Calvo, Rafael; Santana, Vinicius T.; Nascimento, Otaciro R.
2017-08-01
We report a variation with temperature T of the effective interdimeric interaction Jeff' in the antiferromagnetic (AFM) copper dimeric organic compound Cu2[TzTs] 4 (N -thiazol-2-yl-toluenesulfonamidate CuII). This T dependence was obtained from measurements of the effects in the electron paramagnetic resonance (EPR) spectra of the proposed quantum phase transition associated with the exchange-narrowing processes. Cu2[TzTs] 4 contains exchange-coupled pairs of CuII spins SA and SB (S =1 /2 ), with intradimeric AFM exchange coupling J0=(-115 ±1 ) cm-1 (Hex=-J0SA.SB ). The variation of the EPR linewidth of single crystals with field orientation around a "magic angle" where the transitions intersect and the integrated signal intensity of the so-called U peak of the powder spectrum were measured as a function of T . Modeling these data using arguments of exchange narrowing in the adiabatic regime considering the angular variation of the single-crystal spectra and a geometric description, we find that the effective interdimeric coupling | Jeff'| associated with the exchange frequency ωex is negligible for T ≪| J0/kB| when the units are uncoupled and | Jeff'|=(0.080 ±0.005 ) cm-1 (| Jeff'/J0|=7.0 × 10-4 ) at 298 K. Within this T interval, two ranges of | Jeff'| with linear temperature variation but different slopes, with a kink at ˜80 K, are observed and discussed. This T dependence arises from the growing population of the triplet state, and its relevance to the properties of various arrays of dimeric units is discussed. Our experimental procedures and results are compared with those of previous works in ion radical salts and dimeric metal compounds. The relation between the effective coupling | Jeff'| and the real interdimeric exchange coupling | J'| related to the chemical paths connecting neighbor units is discussed.
Neuman, Nicolás I; Winkler, Elín; Peña, Octavio; Passeggi, Mario C G; Rizzi, Alberto C; Brondino, Carlos D
2014-03-01
We report single-crystal X-band EPR and magnetic measurements of the coordination polymer catena-(trans-(μ2-fumarato)tetraaquacobalt(II)), 1, and the Co(II)-doped Zn(II) analogue, 2, in different Zn:Co ratios. 1 presents two magnetically inequivalent high spin S = 3/2 Co(II) ions per unit cell, named A and B, in a distorted octahedral environment coordinated to four water oxygen atoms and trans coordinated to two carboxylic oxygen atoms from the fumarate anions, in which the Co(II) ions are linked by hydrogen bonds and fumarate molecules. Magnetic susceptibility and magnetization measurements of 1 indicate weak antiferromagnetic exchange interactions between the S = 3/2 spins of the Co(II) ions in the crystal lattice. Oriented single crystal EPR experiments of 1 and 2 were used to evaluate the molecular g-tensor and the different exchange coupling constants between the Co(II) ions, assuming an effective spin S′= 1/2. Unexpectedly, the eigenvectors of the molecular g-tensor were not lying along any preferential bond direction, indicating that, in high spin Co(II) ions in roughly octahedral geometry with approximately axial EPR signals, the presence of molecular pseudo axes in the metal site does not determine preferential directions for the molecular g-tensor. The EPR experiment and magnetic measurements, together with a theoretical analysis relating the coupling constants obtained from both techniques, allowed us to evaluate selectively the exchange coupling constant associated with hydrogen bonds that connect magnetically inequivalent Co(II) ions (|JAB(1/2)| = 0.055(2) cm(–1)) and the exchange coupling constant associated with a fumarate bridge connecting equivalent Co(II) ions (|JAA(1/2)| ≈ 0.25 (1) cm(–1)), in good agreement with the average J(3/2) value determined from magnetic measurements.
Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam
2017-02-01
The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.
Casimir torque in weak coupling
Milton, Kimball A; Long, William
2013-01-01
In this paper, dedicated to Johan H{\\o}ye on the occasion of his 70th birthday, we examine manifestations of Casimir torque in the weak-coupling approximation, which allows exact calculations so that comparison with the universally applicable, but generally uncontrolled, proximity force approximation may be made. In particular, we examine Casimir energies between planar objects characterized by $\\delta$-function potentials, and consider the torque that arises when angles between the objects are changed. The results agree very well with the proximity force approximation when the separation distance between the objects is small compared with their sizes. In the opposite limit, where the size of one object is comparable to the separation distance, the shape dependence starts becoming irrelevant. These calculations are illustrative of what to expect for the torques between, for example, conducting planar objects, which eventually should be amenable to both improved theoretical calculation and experimental verific...
Ouraou, Ahmimed; The ATLAS collaboration
2016-01-01
Latest results on the measurement of gauge boson couplings, from ATLAS and CMS at the LHC, are presented. This review starts with an introduction to boson couplings, then the measurements of Triple and Quartic Couplings are described. And finally, limits on anomalous couplings are summarized.
Meson exchange and neutral weak currents
Energy Technology Data Exchange (ETDEWEB)
Beck, D.H. [Univ. of Illinois, Urbana, IL (United States)
1994-04-01
Measurements of parity-violating electron scattering asymmetries to determine weak neutral currents in nuclei will be effected by the presence of meson exchange currents. Present low momentum transfer calculations, based on a flavor independent framework, show these effects to be small. In general, however, as the momentum transfer increases to values typical of deep-inelastic scattering, fragmentation functions show a clear flavor dependence. It is suggested that a good experimental starting point for understanding the flavor dependence of meson production and exchange currents is the Q{sup 2} dependence of parity-violating asymmetry in inclusive single pion electroproduction. A CEBAF facility with doubled energy is necessary to approach momentum transfers where this process begins to scale.
Exchange couplings in magnetic films
Institute of Scientific and Technical Information of China (English)
Liu Wei; Liu Xiong-Hua; Cui Wei-Bin; Gong Wen-Jie; Zhang Zhi-Dong
2013-01-01
Recent advances in the study of exchange couplings in magnetic films are introduced.To provide a comprehensive understanding of exchange coupling,we have designed different bilayers,trilayers and multilayers,such as anisotropic hard/soft-magnetic multilayer films,ferromagnetic/antiferromagnetic/ferromagnetic trilayers,[Pt/Co]/NiFe/NiO heterostructures,Co/NiO and Co/NiO/Fe trilayers on an anodic aluminum oxide (AAO) template.The exchange-coupling interaction between soft-and hard-magnetic phases,interlayer and interfacial exchange couplings and magnetic and magnetotransport properties in these magnetic films have been investigated in detail by adjusting the magnetic anisotropy of ferromagnetic layers and by changing the thickness of the spacer layer,ferromagnetic layer,and antiferromagnetic layer.Some particular physical phenomena have been observed and explained.
Many-body chaos at weak coupling
Stanford, Douglas
2016-10-01
The strength of chaos in large N quantum systems can be quantified using λ L , the rate of growth of certain out-of-time-order four point functions. We calculate λ L to leading order in a weakly coupled matrix Φ4 theory by numerically diagonalizing a ladder kernel. The computation reduces to an essentially classical problem.
Institute of Scientific and Technical Information of China (English)
TAOZuyi; WANGChangshou
1992-01-01
The general procedure based on the potentiometric titration has developed.According to the procedure,the rational equilibrium constants of the ion exchange reactions RH/Na,RH/Ca,RH/Sr,RH/Ba for the weak acid cation exchange resin D725 and ROH/Cl for the weak base anion exchange resin D705 have been determined.
Entanglement in Weakly Coupled Lattice Gauge Theories
Radicevic, Djordje
2015-01-01
We present a direct lattice gauge theory computation that, without using dualities, demonstrates that the entanglement entropy of Yang-Mills theories with arbitrary gauge group $G$ contains a generic logarithmic term at sufficiently weak coupling $e$. In two spatial dimensions, for a region of linear size $r$, this term equals $\\frac{1}{2} \\dim(G) \\log\\left(e^2 r\\right)$ and it dominates the universal part of the entanglement entropy. Such logarithmic terms arise from the entanglement of the softest mode in the entangling region with the environment. For Maxwell theory in two spatial dimensions, our results agree with those obtained by dualizing to a compact scalar with spontaneous symmetry breaking.
Autoresonance versus localization in weakly coupled oscillators
Kovaleva, Agnessa; Manevitch, Leonid I.
2016-04-01
We study formation of autoresonance (AR) in a two-degree of freedom oscillator array including a nonlinear (Duffing) oscillator (the actuator) weakly coupled to a linear attachment. Two classes of systems are studied. In the first class of systems, a periodic force with constant (resonance) frequency is applied to a nonlinear oscillator (actuator) with slowly time-decreasing stiffness. In the systems of the second class a nonlinear time-invariant oscillator is subjected to an excitation with slowly increasing frequency. In both cases, the attached linear oscillator and linear coupling are time-invariant, and the system is initially engaged in resonance. This paper demonstrates that in the systems of the first type AR in the nonlinear actuator entails oscillations with growing amplitudes in the linear attachment while in the system of the second type energy transfer from the nonlinear actuator is insufficient to excite high-energy oscillations of the attachment. It is also shown that a slow change of stiffness may enhance the response of the actuator and make it sufficient to support oscillations with growing energy in the attachment even beyond the linear resonance. Explicit asymptotic approximations of the solutions are obtained. Close proximity of the derived approximations to exact (numerical) results is demonstrated.
EPR of exchange coupled systems
Bencini, Alessandro
2012-01-01
From chemistry to solid state physics to biology, the applications of Electron Paramagnetic Resonance (EPR) are relevant to many areas. This unified treatment is based on the spin Hamiltonian approach and makes extensive use of irreducible tensor techniques to analyze systems in which two or more spins are magnetically coupled. This edition contains a new Introduction by coauthor Dante Gatteschi, a pioneer and scholar of molecular magnetism.The first two chapters review the foundations of exchange interactions, followed by examinations of the spectra of pairs and clusters, relaxation in oligon
Information flow between weakly interacting lattices of coupled maps
Energy Technology Data Exchange (ETDEWEB)
Dobyns, York [PEAR, Princeton University, Princeton, NJ 08544-5263 (United States); Atmanspacher, Harald [Institut fuer Grenzgebiete der Psychologie und Psychohygiene, Wilhelmstr. 3a, 79098 Freiburg (Germany)]. E-mail: haa@igpp.de
2006-05-15
Weakly interacting lattices of coupled maps can be modeled as ordinary coupled map lattices separated from each other by boundary regions with small coupling parameters. We demonstrate that such weakly interacting lattices can nevertheless have unexpected and striking effects on each other. Under specific conditions, particular stability properties of the lattices are significantly influenced by their weak mutual interaction. This observation is tantamount to an efficacious information flow across the boundary.
Zhao, Kailou; Bai, Quan; Song, Chao; Wang, Fei; Yang, Fan
2012-04-01
"Click chemistry" is defined as a class of robust and selective chemical reactions affording high yields and is tolerant to a variety of solvents (including water), functional groups, and air. In this study, click chemistry was used as an effective strategy for coupling three alkyne-carboxylic acids onto the azide-silica to obtain three novel stationary phases of weak cation exchange chromatography, which were characterized with FTIR and elemental analysis. Six kinds of standard proteins, such as myoglobin, RNase A, RNase B, cytochrome C, α-chymotrypsin A, and lysozyme, were separated completely with the three novel weak cation exchange chromatography stationary phases. Compared with commercial weak cation exchange chromatography columns, the three kinds of novel weak cation exchange chromatography packings prepared by click chemistry approach have better resolution and selectivity. The mass recovery of more than 97% was obtained for all the tested proteins, and the bioactivity recovery of lysozyme on the prepared column was determined to be 96%. In addition, lysozyme was purified successfully from egg white with the novel weak cation exchange chromatography column by one step. The purity was more than 97% and a high specific activity was achieved to be 81 435 U/mg. The results illustrate the potential of click chemistry for preparing stationary phase for ion-exchange chromatography.
Chen, Ming-Xue; Cao, Zhao-Yun; Jiang, Yan; Zhu, Zhi-Wei
2013-01-11
A novel method was developed for the direct, sensitive, and rapid determination of glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), in fruit and vegetable samples by mixed-mode hydrophilic interaction/weak anion-exchange liquid chromatography (HILIC/WAX) coupled with electrospray tandem mass spectrometry (ESI-MS/MS). Homogenized samples were extracted with water, without derivatization or further clean-up, and the extracts were injected directly onto the Asahipak NH2P-50 4E column (250 mm × 4.6 mm i.d., 5 μm). The best results were obtained when the column was operated under mixed-mode HILIC/WAX elution conditions. An initial 10-min washing step with acetonitrile/water (10:90, v/v) in HILIC mode was used to remove potentially interfering compounds, and then the analytes were eluted in WAX mode with acetonitrile and water containing 0.1 molL(-1) ammonium hydroxide under gradient elution for the ESI analysis in negative ion mode. Limits of quantification of glyphosate and AMPA were 5 μgkg(-1) and 50 μgkg(-1), respectively, with limits of detection as low as 1.2 μgkg(-1) for glyphosate and 15 μgkg(-1) for AMPA. The linearity was satisfactory, with correlation coefficients (r)>0.9966. Recovery studies were carried out on spiked matrices (6 vegetables, 3 fruits) with glyphosate at four concentrations and AMPA at three concentrations. The mean recoveries for glyphosate and AMPA were 75.3-110% and 76.1-110%, respectively, with relative standard deviations in the range of 1.1-13.8%. The intra-day precision (n=7) for glyphosate and AMPA in vegetable and fruit samples spiked at an intermediate level between 5.9% and 7.5%, and the inter-day precision over 11 days (n=11) was between 7.0% and 13%.
Nonconventional synchronization and energy localization in weakly coupled autogenerators
Kovaleva, Margarita; Pilipchuk, Valery; Manevitch, Leonid
2016-09-01
The present work follows our previous study dealing with a new type of synchronization in a system of two weakly coupled generalized van der Pol-Duffing autogenerators. The essence of the effect revealed is that the synchronized oscillations are not stationary but accompanied by the most intensive energy exchange between the oscillators. The phase shift between the generators remains constant most of the time, except for vanishingly small transitional intervals. The current analysis deals with a generalized model in order to clarify the frequency detuning effect. We found that varying the frequency detuning, nonlinearity, and dissipation parameters can lead to structural changes in phase diagrams of the energy exchange dynamics, with important transitions from the intensive energy exchange to its localization on one of the two oscillators. The main conclusion is that stationary and nonstationary synchronizations associate with nonlinear normal and local modes, respectively. The analysis uses phase plane diagrams, including the concept of limiting phase trajectories, whose role in nonstationary synchronization appears to be similar to the role of nonlinear normal modes in conventional stationary states.
Denatured Thermodynamics of Proteins in Weak Cation-exchange Chromatography
Institute of Scientific and Technical Information of China (English)
LI Rong; CHEN Guo-Liang
2003-01-01
The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appearance of the thermal transition temperature indicates that the conformations of the proteins are destroyed seriously. The thermal behavior of the proteins in weak cation-exchange and hydrophobic interaction chromatographies were compared in a wide temperature range. It was found that the proteins have a higher thermostability in a weak cation-exchange chromatography system. The thermodynamic parameters(ΔH0, ΔS0) of those proteins were determined by means of Vant Hoff relationship(lnk-1/T). According to standard entropy change(ΔS0), the conformational change of the proteins was judged in the chromatographic process. The linear relationships between ΔH0 and ΔS0 can be used to evaluate "compensation temperature"(β) at the protein denaturation and identify the identity of the protein retention mechanism in weak cation-exchange chromatography.
Bunched soliton states in weakly coupled sine-Gordon systems
DEFF Research Database (Denmark)
Grønbech-Jensen, N.; Samuelsen, Mogens Rugholm; Lomdahl, P. S.
1990-01-01
The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results.......The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results....
Tate form and weak coupling limits in F-theory
Esole, Mboyo; Savelli, Raffaele
2013-06-01
We consider the weak coupling limit of F-theory in the presence of non-Abelian gauge groups implemented using the traditional ansatz coming from Tate's algorithm. We classify the types of singularities that could appear in the weak coupling limit and explain their resolution. In particular, the weak coupling limit of SU( n) gauge groups leads to an orientifold theory which suffers from conifold singulaties that do not admit a crepant resolution compatible with the orientifold involution. We present a simple resolution to this problem by introducing a new weak coupling regime that admits singularities compatible with both a crepant resolution and an orientifold symmetry. We also comment on possible applications of the new limit to model building. We finally discuss other unexpected phenomena as for example the existence of several non-equivalent directions to flow from strong to weak coupling leading to different gauge groups.
Tate Form and Weak Coupling Limits in F-theory
Esole, Mboyo
2012-01-01
We consider the weak coupling limit of F-theory in the presence of non-Abelian gauge groups implemented using the traditional ansatz coming from Tate's algorithm. We classify the types of singularities that could appear in the weak coupling limit and explain their resolution. In particular, the weak coupling limit of SU(n) gauge groups leads to an orientifold theory which suffers from conifold singulaties that do not admit a crepant resolution compatible with the orientifold involution. We present a simple resolution to this problem by introducing a new weak coupling regime that admits singularities compatible with both a crepant resolution and an orientifold symmetry. We also comment on possible applications of the new limit to model building. We finally discuss other unexpected phenomena as for example the existence of several non-equivalent directions to flow from strong to weak coupling leading to different gauge groups.
Exchange coupling across quasi-amorphous Zr-Fe spacer
Energy Technology Data Exchange (ETDEWEB)
Smardz, L. [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznan (Poland); Smardz, K. [Institute of Materials Sciences and Engineering, Poznan University of Technology, M. Currie 5 Sq., 60-965 Poznan (Poland); Niedoba, H. [LMOV de l' Universite de Versailles, 45, av. Des Etas - Unis, 78035 Versailles (France)
2006-01-01
Fe/Zr/Fe trilayers with wedge-shaped Zr interlayer were prepared using UHV (5 x 10{sup -10} mbar) DC/RF magnetron sputtering. The planar growth and interface alloying of the Fe and Zr layers was confirmed in-situ by X-ray photoelectron spectroscopy. For a Zr layer thickness (d{sub Zr}) from 1 to 3 nm we have observed patch domains characteristic for antiferromagnetic interlayer exchange coupling. Results showed that the Fe sublayers are very weakly exchange coupled or decoupled for d{sub Zr}>3 nm. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Exchange coupling between laterally adjacent nanomagnets
Dey, H.; Csaba, G.; Bernstein, G. H.; Porod, W.
2016-09-01
We experimentally demonstrate exchange-coupling between laterally adjacent nanomagnets. Our results show that two neighboring nanomagnets that are each antiferromagnetically exchange-coupled to a common ferromagnetic bottom layer can be brought into strong ferromagnetic interaction. Simulations show that interlayer exchange coupling effectively promotes ferromagnetic alignment between the two nanomagnets, as opposed to antiferromagnetic alignment due to dipole-coupling. In order to experimentally demonstrate the proposed scheme, we fabricated arrays of pairs of elongated, single-domain nanomagnets. Magnetic force microscopy measurements show that most of the pairs are ferromagnetically ordered. The results are in agreement with micromagnetic simulations. The presented scheme can achieve coupling strengths that are significantly stronger than dipole coupling, potentially enabling far-reaching applications in Nanomagnet Logic, spin-wave devices and three-dimensional storage and computing.
Bunched soliton states in weakly coupled sine-Gordon systems
Energy Technology Data Exchange (ETDEWEB)
Gronbech-Jensen, N.; Samuelsen, M.R. (Physics Laboratory I, The Technical University of Denmark, DK-2800 Lyngby (Denmark)); Lomdahl, P.S. (Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (USA)); Blackburn, J.A. (Department of Physics and Computing, Wilfrid Laurier University, Waterloo, Ontario (Canada))
1990-09-01
The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results.
Phenomena in Coupled Superconducting Weak Links.
Neumann, Lawrence George
Interactions between two independently biasable coupled superconducting microbridges were studied. Some bridges were fabricated within 2 (mu)m of each other. Quasiparticles from one bridge affect the other. In a second type of sample, the microbridges were separated by 10 (mu)m and coupled via a resistive shunt. The interaction results from the current flowing through the shunt. Similar effects are seen in both types of samples. In opposed biased bridges, the effective critical current is decreased because of the interaction. For series biased bridges, the effective critical current of one bridge is decreased or increased, depending on the voltage across the other bridge. These interactions lead to voltage steps in the I-V curves where, for opposed biased bridges, both voltages increase; for series bias, one voltage increases, the other decreases. Experimental results are in reasonable agreement with a second-order perturbation calculation and with an analog simulation. Voltage locking is found for both biasing configurations in both types of samples. Locking can occur simultaneously with a voltage step, resulting in nascent voltage locking which can also occur in conjunction with hysteresis. The effect of a voltage in the pad between the two proximity coupled bridges is to vary the voltage at which locking occurs, which in turn alters the shape of the locking curve. Locking range is calculated in two models for comparison with the two types of samples. The first explicitly considers the time delay for propagation of the charge -imbalance wave from one bridge to the other. The second model considers the current flowing in the resistive/inductive coupling shunt. A deviation of the critical current of planar microbridges from a linear temperature dependence can be explained as an effective length effect. Variable thickness bridges show a linear temperature dependence except very near T(,c), where fluctuations are important. The critical current of the one
Weak KAM theory for a weakly coupled system of Hamilton–Jacobi equations
Figalli, Alessio
2016-06-23
Here, we extend the weak KAM and Aubry–Mather theories to optimal switching problems. We consider three issues: the analysis of the calculus of variations problem, the study of a generalized weak KAM theorem for solutions of weakly coupled systems of Hamilton–Jacobi equations, and the long-time behavior of time-dependent systems. We prove the existence and regularity of action minimizers, obtain necessary conditions for minimality, extend Fathi’s weak KAM theorem, and describe the asymptotic limit of the generalized Lax–Oleinik semigroup. © 2016, Springer-Verlag Berlin Heidelberg.
Phenomenology and cosmology of weakly coupled string theory
Energy Technology Data Exchange (ETDEWEB)
Gaillard, Mary K.
1998-05-18
The weakly coupled vacuum of E{sub 8} {circle_times} E{sub 8} heterotic string theory remains an attractive scenario for phenomenology and cosmology. The particle spectrum is reviewed and the issues of gauge coupling unification, dilaton stabilization and modular cosmology are discussed. A specific model for condensation and supersymmetry breaking, that respects known constraints from string theory and is phenomenologically viable, is described.
Weinberg, S. H.
2017-09-01
Electrical conduction in cardiac tissue is usually considered to be primarily facilitated by gap junctions, providing a pathway between the intracellular spaces of neighboring cells. However, recent studies have highlighted the role of coupling via extracellular electric fields, also known as ephaptic coupling, particularly in the setting of reduced gap junction expression. Further, in the setting of reduced gap junctional coupling, voltage-dependent gating of gap junctions, an oft-neglected biophysical property in computational studies, produces a positive feedback that promotes conduction failure. We hypothesized that ephaptic coupling can break the positive feedback loop and rescue conduction failure in weakly coupled cardiac tissue. In a computational tissue model incorporating voltage-gated gap junctions and ephaptic coupling, we demonstrate that ephaptic coupling can rescue conduction failure in weakly coupled tissue. Further, ephaptic coupling increased conduction velocity in weakly coupled tissue, and importantly, reduced the minimum gap junctional coupling necessary for conduction, most prominently at fast pacing rates. Finally, we find that, although neglecting gap junction voltage-gating results in negligible differences in well coupled tissue, more significant differences occur in weakly coupled tissue, greatly underestimating the minimal gap junctional coupling that can maintain conduction. Our study suggests that ephaptic coupling plays a conduction-preserving role, particularly at rapid heart rates.
From strong to weak coupling in holographic models of thermalization
Energy Technology Data Exchange (ETDEWEB)
Grozdanov, Sašo; Kaplis, Nikolaos [Instituut-Lorentz for Theoretical Physics, Leiden University,Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Starinets, Andrei O. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)
2016-07-29
We investigate the analytic structure of thermal energy-momentum tensor correlators at large but finite coupling in quantum field theories with gravity duals. We compute corrections to the quasinormal spectra of black branes due to the presence of higher derivative R{sup 2} and R{sup 4} terms in the action, focusing on the dual to N=4 SYM theory and Gauss-Bonnet gravity. We observe the appearance of new poles in the complex frequency plane at finite coupling. The new poles interfere with hydrodynamic poles of the correlators leading to the breakdown of hydrodynamic description at a coupling-dependent critical value of the wave-vector. The dependence of the critical wave vector on the coupling implies that the range of validity of the hydrodynamic description increases monotonically with the coupling. The behavior of the quasinormal spectrum at large but finite coupling may be contrasted with the known properties of the hierarchy of relaxation times determined by the spectrum of a linearized kinetic operator at weak coupling. We find that the ratio of a transport coefficient such as viscosity to the relaxation time determined by the fundamental non-hydrodynamic quasinormal frequency changes rapidly in the vicinity of infinite coupling but flattens out for weaker coupling, suggesting an extrapolation from strong coupling to the kinetic theory result. We note that the behavior of the quasinormal spectrum is qualitatively different depending on whether the ratio of shear viscosity to entropy density is greater or less than the universal, infinite coupling value of ℏ/4πk{sub B}. In the former case, the density of poles increases, indicating a formation of branch cuts in the weak coupling limit, and the spectral function shows the appearance of narrow peaks. We also discuss the relation of the viscosity-entropy ratio to conjectured bounds on relaxation time in quantum systems.
Weak Coupling Casimir Energies for Finite Plate Configurations
Wagner, Jef; Parashar, Prachi
2008-01-01
We derive and use an extremely simplified formula for the interaction Casimir energy for two separate bodies in the weak coupling regime for massless scalar fields. We derive closed form solutions for a general arrangement of two $\\delta$-function plates finite in one direction and infinite in another. We examine the situation of two parallel plates finite in both transverse directions.
Analytical solutions of weakly coupled map lattices using recurrence relations
Energy Technology Data Exchange (ETDEWEB)
Sotelo Herrera, Dolores, E-mail: dsh@dfmf.uned.e [Applied Maths, EUITI, UPM, Ronda de Valencia, 3-28012 Madrid (Spain); San Martin, Jesus [Applied Maths, EUITI, UPM, Ronda de Valencia, 3-28012 Madrid (Spain); Dep. Fisica Matematica y de Fluidos, UNED, Senda del Rey 9-28040 Madrid (Spain)
2009-07-20
By using asymptotic methods recurrence relations are found that rule weakly CML evolution, with both global and diffusive coupling. The solutions obtained from these relations are very general because they do not hold restrictions about boundary conditions, initial conditions and number of oscilators in the CML. Furthermore, oscillators are ruled by an arbitraty C{sup 2} function.
Dark Sectors and New, Light, Weakly-Coupled Particles
Essig, R; Wester, W; Adrian, P Hansson; Andreas, S; Averett, T; Baker, O; Batell, B; Battaglieri, M; Beacham, J; Beranek, T; Bjorken, J D; Bossi, F; Boyce, J R; Cates, G D; Celentano, A; Chou, A S; Cowan, R; Curciarello, F; Davoudiasl, H; deNiverville, P; De Vita, R; Denig, A; Dharmapalan, R; Dongwi, B; Döbrich, B; Echenard, B; Espriu, D; Fegan, S; Fisher, P; Franklin, G B; Gasparian, A; Gershtein, Y; Graham, M; Graham, P W; Haas, A; Hatzikoutelis, A; Holtrop, M; Irastorza, I; Izaguirre, E; Jaeckel, J; Kahn, Y; Kalantarians, N; Kohl, M; Krnjaic, G; Kubarovsky, V; Lee, H-S; Lindner, A; Lobanov, A; Marciano, W J; Marsh, D J E; Maruyama, T; McKeen, D; Merkel, H; Moffeit, K; Monaghan, P; Mueller, G; Nelson, T K; Neil, G R; Oriunno, M; Pavlovic, Z; Phillips, S K; Pivovaroff, M J; Poltis, R; Pospelov, M; Rajendran, S; Redondo, J; Ringwald, A; Ritz, A; Ruz, J; Saenboonruang, K; Schuster, P; Shinn, M; Slatyer, T R; Steffen, J H; Stepanyan, S; Tanner, D B; Thaler, J; Tobar, M E; Toro, N; Upadye, A; Van de Water, R; Vlahovic, B; Vogel, J K; Walker, D; Weltman, A; Wojtsekhowski, B; Zhang, S; Zioutas, K
2013-01-01
Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly compelling possibility for new physics. Nature may contain numerous dark sectors, each with their own beautiful structure, distinct particles, and forces. This review summarizes the physics motivation for dark sectors and the exciting opportunities for experimental exploration. It is the summary of the Intensity Frontier subgroup "New, Light, Weakly-coupled Particles" of the Community Summer Study 2013 (Snowmass). We discuss axions, which solve the strong CP problem and are an excellent dark matter candidate, and their generalization to axion-like particles. We also review dark photons and other dark-sector particles, including sub-GeV dark matter, which are theoretically natural, provide for dark matter candidates or new dark matter interactions, and could resolve outstanding puzzles in particle and astro-particle physics. In many cases, the explorat...
Weak and strong coupling equilibration in nonabelian gauge theories
Keegan, Liam; Romatschke, Paul; van der Schee, Wilke; Zhu, Yan
2016-01-01
We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.
Lifetime Effects in Color Superconductivity at Weak Coupling
Manuel, C
2000-01-01
Present computations of the gap of color superconductivity in weak coupling assume that the quarks which participate in the condensation process are infinitely long-lived. However, the quasiparticles in a plasma are characterized by having a finite lifetime. In this article we take into account this fact to evaluate its effect in the computation of the color gap. By first considering the Schwinger-Dyson equations in weak coupling, when one-loop self-energy corrections are included, a general gap equation is written in terms of the spectral densities of the quasiparticles. To evaluate lifetime effects, we then model the spectral density by a Lorentzian function. We argue that the decay of the quasiparticles limits their efficiency to condense. The value of the gap at the Fermi surface is then reduced. To leading order, these lifetime effects can be taken into account by replacing the coupling constant of the gap equation by a reduced effective one.
Induced pseudoscalar coupling of the proton weak interaction
Gorringe, T P; Gorringe, Tim; Fearing, Harold W.
2004-01-01
The induced pseudoscalar coupling $g_p$ is the least well known of the weak coupling constants of the proton's charged--current interaction. Its size is dictated by chiral symmetry arguments, and its measurement represents an important test of quantum chromodynamics at low energies. During the past decade a large body of new data relevant to the coupling $g_p$ has been accumulated. This data includes measurements of radiative and non radiative muon capture on targets ranging from hydrogen and few--nucleon systems to complex nuclei. Herein the authors review the theoretical underpinnings of $g_p$, the experimental studies of $g_p$, and the procedures and uncertainties in extracting the coupling from data. Current puzzles are highlighted and future opportunities are discussed.
Scaling, topological tunneling and actions for weak coupling DWF calculations
McGlynn, Greg
2013-01-01
We present results from a 2+1 flavor DWF calculation at 1/a = 3 GeV and discuss strategies for similar calculations at finer lattice spacings which will target charm physics. At weak coupling the autocorrelation time of the global topological charge becomes very long because the HMC algorithm has trouble moving between topological sectors. We report the results of simulations that test two ideas for reducing the autocorrelation time of topological charge. In weak coupling quenched simulations we find that the open boundary conditions suggested by L\\"uscher and Schaefer do not prevent the appearance of extremely long autocorrelation times for topological observables. We discuss the idea of a "dislocation-enhancing determinant" and show that it can produce an increase in topological tunneling.
Variational Study of Weakly Coupled Triply Heavy Baryons
Jia, Y
2006-01-01
Baryons made of three heavy quarks become weakly coupled, when all the quarks are sufficiently heavy such that the typical momentum transfer is much larger than Lambda_QCD. We use variational method to estimate masses of the lowest-lying bcc, ccc, bbb and bbc states by assuming they are Coulomb bound states. Our predictions for these states are systematically lower than those made long ago by Bjorken.
Effective Supergravity from the Weakly Coupled HeteroticString
Energy Technology Data Exchange (ETDEWEB)
Gaillard, Mary K.
2005-05-01
The motivation for Calabi-Yau-like compactifications of the weakly coupled E{sub 8} {circle_times} E{sub 8} heterotic string theory, its particle spectrum and the issue of dilaton stabilization are briefly reviewed. Modular invariant models for hidden sector condensation and supersymmetry breaking are described at the quantum level of the effective field theory. Their phenomenological and cosmological implications, including a possible origin for R-parity, are discussed.
Ferromagnetism and interlayer exchange coupling in thin metallic films
Energy Technology Data Exchange (ETDEWEB)
Kienert, Jochen
2008-07-15
This thesis is concerned with the ferromagnetic Kondo lattice (s-d,s-f) model for film geometry. The spin-fermion interaction of this model refers to substances in which localized spins interact with mobile charge carriers like in (dilute) magnetic semiconductors, manganites, or rare-earth compounds. The carrier-mediated, indirect interaction between the localized spins comprises the long-range, oscillatory RKKY exchange interaction in the weak-coupling case and the short-range doubleexchange interaction for strong spin-fermion coupling. Both limits are recovered in this work by mapping the problem onto an effective Heisenberg model. The influence of reduced translational symmetry on the effective exchange interaction and on the magnetic properties of the ferromagnetic Kondo lattice model is investigated. Curie temperatures are obtained for different parameter constellations. The consequences of charge transfer and of lattice relaxation on the magnetic stability at the surface are considered. Since the effective exchange integrals are closely related to the electronic structure in terms of the density of states and of the kinetic energy, the discussion is based on the modifications of these quantities in the dimensionally-reduced case. The important role of spin waves for thin film and surface magnetism is demonstrated. Interlayer exchange coupling represents a particularly interesting and important manifestation of the indirect interaction among localized magnetic moments. The coupling between monatomic layers in thin films is studied in the framework of an RKKY approach. It is decisively determined by the type of in-plane and perpendicular dispersion of the charge carriers and is strongly suppressed above a critical value of the Fermi energy. Finally, the temperature-dependent magnetic stability of thin interlayer-coupled films is addressed and the conditions for a temperature-driven magnetic reorientation transition are discussed. (orig.)
Dark Sectors and New, Light, Weakly-Coupled Particles
Energy Technology Data Exchange (ETDEWEB)
Essig, Rouven [YITP, Stony Brook; Jaros, John A. [SLAC; Wester, William [Fermilab
1900-01-01
Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly compelling possibility for new physics. Nature may contain numerous dark sectors, each with their own beautiful structure, distinct particles, and forces. This review summarizes the physics motivation for dark sectors and the exciting opportunities for experimental exploration. It is the summary of the Intensity Frontier subgroup \\New, Light, Weakly-coupled Particles" of the Community Summer Study 2013 (Snowmass). We discuss axions, which solve the strong CP problem and are an excellent dark matter candidate, and their generalization to axion-like particles. We also review dark photons and other dark-sector particles, including sub-GeV dark matter, which are theoretically natural, provide for dark matter candidates or new dark matter interactions, and could resolve outstanding puzzles in particle and astro-particle physics. In many cases, the exploration of dark sectors can proceed with existing facilities and comparatively modest experiments. A rich, diverse, and lowcost experimental program has been identied that has the potential for one or more game-changing discoveries. These physics opportunities should be vigorously pursued in the US and elsewhere.
Weak Coupling Electron-Phonon for High Tc Superconductors
Labbe, J.
1989-01-01
Our opinion is that, in the high Tc copper oxides, the electronic correlations are not large enough to allow the localization of the electrons of the half-filled d-p sub-band. Thus, we treat them as itinerant electrons, in a bidimensional structure. And we show that, contrary to a widely held opinion, the electron-phonon interaction can induce high Tc superconductivity in these compounds, even in the weak coupling limit. This is due to the fact that, because of the bidimensionality, the electronic density of states is sharply peaked in the neighbourhood of the Fermi energy. A small coupling between nearest neighbouring CuO2 planes is sufficient to prevent a very large reduction of Tc by the critical fluctuations. The calculated isotope effect is much smaller than usually in the BCS theory. And, in our weak coupling theory, the antiferromagnetic (AF) phase is much more rapidly destabilized by dopping or internal charge transfer than the superconducting phase, which takes place when the AF phase has vanished.
Isotropization and hydrodynamization in weakly coupled heavy-ion collisions
Kurkela, Aleksi
2015-01-01
We numerically solve 2+1D effective kinetic theory of weak coupling QCD under longitudinal expansion relevant for early stages of heavy-ion collisions. We find agreement with viscous hydrodynamics and classical Yang-Mills simulations in the regimes where they are applicable. By choosing initial conditions that are motivated by color-glass-condensate framework we find that for Q=2GeV and $\\alpha_s$=0.3 the system is approximately described by viscous hydrodynamics well before $\\tau \\lesssim 1.0$ fm/c.
The Weak Parity-Violating Pion-Nucleon Coupling (Revised)
Henley, E M; Kisslinger, L S
2009-01-01
We use QCD sum rules to obtain the weak parity-violating pion-nucleon coupling constant $f_{\\pi NN}$. We find that $f_{\\pi NN}\\approx 2\\times 10^{-8}$, about an order of magnitude smaller than the ``best estimates'' based on quark models. This result follows from the cancellation between perturbative and nonperturbative QCD processes not found in quark models, but explicit in the QCD sum rule method. Our result is consistent with the experimental upper limit found from $^{18}$F parity-violating measurements.
Weakly coupled oscillators in a slowly varying world.
Park, Youngmin; Ermentrout, Bard
2016-06-01
We extend the theory of weakly coupled oscillators to incorporate slowly varying inputs and parameters. We employ a combination of regular perturbation and an adiabatic approximation to derive equations for the phase-difference between a pair of oscillators. We apply this to the simple Hopf oscillator and then to a biophysical model. The latter represents the behavior of a neuron that is subject to slow modulation of a muscarinic current such as would occur during transient attention through cholinergic activation. Our method extends and simplifies the recent work of Kurebayashi (Physical Review Letters, 111, 214101, 2013) to include coupling. We apply the method to an all-to-all network and show that there is a waxing and waning of synchrony of modulated neurons.
Perspective: Coulomb fluids—Weak coupling, strong coupling, in between and beyond
Naji, Ali; Kanduč, Matej; Forsman, Jan; Podgornik, Rudolf
2013-10-01
We present a personal view on the current state of statistical mechanics of Coulomb fluids with special emphasis on the interactions between macromolecular surfaces, concentrating on the weak and the strong coupling limits. Both are introduced for a (primitive) counterion-only system in the presence of macroscopic, uniformly charged boundaries, where they can be derived systematically. Later we show how this formalism can be generalized to the cases with additional characteristic length scales that introduce new coupling parameters into the problem. These cases most notably include asymmetric ionic mixtures with mono- and multivalent ions that couple differently to charged surfaces, ions with internal charge (multipolar) structure and finite static polarizability, where weak and strong coupling limits can be constructed by analogy with the counterion-only case and lead to important new insights into their properties that cannot be derived by any other means.
Testing the Weak Form Efficiency of Karachi Stock Exchange
Directory of Open Access Journals (Sweden)
Muhammad Arshad Haroon
2012-12-01
Full Text Available In an efficient market, share prices reflect all available information. The study of efficient market hypothesis helps to take right decisions related to investments. In this research,weak form efficiency has been tested of Karachi Stock Exchange—KSE covering the period of 2nd November 1991 to 2nd November 2011. Descriptive statistics indicated the absence of weak form efficiency while results of non-parametric tests, showed consistency as well. We employed non-parametric tests were KS Goodness-of-Fit test,run test and autocorrelation test to find out serial independency of the data. Results prove that KSE is not weak-form-efficient. This happens because KSE is an emerging market and there, it has been observed that information take time to be processed. Thus it can besaid that technical analysis may be applied to gain abnormal returns.
Weak Coupling, Degeneration and Log Calabi-Yau Spaces
Donagi, R; Wijnholt, M
2012-01-01
We establish a new weak coupling limit in F-theory. The new limit may be thought of as the process in which a local model bubbles off from the rest of the Calabi-Yau. The construction comes with a small deformation parameter $t$ such that computations in the local model become exact as $t \\to 0$. More generally, we advocate a modular approach where compact Calabi-Yau geometries are obtained by gluing together local pieces (log Calabi-Yau spaces) into a normal crossing variety and smoothing, in analogy with a similar cutting and gluing approach to topological field theories. We further argue for a holographic relation between F-theory on a degenerate Calabi-Yau and a dual theory on its boundary, which fits nicely with the gluing construction.
Weakly-Coupled Higgs Bosons and Precision Electroweak Physics
Energy Technology Data Exchange (ETDEWEB)
Rowson, Peter C.
2003-06-02
We examine the prospects for discovering and elucidating the weakly-coupled Higgs sector at future collider experiments. The Higgs search consists of three phases: (i) discovery of a Higgs candidate, (ii) verification of the Higgs interpretation of the signal, and (iii) precision measurements of Higgs sector properties. The discovery of one Higgs boson with Standard Model properties is not sufficient to expose the underlying structure of the electroweak symmetry breaking dynamics. It is critical to search for evidence for a non-minimal Higgs sector and/or new physics associated with electroweak symmetry breaking dynamics. An improvement in precision electroweak data at future colliders can play a useful role in confirming the theoretical interpretation of the Higgs search results.
Three-point function of semiclassical states at weak coupling
Kostov, Ivan
2012-01-01
We give the derivation of the previously announced analytic expression for the correlation function of three heavy non-BPS operators in N=4 super-Yang-Mills theory at weak coupling. The three operators belong to three different su(2) sectors and are dual to three classical strings moving on the sphere. Our computation is based on the reformulation of the problem in terms of the Bethe Ansatz for periodic XXX spin-1/2 chains. In these terms the three operators are described by long-wave-length excitations over the ferromagnetic vacuum, for which the number of the overturned spins is a finite fraction of the length of the chain, and the classical limit is known as the Sutherland limit. Technically our main result is a factorized operator expression for the scalar product of two Bethe states. The derivation is based on a fermionic representation of Slavnov's determinant formula, and a subsequent bosonisation.
Kaon-nucleon couplings for weak decays of hypernuclei
Savage, M J
1995-01-01
We investigate the weak kaon-nucleon (NNK) S-wave and P-wave interactions using heavy baryon chiral perturbation theory. The leading 1-loop SU(3) breaking contributions to the ppK, pnK, and nnK couplings are computed. We find that they suppress all NNK amplitudes by 30\\% to 50\\%. The ratio of neutron-induced to proton-induced hypernuclear decay widths is sensitive to such reductions. It has been argued that the discrepancy between the predicted and observed P-wave amplitudes in \\Delta s=1 hyperon decay results from an accidental cancellation between tree-level amplitudes, and is not a fundamental problem for chiral perturbation theory. Agreement between experimentally determined NNK P-wave amplitudes and our estimates would support this explanation.
Bremsstrahlung function, leading Luscher correction at weak coupling and localization
Bonini, Marisa; Preti, Michelangelo; Seminara, Domenico
2015-01-01
We discuss the near BPS expansion of the generalized cusp anomalous dimension with L units of R-charge. Integrability provides an exact solution, obtained by solving a general TBA equation in the appropriate limit: we propose here an alternative method based on supersymmetric localization.The basic idea is to relate the computation to the vacuum expectation value of certain 1/8 BPS Wilson loops with local operator insertions along the contour. These observables localize on a two-dimensional gauge theory on S^2, opening the possibility of exact calculations. As a test of our proposal, we reproduce the leading Luscher correction at weak coupling to the generalized cusp anomalous dimension. This result is also checked against a genuine Feynman diagram approach in N=4 Super Yang-Mills theory.
Anomaly induced transport coefficients, from weak to strong coupling
Pena-Benitez, Francisco
2013-01-01
The existence of new transport phenomena associated to the presence of quantum anomalies has atracted very recently the attention of theorist. These transport coefficient have very interesting properties, for example, they do not renormalize. The most famous case of anomaly induced transport phenomena is the Chiral Magnetic Effect, in which an electric current is produced by a magnetic field if the system has a different number of right handed fermions respect the left handed one. In this thesis we have studied those transport coefficients from Kubo formulas at weak and strong coupling. To finish a fluid/gravity approach is used to compute all the second order anomalous coefficients in an anomalous conformal fluid.
Capacitively coupled nano conductors. Ratchet currents and exchange fluctuation relations
Energy Technology Data Exchange (ETDEWEB)
Hussein, Robert; Kohler, Sigmund [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain)
2015-10-15
We investigate electron transport in two quantum circuits with mutual Coulomb interaction. The first circuit is a double quantum dot connected to two electron reservoirs, while the second one is a quantum point contact in the weak tunneling limit. The coupling is such that an electron in the first circuit enhances the barrier of the point contact and, thus, reduces its conductivity. While such setups are frequently used as charge monitors, we focus on two different aspects. First, we derive transport coefficients which have recently been employed for testing generalized equilibrium conditions known as exchange fluctuation relations. These formally exact relations allow us to test the consistency of our master equation approach. Second, a biased point contact entails noise on the DQD and induces non-equilibrium phenomena such as a ratchet current. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Spin Polarized Photons from Axially Charged Plasma at Weak Coupling: Complete Leading Order
Mamo, Kiminad A
2015-01-01
In the presence of (approximately conserved) axial charge in the QCD plasma at finite temperature, the emitted photons are spin-aligned, which is a unique P- and CP-odd signature of axial charge in the photon emission observables. We compute this "P-odd photon emission rate" in weak coupling regime at high temperature limit to complete leading order in the QCD coupling constant: the leading log as well as the constant under the log. As in the P-even total emission rate in the literature, the computation of P-odd emission rate at leading order consists of three parts: 1) Compton and Pair Annihilation processes with hard momentum exchange, 2) soft t- and u-channel contributions with Hard Thermal Loop re-summation, 3) Landau-Pomeranchuk-Migdal (LPM) re-summation of collinear Bremstrahlung and Pair Annihilation. We present analytical and numerical evaluations of these contributions to our P-odd photon emission rate observable.
Magnetic exchange couplings from noncollinear perturbation theory: dinuclear CuII complexes.
Phillips, Jordan J; Peralta, Juan E
2014-08-07
To benchmark the performance of a new method based on noncollinear coupled-perturbed density functional theory [J. Chem. Phys. 138, 174115 (2013)], we calculate the magnetic exchange couplings in a series of triply bridged ferromagnetic dinuclear Cu(II) complexes that have been recently synthesized [Phys. Chem. Chem. Phys. 15, 1966 (2013)]. We find that for any basis-set the couplings from our noncollinear coupled-perturbed methodology are practically identical to those of spin-projected energy-differences when a hybrid density functional approximation is employed. This demonstrates that our methodology properly recovers a Heisenberg description for these systems, and is robust in its predictive power of magnetic couplings. Furthermore, this indicates that the failure of density functional theory to capture the subtle variation of the exchange couplings in these complexes is not simply an artifact of broken-symmetry methods, but rather a fundamental weakness of current approximate density functionals for the description of magnetic couplings.
Adsorption Mechanisms of Heavy Metal Ions from Drinking Water by Weakly Basic Anion Exchange Resins
Institute of Scientific and Technical Information of China (English)
赵璇; 何仕均; 杨磊
2002-01-01
Heavy metal micro-contaminants can be removed from water sources technologies. Weakly basic anion exchange resins offer the best ability to remove trace amounts of heavy metals with high selectivity. This paper discusses how weakly basic resins adsorb heavy metals using two different approaches. The removal of mercury, cadmium, and lead ions is based on the fundamental theory of coordination chemistry. The mechanism is not ion exchange but extractive adsorption of heavy metal salts. However, the marked preferential adsorption of chromate by weakly basic anion exchange can be explained using the traditional theory of ion exchange. A lab-scale study produced positive results for the removal of trace amounts of heavy metal ions from drinking water.
Superconductivity enhanced by d-density wave: A weak-coupling theory
Ha, Kim; Subok, Ri; Ilmyong, Ri; Cheongsong, Kim; Yuling, Feng
2011-04-01
Making a revision of mistakes in Ref. [19], we present a detailed study of the competition and interplay between the d-density wave (DDW) and d-wave superconductivity (DSC) within the fluctuation-exchange (FLEX) approximation for the two-dimensional (2D) Hubbard model. In order to stabilize the DDW state with respect to phase separation at lower dopings a small nearest-neighbor Coulomb repulsion is included within the Hartree-Fock approximation. We solve the coupled gap equations for the DDW, DSC, and π-pairing as the possible order parameters, which are caused by exchange of spin fluctuations, together with calculating the spin fluctuation pairing interaction self-consistently within the FLEX approximation. We show that even when nesting of the Fermi surface is perfect, as in a square lattice with only nearest-neighbor hopping, there is coexistence of DSC and DDW in a large region of dopings close to the quantum critical point (QCP) at which the DDW state vanishes. In particular, we find that in the presence of DDW order the superconducting transition temperature Tc can be much higher compared to pure superconductivity, since the pairing interaction is strongly enhanced due to the feedback effect on spin fluctuations of the DDW gap. π-pairing appears generically in the coexistence region, but its feedback on the other order parameters is very small. In the present work, we have developed a weak-coupling theory of the competition between DDW and DSC in 2D Hubbard model, using the static spin fluctuation obtained within FLEX approximation and ignoring the self-energy effect of spin fluctuations. For our model calculations in the weak-coupling limit we have taken U/ t=3.4, since the antiferromagnetic instability occurs for higher values of U/ t.
Thermal DBI action for the D3-brane at weak and strong coupling
DEFF Research Database (Denmark)
Grignani, Gianluca; Harmark, Troels; Marini, Andrea
2014-01-01
We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading T4 correction for the thermal DBI action at weak and strong coupling we find that the 3/4 ...
Thermal DBI action for the D3-brane at weak and strong coupling
DEFF Research Database (Denmark)
Grignani, Gianluca; Harmark, Troels; Marini, Andrea
2014-01-01
We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading T4 correction for the thermal DBI action at weak and strong coupling we find that the 3/4 ...
A method for the production of weakly acidic cation exchange resins
Heller, H.; Werner, F.; Mitschker, A.; Diehl, H. V.; Schaefer, A.
1991-12-01
The invention relates to a nonpolluting method for the production of weakly acidic cation exchange resins by saponification of cross-linked acrylonitrile bead polymers, with an alkaline saponification agent at elevated temperature, according to which method the bead polymer and alkaline saponification agent are jointly added only at elevated temperature.
The Weak-Coupling of Bose-Einstein Condensates
Institute of Scientific and Technical Information of China (English)
ZHOU Xiao-Ji; MA Zao-Yuan; CHEN Xu-Zong; WANG Yi-Qiu
2003-01-01
The coherent characteristics of four trapped Bose-Einstein condensates (BEC) conjunct one by one in aring shape which is divided by two far off-resonant lasers, are studied. Four coupled Gross-Pitaevskii equations are usedto describe the dynamics of the system. Two kinds of self-trapping effects are discussed in the coupled BECs, and thephase diagrams for different initial conditions and different coupling strengths are discussed. This study can be used todetermine interaction parameters between atoms in BEC.
Continuum Coupling and Pair Correlation in Weakly Bound Deformed Nuclei
Oba, Hiroshi
2009-01-01
We formulate a new Hartree-Fock-Bogoliubov method applicable to weakly bound deformed nuclei using the coordinate-space Green's function technique. An emphasis is put on treatment of quasiparticle states in the continuum, on which we impose the correct boundary condition of the asymptotic out-going wave. We illustrate this method with numerical examples.
Weak Coupling Chambers in N=2 BPS Quiver Theory
Saidi, E H
2012-01-01
Using recent results on BPS quiver theory, we develop a group theoretical method to describe the quiver mutations encoding the quantum mechanical duality relating the spectra of distinct quivers. We illustrate the method by computing the BPS spectrum of the infinite weak chamber of some examples of N=2 supersymmetric gauge models without and with quark hypermultiplets.
Weak coupling chambers in N=2 BPS quiver theory
Saidi, El Hassan
2012-11-01
Using recent results on BPS quiver theory, we develop a group theoretical method to describe the quiver mutations encoding the quantum mechanical duality relating the spectra of distinct quivers. We illustrate the method by computing the BPS spectrum of the infinite weak chamber of some examples of N=2 supersymmetric gauge models without and with quark hypermultiplets.
Light weakly coupled axial forces: models, constraints, and projections
Kahn, Yonatan; Krnjaic, Gordan; Mishra-Sharma, Siddharth; Tait, Tim M. P.
2017-05-01
We investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the effects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a dark photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, briefly commenting on the relevance of the allowed parameter space to low-energy anomalies in π0 and 8Be∗ decay.
Light Weakly Coupled Axial Forces: Models, Constraints, and Projections
Kahn, Yonatan; Mishra-Sharma, Siddharth; Tait, Tim M P
2016-01-01
We investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the effects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a dark photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, briefly commenting on the relevan...
Light Weakly Coupled Axial Forces: Models, Constraints, and Projections
Energy Technology Data Exchange (ETDEWEB)
Kahn, Yonatan [Princeton U.; Krnjaic, Gordan [Fermilab; Mishra-Sharma, Siddharth [Princeton U.; Tait, Tim P. [UC, Irvine
2016-09-28
We investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the effects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a dark photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, briefly commenting on the relevance of the allowed parameter space to low-energy anomalies in pi^0 and 8-Be* decay.
Shi, L; Rekola, H T; Martikainen, J -P; Moerland, R J; Törmä, P
2014-01-01
We study spatial coherence properties of a system composed of periodic silver nanoparticle arrays covered with a fluorescent organic molecule (DiD) film. The evolution of spatial coherence of this composite structure from the weak to the strong coupling regime is investigated by systematically varying the coupling strength between the localized DiD excitons and the collective, delocalized modes of the nanoparticle array known as surface lattice resonances. A gradual evolution of coherence from the weak to the strong coupling regime is observed, with the strong coupling features clearly visible in interference fringes. A high degree of spatial coherence is demonstrated in the strong coupling regime, even when the mode is very excitonlike (80%), in contrast to the purely localized nature of molecular excitons. We show that coherence appears in proportion to the weight of the plasmonic component of the mode throughout the weak-to-strong coupling crossover, providing evidence for the hybrid nature of the normal m...
Quantum Weak Values and Logic: An Uneasy Couple
Svensson, Bengt E. Y.
2017-03-01
Quantum mechanical weak values of projection operators have been used to answer which-way questions, e. g. to trace which arms in a multiple Mach-Zehnder setup a particle may have traversed from a given initial to a prescribed final state. I show that this procedure might lead to logical inconsistencies in the sense that different methods used to answer composite questions, like "Has the particle traversed the way X or the way Y?", may result in different answers depending on which methods are used to find the answer. I illustrate the problem by considering some examples: the "quantum pigeonhole" framework of Aharonov et al., the three-box problem, and Hardy's paradox. To prepare the ground for my main conclusion on the incompatibility in certain cases of weak values and logic, I study the corresponding situation for strong/projective measurements. In this case, no logical inconsistencies occur provided one is always careful in specifying exactly to which ensemble or sample space one refers. My results cast doubts on the utility of quantum weak values in treating cases like the examples mentioned.
A Hybrid Strong/Weak Coupling Approach to Jet Quenching
Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2014-01-01
We propose and explore a new hybrid approach to jet quenching in a strongly coupled medium. The basis of this phenomenological approach is to treat physics processes at different energy scales differently. The high-$Q^2$ processes associated with the QCD evolution of the jet from production as a single hard parton through its fragmentation, up to but not including hadronization, are treated perturbatively. The interactions between the partons in the shower and the deconfined matter within which they find themselves lead to energy loss. The momentum scales associated with the medium (of the order of the temperature) and with typical interactions between partons in the shower and the medium are sufficiently soft that strongly coupled physics plays an important role in energy loss. We model these interactions using qualitative insights from holographic calculations of the energy loss of energetic light quarks and gluons in a strongly coupled plasma, obtained via gauge/gravity duality. We embed this hybrid model ...
The weak psuedoscalar coupling of the free and the bound protons
Energy Technology Data Exchange (ETDEWEB)
Gorringe, T.P. [Univ. of Kentucky, Lexington, KY (United States)
1995-10-01
The proton`s weak pseudoscalar coupling, g{sub p} is induced by the effects of its strong interaction on its weak interaction. In the Partially Conserved Axial Current hypothesis g{sub p} is due to single pion exchange between the leptonic and nucleonic currents in semi-leptonic weak processes. It predicts g{sub p} = 8.4 {plus_minus} 0.2 for the free proton but modifications of g{sub p}for the bound proton, due to modifications of the pion field of the bound proton, are possible. We will review the available data on g{sub p} for both the free and the bound proton. In the case of the free proton g{sub p} has been determined from measurements of ordinary (OMC) and radiative muon capture (RMC) on hydrogen. We will discuss the extraction of g{sub p} from the data, the importance of various {mu}-atomic and molecular processes in extracting g{sub p }and compare the results obtained from the OMC and RMC data and experiments in gaseous and liquid H{sub 2}. In the case of the bound proton we will discuss the measurements of ordinary and radiative {mu}{sup -} capture on complex nuclei and the extraction of g{sub p} from these data. The comparison of inclusive RMC and OMC rates on nuclei has led to speculations of a large enhancement of g{sub p} in light nuclei and a large quenching of g{sub p} in heavy nuclei. We will discuss the evidence for and against the renormalization, of g{sub p}in nuclei and the problems of extracting g{sub p} from the nuclear RMC and OMC data.
Keramati, Sam; Singh, Uday; Kurfman, Seth; Binek, Ch.; Adenwalla, S.
2015-03-01
Ultrafast high-power laser systems have successfully opened up the field of magnetization dynamics, studying subpicosecond laser-induced spin precession dynamics, demagnetization processes and magnetization reorientation. Here we investigate laser-induced magnetization dynamics in a series of photolithographically patterned microstructures of exchange coupled trilayers of Co/Cu/Py grown on Si substrates. The microstructures have different shape anisotropies as well as different exchange coupling parameters. The latter determines the magnetization state, varying from ferromagnetically to anti-ferromagnetically coupled. We explore how the different spin precession frequencies of the constituent exchange coupled magnetic layers with unequal relaxation times can trade-off with the differing shape anisotropies. The key physical point is that the precession frequency of ferromagnetic materials and their damping parameter vary with the effective field which depends on both the shape anisotropy, and exchange coupling, while their corresponding effects can be modulated through the action of the intense pump beam. Precession frequency maps of the behavior of the exchange coupling parameter of the samples with respect to their shape anisotropy and their laser-induced modulated precession frequencies will be generated through a pump-probe experiment to address the above-mentioned objective of our work. This work is supported by NSF Grant No. 1409622 and MRSEC DMR-0820521.
Transport in weakly-coupled superlattices: A quantitative approach for photon-assisted tunneling
DEFF Research Database (Denmark)
Wacker, Andreas; Jauho, Antti-Pekka
1997-01-01
Photon-assisted tunneling is studied in weakly-coupled semiconductor superlattices under THz irradiation. Using a microscopic transport model we find excellent quantitative agreement with experimental data for two different samples without using any fitting parameters.......Photon-assisted tunneling is studied in weakly-coupled semiconductor superlattices under THz irradiation. Using a microscopic transport model we find excellent quantitative agreement with experimental data for two different samples without using any fitting parameters....
Exchange bias training effect in coupled all ferromagnetic bilayer structures.
Binek, Ch; Polisetty, S; He, Xi; Berger, A
2006-02-17
Exchange coupled bilayers of soft and hard ferromagnetic thin films show remarkable analogies to conventional antiferromagnetic/ferromagnetic exchange bias heterostructures. Not only do all these ferromagnetic bilayers exhibit a tunable exchange bias effect, they also show a distinct training behavior upon cycling the soft layer through consecutive hysteresis loops. In contrast with conventional exchange bias systems, such all ferromagnetic bilayer structures allow the observation of training induced changes in the bias-setting hardmagnetic layer by means of simple magnetometry. Our experiments show unambiguously that the exchange bias training effect is driven by deviations from equilibrium in the pinning layer. A comparison of our experimental data with predictions from a theory based upon triggered relaxation phenomena shows excellent agreement.
Phase Diagram of Antiferromagnetically Exchange-Coupled Bilayer
Institute of Scientific and Technical Information of China (English)
GUO Guang-Hua; ZHANG Guang-Fu; SUN Li-Yuan; Peter A. J. de Groot
2008-01-01
Magnetic hysteresis properties of antiferromagnetically exchange-coupled bilayer structures, in which the two magnetic layers have different magnetic parameters and thicknesses, are studied within the framework of the Stoner-Wohifarth model. Analytical expressions for the switching fields corresponding to the linear magnetic states are obtained. By adjusting the magnetic parameters or thicknesses of layers, nine different types of easyaxis hysteresis loops may exist. The phase diagram of easy-axis hysteresis loops is mapped in the k,1 and k,2 plane, where k,1 and k,2 are the ratios of magnetic anisotropy to the interlayer exchange coupling of the two magnetic layers, respectively.
Faithful conditional quantum state transfer between weakly coupled qubits
Miková, M.; Straka, I.; Mičuda, M.; Krčmarský, V.; Dušek, M.; Ježek, M.; Fiurášek, J.; Filip, R.
2016-08-01
One of the strengths of quantum information theory is that it can treat quantum states without referring to their particular physical representation. In principle, quantum states can be therefore fully swapped between various quantum systems by their mutual interaction and this quantum state transfer is crucial for many quantum communication and information processing tasks. In practice, however, the achievable interaction time and strength are often limited by decoherence. Here we propose and experimentally demonstrate a procedure for faithful quantum state transfer between two weakly interacting qubits. Our scheme enables a probabilistic yet perfect unidirectional transfer of an arbitrary unknown state of a source qubit onto a target qubit prepared initially in a known state. The transfer is achieved by a combination of a suitable measurement of the source qubit and quantum filtering on the target qubit depending on the outcome of measurement on the source qubit. We experimentally verify feasibility and robustness of the transfer using a linear optical setup with qubits encoded into polarization states of single photons.
Switching field of partially exchange-coupled particles
Energy Technology Data Exchange (ETDEWEB)
Oliva, M.I. [Facultad de Matematica Astronomia y Fisica, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina); Secyt - UNC (Argentina); Bertorello, H.R. [Facultad de Matematica Astronomia y Fisica, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina); CONICET (Argentina); Bercoff, P.G. [Facultad de Matematica Astronomia y Fisica, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina) and CONICET (Argentina)]. E-mail: bercoff@famaf.unc.edu.ar
2004-12-31
The magnetization reversal of partially exchange-coupled particles is studied in detail. The starting point is the observation of a complicated phenomenology in the irreversible susceptibility and FORC distribution functions of Ba hexaferrite samples obtained by means of different sintering conditions. Several peaks in the first-order reversal curve (FORC) distribution functions were identified and associated with clusters with different number of particles. The switching fields of these clusters were related to an effective anisotropy constant Keff that depends on the number of particles in the cluster. Keff is linked to the exchange-coupled volume between two neighboring particles and as a weighted mean between the anisotropy constants of the coupled and uncoupled volumes. By using the modified Brown's equation {alpha}ex=0.322 is obtained.In order to interpret these results, the switching field of a two-particle system with partial exchange coupling is studied. It is assumed that the spins reorientation across the contact plane between the particles is like a Bloch wall. The energy of the system is written in terms of the fraction of volume affected by exchange coupling and the switching fields for both particles are calculated. At small interaction volume fraction each particle inverts its magnetization independently from the other. As the fraction of exchange-coupled volume increases, cooperative effects appear and the two particles invert their magnetization in a cooperative way.The proposed model allows to interpret for the first time the empirical factor {alpha}ex in terms of physical arguments and also explain the details observed in the FORC distribution function.
From weak to strong coupling in ABJM theory
Drukker, Nadav; Putrov, Pavel
2011-01-01
The partition function of N=6 supersymmetric Chern-Simons-matter theory (known as ABJM theory) on S^3, as well as certain Wilson loop observables, are captured by a zero dimensional super-matrix model. This super-matrix model is closely related to a matrix model describing topological Chern-Simons theory on a lens space. We explore further these recent observations and extract more exact results in ABJM theory from the matrix model. In particular we calculate the planar free energy, which matches at strong coupling the classical IIA supergravity action on AdS_4 x CP^3 and gives the correct N^{3/2} scaling for the number of degrees of freedom of the M2 brane theory. Furthermore we find contributions coming from world-sheet instanton corrections in CP^3. We also calculate non-planar corrections, both to the free energy and to the Wilson loop expectation values. This matrix model appears also in the study of topological strings on a toric Calabi-Yau manifold, and an intriguing connection arises between the space...
Directory of Open Access Journals (Sweden)
Haroon Hussain
2013-01-01
Full Text Available This research study focuses the existence of “weak form efficiency” in the Karachi stock exchange of Pakistan. Daily stock returns are used to check the “weak form efficiency’ in KSE covering a time period of 15 years ranges from July, 1997 to April, 2012. Kolmogrov-Smirnov (K-S test, runs test, Unit root test Augumented Dickey Fuller test, Phillips Perron test are run to check the hypothesis. It is revealed that the KSE is not distributed normally and patterns are there in the prices so, the technical analyst can get the benefit in short run through predicting the future prices. This means that there exists some opportunity for the traders and investors to predict the upcoming stock prices of the securities, which are trading in the KSE and can earn high return and outperform the market. However, in long run scenario (in monthly data the results are vice versa and Karachi stock exchange is a weak form efficient market.
D-brane physics. From weak to strong coupling
Energy Technology Data Exchange (ETDEWEB)
Vieira Lopes, Daniel Ordine
2013-01-10
In this thesis we discuss two aspects of branes relevant to high-energy phenomenology. First, we consider a single D6-brane wrapping a special Lagrangian cycle and the background space compactified in a Calabi-Yau orientifold the conditions needed to obtain a four-dimensional N=1 supersymmetric theory. We calculate the bosonic part of the effective action by performing a Kaluza-Klein reduction of the brane seven-dimensional action, and obtain the N=1 characteristic data. To discuss the moduli, we first fix the moduli from deformations of the background Calabi-Yau and study the D-brane deformation moduli space. We next allow for Calabi-Yau deformations, and show that the moduli space for complex structure deformations is corrected by the fields living on the D6-brane. We also calculate the scalar potential from D- and F-terms generated from brane and background configurations that would break the supersymmetry condition. We then, via Mirror Symmetry, relate the spectrum obtained in our work to the spectrum in Type IIB effective theory with D3- D5- and D7-branes, and we propose a Kaehler potential for the moduli space of brane deformations in Type IIB theories. In the second part of the thesis we discuss effects of brane intersections when the string coupling can become strong, and we work in the framework of F-theory. After reviewing the basics of F-theory constructions and a particular SU(5) model already discussed in the literature, we construct a model which contains a point of E{sub 8} singularity, and curves of E{sub 6} singularity. By explicitly resolving the space, we show that the resolution requires the introduction of higher dimensional fibers, and argue how we can circumvent this problem for the E{sub 6} curve, leading to the expected resolution that generate an E{sub 6} group, while at the E{sub 8} point we cannot make the resolution lead to an expected E{sub 8} structure.
Magnetocaloric effect at the exchange-inversion with magnetoelastic coupling
Piazzi, Marco; Basso, Vittorio
2015-09-01
We develop a thermodynamic model to describe antiferro- (AFM) to ferromagnetic (FM) phase transitions through magnetoelastic coupling in the framework of Kittel's exchange-inversion mechanism. By including both magnetic and structural contributions to the free energy, we derive the conditions to have a direct AFM-FM transition. These are represented either by the presence of a non-zero intra-sublattice coupling constant or by a sufficiently high value of the magnetoelastic coupling parameter. In the paper we establish these conditions by analytical means and we discuss the physical meaning of the model in relation to possible applications to magnetocaloric materials with AFM-FM transitions.
Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling
Xiong, Wen; Bromberg, Yaron; Redding, Brandon; Rotter, Stefan; Cao, Hui
2016-01-01
We present experimental and numerical studies on principal modes in a multimode fiber with mode coupling. By applying external stress to the fiber and gradually adjusting the stress, we have realized a transition from weak to strong mode coupling, which corresponds to the transition from single scattering to multiple scattering in mode space. Our experiments show that principal modes have distinct spatial and spectral characteristic in the weak and strong mode coupling regimes. We also investigate the bandwidth of the principal modes, in particular, the dependence of the bandwidth on the delay time, and the effects of the mode-dependent loss. By analyzing the path-length distributions, we discover two distinct mechanisms that are responsible for the bandwidth of principal modes in weak and strong mode coupling regimes. Taking into account the mode-dependent loss in the fiber, our numerical results are in good agreement with our experimental observations. Our study paves the way for exploring potential applica...
Inelastic Neutron Scattering and Magnetisation Investigation of an Exchange-Coupled Dy2 SMM
Baker, Michael L.; Zhang, Qing; Sarachik, Myriam P.; Kent, Andrew D.; Chen, Yizhang; Butch, Nicholas; Pineda, Eufemio M.; McInnes, Eric
The strong spin orbit coupling and weak crystal field energies of simple exchange-coupled rare earth SMMs makes the precise evaluation of their magnetic properties nontrivial. Here we report a detailed investigation of the single molecule magnet hqH2Dy2(hq)4(NO3)3MeOH. Inelastic neutron scattering is used to obtain direct access to several low energy crystal field excitations. The INS results display several features that are not found in earlier FIR absorption experiments, while other features found in the latter are absent. Based on the effective point charge model, numerical calculations are currently underway to resolve these apparent discrepancies using complementary magnetisation measurements to resolve the exchange between Dy ions. Work supported by ARO W911NF-13-1-1025 (CCNY) and NSF-DMR-1309202 (NYU).
Refolding of Denatured/Reduced Lysozyme Using Weak-Cation Exchange Chromatography
Institute of Scientific and Technical Information of China (English)
Yan WANG; Bo Lin GONG; Xin Du GENG
2003-01-01
Oxidative refolding of the denatured/reduced lysozyme was investigated by using weak-cation exchange chromatography (WCX). The stationary phase of WCX binds to the reduced lysozyme and prevented it from forming intermolecular aggregates. At the same time urea and ammonium sulfate were added to the mobile phase to increase the elution strength for lysozyme. Ammonium sulfate can more stabilize the native protein than a common eluting agent, sodium chloride. Refolding of lysozyme by using this WCX is successfully. It was simply carried out to obtain a completely and correctly refolding of the denatured lysozyme at high concentration of 20.0 mg/mL.
El-Khatib, Fatima; Cahier, Benjamin; López-Jordà, Maurici; Guillot, Régis; Rivière, Eric; Hafez, Hala; Saad, Zeinab; Girerd, Jean-Jacques; Guihéry, Nathalie; Mallah, Talal
2017-09-05
The preparation of a binuclear Ni(II) complex with a pentacoordinate environment using a cryptand organic ligand and the imidazolate bridge is reported. The coordination sphere is close to trigonal bipyramidal (tbp) for one Ni(II) and to square pyramidal (spy) for the other. The use of the imidazolate bridge that undergoes π-π stacking with two benzene rings of the chelating ligand induces steric hindrance that stabilizes the pentacoordinate environment. Magnetic measurements together with theoretical studies of the spin states energy levels allow fitting the data and reveal a large Ising-type anisotropy and a weak anti-ferromagnetic exchange coupling between the metal ions. The magnitude and the nature of the magnetic anisotropy and the difference in anisotropy between the two metal ions are rationalized using wave-function-based calculations. We show that a slight distortion of the coordination sphere of Ni(II) from spy to tbp leads to an Ising-type anisotropy. Broken-symmetry density functional calculations rationalize the weak anti-ferromagnetic exchange coupling through the imidazolate bridge.
Rodionova, D. O.; Voronyuk, I. V.; Eliseeva, T. V.
2016-07-01
Features of the sorption of substituted aromatic aldehydes by a weak-base anion exchanger under equilibrium conditions are investigated using vanillin and ethylvanillin as examples. Analysis of the sorption isotherms of carbonyl compounds at different temperatures allows us to calculate the equilibrium characteristics of their sorption and assess the entropy and enthalpy contributions to the energy of the process. Hydration characteristics of the macroporous weak-base anion exchanger before and after the sorption of aromatic aldehydes are compared.
Classical integrability for three-point functions: cognate structure at weak and strong couplings
Energy Technology Data Exchange (ETDEWEB)
Kazama, Yoichi [Research Center for Mathematical Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Quantum Hadron Physics Laboratory, RIKEN Nishina Center, Wako 351-0198 (Japan); Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Nishimura, Takuya [Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)
2016-10-10
In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the N=4 super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical behaviors were not known before. In addition, the new analyticity argument applied to the strong coupling analysis leads to a modification of the integration contour, producing the results consistent with the recent hexagon bootstrap approach. This modification also makes the Frolov-Tseytlin limit perfectly agree with the weak coupling form.
Bidirectional private key exchange using delay-coupled semiconductor lasers.
Porte, Xavier; Soriano, Miguel C; Brunner, Daniel; Fischer, Ingo
2016-06-15
We experimentally demonstrate a key exchange cryptosystem based on the phenomenon of identical chaos synchronization. In our protocol, the private key is symmetrically generated by the two communicating partners. It is built up from the synchronized bits occurring between two current-modulated bidirectionally coupled semiconductor lasers with additional self-feedback. We analyze the security of the exchanged key and discuss the amplification of its privacy. We demonstrate private key generation rates up to 11 Mbit/s over a public channel.
Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+) exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recen...
Coupling, convergence rates of Markov processes and weak Poincaré inequalities
Institute of Scientific and Technical Information of China (English)
WANG; Fengyu(王凤雨)
2002-01-01
Some analytic and probabilistic properties of the weak Poincaré inequality are obtained. In particular, for strong Feller Markov processes the existence of this inequality is equivalent to each of the following: (i)the Liouville property (or the irreducibility); (ii) the existence of successful couplings (or shift-couplings); (iii)the convergence of the Markov process in total variation norm; (iv) the triviality of the tail (or the invariant)σ-field; (v) the convergence of the density. Estimates of the convergence rate in total variation norm of Markov processes are obtained using the weak Poincaré inequality.
Landau-Lifhsitz-Bloch equation for exchange coupled grains
Vogler, Christoph; Bruckner, Florian; Suess, Dieter
2014-01-01
Heat assisted recording is a promising technique to further increase the storage density in hard disks. Multilayer recording grains with graded Curie temperature is discussed to further assist the write process. Describing the correct magnetization dynamics of these grains, from room temperature to far above the Curie point, during a write process is required for the calculation of bit error rates. We present a coarse grained approach based on the Landau-Lifshitz-Bloch (LLB) equation to model exchange coupled grains with low computational effort. The required temperature dependent material properties such as the zero-field equilibrium magnetization as well as the parallel and normal susceptibilities are obtained by atomistic Landau-Lifshitz-Gilbert (LLB) simulations. Each grain is described with one magnetization vector. In order to mimic the atomistic exchange interaction between the grains a special treatment of the exchange field in the coarse grained approach is presented.
Two-electron bound state formation in the t-J-U model for exchange-coupled planes
Morriss-Andrews, A.; Gooding, R. J.
2007-01-01
An anisotropic t-J-U model Hamiltonian is used to model electron behaviour in quasi-2d materials in the dilute limit, and as a highly simplified representation of the weakly coupled CuO2 planes of the high-Tc cuprates we model the very poor out-of-plane conductivity via the complete suppression of interplanar hopping. However, we do include the very weak interplanar superexchange, and are thus considering a model of exchange-coupled planes. For an isotropic three-dimensional system in the dil...
Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures
He, Qing Lin; Kou, Xufeng; Grutter, Alexander J.; Yin, Gen; Pan, Lei; Che, Xiaoyu; Liu, Yuxiang; Nie, Tianxiao; Zhang, Bin; Disseler, Steven M.; Kirby, Brian J.; Ratcliff, William, II; Shao, Qiming; Murata, Koichi; Zhu, Xiaodan; Yu, Guoqiang; Fan, Yabin; Montazeri, Mohammad; Han, Xiaodong; Borchers, Julie A.; Wang, Kang L.
2017-01-01
Magnetic topological insulators such as Cr-doped (Bi,Sb)2Te3 provide a platform for the realization of versatile time-reversal symmetry-breaking physics. By constructing heterostructures exhibiting Néel order in an antiferromagnetic CrSb and ferromagnetic order in Cr-doped (Bi,Sb)2Te3, we realize emergent interfacial magnetic phenomena which can be tailored through artificial structural engineering. Through deliberate geometrical design of heterostructures and superlattices, we demonstrate the use of antiferromagnetic exchange coupling in manipulating the magnetic properties of magnetic topological insulators. Proximity effects are shown to induce an interfacial spin texture modulation and establish an effective long-range exchange coupling mediated by antiferromagnetism, which significantly enhances the magnetic ordering temperature in the superlattice. This work provides a new framework on integrating topological insulators with antiferromagnetic materials and unveils new avenues towards dissipationless topological antiferromagnetic spintronics.
Hidden Interface Driven Exchange Coupling in Oxide Heterostructures
Energy Technology Data Exchange (ETDEWEB)
Chen, Aiping [Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos NM 87545 USA; Wang, Qiang [Materials Science Division, Argonne National Laboratory, Argonne IL 60439 USA; Department of Physics and Astronomy, West Virginia University, Morgantown WV 26506 USA; Fitzsimmons, Michael R. [Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Department of Physics and Astronomy, University of Tennessee, Knoxville TN 37996 USA; Enriquez, Erik [Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos NM 87545 USA; Weigand, Marcus [Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos NM 87545 USA; Harrell, Zach [Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos NM 87545 USA; McFarland, Brian [Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos NM 87545 USA; Lü, Xujie [Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos NM 87545 USA; Dowden, Paul [Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos NM 87545 USA; MacManus-Driscoll, Judith L. [Department of Materials Science, University of Cambridge, Cambridge CB3 OFS UK; Yarotski, Dmitry [Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos NM 87545 USA; Jia, Quanxi [Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos NM 87545 USA; Department of Materials Design and Innovation, University at Buffalo - The State University of New York, Buffalo NY 14260 USA
2017-05-02
A variety of emergent phenomena have been enabled by interface engineering in complex oxides. The existence of an intrinsic interfacial layer has often been found at oxide heterointerfaces. However, the role of such an interlayerin controlling functionalities is not fully explored. Here, we report the control of the exchange bias (EB) in single-phase manganite thin films with nominallyuniform chemical composition across the interfaces. The sign of EB depends on the magnitude of the cooling field. A pinned layer, confirmed by polarized neutron reflectometry, provides the source of unidirectional anisotropy. The origin of the exchange bias coupling is discussed in terms of magnetic interactions between the interfacial ferromagnetically reduced layer and the bulk ferromagnetic region. The sign of EB is related to the frustration of antiferromagnetic coupling between the ferromagnetic region and the pinned layer. Our results shed new light on using oxide interfaces to design functional spintronic devices.
Zanotto, Simone
2015-01-01
In this article we discuss a model describing key features concerning the lineshapes and the coherent absorption conditions in Fano-resonant dissipative coupled oscillators. The model treats on the same footing the weak and strong coupling regimes, and includes the critical coupling concept, which is of great relevance in numerous applications; in addition, the role of asymmetry is thoroughly analyzed. Due to the wide generality of the model, which can be adapted to various frameworks like nanophotonics, plasmonics, and optomechanics, we envisage that the analytical formulas presented here will be crucial to effectively design devices and to interpret experimental results.
Iskra, Timothy; Sacramo, Ashley; Gallo, Chris; Godavarti, Ranga; Chen, Shuang; Lute, Scott; Brorson, Kurt
2015-01-01
Anion exchange chromatography (AEX) operated under weak partitioning mode has been proven to be a powerful polishing step as well as a robust viral clearance step in Pfizer's monoclonal antibody (mAb) platform purification process. A multivariate design of experiment (DoE) study was conducted to understand the impact of operating parameters and feedstream impurity levels on viral clearance by weak partitioning mode AEX. Bacteriophage was used initially as a surrogate for neutral and acidic isoelectric point mammalian viruses (e.g., retrovirus and parvovirus). Five different mAbs were used in the evaluation of process parameters such as load challenge (both product and impurities), load pH, load conductivity, and contact time (bed height and flow-rate). The operating ranges obtained from phage clearance studies and Pfizer's historical data were used to define an appropriate operating range for a subsequent clearance study with model retrovirus and parvovirus. Both phage and virus clearance evaluations included feedstreams containing different levels of impurities such as high molecular mass species (HMMS), host cell proteins (HCPs), and host cell DNA. For all the conditions tested, over 5 log10 of clearance for both retrovirus and parvovirus was achieved. The results demonstrated that weak partitioning mode AEX chromatography is a robust step for viral clearance and has the potential to be included as part of the modular viral clearance approach.
Coupling-induced ferromagnetic transitions in ferroelectromagnets of weak antiferromagnetic order
Institute of Scientific and Technical Information of China (English)
LI Qichang; LIU Junming
2006-01-01
A Monte-Carlo simulation on phase transitions in ferroelectromagnets (FEMs) in which a weak antiferromagnetic ordering occurs at the Neel point TN far below the ferroelectric ordering point TE was performed. It is revealed that an intrinsic coupling between spins and electric-dipoles ( mp -coupling) does result in a weak ferromagnetic transition from the paramagnetic state at a temperature far above TN, as long as the coupling is strong enough. The magnetoelectric properties as a function of temperature, mp -coupling strength and external electric and magnetic fields were investigated. A mean-field calculation based on the Heisenberg model was performed and a rough consistency between the simulated and calculated ferromagnetic transitions was shown.
Institute of Scientific and Technical Information of China (English)
卫引茂; 陈强; 耿信笃
2001-01-01
Monodisperse poly ( chloromethylstyrene-co-divinylbenzene )particles were firstly prepared by a two-step swelling method.Based on this media, one kind of weak cation ion exchange packings was prepared. It was demonstrated that the prepared packings have comparative advantages for biopolymer separation with high column efficiency, low interstitial volume and low column backpressure, and have good resolution to proteins. The effects of salt concentration and pH of mobile phase on protein retentions were investigated. The properties of the weak cation ion exchange packings were evaluated by the unified retention model for mixed-mode interaction mechanison in ion exchange and hydrophobic interaction chromatography.
Towards a hybrid strong/weak coupling approach to jet quenching
Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2014-01-01
We explore a novel hybrid model containing both strong and weak coupling physics for high energy jets traversing a deconfined medium. This model is based on supplementing a perturbative DGLAP shower with strongly coupled energy loss rate. We embed this system into a realistic hydrodynamic evolution of hot QCD plasma. We confront our results with LHC data, obtaining good agreement for jet RAARAA, dijet imbalance AJAJ and fragmentation functions.
Weak-Coupling Theory for Low-Frequency Periodically Driven Two-Level Systems
Institute of Scientific and Technical Information of China (English)
CHEN Ai-Xi; HUANG Ke-Lin; WANG Zhi-Ping
2008-01-01
We generalize the Wu-Yang strong-coupling theory to solve analytically periodically driven two-level systems in the weak-coupling and low-frequency regimes for single- and multi-period periodic driving of continuous-wave-type and pulse-type including ultrashort pulses of a few cycles. We also derive a general formula of the AC Stark shift suitable for such diverse situations.
Modulation properties of spatial three-waveguide system using weakly coupled mode theory
Institute of Scientific and Technical Information of China (English)
Yiling Sun; Jianxia Pan
2007-01-01
Based on the weakly coupled mode theory, the modulation properties of three-waveguide system are analyzed in general. We examine the modulation behavior for two cases that a voltage is applied on the beamlaunched waveguide or non-beam-launched waveguide. The analytical intensity distributions in both cases are given. Applications of the spatial multi-waveguide coupling systems include spatial light modulators,optical switches, optical interconnection, and spatial optical signal processing.
Travelling waves associated with saddle-node bifurcation in weakly coupled CML
Energy Technology Data Exchange (ETDEWEB)
Sotelo Herrera, Ma Dolores, E-mail: dsh@dfmf.uned.e [Departamento de Matematica Aplicada, E.U.I.T.I., Universidad Politecnica de Madrid, Ronda de Valencia 3, 28012 Madrid (Spain); San Martin, Jesus, E-mail: jsm@dfmf.uned.e [Departamento de Matematica Aplicada, E.U.I.T.I., Universidad Politecnica de Madrid, Ronda de Valencia 3, 28012 Madrid (Spain); Departamento de Fisica Matematica y de Fluidos, U.N.E.D., Senda del Rey 9, 28040 Madrid (Spain)
2010-07-19
Weakly coupled CML can be analytically solved by using perturbative methods. This technique has been recently used to deduce analytical expressions for travelling waves. Nonetheless, the results were limited for periodic solutions far away from saddle-node bifurcation. In this Letter, this problem is solved and periodic solutions, arising from the individual dynamics, are totally characterised.
Longitudinal singular response of dusty plasma medium in weak and strong coupling limits
Energy Technology Data Exchange (ETDEWEB)
Kumar Tiwari, Sanat; Das, Amita; Kaw, Predhiman; Sen, Abhijit [Institute for Plasma Research, Bhat, Gandhinagar - 382428 (India)
2012-01-15
The longitudinal response of a dusty plasma medium in both weak and strong coupling limits has been investigated in detail using analytic as well as numerical techniques. In particular, studies on singular response of the medium have been specifically investigated here. A proper Galilean invariant form of the generalized hydrodynamic fluid model has been adopted for the description of the dusty plasma medium. For weak non-linear response, analytic reductive perturbative approach has been adopted. It is well known that in the weak coupling regime for the dusty plasma medium, such an analysis leads to the Korteweg-de Vries equation (KdV) equation and predicts the existence of localized smooth soliton solutions. We show that the strongly coupled dust fluid with the correct Galilean invariant form does not follow the KdV paradigm. Instead, it reduces to the form of Hunter-Saxton equation, which does not permit soliton solutions. The system in this case displays singular response with both conservative as well as dissipative attributes. At arbitrary high amplitudes, the existence and spontaneous formation of sharply peaked cusp structures in both weak and strong coupling regimes has been demonstrated numerically.
Hyun, Chang Ho; Lee, Hee-Jung
2016-01-01
We investigate the parity-violating pion-nucleon-nucleon coupling constant $h^1_{\\pi NN}$, based on the chiral quark-soliton model. We employ an effective weak Hamiltonian that takes into account the next-to-leading order corrections from QCD to the weak interactions at the quark level. Using the gradient expansion, we derive the leading-order effective weak chiral Lagrangian with the low-energy constants determined. The effective weak chiral Lagrangian is incorporated in the chiral quark-soliton model to calculate the parity-violating $\\pi NN$ constant $h^1_{\\pi NN}$. We obtain a value of about $10^{-7}$ at the leading order. The corrections from the next-to-leading order reduce the leading order result by about 20~\\%.
Meson exchange in the weak decay of LAMBDA hypernuclei and the GAMMA sub n /GAMMA sub p ratio
Jido, D; Palomar, J E
2001-01-01
We take an approach to the LAMBDA nonmesonic weak decay in nuclei based on the exchange of mesons. The one-pion and one-kaon exchange are considered, together with the exchange of two pions, either correlated, leading to an important scalar-isoscalar exchange (sigma-like exchange), or uncorrelated (box diagrams). Extra effects of omega exchange in the scalar-isoscalar channel are also considered. Constraints of chiral dynamics are used to generate these exchanges. A drastic reduction of the OPE results for the GAMMA sub n /GAMMA sub p ratio is obtained and the new results are compatible with all present experiments within errors. The absolute rates obtained for different nuclei are also in good agreement with experiment.
SORPTION OF PHENOL AND P-NITROPHENOL ONTO A WEAKLY ANION EXCHANGER: XPS ANALYSIS AND MECHANISM
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
X-ray photoelectron spectroscopy (XPS ) was adopted to elucidate sorption mechanism of phenol and p-nitrophenol onto a weakly anion exchanger D301. The distribution of specific forms of tertiary amino group on D301 was obtained and effect of free tertiary amino group on phenol sorption onto D301 was discussed. The result indicated that the percent of the protonated tertiary amine group on polymeric matrix was much lower than the reference compound N,N-dimethylbenzylamine at an identical pH value in solution due to the much lower activity degree of hydrogen ion in inner resin phase than in the external solution. Less free amino group on D301 results in less sorption capacity of phenol and p-nitrophenol in an acidic solution. Under the experimental conditions both phenol sorption onto D301 can be explained as solid extraction and the distribution coefficient varies linearly with the content of free amino group on D301.
Rankin, Richard; Seddon, Elaine A.; Teuben, Jan H.; Jonkman-Beuker, Anneke H.; Boer, Dirk K.G. de
1981-01-01
It is possible to extract values for the transfer energy, t, and the Coulomb interaction, U, in hydrogen-like systems from a combination of photoelectron and magnetic data, as both the form of the photoelectron spectrum and the exchange splitting are determined by these quantities. This procedure is used to evaluate the ground-state wavefunction for the two weakly coupled Ti 3d electrons in (C10H8)(C5H5)2Ti2Cl2.
The strong-weak coupling symmetry in 2D Φ4 field models
Directory of Open Access Journals (Sweden)
B.N.Shalaev
2005-01-01
Full Text Available It is found that the exact beta-function β(g of the continuous 2D gΦ4 model possesses two types of dual symmetries, these being the Kramers-Wannier (KW duality symmetry and the strong-weak (SW coupling symmetry f(g, or S-duality. All these transformations are explicitly constructed. The S-duality transformation f(g is shown to connect domains of weak and strong couplings, i.e. above and below g*. Basically it means that there is a tempting possibility to compute multiloop Feynman diagrams for the β-function using high-temperature lattice expansions. The regular scheme developed is found to be strongly unstable. Approximate values of the renormalized coupling constant g* found from duality symmetry equations are in an agreement with available numerical results.
Exchange bias training effect in coupled all ferromagnetic bilayer structures
Polisetty, Srinivas; He, Xi; Binek, Christian; Berger, Andreas
2006-03-01
We study exchange coupled bilayers of soft and hard ferromagnetic (FM) thin films by means of Alternating Gradient Force Magnetometry. A CoCr thin film realizes the magnetically soft layer (SL) which is exchange coupled via a Ru-interlayer with a hard CoPtCrB pinning layer (HL). This new class of all FM bilayers shows remarkable analogies to conventional antiferromagnetic (AF)/FM exchange bias (EB) heterostructures. Not only do these all FM bilayers exhibit a tunable EB effect, they also show a distinct training behavior upon cycling the SL through consecutive hysteresis loops. Training resembles the cycle dependent evolution of the bias field and is to a large extend analogous to the gradual degradation of the EB field observed upon cycling the FM top layer of a AF/FM EB heterostructure through consecutive hysteresis loops. However, in contrast to these conventional EB systems, our all FM bilayer structures allow the observation of training induced changes in the bias-setting HL by means of simple magnetometry. Our experiments show unambiguously that the training effect is driven by deviations from equilibrium in the pinning layer. A comparison of the experimental data with predictions from a theory based upon triggered relaxation phenomena shows excellent agreement.
Hou, H.-C.; Kirby, B. J.; Gao, K. Z.; Lai, C.-H.
2013-04-01
We have studied the N-dependent switching behavior of composite magnets, comprised of a hard CoPtCr-SiO2 (CPCS) film and a laminated soft [Pt/CPCS]N multilayer. First order reversal curve magnetometry provides evidence of interfacial domain wall (iDW) assisted reversal for N ≥ 5. The magnetic depth profiles determined from polarized neutron reflectometry (PNR) explicitly demonstrate that the composite magnets are more rigidly coupled for N = 3 than for N = 7, and suggest that for N = 7 reversal occurs via formation of iDW. By fitting the PNR profile into the energy surface calculations, we can further deduce the vertical coupling strength in the laminated soft layer.
Energy Technology Data Exchange (ETDEWEB)
Casalderrey-Solana, Jorge [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Gulhan, Doga Can [Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Physics Department, Theory Unit, CERN, CH-1211 Genève 23 (Switzerland); Pablos, Daniel [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2016-12-15
Within a hybrid strong/weak coupling model for jets in strongly coupled plasma, we explore jet modifications in ultra-relativistic heavy ion collisions. Our approach merges the perturbative dynamics of hard jet evolution with the strongly coupled dynamics which dominates the soft exchanges between the fast partons in the jet shower and the strongly coupled plasma itself. We implement this approach in a Monte Carlo, which supplements the DGLAP shower with the energy loss dynamics as dictated by holographic computations, up to a single free parameter that we fit to data. We then augment the model by incorporating the transverse momentum picked up by each parton in the shower as it propagates through the medium, at the expense of adding a second free parameter. We use this model to discuss the influence of the transverse broadening of the partons in a jet on intra-jet observables. In addition, we explore the sensitivity of such observables to the back-reaction of the plasma to the passage of the jet.
Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2016-12-01
Within a hybrid strong/weak coupling model for jets in strongly coupled plasma, we explore jet modifications in ultra-relativistic heavy ion collisions. Our approach merges the perturbative dynamics of hard jet evolution with the strongly coupled dynamics which dominates the soft exchanges between the fast partons in the jet shower and the strongly coupled plasma itself. We implement this approach in a Monte Carlo, which supplements the DGLAP shower with the energy loss dynamics as dictated by holographic computations, up to a single free parameter that we fit to data. We then augment the model by incorporating the transverse momentum picked up by each parton in the shower as it propagates through the medium, at the expense of adding a second free parameter. We use this model to discuss the influence of the transverse broadening of the partons in a jet on intra-jet observables. In addition, we explore the sensitivity of such observables to the back-reaction of the plasma to the passage of the jet.
Stabilization of magnetic helix in exchange-coupled thin films.
Dzemiantsova, L V; Meier, G; Röhlsberger, R
2015-11-05
Based on micromagnetic simulations, we report on a novel magnetic helix in a soft magnetic film that is sandwiched between and exchange-coupled to two hard magnetic layers with different anisotropies. We show that such a confined helix stays stable without the presence of an external magnetic field. The magnetic stability is determined by the energy minimization and is a result of an internal magnetic field created by the exchange interaction. We show that this internal field stores a magnetic energy density of a few kJ/m(3). We also find that it dramatically modifies ferromagnetic resonances, such that the helix can be used as a ferromagnetic resonance filter and a fast acting attenuator.
Detecting weak coupling in mesoscopic systems with a nonequilibrium Fano resonance
Xiao, S.; Yoon, Y.; Lee, Y.-H.; Bird, J. P.; Ochiai, Y.; Aoki, N.; Reno, J. L.; Fransson, J.
2016-04-01
A critical aspect of quantum mechanics is the nonlocal nature of the wave function, a characteristic that may yield unexpected coupling of nominally isolated systems. The capacity to detect this coupling can be vital in many situations, especially those in which its strength is weak. In this work, we address this problem in the context of mesoscopic physics, by implementing an electron-wave realization of a Fano interferometer using pairs of coupled quantum point contacts (QPCs). Within this scheme, the discrete level required for a Fano resonance is provided by pinching off one of the QPCs, thereby inducing the formation of a quasibound state at the center of its self-consistent potential barrier. Using this system, we demonstrate a form of nonequilibrium Fano resonance (NEFR), in which nonlinear electrical biasing of the interferometer gives rise to pronounced distortions of its Fano resonance. Our experimental results are captured well by a quantitative theoretical model, which considers a system in which a standard two-path Fano interferometer is coupled to an additional, intruder, continuum. According to this theory, the observed distortions in the Fano resonance arise only in the presence of coupling to the intruder, indicating that the NEFR provides a sensitive means to infer the presence of weak coupling between mesoscopic systems.
Limit on right hand weak coupling parameters from inelastic neutrino interactions
Abramowicz, H; De Groot, J G H; Dydak, F; Eisele, F; Flottmann, T; Geweniger, C; Guyot, C; He, J T; Klasen, H P; Kleinknecht, K; Knobloch, J; Królikowski, J; May, J; Merlo, J P; Palazzi, P; Para, A; Peyaud, B; Pszola, B; Rander, J; Ranjard, F; Renk, B; Rothberg, J E; Ruan, T Z; Schlatter, W D; Schuller, J P; Steinberger, J; Taureg, H; Tittel, K; Turlay, René; von Rüden, Wolfgang; Wahl, H; Willutzki, H J; Wotschack, J; Wu, W M
1982-01-01
Right handed weak quark current coupled to the usual left handed weak lepton current would be seen in inclusive antineutrino scattering on nuclei as a contribution at large y with the quark (not antiquark) structure function. The authors do not see such a term, and can therefore put an upper limit on the relative strengths of such right handed currents: rho /sup 2/= sigma /sub R// sigma /sub L/ <0.009, 90% confidence. This measurement puts limits on the mixing angle of left- right symmetric models. In distinction to similar limits derived from muon decay or beta decay, our limits are also valid if the right handed neutrino is heavy.
Classical Integrability for Three-point Functions: Cognate Structure at Weak and Strong Couplings
Kazama, Y; Nishimura, T
2016-01-01
In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the $\\mathcal{N}=4$ super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical...
Thermal DBI action for the D3-brane at weak and strong coupling
Energy Technology Data Exchange (ETDEWEB)
Grignani, Gianluca [Dipartimento di Fisica, Università di Perugia, I.N.F.N. Sezione di Perugia,Via Pascoli, I-06123 Perugia (Italy); Harmark, Troels [The Niels Bohr Institute, Copenhagen University Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Marini, Andrea [Dipartimento di Fisica, Università di Perugia, I.N.F.N. Sezione di Perugia,Via Pascoli, I-06123 Perugia (Italy); Orselli, Marta [Dipartimento di Fisica, Università di Perugia, I.N.F.N. Sezione di Perugia,Via Pascoli, I-06123 Perugia (Italy); The Niels Bohr Institute, Copenhagen University Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi Piazza del Viminale 1, I-00184 Rome (Italy)
2014-03-25
We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading T{sup 4} correction for the thermal DBI action at weak and strong coupling we find that the 3/4 factor well-known from the AdS/CFT correspondence extends to the case of arbitrary electric and magnetic fields on the D3-brane. We investigate the reason for this by taking the decoupling limit in both the open and the closed string descriptions thus showing that the AdS/CFT correspondence extends to the case of arbitrary constant electric and magnetic fields on the D3-brane.
Thermal DBI action for the D3-brane at weak and strong coupling
Grignani, Gianluca; Marini, Andrea; Orselli, Marta
2013-01-01
We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading $T^4$ correction for the thermal DBI action at weak and strong coupling we find that the $3/4$ factor well-known from the AdS/CFT correspondence extends to the case of arbitrary electric and magnetic fields on the D3-brane. We investigate the reason for this by taking the decoupling limit in both the open and the closed string descriptions thus showing that the AdS/CFT correspondence extends to the case of arbitrary constant electric and magnetic fields on the D3-brane.
Resonance width distribution in RMT: Weak-coupling regime beyond Porter-Thomas
Fyodorov, Yan V.; Savin, Dmitry V.
2015-05-01
We employ the random matrix theory (RMT) framework to revisit the distribution of resonance widths in quantum chaotic systems weakly coupled to the continuum via a finite number M of open channels. In contrast to the standard first-order perturbation theory treatment we do not a priori assume the resonance widths being small compared to the mean level spacing. We show that to the leading order in weak coupling the perturbative χ^2M distribution of the resonance widths (in particular, the Porter-Thomas distribution at M = 1) should be corrected by a factor related to a certain average of the ratio of square roots of the characteristic polynomial (“spectral determinant”) of the underlying RMT Hamiltonian. A simple single-channel expression is obtained that properly approximates the width distribution also at large resonance overlap, where the Porter-Thomas result is no longer applicable.
The weakly coupled Pfaffian as a type I quantum hall liquid
Energy Technology Data Exchange (ETDEWEB)
Parameswaran, S.A., E-mail: spivak@u.washington.edu [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Kivelson, S.A. [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Sondhi, S.L. [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Spivak, B.Z. [Department of Physics, University of Washington, Seattle, WA 98195 (United States)
2012-06-01
The Pfaffian phase of electrons in the proximity of a half-filled Landau level is understood to be a p+ip superconductor of composite fermions. We consider the properties of this paired quantum Hall phase when the pairing scale is small, i.e. in the weak coupling, BCS, limit, where the coherence length is much larger than the charge screening length. We find that, as in a Type I superconductor, vortices attract so that, upon varying the magnetic field from its magic value at {nu}=5/2, the system exhibits Coulomb frustrated phase separation. We propose that the weakly and strongly coupled Pfaffian states exemplify a general dichotomy between Type I and Type II quantum Hall fluids.
Angular Structure of Jet Quenching Within a Hybrid Strong/Weak Coupling Model
Casalderrey-Solana, Jorge; Milhano, Guilherme; Pablos, Daniel; Rajagopal, Krishna
2017-01-01
Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter $K\\equiv \\hat q/T^3$ that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when $K\
Persistent Spin Current in a Quantum Wire with Weak Rashba Spin-Orbit Coupling
Institute of Scientific and Technical Information of China (English)
WANG Yi; SHENG Wei; ZHOU Guang-Hui
2006-01-01
@@ We theoretically investigate the spin current for a parabolically confined semiconductor heterojunction quantum wire with weak Rashba spin-orbit coupling by means of the perturbation method. By analytical calculation, it is found that only two components off spin current density is non-zero in the equilibrium case. Numerical examples have demonstrated that the spin current of electron transverse motion is 10-3 times that off electron longitudinal motion. However, the former one is much more sensitive to the strength of Rashba spin-orbit coupling. These results may suggest an approach to the spin storage device and to the measurement of spin current through its induced electric field.
Weak Coupling Phase Structureof the Abelian Higgs Model at Finite Temperature
Jakovác, A
1993-01-01
Using the 1-loop reduced 3D action of the Abelian Higgs-model we discuss the order of its finite temperature phase transition. A two-variable saddle point approximation is proposed for the evaluation of the effective potential. The strength of the first order case scales like \\sim e^{3-6}. Analytic asymptotic weak coupling and numerical small coupling solutions are compared with special emphasis on the cancellation of divergences. (Figures are not included, can be sent upon request from jako@hercules.elte.hu .)
Angular Structure of Jet Quenching Within a Hybrid Strong/Weak Coupling Model
Casalderrey-Solana, Jorge; Milhano, Guilherme; Pablos, Daniel; Rajagopal, Krishna
2016-01-01
Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter $K\\equiv \\hat q/T^3$ that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when $K\
Dynamics in Two Periodically Driven and Weakly Coupled Bose-Einstein Condensates
Institute of Scientific and Technical Information of China (English)
陈付广; 黄德斌; 郭荣伟
2005-01-01
In this paper, dynamics in the oscillations of the relative atomic population in two periodically driven and weakly coupled Bose-Einstein eondensates (BECs) was qualitatively studied. Using the well-known Melnikov method, the conditions of existence of the periodic and chaotic coherent atomic tunnellings were given in the model. Our results indicate the typical route from bifurcation of the limited circles to chaos, and are in agreement with the previous numerical results.
Large time behavior of weakly coupled systems of first-order Hamilton-Jacobi equations
Camilli, Fabio; Loreti, Paola; Nguyen, Vinh Duc
2011-01-01
We show a large time behavior result for class of weakly coupled systems of first-order Hamilton-Jacobi equations in the periodic setting. We use a PDE approach to extend the convergence result proved by Namah and Roquejoffre (1999) in the scalar case. Our proof is based on new comparison, existence and regularity results for systems. An interpretation of the solution of the system in terms of an optimal control problem with switching is given.
Fick's Law for the Lorentz Model in a weak coupling regime
Nota, Alessia
2014-01-01
In this paper we deal with further recent developments, strictly connected to the recent result obtained by Basile, Nota, Pezzotti and Pulvirenti. We consider the Lorentz gas out of equilibrium in a weak coupling regime. Each obstacle of the Lorentz gas generates a smooth radially symmetric potential with compact support. We prove that the macroscopic current in the stationary state is given by the Fick's law of diffusion. The diffusion coefficient is given by the Green-Kubo formula associate...
Lee, D S; Ng, Y J; Shovkovy, I A
1999-01-01
The effective potential for the composite fields responsible for chiral symmetry breaking in weakly coupled QED in a magnetic field is derived. The global minimum of the effective potential is found to acquire a non-vanishing expectation value of the composite fields that leads to generating the dynamical fermion mass by an external magnetic field. The results are compared with those for the Nambu-Jona-Lasinio model.
Initial conditions for hydrodynamics from weakly coupled pre-equilibrium evolution
Keegan, Liam; Mazeliauskas, Aleksas; Teaney, Derek
2016-01-01
We use effective kinetic theory, accurate at weak coupling, to simulate the pre-equilibrium evolution of transverse energy and flow perturbations in heavy-ion collisions. We provide a Green function which propagates the initial perturbations to the energy-momentum tensor at a time when hydrodynamics becomes applicable. With this map, the complete pre-thermal evolution from saturated nuclei to hydrodynamics can be modelled in a perturbatively controlled way.
Exchange-Coupled FePt Nanoparticle Assembly
Zeng, Hao; Vedantam, T.; Dai, Z. R.; Wang, Z. L.; Liu, J. P.; Sun, Shouheng
2002-03-01
High-performance permanent magnetic materials for energy-related applications need large energy-products. A permanent magnet with large (BH) products should exhibit both a high saturation magnetization , M_s, and a large coercive field, H_c. L10 ordered FePt has high Ms ( ~ 1100 emu/cm^3) and large magnetocrystalline anisotropy constant Ku (> 5e10^7 erg/cm^3), therefore may be a suitable candidates for permanent magnetic materials. We report synthesis of exchange-coupled FePt nanoparticle assemblies via solution phase deposition and controlled thermal annealing. FePt nanoparticles are prepared by high temperature solution phase decomposition of Fe(CO)_5and reduction of Pt(acac)2 in the presence of oleic acid and oleyl amine. The Fe and Pt composition of the nanoparticles is tuned by adjusting the molar ratio of Fe(CO)5 to Pt(acac)_2. The nanoparticles are easily dispersed into alkane solvent. Depositing particle dispersion on a solid substrate and controlling solvent evaporation yield self-organized magnetic nanoparticle assemblies. Magnetic hysteresis loops, remanence curves, and δM measurements show that annealing for short time under nitrogen yields isolated particle assemblies with random crystalline orientations. Prolonged annealing under reducing atmosphere leads to the evaporation of the organic surfactants, and results in grain agglomeration and inter grain exchange coupling. The degree of coupling can be readily controlled by annealing conditions. Changes in the magnetization reversal behavior have also been observed.This work is supported by DARPA No. DAAD 19-01-1-0546.
The dynamics of stock exchange based on the formalism of weak continuous quantum measurement
Melnyk, S.; Tuluzov, I.
2010-07-01
The problem of measurement in economic models and the possibility of their quantum-mechanical description are considered. It is revealed that the apparent paradox of such a description is associated with a priori requirement of conformity of the model to all the alternatives of free choice of the observer. The measurement of the state of a trader on a stock exchange is formally defined as his responses to the proposals of sale at a fixed price. It is shown that an analogue of Bell's inequalities for this measurement model is violated at the most general assumptions related to the strategy of the trader and requires a quantum-mechanical description of the dynamics of his condition. In the framework of the theory of weak continuous quantum measurements, the equation of stock price dynamics and the quantum-mechanical generalization of the F. Black and M. Scholes model for pricing options are obtained. The fundamental distinctions between the obtained model and the classical one are discussed.
Nonthermal Fixed Points in Quantum Field Theory Beyond the Weak-Coupling Limit
Berges, Jürgen
2016-01-01
Quantum systems in extreme conditions can exhibit universal behavior far from equilibrium associated to nonthermal fixed points, with a wide range of topical applications from early-universe inflaton dynamics and heavy-ion collisions to strong quenches in ultracold quantum gases. So far, most studies rely on a mapping of the quantum dynamics onto a classical-statistical theory that can be simulated on a computer. However, the mapping is based on a weak-coupling limit while phenomenological applications often require moderate values of couplings. We report on the observation of nonthermal fixed points directly in quantum field theory beyond the weak-coupling limit. For the example of a relativistic scalar \\mathrm{O}(N) symmetric quantum field theory, we numerically solve the nonequilibrium dynamics employing a 1/N expansion to next-to-leading order, which does not rely on a small coupling parameter. Starting from two different sets of (a) over-occupied and (b) strong-field initial conditions, we find that nont...
Background and Aims Close coordination between leaf gas exchange and maximal hydraulic supply has been reported across diverse plant life-forms. However, recent reports suggest that this relationship may become weak or break down completely within the angiosperms. Methods To examine this possi...
Energy Technology Data Exchange (ETDEWEB)
Kanduc, M; Podgornik, R [Department of Theoretical Physics, J Stefan Institute, SI-1000 Ljubljana (Slovenia); Naji, A [Department of Physics, Department of Chemistry and Biochemistry, Materials Research Laboratory, University of California, Santa Barbara, CA 93106 (United States); Jho, Y S; Pincus, P A [Materials Research Laboratory, University of California, Santa Barbara, CA 93106 (United States)
2009-10-21
We present general arguments for the importance, or lack thereof, of structure in the charge distribution of counterions for counterion-mediated interactions between bounding symmetrically charged surfaces. We show that on the mean field or weak coupling level, the charge quadrupole contributes the lowest order modification to the contact value theorem and thus to the intersurface electrostatic interactions. The image effects are non-existent on the mean field level even with multipoles. On the strong coupling level the quadrupoles and higher order multipoles contribute additional terms to the interaction free energy only in the presence of dielectric inhomogeneities. Without them, the monopole is the only multipole that contributes to the strong coupling electrostatics. We explore the consequences of these statements in all their generality.
Resonant enhanced parallel-T topology for weak coupling wireless power transfer pickup applications
Directory of Open Access Journals (Sweden)
Yao Guo
2015-07-01
Full Text Available For the wireless power transfer (WPT system, the transfer performance and the coupling coefficient are contradictory. In this paper, a novel parallel-T resonant topology consists of a traditional parallel circuit and a T-matching network for secondary side is proposed. With this method, a boosted voltage can be output to the load, since this topology has a resonant enhancement effect, and high Q value can be obtained at a low resonant frequency and low coil inductance. This feature makes it more suitable for weak coupling WPT applications. Besides, the proposed topology shows good frequency stability and adaptability to variations of load. Experimental results show that the output voltage gain improves by 757% compared with traditional series circuit, and reaches 85% total efficiency when the coupling coefficient is 0.046.
Zheng, A S; Chen, H; Mei, T; Liu, J
2016-01-01
We propose an alternative scheme for nonreciprocal light propagation in two coupled cavities system, in which a two-level quantum emitter is coupled to one of the optical microcavities. For the case of parity-time (\\textrm{PT}) system (i.e., active-passive coupled cavities system), the cavity gain can significantly enhance the optical nonlinearity induced by the interaction between a quantum emitter and cavity field beyond weak-excitation approximation. The giant optical nonlinearity results in the non-lossy nonreciprocal light propagation with high isolation ratio in proper parameters range. In addition, our calculations show that nonreciprocal light propagation will not be affected by the unstable output field intensity caused by optical bistability and we can even switch directions of nonreciprocal light propagation by appropriately adjusting the system parameters.
Room temperature skyrmion ground state stabilized through interlayer exchange coupling
Energy Technology Data Exchange (ETDEWEB)
Chen, Gong, E-mail: gchenncem@gmail.com; Schmid, Andreas K. [NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Mascaraque, Arantzazu [Depto. Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Unidad Asociada IQFR (CSIC) - UCM, 28040 Madrid (Spain); N' Diaye, Alpha T. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2015-06-15
Possible magnetic skyrmion device applications motivate the search for structures that extend the stability of skyrmion spin textures to ambient temperature. Here, we demonstrate an experimental approach to stabilize a room temperature skyrmion ground state in chiral magnetic films via exchange coupling across non-magnetic spacer layers. Using spin polarized low-energy electron microscopy to measure all three Cartesian components of the magnetization vector, we image the spin textures in Fe/Ni films. We show how tuning the thickness of a copper spacer layer between chiral Fe/Ni films and perpendicularly magnetized Ni layers permits stabilization of a chiral stripe phase, a skyrmion phase, and a single domain phase. This strategy to stabilize skyrmion ground states can be extended to other magnetic thin film systems and may be useful for designing skyrmion based spintronics devices.
Top-quark mass coupling and classification of weakly coupled heterotic superstring vacua
Energy Technology Data Exchange (ETDEWEB)
Rizos, J. [University of Ioannina, Physics Department, Ioannina (Greece)
2014-06-15
The quest for the Standard Model among the huge number of string vacua is usually based on a set of phenomenological criteria related to the massless spectrum of string models. In this work we study criteria associated with interactions in the effective low energy theory and in particular with the presence of the coupling that provides mass to the top quark. Working in the context of the free-fermionic formulation of the heterotic superstring, we demonstrate that, in a big class of phenomenologically promising Z{sub 2} x Z{sub 2} compactifications, these criteria can be expressed entirely in terms of the generalised GSO projection coefficients entering the definition of the models. They are shown to be very efficient in identifying phenomenologically viable vacua, especially in the framework of computer-based search, as they are met by approximately one every 10{sup 4} models. We apply our results in the investigation of a class of supersymmetric Pati-Salam vacua, comprising 10{sup 16} configurations, and we show that when combined with other phenomenological requirements they lead to a relatively small set of about 10{sup 7} Standard Model compatible models that can be fully classified. (orig.)
Wealth distribution of simple exchange models coupled with extremal dynamics
Bagatella-Flores, N.; Rodríguez-Achach, M.; Coronel-Brizio, H. F.; Hernández-Montoya, A. R.
2015-01-01
Punctuated Equilibrium (PE) states that after long periods of evolutionary quiescence, species evolution can take place in short time intervals, where sudden differentiation makes new species emerge and some species extinct. In this paper, we introduce and study the effect of punctuated equilibrium on two different asset exchange models: the yard sale model (YS, winner gets a random fraction of a poorer player's wealth) and the theft and fraud model (TF, winner gets a random fraction of the loser's wealth). The resulting wealth distribution is characterized using the Gini index. In order to do this, we consider PE as a perturbation with probability ρ of being applied. We compare the resulting values of the Gini index at different increasing values of ρ in both models. We found that in the case of the TF model, the Gini index reduces as the perturbation ρ increases, not showing dependence with the agents number. While for YS we observe a phase transition which happens around ρc = 0.79. For perturbations ρ increases (an extreme wealth condensation state), whereas for perturbations greater than or equal to ρc the Gini index becomes different to one, avoiding the system reaches this extreme state. We show that both simple exchange models coupled with PE dynamics give more realistic results. In particular for YS, we observe a power low decay of wealth distribution.
Calculation of exchange interaction for modified Gaussian coupled quantum dots
Khordad, R.
2017-08-01
A system of two laterally coupled quantum dots with modified Gaussian potential has been considered. Each quantum dot has an electron under electric and magnetic field. The quantum dots have been considered as hydrogen-like atoms. The physical picture has translated into the Heisenberg spin Hamiltonian. The Schrödinger equation using finite element method has been numerically solved. The exchange energy factor has been calculated as a functions of electric field, magnetic field, and the separation distance between the centers of the dots ( d). According to the results, it is found that there is the transition from anti-ferromagnetic to ferromagnetic for constant electric field. Also, the transition occurs from ferromagnetic to anti-ferromagnetic for constant magnetic field (B>1 T). With decreasing the distance between the centers of the dots and increasing magnetic field, the transition occurs from anti-ferromagnetic to ferromagnetic. It is found that a switching of exchange energy factor is presented without canceling the interactions of the electric and magnetic fields on the system.
Magnetic relaxation in a three-dimensional ferromagnet with weak quenched random-exchange disorder
Indian Academy of Sciences (India)
S N Kaul; Anita Semwal
2003-12-01
Isothermal remanent magnetization decay, r(), and `in-ﬁeld’ growth of zero-ﬁeld-cooled magnetization, ZFC(), with time have been measured over four decades in time at temperatures ranging from 0.25 c to 1.25 c (where c is the Curie temperature, determined previously for the same sample from static critical phenomena measurements) for a nearly ordered intermetallic compound Ni3Al, which is an experimental realization of a three-dimensional (= 3) ferromagnet with weak quenched random-exchange disorder. None of the functional forms of r() predicted by the existing phenomenological models of relaxation dynamics in spin systems with quenched randomness, but only the expressions r()=0[1 \\exp(-/1)+(/2)-] and ZFC()='0[1-\\{'1\\exp(-/'1)+(/'2)-'] closely reproduce such data in the present case. The most striking features of magnetic relaxation in the system in question are as follows: Aging effects are absent in both r() and ZFC() at all temperatures in the temperature range covered in the present experiments. A cross-over in equilibrium dynamics from the one, characteristic of a pure = 3 ferromagnet with complete atomic ordering and prevalent at temperatures away from c, to that, typical of a = 3 random-exchange ferromagnet, occurs as → c. The relaxation times 1()('1()) and 2()('2()) exhibit logarithmic divergence at critical temperatures $^{_{1}}_{\\text{c}}(^{'_{1}}_{\\text{c}}(H))$ and $^{_{2}}_{\\text{c}}(^{'_{2}}_{\\text{c}}(H))$; $^{'_{1}}_{\\text{c}}$ and $^{'_{2}}_{\\text{c}}$ both increase with the external magnetic ﬁeld strength, , such that at any given ﬁeld value, $^{'_{1}}_{\\text{c}}=^{'_{2}}_{\\text{c}}$. The exponent characterizing the logarithmic divergence in $'_{1}()$ and $'_{2}()$ possesses a ﬁeld-independent value of ≃ 16 for both relaxation times. Of all the available theoretical models, the droplet ﬂuctuation model alone provides a qualitative explanation for some aspects of the present magnetic relaxation data.
Electrically tunable single-dot nanocavities in the weak and strong coupling regimes
DEFF Research Database (Denmark)
Laucht, Arne; Hofbauer, Felix; Angele, Jacob
2008-01-01
We report the design, fabrication and optical investigation of electrically tunable single quantum dot - photonic crystal defect nanocavities [1] operating in both the weak and strong coupling regimes of the light matter interaction. Unlike previous studies, where the dot-cavity spectral detuning...... electrical readout of the strongly coupled dot-cavity system using photocurrent methods will be discussed. This work is financially supported by the DFG via SFB 631 and by the German Excellence Initiative via the “Nanosystems Initiative Munich (NIM)”.......We report the design, fabrication and optical investigation of electrically tunable single quantum dot - photonic crystal defect nanocavities [1] operating in both the weak and strong coupling regimes of the light matter interaction. Unlike previous studies, where the dot-cavity spectral detuning......~120μeV are observed for the highest-Q cavities with Q~10500, much larger than the linewidths of either the decoupled exciton (γ30 linewidths. The devices fabricated allow studies of cavity-QED phenomena in a system that can be tuned in-situ, at low temperatures. Furthermore, prospects for direct...
Global weak solutions for coupled transport processes in concrete walls at high temperatures
Beneš, Michal
2012-01-01
We consider an initial-boundary value problem for a fully nonlinear coupled parabolic system with nonlinear boundary conditions modelling hygro-thermal behavior of concrete at high temperatures. We prove a global existence of a weak solution to this system on an arbitrary time interval. The main result is proved by an approximation procedure. This consists in proving the existence of solutions to mollified problems using the Leray-Schauder theorem, for which a priori estimates are obtained. The limit then provides a weak solution for the original problem. A practical example illustrates a performance of the model for a problem of a concrete segment exposed to transient heating according to three different fire scenarios. Here, the focus is on the short-term pore pressure build up, which can lead to explosive spalling of concrete and catastrophic failures of concrete structures.
Weak low-energy couplings from topological zero-mode wavefunctions
Hernández, P; Peña, C; Torro, E; Wennekers, J; Wittig, H
2007-01-01
We discuss a new method to determine the low-energy couplings of the $\\Delta S=1$ weak Hamiltonian in the $\\epsilon$-regime. It relies on a matching of the topological poles in $1/m^2$ of three-point functions of two pseudoscalar densities and a four-fermion operator computed in lattice QCD, to the same observables in the Chiral Effective Theory. We present the results of a NLO computation in chiral perturbation theory of these correlation functions together with some preliminary numerical results.
The QCD static potential in 2+1 dimensions at weak coupling
Stahlhofen, Maximilian
2010-01-01
Using the effective theory pNRQCD we determine the potential energy of a color singlet quark-antiquark pair with (fixed) distance r in three space-time dimensions at weak coupling (alpha r << 1). The precision of our result reaches O(alpha^3 r^2), i.e. NNLO in the multipole expansion, and NNLL in a alpha/DeltaV expansion, where Delta V ~ alpha ln(alpha r). We even include all logarithmic terms up to N^4LL order and compare the outcome to existing lattice data.
Determination of the Axial-Vector Weak Coupling Constant with Polarized Ultracold Neutrons
Liu, J; Holley, A T; Back, H O; Bowles, T J; Broussard, L J; Carr, R; Clayton, S; Currie, S; Filippone, B W; Garcia, A; Geltenbort, P; Hickerson, K P; Hoagland, J; Hogan, G E; Hona, B; Ito, T M; Liu, C -Y; Makela, M; Mammei, R R; Martin, J W; Melconian, D; Morris, C L; Pattie, R W; Galvan, A Perez; Pitt, M L; Plaster, B; Ramsey, J C; Rios, R; Russell, R; Saunders, A; Seestrom, S; Sondheim, W E; Tatar, E; Vogelaar, R B; VornDick, B; Wrede, C; Yan, H; Young, A R
2010-01-01
A precise measurement of the neutron decay $\\beta$-asymmetry $A_0$ has been carried out using polarized ultracold neutrons (UCN) from the pulsed spallation UCN source at the Los Alamos Neutron Science Center (LANSCE). Combining data obtained in 2008 and 2009, we report $A_0 = -0.11966 \\pm 0.00089 _{-0.00140}^{+0.00123}$, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon $g_A/g_V = -1.27590 _{-0.00445}^{+0.00409}$.
Energy Technology Data Exchange (ETDEWEB)
Berges, J. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik]|[California Univ., Santa Barbara, CA (United States). Inst. for Theoretical Physics; Rothkopf, A. [Tokyo Univ. (Japan). Dept. of Physics; Schmidt, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2008-02-15
Strongly correlated systems far from equilibrium can exhibit scaling solutions with a dynamically generated weak coupling. We show this by investigating isolated systems described by relativistic quantum field theories for initial conditions leading to nonequilibrium instabilities, such as parametric resonance or spinodal decomposition. The non-thermal fixed points prevent fast thermalization if classical-statistical fluctuations dominate over quantum fluctuations. We comment on the possible significance of these results for the heating of the early universe after inflation and the question of fast thermalization in heavy-ion collision experiments. (orig.)
Directory of Open Access Journals (Sweden)
Helge Holden
2003-04-01
Full Text Available We prove existence and uniqueness of entropy solutions for the Cauchy problem of weakly coupled systems of nonlinear degenerate parabolic equations. We prove existence of an entropy solution by demonstrating that the Engquist-Osher finite difference scheme is convergent and that any limit function satisfies the entropy condition. The convergence proof is based on deriving a series of a priori estimates and using a general $L^p$ compactness criterion. The uniqueness proof is an adaption of Kruzkov's ``doubling of variables'' proof. We also present a numerical example motivated by biodegradation in porous media.
Rigorous derivation of the Landau equation in the weak coupling limit
Kirkpatrick, Kay
2009-01-01
We examine a family of microscopic models of plasmas, with a parameter $\\alpha$ comparing the typical distance between collisions to the strength of the grazing collisions. These microscopic models converge in distribution, in the weak coupling limit, to a velocity diffusion described by the linear Landau equation (also known as the Fokker-Planck equation). The present work extends and unifies previous results that handled the extremes of the parameter $\\alpha$, for the whole range (0, 1/2], by showing that clusters of overlapping obstacles are negligible in the limit. Additionally, we study the diffusion coefficient of the Landau equation and show it to be independent of the parameter.
Ex situ synthesis of magnetically exchange coupled SrFe12O19/Fe-Co composites
Xu, Xia; Hong, Yang-Ki; Park, Jihoon; Lee, Woncheol; Lane, Alan M.
2016-05-01
Magnetically exchange coupled SrFe12O19/Fe-Co composites with different mass percentage of Fe-Co were synthesized through an ex situ process. The morphology, magnetic properties, and crystallization of SrFe12O19/Fe-Co composites were investigated. Lower mass percentage of Fe-Co presented an even distribution of Fe-Co nanoparticles on the surface of SrFe12O19, and effective magnetic exchange coupling between Fe-Co and SrFe12O19. Higher mass percentage of Fe-Co leads to an agglomeration of Fe-Co nanoparticles on SrFe12O19 surface, and a weak magnetic exchange coupling between Fe-Co and SrFe12O19. This ex situ process proposed a new method to synthesize magnetically exchange coupled SrFe12O19/Fe-Co core/shell composites with precise control of the magnetic properties. This method can also be potentially used for other hard/soft magnetic composite synthesis.
Ex situ synthesis of magnetically exchange coupled SrFe12O19/Fe-Co composites
Directory of Open Access Journals (Sweden)
Xia Xu
2016-05-01
Full Text Available Magnetically exchange coupled SrFe12O19/Fe-Co composites with different mass percentage of Fe-Co were synthesized through an ex situ process. The morphology, magnetic properties, and crystallization of SrFe12O19/Fe-Co composites were investigated. Lower mass percentage of Fe-Co presented an even distribution of Fe-Co nanoparticles on the surface of SrFe12O19, and effective magnetic exchange coupling between Fe-Co and SrFe12O19. Higher mass percentage of Fe-Co leads to an agglomeration of Fe-Co nanoparticles on SrFe12O19 surface, and a weak magnetic exchange coupling between Fe-Co and SrFe12O19. This ex situ process proposed a new method to synthesize magnetically exchange coupled SrFe12O19/Fe-Co core/shell composites with precise control of the magnetic properties. This method can also be potentially used for other hard/soft magnetic composite synthesis.
Amplitude equations for coupled electrostatic waves in the limit of weak instability
Crawford, J D; Crawford, John David; Knobloch, Edgar
1997-01-01
We consider the simplest instabilities involving multiple unstable electrostatic plasma waves corresponding to four-dimensional systems of mode amplitude equations. In each case the coupled amplitude equations are derived up to third order terms. The nonlinear coefficients are singular in the limit in which the linear growth rates vanish together. These singularities are analyzed using techniques developed in previous studies of a single unstable wave. In addition to the singularities familiar from the one mode problem, there are new singularities in coefficients coupling the modes. The new singularities are most severe when the two waves have the same linear phase velocity and satisfy the spatial resonance condition $k_2=2k_1$. As a result the short wave mode saturates at a dramatically smaller amplitude than that predicted for the weak growth rate regime on the basis of single mode theory. In contrast the long wave mode retains the single mode scaling. If these resonance conditions are not satisfied both mo...
Quantum criticality in the 2D Hubbard: from weak to strong coupling
Galanakis, Dimitrios; Mikelsons, Karlis; Khatami, Ehsan; Zhang, Peng; Xu, Zhaoxin; Moreno, Juana; Jarrell, Mark
2010-03-01
We study the phase diagram of the two-dimensional Hubbard model in the vicinity of the quantum critical point which separates the fermi liquid from the pseudogap region. We use the Dynamical Cluster Approximation (DCA) in conjunction with the weak-coupling continuous time quantum Monte Carlo (CTQMC) cluster solver. We measure the filling nc and the density of states at the critical point as a function of the Coulomb interaction U. We observe a change in behavior when the Coulomb interaction is of the order of the bandwidth. We also evaluate the temperature range in which the system is under the influence of the quantum critical point and compare it with the effective spin coupling Jeff. We discuss the consistency of these results with various mechanisms of quantum criticality. This research is supported by NSF DMR-0706379 and OISE-0952300.
Institute of Scientific and Technical Information of China (English)
Yan-Mei Kang; Mei Wang; Yong Xie
2012-01-01
With coupled weakly-damped periodically driven bistable oscillators subjected to additive and multiplicative noises under concern,the objective of this paper is to check to what extent the resonant point predicted by the Gaussian distribution assumption can approximate the simulated one.The investigation based on the dynamical mean-field approximation and the direct simulation demonstrates that the predicted resonant point and the simulated one are basically coincident for the case of pure additive noise,but for the case including multiplicative noise the situation becomes somewhat complex.Specifically speaking,when stochastic resonance (SR) is observed by changing the additive noise intensity,the predicted resonant point is lower than the simulated one; nevertheless,when SR is observed by changing the multiplicative noise intensity,the predicted resonant point is higher than the simulated one.Our observations imply that the Gaussian distribution assumption can not exactly describe the actual situation,but it is useful to some extent in predicting the low-frequency stochastic resonance of the coupled weakly-damped bistable oscillator.
Lectures On AdS-CFT At Weak 't Hooft Coupling At Finite Temperature
Furuuchi, K
2006-01-01
This is an introductory lecture note aiming at providing an overview of the AdS-CFT correspondence at weak 't Hooft coupling at finite temperature. The first aim of this note is to describe the equivalence of three interesting thermodynamical phenomena in theoretical physics, namely, Hawking-Page transition to black hole geometry, deconfinement transition in gauge theories, and vortex condensation on string worldsheets. The Hawking-Page transition and the deconfinement transition in weakly coupled gauge theories are briefly reviewed. Emphasis is on the study of 't Hooft-Feynman diagrams in the large $N$ gauge theories, which are supposed to describe closed string worldsheets and probe the above equivalence. Nature of the 't Hooft-Feynman diagrams at finite temperature is analyzed, both in the Euclidean signature (the imaginary time formalism) and in the Lorentzian signature (the real time formalism). The second aim of this note is to give an introduction to the real time formalism applied to AdS-CFT.
Phase diagram of the t U2 Hamiltonian of the weak coupling Hubbard model
Yanagisawa, Takashi
2008-02-01
We determine the symmetry of Cooper pairs, on the basis of the perturbation theory in terms of the Coulomb interaction U, for the two-dimensional Hubbard model on the square lattice. The phase diagram is investigated in detail. The Hubbard model for small U is mapped on to an effective Hamiltonian with the attractive interaction using the canonical transformation: Heff = eSHe-S. The gap equation of the weak coupling formulation is solved without numerical ambiguity to determine the symmetry of Cooper pairs. The superconducting gap crucially depends on the position of the van Hove singularity. We show the phase diagram in the plane of the electron filling ne and the next nearest-neighbor transfer t'. The d-wave pairing is dominant for the square lattice in a wide range of ne and t'. The d-wave pairing is also stable for the square lattice with anisotropic t'. The three-band d-p model is also investigated, for which the d-wave pairing is stable in a wide range of ne and tpp (the transfer between neighboring oxygen atoms). In the weak coupling analysis, the second-neighbor transfer parameter -t' could not be so large so that the optimum doping rate is in the range of 0.8 < ne < 0.85.
KILIÇ, Öğr.Gör.Dr. Süleyman Bilgin
2013-01-01
In this study Markov chain methodology is used to test whether or not the daily returns of the Istanbul Stock Exchange ISE 100 index follows a martingale random walk process If the Weak Form Efficient Market Hypothesis EMH holds in any stock market stocks prices or returns follow a random walk process The random walk theory asserts that price movements will not follow any patterns or trends and that past price movements cannot be used to predict future price movements hence technic...
Hubicki, Z; Wołowicz, A; Leszczyńska, M
2008-11-30
Palladium and its compounds find wide application in industry as a catalytic agent in different manufacture processes. Recovery of precious metals from industrial wastes is difficult and time consuming but in spite of these disadvantages it becomes profitable. Palladium(II) ions sorption from various chloride solutions of the composition: 0.1-6.0M HCl-0.00056 M Pd(II), 1.0M ZnCl(2)-0.1M HCl-0.00056 M Pd(II), 1.0M AlCl(3)-0.1M HCl-0.00056 M Pd(II) on the weakly and strongly basic anion exchangers (Varion ATM, Varion ADM and Varion ADAM) was discussed. The sorption research of Pd(II) ions on these resins was carried out by means of static and dynamic methods. The dynamic processes were applied in order to determine the breakthrough curves of Pd(II) ions. Moreover, the working ion-exchange capacities as well as the weight and bed distribution coefficients were determined from the Pd(II) breakthrough curves. The recovery factors of Pd(II) ions (% R) depending on the phase contact time were obtained by means of static methods. The highest ion-exchange capacities for the 0.1-6.0M HCl-0.00056 M Pd(II) systems were obtained for the weakly basic ion-exchange resin Varion ADAM.
A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network
Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien
2017-01-01
With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices’ non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing. PMID:28322262
A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network
Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien
2017-03-01
With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices’ non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing.
Al-Hamdani, Yasmine S; von Lilienfeld, O Anatole; Michaelides, Angelos
2016-01-01
Density functional theory (DFT) studies of weakly interacting complexes have recently focused on the importance of van der Waals dispersion forces whereas, the role of exchange has received far less attention. Here, by exploiting the subtle binding between water and a boron and nitrogen doped benzene derivative (1,2-azaborine) we show how exact exchange can alter the binding conformation within a complex. Benchmark values have been calculated for three orientations of the water monomer on 1,2-azaborine from explicitly correlated quantum chemical methods, and we have also used diffusion quantum Monte Carlo. For a host of popular DFT exchange-correlation functionals we show that the lack of exact exchange leads to the wrong lowest energy orientation of water on 1,2-azaborine. As such, we suggest that a high proportion of exact exchange and the associated improvement in the electronic structure could be needed for the accurate prediction of physisorption sites on doped surfaces and in complex organic molecules. ...
Empirical Analysis of Weak Form Efficiency Evidence from National Stock Exchange of India Ltd
Ayyappan, S.; Nagarajan, S.; Sakthivadivel, M.; Prabhakaran, K.
2013-01-01
Özet: The stock market is an emerging area for research and this work analysis the efficiency of National Stock Exchange of India Ltd (NSE) and focuses on Board Indices and CNX Nifty. The National Stock Exchange of India Ltd has five indices like Broad Market Indices, Sectoral Indices, Thematic Indices, Strategy Indices and Customised Indices. The main objective of is to find out efficiency level and random walk nature of National Stock Exchange of India Ltd by testing Broad Indices of the...
Chaotic dynamics dependence on doping density in weakly coupled GaAs/AlAs superlattices
Gui, Yang; Yuanhong, Li; Fengying, Zhang; Yuqi, Li
2012-09-01
A discrete sequential tunneling model is used for studying the influence of the doping density on the dynamical behaviors in weakly coupled GaAs/AlAs superlattices. Driven by the DC bias, the system exhibits self-sustained current oscillations induced by the period motion of the unstable electric field domain, and an electrical hysteresis in the loop of current density voltage curve is deduced. It is found that the hysteresis range strongly depends on the doping density, and the width of the hysteresis loop increases with increasing the doping density. By adding an external driving ac voltage, more complicated nonlinear behaviors are observed including quasiperiodicity, period-3, and the route of an inverse period-doubling to chaos when the driving frequency changes.
Chaotic dynamics dependence on doping density in weakly coupled GaAs/AlAs superlattices
Institute of Scientific and Technical Information of China (English)
Yang Gui; Li Yuanhong; Zhang Fengying; Li Yuqi
2012-01-01
A discrete sequential tunneling model is used for studying the influence of the doping density on the dynamical behaviors in weakly coupled GaAs/AlAs superlattices.Driven by the DC bias,the system exhibits selfsustained current oscillations induced by the period motion of the unstable electric field domain,and an electrical hysteresis in the loop of current density voltage curve is deduced.It is found that the hysteresis range strongly depends on the doping density,and the width of the hysteresis loop increases with increasing the doping density.By adding an external driving ac voltage,more complicated nonlinear behaviors are observed including quasiperiodicity,period-3,and the route of an inverse period-doubling to chaos when the driving frequency changes.
Implication of Two-Coupled Differential Van der Pol Duffing Oscillator in Weak Signal Detection
Peng, Hang-hang; Xu, Xue-mei; Yang, Bing-chu; Yin, Lin-zi
2016-04-01
The principle of the Van der Pol Duffing oscillator for state transition and for determining critical value is described, which has been studied to indicate that the application of the Van der Pol Duffing oscillator in weak signal detection is feasible. On the basis of this principle, an improved two-coupled differential Van der Pol Duffing oscillator is proposed which can identify signals under any frequency and ameliorate signal-to-noise ratio (SNR). The analytical methods of the proposed model and the construction of the proposed oscillator are introduced in detail. Numerical experiments on the properties of the proposed oscillator compared with those of the Van der Pol Duffing oscillator are carried out. Our numerical simulations have confirmed the analytical treatment. The results demonstrate that this novel oscillator has better detection performance than the Van der Pol Duffing oscillator.
Institute of Scientific and Technical Information of China (English)
MA Lv-zhong; GUO Zong-he; YANG Qi-zhi; YIN Xiao-qin; HAN Ya-li; SHEN Hui-ping
2006-01-01
This paper analyzes the precision of the dissymmetrical parallel mechanism of 3-RRRP(4R) with three translational degrees of freedom (DOF).The parallel mechanism has weakly-coupled,decoupled and real-time characteristics,thus error compensation can be done using control software.Based on topology structure analysis,the inverse and forward solutions are analyzed and the precision is studied using complete differential method.The influencing factors of the manipulator's precision are studied carefully and the means to enhance the precision are also discussed.It is found that the position errors of the moving platform have nonlinear relation with the position of the mechanism.The δθ3 error has the biggest influence on the nonlinear errors of the position.Otherwise,the original errors of the mechanism are the main reason leading to more errors.Thus enhancing machining and assembling precision is an important method to enhance the precision of the mechanism.
Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling.
Wang, Chen; Ren, Jie; Cao, Jianshu
2015-07-08
Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices.
Conductance for a Quantum Wire with Weak Rashba Spin-Orbit Coupling
Institute of Scientific and Technical Information of China (English)
LIU Gen-Hua; ZHOU Guang-Hui
2005-01-01
@@ We theoretically study the low temperature electron transport properties of a weak Rashba spin-orbit coupling (SOC) semiconductor quantum wire connected nonadiabatically to two electrode leads without SOC. The wire and the leads are defined by a parabolic confining potential, and the influence of both the wire-lead connection and the Rashba SOC on the electron transport is treated analytically by means of scattering matrix within effective free-electron approximation. From analytical analysis and numerical examples, we find that the system shows some fractional quantum conductance behaviour, and for some particular wire width a pure spin polarized current exists. Our result may imply a simple method for the design of a spin filter without involving any magnetic materials or magnetic fields.
Atoms and Molecules in Cavities: From Weak to Strong Coupling in QED Chemistry
Flick, Johannes; Appel, Heiko; Rubio, Angel
2016-01-01
In this work, we provide an overview of how well-established concepts in the fields of quantum chemistry and material sciences have to be adapted when the quantum nature of light becomes important in correlated matter-photon problems. Therefore, we analyze model systems in optical cavities, where the matter-photon interaction is considered from the weak- to the strong coupling limit and for individual photon modes as well as for the multi-mode case. We identify fundamental changes in Born-Oppenheimer surfaces, spectroscopic quantities, conical intersections and efficiency for quantum control. We conclude by applying our novel recently developed quantum-electrodynamical density-functional theory to single-photon emission and show how a straightforward approximation accurately describes the correlated electron-photon dynamics. This paves the road to describe matter-photon interactions from first-principles and addresses the emergence of new states of matter in chemistry and material science.
Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel
2017-03-21
In this work, we provide an overview of how well-established concepts in the fields of quantum chemistry and material sciences have to be adapted when the quantum nature of light becomes important in correlated matter-photon problems. We analyze model systems in optical cavities, where the matter-photon interaction is considered from the weak- to the strong-coupling limit and for individual photon modes as well as for the multimode case. We identify fundamental changes in Born-Oppenheimer surfaces, spectroscopic quantities, conical intersections, and efficiency for quantum control. We conclude by applying our recently developed quantum-electrodynamical density-functional theory to spontaneous emission and show how a straightforward approximation accurately describes the correlated electron-photon dynamics. This work paves the way to describe matter-photon interactions from first principles and addresses the emergence of new states of matter in chemistry and material science.
Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots
Institute of Scientific and Technical Information of China (English)
亓丽梅; 李超; 方广有; 李士超
2015-01-01
A dual-band terahertz (THz) filter consisting of two different cross slots is designed and fabricated in a single molyb-denum layer. Experimental verification by THz time-domain spectroscopy indicates good agreement with the simulation results. Owing to the weak coupling between the two neighboring cross slots in the unit cell, good selectivity performance can be easily achieved, both in the lower and higher bands, by tuning the dimensions of the two crosses. The physical mechanisms of the dual-band resonant are clarified by using three differently configured filters and electric field distribu-tion diagrams. Owing to the rotational symmetry of the cross-shaped filter, the radiation at normal incidence is insensitive to polarization. Compared with the THz dual-band filters that were reported earlier, these filters also have the advantages of easy fabrication and low cost, which would find applications in dual-band sensors, THz communication systems, and emerging THz technologies.
Thermoelectric properties of a weakly coupled quantum dot: enhanced thermoelectric efficiency
Energy Technology Data Exchange (ETDEWEB)
Tsaousidou, M [Materials Science Department, University of Patras, Patras 26504 (Greece); Triberis, G P, E-mail: rtsaous@upatras.g [Physics Department, Solid State Section, University of Athens, Panepistimiopolis, 15784, Zografos, Athens (Greece)
2010-09-08
We study the thermoelectric coefficients of a multi-level quantum dot (QD) weakly coupled to two electron reservoirs in the Coulomb blockade regime. Detailed calculations and analytical expressions of the power factor and the figure of merit are presented. We restrict our interest to the limit where the energy separation between successive energy levels is much larger than the thermal energy (i.e., the quantum limit) and we report a giant enhancement of the figure of merit due to the violation of the Wiedemann-Franz law when phonons are frozen. We point out the similarity of the electronic and the phonon contribution to the thermal conductance for zero-dimensional electrons and phonons. Both contributions show an activated behavior. Our findings suggest that the control of the electron and phonon confinement effects can lead to nanostructures with improved thermoelectric properties.
Meng, Zhaoliang; Qiu, Jinjun; Han, Guchang; Teo, Kie Leong
2015-12-01
We report the studies of magnetization reversal and magnetic interlayer coupling in synthetic antiferromagnetic (SAF) [Pd/Co70Fe30]9/Ru(tRu)/Pd(tPd)/[Co70Fe30/Pd]9 structure as functions of inserted Pd layer (tPd) and Ru layer (tRu) thicknesses. We found the exchange coupling field (Hex) and perpendicular magnetic anisotropy (PMA) can be controlled by both the tPd and tRu, The Hex shows a Ruderman-Kittel-Kasuya-Yosida-type oscillatory decay dependence on tRu and a maximum interlayer coupling strength Jex = 0.522 erg/cm2 is achieved at tPd + tRu ≈ 0.8 nm in the as-deposited sample. As it is known that a high post-annealing stability of SAF structure is required for magnetic random access memory applications, the dependence of Hex and PMA on the post-annealing temperature (Ta) is also investigated. We found that both high PMA of the top Co70Fe30/Pd multilayer is maintained and Hex is enhanced with increasing Ta up to 350 °C for tRu > 0.7 nm in our SAF structure.
Role of nuclear couplings in the inelastic excitation of weakly-bound neutron-rich nuclei
Energy Technology Data Exchange (ETDEWEB)
Dasso, C.H. [Niels Bohr Institute, Copenhagen (Denmark); Lenzi, S.M.; Vitturi, A. [Universita di Padova (Italy)
1996-12-31
Much effort is presently devoted to the study of nuclear systems far from the stability line. Particular emphasis has been placed in light systems such as {sup 11}Li, {sup 8}B and others, where the very small binding energy of the last particles causes their density distribution to extend considerably outside of the remaining nuclear core. Some of the properties associated with this feature are expected to characterize also heavier systems in the vicinity of the proton or neutron drip lines. It is by now well established that low-lying concentrations of multipole strength arise from pure configurations in which a peculiar matching between the wavelength of the continuum wavefunction of the particles and the range of the weakly-bound hole states occurs. To this end the authors consider the break-up of a weakly-bound system in a heavy-ion collision and focus attention in the inelastic excitation of the low-lying part of the continuum. They make use of the fact that previous investigations have shown that the multipole response in this region is not of a collective nature and describe their excited states as pure particle-hole configurations. Since the relevant parameter determining the strength distributions is the binding energy of the last bound orbital they find it most convenient to use single-particle wavefunctions generated by a sperical square-well potential with characteristic nuclear dimensions and whose depth has been adjusted to give rise to a situation in which the last occupied neutron orbital is loosely-bound. Spin-orbit couplings are, for the present purpose, ignored. The results of this investigation clearly indicate that nuclear couplings have the predominant role in causing projectile dissociation in many circumstances, even at bombarding energies remarkably below the Coulomb barrier.
Quantum Key Distribution Based on a Weak-Coupling Cavity QED Regime
Institute of Scientific and Technical Information of China (English)
李春燕; 李岩松
2011-01-01
We present a quantum key distribution scheme using a weak-coupling cavity QED regime based on quantum dense coding.Hybrid entanglement states of photons and electrons are used to distribute information.We just need to transmit photons without storing them in the scheme.The electron confined in a quantum dot,which is embedded in a microcavity,is held by one of the legitimate users throughout the whole communication process.Only the polarization of a single photon and spin of electron measurements are applied in this protocol,which are easier to perform than collective-Bell state measurements.Linear optical apparatus,such as a special polarizing beam splitter in a circular basis and single photon operations,make it more flexible to realize under current technology.Its efficiency will approach 100％ in the ideal case.The security of the scheme is also discussed.%We present a quantum key distribution scheme using a weak-coupling cavity QED regime based on quantum dense coding. Hybrid entanglement states of photons and electrons are used to distribute information. We just need to transmit photons without storing them in the scheme. The electron confined in a quantum dot, which is embedded in a microcavity, is held by one of the legitimate users throughout the whole communication process. Only the polarization of a single photon and spin of electron measurements are applied in this protocol, which are easier to perform than collective-Bell state measurements. Linear optical apparatus, such as a speciai polarizing beam splitter in a circular basis and single photon operations, make it more flexible to realize under current technology. Its efficiency will approach 100% in the ideal case. The security of the scheme is also discussed.
Weakly dynamic dark energy via metric-scalar couplings with torsion
Sur, Sourav
2016-01-01
We study the dynamical aspects of dark energy in the context of a non-minimally coupled scalar field with curvature and torsion. Whereas the scalar field acts as the source of the trace mode of torsion, a suitable constraint on the pseudo-trace of the latter provides a mass term for the scalar field in the effective action. In the equivalent scalar-tensor framework, we find explicit cosmological solutions suitable for describing dark energy in both Einstein and Jordan frames. We demand the dynamical evolution of the dark energy to be weak enough, so that the present-day values of the cosmological parameters could be estimated keeping them within the confidence limits set for the standard $\\L$CDM model from recent observations. For such estimates, we examine the variations of the effective matter density and the dark energy equation of state over different redshift ranges. In spite of being weakly dynamic, the dark energy component here differs significantly from the cosmological constant, both in characterist...
Spin Noise Exchange in Coupled Alkali-Metal Vapors
Dellis, A T; Kominis, I K
2013-01-01
The physics of spin exchange collisions has fueled a large number of discoveries in fundamental physics, chemistry and biology, and has led to several applications in medical imaging and nuclear magnetic resonance. We here report on the experimental observation and theoretical justification of a novel effect, the transfer of spin noise from one atomic species to another, through the mechanism of spin exchange. Essentially, we extend the foundational studies of spin exchange into the deeper layer of quantum fluctuations. The signature of spin noise exchange is an increase of the total spin noise power at low magnetic fields where the two-species spin noise resonances overlap.
Andersson, S.; Korenivski, V.
2010-05-01
Thermal control of exchange coupling between two strongly ferromagnetic layers through a weakly ferromagnetic Ni-Cu spacer and the associated magnetoresistance is investigated. The spacer, having a Curie point slightly above room temperature, can be cycled between its paramagnetic and ferromagnetic states by varying the temperature externally or using joule heating. It is shown that the giant magnetoresistance vanishes due to a strong reduction in the mean free path in the spacer at above ˜30% Ni concentration—before the onset of ferromagnetism. Finally, a device is proposed which combines thermally controlled exchange coupling and large magnetoresistance by separating the switching and the readout elements.
Chaoticity threshold in magnetized plasmas: Numerical results in the weak coupling regime
Energy Technology Data Exchange (ETDEWEB)
Carati, A., E-mail: andrea.carati@unimi.it; Benfenati, F.; Maiocchi, A.; Galgani, L. [Università degli Studi di Milano, Milano (Italy); Zuin, M., E-mail: matteo.zuin@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Padova (Italy)
2014-03-15
The present paper is a numerical counterpart to the theoretical work [Carati et al., Chaos 22, 033124 (2012)]. We are concerned with the transition from order to chaos in a one-component plasma (a system of point electrons with mutual Coulomb interactions, in a uniform neutralizing background), the plasma being immersed in a uniform stationary magnetic field. In the paper [Carati et al., Chaos 22, 033124 (2012)], it was predicted that a transition should take place when the electron density is increased or the field decreased in such a way that the ratio ω{sub p}/ω{sub c} between plasma and cyclotron frequencies becomes of order 1, irrespective of the value of the so-called Coulomb coupling parameter Γ. Here, we perform numerical computations for a first principles model of N point electrons in a periodic box, with mutual Coulomb interactions, using as a probe for chaoticity the time-autocorrelation function of magnetization. We consider two values of Γ (0.04 and 0.016) in the weak coupling regime Γ ≪ 1, with N up to 512. A transition is found to occur for ω{sub p}/ω{sub c} in the range between 0.25 and 2, in fairly good agreement with the theoretical prediction. These results might be of interest for the problem of the breakdown of plasma confinement in fusion machines.
Ludewig, Ronny; Nietzsche, Sandor; Scriba, Gerhard K E
2011-01-01
A CEC weak cation-exchange monolith has been prepared by in situ polymerization of acrylamide, methylenebisacrylamide and 4-acrylamidobutyric acid in a decanol-dimethylsulfoxide mixture as porogen. The columns were evaluated by SEM and characterized with regard to the separation of diastereomers and α/β-isomers of aspartyl peptides. Column preparation was reproducible as evidenced by comparison of the analyte retention times of several columns prepared simultaneously. Analyte separation was achieved using mobile phases consisting of acidic phosphate buffer and ACN. Under these conditions the peptides migrated due to their electrophoretic mobility but the EOF also contributed as driving force as a function of the pH of the mobile phase due to increasing dissociation of the carboxyl groups of the polymer. Raising the pH of the mobile phase also resulted in deprotonation of the peptides reducing analyte mobility. Due to these mechanisms each pair of diastereomeric peptides displayed the highest resolution at a different pH of the buffer component of the mobile phase. Comparing the weak-cation exchange monolith to an RP monolith and a strong cation-exchange monolith different elution order of some peptide diastereomers was observed, clearly illustrating that interactions with the stationary phase contribute to the CEC separations.
Lengthscale effects on exchange coupling in Co-Pt L10 + L12 nanochessboards
Directory of Open Access Journals (Sweden)
Eric P. Vetter
2016-09-01
Full Text Available The Co-Pt nanochessboard is a quasi-periodic, nanocomposite tiling of L10 and L12 magnetic phases that offers a novel structure for the investigation of exchange coupling, relevant to permanent magnet applications. Periodicity of the tiling is controlled by the rate of cooling through the eutectoid isotherm, resulting in control over the L10-L12 exchange coupling. First order reversal curve analysis reveals a transition from partial coupling to nearly complete exchange-coupling in a Co40.2Pt59.8 nanochessboard structured alloy as the periodicity is reduced below the critical correlation length. Micromagnetic simulations give insights into how exchange coupling manifests in the tiling, and its impact on microscopic magnetization reversal mechanisms.
On the coupling between molecular diffusion and solvation shell exchange
DEFF Research Database (Denmark)
Møller, Klaus Braagaard; Rey, Rossend; Masia, Marco;
2005-01-01
The connection between diffusion and solvent exchanges between first and second solvation shells is studied by means of molecular dynamics simulations and analytic calculations, with detailed illustrations for water exchange for the Li+ and Na+ ions, and for liquid argon. First, two methods are p...
Oriented attachment and exchange coupling of α-Fe2O3 nanoparticles
DEFF Research Database (Denmark)
Frandsen, Cathrine; Bahl, Christian Robert Haffenden; Lebech, Bente;
2005-01-01
We show that antiferromagnetic nanoparticles of alpha-Fe2O3 (hematite) under wet conditions can attach into chains along a common [001] axis. Electron microscopy shows that such chains typically consist of two to five particles. X-ray and neutron diffraction studies show that both structural...... and magnetic correlations exist across the interfaces along the [001] direction. This gives direct evidence for exchange coupling between particles. Exchange coupling between nanoparticles can suppress superparamagnetic relaxation and it may play a role for attachment along preferred directions. The relations...... between exchange coupling, magnetic properties, and oriented attachment are discussed....
Micromagnetic simulation of exchange coupled ferri-/ferromagnetic composite in bit patterned media
Oezelt, Harald; Wohlhüter, Phillip; Kirk, Eugenie; Nissen, Dennis; Matthes, Patrick; Heyderman, Laura Jane; Albrecht, Manfred; Schrefl, Thomas
2016-01-01
Ferri-/ferromagnetic exchange coupled composites are promising candidates for bit patterned media because of the ability to control the magnetic properties of the ferrimagnet by its composition. A micromagnetic model for the bilayer system is presented where we also incorporate the microstructural features of both layers. Micromagnetic finite element simulations are performed to investigate the magnetization reversal behaviour of such media. By adding the exchange coupled ferrimagnet to the ferromagnet, the switching field could be reduced by up to $40\\,\\%$ and also the switching field distribution is narrowed. To reach these significant improvements, an interface exchange coupling strength of $2\\,\\mathrm{mJ/m^2}$ is required.
Quantifying exchange coupling in f-ion pairs using the diamagnetic substitution method
Energy Technology Data Exchange (ETDEWEB)
Lukens, Wayne W.; Walter, Marc D.
2010-04-01
One of the challenges in the chemistry of actinide and lanthanide (f-ion) is quantifying exchange coupling between f-ions. While qualitative information about exchange coupling may be readily obtained using the diamagnetic substitution approach, obtaining quantitative information is much more difficult. This article describes how exchange coupling may be quantified using the susceptibility of a magnetically isolated analog, as in the diamagnetic substitution approach, along with the anisotropy of the ground state as determined by EPR spectroscopy. Several examples are used to illustrate and test this approach.
The Stock Exchange of Suriname: Returns, Volatility, Correlations and Weak-form Efficiency
D.S. Bodeutsch (Denice); Ph.H.B.F. Franses (Philip Hans)
2014-01-01
markdownabstract__Abstract__ The empirical properties of stock returns are studied for 10 companies listed at the Suriname Stock Exchange (SSE), which is a young and growing stock market. Individual stock returns are found to be predictable from the own past to some extent, but the equal-weighted
The Stock Exchange of Suriname: Returns, Volatility, Correlations and Weak-form Efficiency
D.S. Bodeutsch (Denice); Ph.H.B.F. Franses (Philip Hans)
2014-01-01
markdownabstract__Abstract__ The empirical properties of stock returns are studied for 10 companies listed at the Suriname Stock Exchange (SSE), which is a young and growing stock market. Individual stock returns are found to be predictable from the own past to some extent, but the
Institute of Scientific and Technical Information of China (English)
Chao Long; Quan-xing Zhang; Ai-min Li; Jin-long Chen
2004-01-01
The adsorption equilibrium isotherms of three aromatic sulfonic acid compounds, 2-naphthalenesulfonic acid, ptoluenesulfonic acid and p-chlorobenzenesulfonic acid, from aqueous solutions by macroporous weak base anion exchanger within the temperature range of 293 K-313 K were obtained. Several isotherm equations were correlated with the equilibrium data, and the experimental data was found to fit the three-parameter Redlich-Peterson equation best within the entire range of concentrations. The study showed that the hydrophobicity of solute has distinct influence on adsorption capacity of the anion exchanger for the aromatic sulfonic acid. Moreover, estimations of the isosteric enthalpy, free energy,and entropy change of adsorption were also reported. The positive isosteric enthalpy and entropy change for adsorption indicate an endothermic and entropy driven process in the present study.
Temperature and cooling field dependent exchange coupling in [Cr/Gd]{sub 5} multilayers
Energy Technology Data Exchange (ETDEWEB)
Jiao, Z.W.; Chen, H.J.; Jiang, W.D.; Wang, J.F.; Yu, S.J. [Department of Physics, China Jiliang University, Hangzhou (China); Hou, Y.L.; Lu, B.; Ye, Q.L. [Department of Physics, Hangzhou Normal University, Hangzhou (China)
2016-09-15
Exchange coupling has been investigated in the [Cr/Gd]{sub 5} multilayers deposited at 25, 200, and 400 C, where the Neel temperature (T{sub N}) of antiferromagnetic Cr is slightly higher than the Curie temperature (T{sub C}) of ferromagnetic Gd. It was found that the exchange coupling existed not only at T{sub C} < T < T{sub N}, but also above the temperature (T{sub N}) of antiferromagnetic orderings with incommensurate spin-density wave structures transiting to paramagnetic state. These results can be discussed in terms of the crucial role played by the antiferromagnetic spins of Cr with commensurate spin-density wave structures in the vicinity of the Cr/Gd interfaces. Moreover, the exchange coupling of the multilayers grown at different temperatures exhibited different dependencies on the measuring temperature and the cooling field, respectively. Positive exchange bias was observed in the multilayers grown at 200 and 400 C. The interfacial roughness, grain size, and the antiferromagnetic orderings of Cr may be responsible for the anomalous exchange coupling of the multilayers. In addition, the competition between the exchange coupling at Cr/Gd interfaces and the external field-Cr surface magnetic coupling can explain the appearance of negative or positive exchange bias. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Molecules Designed to Contain Two Weakly Coupled Spins with a Photoswitchable Spacer.
Uber, Jorge Salinas; Estrader, Marta; Garcia, Jordi; Lloyd-Williams, Paul; Sadurní, Anna; Dengler, Dominik; van Slageren, Joris; Chilton, Nicholas F; Roubeau, Olivier; Teat, Simon J; Ribas-Ariño, Jordi; Aromí, Guillem
2017-10-04
Controlling the charges and spins of molecules lies at the heart of spintronics. A photoswitchable molecule consisting of two independent spins separated by a photoswitchable moiety was designed in the form of new ligand H4 L, which features a dithienylethene photochromic unit and two lateral coordinating moieties, and yields molecules with [MM⋅⋅⋅MM] topology. Compounds [M4 L2 (py)6 ] (M=Cu, 1; Co, 2; Ni, 3; Zn, 4) were prepared and studied by single-crystal X-ray diffraction (SCXRD). Different metal centers can be selectively distributed among the two chemically distinct sites of the ligand, and this enables the preparation of many double-spin systems. Heterometallic [MM'⋅⋅⋅M'M] analogues with formulas [Cu2 Ni2 L2 (py)6 ] (5), [Co2 Ni2 L2 (py)6 ] (6), [Co2 Cu2 L2 (py)6 ] (7), [Cu2 Zn2 L2 (py)6 ] (8), and [Ni2 Zn2 L2 (py)6 ] (9) were prepared and analyzed by SCXRD. Their composition was established unambiguously. All complexes exhibit two weakly interacting [MM'] moieties, some of which embody two-level quantum systems. Compounds 5 and 8 each exhibit a pair of weakly coupled S=1/2 spins that show quantum coherence in pulsed Q-band EPR spectroscopy, as required for quantum computing, with good phase memory times (TM =3.59 and 6.03 μs at 7 K). Reversible photoswitching of all the molecules was confirmed in solution. DFT calculations on 5 indicate that the interaction between the two spins of the molecule can be switched on and off on photocyclization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
WEAK EFFICIENCY ON THE STOCK EXCHANGE MARKET: AN EMPIRICAL STUDY ON ISE
Directory of Open Access Journals (Sweden)
SİBEL DUMAN ATAN
2013-06-01
Full Text Available Markets which returns of share certificate are reflected completely whole information, describe as effective. In a weak-form efficiency market, all past price activity were reflected with current price and it isn’t obtaining an above the normal return to use with past price activity in markets. In this paper, we aim to provide the efficiency level of ISE market using fifteen minutes and session frequency data for the 03 January 2003 – 30 December 2005 period. In order to test the efficiency of ISE we use firstly ADF and KPSS unit root tests and secondly ELW fractionally integrated estimator developed by Shimotsu and Philips (2005. According to application we found that ISE is weakly efficient market.
Energy Technology Data Exchange (ETDEWEB)
Lafranceschina, Jacopo, E-mail: jlafranceschina@alaska.edu; Wackerbauer, Renate, E-mail: rawackerbauer@alaska.edu [Department of Physics, University of Alaska, Fairbanks, Alaska 99775-5920 (United States)
2015-01-15
Spatiotemporal chaos collapses to either a rest state or a propagating pulse solution in a ring network of diffusively coupled, excitable Morris-Lecar neurons. Weak excitatory synapses can increase the Lyapunov exponent, expedite the collapse, and promote the collapse to the rest state rather than the pulse state. A single traveling pulse solution may no longer be asymptotic for certain combinations of network topology and (weak) coupling strengths, and initiate spatiotemporal chaos. Multiple pulses can cause chaos initiation due to diffusive and synaptic pulse-pulse interaction. In the presence of chaos initiation, intermittent spatiotemporal chaos exists until typically a collapse to the rest state.
The Stock Exchange of Suriname: Returns, Volatility, Correlations and Weak-form Efficiency
Bodeutsch, Denice; Franses, Philip Hans
2014-01-01
markdownabstract__Abstract__ The empirical properties of stock returns are studied for 10 companies listed at the Suriname Stock Exchange (SSE), which is a young and growing stock market. Individual stock returns are found to be predictable from the own past to some extent, but the equal-weighted index returns are not. Dynamic correlations with large Latin-American stock markets appear to be zero. It is concluded that there is much more efficiency to be gained for the SSE.
Forbidden nonunique β decays and effective values of weak coupling constants
Haaranen, M.; Srivastava, P. C.; Suhonen, J.
2016-03-01
Forbidden nonunique β decays feature shape functions that are complicated combinations of different nuclear matrix elements and phase-space factors. Furthermore, they depend in a very nontrivial way on the values of the weak coupling constants, gV for the vector part and gA for the axial-vector part. In this work we include also the usually omitted second-order terms in the shape functions to see their effect on the computed decay half-lives and electron spectra (β spectra). As examples we study the fourth-forbidden nonunique ground-state-to-ground-state β- decay branches of 113Cd and 115In using the microscopic quasiparticle-phonon model and the nuclear shell model. A striking new feature that is reported in this paper is that the calculated shape of the β spectrum is quite sensitive to the values of gV and gA and hence comparison of the calculated with the measured spectrum shape opens a way to determine the values of these coupling constants. This article is designed to show the power of this comparison, coined spectrum-shape method (SSM), by studying the two exemplary β transitions within two different nuclear-structure frameworks. While the SSM seems to confine the gV values close to the canonical value gV=1.0 , the values of gA extracted from the half-life data and by the SSM emerge contradictory in the present calculations. This calls for improved nuclear-structure calculations and more measured data to systematically employ SSM for determination of the effective value of gA in the future.
Institute of Scientific and Technical Information of China (English)
肖明文; 李正中; 许望
2002-01-01
We try to extend our previous zero-temperature tunnelling theory for the exchange coupling between two ferromagnets separated by an amorphous semiconducting barrier to the case of finite temperature. The result exhibits that the tunnelling electrons can absorb or emit phonons when they tunnel through the amorphous barrier at finite temperatures so that the interlayer exchange coupling is heat activated. This agrees with the experiments.
Debye mass of massless \\phi^4-theory to order g^6 at weak coupling
Khan, Rashid
2015-01-01
We calculate the Debye mass of massless \\phi^4-theory to order g^6 at weak coupling. The contributions to the Debye mass arise from the hard momentum scale of order T and the soft momentum scale of order gT. Effective field theory methods and dimensional reduction are used to separate the contributions from the two momentum scales. The hard contribution can be calculated as a power series in g^2 using naive perturbation theory with bare propagators. The soft contribution is calculated using an effective theory in three dimensions, whose coefficients are power series in g^2. This contribution is a power series in g starting at order g^3. The calculation of the hard part to order g^6. The calculation of the soft part requires calculating the mass parameter in the effective theory to order g^6 and the evaluation of four-loop self-energy diagrams in three dimensions. This gives the Debye mass correct up to order g^6. We discuss the convergence of the perturbative series as well as the loop expansion in three dime...
2017-01-01
This work focuses on the design of transmitting coils in weakly coupled magnetic induction communication systems. We propose several optimization methods that reduce the active, reactive and apparent power consumption of the coil. These problems are formulated as minimization problems, in which the power consumed by the transmitting coil is minimized, under the constraint of providing a required magnetic field at the receiver location. We develop efficient numeric and analytic methods to solve the resulting problems, which are of high dimension, and in certain cases non-convex. For the objective of minimal reactive power an analytic solution for the optimal current distribution in flat disc transmitting coils is provided. This problem is extended to general three-dimensional coils, for which we develop an expression for the optimal current distribution. Considering the objective of minimal apparent power, a method is developed to reduce the computational complexity of the problem by transforming it to an equivalent problem of lower dimension, allowing a quick and accurate numeric solution. These results are verified experimentally by testing a number of coil geometries. The results obtained allow reduced power consumption and increased performances in magnetic induction communication systems. Specifically, for wideband systems, an optimal design of the transmitter coil reduces the peak instantaneous power provided by the transmitter circuitry, and thus reduces its size, complexity and cost. PMID:28192463
Controlling cooperativity of a metastable open system coupled weakly to a noisy environment
Institute of Scientific and Technical Information of China (English)
赵阳
2015-01-01
The notion of cooperativity comprises a specific characteristic of a multipartite system concerning its ability to demon-strate a sigmoidal-type response of varying sensitivities to input stimuli in transitions between states under controlled con-ditions. From a statistical physics viewpoint, in this work we attempt to describe the cooperativity by the stability of a metastable open system with respect to irreversibility. To treat the evolution of a system weakly coupled to the environment in a kinetic framework, we consider two fluctuating energy levels of different dimensionalities, initial population of one level, reversible transitions of population between the levels, and irreversible depopulation of another level. An average is made over level fluctuations and environment vibrations so that inter-level transition rate can be obtained accounting for the influences of external control on level position and dimensionality. It is found that the cooperativity of the two-level system is bounded approximately between 0.736 and unity, with the lower bound indicating worsening system stability.
Controlling cooperativity of a metastable open system coupled weakly to a noisy environment
Victor, I. Teslenko; Oleksiy, L. Kapitanchuk; Zhao, Yang
2015-02-01
The notion of cooperativity comprises a specific characteristic of a multipartite system concerning its ability to demonstrate a sigmoidal-type response of varying sensitivities to input stimuli in transitions between states under controlled conditions. From a statistical physics viewpoint, in this work we attempt to describe the cooperativity by the stability of a metastable open system with respect to irreversibility. To treat the evolution of a system weakly coupled to the environment in a kinetic framework, we consider two fluctuating energy levels of different dimensionalities, initial population of one level, reversible transitions of population between the levels, and irreversible depopulation of another level. An average is made over level fluctuations and environment vibrations so that an inter-level transition rate can be obtained accounting for the influences of external control on level position and dimensionality. It is found that the cooperativity of the two-level system is bounded approximately between 0.736 and unity, with the lower bound indicating worsening system stability. Project supported by the National Academy of Sciences of Ukraine (Grant No. 0110U007542) and the National Research Foundation of Singapore through the Competitive Research Programme (Grant No. NRF-CRP5-2009-04).
A weakly coupled semiconductor superlattice as a harmonic hypersonic-electrical transducer
Poyser, C. L.; Akimov, A. V.; Balanov, A. G.; Campion, R. P.; Kent, A. J.
2015-08-01
We study experimentally and theoretically the effects of high-frequency strain pulse trains on the charge transport in a weakly coupled semiconductor superlattice. In a frequency range of the order of 100 GHz such excitation may be considered as single harmonic hypersonic excitation. While travelling along the axis of the SL, the hypersonic acoustic wavepacket affects the electron tunnelling, and thus governs the electrical current through the device. We reveal how the change of current depends on the parameters of the hypersonic excitation and on the bias applied to the superlattice. We have found that the changes in the transport properties of the superlattices caused by the acoustic excitation can be largely explained using the current-voltage relation of the unperturbed system. Our experimental measurements show multiple peaks in the dependence of the transferred charge on the repetition rate of the strain pulses in the train. We demonstrate that these resonances can be understood in terms of the spectrum of the applied acoustic perturbation after taking into account the multiple reflections in the metal film serving as a generator of hypersonic excitation. Our findings suggest an application of the semiconductor superlattice as a hypersonic-electrical transducer, which can be used in various microwave devices.
Unusual weak magnetic exchange in two different structure types: YbPt2Sn and YbPt2In.
Gruner, T; Jang, D; Steppke, A; Brando, M; Ritter, F; Krellner, C; Geibel, C
2014-12-03
We present the structural, magnetic, thermodynamic and transport properties of the two new compounds YbPt(2)Sn and YbPt(2)In. X-ray powder diffraction shows that they crystallize in different structure types, the hexagonal ZrPt(2)Al and the cubic Heusler type, respectively. Despite quite different lattice types, both compounds present very similar magnetic properties: a stable trivalent Yb(3+), no evidence for a sizeable Kondo interaction and very weak exchange interactions with a strength below 1 K as deduced from specific heat C(T). Broad anomalies in C(T) suggest short range magnetic ordering at about 250 mK and 180 mK for YbPt(2)Sn and YbPt(2)In, respectively. The weak exchange and the low ordering temperature result in a large magnetocaloric effect as deduced from the magnetic field dependence of C(T), making these compounds interesting candidates for magnetic cooling. In addition we found in YbPt(2)In evidences for a charge density wave transition at about 290 K. The occurrence of such transitions within several RET2X compound series (RE = rare earth, T = noble metal, X = In, Sn) is analyzed.
Tyagi, Pawan; Baker, Collin; D'Angelo, Christopher
2015-07-31
This paper reports our Monte Carlo (MC) studies aiming to explain the experimentally observed paramagnetic molecule induced antiferromagnetic coupling between ferromagnetic (FM) electrodes. Recently developed magnetic tunnel junction based molecular spintronics devices (MTJMSDs) were prepared by chemically bonding the paramagnetic molecules between the FM electrodes along the tunnel junction's perimeter. These MTJMSDs exhibited molecule-induced strong antiferromagnetic coupling. We simulated the 3D atomic model analogous to the MTJMSD and studied the effect of molecule's magnetic couplings with the two FM electrodes. Simulations show that when a molecule established ferromagnetic coupling with one electrode and antiferromagnetic coupling with the other electrode, then theoretical results effectively explained the experimental findings. Our studies suggest that in order to align MTJMSDs' electrodes antiparallel to each other, the exchange coupling strength between a molecule and FM electrodes should be ∼50% of the interatomic exchange coupling for the FM electrodes.
Hajiri, T.; Yoshida, T.; Jaiswal, S.; Filianina, M.; Borie, B.; Ando, H.; Asano, H.; Zabel, H.; Kläui, M.
2016-11-01
We report unusual magnetization switching processes and angular-dependent exchange bias effects in fully epitaxial Co3FeN /MnN bilayers, where magnetocrystalline anisotropy and exchange coupling compete, probed by longitudinal and transverse magneto-optic Kerr effect (MOKE) magnetometry. The MOKE loops show multistep jumps corresponding to the nucleation and propagation of 90∘ domain walls in as-grown bilayers. By inducing exchange coupling, we confirm changes of the magnetization switching process due to the unidirectional anisotropy field of the exchange coupling. Taking into account the experimentally obtained values of the fourfold magnetocrystalline anisotropy, the unidirectional anisotropy field, the exchange-coupling constant, and the uniaxial anisotropy including its direction, the calculated angular-dependent exchange bias reproduces the experimental results. These results demonstrate the essential role of the competition between magnetocrystalline anisotropy and exchange coupling for understanding and tailoring exchange-coupling phenomena usable for engineering switching in fully epitaxial bilayers made of tailored materials.
STATIONARY STRUCTURES FOR A WEAKLY COUPLED ELLIPTIC SYSTEM ARISING IN TWO-PREDATOR, TWO-PREY MODELS
Institute of Scientific and Technical Information of China (English)
严平; 林支桂
2001-01-01
Weakly-coupled elliptic system arising in the two-predator, two-prey model is discussed. It is proved that there is no non-constant solution if diffusions or inter-specific competitions are strong, or if the intrinsic growths of the prey are slow and the intrinsic drop rates of predator are fast.
Switching behaviour of coupled antiferro- and ferromagnetic systems: exchange bias
DEFF Research Database (Denmark)
Lindgård, Per-Anker
2009-01-01
in NiO nanoparticles (Kodama and Berkowitz 1999 Phys. Rev. B 59 6321 and Lindgård 2003 J. Magn. Magn. Mater. 266 88)) in a field severely limits the exchange biasing potential. The interface between the different magnets is found to be that originally assumed by Meiklejohn and Bean (1956 Phys. Rev. 102...
Exchange cotunneling through quantum dots with spin-orbit coupling
DEFF Research Database (Denmark)
Paaske, Jens; Andersen, Andreas; Flensberg, Karsten
2010-01-01
We investigate the effects of spin-orbit interaction (SOI) on the exchange cotunneling through a spinful Coulomb blockaded quantum dot. In the case of zero magnetic field, Kondo effect is shown to take place via a Kramers doublet and the SOI will merely affect the Kondo temperature. In contrast, we...
Exchange cotunneling through quantum dots with spin-orbit coupling
DEFF Research Database (Denmark)
Paaske, Jens; Andersen, Andreas; Flensberg, Karsten
2010-01-01
We investigate the effects of spin-orbit interaction (SOI) on the exchange cotunneling through a spinful Coulomb blockaded quantum dot. In the case of zero magnetic field, Kondo effect is shown to take place via a Kramers doublet and the SOI will merely affect the Kondo temperature. In contrast, ...
Zhao, Kailou; Yang, Fan; Xia, Hongjun; Wang, Fei; Song, Qingguo; Bai, Quan
2015-03-01
In this study, 3-diethylamino-1-propyne was covalently bonded to the azide-silica by a click reaction to obtain a novel dual-function mixed-mode chromatography stationary phase for protein separation with a ligand containing tertiary amine and two ethyl groups capable of electrostatic and hydrophobic interaction functionalities, which can display hydrophobic interaction chromatography character in a high-salt-concentration mobile phase and weak anion exchange character in a low-salt-concentration mobile phase employed for protein separation. As a result, it can be employed to separate proteins with weak anion exchange and hydrophobic interaction modes, respectively. The resolution and selectivity of the stationary phase were evaluated in both hydrophobic interaction and ion exchange modes with standard proteins, respectively, which can be comparable to that of conventional weak anion exchange and hydrophobic interaction chromatography columns. Therefore, the synthesized weak anion exchange/hydrophobic interaction dual-function mixed-mode chromatography column can be used to replace two corresponding conventional weak anion exchange and hydrophobic interaction chromatography columns to separate proteins. Based on this mixed-mode chromatography stationary phase, a new off-line two-dimensional liquid chromatography technology using only a single dual-function mixed-mode chromatography column was developed. Nine kinds of tested proteins can be separated completely using the developed method within 2.0 h.
Magnetic susceptibility and exchange coupling in the mineral ardennite
Thorpe, A.N.; Senftle, F.E.; Donnay, G.
1969-01-01
Ardennite, a rare silicate mineral, contains about 19 wt.% manganese. Some of the manganese atoms are in positions which are close enough to allow negative exchange and hence a reduction of the total magnetic susceptibility. It is shown that the susceptibility can be accounted for approximately by the treatment of Earnshaw and Lewis (1958) for S = 5 2 and a Hamiltonian H = -2g??Hb-2JS1??S2. ?? 1969.
$\\rho$-Nucleon Tensor Coupling and Charge-Exchange Resonances
De Conti, C; Krmpotic, F
2000-01-01
The Gamow-Teller resonances are discussed in the context of a self-consistentRPA, based on the relativistic mean field theory. We inquire on the possibilityof substituting the phenomenological Landau-Migdal force by a microscopicnucleon-nucleon interaction, generated from the rho-nucleon tensor coupling.The effect of this coupling turns out to be very small when the short rangecorrelations are not taken into account, but too large when these correlationsare simulated by the simple extraction of the contact terms from the resultingnucleon-nucleon interaction.
Spin-lattice coupling induced weak dynamical magnetism in EuTiO3 at high temperatures
Guguchia, Z.; Keller, H.; Kremer, R. K.; Köhler, J.; Luetkens, H.; Goko, T.; Amato, A.; Bussmann-Holder, A.
2014-08-01
EuTiO3, which is a G-type antiferromagnet below TN=5.5 K, has some fascinating properties at high temperatures, suggesting that macroscopically hidden dynamically fluctuating weak magnetism exists at high temperatures. This conjecture is substantiated by magnetic field dependent magnetization measurements, which exhibit pronounced anomalies below 200 K becoming more distinctive with increasing magnetic field strength. Additional results from muon spin rotation experiments provide evidence for weak fluctuating bulk magnetism induced by spin-lattice coupling which is strongly supported in increasing magnetic field.
Snyder, Jeff; Hanstock, Chris C.; Wilman, Alan H.
2009-10-01
A general in vivo magnetic resonance spectroscopy editing technique is presented to detect weakly coupled spin systems through subtraction, while preserving singlets through addition, and is applied to the specific brain metabolite γ-aminobutyric acid (GABA) at 4.7 T. The new method uses double spin echo localization (PRESS) and is based on a constant echo time difference spectroscopy approach employing subtraction of two asymmetric echo timings, which is normally only applicable to strongly coupled spin systems. By utilizing flip angle reduction of one of the two refocusing pulses in the PRESS sequence, we demonstrate that this difference method may be extended to weakly coupled systems, thereby providing a very simple yet effective editing process. The difference method is first illustrated analytically using a simple two spin weakly coupled spin system. The technique was then demonstrated for the 3.01 ppm resonance of GABA, which is obscured by the strong singlet peak of creatine in vivo. Full numerical simulations, as well as phantom and in vivo experiments were performed. The difference method used two asymmetric PRESS timings with a constant total echo time of 131 ms and a reduced 120° final pulse, providing 25% GABA yield upon subtraction compared to two short echo standard PRESS experiments. Phantom and in vivo results from human brain demonstrate efficacy of this method in agreement with numerical simulations.
Rob, Tamanna; Liuni, Peter; Gill, Preet Kamal; Zhu, Shaolong; Balachandran, Naresh; Berti, Paul J; Wilson, Derek J
2012-04-17
This work introduces an integrated microfluidic device for measuring rapid H/D exchange (HDX) in proteins. By monitoring backbone amide HDX on the millisecond to low second time scale, we are able to characterize conformational dynamics in weakly structured regions, such as loops and molten globule-like domains that are inaccessible in conventional HDX experiments. The device accommodates the entire MS-based HDX workflow on a single chip with residence times sufficiently small (ca. 8 s) that back-exchange is negligible (≤5%), even without cooling. Components include an adjustable position capillary mixer providing a variable-time labeling pulse, a static mixer for HDX quenching, a proteolytic microreactor for rapid protein digestion, and on-chip electrospray ionization (ESI). In the present work, we characterize device performance using three model systems, each illustrating a different application of 'time-resolved' HDX. Ubiquitin is used to illustrate a crude, high throughput structural analysis based on a single subsecond HDX time-point. In experiments using cytochrome c, we distinguish dynamic behavior in loops, establishing a link between flexibility and interactions with the heme prosthetic group. Finally, we localize an unusually high 'burst-phase' of HDX in the large tetrameric enzyme DAHP synthase to a 'molten globule-like' region surrounding the active site.
Abidin, Noraziani Zainal; Janam, Anathasia; Zubairi, Saiful Irwan
2016-11-01
Adsorption of saponin compound in papaya leaves juice extract using Amberlite® IRA-67 resin was not reported in previous studies. In this research, Amberlite® IRA-67 was used to determine the amount of saponin that can be adsorbed using different weights of dry resin (0.1 g and 0.5 g). Peleg model was used to determine the maximum yield of saponin (43.67 mg) and the exhaustive time (5.7 days) prior to a preliminary resin-saponin adsorption study. After adsorption process, there was no significant difference (p>0.05) in total saponin content (mg) for sample treated with 0.1 g (3.79 ± 0.55 mg) and sample treated with 0.5 g (3.43 ± 0.51 mg) dry weight resin. Long-term kinetic adsorption of resin-saponin method (>24 hours) should be conducted to obtain optimum freed saponin extract. Besides that, sample treated with 0.1 g dry weight resin had high free radical scavenging value of 50.33 ± 2.74% compared to sample treated with 0.5 g dry weight resin that had low free radical scavenging value of 24.54 ± 1.66% dry weights. Total saponin content (mg), total phenolic content (mg GAE) and free radical scavenging activity (%) was investigated to determine the interaction of those compounds with Amberlite® IRA-67. The RP-HPLC analysis using ursolic acid as standard at 203 nm showed no peak even though ursolic acid was one of the saponin components that was ubiquitous in plant kingdom. The absence of peak was due to weak solubility of ursolic acid in water and since it was only soluble in solvent with moderate polarity. The Pearson's correlation coefficient for total saponin content (mg) versus total phenolic content (mg GAE) and radical scavenging activity (%) were +0.959 and +0.807. Positive values showed that whenever there was an increase in saponin content (mg), the phenolic content (mg GAE) and radical scavenging activity (%) would also increase. However, as the resin-saponin adsorption was carried out, there was a significant decrease of radical scavenging activity
DEFF Research Database (Denmark)
Piligkos, S.; Slep, L.D.; Weyhermuller, T.
2009-01-01
A- is the monoanion of pyridine-2-aldoxime. The trivalent metal ion M(III) is either diamagnetic Ga(III) or paramagnetic Cr(III) (S-Cr = 3/2). The divalent metal ion M(II) is either diamagnetic Zn(II) or paramagnetic Ni(II) (S-Ni = 1). The three systems 1 (CrZn), 2 (GaNi) and 3 (CrNi) have been structurally...
Energy Technology Data Exchange (ETDEWEB)
Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States); Ishizaki, Akihito [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan)
2015-08-14
Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.
Roles of Surface and Interface Spins in Exchange Coupled Nanostructures
Phan, Manh-Huong
Exchange bias (EB) in magnetic nanostructures has remained a topic of global interest because of its potential use in spin valves, MRAM circuits, magnetic tunnel junctions, and spintronic devices. The exploration of EB on the nanoscale provides a novel approach to overcoming the superparamagnetic limit and increasing the thermoremanence of magnetic nanoparticles, a critical bottleneck for magnetic data storage applications. Recent advances in chemical synthesis have given us a unique opportunity to explore the EB in a variety of nanoparticle systems ranging from core/shell nanoparticles of Fe/γFe2O3, Co/CoO,and FeO/Fe3O4 to hollow nanoparticles of γFe2O3 and hybrid composite nanoparticles of Au/Fe3O4. Our studies have addressed the following fundamental and important questions: (i) Can one decouple collective contributions of the interface and surface spins to the EB in a core/shell nanoparticle system? (ii) Can the dynamic and static response of the core and shell be identified separately? (iii) Can one tune ``minor loop'' to ``exchange bias'' effects in magnetic hollow nanoparticles by varying the number of surface spins? (iv) Can one decouple collective contributions of the inner and outer surface spins to the EB in a hollow nanoparticle system? (v) Can EB be induced in a magnetic nanoparticle by forming its interface with a non-magnetic metal? Such knowledge is essential to tailor EB in magnetic nanostructures for spintronics applications. In this talk, we will discuss the aforementioned findings in terms of our experimental and atomistic Monte Carlo studies. The work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-07ER46438.
Nan, Guangjun; Wang, Linjun; Yang, Xiaodi; Shuai, Zhigang; Zhao, Yi
2009-01-14
Semiclassical Marcus electron transfer theory is often employed to investigate the charge transport properties of organic semiconductors. However, quite often the electronic couplings vary several orders of magnitude in organic crystals, which goes beyond the application scope of semiclassical Marcus theory with the first-order perturbative nature. In this work, we employ a generalized nonadiabatic transition state theory (GNTST) [Zhao et al., J. Phys. Chem. A 110, 8204 (2004)], which can evaluate the charge transfer rates from weak to strong couplings, to study charge transport properties in prototypical organic semiconductors: quaterthiophene and sexithiophene single crystals. By comparing with GNTST results, we find that the semiclassical Marcus theory is valid for the case of the coupling semiconductors with general electronic coupling terms. Taking oligothiophenes as examples, we find that our GNTST-calculated hole mobility is about three times as large as that from the semiclassical Marcus theory. The difference arises from the quantum nuclear tunneling and the nonperturbative effects.
Institute of Scientific and Technical Information of China (English)
ZHAO Jin-Wei; HU Jing-Guo; CHEN Guang
2004-01-01
The temperature dependence of exchange bias and coercivity in a ferromagnetic layer coupled with an antiferromagnetic layer is discussed.In this model,the temperature dependence comes from the thermal instability of the system states and the temperature modulated relative magnetic parameters.Morever,the thermal fluctuation of orientations of easy axes of antiferromagnetic grains at preparing has been considered.From the present model,the experimental results can be illustrated qualitatively for available magnetic parameters.Based on our discussion,we can conclude that soft ferromagnetic layer coupled by hard antiferromagnetic layer may be very applicable to design magnetic devices.In special exchange coupling,we can get high exchange bias and low coercivity almost independent of temperature for proper temperature ranges.
Milton, Kimball A; Wagner, Jef
2008-01-01
In earlier papers we have applied multiple scattering techniques to calculate Casimir forces due to scalar fields between different bodies described by delta function potentials. When the coupling to the potentials became weak, closed-form results were obtained. We simplify this weak-coupling technique and apply it to the case of tenuous dielectric bodies, in which case the method involves the summation of van der Waals (Casimir-Polder) interactions. Once again exact results for finite bodies can be obtained. We present closed formulas describing the interaction between spheres and between cylinders, and between an infinite plate and a retangular slab of finite size. For such a slab, we consider the torque acting on it, and find non-trivial equilibrium points can occur.
Four point function of R-currents in N=4 SYM in the Regge limit at weak coupling
Energy Technology Data Exchange (ETDEWEB)
Bartels, J.; Mischler, A.M.; Salvadore, M. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2008-04-15
We compute, in N = 4 super Yang-Mills, the four point correlation function of R-currents in the Regge limit in the leading logarithmic approximation at weak coupling. Such a correlator is the closest analog to photon-photon scattering within QCD, and there is a well defined procedure to perform the analogous computation at strong coupling via AdS/CFT. The main result of this paper is, on the gauge theory side, the proof of Regge factorization and the explicit computation of the R-current impact factors. (orig.)
Directory of Open Access Journals (Sweden)
M.V. Tkach
2015-09-01
Full Text Available The partial summing of infinite range of diagrams for the two-phonon mass operator of polaron described by Frohlich Hamiltonian is performed using the Feynman-Pines diagram technique. The renormalized spectral parameters of ground and first excited (phonon repeat polaron state are accurately calculated for the weak electron-phonon coupling at T=0 K. It is shown that the stronger electron-phonon interaction shifts the energy of both states into low-energy region of the spectra. The ground state stays stationary and the excited one - decays at bigger coupling constant.
Micromagnetic simulation of ferrimagnetic TbFeCo films with exchange coupled nanophases
Ma, Chung T.; Li, Xiaopu; Poon, S. Joseph
2016-11-01
Amorphous ferrimagnetic TbFeCo thin films are found to exhibit exchange bias effect near the compensation temperature by magnetic hysteresis loop measurement. The observed exchange anisotropy is believed to originate from the exchange interaction between the two nanoscale amorphous phases distributed within the films. Here, we present a computational model of phase-separated TbFeCo using micromagnetic simulation. Two types of cells with different Tb concentration are distributed within the simulated space to obtain a heterogeneous structure consisting of two nanoscale amorphous phases. Each cell contains separated Tb and FeCo components, forming two antiferromagnetically coupled sublattices. Using this model, we are able to show the existence of exchange bias effect, and the shift in hysteresis loops is in agreement with experiment. The micromagnetic model developed herein for a heterogeneous magnetic material may also account for some recent measurements of exchange bias effect in crystalline films.
On separation of exchange term from the coefficient of the magnetoelectromechanical coupling
Indian Academy of Sciences (India)
ZAKHARENKO A A
2016-06-01
The purpose of this analysis is to introduce the separated exchange coefficient and to graphically investigate it. This coefficient, depending on the electromagnetic constant plus two coefficients of the electromechanical and magnetomechanical couplings, form the coefficient of magnetoelectromechanical coupling (CMEMC), a very important characteristic used for analysingmagnetoelectroelastic smart (composite) materials. It was analytically and graphically demonstrated that the CMEMC can have a minimum due to the minimum of the exchange coefficient at a certain value of the electromagnetic constant. For graphical investigation, the frequently used transverselyisotropic (6$mm$) composite materials such as BaTiO$_3$–CoFe$_2$O$_4$ and PZT–5H–Terfenol–D are exploited.
Magnetic properties of soft layer/FePt-MgO exchange coupled composite Perpendicular recording media
Institute of Scientific and Technical Information of China (English)
Yin Jin-Hua; Takao Suzuki; Pan Li-Qing
2008-01-01
The magnetic properties of exchange coupled composite(ECC)media that are composed of perpendicular magnetic recording media FePt-MgO and two kinds of soft layers have been studied by using an x-ray diffractometer,a polar Kerr magneto-optical system(PMOKE)and a vibrating sample magnetometer(VSM).The results show that ECC media can reduce the coercivities of perpendicular magnetic recording media FePt-MgO.The ECC media with granular-type soft layers have weaker exchange couplings between magnetic grains and the magnetization process,for ECC media of this kind mainly follow the Stoner-Wohlfarth model.
Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S. R.
1999-01-01
We discuss the coherent atomic oscillations between two weakly coupled Bose-Einstein condensates. The weak link is provided by a laser barrier in a (possibly asymmetric) double-well trap or by Raman coupling between two condensates in different hyperfine levels. The boson Josephson junction (BJJ) dynamics is described by the two-mode nonlinear Gross-Pitaevskii equation that is solved analytically in terms of elliptic functions. The BJJ, being a neutral, isolated system, allows the investigations of dynamical regimes for the phase difference across the junction and for the population imbalance that are not accessible with superconductor Josephson junctions (SJJ's). These include oscillations with either or both of the following properties: (i) the time-averaged value of the phase is equal to π (π-phase oscillations); (ii) the average population imbalance is nonzero, in states with macroscopic quantum self-trapping. The (nonsinusoidal) generalization of the SJJ ac and plasma oscillations and the Shapiro resonance can also be observed. We predict the collapse of experimental data (corresponding to different trap geometries and the total number of condensate atoms) onto a single universal curve for the inverse period of oscillations. Analogies with Josephson oscillations between two weakly coupled reservoirs of 3He-B and the internal Josephson effect in 3He-A are also discussed.
Xu, Dazhi; Cao, Jianshu
2016-08-01
The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.
Washburn, Kathryn E.; Cheng, Yuesheng
2017-05-01
The mechanism behind surface relaxivity within organic porosity in shales has been an unanswered question. Here, we present results that confirm the existence of intermolecular homonuclear dipolar coupling between solid and liquid phases in sedimentary organic matter. Transverse magnetization exchange measurements were performed on an organic-rich shale saturated with liquid hydrocarbon. Liquid and solid constituents were identified through both sample resaturation and through their T1/T2 ratios. Extensive cross peaks are observed in the T2-T2 exchange spectra between the solid and liquid constituents, indicating an exchange of magnetization between the two phases. This result cannot arise from physical molecular diffusion, and the dissolution energies are too high for chemical exchange, such that the magnetization exchange must arise from intermolecular homonuclear dipolar coupling. These results both confirm a possible source of surface relaxivity in organic matter and emphasize caution in the use of standard porous media interpretations of relaxation results in shales because of coupling between different magnetization environments.
Spectral and Quantum Dynamical Properties of the Weakly Coupled Fibonacci Hamiltonian
Damanik, David; Gorodetski, Anton
2010-01-01
We consider the spectrum of the Fibonacci Hamiltonian for small values of the coupling constant. It is known that this set is a Cantor set of zero Lebesgue measure. Here we study the limit, as the value of the coupling constant approaches zero, of its thickness and its Hausdorff dimension. We prove that the thickness tends to infinity and, consequently, the Hausdorff dimension of the spectrum tends to one. We also show that at small coupling, all gaps allowed by the gap labeling theorem are o...
Coupled Fixed Point Theorems for Weak Contraction Mappings under F-Invariant Set
Directory of Open Access Journals (Sweden)
Wutiphol Sintunavarat
2012-01-01
Full Text Available We extend the recent results of the coupled fixed point theorems of Cho et al. (2012 by weakening the concept of the mixed monotone property. We also give some examples of a nonlinear contraction mapping, which is not applied to the existence of the coupled fixed point by the results of Cho et al. but can be applied to our results. The main results extend and unify the results of Cho et al. and many results of the coupled fixed point theorems.
The influence of magnetostatic interactions in exchange-coupled composite particles
DEFF Research Database (Denmark)
Vokoun, D.; Beleggia, Marco; De Graef, M.;
2010-01-01
Exchange-coupled composite (ECC) particles are the basic constituents of ECC magnetic recording media. We examine and compare two types of ECC particles: (i) core-shell structures, consisting of a hard-magnetic core and a coaxial soft-magnetic shell and (ii) conventional ECC particles, with a hard...
First principles calculations of interlayer exchange coupling in bcc Fe/Cu/Fe structures
Energy Technology Data Exchange (ETDEWEB)
Kowalewski, M.; Heninrich, B. [Simon Fraser Univ., Burnaby, British Columbia (Canada); Schulthess, T.C.; Butler, W.H. [Oak Ridge National Lab., TN (United States)
1998-01-01
The authors report on theoretical calculations of interlayer exchange coupling between two Fe layers separated by a modified Cu spacer. These calculations were motivated by experimental investigations of similar structures by the SFU group. The multilayer structures of interest have the general form: Fe/Cu(k)/Fe and Fe/Cu(m)/X(1)/Cu(n)/Fe where X indicates one AL (atomic layer) of foreign atoms X (Cr, Ag, or Fe) and k, m, n represent the number of atomic layers of Cu. The purpose of the experimental and theoretical work was to determine the effect of modifying the pure Cu spacer by replacing the central Cu atomic layer with the atomic layer of foreign atoms X. The first principles calculation were performed using the Layer Korringa-Kohn-Rostoker (LKKR) method. The theoretical thickness dependence of the exchange coupling between two semi-infinite Fe layers was calculated for pure Cu spacer thicknesses in the range of 0 < k < 16. The effect of the foreign atoms X on the exchange coupling was investigated using the structure with 9 AL Cu spacer as a reference sample. The calculated changes in the exchange coupling are in qualitative agreement with experiment.
Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry
Energy Technology Data Exchange (ETDEWEB)
Morrison, C., E-mail: C.Morrison.2@warwick.ac.uk; Miles, J. J.; Thomson, T. [School of Computer Science, University of Manchester, Manchester M13 9PL (United Kingdom); Anh Nguyen, T. N. [Materials Physics, School of ICT, KTH Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Spintronics Research Group, Laboratory for Nanotechnology (LNT), VNU-HCM, Ho Chi Minh City (Viet Nam); Fang, Y.; Dumas, R. K. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Materials Physics, School of ICT, KTH Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden)
2015-05-07
Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.
Su, Ying; Wang, C.; Avishai, Y.; Meir, Yigal; Wang, X. R.
2016-09-01
The one-parameter scaling theory of localization predicts that all states in a disordered two-dimensional system with broken time reversal symmetry are localized even in the presence of strong spin-orbit coupling. While at constant strong magnetic fields this paradigm fails (recall the quantum Hall effect), it is believed to hold at weak magnetic fields. Here we explore the nature of quantum states at weak magnetic field and strongly fluctuating spin-orbit coupling, employing highly accurate numerical procedure based on level spacing distribution and transfer matrix technique combined with one parameter finite-size scaling hypothesis. Remarkably, the metallic phase, (known to exist at zero magnetic field), persists also at finite (albeit weak) magnetic fields, and eventually crosses over into a critical phase, which has already been confirmed at high magnetic fields. A schematic phase diagram drawn in the energy-magnetic field plane elucidates the occurrence of localized, metallic and critical phases. In addition, it is shown that nearest-level statistics is determined solely by the symmetry parameter β and follows the Wigner surmise irrespective of whether states are metallic or critical.
Modulation of interlayer exchange coupling strength in magnetic tunnel junctions via strain effect
Energy Technology Data Exchange (ETDEWEB)
Jiang, Xin, E-mail: jiangxinyj@gmail.com; Li, Zhipeng; Zheng, Yuankai; Kaiser, Christian; Diao, Zhitao; Fang, Jason; Leng, Qunwen, E-mail: Qunwen.Leng@wdc.com [Western Digital Corporation, 44100 Osgood Road, Fremont, California 94539 (United States)
2015-09-15
Interlayer exchange coupling of two ferromagnetic electrodes separated by a thin MgO tunnel barrier is investigated using magneto-optical Kerr effect. We find that the coupling field can be reduced by more than 40% as the thickness of a top Ta capping layer increases from 0.5 to 1.2 nm. In contrast, a similar film stack with an additional 3 nm Ru capping layer displays no such dependence on Ta thickness. Transmission electron microscopy study shows that the oxidation of the exposed Ta capping layer induces changes in the crystalline structures of the underlying films, giving rise to the observed reduction of the interlayer coupling field.
Sterile neutrino dark matter: A tale of weak interactions in the strong coupling epoch
Venumadhav, Tejaswi; Abazajian, Kevork N; Hirata, Christopher M
2015-01-01
We perform a detailed study of the weak interactions of standard model neutrinos with the primordial plasma and their effect on the resonant production of sterile neutrino dark matter. Motivated by issues in cosmological structure formation on small scales, and reported X-ray signals that could be due to sterile neutrino decay, we consider $7$ keV-scale sterile neutrinos. Oscillation-driven production of such sterile neutrinos occurs at temperatures $T \\gtrsim 100$ MeV, where we study two significant effects of weakly charged species in the primordial plasma: (1) the redistribution of an input lepton asymmetry; (2) the opacity for active neutrinos. We calculate the redistribution analytically above and below the quark-hadron transition, and match with lattice QCD calculations through the transition. We estimate opacities due to tree level processes involving leptons and quarks above the quark-hadron transition, and the most important mesons below the transition. We report final sterile neutrino dark matter ph...
Exchange biasing single molecule magnets: coupling of TbPc2 to antiferromagnetic layers.
Lodi Rizzini, A; Krull, C; Balashov, T; Mugarza, A; Nistor, C; Yakhou, F; Sessi, V; Klyatskaya, S; Ruben, M; Stepanow, S; Gambardella, P
2012-11-14
We investigate the possibility to induce exchange bias between single molecule magnets (SMM) and metallic or oxide antiferromagnetic substrates. Element-resolved X-ray magnetic circular dichroism measurements reveal, respectively, the presence and absence of unidirectional exchange anisotropy for TbPc(2) SMM deposited on antiferromagnetic Mn and CoO layers. TbPc(2) deposited on Mn thin films present magnetic hysteresis and a negative horizontal shift of the Tb magnetization loop after field cooling, consistent with the observation of pinned spins in the Mn layer coupled parallel to the Tb magnetic moment. Conversely, molecules deposited on CoO substrates present paramagnetic magnetization loops with no indication of exchange bias. These experiments demonstrate the ability of SMM to polarize the pinned uncompensated spins of an antiferromagnet during field-cooling and realize metal-organic exchange-biased heterostructures using antiferromagnetic pinning layers.
Rice, Anne M; Mahling, Ryan; Fealey, Michael E; Rannikko, Anika; Dunleavy, Katie; Hendrickson, Troy; Lohese, K Jean; Kruggel, Spencer; Heiling, Hillary; Harren, Daniel; Sutton, R Bryan; Pastor, John; Hinderliter, Anne
2014-09-01
Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Magnetic Exchange Couplings in Heterodinuclear Complexes Based on Differential Local Spin Rotations.
Joshi, Rajendra P; Phillips, Jordan J; Peralta, Juan E
2016-04-12
We analyze the performance of a new method for the calculation of magnetic exchange coupling parameters for the particular case of heterodinuclear transition metals complexes of Cu, Ni, and V. This method is based on a generalized perturbative approach which uses differential local spin rotations via formal Lagrange multipiers (Phillips, J. J.; Peralta, J. E. J. Chem. Phys. 2013, 138, 174115). The reliability of the calculated couplings has been assessed by comparing with results from traditional energy differences with different density functional approximations and with experimental values. Our results show that this method to calculate magnetic exchange couplings can be reliably used for heteronuclear transition metal complexes, and at the same time, that it is independent from the different mapping schemes used in energy difference methods.
Ionic Hamiltonians for transition metal atoms: effective exchange coupling and Kondo temperature
Flores, F.; Goldberg, E. C.
2017-02-01
An ionic Hamiltonian for describing the interaction between a metal and a d-shell transition metal atom having an orbital singlet state is introduced and its properties analyzed using the Schrieffer-Wolf transformation (exchange coupling) and the poor man’s scaling method (Kondo temperature). We find that the effective exchange coupling between the metal and the atom has an antiferromagnetic or a ferromagnetic interaction depending on the kind of atomic fluctuations, either S\\to S-1/2 or S\\to S+1/2 , associated with the metal-atom coupling. We present a general scheme for all those processes and calculate, for the antiferromagnetic interaction, the corresponding Kondo-temperature.
Pati, Satya Prakash; Al-Mahdawi, Muftah; Ye, Shujun; Shiokawa, Yohei; Nozaki, Tomohiro; Sahashi, Masashi
2016-12-01
The scaling of antiferromagnetic ordering temperature of corundum-type chromia films has been investigated. Néel temperature TN was determined from the effect of perpendicular exchange bias on the magnetization of a weakly-coupled adjacent ferromagnet. For a thick-film case, the validity of detection is confirmed by a susceptibility measurement. Detection of TN was possible down to 1-nm-thin chromia films. The scaling of ordering temperature with thickness was studied using different buffering materials and compared with Monte-Carlo simulations. The spin-correlation length and the corresponding critical exponent were estimated, and they were consistent between experimental and simulation results. The spin-correlation length is an order of magnitude less than cubic antiferromagnets. We propose that the difference is from the change of number of exchange-coupling links in the two crystal systems.
Zemlyanaya, E. V.; Bashashin, M. V.; Rahmonov, I. R.; Shukrinov, Yu. M.; Atanasova, P. Kh.; Volokhova, A. V.
2016-10-01
We consider a model of system of long Josephson junctions (LJJ) with inductive and capacitive coupling. Corresponding system of nonlinear partial differential equations is solved by means of the standard three-point finite-difference approximation in the spatial coordinate and utilizing the Runge-Kutta method for solution of the resulting Cauchy problem. A parallel algorithm is developed and implemented on a basis of the MPI (Message Passing Interface) technology. Effect of the coupling between the JJs on the properties of LJJ system is demonstrated. Numerical results are discussed from the viewpoint of effectiveness of parallel implementation.
Random matrix theory for closed quantum dots with weak spin-orbit coupling.
Held, K; Eisenberg, E; Altshuler, B L
2003-03-14
To lowest order in the coupling strength, the spin-orbit coupling in quantum dots results in a spin-dependent Aharonov-Bohm flux. This flux decouples the spin-up and spin-down random matrix theory ensembles of the quantum dot. We employ this ensemble and find significant changes in the distribution of the Coulomb blockade peak height, in particular, a decrease of the width of the distribution. The puzzling disagreement between standard random matrix theory and the experimental distributions by Patel et al. [Phys. Rev. Lett. 81, 5900 (1998)
Persistent spin current in a quantum wire with weak Dresselhaus spin-orbit coupling
Institute of Scientific and Technical Information of China (English)
Sheng Wei; Wang Yi; Zhou Guang-Hui
2007-01-01
The spin current in a parabolically confined semiconductor heterojunction quantum wire with Dresselhaus spinorbit coupling is theoretically studied by using the perturbation method. The formulae of the elements for linear and angular spin current densities are derived by using the recent definition for spin current based on spin continuity equation. It is found that the spin current in this Dresselhaus spin-orbit coupling quantum wire is antisymmetrical,which is different from that in R ashba model due to the difference in symmetry between these two models. Some numerical examples for the result are also demonstrated and discussed.
Bekenstein entropy bound for weakly-coupled field theories on a 3-sphere
Myers, Joyce C.
2012-01-01
We calculate the high temperature partition functions for SU(N-c) orU(N-c) gauge theories in the deconfined phase on 51 x 53, with scalars, vectors, and/or fermions in an at representation, at zero 't Hooft coupling and large N-c, using, analytical methods. We compare these with numerical results wh
Weakly coupled heat bath models for Gibbs-like invariant states in nonlinear wave equations
J. Bajars (Janis); J.E. Frank (Jason); B.J. Leimkuhler (Ben)
2013-01-01
textabstractThermal bath coupling mechanisms as utilized in molecular dynamics are applied to partial differential equation models. Working from a semi-discrete (Fourier mode) formulation for the Burgers–Hopf or Korteweg–de Vries equation, we introduce auxiliary variables and stochastic
N=1 Super-Yang-Mills on the Lattice Weak and Strong Coupling Limits
Gabrielli, E
1999-01-01
We present a general review about the N=1 supersymmetric SU(Nc) Yang-Mills on the lattice focusing our attention on the quenched approximation in supersymmetry. Finally we analyse and discuss the recent results obtained at strong coupling and large Nc for the mesonic and fermionic propagators and spectrum.
Environmental noise effects on entanglement fidelity of exchange-coupled semiconductor spin qubits
Throckmorton, Robert E.; Barnes, Edwin; Das Sarma, S.
2017-02-01
We investigate the effect of magnetic field and charge noise on the generation of entanglement between two Heisenberg exchange-coupled electron spins in a double quantum dot. We focus on exchange-driven evolution that would ideally take an initial unentangled tensor product state to a maximally entangled state in the absence of noise. The presence of noise obviously adversely affects the attainment of maximal entanglement, which we study quantitatively and exactly. To quantify the effects of noise, we calculate two-qubit coherence times and entanglement fidelity, both of which can be extracted from simulations or measurements of the return probability as a function of interaction time, i.e., the time period during which the exchange coupling remains effective between the two spins. We perform these calculations for a broad range of noise strengths that includes the regime of recent experiments. We find that the two types of noise reduce the amount of entanglement in qualitatively distinct ways and that, although charge noise generally leads to faster decoherence, the relative importance of the two types of noise in entanglement creation depends sensitively on the strength of the exchange coupling. Our results can be used to determine the level of noise suppression needed to reach quantum error correction thresholds. We provide quantitative guidance for the requisite noise constraints necessary to eventually reach the >99 % fidelity consistent with the quantum error correction threshold.
Energy Technology Data Exchange (ETDEWEB)
Holden, Helge; Karlsen, Kenneth H.; Risebro, Nils H.
2002-04-01
We prove uniqueness and existence of entropy solutions for the Cauchy problem of weakly coupled systems of nonlinear degenerate parabolic equations. The uniqueness proof is an adaption of Kruzkov's ''doubling of variables'' proof. We prove existence of an entropy solution by demonstrating that the Engquist-Osher finite difference scheme is convergent and that any limit function satisfies the entropy condition. The convergence proof is based on deriving a series of a priori estimates and using a general L{sup p} compactness criterion. We also present a numerical example motivated by biodegradation in porous media.
Thermodynamics of weakly coupled Falicov-Kimball chains from renormalization-group theory
Sznajd, Jozef
2015-06-01
The linear perturbation renormalization group is used to study spinless two-band fermion chains at half-filling. The model consists of two species of spinless fermions, namely localized f and extended p , and it takes into account the following: the kinetic energy of fermions p , the on-site Coulomb repulsion V between p and f fermions, chemical potentials μp and μf adjusted in such a way that the average of the site occupation + =1 , and a weak interchain hopping tx. The average occupation number, the specific heat, and the correlation functions are studied as functions of temperature. For a single chain the occupation number is a smooth function of T and the specific heat displays two maxima. The weak interchain hopping triggers a discontinuity in the occupation number of fermions as a function of temperature. A long-standing controversy on whether the Falicov-Kimball model can describe a discontinuous transition of nf is also addressed.
Interface coupling and magnetic properties of exchange-coupled Ni81Fe19/Ir22Mn78 bilayers
Xi, H; Mao, S; Kief, M T; White, R M
2003-01-01
Hysteresis loop measurements using magnetooptic Kerr effect magnetometry in the low frequency region and magnetization dynamics measurements using high frequency permeametry are carried out to study the exchange anisotropy in Ni sub 8 sub 1 Fe sub 1 sub 9 /Ir sub 2 sub 2 Mn sub 7 sub 8 bilayers. These two measurement techniques provide different exchange anisotropies for bilayers with thin Ir sub 2 sub 2 Mn sub 7 sub 8 films. The observations can be understood by assuming that the AF grains break into domains due to the interface random field. By analysing the results from these two techniques, the interface coupling strength and the magnetic properties of the bilayers can be quantitatively determined.
García-Morales, Vladimir; Manzanares, José A.; Mafe, Salvador
2017-04-01
We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according to local rules that are modulated by a parameter κ . This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate external agents. The emergent spatiotemporal maps of single-cell states should be of significance for positional information processes as well as for intercellular communication in tumorigenesis, where the collective normalization of abnormal single-cell states by a predominantly normal neighborhood may be crucial.
Ekşioğlu, Yasa; Güven, Kaan
2011-01-01
We propose that a weakly-coupled nonlinear dielectric waveguide -- surface-plasmon system can be formulated as a new type of Josephson junction. Such a system can be realized along a metal - dielectric interface where the dielectric medium hosts a nonlinear waveguide (e.g. fiber) for soliton propagation. We demonstrate that the system is in close analogy to the bosonic Josephson-Junction (BJJ) of atomic condensates at very low temperatures, yet exhibits different dynamical features. In particular, the inherently dynamic coupling parameter between soliton and surface-plasmon generates self-trapped oscillatory states at nonzero fractional populations with zero and $\\pi$ time averaged phase difference. The salient features of the dynamics are presented in the phase space.
Casalderrey-Solana, Jorge; Milhano, Jose Guilherme; Pablos, Daniel; Rajagopal, Krishna
2015-01-01
We confront a hybrid strong/weak coupling model for jet quenching to data from LHC heavy ion collisions. The model combines the perturbative QCD physics at high momentum transfer and the strongly coupled dynamics of non- abelian gauge theories plasmas in a phenomenological way. By performing a full Monte Carlo simulation, and after fitting one single parameter, we successfully describe several jet observables at the LHC, including dijet and photon jet measurements. Within current theoretical and experimental uncertainties, we find that such observables show little sensitivity to the specifics of the microscopic energy loss mechanism. We also present a new observable, the ratio of the fragmentation function of inclusive jets to that of the associated jets in dijet pairs, which can discriminate among different medium models. Finally, we discuss the importance of plasma response to jet passage in jet shapes.
Li, Zirun; Mi, Wenbo; Wang, Xiaocha; Zhang, Xixiang
2015-02-18
Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ'-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ'-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ'-Fe4N layer and interfacial spin scattering.
Ledge-type Co/L10-FePt exchange-coupled composites
Speliotis, Th.; Giannopoulos, G.; Niarchos, D.; Li, W. F.; Hadjipanayis, G.; Barucca, G.; Agostinelli, E.; Laureti, S.; Peddis, D.; Testa, A. M.; Varvaro, G.
2016-06-01
FePt-based exchange-coupled composites consisting of a magnetically hard L10-FePt phase exchange-coupled with a soft ferromagnetic material are promising candidates for future ultra-high density (>1 Tbit/in2) perpendicular magnetic recording media, also being of interest for other applications including spin torque oscillators and micro-electro-mechanical systems, among others. In this paper, the effect of the thickness of a soft Co layer (3 composites deposited on an MgO (100) substrate is systematically studied by combining morpho-structural analyses and angular magnetization measurements. Starting from a film consisting of isolated L10(001)-FePt islands, the ledge-type structure was obtained by depositing a Co layer that either covered the FePt islands or filled-up the inter-island region, gradually forming a continuous layer with increasing Co thickness. A perpendicular anisotropy was maintained up to thCo ˜ 9.5 nm and a significant reduction in the coercivity (about 50% for thCo ˜ 3 nm) with the increase in thCo was observed, indicating that, by coupling hard FePt and soft Co phases in a ledge-type configuration, the writability can be greatly improved. Recoil loops' measurements confirmed the exchange-coupled behavior, reinforcing a potential interest in these systems for future magnetic recording media.
Interlayer exchange coupling between layers with perpendicular and easy-plane magnetic anisotropies
Fallarino, Lorenzo; Sluka, Volker; Kardasz, Bartek; Pinarbasi, Mustafa; Berger, Andreas; Kent, Andrew D.
2016-08-01
Interlayer exchange coupling between layers with perpendicular and easy-plane magnetic anisotropies separated by a non-magnetic spacer is studied using ferromagnetic resonance. The samples consist of a Co/Ni multilayer with perpendicular magnetic anisotropy and a CoFeB layer with easy-plane anisotropy separated by a variable thickness Ru layer. At a fixed frequency, we show that there is an avoided crossing of layer ferromagnetic resonance modes providing direct evidence for interlayer coupling. The mode dispersions for different Ru thicknesses are fit to a Heisenberg-type model to determine the interlayer exchange coupling strength and layer properties. The resulting interlayer exchange coupling varies continuously from antiferromagnetic to ferromagnetic as a function of the Ru interlayer thickness. These results show that the magnetic layer single domain ground state consists of magnetizations that can be significantly canted with respect to the layer planes and the canting can be tuned by varying the Ru thickness and the layer magnetic characteristics, a capability of interest for applications in spin-transfer torque devices.
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling
Directory of Open Access Journals (Sweden)
Chen Gong
2017-06-01
Full Text Available The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC and wireless power transfer (WPT. However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically, since the NFC signal (especially for the uplink from the in-body part to the out-body part could be too weak to be detected. Traditional load shift keying (LSK requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK modulation, its downlink data are modulated on the power carrier (2 MHz, while its uplink data are modulated on another carrier (125 kHz. The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10 - 7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications.
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling.
Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min
2017-06-11
The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10 - 7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications.
Buchanan, Evan G.; Walsh, Patrick S.; Plusquellic, David F.; Zwier, Timothy S.
2013-05-01
Vibrationally and rotationally resolved electronic spectra of 1,2-diphenoxyethane (C6H5-O-CH2-CH2-O-C6H5, DPOE) are reported for the isolated molecule under jet-cooled conditions. The spectra demonstrate that the two excited surfaces are within a few cm-1 of one another over significant regions of the torsional potential energy surfaces that modulate the position and orientation of the two aromatic rings with respect to one another. Two-color resonant two-photon ionization (2C-R2PI) and laser-induced fluorescence excitation spectra were recorded in the near-ultraviolet in the region of the close-lying S0-S1 and S0-S2 states (36 400-36 750 cm-1). In previous work, double resonance spectroscopy in the ultraviolet and alkyl CH stretch regions of the infrared was used to identify and assign transitions to two conformational isomers differing primarily in the central C-C dihedral angle, a tgt conformation with C2 symmetry and a ttt conformation with C2h symmetry [E. G. Buchanan, E. L. Sibert, and T. S. Zwier, J. Phys. Chem. A 117, 2800 (2013)], 10.1021/jp400691a. Comparison of 2C-R2PI spectra recorded in the m/z 214 (all 12C) and m/z 215 (one 13C) mass channels demonstrate the close proximity of the S1 and S2 excited states for both conformations, with an upper bound of 4 cm-1 between them. High resolution spectra of the origin band of the tgt conformer reveal it to consist of two transitions at 36 422.91 and 36 423.93 cm-1, with transition dipole moments perpendicular to one another. These are assigned to the S0-S1 and S0-S2 origin transitions with excited states of A and B symmetry, respectively, and an excitonic splitting of only 1.02 cm-1. The excited state rotational constants and transition dipole coupling model directions prove that the electronic excitation is delocalized over the two rings. The ttt conformer has only one dipole-allowed electronic transition (Ag→Bu) giving rise to a pure b-type band at 36 508.77 cm-1. Here, the asymmetry induced by a single 13
Information about the state of a charge qubit gained by a weakly coupled quantum point contact
Energy Technology Data Exchange (ETDEWEB)
Ashhab, S; You, J Q; Nori, Franco [Advanced Science Institute, Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198 (Japan)], E-mail: ashhab@riken.jp
2009-12-15
We analyze the information that one can learn about the state of a quantum two-level system, i.e. a qubit, when probed weakly by a nearby detector. We consider the general case where the qubit Hamiltonian and the qubit's operator probed by the detector do not commute. Because the qubit's state keeps evolving while being probed and the measurement data is mixed with a detector-related background noise, one might expect the detector to fail in this case. We show, however, that under suitable conditions and by proper analysis of the measurement data, useful information about the initial state of the qubit can be extracted. Our approach complements the usual master-equation and quantum-trajectory approaches, which describe the evolution of the qubit's quantum state during the measurement process but do not keep track of the acquired measurement information.
Institute of Scientific and Technical Information of China (English)
额尔敦朝鲁; 乌云其木格; 肖欣; 韩超; 辛伟
2012-01-01
Based on the Huybrechts＇ linear-combination operator, effects of thermal lattice vibration on the effective potential of weak-coupling bipolaron in semiconductor quantum dots are studied by using the LLP variational method and quantum statistical theory. The results show that the absolute value of the induced potential of the bipolaron increases with increasing the electron-phonon coupling strength, but decreases with increasing the temperature and the distance of electrons, respectively; the absolute value of the effective potential increases with increasing the radius of the quantum dot, electron-phonon coupling strength and the distance of electrons, respectively, but decreases with increasing the temperature; the temperature and electron-phonon interaction have the important influence on the formation and state properties of the bipolaron： the bipolarons in the bound state are closer and more stable when the electron-phonon coupling strength is larger or the temperature is lower; the confinement potential and coulomb repulsive potential between electrons are unfavorable to the formation of bipolarons in the bound state.
Phillips, Jordan J; Peralta, Juan E
2011-01-21
We assess the dependence of magnetic exchange couplings on the variation of Hartree-Fock exchange (HFX) admixture in global hybrid functionals and the range-separation parameter ω in range-separated hybrid functionals in a set of 12 spin-1/2 binuclear transition metal complexes. The global hybrid PBEh (hybrid Perdew-Burke-Ernzerhof) and range-separated hybrids HSE (Heyd-Scuseria-Ernzerhof) and LC-ωPBE (long-range corrected hybrid PBE) are employed for this assessment, and exchange couplings are calculated from energy differences within the framework of the spin-projected approach. It is found that these functionals perform optimally for magnetic exchange couplings with 35% HFX admixture for PBEh, ω = 0.50 a.u.(-1) for LC-ωPBE, and ω at or near 0.0 a.u.(-1) for HSE (which corresponds to PBEh). We find that in their standard respective forms, LC-ωPBE slightly outperforms PBEh, while PBEh with 35% HFX yields exchange couplings closer to experiment than those of LC-ωPBE with ω = 0.50 a.u.(-1). Additionally, we show that the profile of exchange couplings with respect to ω in HSE is appreciably flat from 0 to 0.2 a.u.(-1). This combined with the fact that HSE is computationally more tractable than global hybrids makes HSE an attractive alternative for the evaluation of exchange couplings in extended systems. These results are rationalized with respect to how varying the parameters within these functionals affects the delocalization of the magnetic orbitals, and conclusions are made regarding the relative importance of range separation versus global mixing of HFX for the calculation of exchange couplings.
Fujii, K; Kato, R; Wada, Y; Fujii, Kazuyuki; Higashida, Kyoko; Kato, Ryosuke; Wada, Yukako
2005-01-01
In this paper we treat a cavity QED quantum computation. Namely, we consider a model of quantum computation based on n atoms of laser-cooled and trapped linearly in a cavity and realize it as the n atoms Tavis-Cummings Hamiltonian interacting with n external (laser) fields. We solve the Schr{\\" o}dinger equation of the model in the weak coupling regime to construct the controlled NOT gate in the case of n=2, and to construct the controlled-controlled NOT gate in the case of n=3 by making use of several resonance conditions and rotating wave approximation associated to them. We also present an idea to construct general quantum circuits. The approach is more sophisticated than that of the paper [K. Fujii, Higashida, Kato and Wada, Cavity QED and Quantum Computation in the Weak Coupling Regime, J. Opt. B : Quantum Semiclass. Opt. {\\bf 6} (2004), 502]. Our method is not heuristic but completely mathematical, and the significant feature is based on a consistent use of Rabi oscillations.
Indirect quantum sensors: Improving the sensitivity in characterizing very weakly coupled spins
Greiner, Johannes N; Neumann, Philipp; Wrachtrup, Jörg
2015-01-01
We propose a scheme to increase the sensitivity and thus the detection volume of nanoscale single molecule magnetic resonance imaging. The proposal aims to surpass the T1 limited detection of the sensor by taking advantage of a long-lived ancilla nuclear spin to which the sensor is coupled. We show how this nuclear spin takes over the role of the sensor spin, keeping the characteristic time-scales of detection on the same order but with a longer life-time allowing it to detect a larger volume of the sample which is not possible by the sensor alone.
DEFF Research Database (Denmark)
Jacobsen, Jens Christian Brings; Aalkjær, Christian; Matchkov, Vladimir
2008-01-01
Vascular smooth muscle cells (SMCs) exhibit different types of calcium dynamics. Static vascular tone is associated with unsynchronized calcium waves and the developed force depends on the number of recruited cells. Global calcium transients synchronized among a large number of cells cause rhythmic...... are enrolled into synchronized oscillation.Simulations of coupled SMCs show that the experimentally observed cellular recruitment, the presence of quiescent cells and the variation in oscillation frequency may arise if the cell population is phenotypically heterogeneous. In this case, quiescent cells can...
Exchange coupling in MnBi/Fe-Co thin film bilayers
Fang, Lei; Gao, Tieren; Fackler, Sean; Maruyama, Shingo; Takeuchi, Ichiro; Cui, Jun; Krammer, M. J.; Johnson, Duane; Arenholz, Elke; Borchers, Julie; Kirby, Brian; Ratcliff, William; Skomski, Ralph; Lofland, Samuel
2014-03-01
To achieve enhanced energy products of MnBi for rare-earth free permanent magnet applications, we studied the exchange coupled soft/hard bilayers based on MnBi films. By using DC magnetron sputtering, we fabricated pure MnBi films with magnetization of 500 emu/cc and coercivity of 1.6 T. A (BH)max of 6.2 MGOe is obtained for pure MnBi films. A large enhancement in (BH)max due to exchange coupling in MnBi/Fe-Co bilayers is observed with Fe-Co thicknesses between 2 and 5 nm. The highest (BH)max obtained is 14.0 MGOe at room temperature with a single phase magnetization curve for a MnBi (20 nm)/Co (2 nm) bilayer. TEM and XPS studies indicate there is no oxidation between soft/hard interface. The XMCD results show that the soft moments of Fe/Co at a thickness of 2 nm are perpendicular to the MnBi plane, indicating nearly perfect hard-soft coupling. Moreover, a micromagnetic calculation on perpendicularly-coupled MnBi/Fe-Co bilayers suggests a critical coupling thickness of 4 nm of the soft layer. We will also discuss results from polarized neutron reflectometry measurements performed on the bilayers. This work is funded by ARPA-E.
Exchange-coupling interaction and effective anisotropy in nanocomposite permanent materials
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Taking Nd2Fe14B/?-Fe as example, the exchange-coupling interactions between magnetically soft and hard grains in nanocomposite permanent materials and their effects on the effective anisotropy of materials were investigated. The calculation results expressed that the exchange- coupling interactions are enhanced with the reduction of grain size, and the effective anisotropy of materials decreases with the reduction of grain size and the increase of magnetically soft phase component. The remanence and the effective anisotropy of materials possess the opposite variation trend with the change of grain size and phase ratio. The mean grain size should be in the range of 10-15 nm and the ratio of soft phase should be less than 50% for getting the magnet with high energy product.
Magnetotransport signatures of the proximity exchange and spin-orbit couplings in graphene
Lee, Jeongsu; Fabian, Jaroslav
2016-11-01
Graphene on an insulating ferromagnetic substrate—ferromagnetic insulator or ferromagnetic metal with a tunnel barrier—is expected to exhibit large exchange and spin-orbit couplings due to proximity effects. We use a realistic transport model of charge-disorder scattering and solve the linearized Boltzmann equation numerically exactly for the anisotropic Fermi contours of modified Dirac electrons to find magnetotransport signatures of these proximity effects: proximity anisotropic magnetoresistance, inverse spin-galvanic effect, and the planar Hall resistivity. We establish the corresponding anisotropies due to the exchange and spin-orbit couplings, with respect to the magnetization orientation. We also present parameter maps guiding towards optimal regimes for observing transport magnetoanisotropies in proximity graphene.
Switching field distribution of exchange coupled ferri-/ferromagnetic composite bit patterned media
Oezelt, Harald; Fischbacher, Johann; Matthes, Patrick; Kirk, Eugenie; Wohlhüter, Phillip; Heyderman, Laura Jane; Albrecht, Manfred; Schrefl, Thomas
2016-01-01
We investigate the switching field distribution and the resulting bit error rate of exchange coupled ferri-/ferromagnetic bilayer island arrays by micromagnetic simulations. Using islands with varying microstructure and anisotropic properties, the intrinsic switching field distribution is computed. The dipolar contribution to the switching field distribution is obtained separately by using a model of a hexagonal island array resembling $1.4\\,\\mathrm{Tb/in}^2$ bit patterned media. Both contributions are computed for different thickness of the soft exchange coupled ferrimagnet and also for ferromagnetic single phase FePt islands. A bit patterned media with a bilayer structure of FeGd($5\\,\\mathrm{nm}$)/FePt($5\\,\\mathrm{nm}$) shows a bit error rate of $10^{-4}$ with a write field of $1.2\\,\\mathrm{T}$.
Exchange-correlation energy of a hole gas including valence band coupling
Bobbert, P. A.; Wieldraaijer, H.; van der Weide, R.; Kemerink, M.; Koenraad, P. M.; Wolter, J. H.
1997-08-01
We have calculated an accurate exchange-correlation energy of a hole gas, including the complexities related to the valence band coupling as occurring in semiconductors like GaAs, but excluding the band warping. A parametrization for the dependence on the density and the ratio between light- and heavy-hole masses is given. We apply our results to a hole gas in an AlxGa1-xAs/GaAs/AlxGa1-xAs quantum well and calculate the two-dimensional band structure and the band-gap renormalization. The inclusion of the valence band coupling in the calculation of the exchange-correlation potentials for holes and electrons leads to a much better agreement between theoretical and experimental data than when it is omitted.
The charge-exchange induced coupling between plasma-gas counterflows in the heliosheath
Directory of Open Access Journals (Sweden)
H. J. Fahr
Full Text Available Many hydrodynamic models have been presented which give similar views of the interaction of the solar wind plasma bubble with the counterstreaming partially ionized interstellar medium. In the more recent of these models it is taken into account that the solar and interstellar hydrodynamic flows of neutral atoms and protons are coupled by mass-, momentum-, and energy-exchange terms due to charge exchange processes. We shall reinvestigate the theoretical basis of this coupling here by use of a simplified description of the heliospheric interface and describe the main physics of the H-atom penetration through the more or less standing well-known plasma wall ahead of the heliopause. Thereby we can show that the type of charge exchange coupling terms used in up-to-now hydrodynamic treatments unavoidably leads to an O-type critical point at the sonic point of the H-atom flow, thus not allowing for a continuation of the integration of the hydrodynamic set of differential equations. The remedy for this problem is given by a more accurate formulation of the momentum exchange term for quasi-and sub-sonic H-atom flows. With a refined momentum exchange term derived from basic kinetic Boltzmann principles, we instead arrive at a characteristic equation with an X-type critical point, allowing for a continuous solution from supersonic to subsonic flow conditions. This necessitates that the often treated problem of the propagation of inter-stellar H-atoms through the heliosheath has to be solved using these newly derived, differently effective plasma – gas friction forces. Substantially different results are to be expected from this context for the filtration efficiency of the heliospheric interface.
Key words. Interplanetary physics (heliopause and solar wind termination; interstellar gas – Ionosphere (plasma temperature and density
Franco, A. F.; Landeros, P.
2016-09-01
We present a general model for the coupled magnetic resonances of an exchange interacting multilayer system, which can be implemented without complex analytical calculations or numerical simulations. The model allows one to study the spin wave modes of a multilayer structure with any number of layers, accounting for individual uniaxial and cubic anisotropies, and (static and dynamic) demagnetizing and external fields as well, assuming that only the interlayer exchange coupling mechanism is relevant between such magnetic layers. This scheme is applied to recent measurements of a NiFe/CoFe bilayer, and to studying the influence of the strength of ferromagnetic and antiferromagnetic exchange interactions and the applied field orientation on the spin wave modes and intensities of the ferromagnetic resonance response. We find that the acoustic oscillation mode tends to stabilize in frequency if the magnetizations of the layers are parallel to each other, while the optical mode stabilizes when the magnetizations are antiparallel. Furthermore, we find that each oscillation mode is governed by either the NiFe or the CoFe. The modes swap the governing layer as the perpendicular field increases, inducing a gap between their frequencies, which appears to be proportional to the exchange coupling. Finally, we find that the field linewidth of the bilayer due to Gilbert damping has a dependence on the frequency very similar to the linear dependence of the linewidth in single layers. The theoretical scheme presented here can be further used to explore magnetization dynamics in different multilayer architectures—such as exchange springs, structures with perpendicular magnetic anisotropy, and complex compositions of layer stacks—and can be useful as a basis to study multilayers with chiral and dipolar interactions.
Jacobsen, Jens Christian Brings; Aalkjaer, Christian; Matchkov, Vladimir V; Nilsson, Holger; Freiberg, Jacob J; Holstein-Rathlou, Niels-Henrik
2008-10-13
Vascular smooth muscle cells (SMCs) exhibit different types of calcium dynamics. Static vascular tone is associated with unsynchronized calcium waves and the developed force depends on the number of recruited cells. Global calcium transients synchronized among a large number of cells cause rhythmic development of force known as vasomotion. We present experimental data showing a considerable heterogeneity in cellular calcium dynamics in the vascular wall. In stimulated vessels, some SMCs remain quiescent, whereas others display waves of variable frequency. At the onset of vasomotion, all SMCs are enrolled into synchronized oscillation. Simulations of coupled SMCs show that the experimentally observed cellular recruitment, the presence of quiescent cells and the variation in oscillation frequency may arise if the cell population is phenotypically heterogeneous. In this case, quiescent cells can be entrained at the onset of vasomotion by the collective driving force from the synchronized oscillations in the membrane potential of the surrounding cells. Partial synchronization arises with an increase in the concentration of cyclic guanosine monophosphate, but in a heterogeneous cell population complete synchronization also requires a high-conductance pathway that provides strong coupling between the cells.
Corrado, Cesare; Gerbeau, Jean-Frédéric; Moireau, Philippe
2015-02-01
This work addresses the inverse problem of electrocardiography from a new perspective, by combining electrical and mechanical measurements. Our strategy relies on the definition of a model of the electromechanical contraction which is registered on ECG data but also on measured mechanical displacements of the heart tissue typically extracted from medical images. In this respect, we establish in this work the convergence of a sequential estimator which combines for such coupled problems various state of the art sequential data assimilation methods in a unified consistent and efficient framework. Indeed, we aggregate a Luenberger observer for the mechanical state and a Reduced-Order Unscented Kalman Filter applied on the parameters to be identified and a POD projection of the electrical state. Then using synthetic data we show the benefits of our approach for the estimation of the electrical state of the ventricles along the heart beat compared with more classical strategies which only consider an electrophysiological model with ECG measurements. Our numerical results actually show that the mechanical measurements improve the identifiability of the electrical problem allowing to reconstruct the electrical state of the coupled system more precisely. Therefore, this work is intended to be a first proof of concept, with theoretical justifications and numerical investigations, of the advantage of using available multi-modal observations for the estimation and identification of an electromechanical model of the heart.
Liu, X.; Yu, C. G.; Chen, S.; Wang, Y. P.; Su, C. Q.
2014-06-01
The present experimental and computational study investigates an exhaust gas waste heat recovery system for vehicles, using thermoelectric modules and a heat exchanger to produce electric power. It proposes a new plane heat exchanger of a thermoelectric generation (TEG) system, producing electricity from a limited hot surface area. To investigate the new plane heat exchanger, we make a coupling condition of heat-flow and flow-solid coupling analysis on it to obtain the temperature, heat, and pressure field of the heat exchanger, and compared it with the old heat exchanger. These fields couple together to solve the multi-field coupling of the flow, solid, and heat, and then the simulation result is compared with the test bench experiment of TEG, providing a theoretical and experimental basis for the present exhaust gas waste heat recovery system.
De-coupling of Exchange and Persistence Times in Atomistic Models of Glass Formers
Hedges, Lester O.; Maibaum, Lutz; Chandler, David; Juan P Garrahan
2007-01-01
With molecular dynamics simulations of a fluid mixture of classical particles interacting with pair-wise additive Weeks-Chandler-Andersen potentials, we consider the time series of particle displacements and thereby determine distributions for local persistence times and local exchange times. These basic characterizations of glassy dynamics are studied over a range of super-cooled conditions and shown to have behaviors, most notably de-coupling, similar to those found in kinetically constrain...
Implementing a Quantum Algorithm with Exchange-Coupled Quantum Dots: a Feasibility study
Myrgren, E S
2003-01-01
We present Monte Carlo wavefunction simulations for quantum computations employing an exchange-coupled array of quantum dots. Employing a combination of experimentally and theoretically available parameters, we find that gate fidelities greater than 98 % may be obtained with current experimental and technological capabilities. Application to an encoded 3 qubit (nine physical qubits) Deutsch-Josza computation indicates that the algorithmic fidelity is more a question of the total time to implement the gates than of the physical complexity of those gates.
The information about the state of a qubit gained by a weakly coupled detector
Energy Technology Data Exchange (ETDEWEB)
Ashhab, S; You, J Q; Nori, Franco [Advanced Science Institute, Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198 (Japan)], E-mail: ashab@riken.jp
2009-08-15
We analyze the information that one can learn about the state of a quantum two-level system, i.e. a qubit, when probed weakly by a nearby detector. In particular, we focus on the case when the qubit Hamiltonian and the qubit's operator being probed by the detector do not commute. Because the qubit's state keeps evolving while being probed and because the measurement data is mixed with detector-related background noise, one might expect the detector to fail in this case. We show, however, that under suitable conditions and by proper analysis of the measurement data useful information about the state of the qubit can be extracted. It turns out that the measurement basis is stochastically determined every time the experiment is repeated. We analyze in detail the probability distributions that govern the choice of measurement bases. We also analyze the information acquisition rate and show that it is largely unaffected by the apparent conflict between the measurement and intrinsic qubit dynamics. We discuss the relation between our analysis and the stochastic master equation that describes the evolution of the qubit's state under the influence of measurement and decoherence. In particular, we write down a stochastic equation that encompasses the usual stochastic master equation for the evolution of the qubit's density matrix and additionally contains the measurement information that can be extracted from the observed signal.
Energy Technology Data Exchange (ETDEWEB)
Utgikar, Vivek [Univ. of Idaho, Moscow, ID (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Christensen, Richard [The Ohio State Univ., Columbus, OH (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-12-29
The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate the models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.
Collapse of the wave field in a one-dimensional system of weakly coupled light guides
Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.
2016-12-01
The analytical and numerical study of the radiation self-action in a system of coupled light guides is fulfilled on the basis of the discrete nonlinear Schrödinger equation (DNSE). We develop a variational method for qualitative study of DNSE and classify self-action modes. We show that the diffraction of narrow (in grating scale) wave beams weakens in discrete media and, consequently, the "collapse" of the one-dimensional wave field with power exceeding the critical value occurs. This results in the ability to self-channel radiation in the central fiber. Qualitative analytical results were confirmed by numerical simulation of DNSE, which also shows the stability of the collapse mode.
Jet-Medium Interactions at NLO in a Weakly-Coupled Quark-Gluon Plasma
Ghiglieri, Jacopo; Teaney, Derek
2015-01-01
We present an extension to next-to-leading order in the strong coupling constant $g$ of the AMY effective kinetic approach to the energy loss of high momentum particles in the quark-gluon plasma. At leading order, the transport of jet-like particles is determined by elastic scattering with the thermal constituents, and by inelastic collinear splittings induced by the medium. We reorganize this description into collinear splittings, high-momentum-transfer scatterings, drag and diffusion, and particle conversions (momentum-preserving identity-changing processes). We show that this reorganized description remains valid to NLO in $g$, and compute the appropriate modifications of the drag, diffusion, particle conversion, and inelastic splitting coefficients. In addition, a new kinematic regime opens at NLO for wider-angle collinear bremsstrahlung. These semi-collinear emissions smoothly interpolate between the leading order high-momentum-transfer scatterings and collinear splittings. To organize the calculation, w...
Trottier, H D; Lepage, G P; MacKenzie, P B
2002-01-01
Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from $3^4$ to $16^4$) and couplings (from $\\beta \\approx 9$ to $\\beta \\approx 60$). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.
Directory of Open Access Journals (Sweden)
Sean P Parsons
2016-02-01
Full Text Available Pacemaker activities generated by networks of interstitial cells of Cajal (ICC, in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e. spatial noise with a long-tailed distribution, plateau steps occurred at points of low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency.
Parsons, Sean P.; Huizinga, Jan D.
2016-01-01
Pacemaker activities generated by networks of interstitial cells of Cajal (ICC), in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP) in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude) was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave) activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e., spatial noise) with a long-tailed distribution, plateau steps occurred at pointsof low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency. PMID:26869875
Parsons, Sean P; Huizinga, Jan D
2016-01-01
Pacemaker activities generated by networks of interstitial cells of Cajal (ICC), in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP) in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude) was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave) activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e., spatial noise) with a long-tailed distribution, plateau steps occurred at pointsof low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency.
Heavy Quark Diffusion in Strong Magnetic Fields at Weak Coupling and Implication to Elliptic Flow
Fukushima, Kenji; Yee, Ho-Ung; Yin, Yi
2015-01-01
We compute the momentum diffusion coefficients of heavy quarks, $\\kappa_\\parallel$ and $\\kappa_\\perp$, in a strong magnetic field $B$ along the directions parallel and perpendicular to $B$, respectively, at the leading order in QCD coupling constant $\\alpha_s$. We consider a regime relevant for the relativistic heavy ion collisions, $\\alpha_s eB\\ll T^2\\ll eB$, so that thermal excitations of light quarks are restricted to the lowest Landau level (LLL) states. In the vanishing light-quark mass limit, we find $\\kappa_\\perp^{\\rm LO}\\propto \\alpha_s^2 T eB$ in the leading order that arises from screened Coulomb scatterings with (1+1)-dimensional LLL quarks, while $\\kappa_\\parallel$ gets no contribution from the scatterings with LLL quarks due to kinematic restrictions. We show that the first non-zero leading order contributions to $\\kappa_\\parallel^{\\rm LO}$ come from the two separate effects: 1) the screened Coulomb scatterings with thermal gluons, and 2) a finite light-quark mass $m_q$. The former leads to $\\kap...
Abney, Drew H; Paxton, Alexandra; Dale, Rick; Kello, Christopher T
2015-11-01
Successful interaction requires complex coordination of body movements. Previous research has suggested a functional role for coordination and especially synchronization (i.e., time-locked movement across individuals) in different types of human interaction contexts. Although such coordination has been shown to be nearly ubiquitous in human interaction, less is known about its function. One proposal is that synchrony supports and facilitates communication (Topics Cogn Sci 1:305-319, 2009). However, questions still remain about what the properties of coordination for optimizing communication might look like. In the present study, dyads worked together to construct towers from uncooked spaghetti and marshmallows. Using cross-recurrence quantification analysis, we found that dyads with loosely coupled gross body movements performed better, supporting recent work suggesting that simple synchrony may not be the key to effective performance (Riley et al. 2011). We also found evidence that leader-follower dynamics-when sensitive to the specific role structure of the interaction-impact task performance. We discuss our results with respect to the functional role of coordination in human interaction.
Effect of exchange-coupling interaction on anisotropy of grain in nanoscaled magnets
Sun, Yan; Gao, Ru-wei; Han, Guang-bing; Liu, Min; Han, Bai-ping
2007-01-01
The effect of inter-grain exchange-coupling interaction on the anisotropy of grain in nanoscaled magnets has been investigated by putting forward an expression of anisotropy at grain boundary, K1ij(r), which is suitable for different coupling conditions, and expresses well the coherency between soft and hard grains. The average anisotropy of grain has been calculated based on K1ij(r) and the theory of partial exchange-coupling interaction. It has been found that the average anisotropy of hard or soft grain, or , increases with increasing grain size D monotonously when hard-hard or soft-soft grains couple. When soft-hard grains touch each other, with increasing D, the variation of average anisotropy of soft-hard grain depends on the anisotropy at grain interface K1sh(0), which denotes the affection degree of hard grain on the anisotropy of soft grain. Compared with other results, it is more reasonable that K1sh(0) ranges from 0.5K1h to 0.7K1h. The variations of anisotropy with D we calculated are consistent with those of coercivities given by other authors when K1ij(0) is fixed in a certain range.
Modulation of interlayer exchange coupling strength in magnetic tunnel junctions via strain effect
Directory of Open Access Journals (Sweden)
Xin Jiang
2015-09-01
Full Text Available Interlayer exchange coupling of two ferromagnetic electrodes separated by a thin MgO tunnel barrier is investigated using magneto-optical Kerr effect. We find that the coupling field can be reduced by more than 40% as the thickness of a top Ta capping layer increases from 0.5 to 1.2 nm. In contrast, a similar film stack with an additional 3 nm Ru capping layer displays no such dependence on Ta thickness. Transmission electron microscopy study shows that the oxidation of the exposed Ta capping layer induces changes in the crystalline structures of the underlying films, giving rise to the observed reduction of the interlayer coupling field.
Pulecio, Javier; Arena, Dario; Warnicke, Peter; Im, Mi-Young; Pollard, Shawn; Fischer, Peter; Zhu, Yimei
2013-03-01
We report on the magnetic evolution of magnetic vortices in nanoscale and multilayer disk structures. The tri-layer structure consists of Co and Permalloy (Py) layers, coupled across a thin (1nm) Cu spacer that provides strong coupling between the Co and Py layers. Element-resolved full-field XMCD microscopy is combined with ultra-high resolution Lorentz transmission electron microscopy, permitting measurement of both layer-resolved domain patterns and the vortex structure averaged across the tri-layer. We examine the evolution of the vortex structure while the nanostructure is cycled through the M-H hysteresis loop. In particular we will discuss the effects of strong interlayer exchanged coupling on a dual vortex core system, including analysis of the layer-resolved coercivity, and the evolution, deformation, annihilation, and nucleation of the vortices.
Non-collinear magnetization configuration in interlayer exchange coupled magnetic thin films
Choi, J.; Min, B.-C.; Kim, J.-Y.; Park, B.-G.; Park, J. H.; Lee, Y. S.; Shin, K.-H.
2011-09-01
Element specific magnetic hysteresis loops of the interlayer exchange coupled CoFeB/Ru/[Co/Ni]4 structure were measured utilizing x-ray magnetic circular dichroism. It was found that the Co/Ni multilayer and the CoFeB layer have Ru thickness dependent oscillatory interlayer coupling. Due to its interlayer coupling with the perpendicularly magnetized Co/Ni multilayer, the CoFeB magnetization direction is slightly tilted out-of-plane from its in-plane magnetic easy axis. Quantitative measurements show that the tilting angle is small (magnetic field (˜50 Oe) applied to this structure will result in a completely in-plane CoFeB magnetization.
Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Guesmia, A.
2015-12-01
In this paper, we consider coupled wave-wave, Petrovsky-Petrovsky and wave-Petrovsky systems in N-dimensional open bounded domain with complementary frictional damping and infinite memory acting on the first equation. We prove that these systems are well-posed in the sense of semigroups theory and provide a weak stability estimate of solutions, where the decay rate is given in terms of the general growth of the convolution kernel at infinity and the arbitrary regularity of the initial data. We finish our paper by considering the uncoupled wave and Petrovsky equations with complementary frictional damping and infinite memory, and showing a strong stability estimate depending only on the general growth of the convolution kernel at infinity.
Institute of Scientific and Technical Information of China (English)
FU Xi; ZHOU Guang-Hui
2009-01-01
We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors.Both the quantum wire and conductors are described by a hard-wall confining potential.Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density jTs,xi and jTs,yi(I = x, y, z).We lind that the elements jTs,xx and jTs,yy have a antisymmetrical relation and the element jTs,yz has the same amount level jTs,xx and jTs,yy.We also find a net linear spin current density, which has peaks at the center of quantum wire.The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.
Many-polaron description of impurities in a Bose-Einstein condensate in the weak-coupling regime
Energy Technology Data Exchange (ETDEWEB)
Casteels, W.; Devreese, J. T. [TQC, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Tempere, J. [TQC, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States)
2011-12-15
The weak-coupling many-polaron formalism is applied to the case of the polaronic system consisting of impurities in a Bose-Einstein condensate. This allows investigating the ground-state properties and the response of the system to Bragg spectroscopy. Then, this theory is applied to the system of spin-polarized fermionic lithium-6 impurities in a sodium condensate. The Bragg spectrum reveals a peak that corresponds to the emission of Bogoliubov excitations. Both the ground-state properties and the response spectrum show that the polaronic effect vanishes at high densities. We also look at two possibilities to define the polaronic effective mass and observe that this results in a different quantitative behavior if multiple impurities are involved.
Liu, Jie; Herbert, John M.
2015-07-01
A novel formulation of time-dependent density functional theory (TDDFT) is derived, based on non-orthogonal, absolutely-localized molecular orbitals (ALMOs). We call this approach TDDFT(MI), in reference to ALMO-based methods for describing molecular interactions (MI) that have been developed for ground-state applications. TDDFT(MI) is intended for efficient excited-state calculations in systems composed of multiple, weakly interacting chromophores. The efficiency is based upon (1) a local excitation approximation; (2) monomer-based, singly-excited basis states; (3) an efficient localization procedure; and (4) a one-step Davidson method to solve the TDDFT(MI) working equation. We apply this methodology to study molecular dimers, water clusters, solvated chromophores, and aggregates of naphthalene diimide that form the building blocks of self-assembling organic nanotubes. Absolute errors of 0.1-0.3 eV with respect to supersystem methods are achievable for these systems, especially for cases involving an excited chromophore that is weakly coupled to several explicit solvent molecules. Excited-state calculations in an aggregate of nine naphthalene diimide monomers are ˜40 times faster than traditional TDDFT calculations.
Cannon, Jonathan
2017-01-01
Mutual information is a commonly used measure of communication between neurons, but little theory exists describing the relationship between mutual information and the parameters of the underlying neuronal interaction. Such a theory could help us understand how specific physiological changes affect the capacity of neurons to synaptically communicate, and, in particular, they could help us characterize the mechanisms by which neuronal dynamics gate the flow of information in the brain. Here we study a pair of linear-nonlinear-Poisson neurons coupled by a weak synapse. We derive an analytical expression describing the mutual information between their spike trains in terms of synapse strength, neuronal activation function, the time course of postsynaptic currents, and the time course of the background input received by the two neurons. This expression allows mutual information calculations that would otherwise be computationally intractable. We use this expression to analytically explore the interaction of excitation, information transmission, and the convexity of the activation function. Then, using this expression to quantify mutual information in simulations, we illustrate the information-gating effects of neural oscillations and oscillatory coherence, which may either increase or decrease the mutual information across the synapse depending on parameters. Finally, we show analytically that our results can quantitatively describe the selection of one information pathway over another when multiple sending neurons project weakly to a single receiving neuron.
Low-energy magnetoelectric control of domain states in exchange-coupled heterostructures
Al-Mahdawi, Muftah; Pati, Satya Prakash; Shiokawa, Yohei; Ye, Shujun; Nozaki, Tomohiro; Sahashi, Masashi
2017-04-01
The electric manipulation of antiferromagnets has become an area of great interest recently for zero-stray-field spintronic devices, and for their rich spin dynamics. Generally, the application of antiferromagnetic media for information memories and storage requires a heterostructure with a ferromagnetic layer for readout through the exchange-bias field. In magnetoelectric and multiferroic antiferromagnets, the exchange coupling exerts an additional impediment (energy barrier) to magnetization reversal by the applied magnetoelectric energy. We proposed and verified a method to overcome this barrier. We controlled the energy required for switching the magnetic domains in magnetoelectric Cr2O3 films by compensating the exchange-coupling energy from the ferromagnetic layer with the Zeeman energy of a small volumetric spontaneous magnetization found for the sputtered Cr2O3 films. Based on a simplified phenomenological model of the field-cooling process, the magnetic and electric fields required for switching could be tuned. As an example, the switching of antiferromagnetic domains around a zero-threshold electric field was demonstrated at a magnetic field of 2.6 kOe.
Peculiarities of MCD C-term saturation behavior of the exchange coupled Co(II) dimers
Energy Technology Data Exchange (ETDEWEB)
Ostrovsky, S.M., E-mail: sm_ostrovsky@yahoo.com [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, MD 2028, Chisinau, Republic of Moldova (Moldova, Republic of)
2011-07-28
Graphical abstract: The change of sign of the MCD signal with temperature and magnetic field increase can take place. The origin of this peculiarity is explained by the strong orbital contribution. Highlights: {yields} MCD C-term saturation behavior of the exchange coupled cobalt dimer. {yields} Strong orbital contribution to the magneto-optical behavior. {yields} Change of sign of the MCD signal with temperature and magnetic field increase. - Abstract: The MCD C-term saturation behavior of the exchange coupled octahedrally coordinated cobalt dimers is studied for different types of distortion of the local surrounding of each interacting ion. It was found that in the case of antiferromagnetic exchange interaction the change of sign of the MCD signal with temperature and magnetic field increase can take place. This signal behavior is not the result of overlapping of different electronic transitions and it is characteristic of an individual MCD line. The origin of this magneto-optical behavior is explained by the strong contribution coming from the unquenched orbital angular momenta of interacting cobalt ions. The found peculiarity is inherent to complexes composed of nonequivalent cobalt ions as well as to the dimeric complexes with the equivalent Co ions with nonparallel local axes.
Li, Jiahua; Yu, Rong; Ding, Chunling; Wu, Ying
2014-06-16
We explore optical bistability and degenerate four-wave mixing of a hybrid optical system composed of a photonic crystal nanocavity, a single nitrogen-vacancy center embedded in the cavity, and a nearby photonic waveguide serving for in- and outcoupling of light into the cavity in the weak-coupling regime. Here the hybrid system is coherently driven by a continuous-wave bichromatic laser field consisting of a strong control field and a weak probe field. We take account of the nonlinear nature of the nitrogen-vacancy center in the Heisenberg-Langevin equations and give an effective perturbation method to deal with such problems in the continuous-wave-operation regime. The results clearly show that the bistability region of the population inversion and the intensity of the generated four-wave mixing field can be well controlled by properly adjusting the system practical parameters. The nanophotonic platform can be used to implement our proposal. This investigation may be useful for gaining further insight into the properties of solid-state cavity quantum electrodynamics system and find applications in all-optical wavelength converter and switch in a photonic crystal platform.
Temperature dependence of the training effect in exchange coupled ferromagnetic bilayers
Polisetty, S.; Sahoo, S.; Berger, A.; Binek, Ch.
2008-11-01
The temperature dependence of the training effect is studied in an exchange coupled thin-film bilayer composed of a hard ferromagnetic pinning (CoPtCrB) layer in proximity of a soft ferromagnetic pinned (CoCr) layer. Interlayer exchange shifts the hysteresis loops of the soft layer along the magnetic-field axis. This shift is quantified by the bias field in far reaching analogy to the exchange bias field of conventional antiferromagnetic/ferromagnetic heterostructures. A ferromagnetic domain state induced in the hard layer experiences aging very similar to the training behavior of the antiferromagnetic domain state in conventional exchange bias systems. Training originates from changes in the spin structure of the pinning layer with consecutive magnetization reversals of the pinned layer. Here we perform a detailed investigation of the temperature dependence of the bias field and its training effect. Consecutively cycled hysteresis loops of the soft layer are measured at various temperatures. We also derive a theoretical description of the temperature dependence of the training effect which is in agreement with the experimental data.
Defect-induced magnon scattering mechanisms in exchange-coupled bilayers
Gallardo, R. A.; Rodríguez-Suárez, R. L.; Landeros, P.
2016-12-01
The influence of two-magnon scattering mechanisms, which may be activated by different sorts of defects, is theoretically studied in ferromagnetic/antiferromagnetic exchange-biased bilayers. The spin-wave based model considers the influence of geometrical defects in the ferromagnetic (FM) layer as well as small domains in the antiferromagnetic (AFM) sub-lattice of the FM/AFM interface in such a way that both kinds of defects are randomly distributed over their respective surfaces. The in-plane angular dependence of the ferromagnetic resonance (FMR) linewidth allows detection of the relevant influence of such defects in the relaxation mechanisms, where the role of the exchange-bias field is clearly identified. Typical experimental findings, such as quadratic dependence of the linewidth with the exchange-bias field and the in-plane angular dependence, are well explained within the proposed model. This lends confidence in the model's utility and leads to a better understanding of the role of the magnon-magnon scattering in the magnetization dynamics of exchange-coupled antiferromagnetic/ferromagnetic bilayers.
Exchange coupling in metallic multilayers with a top FeRh layer
Yamada, S.; Tanikawa, K.; Hirayama, J.; Kanashima, T.; Taniyama, T.; Hamaya, K.
2016-05-01
We study magnetic properties of metallic multilayers with FeRh/ferromagnet interfaces grown by low-temperature molecular beam epitaxy. Room-temperature coercivity of the ferromagnetic layers is significantly enhanced after the growth of FeRh, proving the existence of the exchange coupling between the antiferromagnetic FeRh layer and the ferromagnetic layer. However, exchange bias is not clearly observed probably due to the presence of disordered structures, which result from the lattice strain at the FeRh/ferromagnet interfaces due to the lattice mismatch. We infer that the lattice matched interface between FeRh and ferromagnetic layers is a key parameter for controlling magnetic switching fields in such multilayer systems.
Gate-tunable indirect exchange interaction in spin-orbit-coupled mesoscopic rings
Nikoofard, H.; Heidari Semiromi, E.
2015-05-01
We study the carrier-mediated exchange interaction, the so-called Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling, between two magnetic impurity moments embedded in a semiconductor mesoscopic ring. We treat the ring in the presence of an Aharonov-Bohm-type magnetic flux and the Rashba and Dresselhaus spin-orbit interactions (RSOI and DSOI). Energy eigenvalues of the system are obtained within a tight-binding framework and the strength of the indirect exchange interaction vs. RSOI strengths are plotted for different values of DSOI strength. The results show that the type of the impurity magnetic order, ferromagnetic (F) or antiferromagnetic (AF), depends on the RSOI and DSOI strengths. This leads to a full electrical control on the magnetic alignment of the system through, e.g., an external gate voltage.
Yamanaka, Nodoka; Kubota, Takahiro
2013-01-01
The contribution of the R-parity violating supersymmetric model to the fermion electric dipole moment at the two-loop level is analyzed. We show that in general, the Barr-Zee type contribution to the fermion electric dipole moment with the exchange of W and Z bosons is not small compared to the currently known photon exchange one with R-parity violating interactions. We will then give new upper bounds on the imaginary parts of R-parity violating couplings from the experimental data of the electric dipole moments of the electron and of the neutron.
MAGNETIC EXCHANGE-COUPLING IN CoPt/Co BILAYER THIN FILMS
Energy Technology Data Exchange (ETDEWEB)
KIM,J.; BARMAK,K.; LEWIS,L.H.; CREW,D.C.; WELCH,D.O.
1999-04-05
Thin film CoPt/Co bilayers have been prepared as a model system to investigate the relationship between microstructure and exchange coupling in two-phase hard/soft composite magnets. CoPt films, with a thickness of 25 nm, were sputter-deposited from a nearly equiatomic alloy target onto oxidized Si wafers. The films were subsequently annealed at 700 C and fully transformed from the FCC phase to the magnetically hard, ordered L1{sub 0} phase. The coercivity of the films increased rapidly with annealing time until it reached a plateau at approximately 9.5 kOe. Fully-ordered CoPt films were then used as substrates for deposition of Co layers, with thicknesses in the range of 2.8--225 nm, in order to produce the hard/soft composite bilayers. As predicted by theory, the magnetic coherency between the soft Co phase and the hard, ordered CoPt phase decreased as the thickness of the soft phase increased. This decrease in coupling was clearly seen in the magnetic hysteresis loops of the bilayers. At small thicknesses of Co (a few nanometers), the shape of the loop was one of a uniform material showing no indication of the presence of two phases with extremely different coercivities. At larger Co thicknesses, constricted loops, i.e., ones showing the presence of a mixture of two ferromagnetic phases of different hardnesses, were obtained. The magnetic exchange present in the bilayer samples was qualitatively analyzed using magnetic recoil curves and the dependence of exchange coupling on the soft phase dimension in the bilayer hard/soft composite magnet films is discussed.
Effect of exchange coupling on magnetic property in Sm-Co/α-Fe layered system
C, X. Sang; G, P. Zhao; W, X. Xia; X, L. Wan; F, J. Morvan; X, C. Zhang; L, H. Xie; J, Zhang; J, Du; A, R. Yan; P, Liu
2016-03-01
The hysteresis loops as well as the spin distributions of Sm-Co/α-Fe bilayers have been investigated by both three-dimensional (3D) and one-dimensional (1D) micromagnetic calculations, focusing on the effect of the interface exchange coupling under various soft layer thicknesses ts. The exchange coupling coefficient Ahs between the hard and soft layers varies from 1.8 × 10-6 erg/cm to 0.45 × 10-6 erg/cm, while the soft layer thickness increases from 2 nm to 10 nm. As the exchange coupling decreases, the squareness of the loop gradually deteriorates, both pinning and coercive fields rise up monotonically, and the nucleation field goes down. On the other hand, an increment of the soft layer thickness leads to a significant drop of the nucleation field, the deterioration of the hysteresis loop squareness, and an increase of the remanence. The simulated loops based on the 3D and 1D methods are consistent with each other and in good agreement with the measured loops for Sm-Co/α-Fe multilayers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074179 and 10747007), the National Basic Research Program of China (Grant No. 2014CB643702), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY14E010006), the Construction Plan for Scientific Research Innovation Teams of Universities in Sichuan Province, China (Grant No. 12TD008), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the Education Ministry, China, and the Program for Key Science and Technology Innovation Team of Zhejiang Province, China (Grant No. 2013TD08).
Jamilpanah, L.; Hajiali, M. R.; Morteza Mohseni, S.; Erfanifam, S.; Majid Mohseni, S.; Houshiar, M.; Ehsan Roozmeh, S.
2017-04-01
A systematic study of the effect of the deposition of cobalt (Co) and nickel (Ni) layers of various thicknesses on the magnetoimpedance (MI) response of a soft ferromagnetic amorphous ribbon (Co68.15Fe4.35Si12.5B15) is performed. The Co and Ni layers with thicknesses of 5, 10, 20 and 40 nm were grown on both sides of the amorphous ribbons by the electrodeposition technique. Microstrutures determined by x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) showed higher crystallinity of Ni-deposited layers and the amorphous ferromagnetic nature of Co-deposited. The vibrating sample magnetometry (VSM) does not represent significant changes between samples because of the small contribution of such a thin layer deposited on thick ribbons, but the MI response dictates that the magnetic coupling effect occurred at the interface of such bilayers, which is sensitive to the skin effect. The MI response of Co-deposited ribbons showed MI hysteretic behavior depending on the deposited layer thicknesses with an optimum response for the thickness of 20 nm whereas no hysteretic behavior was measured for Ni-deposited ribbons. This behavior is explained according to the exchange coupling between magnetization of electrodeposited layers and magnetic ribbons with respect to different magnetic properties of Co and Ni at different thicknesses. Also the MI response of Ni- and Co-deposited ribbons enhanced significantly at low thicknesses relative to bare ribbon. By increasing the thickness of deposited layers, MI response decreases considerably. Differences in MI ratios of Co- and Ni-deposited ribbons are explained according to exchange length, crystallinity and roughness of deposited layers. Our results could address a simple way to achieve a higher MI response, and explains physical aspects of exchange coupling in MI response all towards a better performance of magnetic field sensors.
Magnetic and microstructural properties of nanocrystalline exchange coupled PrFeB permanent magnets
Goll, D.; Seeger, M.; Kronmüller, H.
1998-05-01
Nanocrystalline exchange coupled Pr 2Fe 14B single-phase and Pr 2Fe 14B+α-Fe two-phase magnets with grain sizes of about 20 nm were produced using the melt-spinning procedure. In the stoichiometric Pr 2Fe 14B composition a significantly enhanced remanence of JR=0.95 T was achieved in comparison with conventional Pr-rich and therefore decoupled isotropic PrFeB magnets ( JR⩽0.5 JS=0.78 T). In the composite magnets with overstoichiometric Fe a further enhancement of the remanence is possible. Values up to JR=1.42 T and ( BH) max=180.7 kJ/m 3 were obtained. As there exists no spin reorientation in PrFeB magnets, our attention was not only directed to the magnetic behaviour at room temperature but also to the magnetic properties in the whole ferromagnetic temperature range. The microstructural parameters Neff, αK and αex describing the influence of the non-ideal microstructure and the effect of the exchange coupling on the coercive field were determined within the framework of the nucleation model from the temperature dependence of the coercive field. Furthermore, reversibility measurements of the demagnetization curves in the second quadrant give important information about the magnetization processes in exchange coupled magnets. Moreover, we have investigated the law of approach to ferromagnetic saturation of the single-phase magnet in comparison with the decoupled one. The magnetic results are correlated with TEM investigations of the real microstructure.
Microwave-assisted shingled magnetic recording simulations on an exchange-coupled composite medium
Tanaka, T.; Kashiwagi, S.; Kanai, Y.; Matsuyama, K.
2016-10-01
The potential of microwave-assisted magnetic recording combined with the shingled recording scheme has been studied by simulating read/write processes on exchange-coupled composite media focusing on recording characteristics in the cross-track direction. Microwave fields enhance writability, especially at the track edge, resulting in lower noise and higher signal-to-noise ratio (SNR), which enables higher track density in the shingled recording scheme. Read/write simulations of microwave-assisted shingled recording achieve 1.4 Mtracks/in. while retaining high SNR. Further increases in SNR and track density will require either a narrower reader or track edge noise reduction.
Schwingenschlögl, Udo
2009-07-01
We consider the magnetic interaction of manganese phtalocyanine (MnPc) absorbed on Pb layers that were grown on a Si substrate. We perform an ab initio calculation of the density of states and Kondo temperature as a function of the number of Pb monolayers. Comparison to experimental data [Y.-S. Fu et al., Phys. Rev. Lett. 99, 256601 (2007)] then allows us to determine the exchange coupling constant J between the spins of the adsorbed molecules and those of the Pb host. This approach gives rise to a general and reliable method for obtaining J by combining experimental and numerical results.
Statistical exchange-coupling errors and the practicality of scalable silicon donor qubits
Song, Yang; Das Sarma, S.
2016-12-01
Recent experimental efforts have led to considerable interest in donor-based localized electron spins in Si as viable qubits for a scalable silicon quantum computer. With the use of isotopically purified 28Si and the realization of extremely long spin coherence time in single-donor electrons, the recent experimental focus is on two-coupled donors with the eventual goal of a scaled-up quantum circuit. Motivated by this development, we simulate the statistical distribution of the exchange coupling J between a pair of donors under realistic donor placement straggles, and quantify the errors relative to the intended J value. With J values in a broad range of donor-pair separation ( 5 quantum computer.
Magnetic interactions in exchange-coupled yet unbiased IrMn/NiCu bilayers
Cichelero, R.; Harres, A.; Sossmeier, K. D.; Schmidt, J. E.; Geshev, J.
2013-10-01
This paper reports experimental and model magnetization results obtained on exchange-coupled ferromagnet/antiferromagnet (FM/AF) bilayers that show zero net bias. The coercivity of the films, either irradiated with He or implanted with Ge ions at 40 keV, varies significantly with the fluence used. We employed the remanence plots technique in order to estimate the nature of the interactions present and check if there exists a correlation between their type and the coercivity variations. The analysis of the remanence plots through numerical simulations based on the Landau-Lifshitz-Gilbert equation demonstrated that outcomes of interactions within the FM layer could be distinguished from those coming from coupling at the FM/AF interface and that demagnetizing interaction effects could be achieved without the presence of dipolar interactions. Our findings indicate that such experiments could give selective information on modifications caused by a post-deposition treatment in each layer of the film.
Sánchez-Fuentes, María del Mar; Santos-Iglesias, Pablo
2016-01-01
The study of sexual satisfaction in Spain is scarce and has proceeded atheoretically. This study aimed at examining sexual satisfaction in 197 Spanish heterosexual couples based on the Interpersonal Exchange Model of Sexual Satisfaction. Men and women reported equal satisfaction. Men's sexual satisfaction was predicted by their own relationship satisfaction, balance of sexual rewards and costs, and comparison level of sexual rewards and costs. Women's sexual satisfaction was predicted by their own relationship satisfaction, balance of sexual rewards and costs, comparison level of sexual rewards and costs, equality of sexual costs, and their partner's balance of sexual rewards and costs. These results provide with a better understanding of the mechanisms that explain sexual satisfaction in Spanish couples. Implications for research and therapy are discussed.
Yakushiji, Kay; Sugihara, Atsushi; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji
2017-02-01
We systematically studied the interlayer exchange coupling (IEC) in a perpendicular synthetic antiferromagnetically coupled structure having an Ir spacer layer for perpendicular magnetic tunnel junctions (p-MTJs). We found a broader peak in IEC energy density (Jex) versus spacer thickness (tIr) compared with the case of using a Ru spacer. The highest IEC energy density was 2.6 erg/cm2 at a tIr of about 5 nm. The p-MTJ nanopillars had a high magnetoresistance ratio (131%) as well as a high spin-transfer torque (STT) switching efficiency (about 2). An Ir spacer can be used to make a stable reference layer for STT magnetoresistive random access memory.
Influence of interface exchange coupling in perpendicular anisotropy [Pt/Co]50/TbFe bilayers
Energy Technology Data Exchange (ETDEWEB)
Mangin, S.; Hauet, T.; Fischer, P.; Kim, D.H.; Kortright, J.B.; Chesnel, K.; Arenholz, E.; Fullerton, Eric E.
2007-10-10
We present the magnetization evolution of perpendicular anisotropy TbFe and [Co/Pt]{sub 50} thin films either in direct contact resulting in antiferromagnetic interfacial coupling or separated by a thick Pt layer. Magnetometry and x-ray magnetic circular dichroism spectroscopy determine the spatially averaged magnetic properties. Resonant magnetic x-ray small-angle scattering and magnetic soft X-ray transmission microscopy probed the domain configurations and correlations in the reversal processes. While the Co/Pt multilayer reverses by domain propagation, the TbFe magnetization reversal is found to be dominated either by coherent magnetization reversal processes or by lateral domain formation depending on the interface exchange coupling. In the presence of lateral domains, dipolar field induced domain replication phenomena are observed.
Directory of Open Access Journals (Sweden)
Claudio Corradini
2012-01-01
Full Text Available Specific HPLC approaches are essential for carbohydrate characterization in food products. Carbohydrates are weak acids with pKa values in the range 12–14 and, consequently, at high pH can be transformed into oxyanions, and can be readily separated using highly efficient anion-exchange columns. Electrochemical detection in HPLC has been proven to be a powerful analytical technique for the determination of compounds containing electroactive groups; pulsed amperometric detection of carbohydrates is favourably performed by taking advantage of their electrocatalytic oxidation mechanism at a gold working electrode in a basic media. High-performance Anion Exchange Chromatography (HPAEC at high pH coupled with pulsed electrochemical detection (PED is one of the most useful techniques for carbohydrate determination either for routine monitoring or research application. This technique has been of a great impact on the analysis of oligo- and polysaccharides. The compatibility of electrochemical detection with gradient elution, coupled with the high selectivity of the anion-exchange stationary phases, allows mixtures of simple sugars, oligo- and polysaccharides to be separated with high resolution in a single run. A few reviews have been written on HPAEC-PED of carbohydrates of food interest in the last years. In this paper the recent developments in this field are examined.
Energy Technology Data Exchange (ETDEWEB)
Woodard, A.E., E-mail: awoodard@nd.edu [Laboratorio Tandar, Comision Nacional de Energia Atomica, B1650KNA San Martin, Buenos Aires (Argentina); Figueira, J.M. [Laboratorio Tandar, Comision Nacional de Energia Atomica, B1650KNA San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, C1033AAJ Ciudad de Buenos Aires (Argentina); Otomar, D.R. [Instituto de Fisica, Universidade Federal Fluminense, Gragoata, Niteroi, R. J., 24210-340 (Brazil); Fernandez Niello, J.O. [Laboratorio Tandar, Comision Nacional de Energia Atomica, B1650KNA San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, C1033AAJ Ciudad de Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, Universidad de San Martin, B1650BWA San Martin, Buenos Aires (Argentina); Lubian, J. [Instituto de Fisica, Universidade Federal Fluminense, Gragoata, Niteroi, R. J., 24210-340 (Brazil)
2012-01-01
Angular distributions for the inelastic scattering of the weakly bound {sup 6}Li nucleus from a {sup 144}Sm target (associated with the contributions of both the 2{sub 1}{sup +} and 3{sub 1}{sup -144}Sm excited states together) were measured at bombarding energies close to the Coulomb barrier. The experimental data were compared with expected results based on continuum discretized coupled-channel (CDCC) calculations. The results confirm that it is essential to include continuum-continuum couplings to reproduce the experimental data. The analysis demonstrates that inelastic scattering data can be a critical tool in testing full CDCC calculations involving weakly bound nuclei.
DEFF Research Database (Denmark)
Kaiser, W.; Bach, L.; Reithmaier, J. P.;
2003-01-01
37 GHz direct-modulation bandwidth could be obtained by a multi-section design with an integrated weakly coupled DBR grating. The laser shows side mode suppression ratios of 45 dB and output powers exceeding 20 mW.......37 GHz direct-modulation bandwidth could be obtained by a multi-section design with an integrated weakly coupled DBR grating. The laser shows side mode suppression ratios of 45 dB and output powers exceeding 20 mW....
Spin-orbit torque switching without an external field using interlayer exchange coupling
Lau, Yong-Chang; Betto, Davide; Rode, Karsten; Coey, J. M. D.; Stamenov, Plamen
2016-09-01
Manipulation of the magnetization of a perpendicular ferromagnetic free layer by spin-orbit torque (SOT) is an attractive alternative to spin-transfer torque (STT) in oscillators and switches such as magnetic random-access memory (MRAM) where a high current is passed across an ultrathin tunnel barrier. A small symmetry-breaking bias field is usually needed for deterministic SOT switching but it is impractical to generate the field externally for spintronic applications. Here, we demonstrate robust zero-field SOT switching of a perpendicular CoFe free layer where the symmetry is broken by magnetic coupling to a second in-plane exchange-biased CoFe layer via a nonmagnetic Ru or Pt spacer. The preferred magnetic state of the free layer is determined by the current polarity and the sign of the interlayer exchange coupling (IEC). Our strategy offers a potentially scalable solution to realize bias-field-free switching that can lead to a generation of SOT devices, combining a high storage density and endurance with a low power consumption.
Tailoring coercivity of unbiased exchange-coupled ferromagnet/antiferromagnet bilayers
Energy Technology Data Exchange (ETDEWEB)
Sossmeier, K. D.; Schafer, D.; Bastos, A. P. O.; Schmidt, J. E.; Geshev, J. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91501-970 Rio Grande do Sul (Brazil)
2012-07-01
This paper reports experimental results obtained on unconventional exchange-coupled ferromagnet/antiferromagnet (FM/AF) system showing zero net bias. The Curie temperature of the FM (NiCu) is lower than the blocking temperature of the AF (IrMn). Samples were either annealed or irradiated with He, Ar, or Ge ions at 40 keV. Due to the exchange coupling at the FM/AF interface, the coercivity (H{sub C}) of the as-deposited FM/AF bilayer is rather higher than that of the corresponding FM single layer. We found that by choosing a proper ion fluence or annealing temperature, it is possible to controllably vary H{sub C}. Ion irradiation of the FM single layer has lead to only a decrease of H{sub C} and annealing or He ion irradiation has not caused important changes at the FM/AF interface; nevertheless, a twofold increase of H{sub C} was obtained after these treatments. Even more significant enhancement of H{sub C} was attained after Ge ion irradiation and attributed to ion-implantation-induced modification of only the FM layer; damages of the FM/AF interface, on the other hand, decrease the coercivity.
Yang, Gengliang; Feng, Sha; Liu, Haiyan; Yin, Junfa; Zhang, Li; Cai, Liping
2007-07-01
A weak ion exchange monolithic column prepared by modifying the GMA-MAA-EDMA (glycidyl methacrylate-methacrylic acid-ethylene glycol dimethacrylate) monoliths with ethylenediamine was applied to remove matrix compounds in biological fluid. Using this monolithic column, on-line clean-up and screening of oxacillin and cloxacillin in human urine and plasma samples had been investigated. Chromatography was performed by reversed-phase HPLC on a C(18) column with ultraviolet detection at 225 nm. Results showed that the ion exchange monolithic column could be used for deproteinization and retaining oxacillin and cloxacillin in human urine and plasma, which provided a simple and fast method for assaying drugs in human urine and plasma.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Based on the determined affinity series of rare earth element complexes with IMDA for the anion-exchangers, purification of macroquantities of Nd3+ from Y3+, Sm3+ from Ho3+, La3+ from Nd3+ and La3+ from Pr3+ on the weakly basic gel anion-exchanger Amberlite IRA-68 was studied. Using the presented method on 1 L of Amberlite IRA-68 in the acetate form, it is possible to obtain about 240 g Nd2O3 purified from Y2O3. Great difference in affinity of La3+ and Nd3+ as well as Pr3+ complexes for this anion-exchanger in the acetate form indicates the possibility of applying this process for purification of lanthanum on the increased scale. On 1 L of Amberilte IRA-68 in the acetate form it is possible to obtain about 1125 g La2O3 purified from Nd2O3. On the basis of these results it can be assumed that unique properties of polyacrylate anion-exchangers enable their application for separation of rare earth elements.
Mori, Masanobu; Ikedo, Mikaru; Hu, Wenzhi; Helaleh, Murad I H; Xu, Qun; Itabashi, Hideyuki; Tanaka, Kazuhiko
2005-10-28
The high-speed ion-exclusion chromatographic determination of dissolved carbon dioxide, i.e., carbonic acid, hydrogencarbonate or carbonate, with conductivity detection was obtained using a small column packed with a weakly acidic cation-exchange resin in the H+-form (40 mm long x 4.6 mm i.d., 3 microm-particle and 0.1 meq./ml-capacity). Two different ion-exchange resin columns, which were a strongly acidic cation-exchange resin in the K+-form and a strongly basic anion-exchange resin in the OH- -form, were connected after the separation column. The sequence of columns could convert dissolved carbon dioxide to KOH having high conductivity response. The enhancement effect for dissolved carbon dioxide could retain even on the vast chromatographic runs, by using the enhancement columns with high ion-exchange capacity above 1.0 meq./ml. The retention time was in 60 s at flow-rate of 1.2 ml/min. The calibration graph of dissolved carbon dioxide estimated as H2CO3- was linear in the range of 0.005-10 mM. The detection limit at signal to noise of 3 was 0.15 microM as H2CO3-. This method was applicable to several rainwater and tap water samples.
Caridad, José M.; Winters, Sinéad; McCloskey, David; Duesberg, Georg S.; Donegan, John F.; Krstić, Vojislav
2017-01-01
Reproducible and enhanced optical detection of molecules in low concentrations demands simultaneously intense and homogeneous electric fields acting as robust signal amplifiers. To generate such sophisticated optical near-fields, different plasmonic nanostructures were investigated in recent years. These, however, exhibit either high enhancement factor (EF) or spatial homogeneity but not both. Small interparticle gaps or sharp nanostructures show enormous EFs but no near-field homogeneity. Meanwhile, approaches using rounded and separated monomers create uniform near-fields with moderate EFs. Here, guided by numerical simulations, we show how arrays of weakly-coupled Ag nanohelices achieve both homogeneous and strong near-field enhancements, reaching even the limit forreproducible detection of individual molecules. The unique near-field distribution of a single nanohelix consists of broad hot-spots, merging with those from neighbouring nanohelices in specific array configurations and generating a wide and uniform detection zone (“hot-volume”). We experimentally assessed these nanostructures via surface-enhanced Raman spectroscopy, obtaining a corresponding EF of ~107 and a relative standard deviation <10%. These values demonstrate arrays of nanohelices as state-of-the-art substrates for reproducible optical detection as well as compelling nanostructures for related fields such as near-field imaging. PMID:28358022
Coupled effects of aging and weak magnetic fields on sequestration of selenite by zero-valent iron.
Liang, Liping; Guan, Xiaohong; Shi, Zhong; Li, Jialing; Wu, Yinan; Tratnyek, Paul G
2014-06-03
The sequestration of Se(IV) by zero-valent iron (ZVI) is strongly influenced by the coupled effects of aging ZVI and the presence of a weak magnetic field (WMF). ZVI aged at pH 6.0 with MES as buffer between 6 and 60 h gave nearly constant rates of Se(IV) removal with WMF but with rate constants that are 10- to 100-fold greater than without. XANES analysis showed that applying WMF changes the mechanism of Se(IV) removal by ZVI aged for 6-60 h from adsorption followed by reduction to direct reduction. The strong correlation between Se(IV) removal and Fe2+ release suggests direct reduction of Se(IV) to Se(0) by Fe0, in agreement with the XANES analysis. The numerical simulation of ZVI magnetization revealed that the WMF influence on Se(IV) sequestration is associated mainly with the ferromagnetism of ZVI and the paramagnetism of Fe2+. In the presence of the WMF, the Lorentz force gives rise to convection in the solution, which narrows the diffusion layer, and the field gradient force, which tends to move paramagnetic ions (esp. Fe2+) along the higher field gradient at the ZVI particle surface, thereby inducing nonuniform depassivation and eventually localized corrosion of the ZVI surface.
Ground state energy of the δ-Bose and Fermi gas at weak coupling from double extrapolation
Prolhac, Sylvain
2017-04-01
We consider the ground state energy of the Lieb–Liniger gas with δ interaction in the weak coupling regime γ \\to 0 . For bosons with repulsive interaction, previous studies gave the expansion {{e}\\text{B}}≤ft(γ \\right)≃ γ -4{γ3/2}/3π +≤ft(1/6-1/{π2}\\right){γ2} . Using a numerical solution of the Lieb–Liniger integral equation discretized with M points and finite strength γ of the interaction, we obtain very accurate numerics for the next orders after extrapolation on M and γ. The coefficient of {γ5/2} in the expansion is found to be approximately equal to -0.001 587 699 865 505 944 989 29 , accurate within all digits shown. This value is supported by a numerical solution of the Bethe equations with N particles, followed by extrapolation on N and γ. It was identified as ≤ft(3\\zeta (3)/8-1/2\\right)/{π3} by G Lang. The next two coefficients are also guessed from the numerics. For balanced spin 1/2 fermions with attractive interaction, the best result so far for the ground state energy has been {{e}\\text{F}}≤ft(γ \\right)≃ {π2}/12-γ /2+{γ2}/6 . An analogue double extrapolation scheme leads to the value -\\zeta (3)/{π4} for the coefficient of {γ3} .
Caridad, José M; Winters, Sinéad; McCloskey, David; Duesberg, Georg S; Donegan, John F; Krstić, Vojislav
2017-03-30
Reproducible and enhanced optical detection of molecules in low concentrations demands simultaneously intense and homogeneous electric fields acting as robust signal amplifiers. To generate such sophisticated optical near-fields, different plasmonic nanostructures were investigated in recent years. These, however, exhibit either high enhancement factor (EF) or spatial homogeneity but not both. Small interparticle gaps or sharp nanostructures show enormous EFs but no near-field homogeneity. Meanwhile, approaches using rounded and separated monomers create uniform near-fields with moderate EFs. Here, guided by numerical simulations, we show how arrays of weakly-coupled Ag nanohelices achieve both homogeneous and strong near-field enhancements, reaching even the limit forreproducible detection of individual molecules. The unique near-field distribution of a single nanohelix consists of broad hot-spots, merging with those from neighbouring nanohelices in specific array configurations and generating a wide and uniform detection zone ("hot-volume"). We experimentally assessed these nanostructures via surface-enhanced Raman spectroscopy, obtaining a corresponding EF of ~10(7) and a relative standard deviation <10%. These values demonstrate arrays of nanohelices as state-of-the-art substrates for reproducible optical detection as well as compelling nanostructures for related fields such as near-field imaging.
Li, Sheng; Lee, Su Youn; Chung, Ka Young
2015-01-01
Conformational change and protein-protein interactions are two major mechanisms of membrane protein signal transduction, including G protein-coupled receptors (GPCRs). Upon agonist binding, GPCRs change conformation, resulting in interaction with downstream signaling molecules such as G proteins. To understand the precise signaling mechanism, studies have investigated the structural mechanism of GPCR signaling using X-ray crystallography, nuclear magnetic resonance (NMR), or electron paramagnetic resonance. In addition to these techniques, hydrogen/deuterium exchange mass spectrometry (HDX-MS) has recently been used in GPCR studies. HDX-MS measures the rate at which peptide amide hydrogens exchange with deuterium in the solvent. Exposed or flexible regions have higher exchange rates and excluded or ordered regions have lower exchange rates. Therefore, HDX-MS is a useful tool for studying protein-protein interfaces and conformational changes after protein activation or protein-protein interactions. Although HDX-MS does not give high-resolution structures, it analyzes protein conformations that are difficult to study with X-ray crystallography or NMR. Furthermore, conformational information from HDX-MS can help in the crystallization of X-ray crystallography by suggesting highly flexible regions. Interactions between GPCRs and downstream signaling molecules are not easily analyzed by X-ray crystallography or NMR because of the large size of the GPCR-signaling molecule complexes, hydrophobicity, and flexibility of GPCRs. HDX-MS could be useful for analyzing the conformational mechanism of GPCR signaling. In this chapter, we discuss details of HDX-MS for analyzing GPCRs using the β2AR-G protein complex as a model system.
Energy Technology Data Exchange (ETDEWEB)
Boltz, J.C. (ed.)
1992-09-01
EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.
Lämmerhofer, Michael; Nogueira, Raquel; Lindner, Wolfgang
2011-06-01
We recently introduced a mixed-mode reversed-phase/weak anion-exchange type separation material based on silica particles which consisted of a hydrophobic alkyl strand with polar embedded groups (thioether and amide functionalities) and a terminal weak anion-exchange-type quinuclidine moiety. This stationary phase was designed to separate molecules by lipophilicity and charge differences and was mainly devised for peptide separations with hydroorganic reversed-phase type elution conditions. Herein, we demonstrate the extraordinary flexibility of this RP/WAX phase, in particular for peptide separations, by illustrating its applicability in various chromatographic modes. The column packed with this material can, depending on the solute character and employed elution conditions, exploit attractive or repulsive electrostatic interactions, and/or hydrophobic or hydrophilic interactions as retention and selectivity increments. As a consequence, the column can be operated in a reversed-phase mode (neutral compounds), anion-exchange mode (acidic compounds), ion-exclusion chromatography mode (cationic solutes), hydrophilic interaction chromatography mode (polar compounds), and hydrophobic interaction chromatography mode (e.g., hydrophobic peptides). Mixed-modes of these chromatographic retention principles may be materialized as well. This allows an exceptionally flexible adjustment of retention and selectivity by tuning experimental conditions. The distinct separation mechanisms will be outlined by selected examples of peptide separations in the different modes.
Magnetization reversal and magnetoresistance behavior of exchange coupled SrRuO3 bilayer
Qin, Qing; Song, Wendong; He, Shikun; Yang, Ping; Chen, Jingsheng
2017-06-01
Magnetic interlayer coupling of a bilayer structure composed of a tetragonal phase SrRuO3 (T-SRO) and a monoclinic phase SRO (M-SRO) was investigated by means of magnetization and magneto-transport measurements. The T-SRO showed large uniaxial perpendicular anisotropy and M-SRO exhibited longitudinal anisotropy. The thickness of the M-SRO top layer was varied and the bottom T-SRO layer remained unchanged. Magnetic hysteresis (M-H) loops showed that as thickness of the M-SRO layer is 4 nm, the M-SRO layer was fully perpendicularly coupled to the T-SRO layer. As the thickness of M-SRO further increased to 8 nm and above, the magnetization reversals of T- and M-SRO phase were clearly distinguished. The angular dependent magnetoresistance (MR) of the bilayers showed consistent results with the M-H loops, which suggests that angle dependent MR may offer a new way for the investigation of exchange coupling between two magnetic layers.
Ito, Kazuaki; Takayama, Yohichi; Ikedo, Mikaru; Mori, Masanobu; Taoda, Hiroshi; Xu, Qun; Hu, Wenzhi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko
2004-06-11
The determination of seven aliphatic carboxylic acids, formic, acetic, propionic, isobutyric, n-butyric, isovaleric and n-valeric acids in anaerobic digestion process waters was examined using ion-exclusion chromatography with conductimetric detection. The analysis of these biologically important carboxylic acids is necessary as a measure for evaluating and controlling the process. The ion-exclusion chromatography system employed consisted of polymethacrylate-based weakly acidic cation-exchange resin columns (TSKgel OApak-A or TSKgel Super IC-A/C). weakly acidic eluent (benzoic acid), and conductimetric detection. Particle size and cation-exchange capacity were 5 microm and 0.1 meq./ml for TSKgel OApak-A and 3 microm and 0.2 meq./ml for TSKgel Super IC-A/C, respectively. A dilute eluent (1.0-2.0 mM) of benzoic acid was effective for the high resolution and highly conductimetric detection of the carboxylic acids. The good separation of isobutyric and n-butyric acids was performed using the TSKgel Super IC-A/C column (150 mm x 6.0 mm i.d. x 2). The simple and good chromatograms were obtained by the optimized ion-exclusion chromatography conditions for real samples from mesophilic anaerobic digestors, thus the aliphatic carboxylic acids were successfully determined without any interferences.
New avenues to efficient chemical synthesis of exchange coupled hard/soft nanocomposite magnet.
Lee, Don Keun; Cha, Hyun Gil; Kim, Young Hwan; Kim, Chang Woo; Ji, Eun Sun; Kang, Young Soo
2009-07-01
Nd-Fe-B ultrafine amorphous alloy particles were prepared by reaction of metal ions with borohydride in aqueous solution. Monodispersed Fe nanoparticles were synthesized under an argon atmosphere via thermal decomposition of Fe(2+)-oleate2. Exchange coupled Nd2Fe14B/Fe nanocomposite magnets have been prepared by self-assembly using surfactant. The crystal structure of the synthesized nanoparticles was identified by using X-ray powder diffraction (XRD). The size and shape of nanoparticles were obtained by transmission electron microscope (TEM). Thermogravimetry using a microbalance with magnetic field gradient positioned below the sample was used for the measurement of a thermomagnetic analysis (TMA) curve showing the downward magnetic force versus temperature.
Exchange-coupled nanoscale SmCo/NdFeB hybrid magnets
Energy Technology Data Exchange (ETDEWEB)
Wang, Dapeng; Poudyal, Narayan; Rong, Chuanbing; Zhang, Ying; Kramer, Matthew J.; Liu, J. Ping
2012-05-11
Nanoscalehybridmagnets containing SmCo5 and Nd2Fe14B hard magnetic phases have been produced via a novel “in-one-pot” processing route. The grain size of the processed bulk composite materials is controlled below 20 nm. The refinement of the nanoscale morphology leads to effective inter-phase exchange coupling that results in single-phase like magnetic properties. Energy product of 14 MGOe was obtained in the isotropic nanocomposite magnets at room temperature. At elevated temperatures, the hybridmagnets have greatly improved thermal stability compared to the Nd2Fe14B single-phase counterpart and have substantially increased magnetization and energy products compared to the single-phase SmCo5 counterpart.
Bilayer exchange coupling and Neel temperature of YBa2Cu3O6.2
Indian Academy of Sciences (India)
Govinda; A Pratap; Ajay; R S Tripathi
2000-03-01
The present paper attempts to study the Neel temperature of bilayer antiferromagnetic cuprate YBa2Cu3O6.2 within anisotropic Heisenberg model. The double time Green’s function formalism within random phase approximation (RPA) has been used to obtain various correlation functions. The magnetization and the Neel temperature (N) are evaluated. It is observed that the ratio of intrabilayer to inplane exchange coupling ( = ⊥/∥) plays an important role in the magnetic dynamics of bilayer systems. The recent experimental data of bilayer system YBa2 Cu3O6.2 have been used to estimate the ratio from the expression for Neel temperature. The estimated values of spin gap and the ratio of hopping matrix elements ⊥=∥ are found to be in fairly good agreement with the existing experimental results.
Indirect exchange interaction in Rashba-spin-orbit-coupled graphene nanoflakes
Nikoofard, Hossein; Semiromi, Ebrahim Heidari
2016-10-01
We study the indirect exchange interaction, named Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling, between localized magnetic impurities in graphene nanoflakes with zig-zag edges in the presence of the Rashba spin-orbit interaction (RSOI). We calculate the isotropic and anisotropic RKKY amplitudes by utilizing the tight-binding (TB) model. The RSOI, as a gate tunable variable, is responsible for changes of the RKKY amplitude. We conclude that there is not any switching of the magnetic order (from ferro- to antiferro-magnetic and vice versa) in such a system through the RSOI. The dependence of the RKKY amplitude on the positions of the magnetic impurities and the size of the system is studied. The symmetry breaking, which can occur due to the Rashba interaction, leads to spatial anisotropy in the RKKY amplitude and manifests as collinear and noncollinear terms. Our results show the possibility of control and manipulation of spin correlations in carbon spin-based nanodevices.
Entanglement creation and distribution on a graph of exchange-coupled qutrits
Hadley, C; Bose, S; Hadley, Christopher; Serafini, Alessio; Bose, Sougato
2005-01-01
We propose a protocol that allows both the creation and distribution of entanglement, resulting in two distant parties (Alice and Bob) conclusively sharing a bipartite Bell State. The system considered is as graph of three-level objects ("qutrits") coupled by SU(3) exchange operators. The protocol begins with a third party (Charlie) encoding two lattice sites in unentangled states, and allowing unitary evolution under time. Alice and Bob perform a projective measurement on their respective qutrits at a given time, and obtain a maximally-entangled Bell state with a certain probablility. We also consider two protocols, one based on simple repetition and the other based on successive measurements and conditional resetting, and show that the cumulative probability of creating a Bell state between Alice and Bob tends to unity.
Kondrashov, V. I.
The complete mathematical model of coupled heat and moisture exchange in a global system is offered: stored production - protecting constructions of storehouses - surrounding medium. The calculation is carried out under the implicit finite-difference scheme with use of splitting, factorization and fast converging iterations. The mathematical basis of calculation underlies designed software for optimization of projection and operation of farm production storehouses. Annotation Es wurde ein komplettes mathematisches Modell des wechselseitigen Wärme- und Wasseraustausches in einem globalen System: Umwelt - Schutzspeicherkonstruktion - zu lagernde Produktion vorge-schlagen. Die Berechnung erfolgt anhand des latenten, endlich differentialen Schemas. Dabei werden Spaltung, zusammenströmende Iterationen u. a. eingesetzt. Basierend auf diese mathematische Berechnung wurde Software entwickelt für die optimierende Projektierung/Planung von landwirtschaftlichen Produktionsspeichern.
Influence of dynamic crystallization on exchange-coupled NdFeB nanocrystalline permanent magnets
Institute of Scientific and Technical Information of China (English)
ZHANG Ran; LIU Ying; MA Yilong; ZHANG Longfeng; XU Jianchuan; GAO Shengji
2006-01-01
Dynamic crystallization was introduced to improve the magnetic properties of NdFeB nanocrystalline permanent magnets by optimizing microstructure. The microstructure was studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It has been determined that, compared with the conventional heat treatment, dynamic crystallization can shorten the crystallization time. Moreover, dynamic crystallization can refine grains, enhance the exchange-coupled interaction among grains, and promote the magnetic properties. As a result, the optimal magnetic properties of Nd10.5(FeCoZr)83.4B6.1(Br＝0.685T, Hci ＝732 kA·m -1 , Hcb ＝429 kA·m-1 ,( BH )m=75 kJ·m -3 ) are obtained after dynamic crystallization heat treatment at 700 ℃ for 10 min.
Exchange coupling and noncollinear magnetic states in Ni/Fen/Ni(1 0 0) multilayers
Malonda-Boungou, B. R.; Stojić, N.; Binggeli, N.; M'Passi-Mabiala, B.
2015-01-01
The Ni interlayer exchange coupling (IEC) and the atomic-scale magnetic configurations in fcc Ni /Fen /Ni (1 0 0) multilayers, with ultrathin Fe spacers, are investigated using first-principles density-functional theory including the noncollinear spin formalism. The trends with changing Fe thickness (n) between 3 and 5 monolayers (MLs) are examined. For n = 3 and 4 MLs, we find the ground state to display antiferromagnetic IEC between the Ni films, while for the 5-ML Fe spacer, the IEC changes into ferromagnetic. Upon reversal of the magnetization alignment, from antiparallel to parallel, between the Ni films with 3- and 4-ML thick Fe spacer, we find noncollinear magnetic configurations in the Fe layer as the lowest-energy states, which are related to the magnetic instability towards noncollinear solutions in bulk γ -Fe.
Energy Technology Data Exchange (ETDEWEB)
Martin, F.; Riera, A.; Yanez, M.
1986-05-15
We point out a fundamental difference between the molecular treatment of charge exchange X/sup n/++H(1s) and X/sup n/++He(1s/sup 2/) collisions, which is that the latter process involves molecular states that are formally autoionizing. Then standard ab initio methods do not, in general, yield the relevant wave functions that are needed in the collision treatment, irrespective of whether quasimolecular autoionization be significant or not during the collision. We implement a particularly simple and useful form of the Feshbach formalism to calculate the energies of those two electron systems, and a method to evaluate the corresponding dynamical couplings is presented for the first time. Our implementation of this formalism together with the new computational techniques involved are presented in detail.
Influence of the Fe-Co ratio on the exchange coupling in TbFeCo/[Co/Pt] heterostructures
Hebler, B.; Böttger, S.; Nissen, D.; Abrudan, R.; Radu, F.; Albrecht, M.
2016-05-01
We report on a systematic study of exchange coupled heterostructures, consisting of ferromagnetic [Co/Pt] multilayers and ferrimagnetic (FI) T bxF e100 -x -yC oy (20 nm) alloy thin films with varying composition exhibiting strong perpendicular magnetic anisotropy. In particular, the impact of the Tb content and ratio of Fe and Co of the amorphous FI alloy on the exchange interaction at the interface was investigated. In this paper, the magnetic properties of single ternary TbFeCo thin films were analyzed in a broad composition range and compared to coupled TbFeCo/[Co/Pt] heterostructures. While a rather linear dependence of the exchange coupling strength was observed for Fe/Co-dominated ferrimagnets with increasing amount of Co, a nonlinear behavior is observed for Tb-dominated alloys. The latter behavior is governed by the variation of the exchange stiffness of the ferrimagnet. Additionally, by using element-specific x-ray magnetic circular dichroism measurements, the thickness of the interface domain wall (IDW) in the ferrimagnet, which is formed during the reversal of the ferromagnet, can be extracted. An inverse correlation between the IDW thickness and the exchange coupling strength at the interface was deduced.
Effect of chromium interlayer on magnetic exchange coupling of SmCo/Cr/TbFeCo multilayer thin films
Institute of Scientific and Technical Information of China (English)
ZHANG Feng; HUANG Zhixin; LAN Zhigao; CUI Zengli; GUO Jihua; CHENG Weiming; YANG Xiaofei
2008-01-01
A series of SmCo/Cr/TbFeCo multilayer thin films with perpendicular anisotropy were prepared by RF- magnetron sputtering system, and the effects of Cr interlayer thickness on magnetic properties and interlayer exchange coupling were investigated. It was found that the magnetic properties varied with the thickness of Cr interlayer, especially the values of saturation magnetization Ms and the coercivity Hc fluctuated periodically with the thickness of Cr interlayer. STM images revealed that the variation of coercivity Hc was attributed to the microstructure change of SmCo layer influenced by Cr interlayer, and the variation of Ms was related to interlayer exchange coupling.
Effect of Cu surface segregation on the exchange coupling field of NiFe/FeMn bilayers
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The NiFe/FeMn bilayers with different buffer layers (Ta or Ta/Cu) were prepared by magnetron sputtering.Results show that the exchange coupling field of NiFe/FeMn films with Ta buffer is higher than that of the films with Ta/ Cu buffer. We analysed the reasons by investigating the crystallographic texture, surface roughness and surface segregation of both films, respectively. We found that the decrease of the exchange coupling fields of NiFe/FeMn films with Ta/Cu buffer layers was mainly caused by the Cu surface segregation on NiFe surface.
Energy Technology Data Exchange (ETDEWEB)
Cho, Daeheum; Ko, Kyoung Chul; Lee, Jin Yong, E-mail: jinylee@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Ikabata, Yasuhiro; Wakayama, Kazufumi; Yoshikawa, Takeshi [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Nakai, Hiromi, E-mail: nakai@waseda.jp [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); CREST, Japan Science and Technology Agency, Tokyo 102-0075 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)
2015-01-14
The intramolecular magnetic coupling constant (J) of diradical systems linked with five- or six-membered aromatic rings was calculated to obtain the scaling factor (experimental J/calculated J ratio) for various density functional theory (DFT) functionals. Scaling factors of group A (PBE, TPSSh, B3LYP, B97-1, X3LYP, PBE0, and BH and HLYP) and B (M06-L, M06, M06-2X, and M06-HF) were shown to decrease as the amount of Hartree-Fock exact exchange (HFx) increases, in other words, overestimation of calculated J becomes more severe as the HFx increases. We further investigated the effect of HFx fraction of DFT functional on J value, spin contamination, and spin density distributions by comparing the B3LYP analogues containing different amount of HFx. It was revealed that spin contamination and spin densities at each atom increases as the HFx increases. Above all, newly developed BLYP-5 functional, which has 5% of HFx, was found to have the scaling factor of 1.029, indicating that calculated J values are very close to that of experimental values without scaling. BLYP-5 has potential to be utilized for accurate evaluation of intramolecular magnetic coupling constant (J) of diradicals linked by five- or six-membered aromatic ring couplers.
Müstecaplıoğlu, Özgür; Hardal, Ali Ümit
2014-01-01
We investigate spin squeezing, quantum entanglement, and second-order coherence in two coupled, driven, dissipative, nonlinear cavities. We compare these quantum statistical properties for the cavities coupled with either single- or two-photon exchange. Solving the quantum optical master equation of the system numerically in the steady state, we calculate the zero-time delay second-order correlation function for the coherent, genuine two-mode entanglement parameters, an optimal spin squeezing...
Coupling and feedback between iron and sulphur in air-sea exchange
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Iron in surface seawater has been demonstrated to be the limiting nutrient factor for primary productivity in certain oceanic regions. In 1992 we reported in Nature at first Fe(Ⅱ) existence in marine aerosols over the remote Pacific and Atlantic and proposed the hypothesis of coupling and feedback between iron and sulfur in air-sea exchange. We recently detected a considerable amount of Fe(Ⅱ) in the aerosols collected during dust storm in Beijing. The concentration of Fe(Ⅱ) in the dust storm was as high as 1.8-4.3 μg@m-3 that accounted for 1.4%-2.6% of the total Fe mass concentration in aerosols, while Fe(Ⅱ) in the aerosols collected from non-dust storm days was 0.7% of the total Fe. Fe and S concentrations in the dust storm aerosol samples represent a very positive correlationship. The size distribution of Fe, Fe(Ⅱ), and S in either dust storm particles or the normal aerosols showed the same peak at 1-3 μm. The oxidation of S(Ⅳ) under natural light and UV in addition of Fe(Ⅲ) was 6.5 and 14 times faster respectively compared with that of non-addition. The photoreduction of Fe(Ⅲ) to Fe(Ⅱ), through the formation of an OH. Radical, associated with the oxidation of S(Ⅳ) to S(VI) could account for ～3%-20% of the formation of non-sea salt sulfate aerosols at Midway, central Pacific. These results further support the Fe-S coupling hypothesis. From consideration of both the marine biological production of dimethylsulphide (DMS) and the subsequent oxidation of reduced forms of sulfur in the atmosphere, the iron and sulphur cycles in both the atmosphere and the ocean may be closely coupled.
Brondino, Carlos D.; Calvo, Rafael; Atria, Ana María; Spodine, Evgenia; Nascimento, Otaciro R.; Peña, Octavio
1997-07-02
We report EPR measurements in single-crystal samples at the microwave frequencies 9.8 and 34.3 GHz and magnetic susceptibility measurements in polycrystalline samples for the ternary complex of copper with aspartic acid and phenanthroline, (L-aspartato)(1,10-phenanthroline)copper(II) hydrate. The crystal lattice of this compound is composed of two dissimilar copper ions identified as Cu(A) and Cu(B), which are in two types of copper chains called A and B, respectively, running parallel to the b crystal axis. The copper ions in the A chains are connected by the aspartic acid molecule, and those in the B chains by a chemical path that involves a carboxylate bridge and a hydrogen bond. Both chains are held together by a complex network of hydrogen bonds and by hydrophobic interactions between aromatic amines. Magnetic susceptibility data indicate a Curie-Weiss behavior in the studied temperature range (2-300 K). The EPR spectra at 9.8 GHz display a single exchange collapsed resonance for any magnetic field orientation, in the so-called strong exchange regime. Those at 34.3 GHz are within the so-called weak exchange regime and display two resonances which belong to each type of copper ion chain. The decoupling of the spectra at 34.3 GHz using a theory based on Anderson's model for the case of two weakly exchange coupled spins S = (1)/(2) allows one to obtain the angular variation of the squares of the g-factor and the peak-to-peak line width of each resonance. This model also allows one to evaluate the exchange parameter |J(AB)/k| = 2.7(6) mK associated with the chemical path connecting dissimilar copper ions. The line width data obtained for each component of the spectra at 34.3 GHz are analyzed in terms of a model based on Kubo and Tomita's theory, to obtain the exchange parameters |J(A)/k| = 0.77(2) K and |J(B)/k| = 1.44(2) K associated with the chemical paths connecting the similar copper ions of types A and B, respectively.
Institute of Scientific and Technical Information of China (English)
LI Zhong-Hua; LI Yuan; DOU Ya-Fang; GAO Jiang-Rui; ZHANG Jun-Xiang
2012-01-01
The output amplitude noises of one squeezed probe light which is at resonance throughout different optical depths media in strong- and weak-coupling-Seld regimes are investigated theoretically. By comparing the output quantum noises for different Rabi frequencies of coupling field and also for different optical depths, it is found that the optimal squeezing preservation of the probe light occurs in an optically thin medium with strong-coupling-field, where we can obtain the output squeezing ciose to the input one at nonzero detection frequency.%The output amplitude noises of one squeezed probe light which is at resonance throughout different optical depths media in strong- and weak-coupling-field regimes are investigated theoretically.By comparing the output quantum noises for different Rabi frequencies of coupling field and also for different optical depths,it is found that the optimal squeezing preservation of the probe light occurs in an optically thin medium with strong-coupling-field,where we can obtain the output squeezing close to the input one at nonzero detection frequency.
Aldaihan, S; Long, J C; Snow, W M
2016-01-01
Various theories beyond the Standard Model predict new particles with masses in the sub-eV range with very weak couplings to ordinary matter which can possess spin-dependent couplings to electrons and nucleons. Present laboratory constraints on exotic spin-dependent interactions with pseudoscalar and axial couplings for exchange boson masses between meV and eV are very poor compared to constraints on spin-independent interactions in the same mass range arising from spin-0 and spin-1 boson exchange. It is therefore interesting to analyze in a general way how one can use the strong experimental bounds on spin-independent interactions to also constrain spin-dependent interactions by considering higher-order exchange processes. The exchange of a pair of bosons between two fermions with spin-dependent couplings will possess contributions which flip spins twice and thereby generate a polarization-independent interaction energy which can add coherently between two unpolarized objects. In this paper we derive the dom...
Roodnat, J I; Zuidema, W; van de Wetering, J; de Klerk, M; Erdman, R A M; Massey, E K; Hilhorst, M T; Ijzermans, J N M; Weimar, W
2010-04-01
Between January 2000 and July 2009, 132 individuals inquired about altruistic kidney donation to strangers. These donors were willing to donate to genetically and emotionally unrelated patients. Some altruistic donors wished to donate to a specific person, but most wished to donate anonymously. In domino-paired donation, the altruistic donor donates to the recipient of an incompatible couple; the donor of that couple (domino-donor) donates to another couple or to the waiting list. In contrast to kidney-exchange donation where bilateral matching of couples is required, recipient and donor matching are unlinked in domino-paired donation. This facilitates matching for unsuccessful couples from the kidney-exchange program where blood type O prevails in recipients and is under-represented in donors. Fifty-one altruistic donors (39%) donated their kidney and 35 domino-donors were involved. There were 29 domino procedures, 24 with 1 altruistic donor and 1 domino-donor, 5 with more domino-donors. Eighty-six transplantations were performed. Donor and recipient blood type distribution in the couples limited allocation to blood type non-O waiting list patients. The success rate of domino-paired donation is dependent on the composition of the pool of incompatible pairs, but it offers opportunities for difficult to match pairs that were unsuccessful in the kidney-exchange program.
Fu, Lichun; Shuang, Chendong; Liu, Fuqiang; Li, Aimin; Li, Yan; Zhou, Yang; Song, Haiou
2014-05-15
A novel magnetic weak acid resin NDMC was self-synthesized for the removal of Cu(2+) from aqueous solutions. NDMC showed superior properties on the removal of Cu(2+) compared to commercial resins C106 and IRC-748, which was deeply investigated by adsorption isotherms and kinetic tests. The equilibrium adsorption amount of Cu(2+) onto NDMC (267.2mg/g) was almost twice as large as that onto IRC-748 (120.0mg/g). The adsorption kinetics of Cu(2+) onto the three resins fitted well with the pseudo-second-order equation. The initial adsorption rate h of NDMC was about 4 times that of C106 and nearly 8 times that of IRC-748 at the initial concentration of 500mg/L. External surface area was determined to be the key factor in rate-controlling by further analyzing the adsorption thermodynamics, kinetics parameters and physicochemical properties of the resins. NDMC resin with the smallest bead radius possessed the largest external surface and therefore exhibited the fastest kinetics. The adsorption amount of Cu(2+) onto NDMC was not influenced as the concentration of Na(+) increased from 1.0 to 10.0mM/L. Dilute HCl solution could effectively desorb Cu(2+). NDMC demonstrated high stability during 10 adsorption/desorption cycles, showing great potential in the rapid removal of Cu(2+) from wastewater.
Mori, Masanobu; Tanaka, Kazuhiko; Helaleh, Murad I H; Xu, Qun; Ikedo, Mikaru; Ogura, Yutaka; Sato, Shinji; Hu, Wenzhi; Hasebe, Kiyoshi
2003-05-16
This paper describes an ion-exclusion chromatographic system for the rapid and selective determination of ammonium ion. The optimized ion-exclusion chromatographic system was established with a polymethacrylate-based weakly basic anion-exchange resin column (TSKgel DEAE-5PW) as the separation column, an aqueous solution containing 0.05 mM tetramethylammonium hydroxide (pH 9.10) as eluent with conductimetric detection for the analyte determination. Under the optimum chromatographic conditions, ammonium ion was determined within 2.3 min with a detection limit (S/N=3) better than 0.125 microM. Ammonium ion in rain and river waters was precisely determined using this ion-exclusion chromatographic system.
Directory of Open Access Journals (Sweden)
J. O. Bash
2013-03-01
Full Text Available Atmospheric ammonia (NH3 is the primary atmospheric base and an important precursor for inorganic particulate matter and when deposited NH3 contributes to surface water eutrophication, soil acidification and decline in species biodiversity. Flux measurements indicate that the air–surface exchange of NH3 is bidirectional. However, the effects of bidirectional exchange, soil biogeochemistry and human activity are not parameterized in air quality models. The US Environmental Protection Agency's (EPA Community Multiscale Air-Quality (CMAQ model with bidirectional NH3 exchange has been coupled with the United States Department of Agriculture's (USDA Environmental Policy Integrated Climate (EPIC agroecosystem model. The coupled CMAQ-EPIC model relies on EPIC fertilization timing, rate and composition while CMAQ models the soil ammonium (NH4+ pool by conserving the ammonium mass due to fertilization, evasion, deposition, and nitrification processes. This mechanistically coupled modeling system reduced the biases and error in NHx (NH3 + NH4+ wet deposition and in ambient aerosol concentrations in an annual 2002 Continental US (CONUS domain simulation when compared to a 2002 annual simulation of CMAQ without bidirectional exchange. Fertilizer emissions estimated in CMAQ 5.0 with bidirectional exchange exhibits markedly different seasonal dynamics than the US EPA's National Emissions Inventory (NEI, with lower emissions in the spring and fall and higher emissions in July.
Bash, J. O.; Cooter, E. J.; Dennis, R. L.; Walker, J. T.; Pleim, J. E.
2013-03-01
Atmospheric ammonia (NH3) is the primary atmospheric base and an important precursor for inorganic particulate matter and when deposited NH3 contributes to surface water eutrophication, soil acidification and decline in species biodiversity. Flux measurements indicate that the air-surface exchange of NH3 is bidirectional. However, the effects of bidirectional exchange, soil biogeochemistry and human activity are not parameterized in air quality models. The US Environmental Protection Agency's (EPA) Community Multiscale Air-Quality (CMAQ) model with bidirectional NH3 exchange has been coupled with the United States Department of Agriculture's (USDA) Environmental Policy Integrated Climate (EPIC) agroecosystem model. The coupled CMAQ-EPIC model relies on EPIC fertilization timing, rate and composition while CMAQ models the soil ammonium (NH4+) pool by conserving the ammonium mass due to fertilization, evasion, deposition, and nitrification processes. This mechanistically coupled modeling system reduced the biases and error in NHx (NH3 + NH4+) wet deposition and in ambient aerosol concentrations in an annual 2002 Continental US (CONUS) domain simulation when compared to a 2002 annual simulation of CMAQ without bidirectional exchange. Fertilizer emissions estimated in CMAQ 5.0 with bidirectional exchange exhibits markedly different seasonal dynamics than the US EPA's National Emissions Inventory (NEI), with lower emissions in the spring and fall and higher emissions in July.
Simon, E.; Meixner, F.X.; Ganzeveld, L.N.; Kesselmeier, J.
2005-01-01
Detailed one-dimensional multilayer biosphere-atmosphere models, also referred to as CANVEG models, are used for more than a decade to describe coupled water-carbon exchange between the terrestrial vegetation and the lower atmosphere. Within the present study, a modified CANVEG scheme is described.
Magnetic self-assembly for the synthesis of magnetically exchange coupled MnBi/Fe–Co composites
Energy Technology Data Exchange (ETDEWEB)
Xu, Xia [Department of Chemical and Biological Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Hong, Yang-Ki, E-mail: ykhong@eng.ua.edu [Department of Electrical and Computer Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Park, Jihoon; Lee, Woncheol [Department of Electrical and Computer Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Lane, Alan M. [Department of Chemical and Biological Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Cui, Jun [Energy and Environment Directorate, Pacific Northwestern National Laboratory, Richland, WA 99354 (United States)
2015-11-15
Exchange coupled hard/soft MnBi/Fe–Co core/shell structured composites were synthesized using a magnetic self-assembly process. MnBi particles were prepared by arc-melting, and Fe–Co nanoparticles were synthesized by an oleic acid assisted chemical reduction method. Grinding a mixture of micron-sized MnBi and Fe–Co nanoparticles in hexane resulted in MnBi/Fe–Co core/shell structured composites. The MnBi/Fe–Co (95/5 wt%) composites showed smooth magnetic hysteresis loops, enhanced remanent magnetization, and positive values in the ΔM curve, indicating exchange coupling between MnBi and Fe–Co particles. - Graphical abstract: Both MnBi and Fe–Co particles were dispersed in hexane for grinding. Because of the oleic acid used during the Fe–Co nanoparticle synthesis, they could be well dispersed in hexane. During the grinding, the size of MnBi particles was decreased, hexane was evaporated, and the Fe–Co nanoparticles were concentrated in the solvent and magnetically attracted by MnBi particles, forming a core/shell structure. - Highlights: • Exchange coupled MnBi/Fe–Co composites are synthesized through magnetic selfassembly. • Magnetic exchange coupling is demonstrated by smooth magnetic hysteresis loops, enhanced remanent magnetization, and dominant positive peak in the ΔM curve. • The experimental results in magnetic properties are close to the theoretical calculation results.
Energy Technology Data Exchange (ETDEWEB)
Russier, V., E-mail: russier@glvt-cnrs.fr [ICMPE, UMR 7182 CNRS and University UPEC, 2 rue Henri Dunant, 94320 Thiais (France); Younsi, K.; Bessais, L. [ICMPE, UMR 7182 CNRS and University UPEC, 2 rue Henri Dunant, 94320 Thiais (France)
2012-03-15
In nanocomposite magnetic materials the exchange coupling between phases plays a central role in the determination of the extrinsic magnetic properties of the material: coercive field,remanence magnetization. Exchange coupling is therefore of crucial importance in composite systems made of magnetically hard and soft grains or in partially crystallized media including nanosized crystallites in a soft matrix. It has been shown also to be a key point in the control of stratified hard/soft media coercive field in the research for optimized recording media. A signature of the exchange coupling due to the nanostructure is generally obtained on the magnetization curve M(H) with a plateau characteristic of the domain wall compression at the hard/soft interface ending at the depinning of the wall inside the hard phase. This compression/depinning behavior is clearly evidenced through one dimensional description of the interface, which is rigorously possible only in stratified media. Starting from a local description of the hard/soft interface in a model for nanocomposite system we show that one can extend this kind of behavior for system of hard crystallites embedded in a soft matrix. - Highlights: Black-Right-Pointing-Pointer Exchange coupling between hard and soft components of a magnetic nanocomposite. Black-Right-Pointing-Pointer Connection between one dimensional stratified media and three dimensional model. Black-Right-Pointing-Pointer Investigation of the compression behavior of the local magnetization profile at the interface.
Origin of open recoil curves in L1{sub 0}-A1 FePt exchange coupled nanocomposite thin film
Energy Technology Data Exchange (ETDEWEB)
Goyal, Rajan [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kapoor, Akanksha [M. Tech Nanoscience and Nanotechnology, University of Delhi, Delhi 110007 (India); Lamba, S. [School of Sciences, Indira Gandhi National Open University, New Delhi 110068 (India); Annapoorni, S., E-mail: annapoornis@yahoo.co.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)
2016-11-15
Mixed phase FePt systems with intergranular coupling may be looked upon as natural exchange spring systems. The coupling strength between the soft and hard phase in these systems can be analyzed using recoil curves. However, the origin of open recoil curves depicting the breakdown of exchange coupling or anisotropy variation in hard phase is still an ambiguity and requires an in-depth analysis. In order to investigate this, an analysis of the recoil curves for L1{sub 0}–A1 FePt nanocomposite thin films of varying thickness have been performed. The switching field distribution reveals that the maximum of openness of recoil curve is directly proportional to the amount of uncoupled soft phase present in the system. The coupling between the hard and soft phase is also found to increase with the thickness of the film. Monte Carlo simulations on a model three dimensional array of interacting nanomagnetic grains provide further insight into the effect of inter granular exchange interactions between the soft and hard phases. - Highlights: • L1{sub 0}-A1 FePt nanocomposites thin films of different thickness have been fabricated by DC sputtering. • Hysteresis curve measurements exhibit perfect single phase (L1{sub 0}) like behavior for thicker films. • SFD reveals that the openness of recoil curves is directly linked with the amount of uncoupled soft (A1) phase. • Monte Carlo simulation predicts that the extent of exchange interaction increases with thickness of the film.
Energy Technology Data Exchange (ETDEWEB)
Fu, Lichun; Shuang, Chendong; Liu, Fuqiang, E-mail: jogia@163.com; Li, Aimin, E-mail: liaimin@nju.edu.cn; Li, Yan; Zhou, Yang; Song, Haiou
2014-05-01
Highlights: • The equilibrium adsorption amount of Cu{sup 2+} onto NDMC was 267.2 mg/g. • Initial adsorption rate of NDMC was 4 and 8 times that of C106 and IRC-748. • External surface area was determined to be the key factor in rate-controlling. • Adsorption amount onto NDMC was not influenced by Na{sup +} concentration. • 0.01 mM HCl solution could effectively desorb Cu{sup 2+}. - Abstract: A novel magnetic weak acid resin NDMC was self-synthesized for the removal of Cu{sup 2+} from aqueous solutions. NDMC showed superior properties on the removal of Cu{sup 2+} compared to commercial resins C106 and IRC-748, which was deeply investigated by adsorption isotherms and kinetic tests. The equilibrium adsorption amount of Cu{sup 2+} onto NDMC (267.2 mg/g) was almost twice as large as that onto IRC-748 (120.0 mg/g). The adsorption kinetics of Cu{sup 2+} onto the three resins fitted well with the pseudo-second-order equation. The initial adsorption rate h of NDMC was about 4 times that of C106 and nearly 8 times that of IRC-748 at the initial concentration of 500 mg/L. External surface area was determined to be the key factor in rate-controlling by further analyzing the adsorption thermodynamics, kinetics parameters and physicochemical properties of the resins. NDMC resin with the smallest bead radius possessed the largest external surface and therefore exhibited the fastest kinetics. The adsorption amount of Cu{sup 2+} onto NDMC was not influenced as the concentration of Na{sup +} increased from 1.0 to 10.0 mM/L. Dilute HCl solution could effectively desorb Cu{sup 2+}. NDMC demonstrated high stability during 10 adsorption/desorption cycles, showing great potential in the rapid removal of Cu{sup 2+} from wastewater.
Latif, Iqbal A; Hansda, Shekhar; Datta, Sambhu N
2012-08-23
The Schlenk diradical has been known since 1915. After a detailed experimental work by Rajca, its magnetic nature has remained more or less unexplored. We have investigated by quantum chemical calculations the nature of magnetic coupling in 11 substituted Schlenk diradicals. Substitution has been considered at the fifth carbon atom of the meta-phenylene moiety. The UB3LYP method has been used to study 12 diradicals including the original one. The 6-311G(d,p) basis set has been employed for optimization of molecular geometry in both singlet and triplet states for each species. The singlet optimization has led to the optimization of the broken-symmetry structure for 10 species including the unsubstituted one. This development makes it possible to carry out further broken symmetry calculations in two ways. The triplet calculation has been done using 6-311++G(d,p) basis set and the optimized triplet geometry in both procedures. The broken symmetry calculations have used the optimized geometries of either the triplet states or the broken symmetry solutions. The first method leads to the prediction of electron paramagnetic resonance (EPR) compatible magnetic exchange coupling constant (J) in the range 517-617 cm(-1). A direct optimization of the broken symmetry geometry gives rise to a lower estimate of J, in the range of 411-525 cm(-1) and compatible with macroscopic Curie studies. The calculated J for the unsubstituted Schlenk diradical is 512 cm(-1) that can be compared with 455 cm(-1) estimated by Rajca. In both cases, introduction of groups with +M and +I effects (Ingold's notation) decreases the J value from that for the unsubstituted Schlenk diradical while -I and -M groups at the same position increases J. These trends have been explained in terms of Hammett constants, atomic spin densities, and dihedral angles.
González, Pablo J; Barrera, Guillermo I; Rizzi, Alberto C; Moura, José J G; Passeggi, Mario C G; Brondino, Carlos D
2009-10-01
Electron transfer proteins and redox enzymes containing paramagnetic redox centers with different relaxation rates are widespread in nature. Despite both the long distances and chemical paths connecting these centers, they can present weak magnetic couplings produced by spin-spin interactions such as dipolar and isotropic exchange. We present here a theoretical model based on the Bloch-Wangsness-Redfield theory to analyze the dependence with temperature of EPR spectra of interacting pairs of spin 1/2 centers having different relaxation rates, as is the case of the molybdenum-containing enzyme aldehyde oxidoreductase from Desulfovibrio gigas. We analyze the changes of the EPR spectra of the slow relaxing center (Mo(V)) induced by the faster relaxing center (FeS center). At high temperatures, when the relaxation time T(1) of the fast relaxing center is very short, the magnetic coupling between centers is averaged to zero. Conversely, at low temperatures when T(1) is longer, no modulation of the coupling between metal centers can be detected.
Shaping nanoscale magnetic domain memory in exchange-coupled ferromagnets by field cooling
Chesnel, Karine; Safsten, Alex; Rytting, Matthew; Fullerton, Eric E.
2016-01-01
The advance of magnetic nanotechnologies relies on detailed understanding of nanoscale magnetic mechanisms in materials. Magnetic domain memory (MDM), that is, the tendency for magnetic domains to repeat the same pattern during field cycling, is important for magnetic recording technologies. Here we demonstrate MDM in [Co/Pd]/IrMn films, using coherent X-ray scattering. Under illumination, the magnetic domains in [Co/Pd] produce a speckle pattern, a unique fingerprint of their nanoscale configuration. We measure MDM by cross-correlating speckle patterns throughout magnetization processes. When cooled below its blocking temperature, the film exhibits up to 100% MDM, induced by exchange-coupling with the underlying IrMn layer. The degree of MDM drastically depends on cooling conditions. If the film is cooled under moderate fields, MDM is high throughout the entire magnetization loop. If the film is cooled under nearly saturating field, MDM vanishes, except at nucleation and saturation. Our findings show how to fully control the occurrence of MDM by field cooling. PMID:27248368
Recovery and nonrecovery of the untrained state in an exchange-coupled system
Jutimoosik, Jaru; Yimnirun, Rattikorn; Setzer, Annette; Esquinazi, Pablo; Stahn, Jochen; Paul, Amitesh
2015-06-01
We report depth sensitive investigations of the magnetic interaction between exchange-coupled stacked CoO and ferromagnetic Co bilayers (separated by thick Au layers) as we explore the degree of recovery of the untrained state after the first two field cycles. Such a recovery is expected by field cycling a reorientation field (HRE) along a direction (ΩRE) away from the initial field cooling direction. Measurements as a function of ΩRE and the strength of HRE (along each direction) map the influence of ΩRE on the reversal mechanism in the layers and thereby the degree of recovery. Our results are consistent with the earlier observations in similar systems that was realized with ΩRE=90∘ . We ascribe these partial and/or significant recoveries to the unchanged sense of rotation after initial field cooling of the ferromagnetic magnetization upon each field cycling. Furthermore, in our system, we find that this recovery can be regulated by choosing various other HRE and ΩRE values without changing the rotational sense. The best recipe for recovery is identified for ΩRE=45∘ , that can be achieved partially with HRE=3.0 kOe and remain significant even with HRE=10.0 kOe. In this study we not only understand the fundamental mechanism in the recovery of training, but also instigate its technological prospects by lifting the directional restrictions of the reorientation field.
Exchange coupling and superconductivity in light rare earth alloys and superlattices
Deen, P P M
2003-01-01
The complementary techniques of X-ray magnetic resonant scattering, neutron and X-ray diffraction and SQUID magnetometry have been employed to explore rare earth superlattices and thin films. In particular, this thesis concerns the complex magnetism of Cerium, exchange coupling in Nd/Pr superlattices and the interplay between magnetism and superconductivity in Gd/La superlattices. Molecular beam epitaxy enables the growth of high quality single-crystal structures that do not occur in nature with tailor-made physical properties. Fundamental problems in condensed matter physics can therefore be addressed. Through a study of CeY and CeLu alloys, the origin of diffuse scattering and intermediate valence behaviour observed in CeHo alloys was determined. XMRS was able to probe the behaviour of Ce in various environments. A higher energy resonance, indicative of intermediate valence behaviour, is present for the Lu and Ho based alloys but not for those containing Y. Since the lattice parameters of CeLu closely match...
Ou, Yu-Sheng; Chiu, Yi-Hsin; Harmon, Nicholas; Odenthal, Patrick; Sheffield, Matthew; Chilcote, Michael; Kawakami, Roland; Flatté, Michael; Johnston-Halperin, Ezekiel
Time-resolved Kerr/Faraday rotation (TRKR/TRFR) is employed to study GaAs spin dynamics in the regime of strong and dynamic exchange coupling to an adjacent MgO/Fe layer. This study reveals a dramatic, resonant suppression in the inhomogeneous spin lifetime (T2*) in the GaAs layer. Further investigation of the magnetization dynamics of the neighboring Fe layer, also using TRKR/TRFR, reveals not only the expected Kittel-dispersion but also additional lower frequency modes with very short lifetime (65 ps) that are not easily observed with conventional ferromagnetic resonance (FMR) techniques. These results suggest the intriguing possibility of resonant dynamic spin transfer between the GaAs and Fe spin systems. We discuss the potential for this work to establish GaAs spin dynamics as an efficient detector of spin dissipation and transport in the regime of dynamically-driven spin injection in ferromagnet/semiconductor heterostructures. Center for Emergent Materials; U.S. Department of Energy.
Arfelli, Giuseppe; Sartini, Elisa
2014-01-01
High performance anion exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD) was optimised in order to quantify mannose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose and maltoheptaose content of beer. The method allows the determination of above mentioned oligosaccharides, in a single chromatographic run, without any pre-treatment. Limit of detection and limit of quantification were suitable for beer. Accuracy and repeatability were good for the entire amount considered. Once optimised HPAEC PAD for the specific matrix, the second goal of this research was to verify the possibility to discriminate beers, depending on their style. The carbohydrates content of brewpub commercial beers was very variable, ranging from 19.3 to 1469mg/L (mannose), 34.5 to 2882mg/L (maltose), 141.9 to 20731mg/L (maltotriose), 168.5 to 7650mg/L (maltotetraose), 20.1 to 2537mg/L (maltopentaose), 22.9 to 3295mg/L (maltohexaose), 8.5 to 2492mg/L (maltoeptaose), even in the same style of beer. However, the carbohydrates content was useful, jointed with other compounds amount, to discriminate different styles of beer. As a matter of fact, principal component analysis put in evidence beer differences considering some fermentation conditions and colour.
First-principles study of the magnetic stability and the exchange couplings of LaMn2O5
El Hallani, F.; Naji, S.; Ez-Zahraouy, H.; Benyoussef, A.
2013-10-01
Using first principles calculations, the electronic and magnetic properties of the multiferroic LaMn2O5 have been studied. In particular, we have studied the magnetic stability of this material not only in ab-plane but also along c direction. Beside this, the exchange couplings between manganese ions have been calculated using Heisenberg model by including only the nearest neighbour interactions. It is shown that the stable magnetic order of LaMn2O5 is of antiferromagnetic type, which is in good agreement with the experiments. In order to show the effect of the temperature on the properties of our compound we have carried out this study using two crystal structures: the higher symmetric one (space group Pbam) that reported experimentally at T(98.8 k) and the lower symmetric one (space group Pmc21) that obtained from the relaxation, in our calculations, at T = 0 K starting from the stable magnetic order.This structure deformation at T = 0 can be related to the exchange coupling striction. The density of states show an insulating behavior in the antiferromagnetic state of LaMn2O5 at Fermi level and there is a small band gap, confirming the experimental fact that LaMn2O5 is an insulator. We have found that the nature of the mechanism of these magnetic exchange coupling is an indirect super-exchange.
Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2016-01-01
We have previously introduced a hybrid strong/weak coupling model for jet quenching in heavy ion collisions that describes the production and fragmentation of jets at weak coupling, using PYTHIA, and describes the rate at which each parton in the jet shower loses energy as it propagates through the strongly coupled plasma, dE/dx, using an expression computed holographically at strong coupling. The model has a single free parameter that we fit to a single experimental measurement. We then confront our model with experimental data on many other jet observables, focusing here on boson-jet observables, finding that it provides a good description of present jet data. Next, we provide the predictions of our hybrid model for many measurements to come, including those for inclusive jet, dijet, photon-jet and Z-jet observables in heavy ion collisions with energy $\\sqrt{s}=5.02$ ATeV coming soon at the LHC. As the statistical uncertainties on near-future measurements of photon-jet observables are expected to be much sm...
Non-collinear exchange coupling in Fe/Mn/Fe(0 0 1): insight from scanning tunneling microscopy
Energy Technology Data Exchange (ETDEWEB)
Pierce, D.T. E-mail: daniel.pierce@nist.gov; Davies, A.D.; Stroscio, J.A.; Tulchinsky, D.A.; Unguris, J.; Celotta, R.J
2000-12-01
The film growth and morphology of epitaxial Mn films grown on Fe(0 0 1) single-crystal whiskers measured with scanning tunneling microscopy (STM) provides insight into the mechanism of interlayer exchange coupling in Fe/Mn/Fe(0 0 1) trilayers. The proximity model of Slonczewski for exchange coupling through an antiferromagnet predicts that the coupling angle between the ferromagnetic layers will oscillate around a mean value of 90 deg. with an amplitude that is very sensitive to the width of the thickness distribution of the spacer layer. We measure the thickness distribution with the STM and find that the coupling angle variation predicted by the proximity model is qualitatively consistent with the actual coupling angle variations in Fe/Mn/Fe(0 0 1) measured with scanning electron microscopy with polarization analysis (SEMPA). Going beyond the proximity model and allowing for a non-uniform magnetization of the thin Fe overlayer provides an improved explanation of the results. We contrast the behavior of Fe/Mn/Fe(0 0 1), where the proximity model appears applicable, to coupling through antiferro-magnetic Cr in Fe/Cr/Fe(0 0 1), where it is not, and discuss possible reasons for the difference.
Li, Zirun
2015-02-02
Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ′-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ′-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ′-Fe4N layer and interfacial spin scattering.
Gao, Tenghua; Itokawa, Nobuhide; Wang, Jian; Yu, Youxing; Harumoto, Takashi; Nakamura, Yoshio; Shi, Ji
2016-08-01
We report on the investigation of perpendicular exchange bias in FePt (001 ) /NiO (1 ¯1 ¯1 ) orthogonal exchange couple with FePt partially L 10 ordered. From initial magnetization curve measurement and magnetic domain imaging, we find that, for the as-grown bilayer structure, the FePt layer experiences a small-angle magnetization rotation when it is magnetized near to saturation in film normal direction. After field cooling, the bilayer structure shows a significant enhancement of perpendicular magnetic anisotropy, indicating the field mediated coupling between the spins across the FePt/NiO interface. According to Koon's theoretical calculation on the basis of lowest energy ferromagnetic/antiferromagnetic coupling configuration for compensated spins at antiferromagnetic side, we consider slightly slanted Ni spins at the interface off the (1 ¯1 ¯1 ) easy plane can stabilize the spin coupling between FePt and NiO and result in the observed exchange bias in this paper. This consideration was further confirmed by stripe domain width calculation.
Origin of open recoil curves in L10-A1 FePt exchange coupled nanocomposite thin film
Goyal, Rajan; Kapoor, Akanksha; Lamba, S.; Annapoorni, S.
2016-11-01
Mixed phase FePt systems with intergranular coupling may be looked upon as natural exchange spring systems. The coupling strength between the soft and hard phase in these systems can be analyzed using recoil curves. However, the origin of open recoil curves depicting the breakdown of exchange coupling or anisotropy variation in hard phase is still an ambiguity and requires an in-depth analysis. In order to investigate this, an analysis of the recoil curves for L10-A1 FePt nanocomposite thin films of varying thickness have been performed. The switching field distribution reveals that the maximum of openness of recoil curve is directly proportional to the amount of uncoupled soft phase present in the system. The coupling between the hard and soft phase is also found to increase with the thickness of the film. Monte Carlo simulations on a model three dimensional array of interacting nanomagnetic grains provide further insight into the effect of inter granular exchange interactions between the soft and hard phases.
Vélez, Ederley; Alberola, Antonio; Polo, Víctor
2009-12-17
The magnetic exchange coupling constants between two Mn(II) centers for a set of five inverse crown structures have been investigated by means of a methodology based on broken-symmetry unrestricted density functional theory. These novel and highly unstable compounds present superexchange interactions between two Mn centers, each one with S = 5/2 through anionic "guests" such as oxygen, benzene, or hydrides or through the cationic ring formed by amide ligands and alkali metals (Na, Li). Magnetic exchange couplings calculated at B3LYP/6-31G(d,p) level yield strong antiferromagnetic couplings for compounds linked via an oxygen atom or hydride and very small antiferromagnetic couplings for those linked via a benzene molecule, deprotonated in either 1,4- or 1,3- positions. Analysis of the magnetic orbitals and spin polarization maps provide an understanding of the exchange mechanism between the Mn centers. The dependence of J with respect to 10 different density functional theory potentials employed and the basis set has been analyzed.
Linneweber, Thorben; Bünemann, Jörg; Löw, Ute; Gebhard, Florian; Anders, Frithjof
2017-01-01
We employ density-functional theory (DFT) in the generalized gradient approximation (GGA) and its extensions GGA +U and GGA+Gutzwiller to calculate the magnetic exchange couplings between pairs of Mn ions substituting Cd in a CdTe crystal at very small doping. DFT(GGA) overestimates the exchange couplings by a factor of 3 because it underestimates the charge-transfer gap in Mn-doped II-VI semiconductors. Fixing the nearest-neighbor coupling J1 to its experimental value in GGA +U , in GGA+Gutzwiller, or by a simple scaling of the DFT(GGA) results provides acceptable values for the exchange couplings at second-, third-, and fourth-neighbor distances in Cd(Mn)Te, Zn(Mn)Te, Zn(Mn)Se, and Zn(Mn)S. In particular, we recover the experimentally observed relation J4>J2,J3 . The filling of the Mn 3 d shell is not integer, which puts the underlying Heisenberg description into question. However, using a few-ion toy model the picture of a slightly extended local moment emerges so that an integer 3 d -shell filling is not a prerequisite for equidistant magnetization plateaus, as seen in experiment.
Two perspectives on the coupled carbon, water, and energy exchange in the planetary boundary layer
Directory of Open Access Journals (Sweden)
M. Combe
2014-04-01
Full Text Available Understanding the interactions between the land surface and the atmosphere is key to model boundary-layer meteorology and cloud formation, as well as carbon cycling and crop yield. In this study we explore these interactions in the exchange of water, heat, and CO2 in a cropland–atmosphere system at the diurnal and local scale. We thereto couple an atmospheric mixed-layer model (MXL to two land-surface schemes, developed from two different perspectives: while one land-surface scheme (A-gs simulates vegetation from an atmospheric point of view, the other (GECROS simulates vegetation from a carbon-storage point of view. We calculate surface fluxes of heat, moisture and carbon, as well as the resulting atmospheric state and boundary-layer dynamics, over a maize field in the Netherlands, for a day on which we have a rich set of observations available. Particular emphasis is placed on understanding the role of upper atmosphere conditions like subsidence, in comparison to the role of surface forcings like soil moisture. We show that the atmospheric-oriented model (MXL-A-gs outperforms the carbon storage-oriented model (MXL-GECROS on this diurnal scale. This performance strongly depends on the sensitivity of the modelled stomatal conductance to water stress, which is implemented differently in each model. This sensitivity also influences the magnitude of the surface fluxes of CO2, water and heat (surface control, and subsequently impacts the boundary-layer growth and entrainment fluxes (upper atmosphere control, which alter the atmospheric state. These findings suggest that observed CO2 mole fractions in the boundary layer can reflect strong influences of both the surface and upper atmospheric conditions, and the interpretation of CO2 mole fraction variations depends on the assumed land-surface coupling. We illustrate this with a sensitivity analysis where increased subsidence, typical for periods of drought, can induce a change of 12 ppm in
Two perspectives on the coupled carbon, water and energy exchange in the planetary boundary layer
Combe, M.; Vilà-Guerau de Arellano, J.; Ouwersloot, H. G.; Jacobs, C. M. J.; Peters, W.
2015-01-01
Understanding the interactions between the land surface and the atmosphere is key to modelling boundary-layer meteorology and cloud formation, as well as carbon cycling and crop yield. In this study we explore these interactions in the exchange of water, heat and CO2 in a cropland-atmosphere system at the diurnal and local scale. To that end, we couple an atmospheric mixed-layer model (MXL) to two land-surface schemes developed from two different perspectives: while one land-surface scheme (A-gs) simulates vegetation from an atmospheric point of view, the other (GECROS) simulates vegetation from a carbon-storage point of view. We calculate surface fluxes of heat, moisture and carbon, as well as the resulting atmospheric state and boundary-layer dynamics, over a maize field in the Netherlands, on a day for which we have a rich set of observations available. Particular emphasis is placed on understanding the role of upper-atmosphere conditions like subsidence in comparison to the role of surface forcings like soil moisture. We show that the atmospheric-oriented model (MXL-A-gs) outperforms the carbon storage-oriented model (MXL-GECROS) on this diurnal scale. We find this performance is partly due to the difference of scales at which the models were made to run. Most importantly, this performance strongly depends on the sensitivity of the modelled stomatal conductance to water stress, which is implemented differently in each model. This sensitivity also influences the magnitude of the surface fluxes of CO2, water and heat (surface control) and subsequently impacts the boundary-layer growth and entrainment fluxes (upper atmosphere control), which alter the atmospheric state. These findings suggest that observed CO2 mole fractions in the boundary layer can reflect strong influences of both the surface and upper-atmosphere conditions, and the interpretation of CO2 mole fraction variations depends on the assumed land-surface coupling. We illustrate this with a sensitivity
Small-molecule inhibitors targeting G-protein-coupled Rho guanine nucleotide exchange factors.
Shang, Xun; Marchioni, Fillipo; Evelyn, Chris R; Sipes, Nisha; Zhou, Xuan; Seibel, William; Wortman, Matthew; Zheng, Yi
2013-02-19
The G-protein-mediated Rho guanine nucleotide exchange factor (GEF)-Rho GTPase signaling axis has been implicated in human pathophysiology and is a potential therapeutic target. By virtual screening of chemicals that fit into a surface groove of the DH-PH domain of LARG, a G-protein-regulated Rho GEF involved in RhoA activation, and subsequent validations in biochemical assays, we have identified a class of chemical inhibitors represented by Y16 that are active in specifically inhibiting LARG binding to RhoA. Y16 binds to the junction site of the DH-PH domains of LARG with a ∼80 nM K(d) and suppresses LARG catalyzed RhoA activation dose dependently. It is active in blocking the interaction of LARG and related G-protein-coupled Rho GEFs with RhoA without a detectable effect on other DBL family Rho GEFs, Rho effectors, or a RhoGAP. In cells, Y16 selectively inhibits serum-induced RhoA activity and RhoA-mediated signaling, effects that can be rescued by a constitutively active RhoA or ROCK mutant. By suppressing RhoA activity, Y16 inhibits mammary sphere formation of MCF7 breast cancer cells but does not affect the nontransforming MCF10A cells. Significantly, Y16 works synergistically with Rhosin/G04, a Rho GTPase activation site inhibitor, in inhibiting LARG-RhoA interaction, RhoA activation, and RhoA-mediated signaling functions. Thus, our studies show that Rho GEFs can serve as selective targets of small chemicals and present a strategy of dual inhibition of the enzyme-substrate pair of GEF-RhoA at their binding interface that leads to enhanced efficacy and specificity.
2007-01-01
We present our femtosecond optical pump-probe studies of proximized ferromagnet-superconductor nanobilayers. The weak ferromagnetic nature of a thin NiCu film makes it possible to observe the dynamics of the nonequilibrium carriers through the near-surface optical reflectivity change measurements. The subpicosecond biexponential reflectivity decay has been identified as electron-phonon Debye and acoustic phonon relaxation times, and the decay of Debye phonons versus temperature dependence was...
Gruyters, M; Schmitz, D
2008-02-22
Exchange bias in layered CoO/Fe structures is investigated by x-ray resonant magnetic reflectivity (XRMR) measurements. Element-specific hysteresis loops are obtained from x-ray magnetic circular dichroism effects in the XRMR spectra. Evidence is provided for the existence of different types of uncompensated moments in the antiferromagnetic material. Explanations are given for the microscopic nature of these moments and the complex exchange interactions that determine the magnetization reversal in exchange bias systems.
Tuning of interlayer exchange coupling in Ni80Fe20/Ru/Ni80Fe20 nanowires
Liu, X. M.; Lupo, P.; Cottam, M. G.; Adeyeye, A. O.
2015-09-01
In this work, we demonstrate how the static and dynamic properties of Ni80Fe20/Ru/Ni80Fe20 nanowires can be tuned by varying the Ru spacer layer thickness. Specifically, changing the Ru thickness we have tuned the Ruderman-Kittel-Kasuya-Yosida exchange interaction, and thus the antiferromagnetic (AFM) strength between the Ni80Fe20 layers. We show that there is a strong correlation between the interlayer coupling and features in ferromagnetic resonance (FMR) modes. We found different mode-softening degree of the FMR curves as function of the strength of AFM coupling, together with a clear frequency gap at around zero field. These experimental results are in qualitative agreement with presented micromagnetic simulations that also include biquadratic interface exchange. Understanding these characteristics may offer insights for reconfigurable vertical magnetic logic devices and microwave filters.
Spin orientation in an ultrathin CoO/PtFe double-layer with perpendicular exchange coupling
Energy Technology Data Exchange (ETDEWEB)
Lamirand, Anne D.; Soares, Márcio M. [Institut Néel, CNRS and UJF, BP166, 38042 Grenoble (France); Ramos, Aline Y., E-mail: aline.ramos@grenoble.cnrs.fr [Institut Néel, CNRS and UJF, BP166, 38042 Grenoble (France); Tolentino, Hélio C.N.; De Santis, Maurizio [Institut Néel, CNRS and UJF, BP166, 38042 Grenoble (France); Cezar, Julio C. [Laboratório Nacional de Luz Síncrotron-LNLS, CP 6192, 13083-970 Campinas (Brazil); Siervo, Abner de [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas-UNICAMP, 13083-970 Campinas (Brazil)
2015-01-01
We studied by soft X-ray absorption spectroscopy the magnetization axis in a 4 nm thin CoO (111) layer exchange-coupled to an ultra thin L1{sub 0} PtFe layer with perpendicular magnetic anisotropy. The angular dependence of the linear magnetic dichroism at 10 K and the relative variations of the spectral features provide a full description of the spin orientation in this antiferromagnetic layer. The spins are found in the film plane, pointing along the 110 direction. This results is discussed in relation to the film strain and the preferential occupation of t{sub 2g} orbitals. The strong orthogonal coupling between Co and Fe spins should be at the origin of the robustness of the exchange bias effect found in this bilayer system.
Magnetic self-assembly for the synthesis of magnetically exchange coupled MnBi/Fe-Co composites
Xu, Xia; Hong, Yang-Ki; Park, Jihoon; Lee, Woncheol; Lane, Alan M.; Cui, Jun
2015-11-01
Exchange coupled hard/soft MnBi/Fe-Co core/shell structured composites were synthesized using a magnetic self-assembly process. MnBi particles were prepared by arc-melting, and Fe-Co nanoparticles were synthesized by an oleic acid assisted chemical reduction method. Grinding a mixture of micron-sized MnBi and Fe-Co nanoparticles in hexane resulted in MnBi/Fe-Co core/shell structured composites. The MnBi/Fe-Co (95/5 wt%) composites showed smooth magnetic hysteresis loops, enhanced remanent magnetization, and positive values in the ΔM curve, indicating exchange coupling between MnBi and Fe-Co particles.
Bao, J.; Zhou, T.; Huang, M.; Hou, Z.; Perkins, W. A.; Harding, S.; Hammond, G. E.; Ren, H.; Thorne, P. D.; Suffield, S. R.; Zachara, J. M.
2016-12-01
Hyporheic exchange between river water and groundwater is an important mechanism for biogeochemical processes, such as carbon and nitrogen cycling, and biodegradation of organic contaminants, in the subsurface interaction zone. The relationship between river flow conditions and hyporheic exchanges therefore is of great interests to hydrologists, biogeochemists, and ecologists. However, quantifying relative influences of hydrostatic and hydrodynamic drivers on hyporheic exchanges is very challenging in large rivers due to accessibility and spatial coverage of measurements, and computational tools available for numerical experiments. In this study, we aim to demonstrate that a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport can be used to simulate hyporheic exchanges and the residence time of river water in the hypothetic zone. Base on the assumption that the hyporheic exchange does not affect the surface water flow condition due to its small magnitude compared to the velocity of river water, we developed a one way coupled surface and subsurface water flow model in a commercial CFD software STAR-CCM+, that connects the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable two-layer turbulence model, a two-layer all y+ wall treatment, and the volume of fluid (VOF) method for tracking the free water-air interface as well as porous media flow in the subsurface domain. The model is applied to a 7-km long section of the Columbia River and validated against measurements from the acoustic Doppler current profiler (ADCP) in the surface water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges influenced by 1) riverbed properties such as the permeability and thickness of the alluvial layer; 2) surface water hydrodynamics due to channel geomorphological settings
Synthesis of magnetically exchange coupled SrFe12O19/FeCo composites through cryogenic ball milling
Pang, Ning; Ye, Feng; Jiang, Ying
2017-07-01
SrFe12O19/FeCo composite particles with different mass ratios of SrFe12O19 to FeCo were synthesized through a cryogenic ball milling process. The corresponding products were characterized with scanning electron microscopy (SED), transmission electron microscopy (TEM), x-ray diffraction (XRD) and vibrating sample magnetometer (VSM) for crystal morphology, elemental distribution, crystal phases, and magnetic properties. The results showed that when the mass percentage of FeCo was less than 15%, smooth magnetic hysteresis loops could be obtained from SrFe12O19/FeCo composite particles, indicating effective magnetic exchange coupling between the SrFe12O19 and FeCo particles. A further FeCo mass increase resulted in kinks in the magnetic hysteresis loop and destroyed the magnetic exchange coupling. As a comparison, room temperature ball milling of SrFe12O19/FeCo (95/5 wt%) cannot achieve magnetic exchange coupling between SrFe12O19 and FeCo due to FeCo nanoparticle agglomeration.
The structural and magnetic properties of MnBi and exchange coupled MnBi/Fe films
Energy Technology Data Exchange (ETDEWEB)
Li, B. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Liu, W., E-mail: wliu@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhao, X.G.; Gong, W.J.; Zhao, X.T.; Wang, H.L. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Kim, D.; Choi, C.J. [Functional Materials Division, Korea Institute of Materials Science, 531 Changwon-daero, Changwon 631-831 (Korea, Republic of); Zhang, Z.D. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)
2014-12-15
The structural and magnetic properties of MnBi and MnBi/Fe films prepared by magnetron sputtering and in situ vacuum annealing are investigated. MnBi film is highly c-axis textured with perpendicular anisotropy. The out-of-plane coercivity increases with temperature, which reaches to 15 kOe and 21 kOe at 300 K and 400 K, respectively. For exchange coupled MnBi/Fe films, when the thickness of Fe layer is thin, the hysteresis loops show single-phase-like reversal behavior due to the effective interfacial exchange coupling. In comparison with MnBi film, the remanent magnetization enhances. The maximum energy product also improves from 7.6 MGOe to 8.0 MGOe at 300 K, and from 5.7 MGOe to 6.1 MGOe at 400 K. As the thickness of Fe layer exceeds the critical dimension, the two-step reversal behavior is observed, indicating the decoupling of soft Fe layer and neighboring hard MnBi layer. - Highlights: • MnBi film shows perpendicular anisotropy with highly c-axis textured. • At 400 K, MnBi film shows a higher (BH){sub max} than MnBi magnet due to perpendicular anisotropy. • (BH){sub max} of MnBi/Fe film is enhanced due to exchange coupling. • A step emerges on the demagnetization curve of MnBi/Fe film as temperature goes up.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The influence of the interface exchange coupling on the magnetization reversal process for a FePt/α-Fe/FePt tri-layer structure has been studied through a micromagnetic approach.The analytical formula of the nucleation field has been derived.It is found that the nucleation field increases as the interface coupling constant rises.Especially when the thickness of the soft layer is small,the influence of the exchange coupling on the nucleation field is significant.The angular distributions of the magnetization for various exchange coupling constants have been obtained by numerical calculation.It is found that the angular distribution of the magnetization is discontinuous at the interface of the hard and soft layers.In the meantime,the pinning field decreases with the increase of the thickness of the soft layer and the exchange coupling constant.
Analysis of a double-pipe heat exchanger performance using heat structure coupling of MARS and CUPID
Energy Technology Data Exchange (ETDEWEB)
Amidua, M.; Kim, H. [Kyung Hee University, Yongin (Korea, Republic of); Cho, H. K. [Seoul National University, Seoul (Korea, Republic of)
2015-10-15
Thermal hydraulic phenomena in the inner tube of the double-pipe heat exchanger are expected to be reproducible by one-dimensional system analysis codes (MARS) if a proper condensation heat transfer coefficient is applied. Jeon et al (2013) and Cho et al (2013) conducted comprehensive reviews of the predictive capability of the condensation heat transfer models for the steam-water stratified flow. On the contrary, in the outer tube, a multidimensional analysis tool is required to incorporate the influence of azimuthal angle on the heat transfer rate from the inner tube outer wall to the outer tube fluid. Therefore, a coupled calculation between one dimensional system analysis code and a multidimensional computational fluid dynamics code is an attainable way to predict this effect with a reliable accuracy. CUPID is a three-dimensional computational multiphase fluid dynamics code developed by KAERI (Korea Atomic Energy Research Institute). According to Jeong et al (2010), the objective of the development is to support a resolution for the thermal hydraulic issues regarding the transient multi-dimensional twophase phenomena which can arise in an advanced light water reactor. It uses two-fluid model for the governing equations, which uses two sets of Navier-Stokes' equations for two phases. It can be used as either a typical CFD code or a component code (porous CFD code) depending on the length scale of the phenomena that need to be resolved. On the other hand, MARS is a best estimate thermalhydraulic system code and it was developed at KAERI by consolidating and restructuring the RELAP5/MOD3.2 code and COBRA-TF code (Cho et al., 2014). The MARS code has the capability to analyze best-estimated thermal hydraulic system. In this study, the coupled CUPID-MARS code was used for the simulation of a double-pipe heat exchanger. This paper presents the description of the heat exchanger, the coupling method, and the simulation results using the coupled code. The coupling
Non-Hermitian wave packet approximation for coupled two-level systems in weak and intense fields
Puthumpally-joseph, Raiju; Charron, Eric
2016-01-01
We introduce an accurate non-Hermitian Schr\\"odinger-type approximation of Bloch optical equations for two-level systems. This approximation provides a complete description of the excitation, relaxation and decoherence dynamics in both weak and strong laser fields. In this approach, it is sufficient to propagate the wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing are taken into account via automatically-adjusted time-dependent gain and decay rates. The developed formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer comprised of interacting two-level emitters.
Energy Technology Data Exchange (ETDEWEB)
Macias-Diaz, J.E. [Departamento de Matematicas y Fisica, Universidad Autonoma de Aguascalientes, Aguascalientes, Ags. 20100 (Mexico) and Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)]. E-mail: jemacias@correo.uaa.mx; Puri, A. [Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)]. E-mail: apuri@uno.edu
2007-07-02
In the present Letter, we simulate the propagation of binary signals in semi-infinite, mechanical chains of coupled oscillators harmonically driven at the end, by making use of the recently discovered process of nonlinear supratransmission. Our numerical results-which are based on a brand-new computational technique with energy-invariant properties-show an efficient and reliable transmission of information.
Inotani, Daisuke; van Wyk, Pieter; Ohashi, Yoji
2016-12-01
We investigate the specific heat CV at constant volume in the normal state of a p-wave interacting Fermi gas. Including p-wave pairing fluctuations within the strong-coupling theory developed by Nozières and Schmitt-Rink, we show that, in the weak-coupling side, CV exhibits a dip-hump behavior as a function of the temperature. While the dip is associated with the pseudogap phenomenon near Tc, the hump structure is found to come from the suppression of Fermi quasiparticle scattering into a p-wave molecular state in the Fermi degenerate regime. Since the latter phenomenon does not occur in the ordinary s-wave interacting Fermi gas, it may be viewed as a characteristic phenomenon associated with a p-wave pairing interaction.
Energy Technology Data Exchange (ETDEWEB)
Beck, C. [Institut Pluridisciplinaire Hubert Curien, UMR 7178, IN2P3-CNRS et Universite Louis Pasteur (Strasbourg I), 23 rue du Loess - BP28, F-67037 Strasbourg Cedex 2 (France); Keeley, N. [DSM/DAPNIA/SPhN CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Diaz-Torres, A. [Department of Nuclear Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200 (Australia)
2007-03-15
The influence on fusion of coupling to the breakup process is investigated for reactions where at least one of the colliding nuclei has a sufficiently low binding energy for breakup to become an important process. Elastic scattering, excitation functions for sub-and near-barrier fusion cross sections, and breakup yields are analyzed for {sup 6,7}Li+{sup 59}Co. Continuum-Discretized Coupled-Channels (CDCC) calculations describe well the data at and above the barrier. Elastic scattering with {sup 6}Li (as compared to {sup 7}Li) indicates the significant role of breakup for weakly bound projectiles. A study of {sup 4,6}He induced fusion reactions with a three-body CDCC method for the {sup 6}He halo nucleus is presented. The relative importance of breakup and bound-state structure effects on total fusion is discussed. (authors)
Institute of Scientific and Technical Information of China (English)
韩广兵; 高汝伟; 傅爽; 刘汉强; 冯维存; 陈伟
2004-01-01
Taking α-Fe and Nd2Fe14B grains as example, the grain size dependence of the exchange-coupling interaction and effective anisotropy and also their variations depending on the ratio of magnetically soft and hard grain sizes, Ds∶ Dh, were investigated. When grain size D>Lex, the grain's anisotropy is the statistic value of the coupled and uncoupled part. The anisotropy constant of uncoupled part is the common value K1 and that of coupled part varies with the distance to the grain surface. The effective anisotropy constant between magnetically soft and hard grains, Keff, can be expressed as the sum of the products of volume fractions for soft and hard grains, respectively, and the corresponding mean anisotropy constants. The calculation results indicate that the exchange-coupling interaction is enhanced with the reduction of grain size, and the effective anisotropy decreases with reducing grain size and increasing ratio of Ds∶ Dh. In order to get high effective anisotropy constant, Keff, in composite magnetically soft-hard grains, the hard grain size should be larger than 30 nm and the soft grain size should be about 10 nm.
Wei, Ruihan; Parsons, Sean P; Huizinga, Jan D
2017-03-01
What is the central question of this study? What are the effects of interstitial cells of Cajal (ICC) network perturbations on intestinal pacemaker activity and motor patterns? What is the main finding and its importance? Two-dimensional modelling of the ICC pacemaker activity according to a phase model of weakly coupled oscillators showed that network properties (coupling strength between oscillators, frequency gradient and frequency noise) strongly influence pacemaker network activity and subsequent motor patterns. The model explains motor patterns observed in physiological conditions and provides predictions and testable hypotheses for effects of ICC loss and frequency modulation on the motor patterns. Interstitial cells of Cajal (ICC) are the pacemaker cells of gut motility and are associated with motility disorders. Interstitial cells of Cajal form a network, but the contributions of its network properties to gut physiology and dysfunction are poorly understood. We modelled an ICC network as a two-dimensional network of weakly coupled oscillators with a frequency gradient and showed changes over time in video and graphical formats. Model parameters were obtained from slow-wave-driven contraction patterns in the mouse intestine and pacemaker slow-wave activities from the cat intestine. Marked changes in propagating oscillation patterns (including changes from propagation to non-propagating) were observed by changing network parameters (coupling strength between oscillators, the frequency gradient and frequency noise), which affected synchronization, propagation velocity and occurrence of dislocations (termination of an oscillation). Complete uncoupling of a circumferential ring of oscillators caused the proximal and distal section to desynchronize, but complete synchronization was maintained with only a single oscillator connecting the sections with high enough coupling. The network of oscillators could withstand loss; even with 40% of oscillators lost randomly
The Exchange Coupling of Gd3+- and Cr3+-Ions in Paramagnetic GdCrO3 (In German)
Dräger, K.
1986-03-01
Polycrystalline samples of stoichiometric GdCrO3 have been investigated by ESR at 9.4 GHz. In the temperature range between 175 K and 520 K one broad absorption with a Lorentzian line shape and a g-factor of 2.024 has been observed. Attributing the absorption exclusively to the Gd -ion it can be shown that the temperature dependence of the ESR-intensity follows the predictions of a cluster-model. The energy describing the coupling of a single Gd3+-ion to the surrounding Cr3+-ions is found to be ΔE(Gd) = 170 cm-1. Taking advantage of the similarity within the orthochromites it is possible to determine at the same time the exchange - coupling of Cr3+-ions to their identical nearest neighbours as ΔE(Cr) = 293 cm-1. The relative strength of these couplings given by 0.60 is compatible with other experimental issues.
Novel Oscillation Period of the Interlayer Exchange Coupling in Fe/Cr/Fe Due to MgO Capping
Halley, D.; Bengone, O.; Boukari, S.; Weber, W.
2009-01-01
A novel period of the interlayer exchange coupling as a function of Cr thickness is observed in epitaxial Fe/Cr/Fe (001) sandwiches capped with MgO. This additional period, equal to 3 chromium atomic layers, vanishes when the capping is Cr. A strong oscillation of the magnetic coupling is also observed as a function of the thickness of the Fe layer next to the MgO capping layer. This effect is attributed to the formation of quantum well states in this Fe layer. It is believed that this confinement modifies the reflection coefficient at the Cr/Fe interface for electrons of a particular symmetry and leads to the new coupling period which is linked to the Fermi surface topology of chromium.
Determination of Exchange Current Density of U{sup 3+}/U Couple in LiCl-KCl Eutectic Mixture
Energy Technology Data Exchange (ETDEWEB)
Choi, Inkyu [Korea Atomic Energy Research Institute, 1045 Daedeok-Daero, Yuseong, Daejeon (Korea, Republic of); Serrano, Brenda E.; Li, Selly X.; Hermann, Steven [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States); Phongikaroon, Supathorn [University of Idaho, Idaho Falls, 1776 Science Center Dr. Idaho Falls, ID 83402 (United States)
2009-06-15
During the spent metallic fuel electrorefining process, uranium is electrochemically dissolved from the anode basket to produce U{sup 3+} ion, which are then selectively reduced at the solid cathode. These anodic and cathodic reactions are assumed to be simple oxidation and reduction reactions of the U{sup 3+}/U couple. Despite numerous studies in this area, the basic electrochemical properties of this redox couple such as the exchange current density and charge transfer coefficient have not been thoroughly investigated, thus providing a motivation for this study. In the reported experiment, the exchange current density of the U{sup 3+}/U couple was measured in LiCl-KCl eutectic mixture at 500 deg. C by applying a linear polarization resistance technique. The UCl{sub 3} concentration was 1.54 x 10{sup -4} mol/cm{sup 3} and 0.51 wt% of Cd was present in the salt. This is due to the reaction of U metal with CdCl{sub 2} used to generate UCl{sub 3} in the salt. Four different metal wires - tungsten, carbon steel, stainless steel, and zirconium - were employed as the working electrode. Since the U{sup 3+}/U couple was assumed to be a one step reaction, obtained exchange current density values were anticipated to be almost identical. However, the results indicated that they were 584, 398, 204, and 202 A/m{sup 2} for tungsten, carbon steel, stainless steel, and zirconium, respectively. Though it is still not clear why these values were different, it may be due to the differences in the interaction between electrode materials and uranium metal. To evaluate the charge transfer coefficient of the U{sup 3+}/U couple, Tafel measurements were also carried out for each electrode material, but there were difficulties encountered with calculating the exact values. By applying the exchange current densities to Tafel results, however, the charge transfer coefficients of this couple for each electrode material could be calculated and were found to be in the range of 0.3 to 0.5. In
Energy Technology Data Exchange (ETDEWEB)
Skavdahl, I. [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Utgikar, V.P., E-mail: vutgikar@uidaho.edu [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Christensen, R. [Nuclear Engineering Program, University of Idaho, Idaho Falls, ID 83402 (United States); Sabharwall, P. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Chen, M.; Sun, X. [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 (United States)
2016-04-15
Highlights: • Control architecture defined for nuclear reactor-coupled heat exchangers system. • MATLAB code developed for simulation of system response for various temperature disturbances in the system. • Control system effective in maintaining controlled variables at desired set points. • New equilibrium steady state established using controllers. • Adaptive control system capable of switching manipulated variables based on system constraints. - Abstract: An effective control strategy is essential for maintaining optimum operational efficiency of the Advanced High Temperature Reactor (AHTR)-intermediate heat exchanger (IHX)-secondary heat exchanger (SHX) system for power conversion or process heat applications. A control system design is presented in this paper for the control of the coupled intermediate and secondary heat exchangers. The cold side outlet temperature of the SHX (T{sub co}) and the hot side outlet temperature of the IHX (T{sub ho2}) were identified as the controlled variables that were maintained at their set points by manipulating the flow rates of heat exchange media. Transfer functions describing the relationships between the controlled variables and the manipulated and load variables were developed and the system response to various temperature disturbances was simulated using a custom-developed MATLAB program. It was found that a step disturbance of ±10 °C in the process loop changed the thermal duty by ±650 kW, equal to 6.5% of the initial duty. Similar disturbances in the primary loop had a higher impact on the system. The control system design included a provision for the switching of manipulated variables to limit the adjustment in the magnitudes of the primary manipulated variables. Simulation results indicate that the controlled variables are maintained successfully at their desired points by the control system.
Yang, Fan; Bai, Quan; Zhao, Kailou; Gao, Dong; Tian, Lei
2015-02-01
A novel dual-function mixed-mode stationary phase based on poly(glycidyl methacrylate-co-ethylene dimethacrylate) microspheres was synthesized by thiol-ene click chemistry and characterized by infrared spectroscopy and elemental analysis. The new system displays both hydrophobic interaction chromatography (HIC) character in a high salt concentration mobile phase, and weak cation exchange (WCX) chromatography character in a low salt concentration mobile phase. It can be used to separate proteins in both ion-exchange chromatography (IEC) mode and HIC mode. The resolution and selectivity of the stationary phase were evaluated in both HIC mode and IEC mode using protein standards. In comparison with the conventional WCX and HIC columns, the results were satisfactory and acceptable. Protein mass and bioactivity recoveries of more than 96% can be achieved in both HIC mode and IEC mode using this column. The results indicate that the novel dual-function mixed-mode column in many cases can replace the use of two individual WCX and HIC columns. In addition, the effects on protein separation of different ligand structures in the dual-function stationary phase and the pH of the mobile phase used were also investigated in detail. The results show that electrostatic interaction of the ligand with proteins must match the hydrophobicity of the ligand, which is an important factor to prepare the dual-function stationary phase. On the basis of this dual-function mixed-mode chromatography column, a new two-dimensional liquid chromatography technology with a single column system was also developed in this study, and was used to renature and purify recombinant human interferon-γ from inclusion bodies. The mass recovery, purity, and specific bioactivity obtained for the purified recombinant human interferon-γ were 87.2%, 92.4%, and 2.8 × 10(7) IU/mg, respectively, in IEC mode, and 83.4%, 95.2%, and 4.3 × 10(7) IU/mg, respectively, in HIC mode. The results indicate that the
Influence of exchange coupling on current-driven domain wall motion in a nanowire
Energy Technology Data Exchange (ETDEWEB)
Komine, Takashi, E-mail: komine@mx.ibaraki.ac.j [Department of Media and Telecommunications Engineering, Ibaraki University, Ibaraki 316-8511 (Japan); Takahashi, Kota; Murakami, Hiroshi; Sugita, Ryuji [Department of Media and Telecommunications Engineering, Ibaraki University, Ibaraki 316-8511 (Japan)
2010-10-15
In this study, the effect of exchange stiffness constant on current-driven domain wall motion in nanowires with in-plane magnetic anisotropy (IMA) and perpendicular magnetic anisotropy (PMA) has been investigated using micromagnetic simulation. The critical current density in a nanowire with IMA decreases as the exchange stiffness constant decreases because the domain wall width at the upper edge of the nanowire narrows according to the decrease of the exchange stiffness constant. On the other hand, the critical current density in a nanowire with PMA slightly decreases contrary to that of IMA although the domain wall width reasonably decreases as the exchange stiffness constant decreases. The slight reduction rate of the critical current density is due to the increase of the effective hard-axis anisotropy of PMA nanowire.
Zeng, Kuanhong; Wang, Denglong; She, Yanchao; Luo, Xiaoqin
2013-11-01
We study analytically the properties of the optical absorption and the spatial weak-light solitons in a quantum dot molecule system with the interdot tunneling coupling (ITC). It is shown that, for the linear case, there exists tunneling induced transparency (TIT) in the context of a weak ITC, while the TIT can be replaced by Autler-Townes splitting in the presence of a strong ITC. For the nonlinear case, it is probable to realize the spatial optical solitons even under weak light intensity. Interestingly, we find that there appears transformation behavior between the bright and dark solitons by properly turning both the ITC strength and the detuning of the probe field. Meanwhile, the transformation condition of the bright and dark solitons is obtained. Additionally it is also found that the amplitude of the solitons first descends and then rises with the increasing of ITC strength. Our results may have potential applications for nonlinear optical experiments and optical telecommunication engineering in solid systems.
Cotton, Stephen J.; Miller, William H.
2016-10-01
Previous work has shown how a symmetrical quasi-classical (SQC) windowing procedure can be used to quantize the initial and final electronic degrees of freedom in the Meyer-Miller (MM) classical vibronic (i.e, nuclear + electronic) Hamiltonian, and that the approach provides a very good description of electronically non-adiabatic processes within a standard classical molecular dynamics framework for a number of benchmark problems. This paper explores application of the SQC/MM approach to the case of very weak non-adiabatic coupling between the electronic states, showing (as anticipated) how the standard SQC/MM approach used to date fails in this limit, and then devises a new SQC windowing scheme to deal with it. Application of this new SQC model to a variety of realistic benchmark systems shows that the new model not only treats the weak coupling case extremely well, but it is also seen to describe the "normal" regime (of electronic transition probabilities ≳ 0.1) even more accurately than the previous "standard" model.
Micromagnetic Simulation of Magnetic Domains in Exchange-coupled Ferromagnetic Thin Films
Institute of Scientific and Technical Information of China (English)
WANG; Zi-jun
2013-01-01
The reversal process of exchange spring double layers was simulated,investigating the impact of anisotropy constant and film thickness of both hard and soft layer on the magnetic domain structures.We also worked over the magnetization configuration in hard/soft/hard and soft/hard/soft trilayer exchange springs.Changing the anisotropy constant and film thickness of hard and soft layer would greatly impact
Kozioł-Rachwał, A.; Skowroński, W.; Frankowski, M.; Chęciński, J.; Ziętek, S.; Rzeszut, P.; Ślęzak, M.; Matlak, K.; Ślęzak, T.; Stobiecki, T.; Korecki, J.
2017-02-01
Fe/MgO/Fe trilayers with a subnanometer MgO tunnel barrier were grown by molecular beam epitaxy. Longitudinal magnetooptic Kerr effect measurements confirmed the existence of the antiferromagnetic interlayer exchange coupling (IEC) between the Fe layers for 2 Ådetermined dependence of the dipolar coupling on the pillar diameter. Finally, magnetoresistance (MR) was measured as a function of MgO thickness (dMgO), and a non-zero MR was found for the MgO as thin as 3.4 Å. Extrapolation of the MR (dMgO) dependence to MR=0 allowed us to determine the length of the pinholes in our sample, which was estimated to be (3.2±0.5) Å.
Samarin, V. V.
2016-05-01
The time-dependent Schrödinger equation and the coupled channel approach based on the method of perturbed stationary two-center states are used to describe nucleon transfers and fusion in low-energy nuclear reactions. Results of the cross sections calculation for the formation of the 198Au and fusion in the 6He+197Au reaction and for the formation of the 65Zn in 6He+64Zn reaction agree satisfactorily with the experimental data near the barrier. The Feynman's continual integrals calculations for a few-body systems were used for the proposal of the new form of the shell model mean field for helium isotopes.
Fust, Sergej; Mukherjee, Saumya; Paul, Neelima; Stahn, Jochen; Kreuzpaintner, Wolfgang; Böni, Peter; Paul, Amitesh
2016-09-01
Topologically stabilized spin configurations like helices in the form of planar domain walls (DWs) or vortex-like structures with magnetic functionalities are more often a theoretical prediction rather than experimental realization. In this paper we report on the exchange coupling and helical phase characteristics within Dy-Fe multilayers. The magnetic hysteresis loops with temperature show an exchange bias field of around 1.0 kOe at 10 K. Polarized neutron reflectivity reveal (i) ferrimagnetic alignment of the layers at low fields forming twisted magnetic helices and a more complicated but stable continuous helical arrangement at higher fields (ii) direct evidence of helices in the form of planar 2π-DWs within both layers of Fe and Dy. The helices within the Fe layers are topologically stabilized by the reasonably strong induced in-plane magnetocrystalline anisotropy of Dy and the exchange coupling at the Fe-Dy interfaces. The helices in Dy are plausibly reminiscent of the helical ordering at higher temperatures induced by the field history and interfacial strain. Stability of the helical order even at large fields have resulted in an effective modulation of the periodicity of the spin-density like waves and subsequent increase in storage energy. This opens broad perspectives for future scientific and technological applications in increasing the energy density for systems in the field of all-spin-based engineering which has the potential for energy-storing elements on nanometer length scales.
Bi, Jiang-lin; Wang, Wei; Li, Qi
2017-07-01
In this paper, the effects of the next-nearest neighbors exchange couplings on the magnetic and thermal properties of the ferrimagnetic mixed-spin (2, 5/2) Ising model on a 3D honeycomb lattice have been investigated by the use of Monte Carlo simulation. In particular, the influences of exchange couplings (Ja, Jb, Jan) and the single-ion anisotropy(Da) on the phase diagrams, the total magnetization, the sublattice magnetization, the total susceptibility, the internal energy and the specific heat have been discussed in detail. The results clearly show that the system can express the critical and compensation behavior within the next-nearest neighbors exchange coupling. Great deals of the M curves such as N-, Q-, P- and L-types have been discovered, owing to the competition between the exchange coupling and the temperature. Compared with other theoretical and experimental works, our results have an excellent consistency with theirs.
Thingna, Juzar; Zhou, Hangbo; Wang, Jian-Sheng
2014-11-21
We present a general theory to calculate the steady-state heat and electronic currents for nonlinear systems using a perturbative expansion in the system-bath coupling. We explicitly demonstrate that using the truncated Dyson-series leads to divergences in the steady-state limit, thus making it impossible to be used for actual applications. In order to resolve the divergences, we propose a unique choice of initial condition for the reduced density matrix, which removes the divergences at each order. Our approach not only allows us to use the truncated Dyson-series, with a reasonable choice of initial condition, but also gives the expected result that the steady-state solutions should be independent of initial preparations. Using our improved Dyson series we evaluate the heat and electronic currents up to fourth-order in system-bath coupling, a considerable improvement over the standard quantum master equation techniques. We then numerically corroborate our theory for archetypal settings of linear systems using the exact nonequilibrium Green's function approach. Finally, to demonstrate the advantage of our approach, we deal with the nonlinear spin-boson model to evaluate heat current up to fourth-order and find signatures of cotunnelling process.
Energy Technology Data Exchange (ETDEWEB)
Thingna, Juzar [Institute of Physics, University of Augsburg, Universitätsstrasse 1 D-86135 Augsburg (Germany); Nanosystems Initiative Munich, Schellingrstrasse 4, D-80799 München (Germany); Zhou, Hangbo [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117551 (Singapore); NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore); Wang, Jian-Sheng, E-mail: phywjs@nus.edu.sg [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117551 (Singapore)
2014-11-21
We present a general theory to calculate the steady-state heat and electronic currents for nonlinear systems using a perturbative expansion in the system-bath coupling. We explicitly demonstrate that using the truncated Dyson-series leads to divergences in the steady-state limit, thus making it impossible to be used for actual applications. In order to resolve the divergences, we propose a unique choice of initial condition for the reduced density matrix, which removes the divergences at each order. Our approach not only allows us to use the truncated Dyson-series, with a reasonable choice of initial condition, but also gives the expected result that the steady-state solutions should be independent of initial preparations. Using our improved Dyson series we evaluate the heat and electronic currents up to fourth-order in system-bath coupling, a considerable improvement over the standard quantum master equation techniques. We then numerically corroborate our theory for archetypal settings of linear systems using the exact nonequilibrium Green's function approach. Finally, to demonstrate the advantage of our approach, we deal with the nonlinear spin-boson model to evaluate heat current up to fourth-order and find signatures of cotunnelling process.
Geng, Hua; Zheng, Xiaoyan; Shuai, Zhigang; Zhu, Lingyun; Yi, Yuanping
2015-02-25
Charge transport and polarity in organic D-A mixed-stack crystals are examined in terms of super-exchange electronic couplings. When the super-exchange coupling is dominated by the interaction between donor HOMO and acceptor LUMO, ambipolar transport is achieved. Otherwise, involvement of other bridge orbitals can lead to unbalanced, even to unipolar transport in a special case that the HOMO-LUMO interaction vanishes.
Enhanced paramagnetic Cu²⁺ ions removal by coupling a weak magnetic field with zero valent iron.
Jiang, Xiao; Qiao, Junlian; Lo, Irene M C; Wang, Lei; Guan, Xiaohong; Lu, Zhanpeng; Zhou, Gongming; Xu, Chunhua
2015-01-01
A weak magnetic field (WMF) was proposed to enhance paramagnetic Cu(2+) ions removal by zero valent iron (ZVI). The rate constants of Cu(2+) removal by ZVI with WMF at pH 3.0-6.0 were -10.8 to -383.7 fold greater than those without WMF. XRD and XPS analyses revealed that applying a WMF enhanced both the Cu(2+) adsorption to the ZVI surface and the transformation of Cu(2+) to Cu(0) by ZVI. The enhanced Cu(2+) sequestration by ZVI with WMF was accompanied with expedited ZVI corrosion and solution ORP drop. The uneven distribution of paramagnetic Cu(2+) along an iron wire in an inhomogeneous MF verified that the magnetic field gradient force would accelerate the paramagnetic Cu(2+) transportation toward the ZVI surface due to the WMF-induced sharp decay of magnetic flux intensity from ZVI surface to bulk Cu(2+) solution. The paramagnetic Fe(2+) ions generated by ZVI corrosion would also accumulate at the position with the highest magnetic flux intensity on the ZVI surface, causing uneven distribution of Fe(2+), and facilitate the local galvanic corrosion of ZVI, and thus, Cu(2+) reduction by ZVI. The electrochemical analysis verified that the accelerated ZVI corrosion in the presence of WMF partly arose from the Lorentz force-enhanced mass transfer.
Sullivan, S. Mažeika P.; Boaz, Lindsey E.; Hossler, Katie
2016-04-01
Although mercury (Hg) contamination is common in stream ecosystems, mechanisms governing bioavailability and bioaccumulation in fluvial systems remain poorly resolved as compared to lentic systems. In particular, streams in urbanized catchments are subject to fluvial geomorphic alterations that may contribute to Hg distribution, bioaccumulation, and export across the aquatic-to-terrestrial boundary. In 12 streams of urban Columbus, Ohio, we investigated the influence of fluvial geomorphic characteristics related to channel geometry, streamflow, and sediment size and distribution on (1) Hg concentrations in sediment and body burdens in benthic larval and adult emergent aquatic insects and (2) aquatic-to-terrestrial contaminant transfer to common riparian spiders of the families Pisauridae and Tetragnathidae via changes in aquatic insect Hg body burdens as well as in aquatic insect density and community composition. Hydrogeomorphic characteristics were weakly related to Hg body burdens in emergent insects (channel geometry) and tetragnathid spiders (streamflow), but not to Hg concentrations in sediment or benthic insects. Streamflow characteristics were also related to emergent insect density, while wider channels were associated with benthic insect community shifts toward smaller-bodied and more tolerant taxa (e.g., Chironomidae). Thus, our results provide initial evidence that fluvial geomorphology may influence aquatic-to-terrestrial contaminant Hg transfer through the collective effects on emergent insect body burdens as well as on aquatic insect community composition and abundance.
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Zhang, Lei; Gilbert, M.J.
2010-01-01
We explore exchange coupling of a pair of spins in a double dot and in an optical lattice, using the frequency of exchanges in a bosonic path integral, evaluated using Monte Carlo simulation. The algorithm gives insights into the role of correlation through visualization of two-particle probability...
Weak-coupling analysis of quasiparticle excitations in Sr2RuO4 along the Γ -M cut
Deisz, J. J.; Kidd, T. E.
2017-01-01
We examine normal-state quasiparticle excitations along the Γ -M cut in momentum space for the putative p -wave superconductor Sr2RuO4 on the basis of fluctuation exchange approximation calculations. We take as input first-principles derived parameters for the band structure and spin-orbit and electron-electron interactions. The numerical results are in excellent agreement with data from photoemission experiments and provide insight into the underlying quasiparticle properties. We find that, despite the correlation-induced effective mass increase near the Fermi surface, the full β and γ bandwidths are, if anything, increased by correlations. Furthermore, for the γ band we find anomalous lifetime broadening and a significant temperature of variation of unoccupied state quasiparticle energies for temperatures between 25 and 100 K, both of which are accounted for by the momentum dependence of the electron self-energy. In addition to aiding our understanding of experimental data, these results point to the challenge of assigning appropriate Fermi-liquid parameters or momentum-independent self-energies for schemes that require such approximations in order to model Sr2RuO4 .
Directory of Open Access Journals (Sweden)
Chen Haohao
2016-06-01
Full Text Available A simple method for separation of matrine and oxymatrine from Sophora flavescens was developed with cation exchange resin coupled with macroporous resin. Based on the adsorption characteristics of matrine and oxymatrine, 001×732 cation exchange resin was used to absorb target alkaloids for removing most of the foreign matter, while BS-65 macroporous resin was chosen to purify these alkaloids. The result showed that the equilibrium adsorption data of matrine and oxymatrine on 001×732 resin and BS-65 resin at 30°C was fitted to Langmuir isotherm and Freundlich isotherm, respectively. The contents of matrine and oxymatrine were increased from 0.73% and 2.2% in the crude extract of the root of Sophora flavescens to 67.2% and 66.8% in the final eluent products with the recoveries of 90.3% and 86.9%, respectively.
Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef
2015-09-01
An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air.
Zirnstein, E. J.; Heerikhuisen, J.; Zank, G. P.; Pogorelov, N. V.; McComas, D. J.; Desai, M. I.
2014-03-01
Pickup ions (PUIs) appear to play an integral role in the multi-component nature of the plasma in the interaction between the solar wind (SW) and local interstellar medium (LISM). Three-dimensional (3D) MHD simulations with a kinetic treatment for neutrals and PUIs are currently still not viable. In light of recent energetic neutral atom (ENA) observations by the Interstellar Boundary EXplorer, the purpose of this paper is to illustrate the complex coupling between PUIs across the heliopause (HP) as facilitated by ENAs using estimates of PUI properties extracted from a 3D MHD simulation of the SW-LISM interaction with kinetic neutrals. First, we improve upon the multi-component treatment of the inner heliosheath (IHS) plasma from Zank et al. by including the extinction of PUIs through charge-exchange. We find a significant amount of energy is transferred away from hot, termination shock-processed PUIs into a colder, "freshly injected" PUI population. Second, we extend the multi-component approach to estimate ENA flux from the outer heliosheath (OHS), formed from charge-exchange between interstellar hydrogen atoms and energetic PUIs. These PUIs are formed from ENAs in the IHS that crossed the HP and experienced charge-exchange. Our estimates, based on plasma-neutral simulations of the SW-LISM interaction and a post-processing analysis of ENAs and PUIs, suggest the majority of flux visible at 1 AU from the front of the heliosphere, between ~0.02 and 10 keV, originates from OHS PUIs, indicating strong coupling between the IHS and OHS plasmas through charge-exchange.
The variation of linewidth in exchange coupled bilayer films with stress anisotropy
Energy Technology Data Exchange (ETDEWEB)
Zhang, Lei [Inner Mongolia Key Lab of Nanoscience and Nanotechnology and School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Rong, Jianhong, E-mail: jhrong502@163.com [Inner Mongolia Key Lab of Nanoscience and Nanotechnology and School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Yun, Guohong, E-mail: ndghyun@imu.edu.cn [Inner Mongolia Key Lab of Nanoscience and Nanotechnology and School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China); College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022 (China); Wang, Dong; Bao, Lingbo [Inner Mongolia Key Lab of Nanoscience and Nanotechnology and School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China)
2016-12-01
The frequency linewidth and the field linewidth in ferromagnetic/antiferromagnetic bilayer films with stress anisotropy have been investigated by using ferromagnetic resonance method. The effects of the stress anisotropy for in-plane anisotropy, weak and strong perpendicular anisotropy on linewidth are observed. It is found that the frequency and the field linewidth all increase for in-plane and weak perpendicular anisotropy, as the stress anisotropy field increases. And furthermore, the stress anisotropy field affects obviously the frequency and the field linewidth for unsaturation field.
Low-temperature, non-stoichiometric oxygen isotope exchange coupled to Fe(II)-goethite interactions
Energy Technology Data Exchange (ETDEWEB)
Frierdich, Andrew J. [Univ. of Wisconsin, Madison, WI (United States); Univ. of Iowa, Iowa City, IA (United States); Beard, Brian L. [Univ. of Wisconsin, Madison, WI (United States); Rosso, Kevin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scherer, Michelle M. [Univ. of Iowa, Iowa City, IA (United States); Spicuzza, Michael J. [Univ. of Wisconsin, Madison, WI (United States); Valley, John W. [Univ. of Wisconsin, Madison, WI (United States); Johnson, Clark M. [Univ. of Wisconsin, Madison, WI (United States)
2015-07-01
The oxygen isotope composition of natural iron oxide minerals has been widely used as a paleoclimate proxy. Interpretation of their stable isotope compositions, however, requires accurate knowledge of isotopic fractionation factors and an understanding of their isotopic exchange kinetics, the latter of which informs us how diagenetic processes may alter their isotopic compositions. Prior work has demonstrated that crystalline iron oxides do not significantly exchange oxygen isotopes with pure water at low temperature, which has restricted studies of isotopic fractionation factors to precipitation experiments or theoretical calculations. Using a double three-isotope method (¹⁸O-¹⁷O-¹⁶O and ⁵⁷Fe-⁵⁶Fe-⁵⁴Fe) we compare O and Fe isotope exchange kinetics, and demonstrate, for the first time, that O isotope exchange between structural O in crystalline goethite and water occurs in the presence of aqueous Fe(II) (Fe(II)_{aq}) at ambient temperature (i.e., 22–50 °C). The three-isotope method was used to extrapolate partial exchange results to infer the equilibrium, mass-dependent isotope fractionations between goethite and water. In addition, this was combined with a reversal approach to equilibrium by reacting goethite in two unique waters that vary in composition by about 16‰ in ¹⁸O/¹⁶O ratios. Our results show that interactions between Fe(II)_{aq} and goethite catalyzes O isotope exchange between the mineral and bulk fluid; no exchange (within error) is observed when goethite is suspended in ¹⁷O-enriched water in the absence of Fe(II)_{aq}. In contrast, Fe(II)-catalyzed O isotope exchange is accompanied by significant changes in ¹⁸O/¹⁶O ratios. Despite significant O exchange, however, we observed disproportionate amounts of Fe versus O exchange, where Fe isotope exchange in goethite was roughly three times that of O. This disparity provides novel insight into the reactivity of oxide minerals in aqueous
A Coupled Korteweg-de Vries System and Mass Exchanges among Solitons
DEFF Research Database (Denmark)
Miller, P. D.; Christiansen, Peter Leth
2000-01-01
We study an N-component, symmetrically coupled system of Korteweg-de Vries (KdV) equations that is integrable in the context of the sl(N+1) AKNS hierarchy. We show how the coupled system can be solved through a combination of the well-known inverse-scattering transform for (one-component) KdV...... and the solution of a linear equation with nonconstant coefficients. The coupled KdV system may be viewed as a phenomenological model for the sharing of mass among interacting solitons of the (one-component) KdV equation. Results for the scattering theory of solutions of the nonconstant coefficient linear equation...... arising in the solution of the coupled system are used to quantify the redistribution of mass during soliton collisions within the framework of the coupled KdV model....
Entropy Exchange in Coupled Field-Superconducting Charge Qubit System with Intrinsic Decoherence
Institute of Scientific and Technical Information of China (English)
SHAO Bin; ZHANG Jian; ZOU Jian
2006-01-01
Based on the intrinsic decoherence effect, partial entropy properties of a super conducting charge qubitinside a single-mode cavity field is investigated, and entropy exchange which is recently regarded as a kind of anti-correlated behavior of the entropy between subsystems is explored. Our results show that although the intrinsic decoherenceleads to an effective irreversible evolution of the interacting system due to a suppression of coherent quantum features through the decay of off-diagonal matrix elements of the density operator and has an apparently influence on the partial entropy of two individual subsystems, it does not effect the entropy exchange between the two subsystems.
Lukens, Wayne W; Magnani, Nicola; Booth, Corwin H
2012-10-01
Exchange coupling is quantified in lanthanide (Ln) single-molecule magnets (SMMs) containing a bridging N(2)(3-) radical ligand and between [Cp*(2)Yb](+) and bipy(•-) in Cp*(2)Yb(bipy), where Cp* is pentamethylcyclopentadienyl and bipy is 2,2'-bipyridyl. In the case of these lanthanide SMMs, the magnitude of exchange coupling between the Ln ion and the bridging N(2)(3-), 2J, is very similar to the barrier to magnetic relaxation, U(eff). A molecular version of the Hubbard model is applied to systems in which unpaired electrons on magnetic metal ions have direct overlap with unpaired electrons residing on ligands. The Hubbard model explicitly addresses electron correlation, which is essential for understanding the magnetic behavior of these complexes. This model is applied quantitatively to Cp*(2)Yb(bipy) to explain its very strong exchange coupling, 2J = -0.11 eV (-920 cm(-1)). The model is also used to explain the presence of strong exchange coupling in Ln SMMs in which the lanthanide spins are coupled via bridging N(2)(3-) radical ligands. The results suggest that increasing the magnetic coupling in lanthanide clusters could lead to an increase in the blocking temperatures of exchange-coupled lanthanide SMMs, suggesting routes to rational design of future lanthanide SMMs.
Hardal, Ali Ümit Cemal; Müstecaplıoğlu, Özgür E.
2012-01-01
Transfer of spin squeezing and particle entanglement between atoms and photons in coupled cavities via two-photon exchange Ali Ü. C. Hardal and Özgür E. Müstecaplıoğlu* Department of Physics, Koç University, Sarıyer, Istanbul 34450, Turkey *Corresponding author: Received March 15, 2012; revised May 19, 2012; accepted May 20, 2012; posted May 22, 2012 (Doc. ID 164811); published June 27, 2012 We examine transfer of particle entanglement and spin sque...
Exchange coupled composite FePt/TbCo/[Co/Ni]N films with an TbCo interlayer
Directory of Open Access Journals (Sweden)
Bin Ma
2017-05-01
Full Text Available The exchange coupled composite FePt/TbCo/[Co/Ni]N films have been prepared by DC magnetron sputtering. The net magnetization of ferromagnetic TbCo changes with the temperature variation, and then the magnetic configuration of FePt/TbCo/[Co/Ni]N changes. When a RE-dominated Tb32Co68 is inserted, FePt/Tb32Co68/[Co/Ni]5 has high coercivity at room temperature because of its synthesis ferrimagnetic sandwich structure, but small coercivity is obtained when the temperature is higher than 200 °C because of its graded ECC structure.
Energy Technology Data Exchange (ETDEWEB)
Brandt, R.; Schmidt, H. [School of Engineering, University of California-Santa Cruz, 1156 High Street, Santa Cruz, California 95064 (United States); Tibus, S. [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Institute of Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126 Chemnitz (Germany); Springer, F. [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Fassbender, J. [Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Rohrmann, H. [OC Oerlikon Balzers AG, LI-9496 Balzers (Liechtenstein); Albrecht, M. [Institute of Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126 Chemnitz (Germany)
2012-08-01
We investigate the effect of Co{sup +} irradiation on the magnetization dynamics of CoCrPt:SiO{sub 2} granular media. Increasing irradiation levels reduce the saturation magnetization and effective anisotropy, which decrease the intrinsic magnetization precession frequency. Furthermore, increasing intergranular exchange coupling results in a qualitative change in the behavior of the magnetic material from a collection of individual grains to a homogeneous thin film, as evidenced in both the switching behavior and dynamics. The frequency change cannot be explained by single crystal macrospin modeling, and can only be reproduced by the inclusion of the dipolar effects and anisotropy distribution inherent in a granular medium.
Temperature-Induced Magnetization Reorientation in GdFeCo/TbFeCo Exchange-Coupled Double Layer Films
Institute of Scientific and Technical Information of China (English)
王现英; 张约品; 李佐宜; 沈德芳; 干福熹
2003-01-01
GdFeCo/TbFeCo exchange-coupled double-layer (ECDL) films used for centre aperture type magnetically in duced super resolution were investigated through experiments and theoretical calculation. The ECDL films were prepared by the magnetron sputtering method. Polar Kerr effect measurements showed that magnetization reorientation occurred in the GdFeCo layer with the temperature rising, which was subsequently analysed by the micromagnetic calculation based on the mean-field theory and a continuum model. Theoretical analysis is in agreement well with the experimental results.
Exchange coupling behavior in bimagnetic CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite
Energy Technology Data Exchange (ETDEWEB)
Leite, G.C.P. [Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Chagas, E.F., E-mail: efchagas@fisica.ufmt.br [Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Pereira, R.; Prado, R.J. [Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Terezo, A.J. [Departamento de Quimica, Universidade Federal do Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Alzamora, M.; Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150 Urca, Rio de Janeiro (Brazil)
2012-09-15
In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe{sub 2}O{sub 4} and ferrimagnetic oxide/ferromagnetic metal CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite. The latter compound is a good system to study hard ferrimagnet/soft ferromagnet exchange coupled. Two steps were followed to synthesize the bimagnetic CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite: (i) first, preparation of CoFe{sub 2}O{sub 4} nanoparticles using a simple hydrothermal method, and (ii) second, reduction reaction of cobalt ferrite nanoparticles using activated charcoal in inert atmosphere and high temperature. The phase structures, particle sizes, morphology, and magnetic properties of CoFe{sub 2}O{sub 4} nanoparticles were investigated by X-Ray diffraction (XRD), Mossbauer spectroscopy (MS), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) with applied field up to 3.0 kOe at room temperature and 50 K. The mean diameter of CoFe{sub 2}O{sub 4} particles is about 16 nm. Mossbauer spectra revealed two sites for Fe{sup 3+}. One site is related to Fe in an octahedral coordination and the other one to the Fe{sup 3+} in a tetrahedral coordination, as expected for a spinel crystal structure of CoFe{sub 2}O{sub 4}. TEM measurements of nanocomposite showed the formation of a thin shell of CoFe{sub 2} on the cobalt ferrite and indicate that the nanoparticles increase to about 100 nm. The magnetization of the nanocomposite showed a hysteresis loop that is characteristic of exchange coupled systems. A maximum energy product (BH){sub max} of 1.22 MGOe was achieved at room temperature for CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposites, which is about 115% higher than the value obtained for CoFe{sub 2}O{sub 4} precursor. The exchange coupling interaction and the enhancement of product (BH){sub max} in nanocomposite CoFe{sub 2}O{sub 4}/CoFe{sub 2} are discussed. - Highlights: Black-Right-Pointing-Pointer CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite
Stacked Micro Heat Exchange System for Optimized Thermal Coupling of MicroTEGs
Wojtas, N.; Grab, M.; Glatz, W.; Hierold, C.
2013-07-01
This study presents modeling and experimental results of micro thermoelectric generators (μTEGs) integrated into a multilayer micro heat exchange system. The multilayer configuration benefits from low heat transfer resistances at small fluid flow rates and at the same time from low required pumping powers. The compact stacked power device allows for high net output power per volume, and therefore a reduction in size, weight, and cost compared with conventional large-scale heat exchangers. The influence of the boundary conditions and the system design parameters on the net output power of the micro heat exchange system was investigated by simulation. The theoretical results showed a major impact of the microchannel dimensions and the μTEG thickness on the overall output performance of the system. By adapting the applied fluid flow rate, the system's net power output can be maximized for varying operating temperatures. Experimental measurements of the cross-flow micro heat exchange system were in good agreement with the performed simulations. A net μTEG output power of 62.9 mW/cm2 was measured for a double-layer system at an applied water inlet temperature difference of 60 K with a Bi2Te3 μTEG ( ZT of 0.12), resulting in a net volumetric efficiency factor of 37.2 W/m3/K2.
Correlation between charge transfer and exchange coupling in carbon-based magnetic materials
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Anh Tuan, E-mail: tuanna@hus.edu.vn [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Science and Technology Department, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan (Japan); Nguyen, Van Thanh; Nguyen, Huy Sinh [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Pham, Thi Tuan Anh [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Faculty of Science, College of Hai Duong, Nguyen Thi Due, Hai Duong (Viet Nam); Do, Viet Thang [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Faculty of Science, Haiphong University, 171 Phan Dang Luu, Kien An, Hai Phong (Viet Nam); Dam, Hieu Chi [Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan (Japan)
2015-10-15
Several forms of carbon-based magnetic materials, i.e. single radicals, radical dimers, and alternating stacks of radicals and diamagnetic molecules, have been investigated using density-functional theory with dispersion correction and full geometry optimization. Our calculated results demonstrate that the C{sub 31}H{sub 15} (R{sub 4}) radical has a spin of ½. However, in its [R{sub 4}]{sub 2} dimer structure, the net spin becomes zero due to antiferromagnetic spin-exchange between radicals. To avoid antiferromagnetic spin-exchange of identical face-to-face radicals, eight alternating stacks, R{sub 4}/D{sub 2m}/R{sub 4} (with m = 3-10), were designed. Our calculated results show that charge transfer (Δn) between R{sub 4} radicals and the diamagnetic molecule D{sub 2m} occurs with a mechanism of spin exchange (J) in stacks. The more electrons that transfer from R{sub 4} to D{sub 2m}, the stronger the ferromagnetic spin-exchange in stacks. In addition, our calculated results show that Δn can be tailored by adjusting the electron affinity (E{sub a}) of D{sub 2m}. The correlation between Δn, E{sub a}, m, and J is discussed. These results give some hints for the design of new ferromagnetic carbon-based materials.
Noise suppression and long-range exchange coupling for gallium arsenide spin qubits
DEFF Research Database (Denmark)
Malinowski, Filip
to put the highest, up to date, lower bound on the electron spin coherence time in gallium arsenide: 870 ms. Later, we study the perspectives of exploiting a multielectron quantum dot as a mediator of the exchange interaction. We investigate interaction between a single spin and the multelectron quantum...
The Interpersonal Exchange Model of Sexual Satisfaction: Implications for Sex Therapy with Couples.
Byers, E. Sandra
1999-01-01
Little has been written in empirical or clinical literature about enhancement of sexual satisfaction, and there has not been a theoretical model to guide research on factors influencing sexual satisfaction. The Interpersonal Exchange Model of Sexual Satisfaction (IEMSS) was developed to fill the gaps. Article describes IEMSS and the studies that…
Interplay of Rashba and sp-d exchange couplings in magnetic 2DEGs
Mireles, Francisco; Freire, Henrique H. P.; Egues, J. Carlos
2006-03-01
In diluted magnetic semiconductor (DMS) quantum wells the sp-d exchange interaction between the itinerant conduction electrons in the well and the localized electrons in the d orbitals of the Mn impurities gives rise to interesting spin-dependent physics [1]. Recently, the interplay of the Rashba spin-orbit and the sp-d exchange interactions in Mn-based wells has been recognized via Shubnikov-de-Haas measurements [2]. While the Rashba spin-orbit has been extensively studied in non-magnetic 2DEGs, its role in DMS systems with a competing sp-d exchange interaction has not yet been addressed theoretically. In this work we present a k.p derivation of an effective Hamiltonian for a Mn-based quantum well with competing Rashba and sp-d interactions, and show numerical results for the magnetoresistance ρxx of typical magnetic 2DEGs using our effective Hamiltonian model. Our results shows interesting beating patterns of the ρxx as a function of the temperature and carrier density which suggests a significant interplay between the spin-orbit and sp-d exchange interactions, as a recent experiment observes [2]. [1] J. C. Egues, PRL 78, 4578 (1998); H. J. P. Freire and J. C. Egues, cond-mat/0412491. [2] Y. S. Gui et al. EPL. 65, 393 (2004).
Laurent, Sébastien; Pierce, Matthieu; Delehaye, Marion; Yefsah, Tarik; Chevy, Frédéric; Salomon, Christophe
2017-03-10
We study three-body recombination in an ultracold Bose-Fermi mixture. We first show theoretically that, for weak interspecies coupling, the loss rate is proportional to Tan's contact. Second, using a ^{7}Li/^{6}Li mixture we probe the recombination rate in both the thermal and dual superfluid regimes. We find excellent agreement with our model in the BEC-BCS crossover. At unitarity where the fermion-fermion scattering length diverges, we show that the loss rate is proportional to n_{f}^{4/3}, where n_{f} is the fermionic density. This unusual exponent signals nontrivial two-body correlations in the system. Our results demonstrate that few-body losses can be used as a quantitative probe of quantum correlations in many-body ensembles.
Chen, Xi; Bansal, Dipanshu; Sullivan, Sean; Abernathy, Douglas L.; Aczel, Adam A.; Zhou, Jianshi; Delaire, Olivier; Shi, Li
2016-10-01
Intriguing lattice dynamics have been predicted for aperiodic crystals that contain incommensurate substructures. Here we report inelastic neutron scattering measurements of phonon and magnon dispersions in S r14C u24O41 , which contains incommensurate one-dimensional (1D) chain and two-dimensional (2D) ladder substructures. Two distinct pseudoacoustic phonon modes, corresponding to the sliding motion of one sublattice against the other, are observed for atomic motions polarized along the incommensurate axis. In the long wavelength limit, it is found that the sliding mode shows a remarkably small energy gap of 1.7-1.9 meV, indicating very weak interactions between the two incommensurate sublattices. The measurements also reveal a gapped and steep linear magnon dispersion of the ladder sublattice. The high group velocity of this magnon branch and weak coupling with acoustic and pseudoacoustic phonons can explain the large magnon thermal conductivity in S r14C u24O41 crystals. In addition, the magnon specific heat is determined from the measured total specific heat and phonon density of states and exhibits a Schottky anomaly due to gapped magnon modes of the spin chains. These findings offer new insights into the phonon and magnon dynamics and thermal transport properties of incommensurate magnetic crystals that contain low-dimensional substructures.
Energy Technology Data Exchange (ETDEWEB)
Yalçın, Orhan, E-mail: o.yalcin@nigde.edu.tr [Department of Physics, Niğde University, Niğde 51240 (Turkey); Erdem, Rıza [Department of Physics, Akdeniz University, Antalya 07058 (Turkey); Özüm, Songül; Demir, Zafer [Institute of Sciences, Niğde University, Niğde 51240 (Turkey)
2015-09-01
Recently, origin of the martensite–austenite transitions in core–surface type magnetic nanoparticles has been investigated theoretically and it has been indicated that repulsive biquadratic exchange coupling (K<0.0) causes the coexisting martensite and austenite phases. In the present paper, the phase diagrams of homogeneous and composite nanoparticles in the k{sub B}T/J{sub 0}−D/J{sub 0} plane are studied for the presence and absence of attractive biquadratic exchange interaction in addition to repulsive biquadratic exchange interaction. Significant changes in the phase diagram points are discussed in the presence of martensitic and austenitic transformations. Four regions in the phase diagrams are found as second-order, martensitic–austenitic, T{sub Cid} and first-order phase transition regimes. - Highlights: • The phase diagrams have been observed for HM- and CM-NPs with martensitic (M) and austenitic (A) phases. • The thermal hysteresis loops have also been plotted for CM-NPs. • The four separate regions in phase diagrams called first-order phase transition (1st), martensitic/austenitic transition (M–A), second-order phase transition (2nd) and T{sub Cid} have been observed.
Energy Technology Data Exchange (ETDEWEB)
Yalçın, Orhan, E-mail: o.yalcin@nigde.edu.tr [Department of Physics, Niğde University, 51240 Niğde (Turkey); Ünlüer, Şahin [Institute of Sciences, Niğde University, 51240 Niğde (Turkey); Kazan, Sinan [Department of Physics, Gebze Technical University, 41400 Gebze, Kocaeli (Turkey); Şahingöz, Recep [Department of Physics, Bozok University, 66500 Yozgat (Turkey)
2015-02-15
Hysteresis loops of the nanoscale magnetic layer Co{sub 90}Fe{sub 10} and Ni{sub 81}Fe{sub 19} and bilayer Co{sub 90}Fe{sub 10}/Ni{sub 81}Fe{sub 19} and Ni{sub 81}Fe{sub 19}/Co{sub 90}Fe{sub 10} films were measured as a function of external dc magnetic field and the thickness dependence of these films were plotted as a function of temperature. Time evolution of the minor/middle/major hysteresis loops of 5/5 nm-thick Ni{sub 81}Fe{sub 19}/Co{sub 90}Fe{sub 10} monolayer have been observed at 10 K. The spin valve, exchange bias training and Barkhausen effects for magnetic layer and bilayer films have been analysed at various temperatures, thicknesses and different orientations according to the substrate. The exchange-bias training effects have been observed only in positive magnetization region. Origin of the exchange-bias training effects and asymmetric hysteresis loops are related to the relaxation mechanism of a pinning layer in magnetically coupled soft/hard bilayers.
Magnetic anisotropies in ferromagnetic and exchange-coupled systems on rippled surfaces
Energy Technology Data Exchange (ETDEWEB)
Liedke, Maciej Oskar; Liedke, Bartosz; Marko, Daniel; Keller, Adrian; Muecklich, Arndt; Facsko, Stefan; Fassbender, Juergen [FZ Dresden-Rossendorf, FWI, Dresden (Germany); Cizmar, Erik; Zvyagin, Sergei; Wosnitza, Joachim [FZ Dresden-Rossendorf, HLD, Dresden (Germany)
2008-07-01
The influence of a surface and interface modulation on the magnetic properties of ferromagnetic materials (Py, Fe and Co) and an exchange bias system (Py/FeMn) is studied. A periodic surface modulation (the so-called ripples) is achieved by low energy ion erosion. Subsequently the magnetic stack is deposited. Due to the film morphology a strong uniaxial anisotropy is induced in the ferromagnetic layers, which is fixed in its orientation along ripples elongation. In the case of the exchange bias system the direction of the induced unidirectional anisotropy can be varied by means of different field annealing cycles. For all mutual orientations both anisotropy contributions are superimposed independently. The angular dependence of the magnetization reversal behavior can be described perfectly by a coherent rotation model. In addition, the magnitude of the uniaxial and the unidirectional anisotropy scales with the step density or wave length of the rippled substrate, which is in full agreement with theoretical predictions.
Large exchange-dominated domain wall velocities in antiferromagnetically coupled nanowires
Directory of Open Access Journals (Sweden)
Majd Kuteifan
2016-04-01
Full Text Available Magnetic nanowires supporting field- and current-driven domain wall motion are envisioned for methods of information storage and processing. A major obstacle for their practical use is the domain-wall velocity, which is traditionally limited for low fields and currents due to the Walker breakdown occurring when the driving component reaches a critical threshold value. We show through numerical and analytical modeling that the Walker breakdown limit can be extended or completely eliminated in antiferromagnetically coupled magnetic nanowires. These coupled nanowires allow for large domain-wall velocities driven by field and/or current as compared to conventional nanowires.
Yang, Fuh-An; Guo, Chih-Wei; Chen, Yao-Jung; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu; Hwang, Lian-Pin; Elango, Shanmugam
2007-01-22
The crystal structures of the dimer form of copper(II) tetraphenylporphyrin N-oxide, [Cu(tpp-N-O)]2 (3-dimer), and zinc(II) tetraphenylporphyrin N-oxide, [Zn(tpp-N-O)]2 (4-dimer), were established. The geometry at the copper ion in 3-dimer is essentially square-pyramidal with one oxygen bridge [O(1A)] occupying the apical site, giving a much larger Cu-O bond distance compared to those at the basal plane. The respective Cu...Cu distance and Cu-O-Cu angle in the core of 3-dimer are 3.987(4) A and 148.1(3) degrees. The Zn(1) atom in 4-dimer has a distorted square-pyramidal [4 + 1] coordination geometry that gives a tau-value of 0.19. The respective Zn...Zn distance and Zn-O-Zn angle in the dimeric unit of 4-dimer are 4.025(3) A and 148.1(2) degrees. The 3-dimer displays axial X-band electron paramagnetic resonance spectral features (Es = 0) in the powder state at 4 K, giving g parallel = 2.51 (A(parallel,s) = (9.6 +/- 0.2) x 10-3 cm(-1)) and g(perpendicular) = 2.11 and in the same powder state at 293 K giving Ds = 0.0731 cm(-1) (as derived from DeltaMs = 1 lines) or 0.0743 cm(-1) (as derived from the DeltaMs = 2 lines). In addition, 3-dimer displays a DeltaMs = 2 transition at g = 4.17 indicating the presence of spin-exchange coupling. The anisotropic exchange interaction (Ds(ex)= 0.132 cm(-1)) gives the main contribution to Ds in 3-dimer. The theoretical fit of the susceptibility and effective magnetic moment data of 3-dimer in the temperature range of 5-300 K gives 2J = 68 cm(-1), g = 2.01, p = 0.06, and a temperature-independent paramagnetism of 10(-6) cm3 mol(-1). This magnetic susceptibility data indicates that the copper(II) ions in 3-dimer are coupled in a ferromagnetic manner with the ground-spin triplet stabilized by 68 cm(-1) with regard to the singlet.
Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons
Dunkelberger, A. D.; Spann, B. T.; Fears, K. P.; Simpkins, B. S.; Owrutsky, J. C.
2016-11-01
Coupling vibrational transitions to resonant optical modes creates vibrational polaritons shifted from the uncoupled molecular resonances and provides a convenient way to modify the energetics of molecular vibrations. This approach is a viable method to explore controlling chemical reactivity. In this work, we report pump-probe infrared spectroscopy of the cavity-coupled C-O stretching band of W(CO)6 and the direct measurement of the lifetime of a vibration-cavity polariton. The upper polariton relaxes 10 times more quickly than the uncoupled vibrational mode. Tuning the polariton energy changes the polariton transient spectra and relaxation times. We also observe quantum beats, so-called vacuum Rabi oscillations, between the upper and lower vibration-cavity polaritons. In addition to establishing that coupling to an optical cavity modifies the energy-transfer dynamics of the coupled molecules, this work points out the possibility of systematic and predictive modification of the excited-state kinetics of vibration-cavity polariton systems.
Fallarino, Lorenzo; Sluka, Volker; Kardasz, Bartek; Pinarbasi, Mustafa; Kent, Andrew D.
We explore the possibility of an easy-cone ground state in coupled easy plane/easy axis magnetic bilayers. The samples consist of a Co/Ni multilayer with perpendicular magnetic anisotropy and a CoFe layer with easy-plane anisotropy separated by a variable thickness Ru layer. Using ferromagnetic resonance spectroscopy, we characterize the magnetic behavior of the coupled thin films for different Ru thicknesses by determining the resonance fields for both the acoustic and optical FMR modes. In particular, we observe a gap in the resonance field opening up between the two modes in angular-dependent FMR, which is direct evidence for the presence of interlayer coupling. Quantitative comparisons with a theoretical model indicate that by varying the Ru thickness the coupling strength can be tuned continuously from ferromagnetic to the anti-ferromagnetic. These results are consistent with a canted magnetic ground state in zero field, a state of interest for applications in spin-torque devices, such as current tunable spin-torque oscillators. Supported by NSF-DMR1309202 and Spin-Transfer Technologies Inc.
Orientation-modulated exchange coupling in La0.67Ca0.33MnO3/CaMnO3 bilayer films
Wang, F.; Bai, Y.; Liu, W.; Zhang, H. R.; Li, S. K.; Dai, Z. M.; Ma, S.; Zhao, X. G.; Wang, S. C.; Wang, Z. J.; Zhang, Z. D.
2017-04-01
Epitaxial La0.67Ca0.33MnO3/CaMnO3 (LCMO/CMO) bilayers and the reference single layers were deposited by pulsed laser deposition on (001)- and (110)-oriented SrTiO3 (STO) substrates, allowing us to perform a detailed study of the dependence of exchange coupling on crystal orientations. It is found that the exchange bias (coercive) field of the (110)-oriented LCMO/CMO bilayer are decreased (increased) compared to that of (001)-oriented bilayer, due to the enhanced (weakened) Mn3+-Mn4+ ferromagnetic double-exchange interaction of LCMO layer. It is clear that the spin flop coupling that leads to the enhanced coercivity and the spin glass state that results in the exchange bias effect can coexist and are determined by the competition between Mn3+-Mn4+ ferromagnetic double-exchange and Mn4+-Mn4+ antiferromagnetic super-exchange interactions at the interface. We propose that strong Mn3+-Mn4+ ferromagnetic double-exchange interaction facilitates the existence of spin flop coupling, not the formation of spin glass state at the LCMO/CMO interface.
Directory of Open Access Journals (Sweden)
J. E. Pleim
2012-08-01
Full Text Available Atmospheric ammonia (NH3 is the primary atmospheric base and an important precursor for inorganic particulate matter and when deposited NH3 contributes to surface water eutrophication, soil acidification and decline in species biodiversity. Flux measurements indicate that the air-surface exchange of NH3 is bi-directional. However, the effects of bi-directional exchange, soil biogeochemistry and human activity are not parameterized in air quality models. The US Environmental Protection Agency (EPA's Community Multiscale Air-Quality (CMAQ model with bi-directional NH3 exchange has been coupled with the United States Department of Agriculture (USDA's Environmental Policy Integrated Climate (EPIC agro-ecosystem model's nitrogen geochemistry algorithms. CMAQ with bi-directional NH3 exchange coupled to EPIC connects agricultural cropping management practices to emissions and atmospheric concentrations of reduced nitrogen and models the biogeochemical feedback on NH3 air-surface exchange. This coupled modeling system reduced the biases and error in NHx (NH3 + NH4+ wet deposition and in ambient aerosol concentrations in an annual 2002 Continental US (CONUS domain simulation when compared to a 2002 annual simulation of CMAQ without bi-directional exchange. Fertilizer emissions estimated in CMAQ 5.0 with bi-directional exchange exhibits markedly different seasonal dynamics than the US EPA's National Emissions Inventory (NEI, with lower emissions in the spring and fall and higher emissions in July.
Energy Technology Data Exchange (ETDEWEB)
Castro, I. L.; Nascimento, V. P.; Passamani, E. C.; Takeuchi, A. Y.; Larica, C. [Universidade Federal do Espirito Santo, Vitoria, ES 29075-910 (Brazil); Tafur, M. [Universidade Federal de Itajuba, Campus Itabira, Itabira, MG 37500-903 (Brazil); Pelegrini, F. [Universidade Federal de Goias, Goiania, GO 74001-970 (Brazil)
2013-05-28
Magnetic properties of sputtered NiFe/IrMn/Co trilayers grown on different seed layers (Cu or Ta) deposited on Si (100) substrates were investigated by magnetometry and ferromagnetic resonance measurements. Exchange bias effect and magnetic spring behavior have been studied by changing the IrMn thickness. As shown by X-ray diffraction, Ta and Cu seed layers provoke different degrees of (111) fcc-texture that directly affect the exchange bias and indirectly modify the exchange spring coupling behavior. Increasing the IrMn thickness, it was observed that the coupling angle between the Co and NiFe ferromagnetic layers increases for the Cu seed system, but it reduces for the Ta case. The results were explained considering (i) different anisotropies of the Co and IrMn layers induced by the different degree of the (111) texture and (ii) the distinct exchange bias set at the NiFe/IrMn and IrMn/Co interfaces in both systems. The NiFe and Co interlayer coupling angle is strongly correlated with both exchange bias and exchange magnetic spring phenomena. It was also shown that the highest exchange bias field occurs when an unstressed L1{sub 2} IrMn structure is stabilized.
Liu, Fei; Dong, Yunhe; Yang, Wenlong; Yu, Jing; Xu, Zhichuan; Hou, Yanglong
2014-11-10
We report the controlled synthesis of exchange-coupled face-centered tetragonal (fct) FePd/α-Fe nanocomposite magnets with variable Fe concentration. The composite was converted from Pd/Fe3O4 core/shell nanoparticles through a high-temperature annealing process in a reducing atmosphere. The shell thickness of core/shell Pd/Fe3O4 nanoparticles could be readily tuned, and subsequently the concentration of Fe in nanocomposite magnets was controlled. Upon annealing reduction, the hard magnetic fct-FePd phase was formed by the interdiffusion between reduced α-Fe and face-centered cubic (fcc) Pd, whereas the excessive α-Fe remained around the fct-FePd grains, realizing exchange coupling between the soft magnetic α-Fe and hard magnetic fct-FePd phases. Magnetic measurements showed variation in the magnetic properties of the nanocomposite magnets with different compositions, indicating distinct exchange coupling at the interfaces. The coercivity of the exchange-coupled nanocomposites could be tuned from 0.7 to 2.8 kOe and the saturation magnetization could be controlled from 93 to 160 emu g(-1). This work provides a bottom-up approach using exchange-coupled nanocomposites for engineering advanced permanent magnets with controllable magnetic properties.
Zhang, Zhao-Xiang; He, You-Zhao
2005-02-25
An on-line preconcentration method based on ion exchange solid phase extraction was developed for the determination of cationic analytes in capillary electrophoresis (CE). The preconcentration-separation system consisted of a preconcentration capillary bonded with carboxyl cation-exchange stationary phase, a separation capillary for zone electrophoresis and a tee joint interface of the capillaries. Two capillaries were connected closely inside a 0.3 mm i.d. polytetrafluoroethylene tube with a side opening and fixed together by the interface. The preparations of the preconcentration capillaries and interface were described in detail in this paper. The on-line preconcentration and separation procedure of the analysis system included washing and conditioning the capillaries, loading analytes, filling with buffer solution, eluting analytes and separating by capillary zone electrophoresis (CZE). Several analysis parameters, including sample loading flow rate and time, eluting solution and volume, inner diameter and length of preconcentration capillary etc., were investigated. The proposed method enhanced the detection sensitivity of CE-UV about 5000 times for propranolol and metoprolol compared with normally electrokinetic injection. The detection limits of propranolol and metoprolol were 0.02 and 0.1 microg/L with the proposed method respectively, whereas those were 0.1 and 0.5 mg/L with conventional electrokinetic injection. The experiment results demonstrate that the proposed technique can increase the preconcentration factor evidently.
Effect of multi-component ions exchange on low salinity EOR: Coupled geochemical simulation study
Directory of Open Access Journals (Sweden)
Ehsan Pouryousefy
2016-09-01
Upon combining the simulation and experimental results, we concluded that the multi-component ion exchange is not the sole mechanism behind low salinity effect for two reasons. First, almost 10% additional oil recovery was observed from the experiments by injecting the 2000 ppm CaCl2 compared with 50,000 ppm CaCl2 solutions. Even though in both cases the surface is expected to be fully saturated with Ca2+ according to the geochemical modelling. Second, 6% incremental oil recovery was achieved from the experiments by injecting 2000 ppm NaCl solution compared with that of 50,000 ppm NaCl. Although 25% incremental adsorption of divalent cations (Ca2+ were presented during the flooding of the 2000 ppm NaCl solution. Therefore, it is worth noting that the electrical double layer expansion due to the ion exchange needs to be taken into account to pinpoint the mechanism(s of low-salinity water effect.
Institute of Scientific and Technical Information of China (English)
JI Yan; LIU Qiu-Sheng; LIU Rong
2008-01-01
We propose and analyse a new model of thermocapillary convection with evaporation in a cavity subjected to horizontal temperature gradient.rather than the previously studied model without evaporation.The pure liquid layer with a top free surface in contact with its own vapour is considered in microgravity condition.The computing programme developed for simulating this model integrates the two-dimensional,time-dependent Navier-Stokes equationsand energy equation bya second-order accurate projection method.We focus on the coupling of evaporation and thermocapillary convection by investigating the influence of evaporation Biot number and Marangoni number on the interfacial mass and heat transfer.Thtee different regimes of the coupling mechanisms are found and explained from our numerical results.
Qian, Xiaolei; Fan, Hua; Wang, Chaozhan; Wei, Yinmao
2013-04-01
Ion-exchange membrane is of importance for the development of membrane chromatography. In this work, a high-capacity anion-exchange membrane was prepared by grafting of glycidyl methacrylate (GMA) onto the surface of regenerated cellulose (RC) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequent derivatization with diethylamine. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize changes in the chemical functionality, surface topography and pore morphology of the modified membranes. The static capacity of the prepared anion-exchange membrane was evaluated with bovine serum albumin (BSA) as a model protein. The results indicated that the anion-exchange membrane which could reach a maximum capacity of 96 mg/mL for static adsorption possesses a higher adsorption capacity, and the adsorption capacity increases with the polymerization time. The effect of pH and salt concentration confirmed that the adsorption of BSA followed ion-exchange mechanism. The established method would have potential application in the preparation of anion-exchange membrane.
Anomalous transport at weak coupling
Chowdhury, Subham Dutta
2015-01-01
We evaluate the contribution of chiral fermions in $d=2, 4, 6$, chiral bosons, a chiral gravitino like theory in $d=2$ and chiral gravitinos in $d=6$ to all the leading parity odd transport coefficients at one loop. This is done by using finite temperature field theory to evaluate the relevant Kubo formulae. For chiral fermions and chiral bosons the relation between the parity odd transport coefficient and the microscopic anomalies including gravitational anomalies agree with that found by using the general methods of hydrodynamics and the argument involving the consistency of the Euclidean vacuum. For the gravitino like theory in $d=2$ and chiral gravitinos in $d=6$, we show that relation between the pure gravitational anomaly and parity odd transport breaks down. From the perturbative calculation we clearly identify the terms that contribute to the anomaly polynomial, but not to the transport coefficient for gravitinos. We also develop a simple method for evaluating the angular integrals in the one loop dia...
Benomar, Saida; Ranava, David; Cárdenas, María Luz; Trably, Eric; Rafrafi, Yan; Ducret, Adrien; Hamelin, Jérôme; Lojou, Elisabeth; Steyer, Jean-Philippe; Giudici-Orticoni, Marie-Thérèse
2015-02-23
Knowledge of the behaviour of bacterial communities is crucial for understanding biogeochemical cycles and developing environmental biotechnology. Here we demonstrate the formation of an artificial consortium between two anaerobic bacteria, Clostridium acetobutylicum (Gram-positive) and Desulfovibrio vulgaris Hildenborough (Gram-negative, sulfate-reducing) in which physical interactions between the two partners induce emergent properties. Molecular and cellular approaches show that tight cell-cell interactions are associated with an exchange of molecules, including proteins, which allows the growth of one partner (D. vulgaris) in spite of the shortage of nutrients. This physical interaction induces changes in expression of two genes encoding enzymes at the pyruvate crossroads, with concomitant changes in the distribution of metabolic fluxes, and allows a substantial increase in hydrogen production without requiring genetic engineering. The stress induced by the shortage of nutrients of D. vulgaris appears to trigger the interaction.
Directory of Open Access Journals (Sweden)
Seok Jin Yun
2016-02-01
Full Text Available Strong interlayer exchange coupling (IEC and high post-annealing stability are demonstrated for perpendicular synthetic ferrimagnets (p-SyFs with [Pt/Co]6/Ru/[Co/Pt]3 structures. The observed IEC strength was 2.55 ergs/cm2 for a Ru thickness of 0.35 nm, representing the highest value achieved up to date for similar structures. The IEC remained strong even after annealing at 450oC, for the practically important Ru layer thickness of 0.85 nm. The biquadratic IEC, a parameter quantifying the pinhole effects in SyFs, was confirmed by analyzing the experimental results by using the total energy functional, and its strength increased with decreasing the temperature and Ru layer thickness.
Enhanced magnetic properties in ZnCoAlO caused by exchange-coupling to Co nanoparticles
Feng, Qi; Dizayee, Wala; Li, Xiaoli; Score, David S.; Neal, James R.; Behan, Anthony J.; Mokhtari, Abbas; Alshammari, Marzook S.; Al-Qahtani, Mohammed S.; Blythe, Harry J.; Chantrell, Roy W.; Heald, Steve M.; Xu, Xiao-Hong; Fox, A. Mark; Gehring, Gillian A.
2016-11-01
We report the results of a sequence of magnetisation and magneto-optical studies on laser ablated thin films of ZnCoAlO and ZnCoO that contain a small amount of metallic cobalt. The results are compared to those expected when all the magnetization is due to isolated metallic clusters of cobalt and with an oxide sample that is almost free from metallic inclusions. Using a variety of direct magnetic measurements and also magnetic circular dichroism we find that there is ferromagnetism within both the oxide and the metallic inclusions, and furthermore that these magnetic components are exchange-coupled when aluminium is included. This enhances both the coercive field and the remanence. Hence the presence of a controlled quantity of metallic nanoparticles in ZnAlO can improve the magnetic response of the oxide, thus giving great advantages for applications in spintronics.
Directory of Open Access Journals (Sweden)
Colò Gianluca
2016-01-01
Full Text Available In this contribution, we shall describe a formalism that goes beyond the simple time-dependent mean field and is based on particle-vibration coupling (PVC. Such a formalism has been developed with the idea of being self-consistent. It makes use of Skyrme effective forces, and has been used for several applications. We will focus on charge-exchange transitions, namely we will show that our model describes well both the Gamow-Teller giant resonance width, and the low-lying transitions associated with β-decay. In this latter case, including PVC produces a significant improvement of the half-lives obtained at mean-field level, and leads to a good agreement with experimental data. We will end by discussing particle-phonon multiplets in odd nuclei.
Energy Technology Data Exchange (ETDEWEB)
Selva Chandrasekaran, S.; Murugan, P., E-mail: murugan@cecri.res.in [CSIR Central Electrochemical Research Institute, Karaikudi 630 003 (India); Saravanan, P.; Kamat, S. V. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India)
2015-04-07
First principles calculations are performed on 3d-transition metal atom deposited (0001) surface of SmCo{sub 5} to understand the magnetic properties and the improvement of Curie temperature (T{sub c}). Various atomic sites are examined to identify the energetically feasible adsorption of adatom and it is found that the void site of Co-rich (0001) SmCo{sub 5} surface is the most favourable one to deposit. The surface magnetic moments of various adatom deposited SmCo{sub 5} surfaces are larger than the clean surface except for Cu and Zn. Eventually, the surface exchange coupling of clean and adatom deposited surface is found to increase for Mn, Fe, Co, Ni, and Cu deposited surfaces and this improvement results in the increase in T{sub c} of SmCo{sub 5} slab.
Magnetic phase transition in coupled spin-lattice systems: A replica-exchange Wang-Landau study.
Perera, Dilina; Vogel, Thomas; Landau, David P
2016-10-01
Coupled, dynamical spin-lattice models provide a unique test ground for simulations investigating the finite-temperature magnetic properties of materials under the direct influence of the lattice vibrations. These models are constructed by combining a coordinate-dependent interatomic potential with a Heisenberg-like spin Hamiltonian, facilitating the treatment of both the atomic coordinates and the spins as explicit phase variables. Using a model parameterized for bcc iron, we study the magnetic phase transition in these complex systems via the recently introduced, massively parallel replica-exchange Wang-Landau Monte Carlo method. Comparison with the results obtained from rigid lattice (spin-only) simulations shows that the transition temperature as well as the amplitude of the peak in the specific heat curve is marginally affected by the lattice vibrations. Moreover, the results were found to be sensitive to the particular choice of interatomic potential.
Magnetic phase transition in coupled spin-lattice systems: A replica-exchange Wang-Landau study
Perera, Dilina; Vogel, Thomas; Landau, David P.
2016-10-01
Coupled, dynamical spin-lattice models provide a unique test ground for simulations investigating the finite-temperature magnetic properties of materials under the direct influence of the lattice vibrations. These models are constructed by combining a coordinate-dependent interatomic potential with a Heisenberg-like spin Hamiltonian, facilitating the treatment of both the atomic coordinates and the spins as explicit phase variables. Using a model parameterized for bcc iron, we study the magnetic phase transition in these complex systems via the recently introduced, massively parallel replica-exchange Wang-Landau Monte Carlo method. Comparison with the results obtained from rigid lattice (spin-only) simulations shows that the transition temperature as well as the amplitude of the peak in the specific heat curve is marginally affected by the lattice vibrations. Moreover, the results were found to be sensitive to the particular choice of interatomic potential.
DEFF Research Database (Denmark)
Ciliberto, S.; Imparato, A.; Naert, A.
2013-01-01
Brownian particles kept at different temperatures and coupled by an elastic force. We measure the heat flowing between the two reservoirs and the thermodynamic work done by one part of the system on the other. We show that these quantities exhibit a long-time fluctuation theorem. Furthermore, we evaluate...... the fluctuating entropy, which satisfies a conservation law. These experimental results are fully justified by the theoretical analysis. Our results give more insight into the energy transfer in the famous Feynman ratchet, widely studied theoretically but never in an experiment....
Investigation of the field dependent spin structure of exchange coupled magnetic heterostructures
Energy Technology Data Exchange (ETDEWEB)
Gurieva, Tatiana
2016-05-15
This thesis describes the investigation of the field dependent magnetic spin structure of an antiferromagnetically (AF) coupled Fe/Cr heterostructure sandwiched between a hardmagnetic FePt buffer layer and a softmagnetic Fe top layer. The depth-resolved experimental studies of this system were performed via Magneto-optical Kerr effect (MOKE), Vibrating Sample Magnetometry (VSM) and various measuring methods based on nuclear resonant scattering (NRS) technique. Nucleation and evolution of the magnetic spiral structure in the AF coupled Fe/Cr multilayer structure in an azimuthally rotating external magnetic field were observed using NRS. During the experiment a number of time-dependent magnetic side effects (magnetic after-effect, domain-wall creep effect) caused by the non-ideal structure of a real sample were observed and later explained. Creation of the magnetic spiral structure in rotating external magnetic field was simulated using a one-dimensional micromagnetic model.The cross-sectional magnetic X-ray diffraction technique was conceived and is theoretically described in the present work. This method allows to determine the magnetization state of an individual layer in the magnetic heterostructure. It is also applicable in studies of the magnetic structure of tiny samples where conventional x-ray reflectometry fails.
Energy Technology Data Exchange (ETDEWEB)
Johnson, B.L.; Gorringe, T.P.; Armstrong, D.S.; Bauer, J.; Hasinoff, M.D.; Kovash, M.A.; Measday, D.F.; Moftah, B.A.; Porter, R.; Wright, D.H. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506 (United States)]|[Department of Physics, College of William and Mary, Williamsburg, Virginia 23187 (United States)]|[Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 (CANADA)]|[TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 (CANADA)
1996-11-01
We report measurements of capture rates and hyperfine dependences in muon capture on {sup 23}Na to various states in Ne and F isotopes. We also report comparisons of the capture rates and hyperfine dependences for six {sup 23}Na {r_arrow} {sup 23}Ne transitions with the 1{ital s}-0{ital d} shell model with the empirical effective interaction of Brown and Wildenthal and the realistic effective interaction of Kuo and Brown. Fits to the data with the Brown and Wildenthal interaction yield an effective coupling {ital {tilde g}}{sub {ital a}} = {minus}1.01 {plus_minus} 0.07 and an effective coupling ratio {ital {tilde g}}{sub {ital p}}/{ital {tilde g}}{sub {ital a}} = 6.5 {plus_minus} 2.4. The value of {ital {tilde g}}{sub {ital a}} is consistent with values of {ital {tilde g}}{sub {ital a}} extracted from {beta}{sup +}/{beta}{sup {minus}} decay and ({ital p},{ital n})/({ital n},{ital p}) charge exchange data, and the value of {ital {tilde g}}{sub {ital p}}/{ital {tilde g}}{sub {ital a}} is consistent with the predictions of PCAC and pion-pole dominance. We evaluate the nuclear model dependence of these values of {ital {tilde g}}{sub {ital a}} and {ital {tilde g}}{sub {ital p}}/{ital {tilde g}}{sub {ital a}} and examine the role of the Gamow-Teller and other matrix elements in the {sup 23}Na {r_arrow} {sup 23}Ne transitions. {copyright} {ital 1996 The American Physical Society.}
Chen, Jiunn-Wei; Song, Yu-Kun; Wang, Qun
2012-01-01
We calculate the shear (eta) and bulk (zeta) viscosities of a weakly coupled quark gluon plasma at the leading-log order with finite temperature T and quark chemical potential mu. We find that the shear viscosity to entropy density ratio eta/s increases monotonically with mu and eventually scales as (mu/T)^2 at large mu. In contrary, zeta/s is insensitive to mu. Both eta/s and zeta/s are monotonically decreasing functions of the quark flavor number N_f when N_f \\geq 2. This property is also observed in pion gas systems. Our perturbative calculation suggests that QCD becomes the most perfect (i.e. with the smallest eta/s) at mu=0 and N_f = 16 (the maximum N_f with asymptotic freedom). It would be interesting to test whether the currently smallest eta/s computed close to the phase transition with mu=0 and N_f = 0 can be further reduced by increasing N_f.
Nozaki, Daijiro; Lücke, Andreas; Schmidt, Wolf Gero
2017-02-16
Destructive quantum interference (QI) in molecular junctions has attracted much attention in recent years. It can tune the conductance of molecular devices dramatically, which implies numerous potential applications in thermoelectric and switching applications. There are several schemes that address and rationalize QI in single molecular devices. Dimers play a particular role in this respect because the QI signal may disappear, depending on the dislocation of monomers. We derive a simple rule that governs the occurrence of QI in weakly coupled dimer stacks of both alternant and nonalternant polyaromatic hydrocarbons (PAHs) and extends the Tada-Yoshizawa scheme. Starting from the Green's function formalism combined with the molecular orbital expansion approach, it is shown that QI-induced antiresonances and their energies can be predicted from the amplitudes of the respective monomer terminal molecular orbitals. The condition is illustrated for a toy model consisting of two hydrogen molecules and applied within density functional calculations to alternant dimers of oligo(phenylene-ethynylene) and nonalternant PAHs. Minimal dimer structure modifications that require only a few millielectronvolts and lead to an energy crossing of the essentially preserved monomer orbitals are shown to result in giant conductance switching ratios.
Tailored inter and intra layer exchange coupled superlattices for optimized magnetocaloric effect
Mukherjee, Tathagata; Michalski, S.; Skomski, R.; Sellmyer, D. J.; Binek, Ch.
2012-02-01
We explore Magnetocaloric (MC) properties of Fe/Cr superlattices with tailored inter- and intra-layer interaction using simple 3d metals. Our multilayers are fabricated by pulsed-laser deposition with emphasis on maximizing magnetic entropy changes near room temperature. NanostructuringootnotetextT. Mukherjee, S. Sahoo, R. Skomski, D. J. Sellmyer, and Ch. Binek, Phys. Rev. B 79, 144406 (2009). allows tailoring ferromagnetic and antiferromagnetic coupling. This in concert with finite size scaling of the ferromagnetic Fe films has the potential to lead to optimized MC materials. Thermodynamic and MC properties of such Fe/Cr superlattices are studied with the help of SQUID magnetometry. Entropy changes are deduced via the Maxwell relation in single phase regions, X-ray diffraction and X-ray reflectivity are used to correlate structural data with the magnetic properties.
Schuller, G.; Vázquez, F. Vidal; Waiblinger, W.; Auvinen, S.; Ribeirinha, P.
2017-04-01
In this work a methanol steam reforming (MSR) reactor has been operated thermally coupled to a high temperature polymer electrolyte fuel cell stack (HT-PEMFC) utilizing its waste heat. The operating temperature of the coupled system was 180 °C which is significantly lower than the conventional operating temperature of the MSR process which is around 250 °C. A newly designed heat exchanger reformer has been developed by VTT (Technical Research Center of Finland LTD) and was equipped with commercially available CuO/ZnO/Al2O3 (BASF RP-60) catalyst. The liquid cooled, 165 cm2, 12-cell stack used for the measurements was supplied by Serenergy A/S. The off-heat from the electrochemical fuel cell reaction was transferred to the reforming reactor using triethylene glycol (TEG) as heat transfer fluid. The system was operated up to 0.4 A cm-2 generating an electrical power output of 427 Wel. A total stack waste heat utilization of 86.4% was achieved. It has been shown that it is possible to transfer sufficient heat from the fuel cell stack to the liquid circuit in order to provide the needed amount for vaporizing and reforming of the methanol-water-mixture. Furthermore a set of recommendations is given for future system design considerations.
Directory of Open Access Journals (Sweden)
H. W. Ter Maat
2010-08-01
Full Text Available This paper is a case study to investigate what the main controlling factors are that determine atmospheric carbon dioxide content for a region in the centre of The Netherlands. We use the Regional Atmospheric Modelling System (RAMS, coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C, and including also submodels for urban and marine fluxes, which in principle should include the dominant mechanisms and should be able to capture the relevant dynamics of the system. To validate the model, observations are used that were taken during an intensive observational campaign in central Netherlands in summer 2002. These include flux-tower observations and aircraft observations of vertical profiles and spatial fluxes of various variables.
The simulations performed with the coupled regional model (RAMS-SWAPS-C are in good qualitative agreement with the observations. The station validation of the model demonstrates that the incoming shortwave radiation and surface fluxes of water and CO_{2} are well simulated. The comparison against aircraft data shows that the regional meteorology (i.e. wind, temperature is captured well by the model. Comparing spatially explicitly simulated fluxes with aircraft observed fluxes we conclude that in general latent heat fluxes are underestimated by the model compared to the observations but that the latter exhibit large variability within all flights. Sensitivity experiments demonstrate the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same tests also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations.
Kore, Nitin; Pazdera, Pavel
2016-12-22
A method for preparation of a new stable Cu(I) catalyst supported on weakly acidic polyacrylate resin without additional stabilizing ligands is described. A simple and efficient methodology for Ullmann Cu(I) catalyzed C-N cross coupling reactions using this original catalyst is reported. Coupling reactions of 4-chloropyridinium chloride with anilines containing electron donating (EDG) or electron withdrawing (EWG) groups, naphthalen-2-amine and piperazine, respectively, are successfully demonstrated.
Directory of Open Access Journals (Sweden)
Nitin Kore
2016-12-01
Full Text Available A method for preparation of a new stable Cu(I catalyst supported on weakly acidic polyacrylate resin without additional stabilizing ligands is described. A simple and efficient methodology for Ullmann Cu(I catalyzed C-N cross coupling reactions using this original catalyst is reported. Coupling reactions of 4-chloropyridinium chloride with anilines containing electron donating (EDG or electron withdrawing (EWG groups, naphthalen-2-amine and piperazine, respectively, are successfully demonstrated.
Weak Convergence and Weak Convergence
Directory of Open Access Journals (Sweden)
Narita Keiko
2015-09-01
Full Text Available In this article, we deal with weak convergence on sequences in real normed spaces, and weak* convergence on sequences in dual spaces of real normed spaces. In the first section, we proved some topological properties of dual spaces of real normed spaces. We used these theorems for proofs of Section 3. In Section 2, we defined weak convergence and weak* convergence, and proved some properties. By RNS_Real Mizar functor, real normed spaces as real number spaces already defined in the article [18], we regarded sequences of real numbers as sequences of RNS_Real. So we proved the last theorem in this section using the theorem (8 from [25]. In Section 3, we defined weak sequential compactness of real normed spaces. We showed some lemmas for the proof and proved the theorem of weak sequential compactness of reflexive real Banach spaces. We referred to [36], [23], [24] and [3] in the formalization.
Wang, Shizhuo; Xia, Ke; Min, Tai; Ke, Youqi
2017-07-01
Ultrathin MgO-based magnetic tunnel junction (MTJ) features high electron/heat current density, presenting important applications in spintronics. Here, we report a first-principles study of the interlayer exchange coupling (IEC) through ultrathin MgO-based MTJs. We investigate the effects of different modulations on the IEC, including temperature, different interfacial disorders, and the type and thickness of the ferromagnetic (FM) materials. It is found that the interfacial disorders, such as oxygen vacancies, boron and carbon impurities, can significantly influence the magnitude and sign of the IEC. The presence of interfacial disorders enhances the anti-FM coupling contribution and reduces the FM coupling contribution to the total IEC, and can thus change the total IEC from FM to Anti-FM in the ultrathin MTJ. We also find that FM materials have important effects on IEC: the IEC with CoFe alloy exhibits much weaker dependence on the interfacial disorders and temperature than that with the Fe. Our first-principles results provide a good explanation for the serious inconsistency between previous experimental measurements. Moreover, by studying the junction structure Vacuum/FM1/MgO/FM2 (FM1, FM2=Fe, CoFe), we find that the ultrathin FM1 layers can dramatically enhance the FM IEC and the IEC enhancement significantly depends on the combination of FM1-FM2. We show that the enhanced FM IEC with ultrathin FM1 can be sustained with a considerable amount of surface roughness in FM1 and interfacial disorder.
Liliani, N; Diningrum, J P; Sulaksono, A
2016-01-01
We have studied the effects of tensor coupling of $\\omega$ and $\\rho$ meson terms, Coulomb exchange term in local density approximation and various isoscalar-isovector coupling terms of relativistic mean field model on the properties of nuclear matter, finite nuclei, and super-heavy nuclei. We found that for the same fixed value of symmetry energy $J$ or its slope $L$ the presence of tensor coupling of $\\omega$ and $\\rho$ meson terms and Coulomb exchange term yields thicker neutron skin thickness of $^{208}$Pb. We also found that the roles of tensor coupling of $\\omega$ and $\\rho$ meson terms, Coulomb exchange term in local density approximation and various isoscalar-isovector coupling terms on the bulk properties of finite nuclei varies depending on the corresponding nucleus mass. However, on average, tensor coupling terms play a significant role in predicting the bulk properties of finite nuclei in a quite wide mass range especially in binding energies. We also observed that for some particular nuclei, the ...
Spin waves in exchange-coupled double layers in the presence of spin torques
Baláž, Pavel; Barnaś, Józef
2015-03-01
Spin-wave spectra of a double magnetic layer are calculated theoretically in the macroscopic limit. Magnetic dynamics is described in terms of the Landau-Lifshitz-Gilbert equation, and both static (of the Ruderman-Kittel-Kasuya-Yosida type) and dynamic (via spin pumping) interlayer couplings are taken into account. The influence of spin pumping and spin transfer torque on the spin-wave spectra (frequency and damping factor) has been studied for both parallel and antiparallel magnetic configurations. The spin-wave spectrum in the parallel magnetic state is reciprocal, while in the antiparallel configuration it is nonreciprocal. In both cases, a substantial reduction of the spin-wave lifetimes due to spin pumping to the nonmagnetic metallic layers has been found. In the parallel configuration, this reduction appears mainly for optical modes, while in the antiparallel configuration, it is remarkable for all modes. In turn, the spin torque due to spin current flowing from a metallic layer, created for instance by the spin Hall effect, gives rise to significant changes in the damping factors as well, but these modifications depend on the sign of spin current. For one spin current orientation, the spin-wave damping becomes reduced and may disappear for some modes at a specific threshold value of the spin current, indicating magnetic instability in the system due to spin transfer torque. For the opposite spin current, the damping is enhanced, which indicates stabilization of the corresponding magnetic state.
Energy Technology Data Exchange (ETDEWEB)
Duplex, B., E-mail: benjamin.duplex@gmail.fr [CEA, DEN, DANS/DM2S/STMF, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Grandotto, M. [CEA, DEN, DANS/DM2S/STMF, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Perdu, F. [CEA, DEN, DANS/DM2S/STMF, 17 rue des Martyrs, F-38054 Grenoble (France); Daniel, M.; Gesquiere, G. [Aix-Marseille University, CNRS, LSIS, UMR 7296, case postale 925, 163 Avenue de Luminy, F-13288 Marseille cedex 09 (France)
2012-12-15
Highlights: Black-Right-Pointing-Pointer A function of deformation transfer on meshes is proposed. Black-Right-Pointing-Pointer Large meshes sharing a common geometry or common borders are treated. Black-Right-Pointing-Pointer We show the deformation transfer impact on simulation results. - Abstract: The paper proposes a method to couple computation codes and focuses on the transfer of mesh deformations between these codes. The deformations can concern a single object or different objects in contact along common boundaries. The method is designed to allow a wide range of mesh types and to manage large volumes of data. To reach these objectives, a mesh simplification step is first achieved and is followed by the deformation characterisation through a continuous function defined by a network of compact support radial basis functions (RBFs). A test case featuring adjacent geometries in a material testing reactor (MTR) is presented to assess the method. Two solids close together are subject to a deformation by a thermal dilatation, and are cooled by a liquid flowing between them. The results demonstrate the effectiveness of the method and show how the deformation transfer modifies the thermalhydraulic solution.
Sensitivity of land-atmosphere exchanges to overshooting PBL thermals in an idealized coupled model
Directory of Open Access Journals (Sweden)
Ian T. Baker
2009-11-01
Full Text Available The response of atmospheric carbon dioxide to a given amount of surface flux is inversely proportional to the depth of the planetary boundary layer (PBL. Overshooting thermals that entrain free tropospheric air down into the boundary layer modify the characteristics and depth of the mixed layer through the insertion of energy and mass. In addition, entrainment "dilutes" the effects of surface fluxes on scalar quantities (temperature, water vapor, carbon dioxide, etc. in the PBL. Therefore, incorrect simulation of PBL depth can lead to linear errors in estimates of carbon dioxide fluxes in inverse models. Dilution by entrainment directly alters the surface-air gradients in scalar properties, which serve as the "driving force" for surface fluxes. In addition, changes in near-surface temperature and water vapor affect surface fluxes through physiological processes in plant canopies (e.g. stomatal conductance. Although overshooting thermals are important in the physical world, their effects are unresolved in most regional models. We explore the sensitivity of surface fluxes and PBL scalars to the intensity of PBL top entrainment by manipulating its strength in an idealized version of the coupled SiB-RAMS model. An entrainment parameterization based on the virtual potential temperature flux at the surface is implemented into SiB-RAMS to produce a warmer and drier mixed layer, to alter the surface fluxes, and to increase the depth of the PBL. These variations produce modified CO_{2} concentrations and vary with the strength of the parameterized entrainment.
Ryo, Hyok-Su; Hu, Lian-Xi; Yang, Yu-Lin
2017-03-01
Developing high efficiency rare earth alloy magnets at low cost is an economically hopeful way to expand their application area. In this study, magnetic properties of nanocomposite isotropic exchange coupled systems with the structure of Nd2Fe14B crystalline grains embedded in α-Fe matrices have been simulated by micromagnetic finite element method (FEM). The results have been analyzed by means of the effect of volume fraction of nanosized exchange coupling area between the magnetically hard Nd2Fe14B and soft α-Fe phase on magnetic properties of the exchange coupled Nd2Fe14B/α-Fe magnetic systems. The results show that the magnetic systems with the structure of Nd2Fe14B grains embedded in α-Fe matrices can have comparatively advanced magnetic properties with small amount of Nd2Fe14B components, because of efficient inter-phase exchange coupling between magnetically hard Nd2Fe14B grains and soft α-Fe matrix.
Liliani, N.; Nugraha, A. M.; Diningrum, J. P.; Sulaksono, A.
2016-05-01
We have studied the effects of tensor coupling of ω and ρ meson terms, the Coulomb exchange term in local density approximation, and various isoscalar-isovector coupling terms of relativistic mean-field model on the properties of nuclear matter, finite nuclei, and superheavy nuclei. We found that for the same fixed value of symmetry energy J or its slope L the presence of tensor coupling of ω and ρ meson terms and the Coulomb exchange term yields thicker neutron skin thickness of 208Pb. We also found that the roles of tensor coupling of ω and ρ meson terms, the Coulomb-exchange term in local density approximation, and various isoscalar-isovector coupling terms on the bulk properties of finite nuclei vary depending on the corresponding nucleus mass. However, on average, tensor coupling terms play a significant role in predicting the bulk properties of finite nuclei in a quite wide mass range, especially in binding energies. We also observed that for some particular nuclei, the corresponding experimental data of binding energies are rather less compatible with the presence of the Coulomb-exchange term in local density approximation and they tend to disfavor the presence of isoscalar-isovector coupling term with too-high Λ value. Furthermore, we have found that these terms influence the detail properties of 292120 superheavy nucleus such as binding energies, the magnitude of two-nucleon gaps, single-particle spectra, neutron densities, neutron skin thicknesses, and mean-square charge radii. However, the shell-closure predictions of 208Pb and 292120 nuclei are not affected by the presence of these terms.
Ashida, T; Sato, Y; Nozaki, T; Sahashi, M
2013-05-07
In this study, we fabricated a Cr2O3 (0001) film without and with a Pt buffer layer and investigated its effect on perpendicular exchange coupling in a Cr2O3/Co3Pt interface. The results showed that the exchange bias field (μ0Hex) and blocking temperature (TB) of a Cr2O3 film without and with Pt were very different. The Cr2O3 film without Pt had a lower μ0Hex of 176 Oe and a lower TB of 75 K, whereas that with Pt had a higher μ0Hex of 436 Oe and a higher TB of 150 K. We discussed this difference in μ0Hex and TB values based on collinear/non-collinear coupling in a ferromagnetic and antiferromagnetic interface using Meiklejohn and Bean's exchange anisotropy model.
Energy Technology Data Exchange (ETDEWEB)
Choi, Kwang Soon; Lee, Chang Heon; Park, Yeong Jae; Joe, Kih Soo; Kim, Won Ho [KAERI, Taejon (Korea, Republic of)
2001-08-01
A study has been carried out on the separation of gold, iridium, palladium, rhodium, ruthenium and platinum in chromite samples and their quantitative determination using inductively coupled plasma atomic emission spectrometry (ICP-AES). The dissolution condition of the minerals by fusion with sodium peroxide was optimized and chromatographic elution behavior of the rare metals was investigated by anion exchange chromatography. Spectral interference of chromium, a matrix of the minerals, was investigated on determination of gold. Chromium interfered on determination of gold at the concentration of 500 mg/L and higher. Gold plus trace amounts of iridium, palladium, rhodium and ruthenium, which must be preconcentrated before ICP-AES was separated by anion exchange chromatography after reducing Cr(VI) to Cr(III) by H{sub 2}O{sub 2}. AuCl{sup -}{sub 4} retained on the resin column was selectively eluted with acetone- HNO{sub 3}-H{sub 2}O as an eluent. In addition, iridium, palladium, rhodium and ruthenium remaining on the resin column were eluted as a group with concentrated HCl. However, platinum was eluted with concentrated HNO{sub 3}. The recovery yield of gold with acetone-HNO{sub 3}-H{sub 2}O was 100.7 {+-} 2.0 % , and the yields of palladium and platinum with concentrated HCl and HNO{sub 3} were 96.1 {+-} 1.8% and 96.6 {+-} 1.3%, respectively. The contents of gold and platinum in a Mongolian chromite sample were 32.6 {+-} 2.2 {mu}g/g and 1.6 {+-} 0.14 {mu}g/g, respectively. Palladium was not detected.
Energy Technology Data Exchange (ETDEWEB)
Roellin, Stefan [Studsvik Nuclear AB, Nykoeping (Sweden)
1999-12-01
An ion chromatography system was coupled on-line to the ICP-MS. All separations were made with a cation exchange chromatography column. Fundamental laws about elution parameters affecting individual retention times and elution forms are explained by applying a proper ion exchange mechanism for the isocratic elution (separations with constant eluent concentration) of mono-, di-, tri-, and tetravalent cations and the actinide species MO{sub 2}{sup +} and MO{sub 2}{sup 2+}. A separation method with two eluents has been investigated to separate mono- from divalent ions in order to separate isobaric overlaps of Rb/Sr and Cs/Ba. The ions normally formed by actinides in aqueous solutions in the oxidation states III to VI are M{sup 3+}, M{sup 4+}, MO{sub 2}{sup +} and MO{sub 2}{sup 2+} respectively. Elution parameters were investigated to separate all four actinide species from each other in order to separate isobaric overlaps of the actinides Np, Pu, U and Am. A major question of concern over the possible release of actinides to the environment is the speciation of actinides within their four possible oxidation states. To check the possibility of speciation analysis with ion chromatography, a separation method was investigated to separate U{sup 4+} and UO{sub 2}{sup 2+} without changing the redox species composition during the separation. First results of Pu speciation analysis showed that Pu could be eluted as three different species. Pu(VI) was always eluting at the same time as Np(V). This was surprising as Pu(VI) is expected to have the same chemical characteristics as U(VI) and thus was expected to elute at the same time as U(VI)
Directory of Open Access Journals (Sweden)
Aprilia Nur Tasfiyati
2016-03-01
Full Text Available In this study, the organic polymer monolith was developed as a weak anion exchanger column in high performance liquid chromatography for DNA separation. Methacrylate-based monolithic column was prepared in microbore silicosteel column (100 × 0.5 mm i.d. by in-situ polymerization reaction using glycidyl methacrylate as monomer; ethylene dimethacrylate as crosslinker; 1-propanol, 1,4-butanediol, and water as porogenic solvents, with the presence of initiator α,α′-azobisisobutyronitrile (AIBN. The monolith matrix was modified with diethylamine to create weak anion exchanger via ring opening reaction of epoxy groups. The morphology of the monolithic column was studied by SEM. The properties of the monolithic column, such as permeability, mechanical stability, binding capacity and pore size distribution, were characterized in detail. From the results of the characterization, monoliths poly-(GMA-co-EDMA with total monomer percentage (%T 40 and crosslinker percentage (%C 25 was found to be the ideal composition of monomer and crosslinker. It has good mechanical stability and high permeability, adequate molecular recognition sites (represented with binding capacity value of 36 mg ml−1, and has relatively equal proportion of flow-through pore and mesopores (37.2% and 41.1% respectively. Poly-(GMA-co-EDMA with %T 40 and %C 25 can successfully separate oligo(dT12–18 and 50 bp DNA ladder with good resolution.
Jiříček, Tomáš; De Schepper, Wim; Lederer, Tomáš; Cauwenberg, Peter; Genné, Inge
2015-01-01
Ion-exchange tap water demineralization for process water preparation results in a saline regeneration wastewater (20-100 mS cm(-1)) that is increasingly problematic in view of discharge. A coupled nanofiltration-membrane distillation (NF-MD) process is evaluated for the recovery of water and sodium chloride from this wastewater. NF-MD treatment of mixed regeneration wastewater is compared to NF-MD treatment of separate anion- and cation-regenerate fractions. NF on mixed regeneration wastewater results in a higher flux (30 L m(-2) h(-1) at 7 bar) compared to NF on the separate fractions (6-9 L m(-2) h(-1) at 30 bar). NF permeate recovery is strongly limited by scaling (50% for separate and 60% for mixed, respectively). Physical signs of scaling were found during MD treatment of the NF permeates but did not result in flux decline for mixed regeneration wastewater. Final salt composition is expected to qualify as a road de-icing salt. NF-MD is an economically viable alternative compared to external disposal of wastewater for larger-scale installations (1.4 versus 2.5 euro m(-3) produced demineralized water for a 10 m3 regenerate per day plant). The cost benefits of water re-use and salt recuperation are small when compared to total treatment costs for mixed regenerate wastewater.
Esposito, Angelo; Pianese, Cesare; Guezennec, Yann G.
In this work, an accurate and computationally fast model for liquid water transport within a proton exchange membrane fuel cell (PEMFC) electrode is developed by lumping the space-dependence of the relevant variables. Capillarity is considered as the main transport mechanism within the gas diffusion layer (GDL). The novelty of the model lies in the coupled simulation of the water transport at the interface between gas diffusion layer and gas flow channel (GFC). This is achieved with a phenomenological description of the process that allows its simulation with relative simplicity. Moreover, a detailed two-dimensional visualization of such interface is achieved via geometric simulation of water droplets formation, growth, coalescence and detachment on the surface of the GDL. The model is useful for optimization analysis oriented to both PEMFC design and balance of plant. Furthermore, the accomplishment of reduced computational time and good accuracy makes the model suitable for control strategy implementation to ensure PEM fuel cells operation within optimal electrode water content.
Zhou, Zhigui; Yang, Youyou; Zhang, Jialing; Zhang, Zhengxiang; Bai, Yu; Liao, Yiping; Liu, Huwei
2012-04-01
In this article, we developed a membrane-based enzyme micro-reactor by directly using commercial polystyrene-divinylbenzene cation-exchange membrane as the support for trypsin immobilization via electrostatic and hydrophobic interactions and successfully applied it for protein digestion. The construction of the reactor can be simply achieved by continuously pumping trypsin solution through the reactor for only 2 min, which was much faster than the other enzyme immobilization methods. In addition, the membrane reactor could be rapidly regenerated within 35 min, resulting in a "new" reactor for the digestion of every protein sample, completely eliminating the cross-interference of different protein samples. The amount and the activity of immobilized trypsin were measured, and the repeatability of the reactor was tested, with an RSD of 3.2% for the sequence coverage of cytochrome c in ten digestion replicates. An integrated platform for protein analysis, including online protein digestion and peptide separation and detection, was established by coupling the membrane enzyme reactor with liquid chromatography-quadrupole time-of-flight mass spectrometry. The performance of the platform was evaluated using cytochrome c, myoglobin, and bovine serum albumin, showing that even in the short digestion time of several seconds the obtained sequence coverages was comparable to or higher than that with in-solution digestion. The system was also successfully used for the analysis of proteins from yeast cell lysate.
New Features of the Coercivity in Exchange-Coupled Ni81Fe19/CoO Bilayers
Institute of Scientific and Technical Information of China (English)
蔡建旺; 赖武彦
2001-01-01
The coercivity behaviour of the Nis1Fe19 film exchange-coupled with an antiferromagnetic CoO underlayer has been investigated systematically. It has been found that the coercivity is greatly enhanced not only in the easy axis direction but also in the hard axis direction when the temperature is below the Néel temperature of CoO. Also, the thickness dependence of coercivity at low temperature follows the scaling relation as 1/tNiFe with α = 2.5 at the hard axis, which is quite in contrast with the case of the easy axis, i.e. α = 1.5, predicted theoretically and verified experimentally previously. The increase of the temperature leads to the decrease of the coercivity at both the easy and hard axes, but the scaling relations are held except the narrow region just below the Néel temperature of CoO, at which the coercivity varies as 1/t NiFe with α = 1.0 for both the easy and hard axes. Based upon Hoffmann's ripple theory and Malozemoff's random field model, a simple interpretation of the experiment findings is presented.
Wang, Y. Y.; Song, C.; Zhang, J. Y.; Pan, F.
2017-04-01
The requirement for low-power consumption advances the development of antiferromagnetic (AFM) spintronics manipulated by electric fields. Here we report an electrical manipulation of metallic AFM moments within IrMn/[Co/Pt] by interface engineering, where ultrathin non-magnetic metals are highlighted between IrMn and ferroelectric substrates. Ultrathin Pt seed layers are proved to be vital in elevating the blocking temperature and enhancing the perpendicular exchange coupling through modulating the domain structures of as-prepared IrMn AFM. Further electrical manipulations of perpendicular magnetic anisotropy crucially verify the indispensable role of pre-deposited ultrathin Pt layers in modulating IrMn antiferromagnetic moments, which is confirmed by the intimate correlation between the electrically manipulating AFM and improving its blocking temperature. Instead of immediate contact between IrMn AFM and ferroelectric substrates in a conventional way, interface engineering by adopting ultrathin seed layers here adds a new twist to the electrical modulation of AFM metals. This would provide scientific basis on how to manipulate AFM moments and optimize the design of practical AFM spintronics.
Shao, Haibing; Hein, Philipp; Görke, Uwe-Jens; Bucher, Anke; Kolditz, Olaf
2016-04-01
In recent years, Ground Source Heat Pump System (GSHPS) has been recognized as an efficient technology to utilize shallow geothermal energy. Along with its wide application, some GSHPS are experiencing a gradual decrease in Borehole Heat Exchanger (BHE) outflow temperatures and thus have to be turned off after couple of years' operation. A comprehensive numerical investigation was then performed to model the flow and heat transport processes in and around the BHE, together with the dynamic change of heat pump efficiency. The model parameters were based on the soil temperature and surface weather condition in the Leipzig area. Different scenarios were modelled for a service life of 30 years, to reveal the evolution of BHE outflow and surrounding soil temperatures. It is found that lateral groundwater flow and using BHE for cooling will be beneficial to the energy recovery, along with the efficiency improvement of the heat pump. In comparison to other factors, the soil heat capacity and thermal conductivity are considered to have minor impact on the long-term sustainability of the system. Furthermore, the application of thermally enhanced grout material will improve the sustainability and efficiency. In contrast, it is very likely that undersized systems and improper grouting are the causes of strong system degradation.
Without the weak force, the sun wouldn't shine. The weak force causes beta decay, a form of radioactivity that triggers nuclear fusion in the heart of the sun. The weak force is unlike other forces: it is characterised by disintegration. In beta decay, a down quark transforms into an up quark and an electron is emitted. Some materials are more radioactive than others because the delicate balance between the strong force and the weak force varies depending on the number of particles in the atomic nucleus. We live in the midst of a natural radioactive background that varies from region to region. For example, in Cornwall where there is a lot of granite, levels of background radiation are much higher than in the Geneva region. Text for the interactive: Move the Geiger counter to find out which samples are radioactive - you may be surprised. It is the weak force that is responsible for the Beta radioactivity here. The electrons emitted do not cross the plastic cover. Why do you think there is some detected radioa...
Energy Technology Data Exchange (ETDEWEB)
Venegas-Yazigi, Diego [Centro para la Investigacion Interdisciplinaria Avanzada en Ciencias de los Materiales (CIMAT), Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Casilla 233, Independencia, Santiago (Chile)]. E-mail: dvy@uchile.cl; Cano, Joan [Departament de Quimica Inorganica and Centre de Recerca en Quimica Teorica Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Ruiz, Eliseo [Departament de Quimica Inorganica and Centre de Recerca en Quimica Teorica Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Alvarez, Santiago [Departament de Quimica Inorganica and Centre de Recerca en Quimica Teorica Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)
2006-10-01
Density functional theory (DFT) calculations on the tetranuclear Ni(II) complex [Ni{sub 4}(C{sub 5}H{sub 11}O{sub 3}){sub 4} (CH{sub 3}CN){sub 4}](NO{sub 3}){sub 4}.1.33NaNO{sub 3}, have been made in order to explain the exchange magnetic phenomenon. Two ferromagnetic exchange coupling constants were found (J{sub 1}=+13.27cm{sup -1} and J{sub 2}=+12.86cm{sup -1}) and these values are close to each other and consistent with the structural parameters of the complex.
Institute of Scientific and Technical Information of China (English)
Qi Xian-Jin; Wang Yin-Gang; Miao Xue-Fei; Li Zi-Quan; Huang Yi-zhong
2011-01-01
This paper reports that the CoFe/IrMn bilayers are deposited by magnetron sputtering on the surfaces of thermallyoxidized Si substrates. It investigates the thermal relaxations of both non-irradiated and Ga+ ion irradiated CoFe/IrMn bilayers by means of holding the bilayers in a negative saturation field. The results show that exchange bias field decreases with the increase of holding time period for both non-irradiated and Ga+ ion irradiated CoFe/IrMn bilayers. Exchange bias field is also found to be smaller upon irradiation at higher ion dose. This reduction of exchange bias field is attributed to the change of energy barrier induced by ion-radiation.
Duc, Nguyen Minh; Du, Yang; Thorsen, Thor S.; Lee, Su Youn; Zhang, Cheng; Kato, Hideaki; Kobilka, Brian K.; Chung, Ka Young
2015-05-01
G protein-coupled receptors (GPCRs) have important roles in physiology and pathology, and 40% of drugs currently on the market target GPCRs for the treatment of various diseases. Because of their therapeutic importance, the structural mechanism of GPCR signaling is of great interest in the field of drug discovery. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a useful tool for analyzing ligand binding sites, the protein-protein interaction interface, and conformational changes of proteins. However, its application to GPCRs has been limited for various reasons, including the hydrophobic nature of GPCRs and the use of detergents in their preparation. In the present study, we tested the application of bicelles as a means of solubilizing GPCRs for HDX-MS studies. GPCRs (e.g., β2-adrenergic receptor [β2AR], μ-opioid receptor, and protease-activated receptor 1) solubilized in bicelles produced better sequence coverage (greater than 90%) than GPCRs solubilized in n-dodecyl-β-D-maltopyranoside (DDM), suggesting that bicelles are a more effective method of solubilization for HDX-MS studies. The HDX-MS profile of β2AR in bicelles showed that transmembrane domains (TMs) undergo lower deuterium uptake than intracellular or extracellular regions, which is consistent with the fact that the TMs are highly ordered and embedded in bicelles. The overall HDX-MS profiles of β2AR solubilized in bicelles and in DDM were similar except for intracellular loop 3. Interestingly, we detected EX1 kinetics, an important phenomenon in protein dynamics, at the C-terminus of TM6 in β2AR. In conclusion, we suggest the application of bicelles as a useful method for solubilizing GPCRs for conformational analysis by HDX-MS.
Nikolov, Ned; Zeller, Karl F
2003-01-01
A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO2- transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems.
Institute of Scientific and Technical Information of China (English)
陈付广; 黄德斌; 郭荣伟
2005-01-01
In this paper, dynamics in the oscillations of the relative atomic population in two periodically driven and weakly coupled Bose-Einstein condensates (BECs) was qualitatively studied. Using the well-known Melnikov method, the conditions of existence of the periodic and chaotic coherent atomic tunnellings were given in the model. Our results indicate the typical route from bifurcation of the limited circles to chaos, and are in agreement with the previous numerical results.
Karbowiak, Mirosław; Rudowicz, Czesław; Nakamura, Takeshi; Murakami, Rina; Ishida, Takayuki
2016-10-01
Crystallographic, spectroscopic, and magnetic studies of three-center systems: lanthanoid-Ln3+ ions doubly-coordinated by TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl) radicals [Ln-TEMPO2] are reported. The temperature dependence of alternating-current magnetic susceptibility indicates the single-molecule-magnet behavior of Er-TEMPO2, exhibiting relatively slow magnetization relaxation. Well-resolved absorption spectra were obtained only for Er-TEMPO2. Other samples yielded spectra not amenable for meaningful interpretation. The crystal-field parameters (CFPs) determined from the measured Er3+-energy levels served as starting CFPs for fitting the direct-current magnetic susceptibility result. Compatibility of the so-determined and fine-tuned CFPs, and interplay between crystal-field-related effects and exchange-coupling effects are considered. Exchange couplings in Ln-TEMPO2 appear antiferromagnetic and unexpectedly large.
Kryvohuz, M; Marcus, R A
2010-06-14
A classical theory is proposed to describe the non-RRKM effects in activated asymmetric top triatomic molecules observed numerically in classical molecular dynamics simulations of ozone. The Coriolis coupling is shown to result in an effective diffusive energy exchange between the rotational and vibrational degrees of freedom. A stochastic differential equation is obtained for the K-component of the rotational angular momentum that governs the diffusion.
Gowreesunker, BL; Tassou, SA; Kolokotroni, M
2013-01-01
This is the post-print version of the Article. The official published version can be accessed from the link below. Copyright @ 2013 Elsevier. This paper reports on the energy performance evaluation of a displacement ventilation (DV) system in an airport departure hall, with a conventional DV diffuser and a diffuser retrofitted with a phase change material storage heat exchanger (PCM-HX). A TRNSYS-CFD quasi-dynamic coupled simulation method was employed for the analysis, whereby TRNSYS® sim...
Directory of Open Access Journals (Sweden)
Warunee Tipcharoen
2015-01-01
Full Text Available Exchange coupled composite bit patterned media (ECC-BPM are one candidate to solve the trilemma issues, overcome superparamagnetic limitations, and obtain ultrahigh areal density. In this work, the ECC continuous media and ECC-BPM of Fe/L10-FePt/Fe trilayer schemes are proposed and investigated based on the Landau-Lifshitz-Gilbert equation. The switching field, Hsw, of the hard phase in the proposed continuous ECC trilayer media structure is reduced below the maximum write head field at interlayer exchange coupling between hard and soft phases, Aex, higher than 20 pJ/m and its value is lower than that for continuous L10-FePt single layer media and L10-FePt/Fe bilayer. Furthermore, the Hsw of the proposed ECC-BPM is lower than the maximum write head field with exchange coupling coefficient between neighboring dots of 5 pJ/m and Aex over 10 pJ/m. Therefore, the proposed ECC-BPM trilayer has the highest potential and is suitable for ultrahigh areal density magnetic recording technology at ultrahigh areal density. The results of this work may be gainful idea for nanopatterning in magnetic media nanotechnology.
Directory of Open Access Journals (Sweden)
N. Imaoka
2016-05-01
Full Text Available In our previous work, we succeeded in fabricating ferrite/Sm2Fe17N3 composite magnets from explosive-consolidating Sm2Fe17N3 powders (2μm size which were coated with a continuous iron ferrite layer (50nm thick in an aqueous solution. The magnetization curves had no inflection, which suggests that the soft magnetic ferrite layer is exchange-coupled with the hard ferromagnetic Sm2Fe17N3 particles. In this paper, we provide evidence of exchange coupling in ferrite/Sm2Fe17N3 composites by the following means: 1 measurements of recoil permeability, 2 detailed microstructural observation and 3 calculations of the reduction in remanence due to the introduction of a ferrite layer in the Sm2Fe17N3 magnets. Our ferrite/Sm2Fe17N3 composite magnets are a novel type of spring magnet in which an insulating soft magnetic phase is exchange-coupled with hard magnetic phase.
Imaoka, N.; Kakimoto, E.; Takagi, K.; Ozaki, K.; Tada, M.; Nakagawa, T.; Abe, M.
2016-05-01
In our previous work, we succeeded in fabricating ferrite/Sm2Fe17N3 composite magnets from explosive-consolidating Sm2Fe17N3 powders (2μm size) which were coated with a continuous iron ferrite layer (50nm thick) in an aqueous solution. The magnetization curves had no inflection, which suggests that the soft magnetic ferrite layer is exchange-coupled with the hard ferromagnetic Sm2Fe17N3 particles. In this paper, we provide evidence of exchange coupling in ferrite/Sm2Fe17N3 composites by the following means: 1) measurements of recoil permeability, 2) detailed microstructural observation and 3) calculations of the reduction in remanence due to the introduction of a ferrite layer in the Sm2Fe17N3 magnets. Our ferrite/Sm2Fe17N3 composite magnets are a novel type of spring magnet in which an insulating soft magnetic phase is exchange-coupled with hard magnetic phase.
Institute of Scientific and Technical Information of China (English)
2015-01-01
Exchange coupling is one of the most important fundamental interactions in ferromagnetic systems. Understanding of the parameters in this interaction may help describe numerous properties of metal magnetic materials. However, in the localized electron theory or itinerant electron theory there are also certain diﬃculties when utilizing this approximation method to study magnetic ordering problems for multi-atom systems. In realistic magnets exchange coupling is also related to the coexistence of localized and itinerant degrees of freedom. In this case Heisenberg exchange relationship has some limitations. If the exchange relationship only depends on the structure of the magnet, and is not related to energy differences between the phases, we can better avoid the Heisenberg exchange limits. Based on this, we use the general principle of the exchange coupling theory to analyse the usual approximation, and discuss the opportunity to calculate the parameters of such coupling rigorously without specific assumptions about the range of magnetic order or any approximation about the form of magnetization density. We propose a method for calculating the exchange coupling parameter to any approximation. The range of applicability of the above relation is discussed quantitatively for real magnetic systems (magnetic metal materials Gd, Fe, Ni) and spin waves, and the relevance for the exchange coupling is also analysed. This analysis for metal magnetic system (Fe, Ni and Gd) shows that the most significant improvement is obtained for exchange coupling between nearest magnetic atoms and for spin wave spectrum at finite wave vectors. It can be described by the relationship between the exchange coupling approximation and spin wave spectrum, and also interaction between the nearest neighbor magnetic atoms in ferromagnetic systems;these will give reasonable description to the large wave vectors part of spin wave spectra in any magnet with not fully localized magnetism. This point of
Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko
2011-01-01
We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method.
Wang, Shao-Teng; Yang, Hua; Gao, Wen; Li, Hui-Jun; Li, Ping
2016-02-05
The analysis of trace constituents in herbal medicines has always been a challenge due to complex matrices and structural diversities. In this work, a pH-sensitive solid phase extraction (SPE) procedure capable of enriching trace polyphenols in Bistort Rhizoma (BR) was proposed and preliminary chemical characterization was accomplished by high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-QTOF MS). A weak anion-exchange SPE column packed with divinylbenzene/vinylpyrrolidone bonding quaternary amine group was employed for anionic extraction, and the target fraction was obtained by eluting with acidic methanol (apparent pH 1.9). On the other hand, the MS/MS fragmentation rules of four reference polyphenols in negative ion mode were outlined. Using these rules, a total of 31 polyphenols including 20 benzoyl derivatives and 11 caffeoyl derivatives were screened out from BR extract, of which 26 trace members were found for the first time in this herb. Those findings demonstrated that the anion-exchange SPE could enhance the detection capability and selectivity for plant polyphenols in the LC-MS analysis and the strategy for deducing structures could be applied for analysis of polyphenols in BR and other herbal medicines.