, an anti-ferromagnetic phase, and a limit cycle phase. Furthermore, a description in terms of an equilibrium phase transition does not seem possible, so the associated phase transitions appear to be inherently non-equilibrium.
Relativistic quantum dynamics of scalar bosons under a full vector Coulomb interaction
Castro, Luis B.; de Oliveira, Luiz P.; Garcia, Marcelo G.; de Castro, Antonio S.
2017-05-01
The relativistic quantum dynamics of scalar bosons in the background of a full vector coupling (minimal plus nonminimal vector couplings) is explored in the context of the Duffin-Kemmer-Petiau formalism. The Coulomb phase shift is determined for a general mixing of couplings and it is shown that the space component of the nonminimal coupling is a sine qua non condition for the exact closed-form scattering amplitude. It follows that the Rutherford cross section vanishes in the absence of the time component of the minimal coupling. Bound-state solutions obtained from the poles of the partial scattering amplitude show that the time component of the minimal coupling plays an essential role. The bound-state solutions depend on the nonminimal coupling and the spectrum consists of particles or antiparticles depending on the sign of the time component of the minimal coupling without chance for pair production even in the presence of strong couplings. It is also shown that an accidental degeneracy appears for a particular mixing of couplings.
Energy Technology Data Exchange (ETDEWEB)
Conesa del valle, Z
2007-07-15
Lattice QCD predicts a transition from a hadronic phase to a Quark Gluon Plasma phase, QGP, for temperatures above 10{sup 13} K. Heavy-ion collisions are proposed to recreate it in laboratory. With such a purpose, the LHC (Large Hadron Collider) will provide Pb-Pb collisions at 5.5 TeV/u, and the ALICE experiment will permit to explore them. In particular, the ALICE muon spectrometer will permit to investigate the muon related probes (quarkonia, open beauty,...). The expected apparatus performances to measure muons and dimuons are discussed. A factorization technique is employed to unravel the different contributions to the global efficiency. Results indicate that the detector should be able to measure muons up to pT {approx} 100 GeV/c with a resolution of about 10 per cent. We show that weak bosons production could be measured for the first time in heavy-ion collisions. Single muon p{sub T} and dimuons invariant mass distributions will probe W and Z production. As mainly muons from b- and c-quarks decays will populate the intermediate-p{sub T} of 5 - 25 GeV/c, heavy quark in-medium energy loss calculations indicate that the single muon spectra would be suppressed by a factor 2-4 in the most central 0 - 10% Pb-Pb collisions at 5.5 TeV. However, for p{sub T} > 35 GeV/c the weak boson decays are predominant, and no suppression is expected. Estimations indicate that the b- and W-muons crossing point shifts down in transverse momenta by 5 to 7 GeV/c in the most central 0 - 10% Pb-Pb collisions at 5.5 TeV. (author)
Discovering protein complexes in protein interaction networks via exploring the weak ties effect.
Ma, Xiaoke; Gao, Lin
2012-01-01
Studying protein complexes is very important in biological processes since it helps reveal the structure-functionality relationships in biological networks and much attention has been paid to accurately predict protein complexes from the increasing amount of protein-protein interaction (PPI) data. Most of the available algorithms are based on the assumption that dense subgraphs correspond to complexes, failing to take into account the inherence organization within protein complex and the roles of edges. Thus, there is a critical need to investigate the possibility of discovering protein complexes using the topological information hidden in edges. To provide an investigation of the roles of edges in PPI networks, we show that the edges connecting less similar vertices in topology are more significant in maintaining the global connectivity, indicating the weak ties phenomenon in PPI networks. We further demonstrate that there is a negative relation between the weak tie strength and the topological similarity. By using the bridges, a reliable virtual network is constructed, in which each maximal clique corresponds to the core of a complex. By this notion, the detection of the protein complexes is transformed into a classic all-clique problem. A novel core-attachment based method is developed, which detects the cores and attachments, respectively. A comprehensive comparison among the existing algorithms and our algorithm has been made by comparing the predicted complexes against benchmark complexes. We proved that the weak tie effect exists in the PPI network and demonstrated that the density is insufficient to characterize the topological structure of protein complexes. Furthermore, the experimental results on the yeast PPI network show that the proposed method outperforms the state-of-the-art algorithms. The analysis of detected modules by the present algorithm suggests that most of these modules have well biological significance in context of complexes, suggesting
Directory of Open Access Journals (Sweden)
Jun He
2012-03-01
Full Text Available By means of the nonequilibrium Green's functions and the density functional theory, we have investigated the electronic transport properties of C60 based electronic device with different intermolecular interactions. It is found that the electronic transport properties vary with the types of the interaction between two C60 molecules. A fast electrical switching behavior based on negative differential resistance has been found when two molecules are coupled by the weak π − π interaction. Compared to the solid bonding, the weak interaction is found to induce resonant tunneling, which is responsible for the fast response to the applied electric field and hence the velocity of switching.
3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds
Leckey, C.; Hinders, M.
2011-01-01
Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.
Directory of Open Access Journals (Sweden)
Brigitte Hiller
2006-02-01
Full Text Available Low energy hadron phenomenology involving the (u,d,s quarks is often approached through effective multi-quark Lagrangians with the symmetries of QCD. A very successful approach consists in taking the four-quark Nambu--Jona-Lasinio Lagrangianwith the chiral $U_L(3imes U_R(3$ symmetry in the massless limit, combined with the $U_A(1$ breaking six-quark flavourdeterminant interaction of 't Hooft. We review the present status and some very recent developments related to the functionalintegration over the cubic term in auxiliary mesonic variables that one introduces to bosonize the system. Various approaches forhandling this functional, which cannot be integrated exactly, are discussed: the stationary phase approximation, the perturbative expansion, the loop expansion, their interrelation and importance for the evaluation of the effective action. The intricate group structure rules out the method of Airy's integral. The problem ofthe instability of the vacuum is stated and a solution given by including eight-quark interactions.
Energy Technology Data Exchange (ETDEWEB)
Long, Mingsheng; Gong, Youpin; Wei, Xiangfei; Zhu, Chao; Xu, Jianbao; Liu, Ping; Guo, Yufen; Li, Weiwei; Liu, Liwei, E-mail: lwliu2007@sinano.ac.cn [Key Laboratory of Nanodevices and Applications-CAS and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Liu, Guangtong [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2014-04-14
We fabricated a vertical structure device, in which graphene is sandwiched between two asymmetric ferromagnetic electrodes. The measurements of electron and spin transport were performed across the combined channels containing the vertical and horizontal components. The presence of electron-electron interaction (EEI) was found not only at low temperatures but also at moderate temperatures up to ∼120 K, and EEI dominates over weak localization (WL) with and without applying magnetic fields perpendicular to the sample plane. Moreover, spin valve effect was observed when magnetic filed is swept at the direction parallel to the sample surface. We attribute the EEI and WL surviving at a relatively high temperature to the effective suppress of phonon scattering in the vertical device structure. The findings open a way for studying quantum correlation at relatively high temperature.
Measurement of the weak nucleon-nucleon interaction by polarized cold neutron capture on protons
Directory of Open Access Journals (Sweden)
Alarcon R.
2014-03-01
Full Text Available The NPDGamma Experiment at the Spallation Neutron Source at Oak Ridge National Laboratory is measuring the parity-odd correlation between the neutron spin and the direction of the emitted photon in the capture of polarized cold neutrons on protons. A parity violating asymmetry from this process is directly related to the strength of the hadronic weak interaction between nucleons. The experiment was run first with heavier nuclear targets to check systematic effects, false asymmetries, and backgrounds. Since early 2012 the experiment has been collecting data with a 16-liter liquid parahydrogen target. Data taking will continue through 2013 until statistics for a 10−8 asymmetry measurement are expected. The experiment performance will be discussed as well as the status of the asymmetry measurements.
The new finite temperature Schrödinger equations with strong or weak interaction
Li, Heling; Yang, Bin; Shen, Hongjun
2017-07-01
Implanting the thoughtway of thermostatistics into quantum mechanics, we formulate new Schrödinger equations of multi-particle and single-particle respectively at finite temperature. To get it, the pure-state free energies and the microscopic entropy operators are introduced and meantime the pure-state free energies take the places of mechanical energies at finite temperature. The definition of microscopic entropy introduced by Wu was also revised, and the strong or weak interactions dependent on temperature are considered in multi-particle Schrödinger Equations. Based on the new Schrödinger equation at finite temperature, two simple cases were analyzed. The first one is concerning some identical harmonic oscillators in N lattice points and the other one is about N unrelated particles in three dimensional in finite potential well. From the results gotten, we conclude that the finite temperature Schrödinger equation is particularly important for mesoscopic systems.
Energy Technology Data Exchange (ETDEWEB)
Schwartz, David Joel [Univ. of California, Berkeley, CA (United States)
1995-07-01
NMR spectroscopy is ideal for studying weak interactions (formation enthalpy ≤20 kcal/mol) in solution. The metallocene bis(pentamethylcyclopentadienyl)ytterbium, Cp*_{2}Yb, is ideal for this purpose. cis-P_{2}PtH_{2}complexes (P = phosphine) were used to produce slow-exchange Cp*_{2}YbL adducts for NMR study. Reversible formation of (P_{2}PtH)_{2} complexes from cis-P_{2}PtH_{2} complexes were also studied, followed by interactions of Cp*_{2}Yb with phosphines, R_{3}PX complexes. A NMR study was done on the interactions of Cp*_{2}Yb with H_{2}, CH_{4}, Xe, CO, silanes, stannanes, C_{6}H_{6}, and toluene.
Interaction of torsional and longitudinal guided waves in weakly nonlinear circular cylinders.
Liu, Yang; Khajeh, Ehsan; Lissenden, Cliff J; Rose, Joseph L
2013-05-01
The nonlinear forcing terms for the wave equation in general curvilinear coordinates are derived based on an isotropic homogeneous weakly nonlinear elastic material. The expressions for the nonlinear part of the first Piola-Kirchhoff stress are specialized for axisymmetric torsional and longitudinal fundamental waves in a circular cylinder. The matrix characteristics of the nonlinear forcing terms and secondary mode wave structures are manipulated to analyze the higher harmonic generation due to the guided wave mode self-interactions and mutual interactions. It is proved that both torsional and longitudinal secondary wave fields can be cumulative by a specific type of guided wave mode interactions. A method for the selection of preferred fundamental excitations that generate strong cumulative higher harmonics is formulated, and described in detail for second harmonic generation. Nonlinear finite element simulations demonstrate second harmonic generation by T(0,3) and L(0,4) modes at the internal resonance points. A linear increase of the normalized modal amplitude ratio A2/A1(2) over the propagation distance is observed for both cases, which indicates that mode L(0,5) is effectively generated as a cumulative second harmonic. Counter numerical examples demonstrate that synchronism and sufficient power flux from the fundamental mode to the secondary mode must occur for the secondary wave field to be strongly cumulative.
Measurement of the parity nonconserving neutral weak interaction in atomic thallium
Energy Technology Data Exchange (ETDEWEB)
Bucksbaum, P.H.
1980-11-01
This thesis describes an experiment to measure parity nonconservation in atomic thallium. A frequency doubled, flashlamp pumped tunable dye laser is used to excite the 6P/sub 1/2/(F = 0) ..-->.. 7P/sub 1/2/(F = 1) transition at 292.7 nm, with circularly polarized light. An electrostatic field E of 100 to 300 V/cm causes this transition to occur via Stark induced electric dipole. Two field free transitions may also occur: a highly forbidden magnetic dipole M, and a parity nonconserving electric dipole epsilon/sub P/. The latter is presumed to be due to the presence of a weak neutral current interaction between the 6p valence electron and the nucleus, as predicted by gauge theories which unite the electromagnetic and weak interactions. Both M and epsilon/sub P/ interfere with the Stark amplitude ..beta..E to produce a polarization of the 7P/sub 1/2/ state. This is measured with a circularly polarized infrared laser beam probe, tuned to the 7P/sub 1/2/ ..-->.. 8S/sub 1/2/ transition. This selectively excites m/sub F/ = +1 or -1 components of the 7P/sub 1/2/ state, and the polarization is seen as an asymmetry in 8S ..-->.. 6P/sub 3/2/ fluorescence when the probe helicity is reversed. The polarization due to M is ..delta../sub M/ = -2M/(BETAE). It is used to calibrate the analyzing efficiency. The polarization due to epsilon/sub P/ is ..delta../sub P/ = 2i epsilon/sub P//(..beta..E), and can be distinguished from ..delta../sub M/ by its properties under reversal of the 292.7 nm photon helicity and reversal of the laser direction. A preliminary measurement yielded a parity violation in agreement with the gauge theory of Weinberg and Salam.
Nonlocal bunching of composite bosons
Lasmar, Zakarya; Kaszlikowski, Dagomir; Kurzyński, Paweł
2017-09-01
It was suggested that two entangled fermions can behave like a single boson and that the bosonic quality is proportional to the degree of entanglement between the two particles. The relation between bosonic quality and entanglement is quite natural if one takes into account the fact that entanglement appears in bound states of interacting systems. However, entanglement can still be present in spatially separated subsystems that no longer interact. These systems are often the subject of studies on quantum nonlocality and foundations of quantum physics. Here, we ask whether an entangled spatially separated fermionic pair can exhibit bosonic properties. We show that under certain conditions the answer to this question can be positive. In particular, we propose a nonlocal bunching scenario in which two such pairs form an analog of a two-partite bosonic Fock state.
Zandvliet, Henricus J.W.; Hoede, C.
2009-01-01
We show that the square two-dimensional (2D) Ising lattice with nearest- (J) and weak next-nearest-neighbour interactions (Jd) can be mapped on a square 2D Ising lattice that has only nearest neighbour interactions (J*). For Jd/J << 1 the transformation equation has the simple form
Energy Technology Data Exchange (ETDEWEB)
Chavda, Bhavin R., E-mail: chavdabhavin9@gmail.com; Dubey, Rahul P.; Patel, Urmila H. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat (India); Gandhi, Sahaj A. [Bhavan’s Shri I.L. Pandya Arts-Science and Smt. J.M. shah Commerce College, Dakar, Anand -388001, Gujarat, Indian (India); Barot, Vijay M. [P. G. Center in Chemistry, Smt. S. M. Panchal Science College, Talod, Gujarat 383 215 (India)
2016-05-06
The novel chalcone derivatives have widespread applications in material science and medicinal industries. The density functional theory (DFT) is used to optimized the molecular structure of the three chalcone derivatives (M-I, II, III). The observed discrepancies between the theoretical and experimental (X-ray data) results attributed to different environments of the molecules, the experimental values are of the molecule in solid state there by subjected to the intermolecular forces, like non-bonded hydrogen bond interactions, where as isolated state in gas phase for theoretical studies. The lattice energy of all the molecules have been calculated using PIXELC module in Coulomb –London –Pauli (CLP) package and is partitioned into corresponding coulombic, polarization, dispersion and repulsion contributions. Lattice energy data confirm and strengthen the finding of the X-ray results that the weak but significant intermolecular interactions like C-H…O, Π- Π and C-H… Π plays an important role in the stabilization of crystal packing.
WITCH: a recoil spectrometer for weak interaction and nuclear physics studies
Beck, M; Golovko, V.V.; Kozlov, V.Yu.; Kraev, I.S.; Lindroth, A.; Phalet, T.; Schuurmans, P.; Severijns, N.; Vereecke, B.; Versyck, S.; Beck, D.; Quint, W.; Ames, F.; Bollen, G.
2003-01-01
An experimental set-up is described for the precise measurement of the recoil energy spectrum of the daughter ions from nuclear beta decay. The experiment is called WITCH, short for Weak Interaction Trap for CHarged particles, and is set up at the ISOLDE facility at CERN. The principle of the experiment and its realization are explained as well as the main physics goal. A cloud of radioactive ions stored in a Penning trap serves as the source for the WITCH experiment, leading to the minimization of scattering and energy loss of the decay products. The energy spectrum of the recoiling daughter ions from the $\\beta$--decays in this ion cloud will be measured with a retardation spectrometer. The principal aim of the WITCH experiment is to study the electroweak interaction by determining the beta--neutrino angular correlation in nuclear $\\beta$--decay from the shape of this recoil energy spectrum. This will be the first time that the recoil energy spectrum of the daughter ions from $\\beta$--decay can be measured ...
Weak interactions between water and clathrate-forming gases at low pressures
Energy Technology Data Exchange (ETDEWEB)
Thurmer, Konrad; Yuan, Chunqing; Kimmel, Gregory A.; Kay, Bruce D.; Smith, R. Scott
2015-11-01
Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10-1 mbar methane or 10-5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10-5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water-gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~43 K and isobutane desorbs near ~100 K. Similar desorption temperatures were observed for desorption from amorphous solid water.
Interaction of a weak shock wave with a discontinuous heavy-gas cylinder
Energy Technology Data Exchange (ETDEWEB)
Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang [High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000 (China); Luo, Xisheng, E-mail: xluo@ustc.edu.cn [Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026 (China)
2015-06-15
The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF{sub 6} surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into three branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.
Interaction of a weak shock wave with a discontinuous heavy-gas cylinder
Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang; Luo, Xisheng
2015-06-01
The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF6 surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into three branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.
Radiative corrections to vector boson masses
Veltman, M.J.G.
1980-01-01
Weak and e.m. radiative corrections to vector boson masses are computed. Including corrections due to the presently known leptons and quarks, mass shifts of+3080 and +3310 MeV are obtained for the masses of the charged and neutral vector boson.
Search for invisibly decaying Higgs boson at Large Hadron Collider
Indian Academy of Sciences (India)
In several scenarios of Beyond Standard Model physics, the invisible decay mode of the Higgs boson is an interesting possibility. The search strategy for an invisible Higgs boson at the Large Hadron Collider (LHC), using weak boson fusion process, has been studied in detail, by taking into account all possible ...
Energy Technology Data Exchange (ETDEWEB)
Bloom, Paul Craig [Univ. of California, Davis, CA (United States)
1998-03-01
An investigation of the interactions between the $W$ boson and the $Z$ boson and photon through the pair production of bosons is presented. This has been accomplished via a study of the reaction $p\\overline{p} \\to \\ell\\overline{\
Relaxation and coarsening of weakly-interacting breathers in a simplified DNLS chain
Iubini, Stefano; Politi, Antonio; Politi, Paolo
2017-07-01
The discrete nonlinear Schrödinger (DNLS) equation displays a parameter region characterized by the presence of localized excitations (breathers). While their formation is well understood and it is expected that the asymptotic configuration comprises a single breather on top of a background, it is not clear why the dynamics of a multi-breather configuration is essentially frozen. In order to investigate this question, we introduce simple stochastic models, characterized by suitable conservation laws. We focus on the role of the coupling strength between localized excitations and background. In the DNLS model, higher breathers interact more weakly, as a result of their faster rotation. In our stochastic models, the strength of the coupling is controlled directly by an amplitude-dependent parameter. In the case of a power-law decrease, the associated coarsening process undergoes a slowing down if the decay rate is larger than a critical value. In the case of an exponential decrease, a freezing effect is observed that is reminiscent of the scenario observed in the DNLS. This last regime arises spontaneously when direct energy diffusion between breathers and background is blocked below a certain threshold.
Energetic electron precipitation in weak to moderate corotating interaction region-driven storms
Ødegaard, Linn-Kristine Glesnes; Tyssøy, Hilde Nesse; Søraas, Finn; Stadsnes, Johan; Sandanger, Marit Irene
2017-03-01
High-energy electron precipitation from the radiation belts can penetrate deep into the mesosphere and increase the production rate of NOx and HOx, which in turn will reduce ozone in catalytic processes. The mechanisms for acceleration and loss of electrons in the radiation belts are not fully understood, and most of the measurements of the precipitating flux into the atmosphere have been insufficient for estimating the loss cone flux. In the present study the electron flux measured by the NOAA POES Medium Energy Proton and Electron Detectors 0° and 90° detectors is combined together with theory of pitch angle diffusion by wave-particle interaction to quantify the electron flux lost below 120 km altitude. Using this method, 41 weak and moderate geomagnetic storms caused by corotating interaction regions during 2006-2010 are studied. The dependence of the energetic electron precipitation fluxes upon solar wind parameters and geomagnetic indices is investigated. Nine storms give increased precipitation of >˜750 keV electrons. Nineteen storms increase the precipitation of >˜300 keV electrons, but not the >˜750 keV population. Thirteen storms either do not change or deplete the fluxes at those energies. Storms that have an increase in the flux of electrons with energy >˜300 keV are characterized by an elevated solar wind velocity for a longer period compared to the storms that do not. Storms with increased precipitation of >˜750 keV flux are distinguished by higher-energy input from the solar wind quantified by the ɛ parameter and corresponding higher geomagnetic activity.
Energy Technology Data Exchange (ETDEWEB)
Esteve, J.G.; Morales, A.; Morales, J.; Nuez-Lagos, R.; Pacheco, A.F.
1984-04-01
The parity-violating E1 transitions between the n = 2 levels of atomic helium, induced by the electron-electron neutral weak interaction have been computed by using Coulomb-type wave functions and (up to 84 parameter) Hylleraas wave functions. The parity-violating matrix elements turn out to be of the same order of magnitude as those due to the electron-nucleus weak interaction, thus allowing one to conclude that the relative importance of both effects is to be traced to their corresponding effective coupling constants.
Robust boson dispenser: Quantum state preparation in interacting many-particle systems
Reshodko, Irina; Benseny, Albert; Busch, Thomas
2017-08-01
We present a technique to control the spatial state of a small cloud of interacting particles at low temperatures with almost perfect fidelity using spatial adiabatic passage. To achieve this, the resonant trap energies of the system are engineered in such a way that a single, well-defined eigenstate connects the initial and desired states and is isolated from the rest of the spectrum. We apply this procedure to the task of separating a small pre-defined number of particles (up to 10) from an initial cloud and show that it can be implemented in radio-frequency traps using experimentally realistic parameters.
Jost, Jürgen
2007-01-01
This book presents a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, Jost presents the theory of point particles and Feynman path integrals. He provides detailed background material, including the geometry of Teichmüller space, the conformal and complex geometry of Riemann surfaces, and the subtleties of boundary regularity questions. The high point is the description of the partition function for Bosonic strings as a finite-dimensional integral over a moduli space of Riemann surfaces. Jost concludes with some topics related to open and closed strings and D-branes. Bosonic Strings is suitable for graduate students and researchers interested in the mathematics underlying string theory.
Improved constraints on monopole–dipole interaction mediated by pseudo-scalar bosons
Directory of Open Access Journals (Sweden)
N. Crescini
2017-10-01
Full Text Available We present a more stringent upper limit on long-range axion-mediated forces obtained by the QUAX-gpgs experiment, located at the INFN – Laboratori Nazionali di Legnaro. By measuring variations of a paramagnetic GSO crystal magnetization with a dc-SQUID magnetometer we investigate the possible coupling between electron spins and unpolarized nucleons in lead disks. The induced magnetization can be interpreted as the effect of a long-range spin dependent interaction mediated by axions or Axion Like Particles (ALPs. The corresponding coupling strength is proportional to the CP violating term gpegsN, i.e. the product of the pseudoscalar and scalar coupling constants of electron and nucleon, respectively. Our upper limit is more constraining than previous ones in the interaction range 0.01 m<λa<0.2 m, with a best result on gpegsN/(ħc of 4.3×10−30 at 95% confidence level in the interval 0.1 m<λa<0.2 m. We eventually discuss our plans to improve the QUAX-gpgs sensitivity by a few orders of magnitude, which will allow us to investigate the ϑ≃10−10 range of CP-violating parameter and test some QCD axion models.
Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Maurice; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Childers, John Taylor; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; do Vale, Maria Aline Barros; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire, Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Ruderman, Joshua Thomas; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saimpert, Matthias; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spalla, Margherita; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz
2015-01-01
A search for the decay of neutral, weakly interacting, long-lived particles using data collected by the ATLAS detector at the LHC is presented. This analysis uses the full dataset recorded in 2012: 20.3 fb$^{-1}$ of proton--proton collision data at $\\sqrt{s} = 8$ TeV. The search employs techniques for reconstructing decay vertices of long-lived particles decaying to jets in the inner tracking detector and muon spectrometer. Signal events require at least two reconstructed vertices. No significant excess of events over the expected background is found, and limits as a function of proper lifetime are reported for the decay of the Higgs boson and other scalar bosons to long-lived particles and for Hidden Valley $Z^\\prime$ and Stealth SUSY benchmark models. The first search results for displaced decays in $Z^\\prime$ and Stealth SUSY models are presented. The upper bounds of the excluded proper lifetimes are the most stringent to date.
Abreu, P; Adye, T; Adzic, P; Albrecht, Z; Alderweireld, T; Alekseev, G D; Alemany, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amapane, N; Amato, S; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Beillière, P; Belokopytov, Yu A; Belous, K S; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, H M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Bracko, M; Branchini, P; Brenner, R A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Buschbeck, Brigitte; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camporesi, T; Canale, V; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chelkov, G A; Chierici, R; Shlyapnikov, P; Chochula, P; Chorowicz, V; Chudoba, J; Cieslik, K; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Costa, M; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Hondt, J; Dalmau, J; Davenport, M; Da Silva, W; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Engel, J P; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, Michael; Fernández, J; Ferrer, A; Ferrer-Ribas, E; Ferro, F; Firestone, A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Geralis, T; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Gris, P; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Hansen, J; Harris, F J; Hauler, F; Hedberg, V; Heising, S; Hernández, J J; Herquet, P; Herr, H; Higón, E; Holmgren, Sven Olof; Holt, P J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huber, M; Hughes, G J; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Jeans, D; Johansson, E K; Jönsson, P E; Joram, C; Juillot, P; Jungermann, L; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Kernel, G; Kersevan, Borut P; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kinvig, A; Kjaer, N J; Klapp, O; Kluit, P M; Kokkinias, P; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kriznic, E; Krumshtein, Z; Kubinec, P; Kurowska, J; Kurvinen, K L; Lamsa, J; Lane, D W; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Leinonen, L; Leisos, A; Leitner, R; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liebig, W; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Maltezos, S; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martí i García, S; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Merle, E; Meroni, C; Meyer, W T; Myagkov, A; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Moch, M; Møller, R; Mönig, K; Monge, M R; Moraes, D; Morettini, P; Morton, G A; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Mundim, L M; Muresan, R; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Negri, P; Neufeld, N; Nicolaidou, R; Nielsen, B S; Niezurawski, P; Nikolenko, M; Nomokonov, V P; Nygren, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pavel, T; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Rehn, J; Reid, D; Reinertsen, P L; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Ripp-Baudot, I; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Savoy-Navarro, Aurore; Schwemling, P; Schwering, B; Schwickerath, U; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seibert, N; Sekulin, R L; Sette, G; Shellard, R C; Siebel, M; Simard, L C; Simonetto, F; Sissakian, A N; Smadja, G; Smirnova, O G; Smith, G R; Solovyanov, O; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Squarcia, S; Stanescu, C; Stanitzki, M; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Terranova, F; Timmermans, J; Tinti, N; Tkatchev, L G; Tobin, M; Todorova-Nová, S; Tomé, B; Tonazzo, A; Tortora, L; Tortosa, P; Tranströmer, G; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Dam, P; Van den Boeck, W; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verdier, P; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Voulgaris, G; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wolf, G; Yi, J; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zinchenko, A I; Zoller, P; Zumerle, G; Zupan, M
2000-01-01
Searches for {\\mbox{$ {\\mathrm H} {\\mathrm Z} $}} production d with the Higgs boson decaying into an invisible final state have been performedd the data collected by the DELPHI experimentd up to the centre-of-mass energy of 188.6~{\\mbox{$ {\\mathrm{GeV}}$}}. d The hadronic and muon pair final states of the d {\\mbox{$ {\\mathrm Z} $}} d boson were analysed. No signal was found. d Upper limits on the cross-section and the corresponding Higgs boson mass d limits were set d at 95\\% confidence level. Combining these results with DELPHI results for the vd a 95\\% confidence level Higgs mass lower limit of 92.3~{\\mbox{$d {\\mathrm{GeV}}$}} was obtained, independentd of the branching ratio into visible and invisible decays.
Search for light vector boson production in e+e−→μ+μ−γ interactions with the KLOE experiment
Directory of Open Access Journals (Sweden)
D. Babusci
2014-09-01
Full Text Available We have searched for a light vector boson U, the possible carrier of a “dark force”, with the KLOE detector at the DAΦNE e+e− collider, motivated by astrophysical evidence for the presence of dark matter in the Universe. Using e+e− collisions collected with an integrated luminosity of 239.3 pb−1, we look for a dimuon mass peak in the reaction e+e−→μ+μ−γ, corresponding to the decay U→μ+μ−. We find no evidence for a U vector boson signal. We set a 90% CL upper limit for the mixing parameter squared between the photon and the U boson of 1.6×10−5 to 8.6×10−7 for the mass region 520
Abbiendi, G.; Akesson, P.F.; Alexander, G.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, K.W.; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, R.M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, J.W.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, M.; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Herten, G.; Heuer, R.D.; Hill, J.C.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krasznahorkay, A., Jr.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Mashimo, T.; Mattig, P.; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, N.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; O'Neale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, D.E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rossi, A.M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, M.; Schumacher, M.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, D.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, L.
2010-01-01
A search is performed for Higgs bosons decaying into invisible final states, produced in association with a Zo boson in e+e- collisions at energies between 183 and 209 GeV. The search is based on data samples collected by the OPAL detector at LEP corresponding to an integrated luminosity of about 660 pb-1. The analysis aims to select events containing the hadronic decay products of the Zo boson and large missing momentum, as expected from Higgs boson decay into a pair of stable weakly interacting neutral particles, such as the lightest neutralino in the Minimal Supersymmetric Standard Model. The same analysis is applied to a search for nearly invisible Higgs boson cascade decays into stable weakly interacting neutral particles. No excess over the expected background from Standard Model processes is observed. Limits on the production of invisibly decaying Higgs bosons produced in association with a Zo boson are derived. Assuming a branching ratio BR(ho->invisible)=1, a lower limit of 108.2 GeV is placed on the...
Electroweak oblique parameters as a probe of the trilinear Higgs boson self-interaction
DEFF Research Database (Denmark)
Kribs, Graham D.; Maier, Andreas; Rzehak, Heidi
2017-01-01
We calculate the two-loop contributions from a modified trilinear Higgs self-interaction, κλλSMvh3, to the electroweak oblique parameters S and T. Using the current bounds on S and T from electroweak measurements, we find the 95% C.L. constraint on the modified trilinear coupling to be -14.0≤κλ≤17.......4. The largest effects on S and T arise from two insertions of the modified trilinear coupling that result in T/S≃-3/2; remarkably, this is nearly parallel to the axis of the tightest experimental constraint in the S-T plane. No contributions to S and T arise from a modified Higgs quartic coupling at two......-loop order. These calculations utilized a gauge-invariant parametrization of the trilinear Higgs coupling in terms of higher-dimensional operators (H†H)n with n≥3. Interestingly, the bounds on κλ that we obtain are comparable to constraints from di-Higgs production at the LHC as well as recent bounds from...
Technicolor Higgs boson in the light of LHC data
DEFF Research Database (Denmark)
Belyaev, Alexander; S. Brown, Matthew; Foadi, Roshan
2014-01-01
We consider scenarios in which the 125 GeV resonance observed at the Large Hadron Collider is a Technicolor (TC) isosinglet scalar, the TC Higgs. By comparison with quantum chromodynamics, we argue that the couplings of the TC Higgs to the massive weak bosons are very close to the Standard Model...... space where the form factors are of order unity and consistent with data at the 95% CL, in agreement with expectations in TC theories. This indicates that the discovered Higgs boson is consistent with the TC Higgs hypothesis for several TC theories....... (SM) values. The couplings to photons and gluons are model-dependent, but close to the SM values in several TC theories. The couplings of the TC Higgs to SM fermions are due to interactions beyond TC, such as Extended Technicolor: if such interactions successfully generate mass for the SM fermions, we...
Z boson mediated dark matter beyond the effective theory
Kearney, John; Orlofsky, Nicholas; Pierce, Aaron
2017-02-01
Direct detection bounds are beginning to constrain a very simple model of weakly interacting dark matter—a Majorana fermion with a coupling to the Z boson. In a particularly straightforward gauge-invariant realization, this coupling is introduced via a higher-dimensional operator. While attractive in its simplicity, this model generically induces a large ρ parameter. An ultraviolet completion that avoids an overly large contribution to ρ is the singlet-doublet model. We revisit this model, focusing on the Higgs blind spot region of parameter space where spin-independent interactions are absent. This model successfully reproduces dark matter with direct detection mediated by the Z boson but whose cosmology may depend on additional couplings and states. Future direct detection experiments should effectively probe a significant portion of this parameter space, aside from a small coannihilating region. As such, Z -mediated thermal dark matter as realized in the singlet-doublet model represents an interesting target for future searches.
SEARCH FOR DARK MATTER IN EVENTS WITH A SINGLE BOSON AND MISSING TRANSVERSE MOMENTUM WITH ATLAS
Brandt, Oleg; The ATLAS collaboration
2017-01-01
The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The results of searches for Dark Matter with a single boson and large missing transverse momentum in 13 TeV will be presented.
Spectral flow of trimer states of two heavy impurities and one light condensed boson
DEFF Research Database (Denmark)
Zinner, Nikolaj Thomas
2014-01-01
-Oppenheimer approximation to determine the effective three-body potential. We solve the resulting Schr\\"odinger equation numerically and determine the trimer binding energies as a function of the coherence length of the light bosonic condensate particles. The binding energy is found to be suppressed by the presence......The spectral flow of three-body (trimer) states consisting of two heavy (impurity) particles sitting in a condensate of light bosons is considered. Assuming that the condensate is weakly interaction and that an impurity and a boson have a zero-range two-body interaction, we use the Born...... of the condensate when the energy scale corresponding to the coherence length becomes of order the trimer binding energy in the absence of the condensate. We find that the Efimov scaling property is reflected in the critical values of the condensate coherence length at which the trimers are pushed...
Duplantier, Bertrand; Rivasseau, Vincent
2017-01-01
This volume provides a detailed description of the seminal theoretical construction in 1964, independently by Robert Brout and Francois Englert, and by Peter W. Higgs, of a mechanism for short-range fundamental interactions, now called the Brout-Englert-Higgs (BEH) mechanism. It accounts for the non-zero mass of elementary particles and predicts the existence of a new particle - an elementary massive scalar boson. In addition to this the book describes the experimental discovery of this fundamental missing element in the Standard Model of particle physics. The H Boson, also called the Higgs Boson, was produced and detected in the Large Hadron Collider (LHC) of CERN near Geneva by two large experimental collaborations, ATLAS and CMS, which announced its discovery on the 4th of July 2012. This new volume of the Poincaré Seminar Series, The H Boson, corresponds to the nineteenth seminar, held on November 29, 2014, at Institut Henri Po incaré in Paris.
Anomalous couplings, resonances and unitarity in vector boson scattering
Energy Technology Data Exchange (ETDEWEB)
Sekulla, Marco
2015-12-04
The Standard Model of particle physics has proved itself as a reliable theory to describe interactions of elementary particles. However, many questions concerning the Higgs sector and the associated electroweak symmetry breaking are still open, even after (or because) a light Higgs boson has been discovered. The 2→2 scattering amplitude of weak vector bosons is suppressed in the Standard Model due to the Higgs boson exchange. Therefore, weak vector boson scattering processes are very sensitive to additional contributions beyond the Standard Model. Possible new physics deviations can be studied model-independently by higher dimensional operators within the effective field theory framework. In this thesis, a complete set of dimension six and eight operators are discussed for vector boson scattering processes. Assuming a scenario where new physics in the Higgs/Goldstone boson decouples from the fermion-sector and the gauge-sector in the high energy limit, the impact of the dimension six operator L{sub HD} and dimension eight operators L{sub S,0} and L{sub S,1} to vector boson scattering processes can be studied separately for complete processes at particle colliders. However, a conventional effective field theory analysis will violate the S-matrix unitarity above a certain energy limit. The direct T-matrix scheme is developed to allow a study of effective field theory operators consistent with basic quantum-mechanical principles in the complete energy reach of current and future colliders. Additionally, this scheme can be used preventively for any model, because it leaves theoretical predictions invariant, which already satisfies unitarity. The effective field theory approach is further extended by allowing additional generic resonances coupling to the Higgs/Goldstone boson sector, namely the isoscalar-scalar, isoscalar-tensor, isotensor-scalar and isotensor-tensor. In particular, the Stueckelberg formalism is used to investigate the impact of the tensor degree of
Limit on right hand weak coupling parameters from inelastic neutrino interactions
Abramowicz, H; De Groot, J G H; Dydak, F; Eisele, F; Flottmann, T; Geweniger, C; Guyot, C; He, J T; Klasen, H P; Kleinknecht, K; Knobloch, J; Królikowski, J; May, J; Merlo, J P; Palazzi, P; Para, A; Peyaud, B; Pszola, B; Rander, J; Ranjard, F; Renk, B; Rothberg, J E; Ruan, T Z; Schlatter, W D; Schuller, J P; Steinberger, J; Taureg, H; Tittel, K; Turlay, René; von Rüden, Wolfgang; Wahl, H; Willutzki, H J; Wotschack, J; Wu, W M
1982-01-01
Right handed weak quark current coupled to the usual left handed weak lepton current would be seen in inclusive antineutrino scattering on nuclei as a contribution at large y with the quark (not antiquark) structure function. The authors do not see such a term, and can therefore put an upper limit on the relative strengths of such right handed currents: rho /sup 2/= sigma /sub R// sigma /sub L/ <0.009, 90% confidence. This measurement puts limits on the mixing angle of left- right symmetric models. In distinction to similar limits derived from muon decay or beta decay, our limits are also valid if the right handed neutrino is heavy.
Gounaris, George J; Zeppenfeld, Dieter; Ajaltouni, Ziad J; Arhrib, A; Bella, G; Berends, F A; Bilenky, S M; Blondel, A; Busenitz, J K; Choudhury, D; Clarke, P; Conboy, J E; Diehl, M; Fassouliotis, D; Frère, J M; Georgiopoulos, C H; Gibbs, M; Grünewald, M W; Hansen, J B; Hartmann, C; Jin, B N; Jousset, J; Kalinowski, Jan; Kocian, M L; Lahanas, Athanasios B; Layssac, J; Lieb, E H; Markou, C; Matteuzzi, C; Mättig, P; Moreno, J M; Moultaka, G; Nippe, A; Orloff, J; Papadopoulos, C G; Paschalis, J; Petridou, C; Phillips, H; Podlyski, F; Pohl, M; Renard, F M; Rossignol, J M; Rylko, R; Sekulin, R L; Van Sighem, A; Simopoulou, Errietta; Skillman, A; Spanos, V C; Tonazzo, A; Tytgat, M H G; Tzamarias, S; Verzegnassi, Claudio; Vlachos, N D; Zevgolatakos, E
1996-01-01
We present the results obtained by the "Triple Gauge Couplings" working group during the LEP2 Workshop (1994-1995). The report concentrates on the measurement of WW\\gamma and WWZ couplings in e^-e^+\\to W^-W^+ or, more generally, four-fermion production at LEP2. In addition the detection of new interactions in the bosonic sector via other production channels is discussed.
Evidence for the decay of the Higgs Boson to Bottom Quarks
CMS Collaboration
2017-01-01
A search for the standard model (SM) Higgs boson ($\\mathrm{H}$) decaying to $\\mathrm{b\\overline{b}}$ when produced in association with a weak vector boson ($\\mathrm{V}$) is reported for the following processes: $\\mathrm{Z}(\
Measurement Of W Boson Polarization In Top Quark Decay
Vickey, T N
2004-01-01
A measurement of the polarization of the W boson from top quark decay is an excellent test of the V − A form of the charged-current weak interaction in the standard model. Since the longitudinal W boson is intimately related to the electroweak symmetry breaking mechanism, and the standard model gives a specific prediction for the fraction of longitudinal W bosons from top decays, it is of particular interest for study. This thesis presents a measurement of W boson polarization in top quark decays through an analysis of the cos&thetas;* distribution in the lepton-plus-jets channel of tt¯ candidate vents from pp¯ collisions at s = 1.96 TeV. This measurement uses an integrated luminosity of ∼162 pb−1 of data collected with the CDF Run II detector, resulting in 31 tt¯ candidate events with at least one identified b jet. Using a binned likelihood fit to the cos&thetas;* distribution from the tt¯ candidate events found in this sample, the f...
:,; Balwierz-Pytko, I; Bencivenni, G; Bloise, C; Bossi, F; Branchini, P; Budano, A; Balkest°ahl, L Caldeira; Ceradini, F; Ciambrone, P; Curciarello, F; Czerwinski, E; Danè, E; De Leo, V; De Lucia, E; De Robertis, G; De Santis, A; De Simone, P; Di Cicco, A; Di Domenico, A; Di Salvo, R; Domenici, D; Erriquez, O; Fanizzi, G; Fantini, A; Felici, G; Fiore, S; Franzini, P; Gajos, A; Gauzzi, P; Giardina, G; Giovannella, S; Graziani, E; Happacher, F; Heijkenskjold, L; Hoistad, B; Johansson, T; Kacprzak, K; Kaminska, D; Krzemien, W; Kupsc, A; Lee-Franzini, J; Loddo, F; Loffredo, S; Mandaglio, G; Martemianov, M; Martini, M; Mascolo, M; Messi, R; Miscetti, S; Morello, G; Moricciani, D; Moskal, P; Nguyen, F; Palladino, A; Passeri, A; Patera, V; Longhi, I Prado; Ranieri, A; Santangelo, P; Sarra, I; Schioppa, M; Sciascia, B; Silarski, M; Tortora, L; Venanzoni, G; Wislicki, W; Wolke, M; Zdebik, J
2014-01-01
We have searched for a light vector boson $U$, the possible carrier of a "dark force", with the KLOE detector at the DA$\\Phi$NE $e^+e^-$ collider, motivated by the astrophysical evidence for the presence of "dark matter" in the universe. Using $e^+e^-$ collisions collected for an integrated luminosity of $239.3$~pb$^{-1}$, we look for a dimuon mass peak in the reaction $e^+e^- \\rightarrow\\mu^+ \\mu^-\\gamma$, corresponding to the decay $U \\rightarrow \\mu^+\\mu^-$. We find no evidence for a $U$ vector boson signal. We set a 90% CL upper limit for the kinetic mixing parameter $\\epsilon^2$ of 1.6$\\times$10$^{-5}$ to 8.5$\\times$10$^{-7}$ for the mass region $520
Partially composite Goldstone Higgs boson
Alanne, Tommi; Franzosi, Diogo Buarque; Frandsen, Mads T.
2017-11-01
We consider a model of dynamical electroweak symmetry breaking with a partially composite Goldstone Higgs boson. The model is based on a strongly interacting fermionic sector coupled to a fundamental scalar sector via Yukawa interactions. The SU (4 )×SU (4 ) global symmetry of these two sectors is broken to a single SU(4) via Yukawa interactions. Electroweak symmetry breaking is dynamically induced by condensation due to the strong interactions in the new fermionic sector which further breaks the global symmetry SU (4 )→Sp (4 ). The Higgs boson arises as a partially composite state which is an exact Goldstone boson in the limit where SM interactions are turned off. Terms breaking the SU(4) global symmetry explicitly generate a mass for the Goldstone Higgs boson. The model realizes in different limits both (partially) composite Higgs and (bosonic) technicolor models, thereby providing a convenient unified framework for phenomenological studies of composite dynamics. It is also a dynamical extension of the recent elementary Goldstone Higgs model.
DEFF Research Database (Denmark)
Tichy, Malte C.; Bouvrier, P. Alexander; Mølmer, Klaus
2013-01-01
Composite bosons made of two bosonic constituents exhibit deviations from ideal bosonic behavior due to their substructure. This deviation is reflected by the normalization ratio of the quantum state of N composites. We find a set of saturable, efficiently evaluable bounds for this indicator, which...... quantifies the bosonic behavior of composites via the entanglement of their constituents. We predict an abrupt transition between ordinary and exaggerated bosonic behavior in a condensate of two-boson composites....
An Electroweak-like Theory from Four Fermion Interactions
Huang, Yi-Cheng
2014-01-01
An electroweak-like theory of a broken chiral symmetry that is constructed by the collective modes of fermion pairs from four fermion interactions of one lepton generation is presented. The products of Dirac spinors lead to the separation of the two chiral fermions to couple respectively with two different kinds of polarization states. Because of a broken vacuum, a fermion and an anti-fermion out of the four pair up to form vector bosons, which behave like gauge bosons, such as $W^\\pm$, $Z$ and $\\gamma$ in a group structure of $SU(2)_L\\times U(1)_Y$. The pairing of spinors only allows left-handed fermions to interact with charged bosons to secure the gauge invariance, while, as desired, $Z$-like bosons mediate different weak forces for two chiral fermions and $\\gamma$-like bosons interact freely with fermions.
An, Rui; Feng, Chang; Wang, Bin
2018-02-01
We constrain interacting dark matter and dark energy (IDMDE) models using a 450-degree-square cosmic shear data from the Kilo Degree Survey (KiDS) and the angular power spectra from Planck's latest cosmic microwave background measurements. We revisit the discordance problem in the standard Lambda cold dark matter (ΛCDM) model between weak lensing and Planck datasets and extend the discussion by introducing interacting dark sectors. The IDMDE models are found to be able to alleviate the discordance between KiDS and Planck as previously inferred from the ΛCDM model, and moderately favored by a combination of the two datasets.
Golden Jubilee photos: The Search for the Bosons
2004-01-01
From left to right: Carlo Rubbia; Simon van der Meer; Herwig Schopper, Director-General of CERN; Erwin Gabathuler, Research Director at CERN; and Pierre Darriulat, spokesman of the UA2 experiment. On 25 January 1983, this historic press conference announced the observation of W particles in the UA1 experiment at CERN, and was followed by another in May when Z particles had been found. Natural phenomena at this scale are described by four forces, gravity, electromagnetism and the strong and weak nuclear forces. But in 1968 a new theory predicted that electromagnetism and the weak nuclear force were manifestations of a single 'electroweak' interaction, proposing that it would be communicated by the charged W+ and W- bosons and the neutral Z0 boson. In 1979 Sheldon Glashow, Abdus Salam and Steven Weinberg won the Nobel Prize for Physics for this work. Finding the bosons predicted by the theory involved a huge effort. CERN had to develop new technology and engineering. Innovations included making crucial advances...
Bodek, Kazimierz
2012-09-01
The Standard Model (SM) predictions of T-violation for weak decays of systems built up of u and d quarks are by 7 to 10 orders of magnitude lower than the experimental accuracies attainable at present. It is a general presumption that time reversal phenomena are caused by a tiny admixture of exotic interaction terms. Therefore, weak decays provide a favorable testing ground in a search for such feeble forces. Physics with very slow, polarized neutrons has a great potential in this respect. An experiment seeking for small deviations from the SM in two observables, N and R, that are for the first time addressed experimentally in free neutron decay and that are exclusively sensitive to real and imaginary parts of the same linear combination of the scalar and tensor interaction coupling constants has been completed at the Paul Scherrer Institute, Villigen, Switzerland. The analysis of the experimental data has been completed recently leading to, among others, the best direct constraint for the imaginary part of the R-parity violating MSSM contribution. The success of the applied technique results in a new project devoted to the simultaneous measurement of seven correlation coefficients: H, L, N, R, S, U and V. Five of them (H, L, S, U and V) have never before been measured in weak decays. Such a systematic exploration of the transverse electron polarization will generate from the neutron decay alone a complete set of constraints for the real and imaginary parts of the weak scalar and tensor interactions on the level of 5 × 10-4 or better.
Vector boson and quarkonia production in lead-lead collisions with ATLAS detector
Gallus, Petr; The ATLAS collaboration
2017-01-01
Photons and weak bosons do not interact strongly with the dense and hot medium formed in the nuclear collisions, thus should be sensitive to the nuclear modification of parton distribution functions (nPDFs). The in-medium modification of heavy quarkonium states plays an important role in studying the hot and dense medium formed in the larger collision systems. The ATLAS detector at the LHC, optimized for searching for new physics in proton-proton collisions, is especially well equipped to measure photons, Z, W bosons and quarkonia in the high occupancy environment produced in heavy-ion collisions. We present recent results on Z boson and charmonia yields as a functions of centrality, transverse momentum, and rapidity, from the ATLAS experiment.
Light Higgs bosons in phenomenological NMSSM
Energy Technology Data Exchange (ETDEWEB)
Mahmoudi, F. [CERN, Geneva (Switzerland); Clermont Univ., CNRS/IN2P3, LPC, Clermont-Ferrand (France); Rathsman, J. [Uppsala Univ. (Sweden). High-Energy Physics; Lund Univ. (Sweden). Theoretical High Energy Physics; Staal, O. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zeune, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Goettingen Univ. (Germany). II. Physikalisches Inst.
2010-12-15
We consider scenarios in the next-to-minimal supersymmetric model (NMSSM) where the CP-odd and charged Higgs bosons are very light. As we demonstrate, these can be obtained as simple deformations of existing phenomenological MSSM benchmarks scenarios with parameters defined at the weak scale. This offers a direct and meaningful comparison to the MSSM case. Applying a wide set of up-to-date constraints from both high-energy collider and flavour physics, the Higgs boson masses and couplings are studied in viable parts of parameter space. The LHC phenomenology of the light Higgs scenario for neutral and charged Higgs boson searches is discussed. (orig.)
Photon-Graviton Interaction and CPH Theory
DEFF Research Database (Denmark)
Javadi, Hossein; Forouzbakhsh, Farshid; Daei Kasmaei, Hamed
2016-01-01
, and the weak interaction by the W and Z bosons. The hypothesis is that the gravitational interaction is likewise mediated by a – yet undiscovered – elementary particle, dubbed the graviton. In the classical limit, the theory would reduce to general relativity and conform to Newton's law of gravitation...
Study of Z Boson Pair Production in $e^+ e^-$ Interactions at $\\sqrt{s}$ = 192-202 GeV
Acciarri, M.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Ambrosi, G.; Anderhub, H.; Andreev, Valery P.; Angelescu, T.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, L.; Balandras, A.; Baldew, S.V.; Banerjee, S.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Bhattacharya, S.; Biasini, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buffini, A.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.M.; Casaus, J.; Castellini, G.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chang, Y.H.; Chaturvedi, U.K.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Conventi, F.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Csilling, A.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; D'Alessandro, R.; de Asmundis, R.; Deglon, P.; Degre, A.; Deiters, K.; Della Pietra, M.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dova, M.T.; Duchesneau, D.; Dufournaud, D.; Duinker, P.; Duran, I.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Erne, F.C.; Extermann, P.; Fabre, M.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gau, S.S.; Gentile, S.; Gheordanescu, N.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hasan, A.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hidas, P.; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hoorani, H.; Hou, S.R.; Hu, Y.; Iashvili, I.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Khan, R.A.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, D.; Kim, J.K.; Kirkby, Jasper; Kiss, D.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Kopp, A.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Lugnier, L.; Luminari, L.; Lustermann, W.; Ma, W.G.; Maity, M.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Marian, G.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; von der Mey, M.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Moulik, T.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Oulianov, A.; Palomares, C.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Paramatti, R.; Park, H.K.; Park, I.H.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Prokofev, D.O.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Raven, G.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Rodin, J.; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Sarakinos, M.E.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Seganti, A.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stone, A.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Suter, H.; Swain, J.D.; Szillasi, Z.; Sztaricskai, T.; Tang, X.W.; Tauscher, L.; Taylor, L.; Tellili, B.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Valente, E.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobov, A.A.; Vorvolakos, A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, A.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Ye, J.B.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhu, G.Y.; Zhu, R.Y.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.
2001-01-01
The cross section for the production of Z boson pairs is measured using the data collected by the L3 detector at LEP in 1999 in $\\rm e^+e^-$ collisions at centre--of--mass energies ranging from 192 GeV up to 202 GeV. Events in all the visible final states are selected, measuring the cross section of this process. The special case of final states containing b quarks is also investigated. All results are in agreement with the Standard Model predictions.
Park, Changwon; Rojas, Geoffrey A.; Jeon, Seokmin; Kelly, Simon J.; Smith, Sean C.; Sumpter, Bobby G.; Yoon, Mina; Maksymovych, Petro
2014-09-01
The energy scales of interactions that control molecular adsorption and assembly on surfaces can vary by several orders of magnitude, yet the importance of each contributing interaction is not apparent a priori. Tetracyanoquinodimethane (TCNQ) is an archetypal electron acceptor molecule and it is a key component of organic metals. On metal surfaces, this molecule also acts as an electron acceptor, producing negatively charged adsorbates. It is therefore rather intriguing to observe attractive molecular interactions in this system that were reported previously for copper and silver surfaces. Our experiments compared TCNQ adsorption on noble metal surfaces of Ag(100) and Ag(111). In both cases we found net attractive interactions down to the lowest coverage. However, the morphology of the assemblies was strikingly different, with two-dimensional islands on Ag(100) and one-dimensional chains on Ag(111) surfaces. This observation suggests that the registry effect governed by the molecular interaction with the underlying lattice potential is critical in determining the dimensionality of the molecular assembly. Using first-principles density functional calculations with a van der Waals correction scheme, we revealed that the strengths of major interactions (i.e., lattice potential corrugation, intermolecular attraction, and charge-transfer-induced repulsion) are all similar in energy. The van der Waals interactions, in particular, almost double the strength of attractive interactions, making the intermolecular potential comparable in strength to the diffusion potential and promoting self-assembly. However, it is the anisotropy of local intermolecular interactions that is primarily responsible for the difference in the topology of the molecular islands on Ag(100) and Ag(111) surfaces. We anticipate that the intermolecular potential will become more attractive and dominant over the diffusion potential with increasing molecular size, providing new design strategies for the
Csontos, József; Murphy, Richard F; Lovas, Sándor
2008-11-01
The energetics of intramolecular interactions on the conformational potential energy surface of the terminally protected N-Ac-Phe-Gly-Gly-NHMe (FGG), N-Ac-Trp-Gly-Gly-NHMe (WGG), and N-Ac-Tyr-Gly-Gly-NHMe (YGG) tripeptides was investigated. To identify the representative conformations, simulated annealing molecular dynamics (MD) and density functional theory (DFT) methods were used. The interaction energies were calculated at the BHandHLYP/aug-cc-pVTZ level of theory. In the global minima, 10%, 31%, and 10% of the stabilization energy come from weakly polar interactions, respectively, in FGG, WGG, and YGG. In the prominent cases 46%, 62%, and 46% of the stabilization energy is from the weakly polar interactions, respectively, in FGG, WGG, and YGG. On average, weakly polar interactions account for 15%, 34%, and 9% of the stabilization energies of the FGG, WGG, and YGG conformers, respectively. Thus, weakly polar interactions can make an important energetic contribution to protein structure and function.
Weak C–H⋅⋅⋅ F–C interactions in carboxylate anion binding ...
Indian Academy of Sciences (India)
5-fluorobenzoate; C-H…F interactions. ... Department of Chemistry, Panjab University, Chandigarh 160 014; Department of Chemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand ...
Measurement-induced deterministic and probabilistic entanglement with strong and weak interactions
Di Lorenzo, Antonio
2017-11-01
A scheme is proposed to transform spatial coherence of a single particle into entanglement. Two quantum systems can be entangled by having them interact in parallel with an ancillary particle in a Mach-Zehnder interferometer, then making a suitable post-selection of the particle followed by a conditional feedforward on one of the systems to be entangled. For a strong interaction between each system and the ancilla, the process works deterministically. For a weaker interaction only the probability of success is reduced, but the output continues to be a maximally entangled state. It is demonstrated that the process is optimal when the two interactions are symmetric, systems with continuous variables are considered, and the effects of the environment are taken into account.
Particle physics on ice: constraints on neutrino interactions far above the weak scale.
Anchordoqui, Luis A; Feng, Jonathan L; Goldberg, Haim
2006-01-20
Ultrahigh energy cosmic rays and neutrinos probe energies far above the weak scale. Their usefulness might appear to be limited by astrophysical uncertainties; however, by simultaneously considering up- and down-going events, one may disentangle particle physics from astrophysics. We show that present data from the AMANDA experiment in the South Pole ice already imply an upper bound on neutrino cross sections at energy scales that will likely never be probed at man-made accelerators. The existing data also place an upper limit on the neutrino flux valid for any neutrino cross section. In the future, similar analyses of IceCube data will constrain neutrino properties and fluxes at the theta(10%) level.
Izhikevich, E M
1999-01-01
We study pulse-coupled neural networks that satisfy only two assumptions: each isolated neuron fires periodically, and the neurons are weakly connected. Each such network can be transformed by a piece-wise continuous change of variables into a phase model, whose synchronization behavior and oscillatory associative properties are easier to analyze and understand. Using the phase model, we can predict whether a given pulse-coupled network has oscillatory associative memory, or what minimal adjustments should be made so that it can acquire memory. In the search for such minimal adjustments we obtain a large class of simple pulse-coupled neural networks that can memorize and reproduce synchronized temporal patterns the same way a Hopfield network does with static patterns. The learning occurs via modification of synaptic weights and/or synaptic transmission delays.
Measurement of W Boson Polarization in Top Quark Decay
Energy Technology Data Exchange (ETDEWEB)
Vickey, Trevor Neil [Univ. of Illinois, Urbana-Champaign, IL (United States)
2004-01-01
A measurement of the polarization of the W boson from top quark decay is an excellent test of the V-A form of the charged-current weak interaction in the standard model. Since the longitudinal W boson is intimately related to the electroweak symmetry breaking mechanism, and the standard model gives a specific prediction for the fraction of longitudinal W bosons from top decays, it is of particular interest for study. This thesis presents a measurement of W boson polarization in top quark decays through an analysis of the cosθ* distribution in the lepton-plus-jets channel of t$\\bar{t}$ candidate events from p$\\bar{p}$ collisions at √s = 1.96 TeV. This measurement uses an integrated luminosity of ~ 162 pb^{-1} of data collected with the CDF Run II detector, resulting in 31 t$\\bar{t}$ candidate events with at least one identified b jet. Using a binned likelihood fit to the cosθ* distribution from the t$\\bar{t}$ candidate events found in this sample, the fraction of W bosons with longitudinal polarization is determined to be F_{0} = 0.99$+0.29\\atop{-0.35}$stat.) ± 0.19(syst.), F_{0} > 0.33 @ 95% CL. This result is consistent with the standard model prediction, given a top quark mass of 174.3 GeV/c^{2}, of F_{0} = 0.701 ± 0.012.
Okawa, Hideki; The ATLAS collaboration
2017-01-01
The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The results of searches with a single boson and large missing transverse momentum in 13 TeV will be presented.
Jin, Shouwen; Wang, Daqi
2014-05-01
Eight crystalline organic acid-base adducts derived from alkane bridged bis(N-benzimidazole) and organic acids (2,4,6-trinitrophenol, p-nitrobenzoic acid, m-nitrobenzoic acid, 3,5-dinitrobenzoic acid, 5-sulfosalicylic acid and oxalic acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the eight compounds five are organic salts (1, 4, 6, 7 and 8) and the other three (2, 3, and 5) are cocrystals. In all of the adducts except 1 and 8, the ratio of the acid and the base is 2:1. All eight supramolecular assemblies involve extensive intermolecular classical hydrogen bonds as well as other noncovalent interactions. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, all the complexes displayed 3D framework structure. The results presented herein indicate that the strength and directionality of the classical N+-H⋯O-, O-H⋯O, and O-H⋯N hydrogen bonds (ionic or neutral) and other nonbonding associations between acids and ditopic benzimidazoles are sufficient to bring about the formation of cocrystals or organic salts.
Energy Technology Data Exchange (ETDEWEB)
Agnese, R.; Anderson, A. J.; Aramaki, T.; Asai, M.; Baker, W.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Calkins, R.; Cerdeno, D. G.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Ghaith, M.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; Mandic, V.; Mast, N.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Rogers, H. E.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Underwood, R.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.
2016-02-01
The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Results are presented from the second CDMSlite run with an exposure of 70 kg day, which reached an energy threshold for electron recoils as low as 56 eV. A fiducialization cut reduces backgrounds below those previously reported by CDMSlite. New parameter space for the WIMP-nucleon spin-independent cross section is excluded for WIMP masses between 1.6 and 5.5 GeV/c^2.
To which densities is spin-polarized neutron matter a weakly interacting Fermi gas?
Directory of Open Access Journals (Sweden)
T. Krüger
2015-05-01
Full Text Available We study the properties of spin-polarized neutron matter at next-to-next-to-next-to-leading order in chiral effective field theory, including two-, three-, and four-neutron interactions. The energy of spin-polarized neutrons is remarkably close to a non-interacting system at least up to saturation density, where interaction effects provide less than 10% corrections. This shows that the physics of neutron matter is similar to a unitary gas well beyond the scattering-length regime. Implications for energy-density functionals and for a possible ferromagnetic transition in neutron stars are discussed. Our predictions can be tested with lattice QCD, and we present results for varying pion mass.
Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions
Bick, Christian; Sebek, Michael; Kiss, István Z.
2017-10-01
We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.
Hu, Haibao; Bao, Luyao; Priezjev, Nikolai V; Luo, Kai
2017-01-21
The slip behavior of simple fluids over atomically smooth surfaces was investigated in a wide range of wall-fluid interaction (WFI) energies at low shear rates using non-equilibrium molecular dynamics simulations. The relationship between slip and WFI shows two regimes (the strong-WFI and weak-WFI regimes): as WFI decreases, the slip length increases in the strong-WFI regime and decreases in the weak-WFI regime. The critical value of WFI energy that separates these regimes increases with temperature, but it remains unaffected by the driving force. The mechanism of slip was analyzed by examining the density-weighted average energy barrier (ΔE¯) encountered by fluid atoms in the first fluid layer (FFL) during their hopping between minima of the surface potential. We demonstrated that the relationship between slip and WFI can be rationalized by considering the effect of the fluid density distribution in the FFL on ΔE¯ as a function of the WFI energy. Moreover, the dependence of the slip length on WFI and temperature is well correlated with the exponential factor exp(-ΔE¯/(kBT)), which also determines the critical value of WFI between the strong-WFI and weak-WFI regimes.
Panja, Sumit Kumar; Dwivedi, Nidhi; Noothalapati, Hemanth; Shigeto, Shinsuke; Sikder, A K; Saha, Abhijit; Sunkari, Sailaja S; Saha, Satyen
2015-07-21
The effects of interionic hydrogen bonding and π-π stacking interactions on the physical properties of a new series of picrate anion based ionic liquids (ILs) have been investigated experimentally and theoretically. The existence of aromatic (C2-HO) and aliphatic (C7-HO-N22 and C6-HO-N20) hydrogen bonding and π-π stacking interactions in these ILs has been observed using various spectroscopic techniques. The aromatic and aliphatic C-HO hydrogen bonding interactions are found to have a crucial role in binding the imidazolium cation and picrate anion together. However, the π-π stacking interactions between two successive layers are found to play a decisive role in tight packing in ILs leading to differences in physical properties. The drastic difference in the melting points of the methyl and propyl derivatives (mmimPic and pmimPic respectively) have been found to be primarily due to the difference in the strength and varieties of π-π stacking interactions. While in mmimPic, several different types of π-π stacking interactions between the aromatic rings (such as picrate-picrate, picrate-imidazole and imidazolium-imidazolium cation rings) are observed, only one type of π-π stacking interaction (picrate-picrate rings) is found to exist in the pmimPic IL. NMR spectroscopic studies reveal that the interaction of these ILs with solvent molecules is different and depends on the dielectric constant of the solvent. While an ion solvation model explains the solvation in high dielectric solvents, an ion-pair solvation model is found to be more appropriate for low dielectric constant solvents. The enhanced stability of these investigated picrate ILs compared with that of inorganic picrate salts under high doses of γ radiation clearly indicates the importance of weak interionic interactions in ILs, and also opens up the possibility of the application of picrate ILs as prospective diluents in nuclear separation for advanced fuel cycling process.
Härtl, Elisabeth; Dixit, Nitin; Besheer, Ahmed; Kalonia, Devendra; Winter, Gerhard
2013-11-01
In a quest to elucidate the mechanism by which hydroxypropyl β-cyclodextrin (HPβCD) stabilizes antibodies against shaking stress, two heavily debated hypotheses exist, namely that stabilization is due to HPβCD's surface activity, or due to specific interactions with proteins. In a previous study by Serno et al. (Pharm. Res. 30 (2013) 117), we could refute the first hypothesis by proving that, although HPβCD is slightly surface active, it does not displace the antibody at the air-water interface, and accordingly, its surface activity is not the underlying stabilizing mechanism. In the present study, we investigated the possibility of interactions between HPβCD and monoclonal antibodies as the potential stabilization mechanism using quartz crystal microbalance (QCM) and static as well as dynamic light scattering. In the presence of HPβCD, the adsorption of IgG antibodies in the native state (IgG A) and the unfolded state (IgG A and IgG B) on gold-coated quartz crystals was studied by QCM. Results show that HPβCD causes a reduction in protein adsorption in both the folded and the unfolded states, probably due to an interaction between the protein and the cyclodextrin, leading to a reduced hydrophobicity of the protein and consequently a lower extent of adsorption. These results were supported by investigation of the interaction between the native protein and HPβCD using static and dynamic light scattering experiments, which provide the protein-protein interaction parameters, B22 and kD, respectively. Both B22 and kD showed an increase in magnitude with increasing HPβCD-concentrations, indicating a rise in net repulsive forces between the protein molecules. This is further evidence for the presence of interactions between HPβCD and the studied antibodies, since an association of HPβCD on the protein surface leads to a change in the intermolecular forces between the protein molecules. In conclusion, this study provides evidence that the previously observed
Disentangling weak and strong interactions in B→ K^{*}(→ Kπ )π Dalitz-plot analyses
Charles, Jérôme; Descotes-Genon, Sébastien; Ocariz, José; Pérez Pérez, Alejandro
2017-08-01
Dalitz-plot analyses of B→ Kπ π decays provide direct access to decay amplitudes, and thereby weak and strong phases can be disentangled by resolving the interference patterns in phase space between intermediate resonant states. A phenomenological isospin analysis of B→ K^*(→ Kπ )π decay amplitudes is presented exploiting available amplitude analyses performed at the BaBar, Belle and LHCb experiments. A first application consists in constraining the CKM parameters thanks to an external hadronic input. A method, proposed some time ago by two different groups and relying on a bound on the electroweak penguin contribution, is shown to lack the desired robustness and accuracy, and we propose a more alluring alternative using a bound on the annihilation contribution. A second application consists in extracting information on hadronic amplitudes assuming the values of the CKM parameters from a global fit to quark flavour data. The current data yields several solutions, which do not fully support the hierarchy of hadronic amplitudes usually expected from theoretical arguments (colour suppression, suppression of electroweak penguins), as illustrated from computations within QCD factorisation. Some prospects concerning the impact of future measurements at LHCb and Belle II are also presented. Results are obtained with the CKMfitter analysis package, featuring the frequentist statistical approach and using the Rfit scheme to handle theoretical uncertainties.
Conway, B A; Halliday, D M; Rosenberg, J R
1993-11-01
1. Spike trains from identified single Ia afferents from soleus and lateral gastrocnemius muscles were recorded (while 'in continuity' with the spinal cord) simultaneously with single-motor-unit EMG spike trains from the same muscles in decerebrate cats. 2. A total of 143 Ia afferent-motor-unit pairs were examined for the presence of correlated activity between the Ia afferent and motor-unit and between the motor-unit and Ia afferent. Four types of correlation were identified on the basis of the cross-intensity function estimated for individual Ia afferent-motor-unit pairs. These correlations were attributed to the absence or presence of a central Ia afferent-motoneurone interaction or a peripheral motor-unit-muscle spindle interaction. 3. In addition to the cross-correlation-based second-order cross-intensity function, third-order cumulants were defined and used further to investigate Ia afferent-motor-unit interactions. A third-order cumulant density-based approach to signal processing offers improved signal-to-noise ratios, compared with the traditional product density approach, for parameters characterizing certain kinds of linear processes as well as a description of non-linear interactions. Two classes of third-order relations were described. One class was associated with a strong central connection and the other with a weak central connection. 4. Third-order cumulants estimated for Ia afferent-motor-unit pairs with significant second-order central correlations were able to detect a period of decreased motoneuronal excitability. In addition, temporal summation prior to spike initiation could be identified in cases where the afferent discharge was suitably high. 5. Third-order cumulants estimated for Ia afferent-motor-unit pairs in which no significant second-order central correlation existed identified the presence of weak synaptic interactions. It is argued that these interactions result from the summation from the recorded Ia afferent discharge and other
Nguyen, Thanh H.
2011-01-01
The effect of the RNA core on interfacial interactions of the bacteriophage MS2 was investigated. After removal of the RNA core, empty intact capsids were characterized and compared to untreated MS2. Electron density of untreated MS2 and RNA-free MS2 were characterized by transmission electron microscopy (TEM) and synchrotron-based small angle spectroscopy (SAXS). Suspensions of both particles exhibited similar electrophoretic mobility across a range of pH values. Similar effects were observed at pH 5.9 across a range of NaCl or CaCl2 concentrations. We compared key interfacial interactions (particle-particle and particle/air-water interface) between suspensions of each type of particle using time resolved dynamic light scattering (TR-DLS) to observe and quantify aggregation kinetics and axisymmetric drop shape analysis to measure adsorption at the air-water interface. Both suspensions showed insignificant aggregation over 4 h in 600 mM NaCl solutions. In the presence of Ca2+ ions, aggregation of both types of particles was consistent with earlier aggregation studies and was characterized by both reaction-limited and diffusion-limited regimes occurring at similar [Ca2+]. However, the removal of the RNA from MS2 had no apparent effect on the aggregation kinetics of particles. Despite some differences in the kinetics of adsorption to the air-water interface, the changes in surface tension which result from particle adsorption showed no difference between the untreated MS2 and RNA-free MS2. The interactions and structure of particles at the air-water interface were further probed using interfacial dilational rheology. The surface elasticity (E s) and surface viscosity (ηs) at the interface were low for both the untreated virus and the RNA-free capsid. This observation suggests that the factors that impact the adsorption kinetics are not important for an equilibrated interface. © 2011 The Royal Society of Chemistry.
Tunable insulator-quantum Hall transition in a weakly interacting two-dimensional electron system.
Lo, Shun-Tsung; Wang, Yi-Ting; Lin, Sheng-Di; Strasser, Gottfried; Bird, Jonathan P; Chen, Yang-Fang; Liang, Chi-Te
2013-07-03
We have performed low-temperature measurements on a gated two-dimensional electron system in which electron-electron (e-e) interactions are insignificant. At low magnetic fields, disorder-driven movement of the crossing of longitudinal and Hall resistivities (ρxx and ρxy) can be observed. Interestingly, by applying different gate voltages, we demonstrate that such a crossing at ρxx ~ ρxy can occur at a magnetic field higher, lower, or equal to the temperature-independent point in ρxx which corresponds to the direct insulator-quantum Hall transition. We explicitly show that ρxx ~ ρxy occurs at the inverse of the classical Drude mobility 1/μD rather than the crossing field corresponding to the insulator-quantum Hall transition. Moreover, we show that the background magnetoresistance can affect the transport properties of our device significantly. Thus, we suggest that great care must be taken when calculating the renormalized mobility caused by e-e interactions.
Energy Technology Data Exchange (ETDEWEB)
Fuecker, M.
2007-05-15
This thesis presents the calculation of the Standard Model weak-interaction corrections of order {alpha}{sub s}{sup 2}{alpha} to hadronic top-quark pair production. The one-loop weak corrections to top antitop production due to gluon fusion and uark antiquark annihilation are computed. Also the order {alpha}{sub s}{sup 2}{alpha} corrections to top antitop production due to quark gluon and antiquark gluon scattering in the Standard Model are calculated. In this complete weak-corrections of order {alpha}{sub s}{sup 2}{alpha} to gg, q anti q, gq, and g anti q induced hadronic t anti t production the top and antitop polarizations and spin-correlations are fully taken into account. For the Tevatron and the LHC the weak contributions to the cross section, to the transverse top-momentum (p{sub T}) distributions, and to the top antitop invariant mass (M{sub t} {sub anti} {sub t}) distributions are analyzed. At the LHC the corrections to the distributions can be of the order of -10 percent compared with the leading-order results, for p{sub T}>1500 GeV and M{sub t} {sub anti} {sub t}>3000 GeV, respectively. At the Tevatron the corrections are -4 percent for p{sub T}>600 GeV and M{sub t} {sub anti} {sub t}>1000 GeV. This thesis also considers parity-even top antitop spin correlations of the form d{sigma}(++)+d{sigma}(--)-d{sigma}(+-)-d{sigma}(-+), where the first and second argument denotes the top and antitop spin projection onto a given reference axis. This spin asymmetries are computed as a function of M{sub t} {sub anti} {sub t}. At the LHC the weak corrections are of order of -10 percent for M{sub t} {sub anti} {sub t}>1000 GeV for all analyzed reference axes. At the Tevatron the corrections are in the range of 5 percent at threshold and -5 percent for M{sub t} {sub anti} {sub t}>1000 GeV. Apart from parity-even spin asymmetries also the Standard Model predictions for parity violating effects in topquark pair production are calculated. This thesis analyzes parity
Beinke, Raphael; Klaiman, Shachar; Cederbaum, Lorenz S.; Streltsov, Alexej I.; Alon, Ofir E.
2017-06-01
In this work, we study many-body excitations of Bose-Einstein condensates trapped in periodic one-dimensional optical lattices. In particular, we investigate the impact of quantum depletion onto the structure of the low-energy spectrum and contrast the findings to the mean-field predictions of the Bogoliubov-de Gennes (BdG) equations. Accurate results for the many-body excited states are obtained by applying a linear-response theory atop the multiconfigurational time-dependent Hartree method for bosons equations of motion. We demonstrate for condensates in a triple well that even weak ground-state depletion of around 1 % leads to visible many-body effects in the low-energy spectrum, which deviates substantially from the corresponding BdG spectrum. We further show that these effects also appear in larger systems with more lattice sites and particles, indicating the general necessity of a full many-body treatment.
Neutrino Spectra from Nuclear Weak Interactions in sd-Shell Nuclei under Astrophysical Conditions
Misch, G. Wendell; Sun, Yang; Fuller, George M.
2018-01-01
We present shell model calculations of nuclear neutrino energy spectra for 70 sd-shell nuclei over the mass number range A = 21–35. Our calculations include nuclear excited states as appropriate for the hot and dense conditions characteristic of pre-collapse massive stars. We consider neutrinos produced by charged lepton captures and decays, and for the first time in tabular form, neutral current nuclear deexcitation, providing neutrino energy spectra on the Fuller–Fowler–Newman temperature–density grid for these interaction channels for each nucleus. We use the full sd-shell model space to compute initial nuclear states up to 20 MeV excitation with transitions to final states up to 35–40 MeV, employing a modification of the Brink-Axel hypothesis to handle high-temperature population factors and the nuclear partition functions.
Impact of Weak Agostic Interactions in Nickel Electrocatalysts for Hydrogen Oxidation
Energy Technology Data Exchange (ETDEWEB)
Klug, Christina M. [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States; O’Hagan, Molly [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States; Bullock, R. Morris [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States; Appel, Aaron M. [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States; Wiedner, Eric S. [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States
2017-06-08
To understand how H2 binding and oxidation is influenced by [Ni(PR2NR'2)2]2+ PR2NR'2 catalysts with H2 binding energies close to thermoneutral, two [Ni(PPh2NR'2)2]2+ (R = Me or C14H29) complexes with phenyl substituents on phosphorous and varying alkyl chain lengths on the pendant amine were studied. In the solid state, [Ni(PPh2NMe2)2]2+ exhibits an anagostic interaction between the Ni(II) center and the α-CH3 of the pendant amine, and DFT and variable-temperature 31P NMR experiments suggest than the anagostic interaction persists in solution. The equilibrium constants for H2 addition to these complexes was measured by 31P NMR spectroscopy, affording free energies of H2 addition (ΔG°H2) of –0.8 kcal mol–1 in benzonitrile and –1.6 to –2.3 kcal mol–1 in THF. The anagostic interaction contributes to the low driving force for H2 binding by stabilizing the four-coordinate Ni(II) species prior to binding of H2. The pseudo-first order rate constants for H2 addition at 1 atm were measured by variable scan rate cyclic voltammetry, and were found to be similar for both complexes, less than 0.2 s–1 in benzonitrile and 3 –6 s–1 in THF. In the presence of exogenous base and H2 , turnover frequencies of electrocatalytic H2 oxidation were measured to be less than 0.2 s–1 in benzonitrile and 4 –9 s–1 in THF. These complexes are slower electrocatalysts for H2 oxidation than previously studied [Ni(PR2NR'2)2]2+ complexes due to a competition between H2 binding and formation of the anagostic interaction. However, the decrease in catalytic rate is accompanied by a beneficial 130 mV decrease in overpotential. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. Computational resources were provided at the National Energy Research Scientific Computing Center (NERSC) at Lawrence
Weak interaction between germanene and GaAs(0001) by H intercalation: A route to exfoliation
Kaloni, Thaneshwor P.
2013-11-13
Epitaxial germanene on a semiconducting GaAs(0001) substrate is studied by ab initio calculations. The germanene-substrate interaction is found to be strong for direct contact but can be substantially reduced by H intercalation at the interface. Our results indicate that it is energetically possible to take the germanene off the GaAs(0001) substrate. While mounted on the substrate, the electronic structure shows a distinct Dirac cone shift above the Fermi energy with a splitting of 175 meV. On the other hand, we find for a free standing sheet a band gap of 24 meV, which is due to the intrinsic spin orbit coupling.
Is the cosmic microwave background telling us that dark matter is weaker than weakly interacting?
Energy Technology Data Exchange (ETDEWEB)
Hooper, Dan
2013-10-18
If moduli, or other long-lived heavy states, decay in the early universe in part into light and feebly interacting particles (such as axions), these decay products could account for the additional energy density in radiation that is suggested by recent measurements of the CMB. These moduli decays will also, however, alter the expansion history of the early universe, potentially diluting the thermal relic abundance of dark matter. If this is the case, then dark matter particles must annihilate with an even lower cross section than required in the standard thermal scenario (sigma v < 3x10^-26 cm^3/s) if they are to make up the observed density of dark matter. This possibility has significant implications for direct and indirect searches for dark matter.
Uewaki, Jun-ichi; Kamikubo, Hironari; Kurita, Jun-ichi; Hiroguchi, Noriteru; Moriuchi, Hiroshi; Yoshida, Michiteru; Kataoka, Mikio; Utsunomiya-Tate, Naoko; Tate, Shin-ichi
2013-06-01
High mobility group box protein 2 (HMGB2) contains homologous tandem HMG box DNA-binding domains, boxes A and B. These two boxes are linked by a short basic linker having a sequence characteristic of an intrinsically disordered element. The combined use of NMR and small angle X-ray scattering (SAXS) showed that the two boxes assume a preferred orientation to make their DNA binding surface in opposite directions, although the linker does not keep any specific conformation. A series of site directed mutations to the residues in the linker showed that a network of CH-π interactions connects the N-terminal part of the linker to box A. The mutants having impaired intramolecular CH-π interactions changed the interdomain dynamics and their dynamic averaged orientation relative to the wild-type. This work demonstrates that the apparently unstructured linker plays a role in defining the preferential domain orientation through the intramolecular CH-π interactions, even though the interactions are weak and transient.
A method to obtain the bosonic states in any two boson lattice system
African Journals Online (AJOL)
This method encompasses rules formulated from a detailed study of each dimension. In the current study, the method will be extended to bosons which do not obey the Pauli exclusion principle like the electrons so that their interactions are different from those of the latter. The need for the extension of the method to bosons ...
AUTHOR|(INSPIRE)INSPIRE-00355153; Kobel, Michael; Petridou, Chariclia; Kobel, Michael; Zur Nedden, Martin
The Standard Model of particle physics is a very well tested gauge theory describing the strong, weak and electromagnetic interactions between elementary particles through the exchange of force carriers called gauge bosons. Its high predictive power stems from its ability to derive the properties of the interactions it describes from fundamental symmetries of nature. Yet, it is not a final theory as there are several phenomena it cannot explain. Furthermore, not all of its predictions have been studied with sufficient precision, e.g. the properties of the newly discovered Higgs boson. Therefore, further probing of the Standard Model is necessary and may result in finding possible indications for new physics. The non-abelian SU(2)L×U(1)Y symmetry group determines the properties of the electromagnetic and weak interactions giving rise to self-couplings between the electroweak gauge bosons, i.e. the massive W and Z boson, and the massless photon, via triple and quartic gauge couplings. Studies carried out over ...
Weak trophic interactions among birds, insects and white oak saplings (Quercus alba)
Lichtenberg, J.S.; Lichtenberg, D.A.
2002-01-01
We examined the interactions among insectivorous birds, arthropods and white oak saplings (Quercus alba L.) in a temperate deciduous forest under 'open' and 'closed' canopy environments. For 2 y, we compared arthropod densities, leaf damage and sapling growth. Saplings from each canopy environment were assigned to one of four treatments: (1) reference, (2) bird exclosure, (3) insecticide and (4) exclosure + insecticide. Sap-feeding insects were the most abundant arthropod feeding guild encountered and birds reduced sap-feeder densities in 1997, but not in 1998. Although there was no detectable influence of birds on leaf-chewer densities in either year, leaf damage to saplings was greater within bird exclosures than outside of bird exclosures in 1997. Insecticide significantly reduced arthropod densities and leaf damage to saplings, but there was no corresponding increase in sapling growth. Growth and biomass were greater for saplings in more open canopy environments for both years. Sap-feeder densities were higher on closed canopy than open canopy saplings in 1997, but canopy environment did not influence the effects of birds on lower trophic levels. Although previous studies have found birds to indirectly influence plant growth and biomass, birds did not significantly influence the growth or biomass of white oak saplings during our study.
Soti, G.; Breitenfeldt, M.; Finlay, P.; Herzog, P.; Knecht, A.; Köster, U.; Kraev, I.S.; Porobic, T.; Prashanth, P.N.; Towner, I.S.; Tramm, C.; Zákoucký, D.; Severijns, N.
2014-01-01
Precision measurements at low energy search for physics beyond the Standard Model in a way complementary to searches for new particles at colliders. In the weak sector the most general $\\beta$ decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear $\\beta$ decay are on the level of several percent. The goal of this paper is extracting new information on tensor coupling constants by measuring the $\\beta$-asymmetry parameter in the pure Gamow-Teller decay of $^{67}$Cu, thereby testing the V-A structure of the weak interaction. An iron sample foil into which the radioactive nuclei were implanted was cooled down to milliKelvin temperatures in a $^3$He-$^4$He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic $\\beta$ radiation was observed with planar high purity germanium d...
Veltman, Martinus J. G.
1986-01-01
Reports recent findings related to the particle Higgs boson and examines its possible contribution to the standard mode of elementary processes. Critically explores the strengths and uncertainties of the Higgs boson and proposed Higgs field. (ML)
Pugnat, P.; Schott, M.; Husek, T.; Sulc, M.; Deferne, G.; Duvillaret, L.; Finger, M., Jr.; Finger, M.; Flekova, L.; Hosek, J.; Jary, V.; Jost, R.; Kral, M.; Kunc, S.; Macuchova, K.; Meissner, K.A.; Morville, J.; Romanini, D.; Siemko, A.; Slunecka, M.; Vitrant, G.; Zicha, J.
2014-01-01
Recent intensive theoretical and experimental studies highlight the possibility of new fundamental particle physics beyond the standard model that can be probed by sub-eV energy experiments. The OSQAR photon regeneration experiment looks for Light Shining through a Wall (LSW) from the quantum oscillation of optical photons into Weakly Interacting Sub-eV Particles (WISPs), like axion or axion-like particles (ALPs), in a 9 T transverse magnetic field over the unprecedented length of 2 x 14.3 m. No excess of events has been detected over the background. The di-photon couplings of possible new light scalar and pseudo-scalar particles can be constrained in the massless limit to be less than 8.0 x 10-8 GeV-1. These results are very close to the most stringent laboratory constraints obtained for the coupling of WISPs to two photons. Plans for further improving the sensitivity of the OSQAR experiment are presented.
Energy Technology Data Exchange (ETDEWEB)
Toscani, S. [Departement de Chimie - UMR 6226, Faculte des Sciences, Universite de Rennes 1, Batiment 10B, 263 avenue du General Leclerc, F-35042 Rennes Cedex (France); Cornevin, L. [Universite de Rennes 1, Faculte de Pharmacie, 2 Avenue Leon Bernard, F-35043 Rennes Cedex (France); Burgot, G., E-mail: Gwenola.burgot@univ-rennes1.fr [Universite de Rennes 1, Faculte de Pharmacie, Laboratoire de Chimie Analytique, EA 1274 ' Mouvement, sports, sante' , 2 Avenue Leon Bernard, F-35043 Rennes Cedex (France); CHGR Rennes, Pole Medico-Technique Pharmacie, F-35703 Rennes Cedex (France)
2012-09-10
Highlights: Black-Right-Pointing-Pointer Thermodynamic and kinetic parameters of weak interactions in binary systems by DSC. Black-Right-Pointing-Pointer Energy-barrier decrease for lactose dehydration induced by clobazam. Black-Right-Pointing-Pointer Recrystallisation of metastable liquid clobazam induced by anhydrous alpha lactose. Black-Right-Pointing-Pointer Decrease of lactose dehydration temperature in binary mixtures with captopril. Black-Right-Pointing-Pointer Increase of lactose dehydration enthalpy in binary mixtures with captopril. - Abstract: The thermal behaviour of binary mixtures of two drugs (clobazam and captopril, respectively) and a pharmaceutical excipient (lactose monohydrate) was measured with differential scanning calorimetry to determine thermodynamic and kinetic parameters (dehydration and melting enthalpies and dehydration and glass-transition activation energies) which might be affected by intermolecular interactions. A kinetic study showed that lactose dehydration is not a single-step conversion and that clobazam contributed to reduce the energy barrier for the bulk dehydration of the excipient. On the other hand, the physical interactions between metastable liquid clobazam and crystalline anhydrous {alpha}-lactose obtained from monohydrate dehydration gave rise to the recrystallisation of clobazam. In the captopril-lactose system, the liquid captopril influenced the lactose dehydration: a sharp increase of the dehydration enthalpy and a concurrent reduction of the dehydration temperature were observed. Finally, it turned out that solid-phase transitions were enhanced by the contact with a liquid phase.
Zhao, Kailou; Yang, Fan; Xia, Hongjun; Wang, Fei; Song, Qingguo; Bai, Quan
2015-03-01
In this study, 3-diethylamino-1-propyne was covalently bonded to the azide-silica by a click reaction to obtain a novel dual-function mixed-mode chromatography stationary phase for protein separation with a ligand containing tertiary amine and two ethyl groups capable of electrostatic and hydrophobic interaction functionalities, which can display hydrophobic interaction chromatography character in a high-salt-concentration mobile phase and weak anion exchange character in a low-salt-concentration mobile phase employed for protein separation. As a result, it can be employed to separate proteins with weak anion exchange and hydrophobic interaction modes, respectively. The resolution and selectivity of the stationary phase were evaluated in both hydrophobic interaction and ion exchange modes with standard proteins, respectively, which can be comparable to that of conventional weak anion exchange and hydrophobic interaction chromatography columns. Therefore, the synthesized weak anion exchange/hydrophobic interaction dual-function mixed-mode chromatography column can be used to replace two corresponding conventional weak anion exchange and hydrophobic interaction chromatography columns to separate proteins. Based on this mixed-mode chromatography stationary phase, a new off-line two-dimensional liquid chromatography technology using only a single dual-function mixed-mode chromatography column was developed. Nine kinds of tested proteins can be separated completely using the developed method within 2.0 h. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vector boson and quarkonia production in p+Pb and Pb+Pb collisions with ATLAS at the LHC
Gallus, Petr; The ATLAS collaboration
2017-01-01
Photons and weak bosons do not interact strongly with the dense and hot medium formed in the nuclear collisions, thus should be sensitive to the nuclear modification of parton distribution functions (nPDFs). The in-medium modification of heavy quarkonium states plays an important role in studying the hot and dense medium formed in the larger collision systems. The ATLAS detector, optimized for searching new physics in proton-proton collisions, is especially well equipped to measure photons, Z, W bosons and quarkonium in the high occupancy environment produced in heavy-ion collisions. We will present recent results on the Z boson and quarkonia yields as a function of centrality, transverse momentum, and rapidity, from the ATLAS experiment in heavy ion environment.
Vector boson and Charmonium production in p+Pb and Pb+Pb collisions with ATLAS at the LHC
K\\"{o}hler, Markus Konrad; The ATLAS collaboration
2016-01-01
Photons and weak bosons do not interact strongly with the dense and hot medium formed in the nuclei collisions, thus should be sensitive to the nuclear modification of parton distribution functions (nPDFs). The in-medium modification of heavy Charmonium states plays an important role in studying the hot and dense medium formed in the larger collision systems. The ATLAS detector, optimized for searching new physics in proton-proton collisions, is especially well equipped to measure photons, Z, W bosons and quakonium in the high occupancy environment produced in heavy ion collisions. We will present recent results on the prompt photon, Z and W boson yields as a function of centrality, transverse momentum and rapidity, from the ATLAS experiment.
Vector Boson and Charmonium Production in pPb and PbPb Collisions with ATLAS at the LHC
Citron, Zvi Hirsh; The ATLAS collaboration
2016-01-01
Photons and weak bosons do not interact strongly with the dense and hot medium formed in the nuclei collisions, thus should be sensitive to the nuclear modification of parton distribution functions (nPDFs). The in-medium modification of heavy Charmonium states plays an important role in studying the hot and dense medium formed in the larger collision systems. The ATLAS detector, optimized for searching new physics in proton-proton collisions, is especially well equipped to measure photons, Z, W bosons and quakonium in the high occupancy environment produced in heavy ion collisions. We will present recent results on the prompt photon, Z and W boson yields as a function of centrality, transverse momentum and rapidity, from the ATLAS experiment.
Energy Technology Data Exchange (ETDEWEB)
Socher, Felix
2016-07-15
The Standard Model of particle physics is a very well tested gauge theory describing the strong, weak and electromagnetic interactions between elementary particles through the exchange of force carriers called gauge bosons. Its high predictive power stems from its ability to derive the properties of the interactions it describes from fundamental symmetries of nature. Yet, it is not a final theory as there are several phenomena it cannot explain. Furthermore, not all of its predictions have been studied with sufficient precision, e.g. the properties of the newly discovered Higgs boson. Therefore, further probing of the Standard Model is necessary and may result in finding possible indications for new physics. The non-abelian SU(2){sub L} x U(1){sub Y} symmetry group determines the properties of the electromagnetic and weak interactions giving rise to self-couplings between the electroweak gauge bosons, i.e. the massive W and Z boson, and the massless photon, via triple and quartic gauge couplings. Studies carried out over the past 20 years at various particle accelerator experiments have shed light on the structure of the triple gauge couplings but few results on quartic gauge couplings are available. The electroweak self-couplings are intertwined with the electroweak symmetry breaking and thus the Higgs boson through the scattering of massive electroweak gauge bosons. Both the W and Z boson couple to the Higgs boson and may interact with each other by exchanging it. Theory predictions yield physical results at high energies only if either both the self-couplings and Higgs boson properties are as described by the Standard Model or if they deviate from its predictions and contributions from new physics are present to render the calculations finite. This makes electroweak gauge boson scattering a powerful tool to probe the Standard Model and search for possible effects of new physics. The small cross section of massive electroweak gauge boson scattering necessitates
Directory of Open Access Journals (Sweden)
Kell K Andersen
2016-11-01
Full Text Available Biosurfactants are of growing interest as sustainable alternatives to fossil-fuel-derived chemical surfactants, particularly for the detergent industry. To realize this potential, it is necessary to understand how they affect proteins which they may encounter in their applications. However knowledge of such interactions is limited. Here we present a study of the interactions between the model protein apo-alpha-lactalbumin and the biosurfactant sophorolipid (SL produced by the yeast Starmerella bombicola. SL occurs both as an acidic and a lactonic form; the lactonic form (lactSL is sparingly soluble and has a lower critical micelle concentration than the acidic form (acidSL. We show that acidSL affects apo-aLA in a similar way to the related glycolipid biosurfactant rhamnolipid (RL, with the important difference that RL is also active below the cmc in contrast to acidSL. Using isothermal titration calorimetry data, we show that acidSL has weak and saturable interactions with apo-aLA at low concentrations; due to the relatively low cmc of acidSL (which means that the monomer concentration is limited to ca. 0-1 mM SL, it is only possible to observe interactions with monomeric acidSL at high apo-aLA concentrations. However, the denaturation kinetics of apo-aLA in the presence of acidSL are consistent with a collaboration between monomeric and micellar surfactant species, similar to RL and nonionic or zwitterionic surfactants. Inclusion of lactSL as mixed micelles with acidSL lowers the cmc and this effectively reduces the rate of unfolding, emphasizing that SL like other biosurfactants is a gentle anionic surfactant. Our data highlight the potential of these biosurfactants for future use in the detergent industry.
Single-Hit Criterion in Dama/libra DM Search and Daemons — they are anything but Weakly Interacting
Drobyshevski, E. M.
Our prediction that the more massive DAMA/LIBRA detector would detect a smaller number of events per unit of mass and time than the DAMA/NaI system has got confirmation. It is easy to understand, because DM objects are by far not the WIMPs of the Galactic halo that interact only weakly with matter but are apparently electrically charged Planckian objects, i.e. daemons which fall from Earth-crossing orbits with V = 30-50 km/s and undergo multiple interaction with condensed matter already in its outer layers, on a path of a few tens of cm. Therefore, one should use not compact massive detectors but rather systems with a large surface area, as we did to detect daemons with thin ZnS(Ag) scintillators. There are grounds to believe that correct use of the single-hit criterion in LIBRA should reveal DM particles with V = 30-50 km/s, and subsequently, with V = 10-15 km/s as well.
Boson--Fermion hybrid representation formulation, I
Energy Technology Data Exchange (ETDEWEB)
Wu, C.; Feng, D.H.
1981-08-01
A boson--fermion hybrid representation is presented. In this framework, a fermion system is described concurrently by the bosonic and the fermonic degrees of freedom. A fermion pair in this representation can be treated as a boson without violating the Pauli principle. Furthermore the ''bosonic interactions'' are shown to originate from the exchange processes of the fermions and can be calculated from the original fermion interactions. Both the formulation of the BFH representations for the even and odd nuclear systems are given. We find that the basic equation of the nuclear field theory (NFT) is just the usual Schroedinger equation in such a representation with the empirical NFT diagrammatic rules emerging naturally. This theory was numerically checked in the case of four nucleons moving in a single-j shell and the exactness of the theory was established.
Acciarri, M.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Ambrosi, G.; Anderhub, H.; Andreev, Valery P.; Angelescu, T.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, L.; Balandras, A.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Bhattacharya, S.; Biasini, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buffini, A.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.M.; Casaus, J.; Castellini, G.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chang, Y.H.; Chaturvedi, U.K.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Csilling, A.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; D'Alessandro, R.; de Asmundis, R.; Deglon, P.; Degre, A.; Deiters, K.; Della Volpe, D.; Delmeire, E.; Denes, P.; De Notaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dova, M.T.; Duchesneau, D.; Dufournaud, D.; Duinker, P.; Duran, I.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Erne, F.C.; Extermann, P.; Fabre, M.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gau, S.S.; Gentile, S.; Gheordanescu, N.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hasan, A.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hidas, P.; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hoorani, H.; Hou, S.R.; Hu, Y.; Iashvili, I.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Khan, R.A.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, D.; Kim, J.K.; Kirkby, Jasper; Kiss, D.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopp, A.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Lugnier, L.; Luminari, L.; Lustermann, W.; Ma, W.G.; Maity, M.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Marian, G.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; von der Mey, M.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Moulik, T.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Ulyanov, A.; Palomares, C.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Paramatti, R.; Park, H.K.; Park, I.H.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pozhidaev, V.; Postema, H.; Pothier, J.; Prokofev, D.O.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Raven, G.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Rodin, J.; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Sarakinos, M.E.; Schafer, C.; Shchegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Seganti, A.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stone, A.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Suter, H.; Swain, J.D.; Szillasi, Z.; Sztaricskai, T.; Tang, X.W.; Tauscher, L.; Taylor, L.; Tellili, B.; Timmermans, Charles; Ting, S.C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Valente, E.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopyanov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobov, A.A.; Vorvolakos, A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, A.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Ye, J.B.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhu, G.Y.; Zhu, R.Y.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.
2000-01-01
A search is performed for a Higgs boson produced in association with a Z boson and decaying into two photons, using the L3 data collected at LEP at a centre-of-mass energy of 189 GeV. All decay modes of the Z are considered. No signal is observed and limits on the branching fraction of the Higgs boson decay into two photons as a function of the Higgs mass are derived assuming a Standard Model production rate. A lower limit on the mass of a fermiophobic Higgs is set at 94.9 GeV at 95$\\%$ confidence level.
Energy Technology Data Exchange (ETDEWEB)
Anderson, Adam J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2015-01-01
Cosmological and astrophysical evidence indicates that 85% of the matter content of the universe is in the form of non-baryonic dark matter. A large number of experiments are currently undertaking searches for weakly-interacting massive particles (WIMPs), the leading class of particle candidates for dark matter. This thesis describes the results of such a search with the SuperCDMS experiment, which uses Ge detectors cooled to 50 mK to detect ionization and phonons produced by particle interactions. We perform a blind analysis of 577 kg d of exposure on 7 detectors targeting WIMPs with masses < 30GeV/$c^{2}$, where anomalous results have been reported by previous experiments. No significant excess is observed and we set an upper limit on the spin-independent WIMP-nucleon cross section of 1.2 x 10$^{-42}$ cm2 at 8 GeV/$c^{2}$ We also set constraints on dark matter interactions independent of the dark matter halo physics, as well as on annual modulation of a dark matter signal. Cryogenic detectors similar to SuperCDMS also have potential applications in neutrino physics. We study several configurations in which dark matter detectors could be used with an intense neutrino source to detect an unmeasured Standard Model process called coherent neutrino scattering. This process may be useful, for example, as a calibration for next-generation dark matter detectors, and for constraining eV-scale sterile neutrinos. In addition, small cryogenic X-ray detectors on sounding rockets with large fields-of-view have the unique ability to constrain sterile neutrino dark matter. We set limits on sterile neutrino dark matter using an observation by the XQC instrument, and discuss prospects for a future observation of the galactic center using the Micro-X instrument.
Spying an invisible Higgs boson
Bernaciak, Catherine; Plehn, Tilman; Schichtel, Peter; Tattersall, Jamie
2015-02-01
We investigate the potential of multivariate techniques to improve the LHC search for invisible Higgs decays in weak boson fusion. We find that in the coming runs the LHC will be able to probe an invisible Higgs width of 28% within a year and 3.5% during a high luminosity run. A significant improvement over these estimates requires an analysis of QCD radiation patterns down to 10 GeV. Such an analysis can improve the reach at the high luminosity run to 2%. Throughout our analysis, we employ a conservative, data-driven background determination.
Bosonic behavior of entangled fermions
DEFF Research Database (Denmark)
C. Tichy, Malte; Alexander Bouvrie, Peter; Mølmer, Klaus
2012-01-01
Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi-composite-boson st......Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi...
CMS Collaboration
2016-01-01
Studies of the $pp \\rightarrow \\mathrm{\\mathrm{W}^{\\pm}Z} jj$ and $pp \\rightarrow\\mathrm{\\mathrm{W}^{\\pm}\\mathrm{W}^{\\pm}} jj$ vector boson scattering processes in 14 TeV pp collisions using the planned upgrades of the CMS detector are presented. These studies include assessments on the expected precision in measuring the electroweak cross sections, the discovery potential for observing longitudinal vector boson scattering and limits on partial unitarization scenarios between vector boson scattering and the Higgs boson. Beyond the standard model sensitivity is probed in the framework of the effective field theory by extracting expected limits on quartic gauge couplings for $\\mathrm{\\mathrm{W}^{\\pm}\\mathrm{W}^{\\pm}}$ scattering. All results are presented with a luminosity of $3~\\mathrm{ab}^{-1}$ and comparisons with the non upgraded CMS detector including its aging due to radiation are performed.
Kubota, Takashi
2011-01-01
The Large Hadron Collider (LHC) -- a proton-proton collider with the highest center-of-mass energy which surpasses the previous energy frontier -- was built at CERN to investigate the TeV energy region where the existence of undiscovered physics such as the origin of the electroweak symmetry breaking and the Supersymmetry is expected. The LHC started operation on 30 March, 2010, then has been delivering proton-proton collision events. The ATLAS (A Toroidal LHC ApparatuS) experiment is held using one of the two general purpose detectors placed at the LHC. The detector %is called the ATLAS detector which is designed to exploit the full physics potential of the LHC. In this thesis, a measurement of the $W$ and $Z$-boson production cross sections in proton-proton collisions at $\\sqrt{s}$ = 7 TeV are presented in the $\\W \\to \\mu\
Csontos, József; Murphy, Richard F.; Lovas, Sándor
2008-01-01
The energetics of intramolecular interactions on the conformational potential energy surface of the terminally protected N-Ac-Phe-Gly-Gly-NHMe (FGG), N-Ac-Trp-Gly-Gly-NHMe (WGG) and N-Ac-Tyr-Gly-Gly-NHMe (YGG) tripeptides was investigated. To identify the representative conformations, simulated annealing molecular dynamics (MD) and density functional theory (DFT) methods were used. The interaction energies were calculated at the BHandHLYP/aug-cc-pVTZ level of theory. In the global minima, 10%, 31% and 10% of the stabilization energy come from weakly polar interactions, respectively, in FGG, WGG and YGG. In the prominent cases 46%, 62% and 46% of the stabilization energy is from weakly polar interactions, respectively, in FGG, WGG and YGG. On average, weakly polar interactions account for 15%, 34% and 9% of the stabilization energies of the FGG, WGG and YGG conformers, respectively. Thus, weakly polar interactions can make an important energetic contribution to protein structure and function. PMID:18615659
Energy Technology Data Exchange (ETDEWEB)
Roncaratti, L. F., E-mail: lz@fis.unb.br; Leal, L. A.; Silva, G. M. de [Instituto de Física, Universidade de Brasília, 70910 Brasília (Brazil); Pirani, F. [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, V. [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Instituto de Física, Universidade Federal da Bahia, 40210 Salvador (Brazil); Gargano, R. [Instituto de Física, Universidade de Brasília, 70910 Brasília (Brazil); Departments of Chemistry and Physics, University of Florida, Quantum Theory Project, Gainesville, Florida 32611 (United States)
2014-10-07
We consider the analytical representation of the potential energy surfaces of relevance for the intermolecular dynamics of weakly bound complexes of chiral molecules. In this paper we study the H{sub 2}O{sub 2}−Ng (Ng=He, Ne, Ar, Kr, and Xe) systems providing the radial and the angular dependence of the potential energy surface on the relative position of the Ng atom. We accomplish this by introducing an analytical representation which is able to fit the ab initio energies of these complexes in a wide range of geometries. Our analysis sheds light on the role that the enantiomeric forms and the symmetry of the H{sub 2}O{sub 2} molecule play on the resulting barriers and equilibrium geometries. The proposed theoretical framework is useful to study the dynamics of the H{sub 2}O{sub 2} molecule, or other systems involving O–O and S–S bonds, interacting by non-covalent forces with atoms or molecules and to understand how the relative orientation of the O–H bonds changes along collisional events that may lead to a hydrogen bond formation or even to selectivity in chemical reactions.
Measurements of vector boson fusion with the ATLAS detector
Hays, Chris; The ATLAS collaboration
2017-01-01
Measurements are presented of single $W$ and $Z$ boson production in a vector-boson-fusion topology using ATLAS data collected at the LHC. The measurements include the fiducial cross sections in $\\sqrt{s} = 7$ and 8 TeV $pp$ collisions of $W$ and $Z$ production with jets produced via the electroweak interaction, of which vector-boson fusion is a component, and with jets produced via the strong process. Differential measurements are also shown.
Yin, Haolin; Lewis, Andrew J; Carroll, Patrick; Schelter, Eric J
2013-07-15
A homoleptic cerium(III) amide complex, Ce(NPh(F)2)3 (1-Ce) (Ph(F) = pentafluorophenyl), in an unusual pseudo-trigonal planar geometry featuring six C-F → Ce interactions was prepared. The C-F → Ln interactions in solution were evident by comparison of the (19)F NMR shifts for the paramagnetic 1-Ce with those of the 4f(0) lanthanum(III) analogue. Coordination of weak σ- and π-donors, including ethers and neutral arene molecules, was achieved by the reversible displacement of the weak C-F → Ce interactions. Computational studies on Ce(NPh(F)2)3 and Ce(NPh(F)2)3(η(6)-C6H3Me3) provide information on the F → Ce interactions and Ce-η(6)-arene bonding.
Substructure and strong interactions at the TeV scale
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E.
1985-12-01
A review is given of the current status of the three main theoretical ideas relevant to strong-interaction 1 TeV physics. These are composite vector bosons, Higgs bosons (''Technicolor''), and matter fermions. All involve the assumption that some object which is assumed to be fundamental in the standard model actually has dynamical internal structure. Complex, mechanistic models of the new physics are discussed. A brief digression is then made on how the weak interaction allows probing for this new structure. Direct manifestations of new 1 TeV strong interactions are discussed. 125 refs., 18 figs. (LEW)
Quantum criticality of bosonic systems with the Lifshitz dispersion
Wu, Jianda; Zhou, Fei; Wu, Congjun
2017-08-01
We study a novel type of quantum criticality of the Lifshitz φ4 theory below the upper critical dimension du=z +dc=8 , where the dynamic critical exponent z =4 and the spatial upper critical dimension dc=4 . Two fixed points, one Gaussian and the other non-Gaussian, are identified with zero and finite interaction strengths, respectively. At zero temperature the particle density exhibits different power-law dependences on the chemical potential in the weak- and strong-interaction regions. At finite temperatures, critical behaviors in the quantum disordered region are mainly controlled by the chemical potential. In contrast, in the quantum critical region critical scalings are determined by temperature. The scaling ansatz remains valid in the strong-interaction limit for the chemical potential, correlation length, and particle density, while it breaks down in the weak-interaction one. Approaching the upper critical dimension, physical quantities develop logarithmic dependence on dimensionality in the strong-interaction region. These results are applied to spin-orbit coupled bosonic systems, leading to predictions testable by future experiments.
Stone, Michael
The following sections are included: * Introduction * Free Fermi Fields * Free Bosons * The Bosonization Rules * A Quantum Pythagoras Theorem * Appendix 1A. Complex Coordinates * Appendix IB. Conformal Symmetry * References
Introduction to bosonic string theory
Energy Technology Data Exchange (ETDEWEB)
Nunez, Carmen [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)], e-mail: carmen@iafe.uba.ar
2009-07-01
This is an introductory set of five lectures on bosonic string theory. The first one deals with the classical theory of bosonic strings. The second and third lectures cover quantization. Three basic quantization methods are sketched: the old covariant formalism, the light-cone gauge quantization, where the spectrum is derived and the Polyakov path integral formalism and in particular the partition function at one loop. Finally, the last lecture covers interactions, low energy effective action, the general idea of compactification and in particular toroidal compactification. The notes are based on books by Green, Schwarz and Witten, Polchinski, Lust and Theissen and Kaku and review papers by D'Hocker and Phong and O. Alvarez. (author)
Barducci, D.; Fabbrichesi, M.; Tonero, A.
2017-10-01
We identify the differential cross sections for t t ¯ production and the total cross section for Higgs production through gluon fusion as the processes in which the two effective operators describing the leading nonstandard interactions of the top quark with the gluon can be disentangled and studied in an independent fashion. Current data on the Higgs production and the d σ /d pTt differential cross section provide limits comparable to, but not more stringent than, those from the total t t ¯ cross sections measurements at the LHC and Tevatron, where however the two operators enter on the same footing and can only be constrained together. We conclude by stating the (modest) reduction in the uncertainties necessary to provide more stringent limits by means of the Higgs production and t t ¯ differential cross section observables at the LHC with the future luminosity of 300 and 3000 fb-1 .
Bosonic and Fermionic Dipoles on a Ring
DEFF Research Database (Denmark)
Zöllner, Sascha; Bruun, Georg; Pethick, Christopher
2011-01-01
We show that dipolar bosons and fermions confined in a quasi-one-dimensional ring trap exhibit a rich variety of states because their interaction is inhomogeneous. For purely repulsive interactions, with increasing strength of the dipolar coupling there is a crossover from a gaslike state to an i...
Allen, Roland E.
2014-01-01
The particle recently discovered by the CMS and ATLAS collaborations at CERN is almost certainly a Higgs boson, fulfilling a quest that can be traced back to three seminal high-energy papers of 1964, but which is intimately connected to ideas in other areas of physics that go back much further. One might oversimplify the history of the features which (i) give mass to the W and Z particles that mediate the weak nuclear interaction, (ii) effectively break gauge invariance, (iii) eliminate physically unacceptable Nambu-Goldstone bosons, and (iv) give mass to fermions (like the electron) by collectively calling them the London-Anderson-Englert-Brout-Higgs-Guralnik-Hagen-Kibble-Weinberg mechanism. More important are the implications for the future: a Higgs boson appears to point toward supersymmetry, since new physics is required to protect its mass from enormous quantum corrections, while the discovery of neutrino masses seems to point toward grand unification of the non-gravitational forces.
2008-01-01
Quantum physicists think they know the answer. Probabilistic calculations reveal than the data provided by previous experiments has been miscalculated and that the Higgs boson has in fact been discovered. Weird! The Higgs boson is the only particle predicted by the Standard Model that hasn't been discovered yet.
Minimally symmetric Higgs boson
Energy Technology Data Exchange (ETDEWEB)
Low, Ian
2015-06-01
Models addressing the naturalness of a light Higgs boson typically employ symmetries, either bosonic or fermionic, to stabilize the Higgs mass. We consider a setup with the minimal amount of symmetries: four shift symmetries acting on the four components of the Higgs doublet, subject to the constraints of linearly realized SU(2)(L) x U(1)(Y) electroweak symmetry. Up to terms that explicitly violate the shift symmetries, the effective Lagrangian can be derived, irrespective of the spontaneously broken group G in the ultraviolet, and is universal among all models where the Higgs arises as a pseudo-Nambu-Goldstone boson. Very high energy scatterings of vector bosons could provide smoking gun signals of a minimally symmetric Higgs boson.
Weak- versus strong-disorder superfluid—Bose glass transition in one dimension
Doggen, Elmer V. H.; Lemarié, Gabriel; Capponi, Sylvain; Laflorencie, Nicolas
2017-11-01
Using large-scale simulations based on matrix product state and quantum Monte Carlo techniques, we study the superfluid to Bose glass transition for one-dimensional attractive hard-core bosons at zero temperature, across the full regime from weak to strong disorder. As a function of interaction and disorder strength, we identify a Berezinskii-Kosterlitz-Thouless critical line with two different regimes. At small attraction where critical disorder is weak compared to the bandwidth, the critical Luttinger parameter Kc takes its universal Giamarchi-Schulz value Kc=3 /2 . Conversely, a nonuniversal Kc>3 /2 emerges for stronger attraction where weak-link physics is relevant. In this strong-disorder regime, the transition is characterized by self-similar power-law-distributed weak links with a continuously varying characteristic exponent α .
Search for the Standard Model Higgs boson in the decay channel H ...
Indian Academy of Sciences (India)
2012-11-15
Nov 15, 2012 ... More details about CMS can be found in ref. [1]. The SM of electroweak interactions predicts the existence of a scalar boson, the Higgs boson, associated with the spontaneous electroweak symmetry breaking. The mass mH of this scalar boson is a free parameter of the theory. Direct searches for the SM ...
Kartsev, PF
2003-01-01
We present the results of an exact numeric simulation of N one-dimensional bosons with attractive delta-functional interaction in a rotating ring. We prove that even at intermediate values of N, the system can be described by conventional methods of weakly interacting gas, the dimensionless
Neutrino propagation in a weakly magnetized medium
Indian Academy of Sciences (India)
of the W and Z bosons allowing us to neglect the momentum dependence in the. W and Z propagators. This is equivalent to lowest-order GF calculations and is justified for low-energy neutrinos and low temperatures and weak fields compared to the Fermi scale. Since, in this work we focus our attention on the possible astro ...
Geringer-Sameth, Alex; Koushiappas, Savvas M
2011-12-09
Dwarf spheroidal galaxies are known to be excellent targets for the detection of annihilating dark matter. We present new limits on the annihilation cross section of weakly interacting massive particles based on the joint analysis of seven Milky Way dwarfs using a frequentist Neyman construction and Pass 7 data from the Fermi Gamma-Ray Space Telescope. We exclude generic weakly interacting massive particle candidates annihilating into bb with a mass less than 40 GeV that reproduce the observed relic abundance. To within 95% systematic errors on the dark matter distribution within the dwarfs, the mass lower limit can be as low as 19 GeV or as high as 240 GeV. For annihilation into τ+ τ-, these limits become 19, 13, and 80 GeV, respectively.
Search for Higgs bosons and for Supersymmetric particles at particle collider experiments
Muanza, Steve
The corner stone of the Standard Model (SM) of Particle Physics is the Higgs mechanism. It explains how the bosons W, Z and H acquire a mass via weak interactions. In addition it explains how the charged fermions also acquire a mass through Yukawa interactions. And on top of this, it regularizes the scattering of longitudinal W and Z bosons at high energy. The discovery of a Higgs boson by the ATLAS and the CMS collaborations in 2012 marked the culminating success of the SM at explaining most of the known phenomena. However a few other phenomena such as the Dark Matter and the Dark energy cannot be explained by the SM particles. What's more, the SM leaves several open questions such as a quest for a quantum theory for gravity, the naturalness in the Higgs sector, a possible Grand Unification,... The common thread in topics presented in this habilitation thesis is the search for manifestations of a TeV scale supersymmetric (SUSY) extension of the Standard Model at particle collider experiments. Among the predi...
Boson-fermion mixture model of superconductivity and pseudogap phenomena
Energy Technology Data Exchange (ETDEWEB)
Mamedov, Tofik
2004-08-01
A concept describing the origin of the pseudogap phase of high-T{sub c}-superconducting cuprates is discussed. Based on the idea about electron-composite boson mixture, existing below some value T{sub p} in cuprates, first, an analytical expression for T{sub p} is obtained. It is shown that T{sub p} depends on interaction parameter responsible for two electron-composite boson transformation, as well on the boson formation energy. Second, the composite boson condensation temperature T{sub c}, determined as a one below which the density of condensed bosons just ceases to be zero, is found. The reason why the behaviors of T{sub p} and T{sub c} in dependence on the interaction parameter may be so different is addressed.
Directory of Open Access Journals (Sweden)
G. Aad
2016-02-01
Full Text Available The strength and tensor structure of the Higgs boson's interactions are investigated using an effective Lagrangian, which introduces additional CP-even and CP-odd interactions that lead to changes in the kinematic properties of the Higgs boson and associated jet spectra with respect to the Standard Model. The parameters of the effective Lagrangian are probed using a fit to five differential cross sections previously measured by the ATLAS experiment in the H→γγ decay channel with an integrated luminosity of 20.3 fb−1 at s=8 TeV. In order to perform a simultaneous fit to the five distributions, the statistical correlations between them are determined by re-analysing the H→γγ candidate events in the proton–proton collision data. No significant deviations from the Standard Model predictions are observed and limits on the effective Lagrangian parameters are derived. The statistical correlations are made publicly available to allow for future analysis of theories with non-Standard Model interactions.
Worthen, Andrew J; Foster, Lynn M; Dong, Jiannan; Bollinger, Jonathan A; Peterman, Adam H; Pastora, Lucinda E; Bryant, Steven L; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P
2014-02-04
Oil-in-water emulsions were formed and stabilized at low amphiphile concentrations by combining hydrophilic nanoparticles (NPs) (i.e., bare colloidal silica) with a weakly interacting zwitterionic surfactant, caprylamidopropyl betaine, to generate a high hydrophilic-lipophilic balance. The weak interaction of the NPs with surfactant was quantified with contact angle measurements. Emulsions were characterized by static light scattering to determine the droplet size distributions, optical photography to quantify phase separation due to creaming, and both optical and electron microscopy to determine emulsion microstructure. The NPs and surfactant acted synergistically to produce finer emulsions with a greater stability to coalescence relative to the behavior with either NPs or surfactant alone. As a consequence of the weak adsorption of the highly hydrophilic surfactant on the anionic NPs along with the high critical micelle concentration, an unusually large surfactant concentration was available to adsorb at the oil-water interface and lower the interfacial tension. The synergy for emulsion formation and stabilization for the two amphiphiles was even greater in the case of a high-salinity synthetic seawater aqueous phase. Here, higher NP adsorption at the oil-water interface was caused by electrostatic screening of interactions between (1) NPs and the anionic oil-water interface and (2) between the NPs. This greater adsorption as well as partial flocculation of the NPs provided a more efficient barrier to droplet coalescence.
Ahmed, Aqeel; Dillon, Barry M.
2017-12-01
The clockwork mechanism has recently been proposed as a natural way to generate hierarchies among parameters in quantum field theories. The mechanism is characterized by a very specific pattern of spontaneous and explicit symmetry breaking, and the presence of new light states referred to as "gears." In this paper we begin by investigating the self-interactions of these gears in a scalar clockwork model and find a paritylike selection rule at all orders in the fields. We then proceed to investigate how the clockwork mechanism can be realized in five-dimensional linear dilaton models from the spontaneous symmetry breaking of a complex bulk scalar field. We also discuss how the clockwork mechanism is manifest in the scalar components of five-dimensional gauge theories in the linear dilaton model, and build their four-dimensional deconstructed analogue. Finally we discuss attempts at building both four-dimensional and five-dimensional realizations of a non-Abelian scalar clockwork mechanism, where in the latter we consider scenarios in which the Goldstone bosons arise from five-dimensional scalar and five-dimensional gauge fields.
Hamilton, Craig S.; Kruse, Regina; Sansoni, Linda; Barkhofen, Sonja; Silberhorn, Christine; Jex, Igor
2017-10-01
Boson sampling has emerged as a tool to explore the advantages of quantum over classical computers as it does not require universal control over the quantum system, which favors current photonic experimental platforms. Here, we introduce Gaussian Boson sampling, a classically hard-to-solve problem that uses squeezed states as a nonclassical resource. We relate the probability to measure specific photon patterns from a general Gaussian state in the Fock basis to a matrix function called the Hafnian, which answers the last remaining question of sampling from Gaussian states. Based on this result, we design Gaussian Boson sampling, a #P hard problem, using squeezed states. This demonstrates that Boson sampling from Gaussian states is possible, with significant advantages in the photon generation probability, compared to existing protocols.
CH-{\\pi} interaction-induced deep orbital deformation in a benzene-methane weak binding system
Li, Jianfu
2015-01-01
The nonbonding interaction between benzene and methane, called CH-{\\pi} interaction, plays an important role in physical, chemical, and biological fields. CH-{\\pi} interaction can decrease the system total energy and promote the formation of special geometric configurations. This work investigates systemically the orbital distribution and composition of the benzene-methane complex for the first time using ab initio calculation based on different methods and basis sets. Surprisingly, we find strong deformation in HOMO-4 and LUMO+2 induced by CH-{\\pi} interaction, extending the general view that nonbonding interaction does not cause orbital change of molecules.
Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R P; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M
2002-01-01
A search for the lightest neutral CP-even and neutral CP-odd Higgs bosons of the Minimal Supersymmetric Standard Model is performed using 216.6 pb-1 of data collected with the L3 detector at LEP at centre-of-mass energies between 203 and 209 GeV. No indication of a signal is found. Including our results from lower centre-of-mass energies, lower limits on the Higgs boson masses are set as a function of tan(beta) for several scenarios. For tan(beta) greater than 0.7 they are mh > 84.5 GeV and mA > 86.3 GeV at 95% confidence level.
Protecting weak measurements against systematic errors
Pang, Shengshi; Alonso, Jose Raul Gonzalez; Brun, Todd A.; Jordan, Andrew N.
2016-07-01
In this work, we consider the systematic error of quantum metrology by weak measurements under decoherence. We derive the systematic error of maximum likelihood estimation in general to the first-order approximation of a small deviation in the probability distribution and study the robustness of standard weak measurement and postselected weak measurements against systematic errors. We show that, with a large weak value, the systematic error of a postselected weak measurement when the probe undergoes decoherence can be significantly lower than that of a standard weak measurement. This indicates another advantage of weak-value amplification in improving the performance of parameter estimation. We illustrate the results by an exact numerical simulation of decoherence arising from a bosonic mode and compare it to the first-order analytical result we obtain.
Cinzia De Melis
2016-01-01
Four years after the historic announcement of the Higgs boson discovery at CERN, a collaboration between INFN and CERN has declared 4 July 2016 as “Higgs Boson Pizza Day”. The idea was born in Naples, by Pierluigi Paolucci and INFN president Fernando Ferroni, who inspired the chef of the historic “Ettore” pizzeria in St. Lucia to create the Higgs boson pizza in time for the opening of a Art&Science exhibition on 15 September 2015 in Naples. The animation shows the culinary creation of a Higgs boson in form of a vegetarian and ham&salami pizza. Ham&Salami: A two asparagus (proton-proton) collision produces a spicy Higgs boson (chorizo) decaying into two high-energy salami (photon) clusters and a lot of charged (sliced ham) and neutral (olive) particles that are detected in the pizza (detector) entirely covered with mozzarella sensors. A two asparagus (proton-proton) collision produces a juicy Higgs boson (cherry tomato) decaying into four high-energy (charged) peppers producing a tasty sign...
Stefania Pandolfi
2016-01-01
CERN celebrated the fourth anniversary of the historical Higgs boson announcement with special pizzas. 400 pizzas were served on Higgs pizza day in Restaurant 1 at CERN to celebrate the fourth anniversary of the announcement of the discovery of the Higgs Boson (Image: Maximilien Brice/ CERN) What do the Higgs boson and a pizza have in common? Pierluigi Paolucci, INFN and CMS collaboration member, together with INFN president Fernando Ferroni found out the answer one day in Naples: the pizza in front of them looked exactly like a Higgs boson event display. A special recipe was then created in collaboration with the chef of the historic “Ettore” pizzeria in the St. Lucia area of Naples, and two pizzas were designed to resemble two Higgs boson decay channel event displays. The “Higgs Boson Pizza Day” was held on Monday, 4 July 2016, on the fourth anniversary of the announcement of the discovery of the Higgs boso...
Directory of Open Access Journals (Sweden)
Martin Worm
Full Text Available Mormyrid weakly electric fish produce short, pulse-type electric organ discharges for actively probing their environment and to communicate with conspecifics. Animals emit sequences of pulse-trains that vary in overall frequency and temporal patterning and can lead to time-locked interactions with the discharge activity of other individuals. Both active electrolocation and electrocommunication are additionally accompanied by stereotypical locomotor patterns. However, the concrete roles of electrical and locomotor patterns during social interactions in mormyrids are not well understood. Here we used a mobile fish dummy that was emitting different types of electrical playback sequences to study following behavior and interaction patterns (electrical and locomotor between individuals of weakly electric fish. We confronted single individuals of Mormyrus rume proboscirostris with a mobile dummy fish designed to attract fish from a shelter and recruit them into an open area by emitting electrical playbacks of natural discharge sequences. We found that fish were reliably recruited by the mobile dummy if it emitted electrical signals and followed it largely independently of the presented playback patterns. While following the dummy, fish interacted with it spatially by displaying stereotypical motor patterns, as well as electrically, e.g. through discharge regularizations and by synchronizing their own discharge activity to the playback. However, the overall emission frequencies of the dummy were not adopted by the following fish. Instead, social signals based on different temporal patterns were emitted depending on the type of playback. In particular, double pulses were displayed in response to electrical signaling of the dummy and their expression was positively correlated with an animals' rank in the dominance hierarchy. Based on additional analysis of swimming trajectories and stereotypical locomotor behavior patterns, we conclude that the reception
Worm, Martin; Kirschbaum, Frank; von der Emde, Gerhard
2017-01-01
Mormyrid weakly electric fish produce short, pulse-type electric organ discharges for actively probing their environment and to communicate with conspecifics. Animals emit sequences of pulse-trains that vary in overall frequency and temporal patterning and can lead to time-locked interactions with the discharge activity of other individuals. Both active electrolocation and electrocommunication are additionally accompanied by stereotypical locomotor patterns. However, the concrete roles of electrical and locomotor patterns during social interactions in mormyrids are not well understood. Here we used a mobile fish dummy that was emitting different types of electrical playback sequences to study following behavior and interaction patterns (electrical and locomotor) between individuals of weakly electric fish. We confronted single individuals of Mormyrus rume proboscirostris with a mobile dummy fish designed to attract fish from a shelter and recruit them into an open area by emitting electrical playbacks of natural discharge sequences. We found that fish were reliably recruited by the mobile dummy if it emitted electrical signals and followed it largely independently of the presented playback patterns. While following the dummy, fish interacted with it spatially by displaying stereotypical motor patterns, as well as electrically, e.g. through discharge regularizations and by synchronizing their own discharge activity to the playback. However, the overall emission frequencies of the dummy were not adopted by the following fish. Instead, social signals based on different temporal patterns were emitted depending on the type of playback. In particular, double pulses were displayed in response to electrical signaling of the dummy and their expression was positively correlated with an animals' rank in the dominance hierarchy. Based on additional analysis of swimming trajectories and stereotypical locomotor behavior patterns, we conclude that the reception and emission of
Energy Technology Data Exchange (ETDEWEB)
Krstonosic, P.
2008-02-15
In the absence of the Standard Model Higgs boson the interaction among the gauge bosons becomes strong at high energies ({approx}1 TeV) and influences couplings between them. Trilinear and quartic gauge boson vertices are characterized by set of couplings that are expected to deviate from Standard Model at energies significantly lower then the energy scale of New Physics. Estimation of the precision with which we can measure quartic couplings at International Linear Collider (ILC) is one of two topics covered by this theses. There are several measurement scenarios for quartic couplings. One that we have chosen is weak boson scattering. Since taking of the real data is, unfortunately, still far in the future running options for the machine were also investigated with their impact on the results. Analysis was done in model independent way and precision limits were extracted. Interpretation of the results in terms of possible scenarios beyond Standard Model is then performed by combining accumulated knowledge about all signal processes. One of the key requirements for achieving the results of the measurement in the form that is presented is to reach the detector performance goals. This is possible only with ''Particle Flow'' reconstruction approach. Performance limit of such approach and various contribution to it is discussed in detail. Novel reconstruction algorithm for photon reconstruction is developed, and performance comparison of such concept with more traditional approaches is done. (orig.)
Sudden interaction quench in the quantum sine-Gordon model
Energy Technology Data Exchange (ETDEWEB)
Sabio, Javier [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, E-28049 Madrid (Spain); Kehrein, Stefan, E-mail: javier.sabio@icmm.csic.e [Arnold-Sommerfeld-Center for Theoretical Physics, Center for NanoSciences and Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Theresienstrasse 37, 80333 Muenchen (Germany)
2010-05-15
We study a sudden interaction quench in the weak-coupling regime of the quantum sine-Gordon model. The real time dynamics of the bosonic mode occupation numbers is calculated using the flow equation method. While we cannot prove results for the asymptotic long-time limit, we can establish the existence of an extended regime in time where the mode occupation numbers relax to twice their equilibrium values. This factor two indicates a non-equilibrium distribution and is a universal feature of weak interaction quenches. The weak-coupling quantum sine-Gordon model therefore turns out to be on the borderline between thermalization and non-thermalization.
Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz
2016-02-10
The strength and tensor structure of the Higgs boson's interactions are investigated within an effective field theory framework, which allows new CP-even and CP-odd interactions that can lead to changes in the kinematic properties of the Higgs boson and associated jet spectra. The parameters of the effective field theory are probed using a fit to five differential cross sections previously measured by the ATLAS experiment in the $H \\rightarrow \\gamma\\gamma$ decay channel with an integrated luminosity of 20.3 fb$^{-1}$ at $\\sqrt{s}=8$ TeV. In order to perform a simultaneous fit to the five distributions, the statistical correlations between them are determined by re-analysing the $H \\rightarrow \\gamma\\gamma$ candidate events in the proton-proton collision data. No significant deviations from the Standard Model are observed and limits on the effective field theory parameters are derived. The statistical correlations are made publicly available to allow for future analysis of theories with non-Standard Model int...
Optimal unitary dilation for bosonic Gaussian channels
Caruso, Filippo; Eisert, Jens; Giovannetti, Vittorio; Holevo, Alexander S.
2011-08-01
A general quantum channel can be represented in terms of a unitary interaction between the information-carrying system and a noisy environment. In this paper the minimal number of quantum Gaussian environmental modes required to provide a unitary dilation of a multimode bosonic Gaussian channel is analyzed for both pure and mixed environments. We compute this quantity in the case of pure environment corresponding to the Stinespring representation and give an improved estimate in the case of mixed environment. The computations rely, on one hand, on the properties of the generalized Choi-Jamiolkowski state and, on the other hand, on an explicit construction of the minimal dilation for arbitrary bosonic Gaussian channel. These results introduce a new quantity reflecting “noisiness” of bosonic Gaussian channels and can be applied to address some issues concerning transmission of information in continuous variables systems.
Optimal unitary dilation for bosonic Gaussian channels
Energy Technology Data Exchange (ETDEWEB)
Caruso, Filippo [Institut fuer Theoretische Physik, Universitaet Ulm, Albert-Einstein-Allee 11, D-89069 Ulm (Germany); Eisert, Jens [Dahlem Center for Complex Quantum Systems, Freie Universitaet Berlin, D-14195 Berlin (Germany); Giovannetti, Vittorio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Holevo, Alexander S. [Steklov Mathematical Institute, Gubkina 8, RU-119991 Moscow (Russian Federation)
2011-08-15
A general quantum channel can be represented in terms of a unitary interaction between the information-carrying system and a noisy environment. In this paper the minimal number of quantum Gaussian environmental modes required to provide a unitary dilation of a multimode bosonic Gaussian channel is analyzed for both pure and mixed environments. We compute this quantity in the case of pure environment corresponding to the Stinespring representation and give an improved estimate in the case of mixed environment. The computations rely, on one hand, on the properties of the generalized Choi-Jamiolkowski state and, on the other hand, on an explicit construction of the minimal dilation for arbitrary bosonic Gaussian channel. These results introduce a new quantity reflecting ''noisiness'' of bosonic Gaussian channels and can be applied to address some issues concerning transmission of information in continuous variables systems.
Liou, Shiuan-Fan; Hu, Zi-Xiang; Yang, Kun
2017-06-01
We use exact diagonalization to study the quantum phases and phase transitions when a single species of fermionic atoms at a Landau level filling factor νf=1 in a rotating trap interact through a p -wave Feshbach resonance. We show that under a weak pairing interaction, the system undergoes a second-order quantum phase transition from a νf=1 fermionic integer quantum Hall (FIQH) state at positive detuning, to a νb=1/4 bosonic fractional quantum Hall (BFQH) state at negative detuning. However, when the pairing interaction increases, a new phase between them emerges, corresponding to a fraction of fermionic atoms staying in a coherent superposition of a bosonic molecule state and an unbound pair. The phase transition from the FIQH phase to the new phase is of second order and that from the new phase to BFQH phase is of first order.
Singh, Santosh K; Vaishnav, Jamuna K; Das, Aloke
2016-09-14
In this study, interplay between a strong hydrogen bond and a very weak n → π(*) interaction has been probed through experiment for the first time. We have used resonant 2-photon ionization, Infrared-ultraviolet double resonance spectroscopy, and quantum chemistry calculation to determine the structures of 7-azaindole⋯2,6-difluoropyridine and 7-azaindole⋯2,3,5,6-tetrafluororpyridine complexes, which are stabilized by both hydrogen bonding and n → π(*) interaction. The structures of the complexes studied in the present work have been compared with the double hydrogen bonded (N-H⋯N and C-H⋯N) planar structure of 7-azaindole⋯2-fluoropyridine. It has been found that the strength of the N-H⋯N hydrogen bond in the 7-azaindole⋯2,6-substituted fluoropyridines is affected due to several factors. The main reason for huge reduction in the strength of this N-H⋯N hydrogen bond in these complexes is due to loss of the C-H⋯N hydrogen bond, through substitution of fluorine atoms in 2 and 6 positions, which induces major structural changes by bending the hydrogen bond and introducing the n → π(*) interaction. Effect of fluorination as well as presence of the n → π(*) interaction in these complexes also contributes to the reduction of the strength of the N-H⋯N interaction. Although it is difficult to quantify the role of the n → π(*) interaction to affect the strength of the hydrogen bond, observation of the structures, where a strong hydrogen bond and a weak n → π(*) interaction co-exist, is confirmed.
Leptophobic Boson Signals with Leptons, Jets and Missing Energy
Energy Technology Data Exchange (ETDEWEB)
Dobrescu, Bogdan A.
2015-06-14
Color-singlet gauge bosons with renormalizable couplings to quarks but not to leptons must interact with additional fermions (''anomalons'') required to cancel the gauge anomalies. Analyzing the decays of such leptophobic bosons into anomalons, I show that they produce final states involving leptons at the LHC. Resonant production of a flavor-universal leptophobic Z' boson leads to cascade decays via anomalons, whose signatures include a leptonically decaying Z, missing energy and several jets. A Z' boson that couples to the right-handed quarks of the first and second generations undergoes cascade decays that violate lepton universality and include signals with two leptons and jets, or with a Higgs boson, a lepton, a W and missing energy.
Multi-mode bosonic Gaussian channels
Energy Technology Data Exchange (ETDEWEB)
Caruso, F; Giovannetti, V [NEST CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Eisert, J [Institute for Mathematical Sciences, Imperial College London, London SW7 2PE (United Kingdom); Holevo, A S [Steklov Mathematical Institute, Gubkina 8, 119991 Moscow (Russian Federation)], E-mail: filippo.caruso@sns.it
2008-08-15
A complete analysis of multi-mode bosonic Gaussian channels (BGCs) is proposed. We clarify the structure of unitary dilations of general Gaussian channels involving any number of bosonic modes and present a normal form. The maximum number of auxiliary modes that is needed is identified, including all rank deficient cases, and the specific role of additive classical noise is highlighted. By using this analysis, we derive a canonical matrix form of the noisy evolution of n-mode BGCs and of their weak complementary counterparts, based on a recent generalization of the normal mode decomposition for non-symmetric or locality constrained situations. This allows us to simplify the weak-degradability classification. Moreover, we investigate the structure of some singular multi-mode channels, like the additive classical noise channel that can be used to decompose a noisy channel in terms of a less noisy one in order to find new sets of maps with zero quantum capacity. Finally, the two-mode case is analyzed in detail. By exploiting the composition rules of two-mode maps and the fact that anti-degradable channels cannot be used to transfer quantum information, we identify sets of two-mode bosonic channels with zero capacity.
Multi-mode bosonic Gaussian channels
Caruso, F.; Eisert, J.; Giovannetti, V.; Holevo, A. S.
2008-08-01
A complete analysis of multi-mode bosonic Gaussian channels (BGCs) is proposed. We clarify the structure of unitary dilations of general Gaussian channels involving any number of bosonic modes and present a normal form. The maximum number of auxiliary modes that is needed is identified, including all rank deficient cases, and the specific role of additive classical noise is highlighted. By using this analysis, we derive a canonical matrix form of the noisy evolution of n-mode BGCs and of their weak complementary counterparts, based on a recent generalization of the normal mode decomposition for non-symmetric or locality constrained situations. This allows us to simplify the weak-degradability classification. Moreover, we investigate the structure of some singular multi-mode channels, like the additive classical noise channel that can be used to decompose a noisy channel in terms of a less noisy one in order to find new sets of maps with zero quantum capacity. Finally, the two-mode case is analyzed in detail. By exploiting the composition rules of two-mode maps and the fact that anti-degradable channels cannot be used to transfer quantum information, we identify sets of two-mode bosonic channels with zero capacity.
Kotwal, Ashutosh V
2016-01-01
The measurement of the W boson mass has been growing in importance as its precision has improved, along with the precision of other electroweak observables and the top quark mass. Over the last decade, the measurement of the W boson mass has been led at hadron colliders. Combined with the precise measurement of the top quark mass at hadron colliders, the W boson mass helped to pin down the mass of the Standard Model Higgs boson through its induced radiative correction on the W boson mass. With the discovery of the Higgs boson and the measurement of its mass, the electroweak sector of the Standard Model is over-constrained. Increasing the precision of the W boson mass probes new physics at the TeV-scale. We summarize an extensive Tevatron (1984–2011) program to measure the W boson mass at the CDF and Dø experiments. We highlight the recent Tevatron measurements and prospects for the final Tevatron measurements.
Acciarri, M.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Ambrosi, G.; Anderhub, H.; Andreev, Valery P.; Angelescu, T.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, L.; Balandras, A.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Bhattacharya, S.; Biasini, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buffini, A.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.M.; Casaus, J.; Castellini, G.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chang, Y.H.; Chaturvedi, U.K.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Csilling, A.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; D'Alessandro, R.; de Asmundis, R.; Deglon, P.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dova, M.T.; Duchesneau, D.; Dufournaud, D.; Duinker, P.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Erne, F.C.; Ewers, A.; Extermann, P.; Fabre, M.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gau, S.S.; Gentile, S.; Gheordanescu, N.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hasan, A.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hidas, P.; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hoorani, H.; Hou, S.R.; Hu, Y.; Iashvili, I.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Khan, R.A.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, D.; Kim, J.K.; Kirkby, Jasper; Kiss, D.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Kopp, A.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Lugnier, L.; Luminari, L.; Lustermann, W.; Ma, W.G.; Maity, M.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Marian, G.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; von der Mey, M.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Moulik, T.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Oulianov, A.; Palomares, C.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Paramatti, R.; Park, H.K.; Park, I.H.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Raven, G.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Rodin, J.; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Seganti, A.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stone, A.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Sztaricskai, T.; Tang, X.W.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Valente, E.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobov, A.A.; Vorvolakos, A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, A.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Ye, J.B.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhu, G.Y.; Zhu, R.Y.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.
2001-01-01
A search for the lightest neutral CP-even and the neutral CP-odd Higgs bosons of the Minimal Supersymmetric Standard Model is performed using 233.2 pb-1 of integrated luminosity collected with the L3 detector at LEP at centre-of-mass energies 192-202 GeV. No signal is observed and lower mass limits are given as a function of tan(beta) for two scalar top mixing hypotheses. For tan(beta) greater than 0.8, they are mh > 83.4 GeV and mA > 83.8 GeV at 95 % confidence level.
Energy Technology Data Exchange (ETDEWEB)
Trilling, G.H.
1980-09-01
Results presented during sessions B5 to 7 at the XXth International Conference on High Energy Physics (University of Wisconsin, Madison, July 17 to 23, 1980) are discussed. Essentially all the material presented is summarized. The sessions covered various aspects of low-energy weak interactions. The following topics are addressed: CP-invariance violation, high-statistics study of ..lambda.. beta decay, parity violation in proton-nucleus scattering at 6 GeV/c, new results on the tau, charm particle decays (direct lifetime determinations, semileptonic branching ratios, comparison of semileptonic rate with theoretical expectations, further study of charm meson decays, F decays), and neutrino oscillations. 6 figures, 9 tables. (RWR)
Study of WW scattering in the absence of a light Higgs boson using the ATLAS Detector at the LHC
Stefanidis, Efstathios
2007-01-01
The Thesis investigates the possible case that the Electrow eak Symmetry Breaking is not due to a light, weakly interacting Higgs boson, but inste ad the Symmetry is broken by strongly interacting heavy resonances. In that case, the formalism of the Electroweak Chiral Lagrangian can be used as a model-independent way to c onstruct a low-energy effective theory for the electroweak interactions and using the Pad ́e unitarisation protocol, certain resonances can be predicted. The scattering of long itudinally polarized W bosons, one of which decays leptonically and the other hadronically , is used as a channel to probe the mechanism of the Electroweak Symmetry Breaking in the ma ss range of 600 GeV up to 2.4 TeV and for different resonance scenarios, includin g the case that there is no resonance in the spectrum. The reconstruction of the vector bosons is described and it is demonstrated that, by exploiting key features of the hadron ic environment, the contribution from the background processes can be reduced ...
Cai, Jianfeng; Cheng, Lingping; Zhao, Jianchao; Fu, Qing; Jin, Yu; Ke, Yanxiong; Liang, Xinmiao
2017-11-17
A hydrophilic interaction liquid chromatography (HILIC) stationary phase was prepared by a two-step synthesis method, immobilizing polyacrylamide on silica sphere particles. The stationary phase (named PA, 5μm dia) was evaluated using a mixture of carbohydrates in HILIC mode and the column efficiency reached 121,000Nm -1 . The retention behavior of carbohydrates on PA stationary phase was investigated with three different organic solvents (acetonitrile, ethanol and methanol) employed as the weak eluent. The strongest hydrophilicity of PA stationary phase was observed in both acetonitrile and methanol as the weak eluent, when compared with another two amide stationary phases. Attributing to its high hydrophilicity, three oligosaccharides (xylooligosaccharide, fructooligosaccharide and chitooligosaccharides) presented good retention on PA stationary phase using alcohols/water as mobile phase. Finally, PA stationary phase was successfully applied for the purification of galactooligosaccharides and saponins of Paris polyphylla. It is feasible to use safer and cheaper alcohols to replace acetonitrile as the weak eluent for green analysis and purification of polar compounds on PA stationary phase. Copyright © 2017. Published by Elsevier B.V.
Directory of Open Access Journals (Sweden)
Steven L. Liebling
2012-05-01
Full Text Available The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s, John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called geons, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name boson stars. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single Killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.
Liebling, Steven L.; Palenzuela, Carlos
2017-11-01
The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s, John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called geons, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name boson stars. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single Killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.
Liebling, Steven L; Palenzuela, Carlos
2017-01-01
The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s, John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called geons, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name boson stars. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single Killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.
Serrano, M.M.
2012-01-01
This research analyses the interaction between aid interventions and local institutions through which people address needs during crisis. These include state and non- state institutions involved in social assistance and in the delivery of basic services such as healthcare. The study focuses on the
Hybridization-induced charge rebalancing at the weakly interactive C60/Fe3O4(001) spinterface
Wong, P.K.J.; Zhang, W.; de Jong, Machiel Pieter
Spin injection in organic and molecular spintronic devices is largely defined by the electronic and magnetic structure of the constituting organic/ferromagnetic “spinterfaces‿. Unlike most of the previous studies involving highly interactive organic/metallic interfaces, we present here the valence
Energy Technology Data Exchange (ETDEWEB)
Casalderrey-Solana, Jorge [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Gulhan, Doga Can [Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Physics Department, Theory Unit, CERN, CH-1211 Genève 23 (Switzerland); Pablos, Daniel [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2016-12-15
Within a hybrid strong/weak coupling model for jets in strongly coupled plasma, we explore jet modifications in ultra-relativistic heavy ion collisions. Our approach merges the perturbative dynamics of hard jet evolution with the strongly coupled dynamics which dominates the soft exchanges between the fast partons in the jet shower and the strongly coupled plasma itself. We implement this approach in a Monte Carlo, which supplements the DGLAP shower with the energy loss dynamics as dictated by holographic computations, up to a single free parameter that we fit to data. We then augment the model by incorporating the transverse momentum picked up by each parton in the shower as it propagates through the medium, at the expense of adding a second free parameter. We use this model to discuss the influence of the transverse broadening of the partons in a jet on intra-jet observables. In addition, we explore the sensitivity of such observables to the back-reaction of the plasma to the passage of the jet.
Disentangling weak and strong interactions in B → K*(→ Kπ)π Dalitz-plot analyses
Energy Technology Data Exchange (ETDEWEB)
Charles, Jerome [CNRS, Aix-Marseille Univ., Universite de Toulon, CPT UMR 7332, Marseille (France); Descotes-Genon, Sebastien [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR 8627), Orsay (France); Ocariz, Jose [Sorbonne Universites, UPMC Univ. Paris 06, UMR 7585, LPNHE, Paris (France); Universite Paris Diderot, LPNHE UMR 7585, Sorbonne Paris Cite, Paris (France); Perez Perez, Alejandro [Universite de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg (France); Collaboration: For the CKMfitter Group
2017-08-15
Dalitz-plot analyses of B → Kππ decays provide direct access to decay amplitudes, and thereby weak and strong phases can be disentangled by resolving the interference patterns in phase space between intermediate resonant states. A phenomenological isospin analysis of B → K*(→ Kπ)π decay amplitudes is presented exploiting available amplitude analyses performed at the BaBar, Belle and LHCb experiments. A first application consists in constraining the CKM parameters thanks to an external hadronic input. A method, proposed some time ago by two different groups and relying on a bound on the electroweak penguin contribution, is shown to lack the desired robustness and accuracy, and we propose a more alluring alternative using a bound on the annihilation contribution. A second application consists in extracting information on hadronic amplitudes assuming the values of the CKM parameters from a global fit to quark flavour data. The current data yields several solutions, which do not fully support the hierarchy of hadronic amplitudes usually expected from theoretical arguments (colour suppression, suppression of electroweak penguins), as illustrated from computations within QCD factorisation. Some prospects concerning the impact of future measurements at LHCb and Belle II are also presented. Results are obtained with the CKMfitter analysis package, featuring the frequentist statistical approach and using the Rfit scheme to handle theoretical uncertainties. (orig.)
Horowitz, Gary T.; Susskind, Leonard
2000-01-01
We conjecture that there exists a strong coupling limit of bosonic string theory which is related to the 26 dimensional theory in the same way that 11 dimensional M theory is related to superstring theory. More precisely, we believe that bosonic string theory is the compactification on a line interval of a 27 dimensional theory whose low energy limit contains gravity and a three-form potential. The line interval becomes infinite in the strong coupling limit, and this may provide a stable grou...
Probing a composite spin-boson environment
Energy Technology Data Exchange (ETDEWEB)
Oxtoby, Neil P; Rivas, Angel; Huelga, Susana F [Quantum Physics Group, STRI, School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Fazio, Rosario [NEST CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy)], E-mail: s.f.huelga@herts.ac.uk
2009-06-15
We consider non-interacting multi-qubit systems as controllable probes of an environment of defects/impurities modelled as a composite spin-boson environment. The spin-boson environment consists of a small number of quantum-coherent two-level fluctuators (TLFs) damped by independent bosonic baths. A master equation of the Lindblad form is derived for the probe-plus-TLF system. We discuss how correlation measurements in the probe system encode information about the environment structure and could be exploited to efficiently discriminate between different experimental preparation techniques, with particular focus on the quantum correlations (entanglement) that build up in the probe as a result of the TLF-mediated interaction. We also investigate the harmful effects of the composite spin-boson environment on initially prepared entangled bipartite qubit states of the probe and on entangling gate operations. Our results offer insights in the area of quantum computation using superconducting devices, where defects/impurities are believed to be a major source of decoherence.
Search for high mass bosonic resonances with the ATLAS detector
Carminati, Leonardo; The ATLAS collaboration
2017-01-01
Several theories beyond the Standard Model, like the EWS or 2HDM models, predict the existence of high mass Higgs particles, which could decay into final states with Weak bosons. In this presentation the latest ATLAS results on these searches will be discussed, using about 36 fb-1 of p-p collisions at 13 TeV.
Energy Technology Data Exchange (ETDEWEB)
Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brandt, D.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Cerdeno, D. G.; Chagani, H.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; Di Stefano, P. C.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Harris, H. R.; Hertel, S. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Kiveni, M.; Koch, K.; Loer, B.; Lopez Asamar, E.; Mahapatra, R.; Mandic, V.; Martinez, C.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Moore, D. C.; Nadeau, P.; Nelson, R. H.; Page, K.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redi, P.; Reisetter, A.; Ricci, Y.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, Richard; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Villano, A. N.; Welliver, B.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.
2014-01-27
SuperCDMS is an experiment designed to directly detect weakly interacting massive particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this Letter, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage-assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for ten live days at the Soudan Underground Laboratory. A low energy threshold of (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV/c^{2}.
Agnese, R; Anderson, A J; Asai, M; Balakishiyeva, D; Basu Thakur, R; Bauer, D A; Billard, J; Borgland, A; Bowles, M A; Brandt, D; Brink, P L; Bunker, R; Cabrera, B; Caldwell, D O; Cerdeno, D G; Chagani, H; Cooley, J; Cornell, B; Crewdson, C H; Cushman, P; Daal, M; Di Stefano, P C F; Doughty, T; Esteban, L; Fallows, S; Figueroa-Feliciano, E; Godfrey, G L; Golwala, S R; Hall, J; Harris, H R; Hertel, S A; Hofer, T; Holmgren, D; Hsu, L; Huber, M E; Jastram, A; Kamaev, O; Kara, B; Kelsey, M H; Kennedy, A; Kiveni, M; Koch, K; Loer, B; Lopez Asamar, E; Mahapatra, R; Mandic, V; Martinez, C; McCarthy, K A; Mirabolfathi, N; Moffatt, R A; Moore, D C; Nadeau, P; Nelson, R H; Page, K; Partridge, R; Pepin, M; Phipps, A; Prasad, K; Pyle, M; Qiu, H; Rau, W; Redl, P; Reisetter, A; Ricci, Y; Saab, T; Sadoulet, B; Sander, J; Schneck, K; Schnee, R W; Scorza, S; Serfass, B; Shank, B; Speller, D; Villano, A N; Welliver, B; Wright, D H; Yellin, S; Yen, J J; Young, B A; Zhang, J
2014-01-31
SuperCDMS is an experiment designed to directly detect weakly interacting massive particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this Letter, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage-assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for ten live days at the Soudan Underground Laboratory. A low energy threshold of 170 eVee (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV/c2.
Energy Technology Data Exchange (ETDEWEB)
Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brandt, D.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Cerdeno, D. G.; Chagani, H.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hertel, S. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Kiveni, M.; Koch, K.; Loer, B.; Lopez Asamar, E.; Mahapatra, R.; Mandic, V.; Martinez, C.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Moore, D. C.; Nadeau, P.; Nelson, R. H.; Page, K.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Villano, A. N.; Welliver, B.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.
2014-01-01
SuperCDMS is an experiment designed to directly detect Weakly Interacting Massive Particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this paper, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage- assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for 10 live days at the Soudan Underground Laboratory. A low energy threshold of 170 eVee (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV/c2.
Bugge, Magnar Kopangen; Read, Alexander Lincoln
2015-04-30
The Standard Model (SM), the current theory of elementary particles and interactions, has been extremely successful in predicting and describing experimental results. The prediction of the electron's anomalous magnetic moment served as an early triumph of quantum electrodynamics, and one success after another has followed, including the discovery of the weak interaction gauge bosons $W^\\pm$ and $Z^0$, and more recently the discovery of the Higgs boson at CERN's Large Hadron Collider (LHC) in 2012. In spite of the success of the theory, though, there are phenomena which it does not explain, such as the dark matter and dark energy making up most of the universe. Extensions of the SM aiming to address its shortcomings typically predict observable deviations from the theory. Although theories predicting significant deviations from the SM in the energy regime so far explored can be immediately excluded, theories that predict deviations at higher, unexplored energies are still viable. Therefore, exploring physics...
Selleri, Franco
2015-01-01
Weak Relativity is an equivalent theory to Special Relativity according to Reichenbach’s definition, where the parameter epsilon equals to 0. It formulates a Neo-Lorentzian approach by replacing the Lorentz transformations with a new set named “Inertial Transformations”, thus explaining the Sagnac effect, the twin paradox and the trip from the future to the past in an easy and elegant way. The cosmic microwave background is suggested as a possible privileged reference system. Most importantly, being a theory based on experimental proofs, rather than mutual consensus, it offers a physical description of reality independent of the human observation.
Bosonization and quantum hydrodynamics
Indian Academy of Sciences (India)
Bosonization and quantum hydrodynamics. GIRISH S SETLUR. Department of Physics, Indian Institute of Technology, Guwahati, North Guwahati .... and Haldane [3] breaks up the Fermi surface into patches where the separation between the patches ∆kF ≫ Λ ∼ ∆q. Not only is this contrived, it involves the introduction of one ...
Sirunyan, Albert M; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Dvornikov, Oleg; Makarenko, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; Zykunov, Vladimir; Shumeiko, Nikolai; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Ruan, Manqi; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Susa, Tatjana; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Tsiakkouri, Demetra; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sabes, David; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Verlage, Tobias; Albert, Andreas; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Seitz, Claudia; Spannagel, Simon; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Poehlsen, Jennifer; Sander, Christian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baur, Sebastian; Baus, Colin; Berger, Joram; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Fink, Simon; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Goldenzweig, Pablo; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Filipovic, Nicolas; Pasztor, Gabriella; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Bhowmik, Sandeep; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Kole, Gouranga; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Dewanjee, Ram Krishna; Ganguly, Sanmay; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Nardo, Guglielmo; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Pazzini, Jacopo; Pegoraro, Matteo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Ventura, Sandro; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Fallavollita, Francesco; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Kim, Hyunchul; Brochero Cifuentes, Javier Andres; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Lee, Haneol; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Calpas, Betty; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Chtchipounov, Leonid; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Murzin, Victor; Oreshkin, Vadim; Sulimov, Valentin; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Chistov, Ruslan; Polikarpov, Sergey; Tarkovskii, Evgenii; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Klyukhin, Vyacheslav; Korneeva, Natalia; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Perfilov, Maxim; Savrin, Viktor; Volkov, Petr; Blinov, Vladimir; Skovpen, Yuri; Shtol, Dmitry; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Bloch, Philippe; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; Chen, Yi; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Gulhan, Doga; Gundacker, Stefan; Guthoff, Moritz; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kieseler, Jan; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Kousouris, Konstantinos; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Verweij, Marta; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Yang, Yong; Zucchetta, Alberto; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Mackay, Catherine Kirsty; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Bartek, Rachel; Dominguez, Aaron; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Jesus, Orduna; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Spencer, Eric; Syarif, Rizki; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Squires, Michael; Stolp, Dustin; Tos, Kyle; Tripathi, Mani; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Weber, Matthias; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Si, Weinan; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Holzner, André; Klein, Daniel; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mullin, Sam Daniel; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Duarte, Javier; Lawhorn, Jay Mathew; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Apresyan, Artur; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cremonesi, Matteo; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Wu, Yujun; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Rank, Douglas; Shchutska, Lesya; Sperka, David; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Bein, Samuel; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Santra, Arka; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Jung, Kurt; Sandoval Gonzalez, Irving Daniel; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zakaria, Mohammed; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Osherson, Marc; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Forthomme, Laurent; Kenny III, Raymond Patrick; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Apyan, Aram; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Tatar, Kaya; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Malta Rodrigues, Alan; Meier, Frank; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Kumar, Ajay; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Lange, David; Luo, Jingyu; Marlow, Daniel; Medvedeva, Tatiana; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Svyatkovskiy, Alexey; Tully, Christopher; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Schulte, Jan-Frederik; Shi, Xin; Sun, Jian; Wang, Fuqiang; Xie, Wei; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Nash, Kevin; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Juska, Evaldas; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; De Guio, Federico; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Sturdy, Jared; Belknap, Donald; Buchanan, James; Caillol, Cécile; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel
2017-07-03
A search for the production of a single top quark in association with a Z boson is presented, both to identify the expected standard model process and to search for flavour-changing neutral current interactions. The data sample corresponds to an integrated luminosity of 19.7 fb$^{-1}$ recorded by the CMS experiment at the LHC in proton-proton collisions at $ \\sqrt{s} = $ 8 TeV. Final states with three leptons (electrons or muons) and at least one jet are investigated. An events yield compatible with tZq standard model production is observed, and the corresponding cross section is measured to be $\\sigma(\\mathrm{ p }\\mathrm{ p } \\to \\mathrm{ t } \\mathrm{ Z } \\mathrm{ q } \\to \\ell \
CMS Collaboration
2016-01-01
A search for the production of a single top quark in association with a Z boson is presented, both to identify the expected standard model (SM) process and to search for flavour changing neutral current (FCNC) interactions. The data sample corresponds to an integrated luminosity of $19.7~\\mathrm{fb}^{-1}$ recorded by the CMS experiment at the LHC in proton-proton collisions at $\\sqrt{s} = 8~\\mathrm{TeV}$. Final states with three leptons, electrons or muons, and at least one jet are investigated. A moderate excess of events compatible with SM tZq production is observed, and the corresponding cross section is measured to be $\\sigma ({\\rm tZq \\rightarrow \\ell} \
Kozlov, V.Yu.; Beck, D.; Beck, M.; Coeck, S.; Delaure, B.; Kopecky, S.; Lindroth, A.; Delahaye, P.; Wenander, F.; Golovko, V.V.; Kraev, I.S.; Phalet, T.
2006-01-01
The WITCH experiment aims to study a possible admixture of a scalar or tensor type interaction in beta decay by determining the beta-neutrino angular correlation from the shape of the recoil energy spectrum. The installation period was completed and intensive commissioning of the set-up was performed already. The lay-out of the WITCH set-up and results of commissioning tests performed until now are described here, showing that the full set-up up to the spectrometer is now operational, although several efficiencies are still to be improved. Due to its feature of being able to measure the energy spectrum for recoil ions, the WITCH experiment also opens possibilities for other observables.
Pujari, Sumiran; Lang, Thomas C.; Kaul, Ribhu K.
Bernal-stacked bilayer graphene hosts an interesting 'non-relativistic' semi-metallic dispersion different from monolayer graphene. At this quadratic band touching, short-range interactions are marginal and hence cause instabilities to a variety of ground states. In this work we consider the instabilities of even N species of fermions on the Bernal bilayer with an SU (N) -symmetric contact interaction. For SU (2) fermions with an on-site Hubbard interaction the ground state has been found to be to a magnetic Néel state for all strengths of the interaction. In contrast, the leading weak coupling instability for N > 2 is a non-magnetic ground state, which is gapped and odd under time reversal. On the other hand, at strong coupling we expect Néel or VBS ground states of the effective self-conjugate SU (N) spin models. Motivated by this observation, we investigate the phase diagram for even N > 2 using determinantal quantum Monte Carlo computations. Support from NSF Grant DMR-1056536 and XSEDE Grant DMR-150037.
Johnson Senosi, Kgotlaesele; ALICE Collaboration
2017-04-01
Heavy flavours (charm and beauty) and electroweak bosons (W and Z) are produced in initial hard partonic scatterings. The former interact strongly with the medium formed in ultra-relativistic heavy-ion collisions throughout its evolution, thus making them well suited to investigate its properties. Furthermore, heavy-flavour measurements in proton-nucleus collisions can be used to investigate initial-state effects whereas in proton-proton (pp) collisions they are considered an important test for perturbative Quantum ChromoDynamics (pQCD) predictions. In addition, open heavy-flavour measurements in pp collisions are used as a reference for proton-lead (p-Pb) and lead-lead (Pb-Pb) collisions. On the other hand, electroweak bosons and their leptonic decay products only interact weakly with the QCD matter and thus are suitable probes to test the validity of binary-collision scaling of hard processes. Moreover, their measurements in p-Pb collisions could help to constrain nuclear parton distribution functions. The ALICE muon spectrometer allows the measurement of open heavy flavour, W- and Z-boson production at forward rapidity (-4.0 < η < -2.5) exploiting their (di)muonic decay channel. In this talk the results obtained with the LHC Run I data in pp, p-Pb and Pb-Pb collisions will be discussed and compared with theoretical predictions.
Composite Higgs Boson Pair Production at the LHC
Grober, Ramona; Muhlleitner, Margarete
2010-01-01
The measurement of the trilinear and quartic Higgs self-couplings is necessary for the reconstruction of the Higgs potential. This way the Higgs mechanism as the origin of electroweak symmetry breaking can be tested. The couplings are accessible in multi-Higgs production processes at the LHC. In this paper we investigate the prospects of measuring the trilinear Higgs coupling in composite Higgs models. In these models, the Higgs boson emerges as a pseudo-Goldstone boson of a strongly interact...
Simulating generic spin-boson models with matrix product states
Wall, Michael L.; Safavi-Naini, Arghavan; Rey, Ana Maria
2016-11-01
The global coupling of few-level quantum systems ("spins") to a discrete set of bosonic modes is a key ingredient for many applications in quantum science, including large-scale entanglement generation, quantum simulation of the dynamics of long-range interacting spin models, and hybrid platforms for force and spin sensing. We present a general numerical framework for treating the out-of-equilibrium dynamics of such models based on matrix product states. Our approach applies for generic spin-boson systems: it treats any spatial and operator dependence of the two-body spin-boson coupling and places no restrictions on relative energy scales. We show that the full counting statistics of collective spin measurements and infidelity of quantum simulation due to spin-boson entanglement, both of which are difficult to obtain by other techniques, are readily calculable in our approach. We benchmark our method using a recently developed exact solution for a particular spin-boson coupling relevant to trapped ion quantum simulators. Finally, we show how decoherence can be incorporated within our framework using the method of quantum trajectories, and study the dynamics of an open-system spin-boson model with spatially nonuniform spin-boson coupling relevant for trapped atomic ion crystals in the presence of molecular ion impurities.
Strongly Interacting Light Dark Matter
Bruggisser, Sebastian; Urbano, Alfredo
2016-01-01
In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.
Stability, Higgs boson mass, and new physics.
Branchina, Vincenzo; Messina, Emanuele
2013-12-13
Assuming that the particle with mass ∼126 GeV discovered at LHC is the standard model Higgs boson, we find that the stability of the electroweak (EW) vacuum strongly depends on new physics interaction at the Planck scale MP, despite of the fact that they are higher-dimensional interactions, apparently suppressed by inverse powers of MP. In particular, for the present experimental values of the top and Higgs boson masses, if τ is the lifetime of the EW vacuum, new physics can turn τ from τ≫TU to τ≪TU, where TU is the age of the Universe, thus, weakening the conclusions of the so called metastability scenario.
Energy Technology Data Exchange (ETDEWEB)
Kazakevich, G.M., E-mail: gkazakevitch@yahoo.co [Dept. of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520 (United States); Baker, O.K. [Dept. of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520 (United States); Hirshfield, J.L. [Dept. of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520 (United States); Omega-P Inc., 258 Bradley Ave., New Haven, CT 06510 (United States); Jiang, Y.; LaPointe, M.A.; Martin, A.; Shchelkunov, S.V.; Slocum, P.L. [Dept. of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520 (United States); Yakovlev, V.P. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)
2010-09-21
The intrapulse phase instability of the 34 GHz magnicon that will be used as a high-power RF source for the Yale project 'Weakly interacting sub-eV particle searches' was measured using a heterodyne technique. The measured intrapulse RMS phase deviation averaged over a series of runs is approximately 22.1{+-}6.8 degrees. This is shown to be due mainly to magnicon modulator ripples. The ripples cause variable beam loading of the magnicon cavities resulting in frequency modulation of the magnicon output signal. Simulation of the beam dynamics (considering variations of the modulator voltage and the magnicon gun current) demonstrates a good agreement with the measured RMS value of the phase deviation for the magnicon steady-state regime. Measured RMS values of the phase deviations for similar parameter sets demonstrate good repeatability from one run to another one.
Neutrino and Z gauge boson physics
Energy Technology Data Exchange (ETDEWEB)
Larios, F. [Departamento de Fisica Aplicada, CINVESTAV-Merida, A.P. 73, 97310 Merida, Yucatan (Mexico); Perez, M. A. [Departamento de Fisica, CINVESTAV, A.P. 14-740, 07000, Mexico D.F (Mexico)
2013-06-12
We present a short review of the physics of neutrino-photon interactions and the rare decays of the Z and Z Prime gauge bosons. In particular, we emphasize on processes induced by the anomalous trilinear and quartic vertices VVV and VVVV, where V=Z,Z Prime or a photon, within the Standard Model (SM), the 331 model and some extensions of the SM. We also include the phenomenological and experimental limits reported for these couplings.
Directory of Open Access Journals (Sweden)
Ali Al Kaissi MD, MSc
2017-01-01
Full Text Available Marked ligamentous hyperlaxity and muscle weakness/wasting associated with awkward gait are the main deficits confused with the diagnosis of myopathy. Seven children (6 boys and 1 girl with an average age of 8 years were referred to our department because of diverse forms of skeletal abnormalities. No definitive diagnosis was made, and all underwent a series of sophisticated investigations in other institutes in favor of myopathy. We applied our methodology through the clinical and radiographic phenotypes followed by targeted genotypic confirmation. Three children (2 boys and 1 girl were compatible with the diagnosis of progressive pseudorheumatoid chondrodysplasia. The genetic mutation was correlated with the WISP 3 gene actively expressed by articular chondrocytes and located on chromosome 6. Klinefelter syndrome was the diagnosis in 2 boys. Karyotyping confirmed 47,XXY (aneuploidy of Klinefelter syndrome. And 2 boys were finally diagnosed with Morquio syndrome (MPS type IV A as both showed missense mutations in the N-acetylgalactosamine-sulfate sulfatase gene. Misdiagnosis can lead to the initiation of a long list of sophisticated investigations.
Francoeur, Richard B
2015-01-01
The majority of patients with advanced cancer experience symptom pairs or clusters among pain, fatigue, and insomnia. Improved methods are needed to detect and interpret interactions among symptoms or diesease markers to reveal influential pairs or clusters. In prior work, I developed and validated sequential residual centering (SRC), a method that improves the sensitivity of multiple regression to detect interactions among predictors, by conditioning for multicollinearity (shared variation) among interactions and component predictors. Using a hypothetical three-way interaction among pain, fatigue, and sleep to predict depressive affect, I derive and explain SRC multiple regression. Subsequently, I estimate raw and SRC multiple regressions using real data for these symptoms from 268 palliative radiation outpatients. Unlike raw regression, SRC reveals that the three-way interaction (pain × fatigue/weakness × sleep problems) is statistically significant. In follow-up analyses, the relationship between pain and depressive affect is aggravated (magnified) within two partial ranges: 1) complete-to-some control over fatigue/weakness when there is complete control over sleep problems (ie, a subset of the pain-fatigue/weakness symptom pair), and 2) no control over fatigue/weakness when there is some-to-no control over sleep problems (ie, a subset of the pain-fatigue/weakness-sleep problems symptom cluster). Otherwise, the relationship weakens (buffering) as control over fatigue/weakness or sleep problems diminishes. By reducing the standard error, SRC unmasks a three-way interaction comprising a symptom pair and cluster. Low-to-moderate levels of the moderator variable for fatigue/weakness magnify the relationship between pain and depressive affect. However, when the comoderator variable for sleep problems accompanies fatigue/weakness, only frequent or unrelenting levels of both symptoms magnify the relationship. These findings suggest that a countervailing mechanism
Extreme bosonic linear channels
Holevo, A. S.
2013-02-01
The set of all channels with a fixed input and output is convex. We first give a convenient formulation of the necessary and sufficient condition for a channel to be an extreme point of this set in terms of the complementary channel, a notion of great importance in quantum information theory. This formulation is based on the general approach to extremality of completely positive maps in an operator algebra in the spirit of Arveson. We then use this formulation to prove our main result: under certain nondegeneracy conditions, environmental purity is necessary and sufficient for the extremality of a bosonic linear (quasifree) channel. It hence follows that a Gaussian channel between finite-mode bosonic systems is extreme if and only if it has minimum noise.
LHC constraints on gauge boson couplings to dark matter
Crivellin, Andreas; Hibbs, Anthony
2015-01-01
Collider searches for energetic particles recoiling against missing transverse energy allow to place strong bounds on the interactions between dark matter (DM) and standard model particles. In this article we update and extend LHC constraints on effective dimension-7 operators involving DM and electroweak gauge bosons. A concise comparison of the sensitivity of the mono-photon, mono-W, mono-Z, mono-W/Z, invisible Higgs-boson decays in the vector boson fusion mode and the mono-jet channel is presented. Depending on the parameter choices, either the mono-photon or the mono-jet data provide the most stringent bounds at the moment. We furthermore explore the potential of improving the current 8 TeV limits at 14 TeV. Future strategies capable of disentangling the effects of the different effective operators involving electroweak gauge bosons are discussed as well.
Weak Measurement and Quantum Correlation
Indian Academy of Sciences (India)
Arun Kumar Pati
The concept of the weak measurements, for the first time, was introduced by Aharonov et al.1. Quantum state is preselected in |ψi〉 and allowed to interact weakly with apparatus. Measurement strength can be tuned and for “small g(t)” it is called 'weak measurement'. With postselection in |ψf 〉, apparatus state is shifted by an ...
Heydarinasab, F.; Abouie, J.
2017-09-01
We introduce an inhomogeneous bosonic mixture composed of two kinds of hard-core and semi-hard-core bosons with different nilpotency conditions and demonstrate that in contrast with the standard hard-core Bose-Hubbard model, our bosonic mixture with nearest- and next-nearest-neighbor interactions on a square lattice develops the checkerboard supersolid phase characterized by the simultaneous superfluid and checkerboard solid orders. Our bosonic mixture is created from a two-orbital Bose-Hubbard model including two kinds of bosons: a single-orbital boson and a two-orbital boson. By mapping the bosonic mixture to an anisotropic inhomogeneous spin model in the presence of a magnetic field, we study the ground-state phase diagram of the model by means of cluster mean field theory and linear spin-wave theory and show that various phases such as solid, superfluid, supersolid, and Mott insulator appear in the phase diagram of the mixture. Competition between the interactions and magnetic field causes the mixture to undergo different kinds of first- and second-order phase transitions. By studying the behavior of the spin-wave excitations, we find the reasons of all first- and second-order phase transitions. We also obtain the temperature phase diagram of the system using cluster mean field theory. We show that the checkerboard supersolid phase persists at finite temperature comparable with the interaction energies of bosons.
Nonequilibrium functional bosonization of quantum wire networks
Energy Technology Data Exchange (ETDEWEB)
Ngo Dinh, Stephane, E-mail: stephane.ngodinh@kit.edu [Institut fuer Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); DFG Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Bagrets, Dmitry A. [Institut fuer Theoretische Physik, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany); Mirlin, Alexander D. [Institut fuer Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Institut fuer Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); DFG Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Petersburg Nuclear Physics Institute, 188300 St. Petersburg (Russian Federation)
2012-11-15
We develop a general approach to nonequilibrium nanostructures formed by one-dimensional channels coupled by tunnel junctions and/or by impurity scattering. The formalism is based on nonequilibrium version of functional bosonization. A central role in this approach is played by the Keldysh action that has a form reminiscent of the theory of full counting statistics. To proceed with evaluation of physical observables, we assume the weak-tunneling regime and develop a real-time instanton method. A detailed exposition of the formalism is supplemented by two important applications: (i) tunneling into a biased Luttinger liquid with an impurity, and (ii) quantum Hall Fabry-Perot interferometry. - Highlights: Black-Right-Pointing-Pointer A nonequilibrium functional bosonization framework for quantum wire networks is developed Black-Right-Pointing-Pointer For the study of observables in the weak tunneling regime a real-time instanton method is elaborated. Black-Right-Pointing-Pointer We consider tunneling into a biased Luttinger liquid with an impurity. Black-Right-Pointing-Pointer We analyze electronic Fabry-Perot interferometers in the integer quantum Hall regime.
Light minimal supersymmetric standard model Higgs boson scenario and its test at hadron colliders.
Belyaev, Alexander; Cao, Qing-Hong; Nomura, Daisuke; Tobe, Kazuhiro; Yuan, C-P
2008-02-15
We show that, in the minimal supersymmetric standard model, the possibility for the lightest CP-even Higgs boson to be lighter than Z boson (as low as about 60 GeV) is, contrary to the usual belief, not yet excluded by the CERN LEP2 Higgs search nor any direct searches for supersymmetric particles at high energy colliders. The characteristic of the light Higgs boson scenario (LHS) is that the ZZh coupling and the decay branching ratio Br(h/A-->bb) are simultaneously suppressed as a result of generic supersymmetric loop corrections. Consequently, the W(+/-)H(-/+)h coupling has to be large due to the sum rule of Higgs couplings to weak gauge bosons. We discuss the potential of the Fermilab Tevatron and B factories to test the LHS, and show that the associated neutral and charged Higgs boson production process, pp-->H(+/-)h(A), can completely probe the LHS at the CERN Large Hadron Collider.
Directory of Open Access Journals (Sweden)
Keiko Nakata
2010-08-01
Full Text Available We look at the operational semantics of languages with interactive I/O through the glasses of constructive type theory. Following on from our earlier work on coinductive trace-based semantics for While, we define several big-step semantics for While with interactive I/O, based on resumptions and termination-sensitive weak bisimilarity. These require nesting inductive definitions in coinductive definitions, which is interesting both mathematically and from the point-of-view of implementation in a proof assistant. After first defining a basic semantics of statements in terms of resumptions with explicit internal actions (delays, we introduce a semantics in terms of delay-free resumptions that essentially removes finite sequences of delays on the fly from those resumptions that are responsive. Finally, we also look at a semantics in terms of delay-free resumptions supplemented with a silent divergence option. This semantics hinges on decisions between convergence and divergence and is only equivalent to the basic one classically. We have fully formalized our development in Coq.
Hinterwirth, Helmut; Lämmerhofer, Michael; Preinerstorfer, Beatrix; Gargano, Andrea; Reischl, Roland; Bicker, Wolfgang; Trapp, Oliver; Brecker, Lothar; Lindner, Wolfgang
2010-11-01
Phosphorylated carbohydrates are important intracellular metabolites and thus of prime interest in metabolomics research. Complications in their analysis arise from the existence of structural isomers that do have similar fragmentation patterns in MS/MS and are hard to resolve chromatographically. Herein, we present selective methods for the liquid chromatographic separation of sugar phosphates, such as hexose and pentose phosphates, 2- and 3-phosphoglycerate, dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, as well as glucosamine 1- and 6-phosphate utilizing mixed-mode chromatography with reversed-phase/weak anion-exchangers and a charged aerosol detector. The best results were obtained when the reversed-phase/weak anion-exchanger column was operated under hydrophilic interaction liquid chromatography elution conditions. The effects of various chromatographic parameters were examined and are discussed on the basis of a simple stoichiometric displacement model for explaining ion-exchange processes. Employed acidic conditions have led to the complete separation of α- and β-anomers of glucose 6-phosphate at low temperature. The anomers coeluted in a single peak at elevated temperatures (>40°C) (peak coalescence), while at intermediate temperatures on-column interconversion with a plateau in-between resolved anomer peaks was observed with apparent reaction rate constants between 0.1 and 27.8×10(-4) s(-1). Dynamic HPLC under specified conditions enabled to investigate mutarotation of phosphorylated carbohydrates, their interconversion kinetics, and energy barriers for interconversion. A complex mixture of six hexose phosphate structural isomers could be resolved almost completely.
Linsker, R.
1972-01-01
Production cross sections for three types of hypothetical particles are calculated in the presented paper. Several (Z, Z') cases were studied corresponding to elastic scattering off protons and neutrons (either free or embedded within a Fermi sea), coherent scattering off a nucleus, and inelastic scattering off a proton (in which case Z' denotes a nucleon resonance or hadronic system in the continuum). Detailed structure-function data are used to improve the accuracy of the inelastic scattering calculation. Results of calculations are given for beam energies between 50 and 10,000 GeV, and masses between 5 and 40 GeV for the massive Lee-Wick spin-1 boson. Cross sections were computed for resonant and semiweak processes. The production cross section of spin-zero weak intermediate bosons was found to be at least one order of magnitude smaller than for spin-1 weak bosons in nearly all regions of interest. The production cross section of spin-zero weak intermediate bosons for inelastic scattering off protons compares with that for elastic scattering in the regions of interest. In the case of massive spin-1 bosons and spin-1 weak intermediates, the main contribution to total production cross section off protons is elastic.
Discovery of the Higgs Boson Decaying to Two Photons
AUTHOR|(CDS)2075371; Branson, James; Pieri, Marco
2014-09-10
The Standard Model (SM) of particle physics fundamentally relies on the existence of the Higgs boson. This massive particle is a relic of the underlying and hidden Higgs field, whose transformation into the Higgs boson provides mass to weak bosons and all massive fermions in the SM. This particle has been long-sought and finally using data from proton-proton collisions at the LHC, CMS and ATLAS experiments have discovered a particle which is compatible with the SM Higgs boson. Presented here is the development of one of the discovery channels, $\\mathrm{H}\\rightarrow\\gamma\\gamma$, and the final $\\mathrm{H}\\rightarrow\\gamma\\gamma$ analysis and results using the full luminosity of the LHC Run 1 dataset $\\sim$25 $\\mathrm{fb}^{-1}$ at 7 or 8 TeV center of mass energy. The observed (expected) significance of this di-photon excess in the final analysis is $5.7\\sigma$ ($5.2\\sigma$) with a measured signal strength of $\\sigma / \\sigma_{SM} = 1.14^{+0.26}_{-0.23}$. The mass of this Higgs boson is not predicted by t...
Symmetry and Duality in Bosonization of Two-Dimensional Dirac Fermions
Mross, David F.; Alicea, Jason; Motrunich, Olexei I.
2017-10-01
Recent work on a family of boson-fermion mappings has emphasized the interplay of symmetry and duality: Phases related by a particle-vortex duality of bosons (fermions) are related by time-reversal symmetry in their fermionic (bosonic) formulation. We present exact mappings for a number of concrete models that make this property explicit on the operator level. We illustrate the approach with one- and two-dimensional quantum Ising models and then similarly explore the duality web of complex bosons and Dirac fermions in (2 +1 ) dimensions. We generalize the latter to systems with long-range interactions and discover a continuous family of dualities embedding the previously studied cases.
Coupling bosonic modes with a qubit: entanglement dynamics at zero and finite temperatures
Energy Technology Data Exchange (ETDEWEB)
Ciancio, Emanuele [Institute for Scientific Interchange (ISI), Viale Settimio Severo 65, 10133 Turin (Italy)]. E-mail: ciancio@isiosf.isi.it; Zanardi, Paolo [Institute for Scientific Interchange (ISI), Viale Settimio Severo 65, 10133 Turin (Italy)]. E-mail: zanardi@isiosf.isi.it
2006-12-18
We consider a system of two iso-spectral bosonic modes coupled with a single two-level systems i.e., a qubit. The dynamics is described by a mode-symmetric two-modes Jaynes-Cummings Hamiltonian. The entanglement, induced between the two bosonic modes, is analyzed and quantified by negativity. We computed the time evolution of negativity starting from an initial thermal state of the bosonic sector for both zero and finite temperature. We also studied the entangling power of the interaction as a function of mode-qubit detuning and its resilience against temperature increase. Finally a two-qubit gate based on bosonic virtual subsystem is discussed.
Geometric phases and quantum correlations dynamics in spin-boson model
Energy Technology Data Exchange (ETDEWEB)
Wu, Wei; Xu, Jing-Bo, E-mail: xujb@zju.edu.cn [Zhejiang Institute of Modern Physics and Physics Department, Zhejiang University, Hangzhou 310027 (China)
2014-01-28
We explore the dynamics of spin-boson model for the Ohmic bath by employing the master equation approach and obtain an explicit expression of reduced density matrix. We also calculate the geometric phases of the spin-boson model by making use of the analytical results and discuss how the dissipative bosonic environment affects geometric phases. Furthermore, we investigate the dynamics of quantum discord and entanglement of two qubits each locally interacting with its own independent bosonic environments. It is found that the decay properties of quantum discord and entanglement are sensitive to the choice of initial state's parameter and coupling strength between system and bath.
Shape transition of state density for bosonic systems
Indian Academy of Sciences (India)
For a finite boson system, the ensemble-averaged state density has been computed with respect to the body interaction rank . The shape of such a state density changes from Gaussian to semicircle as the body rank of the interaction increases. This state density is expressed as a linear superposition of Gaussian and ...
Searches for charged Higgs bosons
Ellert, M
2002-01-01
The results of the searches for charged Higgs bosons at the four experiments at the LEP collider have been combined in order derive an exclusion limit using the largest possible data sample. This combined analysis excludes the existence of charged Higgs bosons with masses lower than 78.6 GeV/c/sup 2/ at 95% confidence level. (5 refs).
Energy Technology Data Exchange (ETDEWEB)
Hartmann, Betti [School of Engineering and Science, Jacobs University, Postfach 750 561, D-28725 Bremen (Germany); Kleihaus, Burkhard; Kunz, Jutta [Institut fuer Physik, Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Schaffer, Isabell, E-mail: i.schaffer@jacobs-university.de [School of Engineering and Science, Jacobs University, Postfach 750 561, D-28725 Bremen (Germany)
2012-07-24
We consider compact boson stars that arise for a V-shaped scalar field potential. They represent a one parameter family of solutions of the scaled Einstein-Gordon equations. We analyze the physical properties of these solutions and determine their domain of existence. Along their physically relevant branch emerging from the compact Q-ball solution, their mass increases with increasing radius. Employing arguments from catastrophe theory we argue that this branch is stable, until the maximal value of the mass is reached. There the mass and size are on the order of magnitude of the Schwarzschild limit, and thus the spiraling respectively oscillating behaviour, well known for compact stars, sets in.
Neuman, Nicolás I; Perec, Mireille; González, Pablo J; Passeggi, Mario C G; Rizzi, Alberto C; Brondino, Carlos D
2010-12-23
We report powder and single crystal EPR measurements of [Cu(tda)(phen)](2)·H(2)tda (tda = thiodiacetate, phen = phenanthroline) at 9.7 GHz. This compound consists of centrosymmetric copper(II) ion dimers, weakly ferromagnetically exchange-coupled (J = +3.2 cm(-1)), in which the dimeric units are linked by hydrophobic chemical paths involving the phen molecules. EPR revealed that the triplet spectra are collapsed by interdimeric exchange interactions mediated by that chemical path. Analysis and simulation of the single crystal EPR spectra were performed using Anderson's exchange narrowing model, together with statistical arguments. This approach allowed us to interpret the spectra modulated by the interdimeric interactions in situations of weak, intermediate, and strong exchange. We evaluated an interdimeric exchange constant J' = 0.0070(3) cm(-1), indicating that hydrophobic paths can transmit weak exchange interactions between centers at relatively long distances of the order of ∼10 Å.
VBFNLO. A patron level Monte Carlo for processes with electroweak bosons. Manual for Version 2.5.0
Energy Technology Data Exchange (ETDEWEB)
Arnold, K.; Bellm, J. [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. fuer Theoretische Physik; Bozzi, G. [Milano-Bicocca Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Milano-Bicocca (IT)] (and others)
2011-08-15
VBFNLO is a flexible parton level Monte Carlo program for the simulation of vector boson fusion, double and triple vector boson production in hadronic collisions at next-to-leading order (NLO) in the strong coupling constant, as well as Higgs boson plus two jet production via gluon fusion at the one-loop level. In the new release - Version 2.5.0 - several new processes have been added at NLO QCD: vector boson fusion production of a Higgs boson plus a photon, vector boson fusion production of a photon, W{gamma} and WZ production plus a hadronic jet and the triboson production processes WW{gamma}, ZZ{gamma}, WZ{gamma}, W{gamma}{gamma}, Z{gamma}{gamma} and {gamma}{gamma}{gamma}. The code has been extended to run in the Minimal Supersymmetric Standard Model (MSSM), and electroweak corrections to Higgs boson production via weak boson fusion have been included. Anomalous gauge boson couplings can be used in new processes and the Three-Site Higgsless model has been implemented for several processes. The simulation of Higgs boson production via gluon fusion has been improved. (orig.)
Search for the Higgs Boson in the Process $pp \\to Hqq$, $H \\to WW$ with the ATLAS Detector
Kaiser, Steffen; Horvat, S; Kortner, O
2010-01-01
The discovery potential of the ATLAS experiment at the Large Hadron Collider has been evaluated for Standard Model Higgs boson production in vector- boson fusion with subsequent decay into two W bosons. The impact of additional inelastic proton-proton interactions on the discovery potential has b een studied and methods have been developed in order to decrease these pile-up effects by exploiting tracking and vertexing information to associate particles to the primary interaction.
Weak point disorder in strongly fluctuating flux-line liquids
Indian Academy of Sciences (India)
We consider the effect of weak uncorrelated quenched disorder (point defects) on a strongly fluctuating flux-line liquid. We use a hydrodynamic model which is based on mapping the flux-line system onto a quantum liquid of relativistic charged bosons in 2 + 1 dimensions [P Benetatos and M C Marchetti, Phys. Rev. B64 ...
Schwarz, Martin; Riss, Alexander; Garnica, Manuela; Ducke, Jacob; Deimel, Peter S; Duncan, David A; Thakur, Pardeep Kumar; Lee, Tien-Lin; Seitsonen, Ari Paavo; Barth, Johannes V; Allegretti, Francesco; Auwärter, Willi
2017-09-26
Atomically thin hexagonal boron nitride (h-BN) layers on metallic supports represent a promising platform for the selective adsorption of atoms, clusters, and molecular nanostructures. Specifically, scanning tunneling microscopy (STM) studies revealed an electronic corrugation of h-BN/Cu(111), guiding the self-assembly of molecules and their energy level alignment. A detailed characterization of the h-BN/Cu(111) interface including the spacing between the h-BN sheet and its support-elusive to STM measurements-is crucial to rationalize the interfacial interactions within these systems. To this end, we employ complementary techniques including high-resolution noncontact atomic force microscopy, STM, low-energy electron diffraction, X-ray photoelectron spectroscopy, the X-ray standing wave method, and density functional theory. Our multimethod study yields a comprehensive, quantitative structure determination including the adsorption height and the corrugation of the sp(2) bonded h-BN layer on Cu(111). Based on the atomic contrast in atomic force microscopy measurements, we derive a measurable-hitherto unrecognized-geometric corrugation of the h-BN monolayer. This experimental approach allows us to spatially resolve minute height variations in low-dimensional nanostructures, thus providing a benchmark for theoretical modeling. Regarding potential applications, e.g., as a template or catalytically active support, the recognition of h-BN on Cu(111) as a weakly bonded and moderately corrugated overlayer is highly relevant.
Wang, R.; Deacon, R. S.; Yao, J.; Lieber, C. M.; Ishibashi, K.
2017-09-01
Magnetic transport of holes in Ge/Si core/shell nanowires (NWs) is investigated under the control of dual electrical gating. The strength of the spin-orbit interaction (SOI) is analyzed from the weak-antilocalization (WAL) of the magnetoconductance (MC) as a function of a perpendicular magnetic field. By superimposing a small alternating signal on the voltage offset of both gates the universal conductance fluctuations are largely removed from the averaged MC traces, enabling a good fitting to WAL theory models. The tuning of both spin lifetime and the SOI strength is observed in the NWs with dual gating while the carrier density is kept constant. We observe an enhancement of spin lifetime with the mean free path due to the effect of geometrical confinement. The measured SOI energy of 1-6 meV may arise from the dipole coupled Rashba SOI, which is predicted to be one order of magnitude larger than the conventional Rashba coefficient in the Ge/Si core/shell NW system. A clear electrostatic modulation of SOI strength by a factor of up to three implies that Ge/Si NWs are a promising platform for the study of helical states, Majorana fermions and spin-orbit qubits.
Anomalous U(1), Gauge-Mediated Supersymmetry Breaking and Higgs as Pseudo-Goldstone Bosons
Dvali, Gia; Dvali, Gia; Pomarol, Alex
1998-01-01
We study the breaking of supersymmetry in models with anomalous U(1). These models are simple to construct and contain natural candidates for being the messengers of gauge-mediated supersymmetry breaking. When some of the ordinary matter fields transform under the anomalous U(1), we find a hybrid scenario in which the U(1) and the gauge interactions mediate the breaking of supersymmetry. This leads to a hierarchy of soft masses between the charged and neutral fields and provides a solution to the $\\mu$-problem. Among these models, we present a scenario in which the Higgs arises as a pseudo-Goldstone boson. This scenario naturally allows for values of the $\\mu$-term and the scalar soft masses larger than the weak scale.
Higgs assisted Q-balls from pseudo-Nambu-Goldstone bosons
Bishara, Fady; Johnson, George; Lennon, Olivier; March-Russell, John
2017-11-01
Motivated by recent constructions of TeV-scale strongly-coupled dynamics, either associated with the Higgs sector itself as in pseudo-Nambu-Goldstone boson (pNGB) Higgs models or in theories of asymmetric dark matter, we show that stable solitonic Q-balls can be formed from light pion-like pNGB fields carrying a conserved global quantum number in the presence of the Higgs field. We focus on the case of thick-wall Q-balls, where solutions satisfying all constraints are shown to exist over a range of parameter values. In the limit that our approximations hold, the Q-balls are weakly bound and parametrically large, and the form of the interactions of the light physical Higgs with the Q-ball is determined by the breaking of scale symmetry.
The light composite Higgs boson in strong extended technicolor
Lane, Kenneth; Pritchett, Lukas
2017-06-01
This paper extends an earlier one describing the Higgs boson H as a light composite scalar in a strong extended technicolor model of electroweak symmetry breaking. The Higgs mass M H is made much smaller than ΛETC by tuning the ETC coupling very close to the critical value for electroweak symmetry breaking. The technicolor interaction, neglected in the earlier paper, is considered here. Its weakness relative to extended technicolor is essential to understanding the lightness of H compared to the low-lying spin-one technihadrons. Technicolor cannot be completely ignored, but implementing technigluon exchange together with strong extended technicolor appears difficult. We propose a solution that turns out to leave the results of the earlier paper essentially unchanged. An argument is then presented that masses of the spin-one technifermion bound states, ρ H and a H , are much larger than M H and, plausibly, controlled by technicolor. Assuming M ρH and M aH are in the TeV-energy region, we identify ρ H and a H with the diboson excesses observed near 2 TeV by ATLAS and CMS in LHC Run 1 data, and we discuss their phenomenology for Runs 2 and 3.
On the control of spin-boson systems
Energy Technology Data Exchange (ETDEWEB)
Boscain, Ugo, E-mail: ugo.boscain@polytechnique.edu [Centre National de Recherche Scientifique (CNRS), CMAP, École Polytechnique and Team GECO, INRIA-Centre de Recherche Saclay, Route de Saclay, 91128 Palaiseau Cedex (France); Mason, Paolo, E-mail: Paolo.Mason@l2s.centralesupelec.fr [CNRS-L2S-CentraleSupelec, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette (France); Panati, Gianluca, E-mail: panati@mat.uniroma1.it [Dipartimento di Matematica, “La Sapienza” Università di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Sigalotti, Mario, E-mail: mario.sigalotti@inria.fr [Team GECO, INRIA-Centre de Recherche Saclay and CMAP, École Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France)
2015-09-15
In this paper, we study the so-called spin-boson system, namely, a two-level system in interaction with a distinguished mode of a quantized bosonic field. We give a brief description of the controlled Rabi and Jaynes–Cummings models and we discuss their appearance in the mathematics and physics literature. We then study the controllability of the Rabi model when the control is an external field acting on the bosonic part. Applying geometric control techniques to the Galerkin approximation and using perturbation theory to guarantee non-resonance of the spectrum of the drift operator, we prove approximate controllability of the system, for almost every value of the interaction parameter.
Low-Data Investigation of Higgs Boson Discovery at the LHC
Scoby, Cheyne M
2006-01-01
The Standard Model (SM) remains as a complete and effective tool for understanding fundamental particles and their interactions. There is only one particle that the model predicts that has not yet been discovered. The Higgs boson is required as part of the mechanism behind electroweak symmetry breaking, and explains how the weak vector bosons, as well as the charged quarks and leptons gain mass, proportional to their coupling to the Higgs field. The SM predicts many properties of the Higgs, but cannot give a precise value to its mass. Experiment and theoretical arguments have put limits on the Higgs mass to within 114.7 GeV/c2 < MH < 1000 GeV/c2. The Large Hadron Collider at CERN will provide access to a new energy regime that will offer many channels for a potential discovery of the Higgs. In the Compact Muon Solenoid (CMS) detector experiment, the “Golden mode” for Higgs discovery features decay to two Z0, with both Z0 decaying to leptonic final states. Full reconstruction analyses suffer from the...
Kondo length in bosonic lattices
Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea
2017-09-01
Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.
Permanents, bosons and linear optics
Vlasov, Alexander Yu
2017-10-01
The particular complexity of linear quantum optical networks has received certain deserved attention recently due to the possible implications for the theory of quantum computation. Two relevant boson models are discussed in the presented work. The symmetric product of the Hilbert spaces produces a rather abstract model; the second one is obtained by quantization of the harmonic oscillator. In contrast to the considered bosonic processes, the so-called ‘fermionic linear optics’ is effectively simulated on a classical computer. The comparison of the bosonic and fermionic case clarifies the controversy, and the more elaborate oscillator model provides a deeper analogy.
Vector boson scattering at CLIC
Energy Technology Data Exchange (ETDEWEB)
Kilian, Wolfgang; Fleper, Christian [Department Physik, Universitaet Siegen, 57068 Siegen (Germany); Reuter, Juergen [DESY Theory Group, 22603 Hamburg (Germany); Sekulla, Marco [Institut fuer Theoretische Physik, Karlsruher Institut fuer Technologie, 76131 Karlsruhe (Germany)
2016-07-01
Linear colliders operating in a range of multiple TeV are able to investigate the details of vector boson scattering and electroweak symmetry breaking. We calculate cross sections with the Monte Carlo generator WHIZARD for vector boson scattering processes at the future linear e{sup +} e{sup -} collider CLIC. By finding suitable cuts, the vector boson scattering signal processes are isolated from the background. Finally, we are able to determine exclusion sensitivities on the non-Standard Model parameters of the relevant dimension eight operators.
Bolsinger, V. J.; Krönke, S.; Schmelcher, P.
2017-02-01
Exploring the impact of dimensionality on the quantum dynamics of interacting bosons in traps including particle correlations is an interesting but challenging task. Due to the different participating length scales, the modelling of the short-range interactions in three dimensions plays a special role. We review different approaches for the latter and elaborate that for multi-configurational computational strategies, finite-range potentials are adequate resulting in the need for large grids to resolve the relevant length scales. This results in computational challenges, which include the exponential scaling of complexity with the number of atoms. We show that the recently developed ab initio multi-layer multi-configurational time-dependent Hartee method for bosons (ML-MCTDHB) (2013 J. Chem. Phys. 139 134103) can face both numerical challenges and present an efficient numerical implementation of ML-MCTDHB in three spatial dimensions, particularly suited to describe the quantum dynamics for elongated traps. The beneficial scaling of our approach is demonstrated by studying the tunnelling dynamics of bosonic ensembles in a double well. Comparing three-dimensional with quasi-one dimensional simulations, we find dimensionality-induced effects in the density. Furthermore, we study the crossover from weak transversal confinement, where a mean-field description of the system is sufficient, towards tight transversal confinement, where particle correlations and beyond mean-field effects are pronounced.
Brunet, S
2014-01-01
ATLAS Higgs poster targeted to general public, explaining the Brout-Englert-Higgs mechanism and why it is important. It also explains the role of the Higgs Boson, how we look for it, the journey of the discovery and what comes after the discovery. Also available in French (http://cds.cern.ch/record/1697501). Don’t hesitate to use it in your institute’s corridors and in your outreach events! The poster is in A0 format. You can click on the image to download the high-quality .pdf version and print it at your favorite printshop. For any questions or comments you can contact atlas-outreach-coordination@cern.ch.
Dipolar droplets in bosonic erbium quantum fluids
Chomaz, Lauriane; Baier, Simon; Petter, Daniel; Faraoni, Giulia; Becher, Jan-Hendrik; van Bijnen, Rick; Mark, Manfred J.; Ferlaino, Francesca
2017-04-01
Due to their large magnetic moment and exotic electronic configuration, atoms of the lanthanide family, such as dysprosium (Dy) and erbium (Er), are an ideal platform for exploring the competition between inter-particle interactions of different origins and behaviors. Recently, a novel phase of dilute droplet has been observed in an ultracold gas of bosonic Dy when changing the ratio of the contact and dipole-dipole interactions and setting the mean-field interactions to slightly attractive. This has been attributed to the distinct, non-vanishing, beyond-mean-field effects in dipolar gases when the mean interaction cancels. Here we report on the investigation of droplet physics in fluids of bosonic Er. By precise control of the scattering length a, we quantitatively probe the Bose-Einstein condensate (BEC)-to-droplet phase diagram and the rich underlying dynamics. In a prolate geometry, we observe a crossover from a BEC to a single macro-droplet, prove the stabilizing role of quantum fluctuations and characterize the special dynamical properties of the droplet. In an oblate geometry, we observe the formation of assemblies of tinier droplets arranged in a chain and explore the special state dynamics following a quench of a, marked by successive merging and reformation events. L.C. is supported within the Marie Curie Individual Fellowship DIPPHASE No. 706809 of the European Commission.
Directory of Open Access Journals (Sweden)
Francoeur RB
2014-12-01
Full Text Available Richard B Francoeur1,2 1School of Social Work and the Center for Health Innovation, Adelphi University, Garden City, NY, USA; 2Center for the Psychosocial Study of Health and Illness, Columbia University, New York, NY, USA Background: The majority of patients with advanced cancer experience symptom pairs or clusters among pain, fatigue, and insomnia. Improved methods are needed to detect and interpret interactions among symptoms or diesease markers to reveal influential pairs or clusters. In prior work, I developed and validated sequential residual centering (SRC, a method that improves the sensitivity of multiple regression to detect interactions among predictors, by conditioning for multicollinearity (shared variation among interactions and component predictors. Materials and methods: Using a hypothetical three-way interaction among pain, fatigue, and sleep to predict depressive affect, I derive and explain SRC multiple regression. Subsequently, I estimate raw and SRC multiple regressions using real data for these symptoms from 268 palliative radiation outpatients. Results: Unlike raw regression, SRC reveals that the three-way interaction (pain × fatigue/weakness × sleep problems is statistically significant. In follow-up analyses, the relationship between pain and depressive affect is aggravated (magnified within two partial ranges: 1 complete-to-some control over fatigue/weakness when there is complete control over sleep problems (ie, a subset of the pain–fatigue/weakness symptom pair, and 2 no control over fatigue/weakness when there is some-to-no control over sleep problems (ie, a subset of the pain–fatigue/weakness–sleep problems symptom cluster. Otherwise, the relationship weakens (buffering as control over fatigue/weakness or sleep problems diminishes. Conclusion: By reducing the standard error, SRC unmasks a three-way interaction comprising a symptom pair and cluster. Low-to-moderate levels of the moderator variable for fatigue/weakness
Yang, Fan; Bai, Quan; Zhao, Kailou; Gao, Dong; Tian, Lei
2015-02-01
A novel dual-function mixed-mode stationary phase based on poly(glycidyl methacrylate-co-ethylene dimethacrylate) microspheres was synthesized by thiol-ene click chemistry and characterized by infrared spectroscopy and elemental analysis. The new system displays both hydrophobic interaction chromatography (HIC) character in a high salt concentration mobile phase, and weak cation exchange (WCX) chromatography character in a low salt concentration mobile phase. It can be used to separate proteins in both ion-exchange chromatography (IEC) mode and HIC mode. The resolution and selectivity of the stationary phase were evaluated in both HIC mode and IEC mode using protein standards. In comparison with the conventional WCX and HIC columns, the results were satisfactory and acceptable. Protein mass and bioactivity recoveries of more than 96% can be achieved in both HIC mode and IEC mode using this column. The results indicate that the novel dual-function mixed-mode column in many cases can replace the use of two individual WCX and HIC columns. In addition, the effects on protein separation of different ligand structures in the dual-function stationary phase and the pH of the mobile phase used were also investigated in detail. The results show that electrostatic interaction of the ligand with proteins must match the hydrophobicity of the ligand, which is an important factor to prepare the dual-function stationary phase. On the basis of this dual-function mixed-mode chromatography column, a new two-dimensional liquid chromatography technology with a single column system was also developed in this study, and was used to renature and purify recombinant human interferon-γ from inclusion bodies. The mass recovery, purity, and specific bioactivity obtained for the purified recombinant human interferon-γ were 87.2%, 92.4%, and 2.8 × 10(7) IU/mg, respectively, in IEC mode, and 83.4%, 95.2%, and 4.3 × 10(7) IU/mg, respectively, in HIC mode. The results indicate that the
Fermiophobic Higgs boson and supersymmetry
Directory of Open Access Journals (Sweden)
Racioppi Antonio
2014-04-01
Full Text Available If a light Higgs boson with mass 125 GeV is fermiophobic, or partially fermiophobic, then the MSSM is excluded. The minimal supersymmetric fermiophobic Higgs scenario can naturally be formulated in the context of the NMSSM that admits Z3 discrete symmetries. We show that in the fermiophobic NMSSM the radiative Higgs boson branchings to γγ, γZ can be modified compared to the fermiophobic and ordinary standard model predictions.
Collider constraints on interactions of dark energy with the standard model
Energy Technology Data Exchange (ETDEWEB)
Brax, P. [CEA, IPhT, CNRS, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, C. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Davis, A.C.; Seery, D. [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Weltman, A. (eds.) [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Cape Town Univ. (South Africa). Dept. of Mathematics and Applied Mathematics
2009-04-15
We study models in which a light scalar dark energy particle couples to the gauge fields of the electroweak force, the photon, Z, and W{sup {+-}} bosons. Our analysis applies to a large class of interacting dark energy models, including those in which the dark energy mass can be adjusted to evade fifth-force bounds by the so-called ''chameleon'' mechanism. We conclude that - with the usual choice of Higgs sector - electroweak precision observables are screened from the indirect effects of dark energy, making such corrections effectively unobservable at present-day colliders, and limiting the dark energy discovery potential of any future International Linear Collider. We show that a similar screening effect applies to processes mediated by flavour-changing neutral currents, which can be traced to the Glashow-Iliopoulos-Maiani mechanism. However, Higgs boson production at the Large Hadron Collider via weak boson fusion may receive observable corrections. (orig.)
Quantum theory of cold bosonic atoms in optical lattices
Tilahun, T.; Duine, R.A.; MacDonald, A.H.
2011-01-01
Ultracold atoms in optical lattices undergo a quantum phase transition from a superfluid to a Mott insulator as the lattice potential depth is increased. We describe an approximate theory of interacting bosons in optical lattices which provides a qualitative description of both superfluid and
Bound states of Dipolar Bosons in One-dimensional Systems
DEFF Research Database (Denmark)
G. Volosniev, A.; R. Armstrong, J.; V. Fedorov, D.
2013-01-01
We consider one-dimensional tubes containing bosonic polar molecules. The long-range dipole-dipole interactions act both within a single tube and between different tubes. We consider arbitrary values of the externally aligned dipole moments with respect to the symmetry axis of the tubes. The few-...
Latest LHCb measurements of Electroweak Boson Production in Run-1
CERN. Geneva
2015-01-01
We present the latest LHCb measurements of forward Electroweak Boson Production using proton-proton collisions recorded in LHC Run-1. The seminar shall discuss measurements of the 8 TeV W & Z boson production cross-sections. These results make use of LHCb's excellent integrated luminosity determination to provide constraints on the parton distribution functions which describe the inner structure of the proton. These LHCb measurements probe a region of phase space at low Bjorken-x where the other LHC experiments have limited sensitivity. We also present measurements of cross-section ratios, and ratios of results in 7 TeV and 8 TeV proton-proton collisions. These results provide precision tests of the Standard Model. The seminar shall also present a measurement of the forward-backward asymmetry (A_FB) in Z boson decays to two muons. This result allows for precision tests of the coupling of the Z boson to left and right handed particles, providing sensitivity to the effective weak mixing angle (...
Higgs boson phenomenology in a simple model with vector resonances
Energy Technology Data Exchange (ETDEWEB)
Castillo-Felisola, Oscar; Corral, Cristobal; Gonzalez, Marcela; Moreno, Gaston; Neill, Nicolas A.; Rojas, Felipe; Zamora, Jilberto; Zerwekh, Alfonso R. [Universidad Tecnica Federico Santa Maria, Departamento de Fisica, Valparaiso (Chile); Universidad Tecnica Federico Santa Maria, Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile)
2013-12-15
In this paper we consider a simple scenario where the Higgs boson and two vector resonances are supposed to arise from a new strong interacting sector. We use the ATLAS measurements of the dijet spectrum to set limits on the masses of the resonances. Additionally we compute the Higgs boson decay to two photons and found, when compare to the Standard Model prediction, a small excess which is compatible with ATLAS measurements. Finally we make prediction for Higgs-strahlung processes for the LHC running at 14 TeV. (orig.)
Component separation in harmonically trapped boson-fermion mixtures
DEFF Research Database (Denmark)
Nygaard, Nicolai; Mølmer, Klaus
1999-01-01
We present a numerical study of mixed boson-fermion systems at zero temperature in isotropic and anise tropic harmonic traps. We investigate the phenomenon of component separation as a function of the strength ut the interparticle interaction. While solving a Gross-Pitaevskii mean-field equation ...... for the boson distribution in the trap, we utilize two different methods to extract the density profile of the fermion component; a semiclassical Thomas-Fermi approximation and a quantum-mechanical Slater determinant Schrodinger equation....
Full NLO massive gauge boson pair production at the LHC
Baglio, Julien; Weber, Marcus M
2013-01-01
Electroweak gauge boson pair production is a very important process at the LHC as it probes the non-abelian structure of electroweak interactions and is a background process for many searches. We present full next-to-leading order predictions for the production cross sections and distributions of on-shell massive gauge boson pair production in the Standard Model, including both QCD and electroweak corrections. The hierarchy between the ZZ, WW and WZ channels, observed in the transverse momentum distributions, will be analyzed. We will also present a comparison with experimental data for the total cross sections including a study of the theoretical uncertainties.
Production of electroweak bosons at hadron colliders: theoretical aspects
Mangano, Michelangelo L.
2016-01-01
Since the W and Z discovery, hadron colliders have provided a fertile ground, in which continuously improving measurements and theoretical predictions allow to precisely determine the gauge boson properties, and to probe the dynamics of electroweak and strong interactions. This article will review, from a theoretical perspective, the role played by the study, at hadron colliders, of electroweak boson production properties, from the better understanding of the proton structure, to the discovery and studies of the top quark and of the Higgs, to the searches for new phenomena beyond the Standard Model.
Radiative decays of a singlet scalar boson through vectorlike quarks
Yoon, Yeo Woong; Cheung, Kingman; Kang, Sin Kyu; Song, Jeonghyeon
2017-09-01
If the standard model Higgs boson were much heavier, it would appear as a broad resonance since its decay into a pair of longitudinally polarized gauge bosons is highly enhanced. We study whether the same enhancement happens at loop level in a simple extension of the standard model with a singlet scalar boson S and three vectorlike quark multiplets. In order to focus on the loop effects, we assume that S does not interact with the standard model particles at tree level. Vectorlike quarks running in the loop link the singlet scalar S to the standard model world. There are two kinds of loop effects in the S phenomenology—the mixing with the Higgs boson and the radiative decays into h h , W W , Z Z , g g , and γ γ . We show that the crucial conditions for the loop-induced longitudinal polarization enhancement are the large mass differences among vectorlike quarks. The current LHC constraints from the heavy scalar searches and the Higgs precision data are shown to be very significant: the mixing angle with the Higgs boson should be smaller than about 0.1 for mS=750 GeV .
Electroweak bosons in heavy-ion collisions measured with the ATLAS detector
Perepelitsa, Dennis; The ATLAS collaboration
2017-01-01
Electroweak bosons do not interact strongly with the dense and hot medium formed in nuclear collisions, and thus are sensitive to the nuclear modification of parton distribution functions (nPDFs). The ATLAS detector, optimised to search for new physics in proton-proton interactions, is well equipped to measure photons, W and Z bosons in the high occupancy environment produced in heavy-ion collisions. Results from the ATLAS experiment on photons, W, and Z boson yields in lead-lead and proton-lead collisions are presented. These results have particular importance in the context of understanding the collision geometry and nuclear initial state.
Comparison of a two electron with a two charged boson variational ...
African Journals Online (AJOL)
CBEC) and non-conventional Bose Einstein condensation (NBEC) can be obtained from repulsive and attractive interactions of bosons respectively. However, there is still no generally accepted model to obtain both condensates. Since results in ...