Gluon Bremsstrahlung in Weakly-Coupled Plasmas
International Nuclear Information System (INIS)
Arnold, Peter
2009-01-01
I report on some theoretical progress concerning the calculation of gluon bremsstrahlung for very high energy particles crossing a weakly-coupled quark-gluon plasma. (i) I advertise that two of the several formalisms used to study this problem, the BDMPS-Zakharov formalism and the AMY formalism (the latter used only for infinite, uniform media), can be made equivalent when appropriately formulated. (ii) A standard technique to simplify calculations is to expand in inverse powers of logarithms ln(E/T). I give an example where such expansions are found to work well for ω/T≥10 where ω is the bremsstrahlung gluon energy. (iii) Finally, I report on perturbative calculations of q.
Analytical solution for a coaxial plasma gun: Weak coupling limit
International Nuclear Information System (INIS)
Dietz, D.
1987-01-01
The analytical solution of the system of coupled ODE's which describes the time evolution of an ideal (i.e., zero resistance) coaxial plasma gun operating in the snowplow mode is obtained in the weak coupling limit, i.e, when the gun is fully influenced by the driving (RLC) circuit in which it resides but the circuit is negligibly influenced by the gun. Criteria for the validity of this limit are derived and numerical examples are presented. Although others have obtained approximate, asymptotic and numerical solutions of the equations, the present analytical results seem not to have appeared previously in the literature
Strong Helioseismic Constraints on Weakly-Coupled Plasmas
Nayfonov, Alan
The extraordinary accuracy of helioseismic data allows detailed theoretical studies of solar plasmas. The necessity to produce solar models matching the experimental results in accuracy imposes strong constrains on the equations of state of solar plasmas. Several discrepancies between the experimental data and models have been successfully identified as the signatures of various non-ideal phenomena. Of a particular interest are questions of the position of the energy levels and the continuum edge and of the effect of the excited states in the solar plasma. Calculations of energy level and continuum shifts, based on the Green function formalism, appeared recently in the literature. These results have been used to examine effects of the shifts on the thermodynamic quantities. A comparison with helioseismic data has shown that the calculations based on lower-level approximations, such as the static screening in the effective two-particle wave equation, agree very well with the experimental data. However, the case of full dynamic screening produces thermodynamic quantities inconsistent with observations. The study of the effect of different internal partition functions on a complete set of thermodynamic quantities has revealed the signature of the excited states in the MHD (Mihalas, Hummer, Dappen) equation of state. The presence of exited states causes a characteristic 'wiggle' in the thermodynamic quantities due to the density-dependent occupation probabilities. This effect is absent if the ACTEX (ACTivity EXpansion) equation of state is used. The wiggle has been found to be most prominent in the quantities sensitive to density. The size of this excited states effect is well within the observational power of helioseismology, and very recent inversion analyses of helioseismic data seem to indicate the presence of the wiggle in the sun. This has a potential importance for the helioseismic determination of the helium abundance of the sun.
Ratio of bulk to shear viscosity in a quasigluon plasma: from weak to strong coupling
Bluhm, M; Redlich, K
2012-01-01
The ratio of bulk to shear viscosity is expected to exhibit a different behaviour in weakly and in strongly coupled systems. This can be expressed by the dependence of the ratio on the squared sound velocity. In the high temperature QCD plasma at small running coupling, the viscosity ratio is uniquely determined by a quadratic dependence on the conformality measure, whereas in certain strongly coupled and nearly conformal theories this dependence is linear. Employing an effective kinetic theory of quasiparticle excitations with medium-modified dispersion relation, we analyze the ratio of bulk to shear viscosity of the gluon plasma. We show that in this approach the viscosity ratio comprises both dependencies found by means of weak coupling perturbative and strong coupling holographic techniques.
Self-similar regimes of turbulence in weakly coupled plasmas under compression
Viciconte, Giovanni; Gréa, Benoît-Joseph; Godeferd, Fabien S.
2018-02-01
Turbulence in weakly coupled plasmas under compression can experience a sudden dissipation of kinetic energy due to the abrupt growth of the viscosity coefficient governed by the temperature increase. We investigate in detail this phenomenon by considering a turbulent velocity field obeying the incompressible Navier-Stokes equations with a source term resulting from the mean velocity. The system can be simplified by a nonlinear change of variable, and then solved using both highly resolved direct numerical simulations and a spectral model based on the eddy-damped quasinormal Markovian closure. The model allows us to explore a wide range of initial Reynolds and compression numbers, beyond the reach of simulations, and thus permits us to evidence the presence of a nonlinear cascade phase. We find self-similarity of intermediate regimes as well as of the final decay of turbulence, and we demonstrate the importance of initial distribution of energy at large scales. This effect can explain the global sensitivity of the flow dynamics to initial conditions, which we also illustrate with simulations of compressed homogeneous isotropic turbulence and of imploding spherical turbulent layers relevant to inertial confinement fusion.
D'Eramo, Francesco; Liu, Hong; Rajagopal, Krishna
2013-01-01
We calculate P(k_\\perp), the probability distribution for an energetic parton that propagates for a distance L through a medium without radiating to pick up transverse momentum k_\\perp, for a medium consisting of weakly coupled quark-gluon plasma. We use full or HTL self-energies in appropriate regimes, resumming each in order to find the leading large-L behavior. The jet quenching parameter \\hat q is the second moment of P(k_\\perp), and we compare our results to other determinations of this quantity in the literature, although we emphasize the importance of looking at P(k_\\perp) in its entirety. We compare our results for P(k_\\perp) in weakly coupled quark-gluon plasma to expectations from holographic calculations that assume a plasma that is strongly coupled at all length scales. We find that the shape of P(k_\\perp) at modest k_\\perp may not be very different in weakly coupled and strongly coupled plasmas, but we find that P(k_\\perp) must be parametrically larger in a weakly coupled plasma than in a strongl...
Jet-medium interactions at NLO in a weakly-coupled quark-gluon plasma
International Nuclear Information System (INIS)
Ghiglieri, Jacopo; Moore, Guy D.; Teaney, Derek
2016-01-01
We present an extension to next-to-leading order in the strong coupling constant g of the AMY effective kinetic approach to the energy loss of high momentum particles in the quark-gluon plasma. At leading order, the transport of jet-like particles is determined by elastic scattering with the thermal constituents, and by inelastic collinear splittings induced by the medium. We reorganize this description into collinear splittings, high-momentum-transfer scatterings, drag and diffusion, and particle conversions (momentum-preserving identity-changing processes). We show that this reorganized description remains valid to NLO in g, and compute the appropriate modifications of the drag, diffusion, particle conversion, and inelastic splitting coefficients. In addition, a new kinematic regime opens at NLO for wider-angle collinear bremsstrahlung. These semi-collinear emissions smoothly interpolate between the leading order high-momentum-transfer scatterings and collinear splittings. To organize the calculation, we introduce a set of Wilson line operators on the light-cone which determine the diffusion and identity changing coefficients, and we show how to evaluate these operators at NLO.
Two-photon transitions in hydrogen atoms embedded in weakly coupled plasmas
International Nuclear Information System (INIS)
Paul, S.; Ho, Y. K.
2008-01-01
The pseudostate method has been applied to calculate energy eigenvalues and corresponding eigenfunctions of the hydrogen atom in Debye plasma environments. Resonant two-photon transition rates from the ground state of atomic hydrogen to 2s and 3s excited states have been computed as a function of photon frequency in the length and velocity gauges for different Debye lengths. A two-photon transparency is found in correspondence to each resonance for 1s-3s. The transparency frequency and resonance enhancement frequency vary significantly with the Debye length.
Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam
2017-02-01
The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.
Equilibration and hydrodynamics at strong and weak coupling
Schee, Wilke van der
2017-01-01
We give an updated overview of both weak and strong coupling methods to describe the approach to a plasma described by viscous hydrodynamics, a process now called hydrodynamisation. At weak coupling the very first moments after a heavy ion collision is described by the colour-glass condensate
International Nuclear Information System (INIS)
Yoon Jung-Sik; Jung Young-Dae
1999-01-01
Orientation phenomena for direct 1s→2p +-1 electron-ion collisional excitations in weakly coupled plasma are investigated using the semiclassical trajectory method including the close-encounter effects. In weakly coupled plasmas, the electron-ion interaction potential is given by the classical nonspherical Debye-Hueckel model. The semiclassical screened hyperbolic-orbit trajectory method is applied to describe the motion of the projectile electron in order to investigate the variation of the orientation parameter as a function of the impact parameter, projectile energy, and Debye length. A comparison is also given for the hyperbolic-orbit and straight-line trajectory methods. The results show that the orientation parameters obtained by the hyperbolic-orbit trajectory method have maxima and minima for small impact parameter regions. In other words, there are complete 1s→2p +1 (maxima) and complete 1s→2p -1 (minima) transitions for certain impact parameters. These maxima cannot be found using the straight-line trajectory method. The variation of the propensity of the 1s→2p -1 transitions due to the plasma screening effects on the atomic wave functions is also discussed
Ouraou, Ahmimed; The ATLAS collaboration
2016-01-01
Latest results on the measurement of gauge boson couplings, from ATLAS and CMS at the LHC, are presented. This review starts with an introduction to boson couplings, then the measurements of Triple and Quartic Couplings are described. And finally, limits on anomalous couplings are summarized.
Chen, Zhanbin
2018-05-01
The process of excitation of highly charged Fe XXIV ion embedded in weakly coupled plasmas by electron impact is studied, together with the subsequent radiative decay. For the target structure, the calculation is performed using the multiconfiguration Dirac-Hartree-Fock method incorporating the Debye-Hückel potential for the electron-nucleus interaction. Fine-structure levels of the 1s22p and 1s2s2p configurations and the transition properties among these levels are presented over a wide range of screening parameters. For the collision dynamics, the distorted-wave method in the relativistic frame is adopted to include the effect of plasma background, in which the interparticle interactions in the system are described by screened interactions of the Debye-Hückel type. The continuum wave function of the projectile electron is obtained by solving the modified Dirac equations. The influence of plasma strength on the cross section, the linear polarization, and the angular distribution of x-ray photon emission are investigated in detail. Comparison of the present results with experimental data and other theoretical predictions, when available, is made.
Electric properties of weakly nonideal plasmas
Energy Technology Data Exchange (ETDEWEB)
Guenther, K; Radtke, R
1984-01-01
The progress in theory as well as in diagnostics and measurement during the last fifteen years is reviewed. Starting from the transport theory of ideal plasmas physically justified corrections are introduced which allow the quantitative calculation of the transport properties of weakly nonideal plasmas. Essential coefficients and numerical data of the electrical conductivity for plasmas of technical importance are given in tables and diagrams.
Drift waves in a weakly ionized plasma
DEFF Research Database (Denmark)
Popovic, M.; Melchior, H.
1968-01-01
A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated.......A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated....
Weak turbulence theory for beam-plasma interaction
Yoon, Peter H.
2018-01-01
The kinetic theory of weak plasma turbulence, of which Ronald C. Davidson was an important early pioneer [R. C. Davidson, Methods in Nonlinear Plasma Theory, (Academic Press, New York, 1972)], is a venerable and valid theory that may be applicable to a large number of problems in both laboratory and space plasmas. This paper applies the weak turbulence theory to the problem of gentle beam-plasma interaction and Langmuir turbulence. It is shown that the beam-plasma interaction undergoes various stages of physical processes starting from linear instability, to quasilinear saturation, to mode coupling that takes place after the quasilinear stage, followed by a state of quasi-static "turbulent equilibrium." The long term quasi-equilibrium stage is eventually perturbed by binary collisional effects in order to bring the plasma to a thermodynamic equilibrium with increased entropy.
BCS superconductivity for weakly coupled clusters
International Nuclear Information System (INIS)
Friedel, J.
1992-01-01
BCS superconductivity is expected to have fairly high critical temperatures when clusters of moderate sizes are weakly coupled to form a crystal. This remark extends to quasi zerodimensional cases, a remark initially made by Labbe for quasi one-dimensional ones and by Hirsch, Bok and Labbe for quasi twodimensional ones. Possible applications are envisaged for twodimensional clusters (fullerene) or threedimensional ones (metal clusters, Chevrel phases). Conditions for optimal applicability of the scheme are somewhat restricted. (orig.)
Spectral line profiles in weakly turbulent plasmas
International Nuclear Information System (INIS)
Capes, H.; Voslamber, D.
1976-07-01
The unified theory of line broadening by electron perturbers is generalized to include the case of a weakly turbulent plasma. The collision operator in the line shape expression is shown to be the sum of two terms, both containing effects arising from the non-equilibrium nature of the plasma. One of the two terms represents the influence of individual atom-particle interactions occuring via the nonequilibrium dielectric plasma medium. The other term is due to the interaction of the atom with the turbulent waves. Both terms contain damping and diffusion effects arising from the plasma turbulence
Strategic Directions in Heliophysics Research Related to Weakly Ionized Plasmas
Spann, James F.
2010-01-01
In 2009, the Heliophysics Division of NASA published its triennial roadmap entitled "Heliophysics; the solar and space physics of a new era." In this document contains a science priority that is recommended that will serve as input into the recently initiated NRC Heliophysics Decadal Survey. The 2009 roadmap includes several science targets recommendations that are directly related to weakly ionized plasmas, including on entitled "Ion-Neutral Coupling in the Atmosphere." This talk will be a brief overview of the roadmap with particular focus on the science targets relevant to weakly ionized plasmas.
Shock Wave Dynamics in Weakly Ionized Plasmas
Johnson, Joseph A., III
1999-01-01
An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.
Solitons and Weakly Nonlinear Waves in Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans
1985-01-01
Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...
Equilibration and hydrodynamics at strong and weak coupling
van der Schee, Wilke
2017-11-01
We give an updated overview of both weak and strong coupling methods to describe the approach to a plasma described by viscous hydrodynamics, a process now called hydrodynamisation. At weak coupling the very first moments after a heavy ion collision is described by the colour-glass condensate framework, but quickly thereafter the mean free path is long enough for kinetic theory to become applicable. Recent simulations indicate thermalization in a time t ∼ 40(η / s) 4 / 3 / T [L. Keegan, A. Kurkela, P. Romatschke, W. van der Schee, Y. Zhu, Weak and strong coupling equilibration in nonabelian gauge theories, JHEP 04 (2016) 031. arxiv:arXiv:1512.05347, doi:10.1007/JHEP04(2016)031], with T the temperature at that time and η / s the shear viscosity divided by the entropy density. At (infinitely) strong coupling it is possible to mimic heavy ion collisions by using holography, which leads to a dual description of colliding gravitational shock waves. The plasma formed hydrodynamises within a time of 0.41/T recent extension found corrections to this result for finite values of the coupling, when η / s is bigger than the canonical value of 1/4π, which leads to t ∼ (0.41 + 1.6 (η / s - 1 / 4 π)) / T [S. Grozdanov, W. van der Schee, Coupling constant corrections in holographic heavy ion collisions, arxiv:arXiv:1610.08976]. Future improvements include the inclusion of the effects of the running coupling constant in QCD.
Superconductivity in multilayer perovskite. Weak coupling analysis
International Nuclear Information System (INIS)
Koikegami, Shigeru; Yanagisawa, Takashi
2006-01-01
We investigate the superconductivity of a three-dimensional d-p model with a multilayer perovskite structure on the basis of the second-order perturbation theory within the weak coupling framework. Our model has been designed with multilayer high-T c superconducting cuprates in mind. In our model, multiple Fermi surfaces appear, and the component of a superconducting gap function develops on each band. We have found that the multilayer structure can stabilize the superconductivity in a wide doping range. (author)
Weakly nonlinear electron plasma waves in collisional plasmas
DEFF Research Database (Denmark)
Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.
1986-01-01
The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...
PLASMA EMISSION BY WEAK TURBULENCE PROCESSES
Energy Technology Data Exchange (ETDEWEB)
Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)
2014-11-10
The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.
Weakly Collisional and Collisionless Astrophysical Plasmas
DEFF Research Database (Denmark)
Berlok, Thomas
are used to study weakly collisional, stratified atmospheres which offer a useful model of the intracluster medium of galaxy clusters. Using linear theory and computer simulations, we study instabilities that feed off thermal and compositional gradients. We find that these instabilities lead to vigorous...... investigate helium mixing in the weakly collisional intracluster medium of galaxy clusters using Braginskii MHD. Secondly, we present a newly developed Vlasov-fluid code which can be used for studying fully collisionless plasmas such as the solar wind and hot accretions flows. The equations of Braginskii MHD...... associated with the ions and is thus well suited for studying collisionless plasmas. We have developed a new 2D-3V Vlasov-fluid code which works by evolving the phase-space density distribution of the ions while treating the electrons as an inertialess fluid. The code uses the particle-incell (PIC) method...
Stirring Strongly Coupled Plasma
Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim
2009-01-01
We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...
ASYMMETRIC MAGNETIC RECONNECTION IN WEAKLY IONIZED CHROMOSPHERIC PLASMAS
International Nuclear Information System (INIS)
Murphy, Nicholas A.; Lukin, Vyacheslav S.
2015-01-01
Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection, the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase
Information flow between weakly interacting lattices of coupled maps
Energy Technology Data Exchange (ETDEWEB)
Dobyns, York [PEAR, Princeton University, Princeton, NJ 08544-5263 (United States); Atmanspacher, Harald [Institut fuer Grenzgebiete der Psychologie und Psychohygiene, Wilhelmstr. 3a, 79098 Freiburg (Germany)]. E-mail: haa@igpp.de
2006-05-15
Weakly interacting lattices of coupled maps can be modeled as ordinary coupled map lattices separated from each other by boundary regions with small coupling parameters. We demonstrate that such weakly interacting lattices can nevertheless have unexpected and striking effects on each other. Under specific conditions, particular stability properties of the lattices are significantly influenced by their weak mutual interaction. This observation is tantamount to an efficacious information flow across the boundary.
Information flow between weakly interacting lattices of coupled maps
International Nuclear Information System (INIS)
Dobyns, York; Atmanspacher, Harald
2006-01-01
Weakly interacting lattices of coupled maps can be modeled as ordinary coupled map lattices separated from each other by boundary regions with small coupling parameters. We demonstrate that such weakly interacting lattices can nevertheless have unexpected and striking effects on each other. Under specific conditions, particular stability properties of the lattices are significantly influenced by their weak mutual interaction. This observation is tantamount to an efficacious information flow across the boundary
Weakly Ionized Plasmas in Hypersonics: Fundamental Kinetics and Flight Applications
International Nuclear Information System (INIS)
Macheret, Sergey
2005-01-01
The paper reviews some of the recent studies of applications of weakly ionized plasmas to supersonic/hypersonic flight. Plasmas can be used simply as means of delivering energy (heating) to the flow, and also for electromagnetic flow control and magnetohydrodynamic (MHD) power generation. Plasma and MHD control can be especially effective in transient off-design flight regimes. In cold air flow, nonequilibrium plasmas must be created, and the ionization power budget determines design, performance envelope, and the very practicality of plasma/MHD devices. The minimum power budget is provided by electron beams and repetitive high-voltage nanosecond pulses, and the paper describes theoretical and computational modeling of plasmas created by the beams and repetitive pulses. The models include coupled equations for non-local and unsteady electron energy distribution function (modeled in forward-back approximation), plasma kinetics, and electric field. Recent experimental studies at Princeton University have successfully demonstrated stable diffuse plasmas sustained by repetitive nanosecond pulses in supersonic air flow, and for the first time have demonstrated the existence of MHD effects in such plasmas. Cold-air hypersonic MHD devices are shown to permit optimization of scramjet inlets at Mach numbers higher than the design value, while operating in self-powered regime. Plasma energy addition upstream of the inlet throat can increase the thrust by capturing more air (Virtual Cowl), or it can reduce the flow Mach number and thus eliminate the need for an isolator duct. In the latter two cases, the power that needs to be supplied to the plasma would be generated by an MHD generator downstream of the combustor, thus forming the 'reverse energy bypass' scheme. MHD power generation on board reentry vehicles is also discussed
Bunched soliton states in weakly coupled sine-Gordon systems
DEFF Research Database (Denmark)
Grønbech-Jensen, N.; Samuelsen, Mogens Rugholm; Lomdahl, P. S.
1990-01-01
The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results.......The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results....
Instabilities in strongly coupled plasmas
Kalman, G J
2003-01-01
The conventional Vlasov treatment of beam-plasma instabilities is inappropriate when the plasma is strongly coupled. In the strongly coupled liquid state, the strong correlations between the dust grains fundamentally affect the conditions for instability. In the crystalline state, the inherent anisotropy couples the longitudinal and transverse polarizations, and results in unstable excitations in both polarizations. We summarize analyses of resonant and non-resonant, as well as resistive instabilities. We consider both ion-dust streaming and dust beam-plasma instabilities. Strong coupling, in general, leads to an enhancement of the growth rates. In the crystalline phase, a resonant transverse instability can be excited.
Transient chaos in weakly coupled Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Koch, B P; Bruhn, B
1988-01-01
This paper considers periodic excitations and coupling of nonlinear Josephson oscillators. The Melnikov method is used to prove the existence of horseshoes in the dynamics. The coupling of two systems yields a reduction of the chaos threshold in comparison with the corresponding threshold of a single system. For some selected parameter values the theoretical predictions are checked by numerical methods.
Weak NNM couplings and nuclear parity violation
International Nuclear Information System (INIS)
Holstein, B.R.
1987-01-01
After many years of careful theoretical and experimental study of nuclear parity violation, rough empirical values for weak parity violation nucleon-nucleon-meson vertices have been deduced. We address some of the physics which has been learned from this effort and show that it has implications for work going on outside this field. (author)
Stabilization of matter wave solitons in weakly coupled atomic condensates
International Nuclear Information System (INIS)
Radha, R.; Vinayagam, P.S.
2012-01-01
We investigate the dynamics of a weakly coupled two component Bose–Einstein condensate and generate bright soliton solutions. We observe that when the bright solitons evolve in time, the density of the condensates shoots up suddenly by virtue of weak coupling indicating the onset of instability in the dynamical system. However, this instability can be overcome either through Feshbach resonance by tuning the temporal scattering length or by suitably changing the time dependent coupling coefficient, thereby extending the lifetime of the condensates.
New Paradigm for Plasma Crystal Formation with weak grain interaction
International Nuclear Information System (INIS)
Tsytovich, V.N.; Morfill, G.E.
2005-01-01
New results for non-linear grain screening, non-linear ion drag and non-linear collective attractions appropriate for existing experiments are used for the first time together to explain the observed phenomena of plasma condensation. Based on the physics of collective non-linear grain attraction a paradigm for plasma crystal formation is formulated according to which plasma the crystal formation is due to localization of grains in weak non-linear collective attraction wells. Nonlinearity in screening is an important feature of new paradigm and takes into account that the grain charges are large. The physical consequence of large non-linearity is the presence of relative large attraction potential well at distances several times larger then the non-linear screening radius. Calculated location of the potential well is of the order of the observed inter-grain distances in plasma crystals and the calculated deepness of the potential well determining the temperature of phase transition is close to that observed. The calculations of the deepness of the attraction collective well and the critical value of the coupling constant are performed using an assumption that the collective attraction length is larger than the non-linear screening length. The concept of collective grain interaction in complex plasmas is considered for the case where the non-linear screening is fully determining the collective attraction well
Shear viscosities of photons in strongly coupled plasmas
Directory of Open Access Journals (Sweden)
Di-Lun Yang
2016-09-01
Full Text Available We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP at weak coupling and N=4 super Yang–Mills plasma (SYMP at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.
Phenomena in coupled superconducting weak links
International Nuclear Information System (INIS)
Neumann, L.G.
1982-01-01
Interactions between two independently biasable coupled superconducting microbridges were studied. Some bridges were fabricated within 2 mu m of each other. Quasiparticles from one bridge affect the other. In a second type of sample, the microbridges were separated by 10 mu m and coupled via a resistive shunt. The interaction results from the current flowing through the shunt. Similar effects are seen in both types of samples. In opposed biased bridges, the effective critical current is decreased because of the interaction. For series biased bridges, the effective critical current of one bridge is decreased or increased, depending on the voltage across the other bridge. These interactions lead to voltage steps in the I-V curves where, for opposed biased bridges, both voltages increase; for series bias, one voltage increases, the other decreases. Experimental results are in reasonable agreement with a second-order perturbation calculation and with an analog simulation. Voltage locking is found for both biasing configurations in both types of samples. Locking can occur simultaneously with a voltage step, resulting in nascent voltage locking which can also occur in conjunction with hysteresis. The effect of a voltage in the pad between the two proximity coupled bridges is to vary the voltage at which locking occurs, which in turn alters the shape of the locking curve. Locking range is calculated in two models for comparison with the two types of samples. The first explicitly considers the time delay for propagation of the charge-imbalance wave from one bridge to the other. The second model considers the current flowing in the resistive/inductive coupling shunt
Bunched soliton states in weakly coupled sine-Gordon systems
International Nuclear Information System (INIS)
Gronbech-Jensen, N.; Samuelsen, M.R.; Lomdahl, P.S.; Blackburn, J.A.
1990-01-01
The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results
Dynamical properties of weakly coupled Josephson systems
International Nuclear Information System (INIS)
Lee, K.H.; Xia, T.K.; Stroud, D.
1990-01-01
This paper reviews recent work on the dynamical behavior of coupled resistively-shunted Josephson junctions, with emphasis on our own calculations. The authors present a model which allows for the inclusion of finite temperature, disorder, d.c. and a.c. applied currents, and applied magnetic fields. The authors discuss applications to calculations of critical currents and IV characteristics; harmonic generation and microwave absorption by finite clusters of Josephson junctions; critical energies for vortex depinning; and quantized voltage plateaus in arrays subjected to combined d.c. and a.c. currents. Possible connections to the behavior of granular high-temperature superconductors are briefly discussed
Weak KAM theory for a weakly coupled system of Hamilton–Jacobi equations
Figalli, Alessio; Gomes, Diogo A.; Marcon, Diego
2016-01-01
Here, we extend the weak KAM and Aubry–Mather theories to optimal switching problems. We consider three issues: the analysis of the calculus of variations problem, the study of a generalized weak KAM theorem for solutions of weakly coupled systems of Hamilton–Jacobi equations, and the long-time behavior of time-dependent systems. We prove the existence and regularity of action minimizers, obtain necessary conditions for minimality, extend Fathi’s weak KAM theorem, and describe the asymptotic limit of the generalized Lax–Oleinik semigroup. © 2016, Springer-Verlag Berlin Heidelberg.
Weak KAM theory for a weakly coupled system of Hamilton–Jacobi equations
Figalli, Alessio
2016-06-23
Here, we extend the weak KAM and Aubry–Mather theories to optimal switching problems. We consider three issues: the analysis of the calculus of variations problem, the study of a generalized weak KAM theorem for solutions of weakly coupled systems of Hamilton–Jacobi equations, and the long-time behavior of time-dependent systems. We prove the existence and regularity of action minimizers, obtain necessary conditions for minimality, extend Fathi’s weak KAM theorem, and describe the asymptotic limit of the generalized Lax–Oleinik semigroup. © 2016, Springer-Verlag Berlin Heidelberg.
Towards a hybrid strong/weak coupling approach to jet quenching
Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2014-01-01
We explore a novel hybrid model containing both strong and weak coupling physics for high energy jets traversing a deconfined medium. This model is based on supplementing a perturbative DGLAP shower with strongly coupled energy loss rate. We embed this system into a realistic hydrodynamic evolution of hot QCD plasma. We confront our results with LHC data, obtaining good agreement for jet RAARAA, dijet imbalance AJAJ and fragmentation functions.
On the scarcity of weak coupling in the string landscape
Halverson, James; Long, Cody; Sung, Benjamin
2018-02-01
We study the geometric requirements on a threefold base for the corresponding F-theory compactification to admit a weakly-coupled type IIB limit. We examine both the standard Sen limit and a more restrictive limit, and determine conditions sufficient for their non-existence for both toric bases and more general algebraic bases. In a large ensemble of geometries generated by base changing resolutions we derive an upper bound on the frequency with which a weak-coupling limit may occur, and find that such limits are extremely rare. Our results sharply quantify the widely held notion that the vast number of weakly-coupled IIB vacua is but a tiny fraction of the landscape.
Weakly ionized plasmas in aerospace applications
International Nuclear Information System (INIS)
Semenov, V E; Bondarenko, V G; Gildenburg, V B; Gubchenko, V M; Smirnov, A I
2002-01-01
This paper is an overview of the activity and state-of-the-art in the field of plasma aerospace applications. Both experimental results and theoretical ideas are analysed. Principal attention is focused on understanding the physical mechanisms of the plasma effect on hypersonic aerodynamics. In particular, it is shown that drag reduction can be achieved using a proper distribution of heat sources around a flying body. Estimates of the energetic efficiency of the thermal mechanism of aerodynamic drag reduction are presented. The non-thermal effect caused by the interaction of a plasma flow with a magnetic field is also analysed. Specifically, it is shown that appropriate spatial distribution of volumetric forces around a hypersonic body allows for complete elimination of shock wave generation. It should be noted that in an ideal case, shock waves could be eliminated without energy consumption
From strong to weak coupling in holographic models of thermalization
Energy Technology Data Exchange (ETDEWEB)
Grozdanov, Sašo; Kaplis, Nikolaos [Instituut-Lorentz for Theoretical Physics, Leiden University,Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Starinets, Andrei O. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)
2016-07-29
We investigate the analytic structure of thermal energy-momentum tensor correlators at large but finite coupling in quantum field theories with gravity duals. We compute corrections to the quasinormal spectra of black branes due to the presence of higher derivative R{sup 2} and R{sup 4} terms in the action, focusing on the dual to N=4 SYM theory and Gauss-Bonnet gravity. We observe the appearance of new poles in the complex frequency plane at finite coupling. The new poles interfere with hydrodynamic poles of the correlators leading to the breakdown of hydrodynamic description at a coupling-dependent critical value of the wave-vector. The dependence of the critical wave vector on the coupling implies that the range of validity of the hydrodynamic description increases monotonically with the coupling. The behavior of the quasinormal spectrum at large but finite coupling may be contrasted with the known properties of the hierarchy of relaxation times determined by the spectrum of a linearized kinetic operator at weak coupling. We find that the ratio of a transport coefficient such as viscosity to the relaxation time determined by the fundamental non-hydrodynamic quasinormal frequency changes rapidly in the vicinity of infinite coupling but flattens out for weaker coupling, suggesting an extrapolation from strong coupling to the kinetic theory result. We note that the behavior of the quasinormal spectrum is qualitatively different depending on whether the ratio of shear viscosity to entropy density is greater or less than the universal, infinite coupling value of ℏ/4πk{sub B}. In the former case, the density of poles increases, indicating a formation of branch cuts in the weak coupling limit, and the spectral function shows the appearance of narrow peaks. We also discuss the relation of the viscosity-entropy ratio to conjectured bounds on relaxation time in quantum systems.
Monotone difference schemes for weakly coupled elliptic and parabolic systems
P. Matus (Piotr); F.J. Gaspar Lorenz (Franscisco); L. M. Hieu (Le Minh); V.T.K. Tuyen (Vo Thi Kim)
2017-01-01
textabstractThe present paper is devoted to the development of the theory of monotone difference schemes, approximating the so-called weakly coupled system of linear elliptic and quasilinear parabolic equations. Similarly to the scalar case, the canonical form of the vector-difference schemes is
Chiral symmetry breaking in QED for weak coupling
Energy Technology Data Exchange (ETDEWEB)
Huang, J.C. (Missouri Univ., Columbia, MO (USA). Dept. of Physics and Astronomy); Shen, T.C. (Illinois Univ., Urbana, IL (USA). Beckman Inst.)
1991-05-01
We examine the procedure for studying chiral symmetry breaking for weak coupling in QED. We note that while the lowest non-trivial order calculations using numerical solutions to the Schwinger-Dyson equation indicate a breaking of chiral symmetry, the neglected higher-order contributions to the effective potential have imaginary values which can indicate possible instabilities in the theory. (author).
Chiral symmetry breaking in QED for weak coupling
International Nuclear Information System (INIS)
Huang, J.C.; Shen, T.C.
1991-01-01
We examine the procedure for studying chiral symmetry breaking for weak coupling in QED. We note that while the lowest non-trivial order calculations using numerical solutions to the Schwinger-Dyson equation indicate a breaking of chiral symmetry, the neglected higher-order contributions to the effective potential have imaginary values which can indicate possible instabilities in the theory. (author)
Analytical solutions of weakly coupled map lattices using recurrence relations
Energy Technology Data Exchange (ETDEWEB)
Sotelo Herrera, Dolores, E-mail: dsh@dfmf.uned.e [Applied Maths, EUITI, UPM, Ronda de Valencia, 3-28012 Madrid (Spain); San Martin, Jesus [Applied Maths, EUITI, UPM, Ronda de Valencia, 3-28012 Madrid (Spain); Dep. Fisica Matematica y de Fluidos, UNED, Senda del Rey 9-28040 Madrid (Spain)
2009-07-20
By using asymptotic methods recurrence relations are found that rule weakly CML evolution, with both global and diffusive coupling. The solutions obtained from these relations are very general because they do not hold restrictions about boundary conditions, initial conditions and number of oscilators in the CML. Furthermore, oscillators are ruled by an arbitraty C{sup 2} function.
Normal-Mode Splitting in a Weakly Coupled Optomechanical System
Rossi, Massimiliano; Kralj, Nenad; Zippilli, Stefano; Natali, Riccardo; Borrielli, Antonio; Pandraud, Gregory; Serra, Enrico; Di Giuseppe, Giovanni; Vitali, David
2018-02-01
Normal-mode splitting is the most evident signature of strong coupling between two interacting subsystems. It occurs when two subsystems exchange energy between themselves faster than they dissipate it to the environment. Here we experimentally show that a weakly coupled optomechanical system at room temperature can manifest normal-mode splitting when the pump field fluctuations are antisquashed by a phase-sensitive feedback loop operating close to its instability threshold. Under these conditions the optical cavity exhibits an effectively reduced decay rate, so that the system is effectively promoted to the strong coupling regime.
Weak and strong coupling equilibration in nonabelian gauge theories
International Nuclear Information System (INIS)
Keegan, Liam; Kurkela, Aleksi; Romatschke, Paul; Schee, Wilke van der; Zhu, Yan
2016-01-01
We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.
Weak and strong coupling equilibration in nonabelian gauge theories
Energy Technology Data Exchange (ETDEWEB)
Keegan, Liam [Physics Department, Theory Unit, CERN,CH-1211 Genève 23 (Switzerland); Kurkela, Aleksi [Physics Department, Theory Unit, CERN,CH-1211 Genève 23 (Switzerland); Faculty of Science and Technology, University of Stavanger,4036 Stavanger (Norway); Romatschke, Paul [Department of Physics, 390 UCB, University of Colorado at Boulder,Boulder, CO (United States); Center for Theory of Quantum Matter, University of Colorado,Boulder, Colorado 80309 (United States); Schee, Wilke van der [Center for Theoretical Physics, MIT,Cambridge, MA 02139 (United States); Zhu, Yan [Department of Physics, University of Jyväskyla, P.O. Box 35, FI-40014 University of Jyväskylä (Finland); Helsinki Institute of Physics,P.O. Box 64, 00014 University of Helsinki (Finland)
2016-04-06
We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.
Closing in on the radiative weak chiral couplings
Cappiello, Luigi; Catà, Oscar; D'Ambrosio, Giancarlo
2018-03-01
We point out that, given the current experimental status of radiative kaon decays, a subclass of the O (p^4) counterterms of the weak chiral lagrangian can be determined in closed form. This involves in a decisive way the decay K^± → π ^± π ^0 l^+ l^-, currently being measured at CERN by the NA48/2 and NA62 collaborations. We show that consistency with other radiative kaon decay measurements leads to a rather clean prediction for the {O}(p^4) weak couplings entering this decay mode. This results in a characteristic pattern for the interference Dalitz plot, susceptible to be tested already with the limited statistics available at NA48/2. We also provide the first analysis of K_S→ π ^+π ^-γ ^*, which will be measured by LHCb and will help reduce (together with the related K_L decay) the experimental uncertainty on the radiative weak chiral couplings. A precise experimental determination of the {O}(p^4) weak couplings is important in order to assess the validity of the existing theoretical models in a conclusive way. We briefly comment on the current theoretical situation and discuss the merits of the different theoretical approaches.
Weakly and strongly coupled Belousov-Zhabotinsky patterns
Weiss, Stephan; Deegan, Robert D.
2017-02-01
We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.
Weak coupling polaron and Landau-Zener scenario: Qubits modeling
Jipdi, M. N.; Tchoffo, M.; Fokou, I. F.; Fai, L. C.; Ateuafack, M. E.
2017-06-01
The paper presents a weak coupling polaron in a spherical dot with magnetic impurities and investigates conditions for which the system mimics a qubit. Particularly, the work focuses on the Landau-Zener (LZ) scenario undergone by the polaron and derives transition coefficients (transition probabilities) as well as selection rules for polaron's transitions. It is proven that, the magnetic impurities drive the polaron to a two-state superposition leading to a qubit structure. We also showed that the symmetry deficiency induced by the magnetic impurities (strong magnetic field) yields to the banishment of transition coefficients with non-stacking states. However, the transition coefficients revived for large confinement frequency (or weak magnetic field) with the orbital quantum numbers escorting transitions. The polaron is then shown to map a qubit independently of the number of relevant states with the transition coefficients lifted as LZ probabilities and given as a function of the electron-phonon coupling constant (Fröhlich constant).
Propagation of electromagnetic waves in a weakly ionized dusty plasma
International Nuclear Information System (INIS)
Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Liu, Yaoze; Gao, Junying; Zhou, Zhongxiang; Sun, Xiudong; Li, Hui; Wu, Jian; Pu, Shaozhi
2015-01-01
Propagation properties of electromagnetic (EM) waves in weakly ionized dusty plasmas are the subject of this study. Dielectric relation for EM waves propagating at a weakly ionized dusty plasma is derived based on the Boltzmann distribution law while considering the collision and charging effects of dust grains. The propagation properties of EM energy in dusty plasma of rocket exhaust are numerically calculated and studied, utilizing the parameters of rocket exhaust plasma. Results indicate that increase of dust radius and density enhance the reflection and absorption coefficient. High dust radius and density make the wave hardly transmit through the dusty plasmas. Interaction enhancements between wave and dusty plasmas are developed through effective collision frequency improvements. Numerical results coincide with observed results by indicating that GHz band wave communication is effected by dusty plasma as the presence of dust grains significantly affect propagation of EM waves in the dusty plasmas. The results are helpful to analyze the effect of dust in plasmas and also provide a theoretical basis for the experiments. (paper)
Renormalization of g-boson effects under weak coupling condition
International Nuclear Information System (INIS)
Zhang Zhanjun; Yang Jie; Liu Yong; Sang Jianping
1998-01-01
An approach based on perturbation theory is proposed to renormalized g-boson effects for sdgIBM system, which modifies that presented earlier by Druce et al. The weak coupling condition as the usage premise of the two approaches is proved to be satisfied. Two renormalization spectra are calculated for comparison and analyses. Results show that the g-boson effects are renormalized more completely by the approach proposed
Weakly Coupled Oscillators in a Slowly Varying World
Park, Youngmin; Ermentrout, Bard
2016-01-01
We extend the theory of weakly coupled oscillators to incorporate slowly varying inputs and parameters. We employ a combination of regular perturbation and an adiabatic approximation to derive equations for the phase-difference between a pair of oscillators. We apply this to the simple Hopf oscillator and then to a biophysical model. The latter represents the behavior of a neuron that is subject to slow modulation of a muscarinic current such as would occur during transient attention through ...
Description of intruded states in a weak-coupling basis
International Nuclear Information System (INIS)
Arenas Peris, G.E.
1989-01-01
The systematics of intruder states is described in terms of a particle-hole weak-coupling basis, the first-order correction being then reduced to the monopole component of the interaction. The necessary matrix elements can be obtained from experimental data by using a model-consistent method. Calculations are performed for intruder states in the lead region as well as for the Zr isotopes. The agreement with the experimental data is striking in both cases. (Author) [es
Parametric decay instabilities in an infinite, homogeneous, weakly anisotropic plasma
International Nuclear Information System (INIS)
Grandal, B.
1976-01-01
The parametric decay of a transverse electromagnetic (em) wave with a frequency close to, but larger than, the electron plasma frequency is investigated for an infinite, homogeneous, weakly magnetoactive plasma. A two-component fluid description is employed, and the damping of the linear plasma waves is introduced phenomenologically to include both Landau and collisional damping. The transverse em wave will decay into a longitudinal electron plasma wave and an em ion-acoustic wave. Only the latter wave is assumed to be affected by the weak, constant magnetic field. The threshold expression for growth of electron plasma waves is equal to that of the isotropic plasma when the em ion-acoustic wave's direction of propagation lies inside a wide double cone, whose axis is along the constant magnetic field. When the em ion-acoustic wave propagates outside this double cone, an additional factor, which depends directly upon the magnetic field, appears in the threshold expression. This factor can, under certain conditions, reduce the threshold for growth of electron plasma waves below that of the isotropic plasma
Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity
International Nuclear Information System (INIS)
Singh, Mamta; Gupta, D. N.
2016-01-01
We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show that the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.
Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in [Department of Physics and Astrophysics, North Campus, University of Delhi, Delhi 110 007 (India)
2016-05-15
We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show that the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.
Global weak solution for a equations in plasma
International Nuclear Information System (INIS)
Guo Boling; Huang Daiwen
2010-01-01
The existence of global weak solutions of the initial boundary value problem to a simplified equations, derived from the equations of two fluid system in plasma, is proven by using energy method and some embedding theorems in Sobolev-Orlicz space.
Coupling of Plasmas and Liquids
Lindsay, Alexander David
Plasma-liquids have exciting applications to several important socioeconomic areas, including agriculture, water treatment, and medicine. To realize their application potential, the basic physical and chemical phenomena of plasma-liquid systems must be better understood. Additionally, system designs must be optimized in order to maximize fluxes of critical plasma species to the liquid phase. With objectives to increase understanding of these systems and optimize their applications, we have performed both comprehensive modeling and experimental work. To date, models of plasma-liquids have focused on configurations where diffusion is the dominant transport process in both gas and liquid phases. However, convection plays a key role in many popular plasma source designs, including jets, corona discharges, and torches. In this dissertation, we model momentum, heat, and neutral species mass transfer in a convection-dominated system based on a corona discharge. We show that evaporative cooling produced by gas-phase convection can lead to a significant difference between gas and liquid phase bulk temperatures. Additionally, convection induced in the liquid phase by the gas phase flow substantially increases interfacial mass transfer of hydrophobic species like NO and NO2. Finally, liquid kinetic modeling suggests that concentrations of highly reactive species like OH and ONOOH are several orders of magnitude higher at the interface than in the solution bulk. Subsequent modeling has focused on coupling discharge physics with species transport at and through the interface. An assumption commonly seen in the literature is that interfacial loss coefficients of charged species like electrons are equal to unity. However, there is no experimental evidence to either deny or support this assumption. Without knowing the true interfacial behavior of electrons, we have explored the effects on key plasma-liquid variables of varying interfacial parameters like the electron and energy
Hydrodynamic fluctuations from a weakly coupled scalar field
Jackson, G.; Laine, M.
2018-04-01
Studies of non-equilibrium dynamics of first-order cosmological phase transitions may involve a scalar field interacting weakly with the energy-momentum tensor of a thermal plasma. At late times, when the scalar field is approaching equilibrium, it experiences both damping and thermal fluctuations. We show that thermal fluctuations induce a shear viscosity and a gravitational wave production rate, and propose that including this tunable contribution may help in calibrating the measurement of the gravitational wave production rate in hydrodynamic simulations. Furthermore it may enrich their physical scope, permitting in particular for a study of the instability of growing bubbles.
Isotropization and hydrodynamization in weakly coupled heavy-ion collisions
Kurkela, Aleksi
2015-01-01
We numerically solve 2+1D effective kinetic theory of weak coupling QCD under longitudinal expansion relevant for early stages of heavy-ion collisions. We find agreement with viscous hydrodynamics and classical Yang-Mills simulations in the regimes where they are applicable. By choosing initial conditions that are motivated by color-glass-condensate framework we find that for Q=2GeV and $\\alpha_s$=0.3 the system is approximately described by viscous hydrodynamics well before $\\tau \\lesssim 1.0$ fm/c.
International Nuclear Information System (INIS)
Sosenko, P.; Pierre, Th.; Zagorodny, A.
2004-01-01
The linear and non-linear properties of global low-frequency oscillations in cylindrical weakly ionized magnetized plasmas are investigated analytically for the conditions of equilibrium plasma rotation. The theoretical results are compared with the experimental observations of rotating plasmas in laboratory devices, such as Mistral and Mirabelle in France, and KIWI in Germany. (authors)
Infrared equivalence of strongly and weakly coupled gauge theories
International Nuclear Information System (INIS)
Olesen, P.
1975-10-01
Using the decoupling theorem of Apelquist and Carazzone, it is shown that in terms of Feynman diagrams the pure Yang-Mills theory is equivalent in the infrared limit to a theory (zero-mass renormalized), where the vector mesons are coupled fo fermions, and where the fermions do not decouple. By taking enough fermions it is then shown that even though the pure Yang-Mills theory is characterized by the lack of applicability of perturbation theory, nevertheless the effective coupling in the equivalent fermion description is very weak. The effective mass in the zero-mass renormalization blows up. In the fermion description, diagrams involving only vector mesons are suppressed relative to diagrams containing at least one fermion loop. (Auth.)
Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime
Zhu, Gui-Lei; Lü, Xin-You; Wan, Liang-Liang; Yin, Tai-Shuang; Bin, Qian; Wu, Ying
2018-03-01
Strong quantum nonlinearity gives rise to many interesting quantum effects and has wide applications in quantum physics. Here we investigate the quantum nonlinear effect of an optomechanical system (OMS) consisting of both linear and quadratic coupling. Interestingly, a controllable optomechanical nonlinearity is obtained by applying a driving laser into the cavity. This controllable optomechanical nonlinearity can be enhanced into a strong coupling regime, even if the system is initially in the weak-coupling regime. Moreover, the system dissipation can be suppressed effectively, which allows the appearance of phonon sideband and photon blockade effects in the weak-coupling regime. This work may inspire the exploration of a dual-coupling optomechanical system as well as its applications in modern quantum science.
Lattice Boltzmann method for weakly ionized isothermal plasmas
International Nuclear Information System (INIS)
Li Huayu; Ki, Hyungson
2007-01-01
In this paper, a lattice Boltzmann method (LBM) for weakly ionized isothermal plasmas is presented by introducing a rescaling scheme for the Boltzmann transport equation. Without using this rescaling, we found that the nondimensional relaxation time used in the LBM is too large and the LBM does not produce physically realistic results. The developed model was applied to the electrostatic wave problem and the diffusion process of singly ionized helium plasmas with a 1-3% degree of ionization under an electric field. The obtained results agree well with theoretical values
Ion-cyclotron modes in weakly relatavistic plasmas
International Nuclear Information System (INIS)
Venugopal, C.; Kurian, P.J.; Renuka, G.
1994-01-01
We derive a dispersion relation for the perpendicular propagation of ion-cyclotron waves around the ion gyrofrequency Ω + in a weakly relativistic, anisotropic Maxwellian plasma. Using an ordering parameter ε, we separated out two dispersion relations, one of which is independent of the relativistic terms, while the other depends sensitively on them. The solutions of the former dispersion relation yield two modes: a low-frequency (LF) mode with a frequency ω + and a high-frequency (HF) mode with ω > Ω + . The plasma is stable to the propagation of these modes. The latter dispersion relation yields a new LF mode in addition to the modes supported by the non-relativistic dispersion relation. The two LF modes can coalesce to make the plasma unstable. These results are also verified numerically using a standard root solver. (author)
Final Scientific/Technical Report: Correlations and Fluctuations in Weakly Collisional Plasma
Energy Technology Data Exchange (ETDEWEB)
Skiff, Frederick [Univ. of Iowa, Iowa City, IA (United States)
2017-11-15
Plasma is a state of matter that exhibits a very rich range of phenomena. To begin with, plasma is both electrical and mechanical - bringing together theories of particle motion and the electromagnetic field. Furthermore, and especially important for this project, a weakly-collisional plasma, such as is found in high-temperature (fusion energy) experiments on earth and the majority of contexts in space and astrophysics, has many moving parts. For example, sitting in earth’s atmosphere we are immersed in a mechanical wave field (sound), a possibly turbulent fluid motion (wind), and an electromagnetic vector wave field with two polarizations (light). This is already enough to produce a rich range of possibilities. In plasma, the electromagnetic field is coupled to the mechanical motion of the medium because it is ionized. Furthermore, a weakly-collisional plasma supports an infinite number of mechanically independent fluids. Thus, plasmas support an infinite number of independent electromechanical waves. Much has been done to describe plasmas with "reduced models" of various kinds. The goal of this project was to both explore the validity of reduced plasma models that are in use, and to propose and validate new models of plasma motion. The primary means to his end was laboratory experiments employing both electrical probes and laser spectroscopy. Laser spectroscopy enables many techniques which can separate the spectrum of independent fluid motions in the ion phase-space. The choice was to focus on low frequency electrostatic waves because the electron motion is relatively simple, the experiments can be on a spatial scale of a few meters, and all the relevant parameters can be measured with a few lasers systems. No study of this kind had previously been undertaken for the study of plasmas. The validation of theories required that the experimental descriptions be compared with theory and simulation in detail. It was found that even multi-fluid theories leave out a
Connection between strong and weak coupling in the mean spherical model in 1 + 1 dimensions
International Nuclear Information System (INIS)
Banks, J.L.
1980-01-01
I extend the strong-coupling expansion obtained by Srednicki, for the β-function of the mean spherical model in 1 + 1 dimensions, in the hamiltonian formulation. I use ordinary and two-point Pade approximants to extrapolate this result to weak coupling. I find a reasonably smooth connection between strong and weak coupling, and good numerical agreement with the exact solution. (orig.)
Theory and simulation of laser plasma coupling
International Nuclear Information System (INIS)
Kruer, W.L.
1979-01-01
The theory and simulation of these coupling processes are considered. Particular emphasis is given to their nonlinear evolution. First a brief introduction to computer simulation of plasmas using particle codes is given. Then the absorption of light via the generation of plasma waves is considered, followed by a discussion of stimulated scattering of intense light. Finally these calculations are compared with experimental results
The strongly coupled quark-gluon plasma created at RHIC
Heinz, Ulrich W
2009-01-01
The Relativistic Heavy Ion Collider (RHIC) was built to re-create and study in the laboratory the extremely hot and dense matter that filled our entire universe during its first few microseconds. Its operation since June 2000 has been extremely successful, and the four large RHIC experiments have produced an impressive body of data which indeed provide compelling evidence for the formation of thermally equilibrated matter at unprecedented temperatures and energy densities -- a "quark-gluon plasma (QGP)". A surprise has been the discovery that this plasma behaves like an almost perfect fluid, with extremely low viscosity. Theorists had expected a weakly interacting gas of quarks and gluons, but instead we seem to have created a strongly coupled plasma liquid. The experimental evidence strongly relies on a feature called "elliptic flow" in off-central collisions, with additional support from other observations. This article explains how we probe the strongly coupled QGP, describes the ideas and measurements whi...
Bonde, Jeffrey; Vincena, Stephen; Gekelman, Walter
2018-04-01
The momentum coupled to a magnetized, ambient argon plasma from a high- β, laser-produced carbon plasma is examined in a collisionless, weakly coupled limit. The total electric field was measured by separately examining the induced component associated with the rapidly changing magnetic field of the high- β (kinetic β˜106), expanding plasma and the electrostatic component due to polarization of the expansion. Their temporal and spatial structures are discussed and their effect on the ambient argon plasma (thermal β˜10-2) is confirmed with a laser-induced fluorescence diagnostic, which directly probed the argon ion velocity distribution function. For the given experimental conditions, the electrostatic field is shown to dominate the interaction between the high- β expansion and the ambient plasma. Specifically, the expanding plasma couples energy and momentum into the ambient plasma by pulling ions inward against the flow direction.
Energy Technology Data Exchange (ETDEWEB)
Kleinsmith, P E [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)
1976-04-01
Multiple spatial scaling is incorporated in a modified form of the Bogoliubov plasma cluster expansion; then this proposed reformulation of the plasma weak-coupling approximation is used to derive, from the BBGKY Hierarchy, a decoupled set of equations for the one-and two-particle distribution functions in the limit as the plasma parameter goes to zero. Because the reformulated cluster expansion permits retention of essential two-particle collisional information in the limiting equations, while simultaneously retaining the well-established Debye-scale relative ordering of the correlation functions, decoupling of the Hierarchy is accomplished without introduction of the divergence problems encountered in the Bogoliubov theory, as is indicated by an exact solution of the limiting equations for the equilibrium case. To establish additional links with existing plasma equilibrium theories, the two-particle equilibrium correlation function is used to calculate the interaction energy and the equation of state. The limiting equation for the equilibrium three-particle correlation function is then developed, and a formal solution is obtained.
Study on spatial distribution of plasma parameters in a magnetized inductively coupled plasma
Energy Technology Data Exchange (ETDEWEB)
Cheong, Hee-Woon; Lee, Woohyun; Kim, Ji-Won; Whang, Ki-Woong, E-mail: kwhang@snu.ac.kr [Plasma Laboratory, Inter-University Semiconductor Research Center, Department of Electrical and Computer Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyuk [Samsung Electronics Co., Banwol-dong, Hwaseong 445-701 (Korea, Republic of); Park, Wanjae [Tokyo Electron Miyagi Ltd., Taiwa-cho, Kurokawa-gun, Miyagi 981-3629 (Japan)
2015-07-15
Spatial distributions of various plasma parameters such as plasma density, electron temperature, and radical density in an inductively coupled plasma (ICP) and a magnetized inductively coupled plasma (M-ICP) were investigated and compared. Electron temperature in between the rf window and the substrate holder of M-ICP was higher than that of ICP, whereas the one just above the substrate holder of M-ICP was similar to that of ICP when a weak (<8 G) magnetic field was employed. As a result, radical densities in M-ICP were higher than those in ICP and the etch rate of oxide in M-ICP was faster than that in ICP without severe electron charging in 90 nm high aspect ratio contact hole etch.
Thermal DBI action for the D3-brane at weak and strong coupling
DEFF Research Database (Denmark)
Grignani, Gianluca; Harmark, Troels; Marini, Andrea
2014-01-01
We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading T4 correction for the thermal DBI action at weak and strong coupling we find that the 3/4 ...
Approximation scheme for strongly coupled plasmas: Dynamical theory
International Nuclear Information System (INIS)
Golden, K.I.; Kalman, G.
1979-01-01
The authors present a self-consistent approximation scheme for the calculation of the dynamical polarizability α (k, ω) at long wavelengths in strongly coupled one-component plasmas. Development of the scheme is carried out in two stages. The first stage follows the earlier Golden-Kalman-Silevitch (GKS) velocity-average approximation approach, but goes much further in its application of the nonlinear fluctuation-dissipation theorem to dynamical calculations. The result is the simple expression for α (k, ω), αatsub GKSat(k, ω) 4 moment sum rule. In the second stage, the above dynamical expression is made self-consistent at long wavelengths by postulating that a decomposition of the quadratic polarizabilities in terms of linear ones, which prevails in the k → 0 limit for weak coupling, can be relied upon as a paradigm for arbitrary coupling. The result is a relatively simple quadratic integral equation for α. Its evaluation in the weak-coupling limit and its comparison with known exact results in that limit reveal that almost all important correlational and long-time effects are reproduced by our theory with very good numerical accuracy over the entire frequency range; the only significant defect of the approximation seems to be the absence of the ''dominant'' γ ln γ -1 (γ is the plasma parameter) contribution to Im α
The angular structure of jet quenching within a hybrid strong/weak coupling model
Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2017-08-01
Building upon the hybrid strong/weak coupling model for jet quenching, we incorporate and study the effects of transverse momentum broadening and medium response of the plasma to jets on a variety of observables. For inclusive jet observables, we find little sensitivity to the strength of broadening. To constrain those dynamics, we propose new observables constructed from ratios of differential jet shapes, in which particles are binned in momentum, which are sensitive to the in-medium broadening parameter. We also investigate the effect of the back-reaction of the medium on the angular structure of jets as reconstructed with different cone radii R. Finally we provide results for the so called ;missing-pt;, finding a qualitative agreement between our model calculations and data in many respects, although a quantitative agreement is beyond our simplified treatment of the hadrons originating from the hydrodynamic wake.
Plasma edge modelling with ICRF coupling
Directory of Open Access Journals (Sweden)
Zhang Wei
2017-01-01
Full Text Available The physics of Radio-Frequency (RF wave heating in the Ion Cyclotron Range of Frequencies (ICRF in the core plasmas of fusion devices are relatively well understood while those in the Scrape-Off Layer (SOL remain still unresolved. This paper is dedicated to study the ICRF interactions with the plasma edge, mainly from the theoretical and numerical point of view, in particular with the 3D edge plasma fluid and neutral transport code EMC3-EIRENE and various wave codes. Here emphasis is given to the improvement of ICRF coupling with local gas puffing and to the ICRF induced density convection in the SOL.
Weak coupling chambers in N=2 BPS quiver theory
Energy Technology Data Exchange (ETDEWEB)
Saidi, El Hassan, E-mail: h-saidi@fsr.ac.ma [Lab of High Energy Physics, Modeling and Simulations, Faculty of Science, University Mohammed V-Agdal, 4 Avenue Ibn Battota, Rabat (Morocco); Centre of Physics and Mathematics, CPM-CNESTEN, Rabat (Morocco)
2012-11-01
Using recent results on BPS quiver theory, we develop a group theoretical method to describe the quiver mutations encoding the quantum mechanical duality relating the spectra of distinct quivers. We illustrate the method by computing the BPS spectrum of the infinite weak chamber of some examples of N=2 supersymmetric gauge models without and with quark hypermultiplets.
Coupling of laser energy into plasma channels
International Nuclear Information System (INIS)
Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.
2007-01-01
Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length
Three species one-dimensional kinetic model for weakly ionized plasmas
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, J., E-mail: jorge.gonzalez@upm.es; Donoso, J. M.; Tierno, S. P. [Department of Applied Physics, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid (Spain)
2016-06-15
A three species one-dimensional kinetic model is presented for a spatially homogeneous weakly ionized plasma subjected to the action of a time varying electric field. Planar geometry is assumed, which means that the plasma evolves in the privileged direction of the field. The energy transmitted to the electric charges is channelized to the neutrals thanks to collisions, a mechanism that influences the plasma dynamics. Charge-charge interactions have been designed as a one-dimensional collision term equivalent to the Landau operator used for fully ionized plasmas. Charge-neutral collisions are modelled by a conservative drift-diffusion operator in the Dougherty's form. The resulting set of coupled integro-differential equations is solved with the stable and robust propagator integral method. This semi–analytical method feasibility accounts for non–linear effects without appealing to linearisation or simplifications, providing conservative physically meaningful solutions even for initial or emerging sharp velocity distribution function profiles. It is found that charge-neutral collisions exert a significant effect since a quite different plasma evolution arises if compared to the collisionless limit. In addition, substantial differences in the system motion are found for constant and temperature dependent collision frequencies cases.
The strongly coupled quark-gluon plasma created at RHIC
International Nuclear Information System (INIS)
Heinz, Ulrich
2009-01-01
The relativistic heavy-ion collider (RHIC) was built to re-create and study in the laboratory the extremely hot and dense matter that filled our entire universe during its first few microseconds. Its operation since June 2000 has been extremely successful, and the four large RHIC experiments have produced an impressive body of data which indeed provide compelling evidence for the formation of thermally equilibrated matter at unprecedented temperatures and energy densities-a 'quark-gluon plasma (QGP)'. A surprise has been the discovery that this plasma behaves like an almost perfect fluid, with extremely low viscosity. Theorists had expected a weakly interacting gas of quarks and gluons, but instead we seem to have created a strongly coupled plasma liquid. The experimental evidence strongly relies on a feature called 'elliptic flow' in off-central collisions, with additional support from other observations. This paper explains how we probe the strongly coupled QGP, describes the ideas and measurements which led to the conclusion that the QGP is an almost perfect liquid, and shows how they tie relativistic heavy-ion physics into other burgeoning fields of modern physics, such as strongly coupled Coulomb plasmas, ultracold systems of trapped atoms and superstring theory
Inductively coupled plasma- mass spectrometry. Chapter 13
International Nuclear Information System (INIS)
Mahalingam, T.R.
1997-01-01
Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) is a new technique for elemental and isotopic analysis which is currently attracting a great deal of interest. This relatively new technique has found wide applications in different fields of research viz., nuclear, geological, biological and environmental sciences
Wavelength scaling of laser plasma coupling
International Nuclear Information System (INIS)
Kruer, W.L.
1983-01-01
The use of shorter wavelength laser light both enhances collisional absorption and reduces deleterious collective plasma effects. Coupling processes which can be important in reactor-size targets are briefly reviewed. Simple estimates are presented for the intensity-wavelength regime in which collisional absorption is high and collective effects are minimized
Energy coupling in the plasma focus
International Nuclear Information System (INIS)
Wainwright, T.E.; Pickles, W.L.; Sahlin, H.L.; Price, D.F.
1979-01-01
Experiments have been performed with a 125-kJ plasma focus to investigate mechanisms for rapid coupling of inductively-stored energy into plasmas. The coupling can take place through the formation of an electron or ion beam that deposits its energy in a target or directly by the penetration of the magnetic field into a resistive plasma. Some preliminary results from experiments of both types are described. The experiments use a replaceable conical anode tip that is intended to guide the focus to within a few millimeters of the axis, where it can suddenly deliver energy either to a small target or to particles that are accelerated. X-ray and fast-ion diagnostics have been used to study the effects
Noise Thermometry with Two Weakly Coupled Bose-Einstein Condensates
International Nuclear Information System (INIS)
Gati, Rudolf; Hemmerling, Boerge; Foelling, Jonas; Albiez, Michael; Oberthaler, Markus K.
2006-01-01
Here we report on the experimental investigation of thermally induced fluctuations of the relative phase between two Bose-Einstein condensates which are coupled via tunneling. The experimental control over the coupling strength and the temperature of the thermal background allows for the quantitative analysis of the phase fluctuations. Furthermore, we demonstrate the application of these measurements for thermometry in a regime where standard methods fail. With this we confirm that the heat capacity of an ideal Bose gas deviates from that of a classical gas as predicted by the third law of thermodynamics
Noise thermometry with two weakly coupled Bose-Einstein condensates.
Gati, Rudolf; Hemmerling, Börge; Fölling, Jonas; Albiez, Michael; Oberthaler, Markus K
2006-04-07
Here we report on the experimental investigation of thermally induced fluctuations of the relative phase between two Bose-Einstein condensates which are coupled via tunneling. The experimental control over the coupling strength and the temperature of the thermal background allows for the quantitative analysis of the phase fluctuations. Furthermore, we demonstrate the application of these measurements for thermometry in a regime where standard methods fail. With this we confirm that the heat capacity of an ideal Bose gas deviates from that of a classical gas as predicted by the third law of thermodynamics.
Enhanced laser beam coupling to a plasma
International Nuclear Information System (INIS)
Steiger, A.D.; Woods, C.H.
1976-01-01
Density perturbations are induced in a heated plasma by means of a pair of oppositely directed, polarized laser beams of the same frequency. The wavelength of the density perturbations is equal to one half the wavelength of the laser beams. A third laser beam is linearly polarized and directed at the perturbed plasma along a line that is perpendicular to the direction of the two opposed beams. The electric field of the third beam is oriented to lie in the plane containing the three beams. The frequency of the third beam is chosen to cause it to interact resonantly with the plasma density perturbations, thereby efficiently coupling the energy of the third beam to the plasma. 10 claims, 2 figures
Energy Technology Data Exchange (ETDEWEB)
Abuki, Hiroaki; Hatsuda, Tetsuo [Tokyo Univ., Dept. of Physics, Tokyo (Japan); Itakura, Kazunori [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States)
2002-09-01
The two-flavor color superconductivity is studied over a wide range of baryon density with a single model. We pay a special attention to the spatial-momentum dependence of the gap and to the spatial-structure of Cooper pairs. At extremely high baryon density ({approx}O(10{sup 10} {rho}{sub 0}) with {rho}{sub 0} being the normal nuclear matter density), our model becomes equivalent to the usual perturbative QCD treatment and the gap is shown to have a sharp peak near the Fermi surface due to the weak-coupling nature of QCD. On the other hand, the gap is a smooth function of the momentum at lower densities ({approx}O(10{sup 10} {rho}{sub 0})) due to strong color magnetic and electric interactions. To study the structural change of Cooper pairs from high density to lower density, quark correlation in the color superconductor is studied both in the momentum space and in the coordinate space. The size of the Cooper pair is shown to become comparable to the averaged inter-quark distance at low densities. Also, effects of the momentum-dependent running coupling and the antiquark pairing, which are both small at high density, are shown to be non-negligible at low densities. These features are highly contrasted to the standard BCS superconductivity in metals. (author)
Joint weak value for all order coupling using continuous variable and qubit probe
Kumari, Asmita; Pan, Alok Kumar; Panigrahi, Prasanta K.
2017-11-01
The notion of weak measurement in quantum mechanics has gained a significant and wide interest in realizing apparently counterintuitive quantum effects. In recent times, several theoretical and experimental works have been reported for demonstrating the joint weak value of two observables where the coupling strength is restricted to the second order. In this paper, we extend such a formulation by providing a complete treatment of joint weak measurement scenario for all-order-coupling for the observable satisfying A 2 = 𝕀 and A 2 = A, which allows us to reveal several hitherto unexplored features. By considering the probe state to be discrete as well as continuous variable, we demonstrate how the joint weak value can be inferred for any given strength of the coupling. A particularly interesting result we pointed out that even if the initial pointer state is uncorrelated, the single pointer displacement can provide the information about the joint weak value, if at least third order of the coupling is taken into account. As an application of our scheme, we provide an all-order-coupling treatment of the well-known Hardy paradox by considering the continuous as well as discrete meter states and show how the negative joint weak probabilities emerge in the quantum paradoxes at the weak coupling limit.
Kinetic Analysis of Weakly ionized Plasmas in presence of collecting walls
Gonzalez, J.; Donoso, J. M.
2018-02-01
Description of plasmas in contact with a wall able to collecting or emitting charged particles is a research topic of great importance. This situation arises in a great variety of phenomena such as the characterization of plasmas by means of electric probes, in the surface treatment of materials and in the service-life of coatings in electric thrusters. In particular, in this work we devote attention to the dynamics of an argon weakly ionized plasma in the presence of a collecting wall. It is proposed a kinetic model in a 1D1V planar phase-space geometry. The model accounts for the electric field coupled to the system by solving the associated Poisson’s equation. To solve numerically the resulting non-linear system of equations, the Propagator Integral Method is used in conjunction with a slabbing method. On each interrelating plasma slab the integral advancing scheme operates in velocity space, in such a way that the all the species dynamics dominating the system evolution are kinetically described.
Quantized orbits in weakly coupled Belousov-Zhabotinsky reactors
Weiss, S.; Deegan, R. D.
2015-06-01
Using numerical and experimental tools, we study the motion of two coupled spiral cores in a light-sensitive variant of the Belousov-Zhabotinsky reaction. Each core resides on a separate two-dimensional domain, and is coupled to the other by light. When both spirals have the same sense of rotation, the cores are attracted to a circular trajectory with a diameter quantized in integer units of the spiral wavelength λ. When the spirals have opposite senses of rotation, the cores are attracted towards different but parallel straight trajectories, separated by an integer multiple of λ/2. We present a model that explains this behavior as the result of a spiral wavefront-core interaction that produces a deterministic displacement of the core and a retardation of its phase.
Mode coupling of electron plasma waves
International Nuclear Information System (INIS)
Harte, J.A.
1975-01-01
The driven coupled mode equations are derived for a two fluid, unequal temperature (T/sub e/ much greater than T/sub i/) plasma in the one-dimensional, electrostatic model and applied to the coupling of electron plasma waves. It is assumed that the electron to ion mass ratio identical with m/sub e/M/sub i// much less than 1 and eta 2 /sub ko/k lambda/sub De/ less than 1 where eta 2 /sub ko/ is the pump wave's power normalized to the plasma thermal energy, k the mode wave number and lambda/sub De/ the electron Debye length. Terms up to quadratic in pump power are retained. The equations describe the linear plasma modes oscillating at the wave number k and at ω/sub ek/, the Bohn Gross frequency, and at Ω/sub k/, the ion acoustic frequency, subject to the damping rates ν/sub ek/ and ν/sub ik/ for electrons and ions and their interactions due to intense high frequency waves E/sub k//sup l/. n/sub o/ is the background density, n/sub ik/ the fluctuating ion density, ω/sub pe/ the plasma frequency
Bright branes for strongly coupled plasmas
International Nuclear Information System (INIS)
Mateos, David; Patino, Leonardo
2007-01-01
We use holographic techniques to study photon production in a class of finite temperature, strongly coupled, large-N c SU(N c ) quark-gluon plasmas with N f c quark flavours. Our results are valid to leading order in the electromagnetic coupling constant but non-perturbatively in the SU(N c ) interactions. The spectral function of electromagnetic currents and other related observables exhibit an interesting structure as a function of the photon frequency and the quark mass. We discuss possible implications for heavy ion collision experiments
Design Considerations in Capacitively Coupled Plasmas
Song, Sang-Heon; Ventzek, Peter; Ranjan, Alok
2015-11-01
Microelectronics industry has driven transistor feature size scaling from 10-6 m to 10-9 m during the past 50 years, which is often referred to as Moore's law. It cannot be overstated that today's information technology would not have been so successful without plasma material processing. One of the major plasma sources for the microelectronics fabrication is capacitively coupled plasmas (CCPs). The CCP reactor has been intensively studied and developed for the deposition and etching of different films on the silicon wafer. As the feature size gets to around 10 nm, the requirement for the process uniformity is less than 1-2 nm across the wafer (300 mm). In order to achieve the desired uniformity, the hardware design should be as precise as possible before the fine tuning of process condition is applied to make it even better. In doing this procedure, the computer simulation can save a significant amount of resources such as time and money which are critical in the semiconductor business. In this presentation, we compare plasma properties using a 2-dimensional plasma hydrodynamics model for different kinds of design factors that can affect the plasma uniformity. The parameters studied in this presentation include chamber accessing port, pumping port, focus ring around wafer substrate, and the geometry of electrodes of CCP.
Chaotic weak chimeras and their persistence in coupled populations of phase oscillators
International Nuclear Information System (INIS)
Bick, Christian; Ashwin, Peter
2016-01-01
Nontrivial collective behavior may emerge from the interactive dynamics of many oscillatory units. Chimera states are chaotic patterns of spatially localized coherent and incoherent oscillations. The recently-introduced notion of a weak chimera gives a rigorously testable characterization of chimera states for finite-dimensional phase oscillator networks. In this paper we give some persistence results for dynamically invariant sets under perturbations and apply them to coupled populations of phase oscillators with generalized coupling. In contrast to the weak chimeras with nonpositive maximal Lyapunov exponents constructed so far, we show that weak chimeras that are chaotic can exist in the limit of vanishing coupling between coupled populations of phase oscillators. We present numerical evidence that positive Lyapunov exponents can persist for a positive measure set of this inter-population coupling strength. (paper)
Electrically tunable single-dot nanocavities in the weak and strong coupling regimes
DEFF Research Database (Denmark)
Laucht, Arne; Hofbauer, Felix; Angele, Jacob
2008-01-01
We report the design, fabrication and optical investigation of electrically tunable single quantum dot - photonic crystal defect nanocavities [1] operating in both the weak and strong coupling regimes of the light matter interaction. Unlike previous studies, where the dot-cavity spectral detuning...... of the emitted photons from a single-dot nanocavity in the weak and strong coupling regimes. New information is obtained on the nature of the dot-cavity coupling in the weak coupling regime and electrical control of zero dimensional polaritons is demonstrated for the first time. Vacuum Rabi splittings up to 2g...... electrical readout of the strongly coupled dot-cavity system using photocurrent methods will be discussed. This work is financially supported by the DFG via SFB 631 and by the German Excellence Initiative via the “Nanosystems Initiative Munich (NIM)”....
DC plasma ion implantation in an inductively coupled RF plasma
International Nuclear Information System (INIS)
Silawatshananai, C.; Matan, N.; Pakpum, C.; Pussadee, N.; Srisantitam, P.; Davynov, S.; Vilaithong, T.
2004-01-01
Various modes of plasma ion implantation have been investigated in a small inductively coupled 13.6 MHz RF plasma source. Plasma ion implantation with HVDC(up to -10 kV bias) has been investigated in order to incorporate with the conventional implantation of diamond like carbon. In this preliminary work, nitrogen ions are implanted into the stainless steel sample with a dose of 5.5 x 10 -2 cm for a short implanting time of 7 minutes without target cooling. Surface properties such as microhardness, wear rate and the friction coefficient have been improved. X-ray and SEM analyses show distinct structural changes on the surface. A combination of sheath assisted implantation and thermal diffusion may be responsible for improvement in surface properties. (orig.)
Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity
International Nuclear Information System (INIS)
Nozieres, P.; Schmitt-Rink, S.
1985-01-01
We consider a gas of fermions interacting via an attractive potential. We study the ground state of that system and calculate the critical temperature for the onset of superconductivity as a function of the coupling strength. We compare the behavior of continuum and lattice models and show that the evolution from weak to strong coupling superconductivity is smooth
D-brane physics. From weak to strong coupling
Energy Technology Data Exchange (ETDEWEB)
Vieira Lopes, Daniel Ordine
2013-01-10
In this thesis we discuss two aspects of branes relevant to high-energy phenomenology. First, we consider a single D6-brane wrapping a special Lagrangian cycle and the background space compactified in a Calabi-Yau orientifold the conditions needed to obtain a four-dimensional N=1 supersymmetric theory. We calculate the bosonic part of the effective action by performing a Kaluza-Klein reduction of the brane seven-dimensional action, and obtain the N=1 characteristic data. To discuss the moduli, we first fix the moduli from deformations of the background Calabi-Yau and study the D-brane deformation moduli space. We next allow for Calabi-Yau deformations, and show that the moduli space for complex structure deformations is corrected by the fields living on the D6-brane. We also calculate the scalar potential from D- and F-terms generated from brane and background configurations that would break the supersymmetry condition. We then, via Mirror Symmetry, relate the spectrum obtained in our work to the spectrum in Type IIB effective theory with D3- D5- and D7-branes, and we propose a Kaehler potential for the moduli space of brane deformations in Type IIB theories. In the second part of the thesis we discuss effects of brane intersections when the string coupling can become strong, and we work in the framework of F-theory. After reviewing the basics of F-theory constructions and a particular SU(5) model already discussed in the literature, we construct a model which contains a point of E{sub 8} singularity, and curves of E{sub 6} singularity. By explicitly resolving the space, we show that the resolution requires the introduction of higher dimensional fibers, and argue how we can circumvent this problem for the E{sub 6} curve, leading to the expected resolution that generate an E{sub 6} group, while at the E{sub 8} point we cannot make the resolution lead to an expected E{sub 8} structure.
Energy Technology Data Exchange (ETDEWEB)
Casalderrey-Solana, Jorge [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Gulhan, Doga Can [Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Physics Department, Theory Unit, CERN, CH-1211 Genève 23 (Switzerland); Pablos, Daniel [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2016-12-15
Within a hybrid strong/weak coupling model for jets in strongly coupled plasma, we explore jet modifications in ultra-relativistic heavy ion collisions. Our approach merges the perturbative dynamics of hard jet evolution with the strongly coupled dynamics which dominates the soft exchanges between the fast partons in the jet shower and the strongly coupled plasma itself. We implement this approach in a Monte Carlo, which supplements the DGLAP shower with the energy loss dynamics as dictated by holographic computations, up to a single free parameter that we fit to data. We then augment the model by incorporating the transverse momentum picked up by each parton in the shower as it propagates through the medium, at the expense of adding a second free parameter. We use this model to discuss the influence of the transverse broadening of the partons in a jet on intra-jet observables. In addition, we explore the sensitivity of such observables to the back-reaction of the plasma to the passage of the jet.
Electron cyclotron heating in weakly relativistic, finite-β plasmas
International Nuclear Information System (INIS)
Audenaerde, K.; Scharer, J.; Lam, N.; Beyer, J.; Wisconsin Univ., Madison
1982-01-01
ECRF wave launching and absorption in the plug and barrier regions of tandem mirrors are examined. The 3-D magnetic field, density and electron temperature profiles are modelled to simulate these regions. It is found that the X mode of elevated temperatures (Tsub(e) approx.= 50 keV) exhibits substantial spatial shifts from the cold plasma resonance surface. For steep plasma density profiles the X-mode bends away from the resonance zone and absorption is concentrated at the plasma surface. The O-mode exhibits a ray trajectory which more easily penetrates the plasma core and has a moderate absorption at Tsub(e) approx. 50 keV such that single pass absorption is adequate. Finally, the use of quasi-optical ECRF launchers to overcome reactor environmental problems associated with standard overmoded waveguide launchers used for gyrotron sources presented is considered. (author)
Double plasma system with inductively coupled source plasma and quasi-quiescent target plasma
International Nuclear Information System (INIS)
Massi, M.; Maciel, H.S.
1995-01-01
Cold plasmas have successfully been used in the plasma-assisted material processing industry. An understanding of the physicochemical mechanisms involved in the plasma-surface interaction is needed for a proper description of deposition and etching processes at material surfaces. Since these mechanisms are dependent on the plasma properties, the development of diagnostic techniques is strongly desirable for determination of the plasma parameters as well as the characterization of the electromagnetic behaviour of the discharge. In this work a dual discharge chamber, was specially designed to study the deposition of thin films via plasma polymerization process. In the Pyrex chamber an inductively coupled plasma can be excited either in the diffuse low density E-mode or in the high density H-mode. This plasma diffuses into the cylindrical stainless steel chamber which is covered with permanent magnets to produce a multidipole magnetic field configuration at the surface. By that means a double plasma is established consisting of a RF source plasma coupled to a quasi-quiescent target plasma. The preliminary results presented here refer to measurements of the profiles of plasma parameters along the central axis of the double plasma apparatus. Additionally a spectrum analysis performed by means of a Rogowski coil probe immersed into the source plasma is also presented. The discharge is made in argon with pressure varying from 10 -2 to 1 torr, and the rf from 10 to 150 W
Titanium oxidation by rf inductively coupled plasma
International Nuclear Information System (INIS)
Valencia-Alvarado, R; López-Callejas, R; Barocio, S R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Rodríguez-Méndez, B G; De la Piedad-Beneitez, A; De la Rosa-Vázquez, J M
2014-01-01
The development of titanium dioxide (TiO 2 ) films in the rutile and anatase phases is reported. The films have been obtained from an implantation/diffusion and sputtering process of commercially pure titanium targets, carried out in up to 500 W plasmas. The experimental outcome is of particular interest, in the case of anatase, for atmospheric pollution degradation by photocatalysis and, as to the rutile phase, for the production of biomaterials required by prosthesis and implants. The reactor employed consists in a cylindrical pyrex-like glass vessel inductively coupled to a 13.56 MHz RF source. The process takes place at a 5×10 −2 mbar pressure with the target samples being biased from 0 to -3000 V DC. The anatase phase films were obtained from sputtering the titanium targets over glass and silicon electrically floated substrates placed 2 cm away from the target. The rutile phase was obtained by implantation/diffusion on targets at about 700 °C. The plasma was developed from a 4:1 argon/oxygen mixture for ∼5 hour processing periods. The target temperature was controlled by means of the bias voltage and the plasma source power. The obtained anatase phases did not require annealing after the plasma oxidation process. The characterization of the film samples was conducted by means of x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy and Raman spectroscopy
International Nuclear Information System (INIS)
Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S.R.
2001-03-01
We discuss the coherent atomic oscillations between two weakly coupled Bose-Einstein condensates. The weak link is provided by a laser barrier in a (possibly asymmetric) double-well trap or by Raman coupling between two condensates in different hyperfine levels. The boson Josephson junction (BJJ) dynamics is described by the two-mode nonlinear Gross-Pitaevskii equation that is solved analytically in terms of elliptic functions. The BJJ, being a neutral, isolated system, allows the investigations of dynamical regimes for the phase difference across the junction and for the population imbalance that are not accessible with superconductor Josephson junctions (SJJ's). These include oscillations with either or both of the following properties: (i) the time-averaged value of the phase is equal to π (π-phase oscillations); (ii) the average population imbalance is nonzero, in states with macroscopic quantum self-trapping. The (nonsinusoidal) generalization of the SJJ ac and plasma oscillations and the Shapiro resonance can also be observed. We predict the collapse of experimental data (corresponding to different trap geometries and the total number of condensate atoms) onto a single universal curve for the inverse period of oscillations. Analogies with Josephson oscillations between two weakly coupled reservoirs of 3 He-B and the internal Josephson effect in 3 He-A are also discussed. (author)
Transfer coefficients in ultracold strongly coupled plasma
Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.
2018-03-01
We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.
Classical integrability for three-point functions: cognate structure at weak and strong couplings
Energy Technology Data Exchange (ETDEWEB)
Kazama, Yoichi [Research Center for Mathematical Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Quantum Hadron Physics Laboratory, RIKEN Nishina Center, Wako 351-0198 (Japan); Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Nishimura, Takuya [Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)
2016-10-10
In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the N=4 super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical behaviors were not known before. In addition, the new analyticity argument applied to the strong coupling analysis leads to a modification of the integration contour, producing the results consistent with the recent hexagon bootstrap approach. This modification also makes the Frolov-Tseytlin limit perfectly agree with the weak coupling form.
Quantum ion-acoustic solitary waves in weak relativistic plasma
Indian Academy of Sciences (India)
Abstract. Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized two- species relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive ...
Radiation from nonlinear coupling of plasma waves
International Nuclear Information System (INIS)
Fung, S.F.
1986-01-01
The author examines the generation of electromagnetic radiation by nonlinear resonant interactions of plasma waves in a cold, uniformly magnetized plasma. In particular, he considers the up-conversion of two electrostatic wave packets colliding to produce high frequency electromagnetic radiation. Efficient conversion of electrostatic to electromagnetic wave energy occurs when the pump amplitudes approach and exceed the pump depletion threshold. Results from the inverse scattering transform analysis of the three-wave interaction equations are applied. When the wave packets are initially separated, the fully nonlinear set of coupling equations, which describe the evolution of the wave packets, can be reduced to three separate eigenvalue problems; each can be considered as a scattering problem, analogous to eh Schroedinger equation. In the scattering space, the wave packet profiles act as the scattering potentials. When the wavepacket areas approach (or exceed) π/2, the wave functions are localized (bound states) and the scattering potentials are said to contain solitons. Exchange of solitons occurs during the interaction. The transfer of solitons from the pump waves to the electromagnetic wave leads to pump depletion and the production of strong radiation. The emission of radio waves is considered by the coupling of two upper-hybrid branch wave packets, and an upper-hybrid and a lower hybrid branch wave packet
Non-geometrical optics investigation of mode conversion in weakly relativistic inhomogeneous plasmas
International Nuclear Information System (INIS)
Imre, K.
1985-06-01
Electron cyclotron resonance heating of plasmas by waves incident to the fundamental and second harmonic layer is investigated. When the wave propagation is nearly perpendicular to the equilibrium field in a weakly inhomogeneous plasma the standard geometrical optics breaks down and the relativistic corrections become significant at the resonance layer. Unlike the previous studies of this problem, the governing equations are derived from the linearized relativistic Vlasov equation coupled with Maxwell's equations, rather than using the uniform field dispersion relation to construct equations by replacing the refractive index by some spatial differential operations. We employ a boundary layer analysis at the resonance region and match the inner and outer solutions in the usual manner. We obtain not only the full wave solution of the problem, but also the set of physical parameters and their ranges in which the analysis is valid. Although we obtain analytic results for the asymptotic solutions, our analysis usually requires a numerical procedure when the relativistic and/or nonzero parallel refractive index are included
Jets in a strongly coupled anisotropic plasma
Energy Technology Data Exchange (ETDEWEB)
Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Faculty of Physics, Shahrood (Iran, Islamic Republic of); University of Southampton, STAG Research Centre Physics and Astronomy, Southampton (United Kingdom); Morad, Razieh [University of Cape Town, Department of Physics, Rondebosch (South Africa)
2018-01-15
In this paper, we study the dynamics of the light quark jet moving through the static, strongly coupled N = 4, anisotropic plasma with and without charge. The light quark is presented by a 2-parameters point-like initial condition falling string in the context of the AdS/CFT. We calculate the stopping distance of the light quark in the anisotropic medium and compare it with its isotropic value. We study the dependency of the stopping distance to the both string initial conditions and background parameters such as anisotropy parameter or chemical potential. Although the typical behavior of the string in the anisotropic medium is similar to the one in the isotropic AdS-Sch background, the string falls faster to the horizon depending on the direction of moving. Particularly, the enhancement of quenching is larger in the beam direction. We find that the suppression of stopping distance is more prominent when the anisotropic plasma have the same temperature as the isotropic plasma. (orig.)
Energy balance in turbulent weakly ionized ionospheric plasma
International Nuclear Information System (INIS)
Dyatko, N.A.; Mishin, E.V.; Telegin, V.A.
1994-01-01
On the base of numerical solution of the Boltzmann equation are determined the electron distribution function and energy balance in the case if the longitudinal current exceeds the critical one and the resistance becames anomalously high one. In the equation are accounted for both electron scattering by plasma density fluctuations and electron elastic and inelastic collisions with atoms and molecules and electron-electron collisions
Low energy constituent quark and pion effective couplings in a weak external magnetic field
Braghin, Fábio L.
2018-03-01
An effective model with pions and constituent quarks in the presence of a weak external background electromagnetic field is derived by starting from a dressed one gluon exchange quark-quark interaction. By applying the auxiliary field and background field methods, the structureless pion limit is considered to extract effective pion and constituent quark couplings in the presence of a weak magnetic field. The leading terms of a large quark and gluon masses expansion are obtained by resolving effective coupling constants which turn out to depend on a weak magnetic field. Two pion field definitions are considered for that. Several relations between the effective coupling constants and parameters can be derived exactly or in the limit of very large quark mass at zero and weak constant magnetic field. Among these ratios, the Gell-Mann-Oakes-Renner and the quark level Goldberger-Treiman relations are obtained. In addition to that, in the pion sector, the leading terms of Chiral Perturbation Theory coupled to the electromagnetic field are recovered. Some numerical estimates are provided for the effective coupling constants and parameters.
Hugdal, Henning G.; Sudbø, Asle
2018-01-01
We study the superconducting order in a two-dimensional square lattice Hubbard model with weak repulsive interactions, subject to a Zeeman field and weak Rashba spin-orbit interactions. Diagonalizing the noninteracting Hamiltonian leads to two separate bands, and by deriving an effective low-energy interaction we find the mean field gap equations for the superconducting order parameter on the bands. Solving the gap equations just below the critical temperature, we find that superconductivity is caused by Kohn-Luttinger-type interaction, while the pairing symmetry of the bands is indirectly affected by the spin-orbit coupling. The dominating attractive momentum channel of the Kohn-Luttinger term depends on the filling fraction n of the system, and it is therefore possible to change the momentum dependence of the order parameter by tuning n . Moreover, n also determines which band has the highest critical temperature. Rotating the magnetic field changes the momentum dependence from states that for small momenta reduce to a chiral px±i py type state for out-of-plane fields, to a nodal p -wave-type state for purely in-plane fields.
Ion-sound oscillations in strongly non-isotherm weakly ionized nonuniform hydrogen plasma
International Nuclear Information System (INIS)
Leleko, Ya.F.; Stepanov, K.N.
2010-01-01
A stationary distribution of strongly non-isotherm weakly ionized hydrogen plasma parameters is obtained in the hydrodynamic approximation in a quasi neutrality region in the transient layer between the plasma and dielectric taking the ionization, charge exchange, diffusion, viscosity, and a self-consistent field potential distribution. The ion-sound oscillation frequency and the collisional damping decrement as functions of the wave vector in the plasma with the obtained parameters are found in the local approximation.
Revisiting the thermal effect on shock wave propagation in weakly ionized plasmas
International Nuclear Information System (INIS)
Zhou, Qianhong; Dong, Zhiwei; Yang, Wei
2016-01-01
Many researchers have investigated shock propagation in weakly ionized plasmas and observed the following anomalous effects: shock acceleration, shock recovery, shock weakening, shock spreading, and splitting. It was generally accepted that the thermal effect can explain most of the experimental results. However, little attention was paid to the shock recovery. In this paper, the shock wave propagation in weakly ionized plasmas is studied by fluid simulation. It is found that the shock acceleration, weakening, and splitting appear after it enters the plasma (thermal) region. The shock splits into two parts right after it leaves the thermal region. The distance between the splitted shocks keeps decreasing until they recover to one. This paper can explain a whole set of features of the shock wave propagation in weakly ionized plasmas. It is also found that both the shock curvature and the splitting present the same photoacoustic deflection (PAD) signals, so they cannot be distinguished by the PAD experiments.
Spontaneous hole-clump pair creation in weakly unstable plasmas
International Nuclear Information System (INIS)
Berk, H.L.; Breizman, B.N.; Petviashvili, N.V.
1997-03-01
A numerical simulation of a kinetic instability near threshold shows how a hole and clump spontaneously appear in the particle distribution function. The hole and clump support a pair of Bernstein, Greene, Kruskal (BGK) nonlinear waves that last much longer than the inverse linear damping rate while they are upshifting and downshifting in frequency. The frequency shifting allows a balance between the power nonlinearly extracted from the resonant particles and the power dissipated into the background plasma. These waves eventually decay due to phase space gradient smoothing caused by collisionality
Universality for the parameter-mismatching effect on weak synchronization in coupled chaotic systems
International Nuclear Information System (INIS)
Lim, Woochang; Kim, Sang-Yoon
2004-01-01
To examine the universality for the parameter-mismatching effect on weak chaotic synchronization, we study coupled multidimensional invertible systems such as the coupled Henon maps and coupled pendula. By generalizing the method proposed in coupled one-dimensional (1D) noninvertible maps, we introduce the parameter sensitivity exponent δ to measure the degree of the parameter sensitivity of a weakly stable synchronous chaotic attractor. In terms of the parameter sensitivity exponents, we characterize the effect of the parameter mismatch on the intermittent bursting and the basin riddling occurring in the regime of weak synchronization. It is thus found that the scaling exponent μ for the average characteristic time (i.e., the average interburst time and the average chaotic transient lifetime) for both the bubbling and riddling cases is given by the reciprocal of the parameter sensitivity exponent, as in the simple system of coupled 1D maps. Hence, the reciprocal relation (i.e., μ = 1/δ) seems to be 'universal', in the sense that it holds in typical coupled chaotic systems of different nature
Nonlinear wave coupling in a warm plasma in the fluid
International Nuclear Information System (INIS)
Malara, F.; Veltri, P.
1984-01-01
The general expression for nonlinear coupling between plasma modes is obtained. The nonlinear conductivity tensor is then calculated by means of the two-fluid plasma description taking into account the thermal pressure effects
A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas
2016-02-29
development a tightly coupled magneto-hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State...Inductively Coupled Plasma (ICP) torches have wide range of possible applications which include deposition of metal coatings, synthesis of ultra-fine powders
Joint queue-perturbed and weakly-coupled power control for wireless backbone networks
CSIR Research Space (South Africa)
Olwal, TO
2012-09-01
Full Text Available perturbation and weakly-coupled based power control approach for the WBNs. The ultimate objectives are to increase energy-efficiency and the overal network capacity. In order to achieve these objectives, a Markov chain model is first presented to describe...
Inductively coupled plasma source mass spectrometry
International Nuclear Information System (INIS)
Price Russ, G. III
1993-01-01
Inductively coupled plasma source mass spectrometry (ICP-MS) is a relatively new (5 y commercial availability) technique for simultaneously determining the concentration and isotopic composition of a large number of elements at trace levels. The principle advantages of ICP-MS are the ability to measure essentially all the metallic elements at concentrations as low as 1 part in 10 12 by weight, to analyse aqueous samples directly, to determine the isotopic composition of essentially all the metallic elements, and to analyse samples rapidly (minutes). The history of the development of ICP-MS and discussions of a variety of applications have been discussed in detail in Date and Gray (1988). Koppenaal (1988, 1990) has reviewed the ICP-MS literature. In that ICP-MS is a relatively new and still evolving technique, this chapter will discuss potential capability more than proven performance. (author). 24 refs
Electron energy distribution in a weakly ionized plasma
International Nuclear Information System (INIS)
Cesari, C.
1967-03-01
The aim of this work is to determine from both the theoretical and experimental points of view the type of distribution function for the electronic energies existing in a positive-column type cold laboratory plasma having an ionization rate of between 10 -6 and 10 -7 . The theoretical analysis, based on the imperfect Lorentz model and taking into account inelastic collisions is developed from the Boltzmann equation. The experimental method which we have employed for making an electrostatic analysis of the electronic energies makes use of a Langmuir probe used in conjunction with a transistorized electronic device. A comparison between the experimental and theoretical results yields information concerning the mechanisms governing electronic energy transfer on a microscopic scale. (author) [fr
Electromagnetic modes in cold magnetized strongly coupled plasmas
Tkachenko, I. M.; Ortner, J.; Rylyuk, V. M.
1999-01-01
The spectrum of electromagnetic waves propagating in a strongly coupled magnetized fully ionized hydrogen plasma is found. The ion motion and damping being neglected, the influence of the Coulomb coupling on the electromagnetic spectrum is analyzed.
Hydrogen atom kinetics in capacitively coupled plasmas
Nunomura, Shota; Katayama, Hirotaka; Yoshida, Isao
2017-05-01
Hydrogen (H) atom kinetics has been investigated in capacitively coupled very high frequency (VHF) discharges at powers of 16-780 mW cm-2 and H2 gas pressures of 0.1-2 Torr. The H atom density has been measured using vacuum ultra violet absorption spectroscopy (VUVAS) with a micro-discharge hollow cathode lamp as a VUV light source. The measurements have been performed in two different electrode configurations of discharges: conventional parallel-plate diode and triode with an intermediate mesh electrode. We find that in the triode configuration, the H atom density is strongly reduced across the mesh electrode. The H atom density varies from ˜1012 cm-3 to ˜1010 cm-3 by crossing the mesh with 0.2 mm in thickness and 36% in aperture ratio. The fluid model simulations for VHF discharge plasmas have been performed to study the H atom generation, diffusion and recombination kinetics. The simulations suggest that H atoms are generated in the bulk plasma, by the electron impact dissociation (e + H2 \\to e + 2H) and the ion-molecule reaction (H2 + + H2 \\to {{{H}}}3+ + H). The diffusion of H atoms is strongly limited by a mesh electrode, and thus the mesh geometry influences the spatial distribution of the H atoms. The loss of H atoms is dominated by the surface recombination.
Nonlinear particle-wave kinetics in weakly unstable plasmas
International Nuclear Information System (INIS)
Breizman, B.N.; Berk, H.L.; Pekker, M.S.
1996-01-01
With the motivation to address the behavior of the fusion produced alpha particles in a thermonuclear reactor, a theory is developed for predicting the wave saturation levels and particle transport in weakly unstable systems with a discrete number of modes in the presence of energetic particle sources and sinks. Conditions are established for either steady state or bursting nonlinear scenarios when several modes are excited for cases where there is and there is not resonance overlap. Depending on parameters, the particles can undergo benign relaxation, with only a small fraction of the available free energy released to waves and with no global transport, or the particles can experience rapid global transport caused by a substantial conversion of their free energy into wave energy. When the resonance condition of the particle-wave interaction is varied adiabatically, the particles trapped in a wave are found to form phase space holes or clumps that enhance the particle-wave energy exchange. This mechanism, which has been experimentally observed when there is frequency chirping, causes increased saturation levels of instabilities. If resonance sweeping is imposed externally, the particle free energy can even be tapped in stable systems where background dissipation suppresses linear instability. Externally applied resonance sweeping can be important for alpha particle energy channeling, as well as for understanding fishbone and some Alfven wave instability experiments. Near instability threshold, that is when the destabilizing drive just exceeds the background dissipation, a more sophisticated analysis is developed to predict the correct saturation. To leading order, this problem reduces to an integral equation for the wave amplitude with a temporally non local cubic term. This equation has a self-similar solution that blows-up in a finite time
The strong-weak coupling symmetry in 2D Φ4 field models
Directory of Open Access Journals (Sweden)
B.N.Shalaev
2005-01-01
Full Text Available It is found that the exact beta-function β(g of the continuous 2D gΦ4 model possesses two types of dual symmetries, these being the Kramers-Wannier (KW duality symmetry and the strong-weak (SW coupling symmetry f(g, or S-duality. All these transformations are explicitly constructed. The S-duality transformation f(g is shown to connect domains of weak and strong couplings, i.e. above and below g*. Basically it means that there is a tempting possibility to compute multiloop Feynman diagrams for the β-function using high-temperature lattice expansions. The regular scheme developed is found to be strongly unstable. Approximate values of the renormalized coupling constant g* found from duality symmetry equations are in an agreement with available numerical results.
Communication: A Jastrow factor coupled cluster theory for weak and strong electron correlation
International Nuclear Information System (INIS)
Neuscamman, Eric
2013-01-01
We present a Jastrow-factor-inspired variant of coupled cluster theory that accurately describes both weak and strong electron correlation. Compatibility with quantum Monte Carlo allows for variational energy evaluations and an antisymmetric geminal power reference, two features not present in traditional coupled cluster that facilitate a nearly exact description of the strong electron correlations in minimal-basis N 2 bond breaking. In double-ζ treatments of the HF and H 2 O bond dissociations, where both weak and strong correlations are important, this polynomial cost method proves more accurate than either traditional coupled cluster or complete active space perturbation theory. These preliminary successes suggest a deep connection between the ways in which cluster operators and Jastrow factors encode correlation
Transient growth of a Vlasov plasma in a weakly inhomogeneous magnetic field
Ratushnaya, Valeria
2016-12-17
We investigate the stability properties of a collisionless Vlasov plasma in a weakly inhomogeneous magnetic field using non-modal stability analysis. This is an important topic in a physics of tokamak plasma rich in various types of instabilities. We consider a thin tokamak plasma in a Maxwellian equilibrium, subjected to a small arbitrary perturbation. Within the framework of kinetic theory, we demonstrate the emergence of short time scale algebraic instabilities evolving in a stable magnetized plasma. We show that the linearized governing operator (Vlasov operator) is non-normal leading to the transient growth of the perturbations on the time scale of several plasma periods that is subsequently followed by Landau damping. We calculate the first-order distribution function and the electric field and study the dependence of the transient growth characteristics on the magnetic field strength and perturbation parameters of the system. We compare our results with uniformly magnetized plasma and field-free Vlasov plasma.
Transient growth of a Vlasov plasma in a weakly inhomogeneous magnetic field
Ratushnaya, Valeria; Samtaney, Ravi
2016-01-01
We investigate the stability properties of a collisionless Vlasov plasma in a weakly inhomogeneous magnetic field using non-modal stability analysis. This is an important topic in a physics of tokamak plasma rich in various types of instabilities. We consider a thin tokamak plasma in a Maxwellian equilibrium, subjected to a small arbitrary perturbation. Within the framework of kinetic theory, we demonstrate the emergence of short time scale algebraic instabilities evolving in a stable magnetized plasma. We show that the linearized governing operator (Vlasov operator) is non-normal leading to the transient growth of the perturbations on the time scale of several plasma periods that is subsequently followed by Landau damping. We calculate the first-order distribution function and the electric field and study the dependence of the transient growth characteristics on the magnetic field strength and perturbation parameters of the system. We compare our results with uniformly magnetized plasma and field-free Vlasov plasma.
Numerical study on general dispersion relation of anisotropic and weakly relativistic plasma
International Nuclear Information System (INIS)
Ke Fujiu; Chen Yanping
1987-01-01
The key problem in heating and instability studies in plasma physics is to obtain dispersive equation and its solution. This paper presents the general dispersive equation and corresponding procedure for electromagnetic wave which nearly poloidally impinges on anisotropic, weakly relativistic Maxwellian plasma with inhomogeneous density in nonuniform magnetic field (such as plasma in TOKAMAK). The double index function F ij , significant in plasma physics, was expanded as single index function F 1 , and then the values were calculated by means of dispersive function. It was also pointed out that the severe error would be involved in the calculation of F ij from recurrence relation of F 11
Angular structure of jet quenching within a hybrid strong/weak coupling model
Energy Technology Data Exchange (ETDEWEB)
Casalderrey-Solana, Jorge [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Gulhan, Doga Can [CERN, EP Department,CH-1211 Geneva 23 (Switzerland); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Laboratório de Instrumentação e Física Experimental de Partículas (LIP),Av. Elias Garcia 14-1, P-1000-149 Lisboa (Portugal); Theoretical Physics Department, CERN,Geneva (Switzerland); Pablos, Daniel [Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)
2017-03-27
Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter K≡q̂/T{sup 3} that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when K≠0 the jets that survive with some specified energy in the final state are narrower than jets with that energy in proton-proton collisions. For this reason, many standard observables are rather insensitive to K. We propose a new differential jet shape ratio observable in which the effects of transverse momentum broadening are apparent. We also analyze the response of the medium to the passage of the jet through it, noting that the momentum lost by the jet appears as the momentum of a wake in the medium. After freezeout this wake becomes soft particles with a broad angular distribution but with net momentum in the jet direction, meaning that the wake contributes to what is reconstructed as a jet. This effect must therefore be included in any description of the angular structure of the soft component of a jet. We show that the particles coming from the response of the medium to the momentum and energy deposited in it leads to a correlation between the momentum of soft particles well separated from the jet in angle with the direction of the jet momentum, and find qualitative but not quantitative agreement with experimental data on observables designed to extract such a correlation. More generally, by confronting the results that we obtain upon introducing transverse momentum broadening and the response of the medium to the jet with available jet data, we highlight the
Cao, Wei-Guang; Xie, Yi
2018-03-01
Beyond the Einstein-Maxwell model, electromagnetic field might couple with gravitational field through the Weyl tensor. In order to provide one of the missing puzzles of the whole physical picture, we investigate weak deflection lensing for photons coupled to the Weyl tensor in a Schwarzschild black hole under a unified framework that is valid for its two possible polarizations. We obtain its coordinate-independent expressions for all observables of the geometric optics lensing up to the second order in the terms of ɛ which is the ratio of the angular gravitational radius to angular Einstein radius of the lens. These observables include bending angle, image position, magnification, centroid and time delay. The contributions of such a coupling on some astrophysical scenarios are also studied. We find that, in the cases of weak deflection lensing on a star orbiting the Galactic Center Sgr A*, Galactic microlensing on a star in the bulge and astrometric microlensing by a nearby object, these effects are beyond the current limits of technology. However, measuring the variation of the total flux of two weak deflection lensing images caused by the Sgr A* might be a promising way for testing such a coupling in the future.
International Nuclear Information System (INIS)
Zhang Wei; Xiang Bingren; Wu Yanwei; Shang Erxin
2005-01-01
Based on the theory of stochastic resonance, a new method carried on the quantitive analysis to weak chromatographic signal of glyburide in plasma, which was embedded in the noise background and the signal-to-noise ratio (SNR) of HPLC-UV is enhanced remarkably. This method enhances the quantification limit to 1 ng ml -1 , which is the same as HPLC-MS, and makes it possible to detect the weak signal accurately by HPLC-UV, which was not suitable before. The results showed good recovery and linear range from 1 to 50 ng ml -1 of glyburide in plasma and the method can be used for quantitative analysis of glyburide
Weak turbulence theory of ion temperature gradient modes for inverted density plasmas
International Nuclear Information System (INIS)
Hahm, T.S.; Tang, W.M.
1989-09-01
Typical profiles measured in H-mode (''high confinement'') discharges from tokamaks such as JET and DIII-D suggest that the ion temperature gradient instability threshold parameter η i (≡dlnT i /dlnn i ) could be negative in many cases. Previous linear theoretical calculations have established the onset conditions for these negative η i -modes and the fact that their growth rate is much smaller than their real frequency over a wide range of negative η i values. This has motivated the present nonlinear weak turbulence analysis to assess the relevance of such instabilities for confinement in H-mode plasmas. The nonlinear eigenmode equation indicates that the 3-wave coupling to shorter wavelength modes is the dominant nonlinear saturation mechanism. It is found that both the saturation level for these fluctuations and the magnitude of the associated ion thermal diffusivity are considerably smaller than the strong turbulence mixing length type estimates for the more conventional positive-η i -instabilities. 19 refs., 3 figs
International Nuclear Information System (INIS)
Ghosal, S.K.; Sen, S.N.
1977-01-01
The problem of transmission of sonic waves through a weakly ionised plasma bounded in each side by a neutral gas medium has been treated by assuming the plasma to be a mixture of two intermingled fluids viz., neutral particle fluid and ion fluid in equilibrium. From a hydrodynamic analysis the wave equation for 'p', the macroscopic pressure perturbation has been obtained and it is shown that two independent wave motions, one due to the neutral particles and the other due to ions are propagated through the plasma with two different phase velocities. Assuming the usual boundary conditions at the interface, the amplitude of the transmitted wave has been calculated in case of weakly ionized plasma; the theory can be utilized for the determination of electron temperature from the measured value of attenuation if the percentage of ionization and collision cross section can be obtained independently. (author)
Guo, Li-xin; Chen, Wei; Li, Jiang-ting; Ren, Yi; Liu, Song-hua
2018-05-01
The dielectric coefficient of a weakly ionised dusty plasma is used to establish a three-dimensional time and space inhomogeneous dusty plasma sheath. The effects of scattering on electromagnetic (EM) waves in this dusty plasma sheath are investigated using the auxiliary differential equation finite-difference time-domain method. Backward radar cross-sectional values of various parameters, including the dust particle radius, charging frequency of dust particles, dust particle concentration, effective collision frequency, rate of the electron density variation with time, angle of EM wave incidence, and plasma frequency, are analysed within the time and space inhomogeneous plasma sheath. The results show the noticeable effects of dusty plasma parameters on EM waves.
Parametrically induced low-frequency waves in weakly inhomogeneous magnetized plasmas
International Nuclear Information System (INIS)
Pesic, S.
1981-01-01
The linear dispersion relation governing the parametric interaction of a lower hybrid pump wave with a weakly-inhomogeneous current carrying hot plasma confined by a helical magnetic field is derived and solved numerically. The stability boundaries are delineated over a wide range in the k-space. The frequency and growth rate of decay instabilities are calculated for plasma parameters relevant to lower hybrid plasma heating experiments. The parametric excitation of drift waves and ion cyclotron current instabilities is discussed. In the low-density plasma region low minimum thresholds and high growth rates are obtained for the pump decay into ion cyclotron and nonresonant quasimodes. The spatial amplification of hot ion Bernstein waves and nonresonant quasimodes dominate in the plasma core (ω 0 /ωsub(LH) < 2). The presented theoretical results are in qualitative agreement with current LH plasma heating experiments. (author)
Inductively coupled plasma-atomic emission spectroscopy
International Nuclear Information System (INIS)
Winge, R.K.; Fassel, V.A.; Peterson, V.J.; Floyd, M.A.
1985-01-01
This atlas of inductively coupled plasma-atomic emission spectroscopy records the spectra of the elements in a way that would reveal the general nature of the spectra, in all their simplicity or complexity; and offers a definitive summary of the most prominent spectral lines of the elements, i.e., those most likely to be useful for the determination of trace and ultratrace concentrations; it provides reliable estimates, based on the recorded experimental spectra, of the powers of detection of the listed prominent lines; and assesses the very important problem of spectral interferences. The atlas is composed of three main sections. Part I is concerned with the historical aspects of compilations of spectral information. Part II is based on 232 wavelength scans of 70 elements. Each of the wavelength scans covers an 80 nm spectral region. These scans allow a rapid comparison of the background and spectral line intensities emitted in the ICP and provide a ready means for identification of the most prominent lines of each element and for estimation of the trace element analytical capabilities of these lines. A listing of 973 prominent lines with associated detection limits is also presented. Part III addresses the problem of spectral interferences. On this topic a detailed collection of coincidence profiles is presented for 281 of the most prominent lines, each with profiles of ten of the most prevalent concomitants superimposed. (Auth.)
Coupled Langmuir oscillations in 2-dimensional quantum plasmas
International Nuclear Information System (INIS)
Akbari-Moghanjoughi, M.
2014-01-01
In this work, we present a hydrodynamic model to study the coupled quantum electron plasma oscillations (QEPO) for two dimensional (2D) degenerate plasmas, which incorporates all the essential quantum ingredients such as the statistical degeneracy pressure, electron-exchange, and electron quantum diffraction effect. Effects of diverse physical aspects like the electronic band-dispersion effect, the electron exchange-correlations and the quantum Bohm-potential as well as other important plasma parameters such as the coupling parameter (plasma separation) and the plasma electron number-densities on the linear response of the coupled system are investigated. By studying three different 2D plasma coupling types, namely, graphene-graphene, graphene-metalfilm, and metalfilm-metalfilm coupling configurations, it is remarked that the collective quantum effects can influence the coupled modes quite differently, depending on the type of the plasma configuration. It is also found that the slow and fast QEPO frequency modes respond very differently to the change in plasma parameters. Current findings can help in understanding of the coupled density oscillations in multilayer graphene, graphene-based heterojunctions, or nanofabricated integrated circuits
Initial conditions for hydrodynamics from weakly coupled pre-equilibrium evolution
International Nuclear Information System (INIS)
Mazeliauskas, Aleksas
2017-01-01
We use leading order effective kinetic theory to simulate the pre-equilibrium evolution of transverse energy and flow perturbations in heavy-ion collisions. We provide a Green function which propagates the initial perturbations of the energy-momentum tensor to a time when hydrodynamics becomes applicable. With this map, the pre-thermal evolution from saturated nuclei to hydrodynamics can be modeled in the framework of weakly coupled QCD. (paper)
Weak ωNN coupling in the non-linear chiral model
International Nuclear Information System (INIS)
Shmatikov, M.
1988-01-01
In the non-linear chiral model with the soliton solution stabilized by the ω-meson field the weak ωNN coupling constants are calculated. Applying the vector dominance model for the isoscalar current the constant of the isoscalar P-odd ωNN interaction h ω (0) =0 is obtained while the constant of the isovector (of the Lagrangian of the ωNN interaction proves to be h ω (1) ≅ 1.0x10 -7
Resistive transition in two-dimensional array of proximity-coupled superconducting weak links
International Nuclear Information System (INIS)
Gao Peng; Yu Zheng; Wei Wang; Yao Xi-xian
1988-01-01
The Kosterlitz Thouless transition in two-dimensional arrays of proximity-coupled superconducting weak links has been studied in this paper. The samples were prepared by application of the vacuum-evaporation/photoengraving/chemical-etching technique. The experimental results of measurements on some samples of array film showed the existence of the K-T transition in these samples and were consistent with the theory of Lobb, Abraham, and Tinkham
Weak coupling theory of the ripplon limited mobility of a 2-D electron lattice
International Nuclear Information System (INIS)
Dahm, A.J.; Mehrotra, R.
1981-01-01
The one ripplon-n phonon scattering contribution to the mobility of a 2D electron lattice supported by a liquid helium substrate is calculated in first order perturbation theory to all orders of n in the weak coupling limit. The Debye Waller factor is shown to limit the momentum transfer at large ripplon wave-vectors and high temperatures causing a minimum in the mobility as a function of temperature. (orig.)
Initial conditions for hydrodynamics from weakly coupled pre-equilibrium evolution
Keegan, Liam; Mazeliauskas, Aleksas; Teaney, Derek
2016-01-01
We use effective kinetic theory, accurate at weak coupling, to simulate the pre-equilibrium evolution of transverse energy and flow perturbations in heavy-ion collisions. We provide a Green function which propagates the initial perturbations to the energy-momentum tensor at a time when hydrodynamics becomes applicable. With this map, the complete pre-thermal evolution from saturated nuclei to hydrodynamics can be modelled in a perturbatively controlled way.
Global weak solutions for coupled transport processes in concrete walls at high temperatures
Beneš, Michal; Štefan, Radek
2012-01-01
We consider an initial-boundary value problem for a fully nonlinear coupled parabolic system with nonlinear boundary conditions modelling hygro-thermal behavior of concrete at high temperatures. We prove a global existence of a weak solution to this system on an arbitrary time interval. The main result is proved by an approximation procedure. This consists in proving the existence of solutions to mollified problems using the Leray-Schauder theorem, for which a priori estimates are obtained. T...
Propagation of dust-acoustic waves in weakly ionized plasmas with ...
Indian Academy of Sciences (India)
63, No. 5. — journal of. November 2004 physics pp. 1021–1030. Propagation of dust-acoustic waves in weakly ionized plasmas with dust-charge fluctuation∗. K K MONDAL. Department of Physics ... has essentially to be considered because inertia is provided by the mass of the dust particles. Moreover, the phase velocity ...
Effects of non-uniformities on electrical conduction in weakly ionized plasmas
International Nuclear Information System (INIS)
Numano, M.; Murakami, Y.; Nitta, T.
1989-01-01
The effect of non-uniformities on the flow of electric current in weakly ionized plasmas is investigated by taking into account the ion slip as well as the Hall current. An Ohm's law for a non-uniform plasma is derived, from which the formula previously obtained by Numano, i.e. an extension of Rosa's equation, is obtainable as a special case. Making use of this new Ohm's law, the effective electrical conductivity and the effective Hall parameter are determined for isotropically turbulent plasmas. It is found that when the ion-slip effect is absent they are in good agreement with the results obtained previously. (author)
Diamond deposition using a planar radio frequency inductively coupled plasma
Bozeman, S. P.; Tucker, D. A.; Stoner, B. R.; Glass, J. T.; Hooke, W. M.
1995-06-01
A planar radio frequency inductively coupled plasma has been used to deposit diamond onto scratched silicon. This plasma source has been developed recently for use in large area semiconductor processing and holds promise as a method for scale up of diamond growth reactors. Deposition occurs in an annulus which coincides with the area of most intense optical emission from the plasma. Well-faceted diamond particles are produced when the substrate is immersed in the plasma.
Generalized fluid equations for parallel transport in collisional to weakly collisional plasmas
International Nuclear Information System (INIS)
Zawaideh, E.S.
1985-01-01
A new set of two-fluid equations which are valid from collisional to weakly collisional limits are derived. Starting from gyrokinetic equations in flux coordinates with no zeroth order drifts, a set of moment equations describing plasma transport along the field lines of a space and time dependent magnetic field are derived. No restriction on the anisotropy of the ion distribution function is imposed. In the highly collisional limit, these equations reduce to those of Braginskii while in the weakly collisional limit, they are similar to the double adiabatic or Chew, Goldberger, and Low (CGL) equations. The new transport equations are used to study the effects of collisionality, magnetic field structure, and plasma anisotropy on plasma parallel transport. Numerical examples comparing these equations with conventional transport equations show that the conventional equations may contain large errors near the sound speed (M approx. = 1). It is also found that plasma anisotropy, which is not included in the conventional equations, is a critical parameter in determining plasma transport in varying magnetic field. The new transport equations are also used to study axial confinement in multiple mirror devices from the strongly to weakly collisional regime. A new ion conduction model was worked out to extend the regime of validity of the transport equations to the low density multiple mirror regime
Evolution of transverse instability in a hollow cylindrical weakly-ionized plasma column
International Nuclear Information System (INIS)
Kuedyan, H.M.
1978-01-01
Having observed formation of plasma striations in an Electron Cyclotron Resonance Heating (ECRH) device, we have studied the conditions under which the hollow cylindrical plasma columns would develop into striations. We first present the observed conditions of the hollow cylindrical plasma which would develop into plasma striations, the measured characteristics of the transverse oscillations and a simple small signal model for a transverse instability in a weakly-ionized hollow cylindrical plasma. This linearized model, which assumes flowing cold ion fluid (T/sub i/ approximately < 0.1 eV) in warm electron fluid (T/sub e/ approximately 1 eV) and background neutrals, reveals a transverse flute-type electrostatic instability whose characteristics are in qualitative and quantitative agreement with the measured values of the oscillations in our experiment
Diagonal form factors and heavy-heavy-light three-point functions at weak coupling
International Nuclear Information System (INIS)
Hollo, Laszlo; Jiang, Yunfeng; Petrovskii, Andrei
2015-01-01
In this paper we consider a special kind of three-point functions of HHL type at weak coupling in N=4 SYM theory and analyze its volume dependence. At strong coupling this kind of three-point functions were studied recently by Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050. The authors considered some cases of HHL correlator in the su(2) sector and, relying on their explicit results, formulated a conjecture about the form of the volume dependence of the symmetric HHL structure constant to be valid at any coupling up to wrapping corrections. In order to test this hypothesis we considered the HHL correlator in su(2) sector at weak coupling and directly showed that, up to one loop, the finite volume dependence has exactly the form proposed in http://dx.doi.org/10.1007/JHEP09(2014)050. Another side of the conjecture suggests that computation of the symmetric structure constant is equivalent to computing the corresponding set of infinite volume form factors, which can be extracted as the coefficients of finite volume expansion. In this sense, extracting appropriate coefficients from our result gives a prediction for the corresponding infinite volume form factors.
Diagonal form factors and heavy-heavy-light three-point functions at weak coupling
Energy Technology Data Exchange (ETDEWEB)
Hollo, Laszlo [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics,H-1525 Budapest 114, P.O.B. 49 (Hungary); Jiang, Yunfeng; Petrovskii, Andrei [Institut de Physique Théorique, DSM, CEA, URA2306 CNRS,Saclay, F-91191 Gif-sur-Yvette (France)
2015-09-18
In this paper we consider a special kind of three-point functions of HHL type at weak coupling in N=4 SYM theory and analyze its volume dependence. At strong coupling this kind of three-point functions were studied recently by Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050. The authors considered some cases of HHL correlator in the su(2) sector and, relying on their explicit results, formulated a conjecture about the form of the volume dependence of the symmetric HHL structure constant to be valid at any coupling up to wrapping corrections. In order to test this hypothesis we considered the HHL correlator in su(2) sector at weak coupling and directly showed that, up to one loop, the finite volume dependence has exactly the form proposed in http://dx.doi.org/10.1007/JHEP09(2014)050. Another side of the conjecture suggests that computation of the symmetric structure constant is equivalent to computing the corresponding set of infinite volume form factors, which can be extracted as the coefficients of finite volume expansion. In this sense, extracting appropriate coefficients from our result gives a prediction for the corresponding infinite volume form factors.
Optimal power and distribution control for weakly-coupled-core reactor
International Nuclear Information System (INIS)
Oohori, Takahumi; Kaji, Ikuo
1977-01-01
A numerical procedure has been devised for obtaining the optimal power and distribution control for a weakly-coupled-core reactor. Several difficulties were encountered in solving this optimization problem: (1) nonlinearity of the reactor kinetics equations; (2) neutron-leakage interaction between the cores; (3) localized power changes occurring in addition to the total power changes; (4) constraints imposed on the states - e.g. reactivity, reactor period. To obviate these difficulties, use is made of the generalized Newton method to convert the problem into an iterative sequence of linear programming problems, after approximating the differential equations and the integral performance criterion by a set of discrete algebraic equations. In this procedure, a heuristic but effective method is used for deriving an initial approximation, which is then made to converge toward the optimal solution. Delayed-neutron one-group point reactor models embodying transient temperature feed-back to the reactivity are used in obtaining the kinetics equations for the weakly-coupled-core reactor. The criterion adopted for determining the optimality is a norm relevant to the deviations of neutron density from the desired trajectories or else to the time derivatives of the neutron density; uniform control intervals are prescribed. Examples are given of two coupled-core reactors with typical parameters to illustrate the results obtained with this procedure. A comparison is also made between the coupled-core reactor and the one-point reactor. (auth.)
International Nuclear Information System (INIS)
Chen Zhipeng; Li Hong; Liu Qiuyan; Luo Chen; Xie Jinlin; Liu Wandong
2011-01-01
A method is proposed to built up plasma based on a nonlinear enhancement phenomenon of plasma density with discharge by multiple internal antennas simultaneously. It turns out that the plasma density under multiple sources is higher than the linear summation of the density under each source. This effect is helpful to reduce the fast exponential decay of plasma density in single internal inductively coupled plasma source and generating a larger-area plasma with multiple internal inductively coupled plasma sources. After a careful study on the balance between the enhancement and the decay of plasma density in experiments, a plasma is built up by four sources, which proves the feasibility of this method. According to the method, more sources and more intensive enhancement effect can be employed to further build up a high-density, large-area plasma for different applications. (low temperature plasma)
Resonant enhanced parallel-T topology for weak coupling wireless power transfer pickup applications
Directory of Open Access Journals (Sweden)
Yao Guo
2015-07-01
Full Text Available For the wireless power transfer (WPT system, the transfer performance and the coupling coefficient are contradictory. In this paper, a novel parallel-T resonant topology consists of a traditional parallel circuit and a T-matching network for secondary side is proposed. With this method, a boosted voltage can be output to the load, since this topology has a resonant enhancement effect, and high Q value can be obtained at a low resonant frequency and low coil inductance. This feature makes it more suitable for weak coupling WPT applications. Besides, the proposed topology shows good frequency stability and adaptability to variations of load. Experimental results show that the output voltage gain improves by 757% compared with traditional series circuit, and reaches 85% total efficiency when the coupling coefficient is 0.046.
A review on ion–ion plasmas created in weakly magnetized electronegative plasmas
International Nuclear Information System (INIS)
Aanesland, A; Bredin, J; Chabert, P
2014-01-01
Ion–Ion plasmas are electronegative plasmas where the electron density is several orders of magnitude lower than the negative ion density. These plasmas have been scarcely observed and investigated since the 1960s and are formed as a transient state of pulsed plasmas or in separate regions in magnetized plasmas. In this review we focus on the latter case of continuous formation of ion–ion plasmas created at the periphery of magnetized plasma columns or downstream localized magnetic barriers. We bring together and review experimental results already published elsewhere and complement them with new results to illustrate the physics important in ion–ion plasma formation and highlight in particular unanswered questions. We show that with a good design the density in the ion–ion region is dropping only by a factor of 2–3 from the initial plasma density. These plasmas can therefore be well suited for various ion source applications when both fluxes or beams of positive and negative ions are desired, and when electrons can cause harmful effects. (paper)
Top-quark mass coupling and classification of weakly coupled heterotic superstring vacua
International Nuclear Information System (INIS)
Rizos, J.
2014-01-01
The quest for the Standard Model among the huge number of string vacua is usually based on a set of phenomenological criteria related to the massless spectrum of string models. In this work we study criteria associated with interactions in the effective low energy theory and in particular with the presence of the coupling that provides mass to the top quark. Working in the context of the free-fermionic formulation of the heterotic superstring, we demonstrate that, in a big class of phenomenologically promising Z 2 x Z 2 compactifications, these criteria can be expressed entirely in terms of the generalised GSO projection coefficients entering the definition of the models. They are shown to be very efficient in identifying phenomenologically viable vacua, especially in the framework of computer-based search, as they are met by approximately one every 10 4 models. We apply our results in the investigation of a class of supersymmetric Pati-Salam vacua, comprising 10 16 configurations, and we show that when combined with other phenomenological requirements they lead to a relatively small set of about 10 7 Standard Model compatible models that can be fully classified. (orig.)
Top-quark mass coupling and classification of weakly coupled heterotic superstring vacua
Rizos, J.
2014-06-01
The quest for the Standard Model among the huge number of string vacua is usually based on a set of phenomenological criteria related to the massless spectrum of string models. In this work we study criteria associated with interactions in the effective low energy theory and in particular with the presence of the coupling that provides mass to the top quark. Working in the context of the free-fermionic formulation of the heterotic superstring, we demonstrate that, in a big class of phenomenologically promising compactifications, these criteria can be expressed entirely in terms of the generalised GSO projection coefficients entering the definition of the models. They are shown to be very efficient in identifying phenomenologically viable vacua, especially in the framework of computer-based search, as they are met by approximately one every models. We apply our results in the investigation of a class of supersymmetric Pati-Salam vacua, comprising configurations, and we show that when combined with other phenomenological requirements they lead to a relatively small set of about Standard Model compatible models that can be fully classified.
Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Jia, Jieshu; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Liu, Sha; Yue, Feng [Shanghai Institute of Spaceflight Control Technology, Shanghai 200233 (China); Wu, Jian [China Research Institute of Radio wave Propagation, Beijing 102206 (China); Li, Hui [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); China Research Institute of Radio wave Propagation, Beijing 102206 (China)
2016-04-15
The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.
Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma
International Nuclear Information System (INIS)
Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang; Liu, Sha; Yue, Feng; Wu, Jian; Li, Hui
2016-01-01
The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.
Strong/weak coupling duality relations for non-supersymmetric string theories
International Nuclear Information System (INIS)
Blum, J.D.; Dienes, K.R.
1998-01-01
Both the supersymmetric SO(32) and E 8 x E 8 heterotic strings in ten dimensions have known strong-coupling duals. However, it has not been known whether there also exist strong-coupling duals for the non-supersymmetric heterotic strings in ten dimensions. In this paper, we construct explicit open-string duals for the circle compactifications of several of these non-supersymmetric theories, among them the tachyon-free SO(16) x SO(16) string. Our method involves the construction of heterotic and open-string interpolating models that continuously connect non-supersymmetric strings to supersymmetric strings. We find that our non-supersymmetric dual theories have exactly the same massless spectra as their heterotic counterparts within a certain range of our interpolations. We also develop a novel method for analyzing the solitons of non-supersymmetric open-string theories, and find that the solitons of our dual theories also agree with their heterotic counterparts. These are therefore the first known examples of strong/weak coupling duality relations between non-supersymmetric, tachyon-free string theories. Finally, the existence of these strong-coupling duals allows us to examine the non-perturbative stability of these strings, and we propose a phase diagram for the behavior of these strings as a function of coupling and radius. (orig.)
Training course on inductively coupled plasma spectrometry - Note
Digital Repository Service at National Institute of Oceanography (India)
Valsangkar, A.B.
TRAINING COURSE ON INDUCTIVELY COUPLED PLASMA SPECTROMETRY In the present day geological, chemical, environmental and archaeological research activities, the Inductively Coupled Plasma (ICP) Spectrometry is established as a cost-effective multi... the knowledge and advances in the analytical tools and methodologies for the benefit of the research scholars as well as professionals. National Institute of Oceanography, A.B. VALSANGKAR Dona Paula - 403 004 slip tectonics playing a major role...
Ideal gas behavior of a strongly coupled complex (dusty) plasma.
Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry
2013-07-05
In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.
Nonlinear charge reduction effect in strongly coupled plasmas
International Nuclear Information System (INIS)
Sarmah, D; Tessarotto, M; Salimullah, M
2006-01-01
The charge reduction effect, produced by the nonlinear Debye screening of high-Z charges occurring in strongly coupled plasmas, is investigated. An analytic asymptotic expression is obtained for the charge reduction factor (f c ) which determines the Debye-Hueckel potential generated by a charged test particle. Its relevant parametric dependencies are analysed and shown to predict a strong charge reduction effect in strongly coupled plasmas
Collisional Thermalization in Strongly Coupled Ultracold Neutral Plasmas
2017-01-25
calculated collisions rates in a strongly coupled plasma. From Bannasch et al., PRL 109, 185008 (2012). DISTRIBUTION A: Distribution approved for public...applicability to other plasmas.) We use a Green- Kubo relation to extract the diffusion constant from our measurements of the relaxation towards...strongly coupled systems. Our measurements (data symbols) agree with numerical calculations (solid lines) from J. Daligault, PRL 108, 225004 (2012
International Nuclear Information System (INIS)
Kopainsky, J.
1975-01-01
In weakly ionized plasmas the scattering of electromagnetic waves on free electrons (Thompson scattering) can be neglected as compared with the scattering on bound electrons (Rayleigh scattering). If the scattering process can be described by a fluid dynamical model it is caused by sound waves which are generated or annihilated by the incident electromagnetic wave. The propagation of sound waves results in a shift of the scattered line whereas their absorption within the plasma produces the broadening of the scattered line. The theory of propagation of sound in weakly ionized plasmas is developed and extended to Rayleigh scattering. The results are applied to laser scattering in a weakly ionized hydrogen plasma. (Auth.)
Determination of the Axial-Vector Weak Coupling Constant with Ultracold Neutrons
International Nuclear Information System (INIS)
Liu, J.; Mendenhall, M. P.; Carr, R.; Filippone, B. W.; Hickerson, K. P.; Perez Galvan, A.; Russell, R.; Holley, A. T.; Hoagland, J.; VornDick, B.; Back, H. O.; Pattie, R. W. Jr.; Young, A. R.; Bowles, T. J.; Clayton, S.; Currie, S.; Hogan, G. E.; Ito, T. M.; Makela, M.; Morris, C. L.
2010-01-01
A precise measurement of the neutron decay β asymmetry A 0 has been carried out using polarized ultracold neutrons from the pulsed spallation ultracold neutron source at the Los Alamos Neutron Science Center. Combining data obtained in 2008 and 2009, we report A 0 =-0.119 66±0.000 89 -0.00140 +0.00123 , from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon g A /g V =-1.275 90 -0.00445 +0.00409 .
Kinetic electromagnetic instabilities in an ITB plasma with weak magnetic shear
Chen, W.; Yu, D. L.; Ma, R. R.; Shi, P. W.; Li, Y. Y.; Shi, Z. B.; Du, H. R.; Ji, X. Q.; Jiang, M.; Yu, L. M.; Yuan, B. S.; Li, Y. G.; Yang, Z. C.; Zhong, W. L.; Qiu, Z. Y.; Ding, X. T.; Dong, J. Q.; Wang, Z. X.; Wei, H. L.; Cao, J. Y.; Song, S. D.; Song, X. M.; Liu, Yi.; Yang, Q. W.; Xu, M.; Duan, X. R.
2018-05-01
Kinetic Alfvén and pressure gradient driven instabilities are very common in magnetized plasmas, both in space and the laboratory. These instabilities will be easily excited by energetic particles (EPs) and/or pressure gradients in present-day fusion and future burning plasmas. This will not only cause the loss and redistribution of the EPs, but also affect plasma confinement and transport. Alfvénic ion temperature gradient (AITG) instabilities with the frequency ω_BAE<ω<ω_TAE and the toroidal mode numbers n=2{-}8 are found to be unstable in NBI internal transport barrier plasmas with weak shear and low pressure gradients, where ω_BAE and ω_TAE are the frequencies of the beta- and toroidicity-induced Alfvén eigenmodes, respectively. The measured results are consistent with the general fishbone-like dispersion relation and kinetic ballooning mode equation, and the modes become more unstable the smaller the magnetic shear is in low pressure gradient regions. The interaction between AITG activity and EPs also needs to be investigated with greater attention in fusion plasmas, such as ITER (Tomabechi and The ITER Team 1991 Nucl. Fusion 31 1135), since these fluctuations can be enhanced by weak magnetic shear and EPs.
Nonlinear propagation of intense electromagnetic waves in weakly-ionized plasmas
International Nuclear Information System (INIS)
Shukla, P.K.
1993-01-01
The nonlinear propagation of intense electromagnetic waves in weakly-ionized plasmas is considered. Stimulated scattering mechanisms involving electromagnetic and acoustic waves in an unmagnetized plasma are investigated. The growth rate and threshold for three-wave decay interactions as well as modulational and filamentation instabilities are presented. Furthermore, the electromagnetic wave modulation theory is generalized for weakly ionized collisional magnetoplasmas. Here, the radiation envelope is generally governed by a nonlinear Schroedinger equation. Accounting for the dependence of the attachment frequency on the radiation intensity, ponderomotive force, as well as the differential Joule heating nonlinearity, the authors derive the equations for the nonthermal electron density and temperature perturbations. The various nonlinear terms in the electron motion are compared. The problems of self-focusing and wave localization are discussed. The relevance of the investigation to ionospheric modification by powerful electromagnetic waves is pointed out
Ion-collecting sphere in a stationary, weakly magnetized plasma with finite shielding length
International Nuclear Information System (INIS)
Patacchini, Leonardo; Hutchinson, Ian H
2007-01-01
Collisionless ion collection by a negatively biased stationary spherical probe in a finite shielding length plasma is investigated using the Particle in Cell code SCEPTIC, in the presence of a weak magnetic field B. The overall effect of the magnetic field is to reduce the ion current, linearly in |B| for weak enough fields, with a slope steepness increasing with the electron Debye length. The angular current distribution and space-charge buildup strongly depend on the focusing properties of the probe, hence on its potential and the plasma shielding length. In particular, it is found that the concavity of the ion collection flux distribution can reverse sign when the electron Debye length is comparable to or larger than the probe radius (λ De ∼> r p ), provided the ion temperature is much lower than the probe bias (T i p )
Black, Carrie; Germaschewski, Kai; Bhattacharjee, Amitava; Ng, C. S.
2013-01-01
It has been demonstrated that in the presence of weak collisions, described by the Lenard-Bernstein collision operator, the Landau-damped solutions become true eigenmodes of the system and constitute a complete set. We present numerical results from an Eulerian Vlasov code that incorporates the Lenard-Bernstein collision operator. The effect of the collisions on the numerical recursion phenomenon seen in Vlasov codes is discussed. The code is benchmarked against exact linear eigenmode solutions in the presence of weak collisions, and a spectrum of Landau-damped solutions is determined within the limits of numerical resolution. Tests of the orthogonality and the completeness relation are presented.
Electrical conductivity and charge carrier screening in weakly non-ideal argon plasmas
International Nuclear Information System (INIS)
Guenther, K.; Lang, S.; Radtke, R.
1983-01-01
A pulsed argon discharge as a stable source of weakly non-ideal plasmas is described in connection with the diagnostic necessities for conductivity measurements. The parameters overlap the range for stationary arcs and allow comparison with measurements in cascade arcs. The measured conductivities are explained using the binary collision model considering collisions with neutrals, excited atoms, and ions. A relation between the screening parameter and non-ideality is proposed which should be valid for all elements. (author)
Electrical conductivity and charge carrier screening in weakly non-ideal argon plasmas
Energy Technology Data Exchange (ETDEWEB)
Guenther, K; Lang, S; Radtke, R [Akademie der Wissenschaften der DDR, Jena. Zentralinstitut fuer Elektronenphysik
1983-07-14
A pulsed argon discharge as a stable source of weakly non-ideal plasmas is described in connection with the diagnostic necessities for conductivity measurements. The parameters overlap the range for stationary arcs and allow comparison with measurements in cascade arcs. The measured conductivities are explained using the binary collision model considering collisions with neutrals, excited atoms, and ions. A relation between the screening parameter and non-ideality is proposed which should be valid for all elements.
Energy Technology Data Exchange (ETDEWEB)
Morrison, P.J., E-mail: morrison@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, University of Texas, Austin (United States); Vanneste, J. [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh (United Kingdom)
2016-05-15
A method, called beatification, is presented for rapidly extracting weakly nonlinear Hamiltonian systems that describe the dynamics near equilibria of systems possessing Hamiltonian form in terms of noncanonical Poisson brackets. The procedure applies to systems like fluids and plasmas in terms of Eulerian variables that have such noncanonical Poisson brackets, i.e., brackets with nonstandard and possibly degenerate form. A collection of examples of both finite and infinite dimensions is presented.
Energy coupling to the plasma in repetitive nanosecond pulse discharges
International Nuclear Information System (INIS)
Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.
2009-01-01
A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.
Eason, Kwaku
There is strong interest in the use of small low-cost highly sensitive magnetic field sensors for applications (e.g. biomedical devices) requiring weak field measurements. Among weak-field sensors, the magneto-impedance (MI) sensor has demonstrated an absolute resolution of 10-11 T. The MI effect is a sensitive realignment of a periodic magnetization in response to an external field in small ferromagnets. However, design of MI sensors has relied primarily on trial and error experimental methods along with decoupled models describing the MI effect. To offer a basis for more cost-effective designs, this thesis research begins with a general formulation describing MI sensors, which relaxes assumptions commonly made for decoupling. The coupled set of nonlinear equations is solved numerically using an efficient meshless method in a point collocation formulation. For the problem considered, the chosen method is shown to offer advantages over alternative methods including the finite element method. Projection methods are used to stabilize the time discretization while quasi-Newton methods (nonlinear solver) are shown to be more computationally efficient, as well. Specifically, solutions for two MI sensor element geometries are presented, which were validated against published experimental data. While the examples illustrated here are for MI sensors, the approach presented can also be extended to other weak-field sensors like fluxgate and Hall effect sensors.
International Nuclear Information System (INIS)
Chaturvedi, D.K.; Senatore, G.; Tosi, M.P.
1980-10-01
An analytic theory is presented for the static structure factor of the one-component classical plasma at strong couplings. The theory combines the hard-core model of Gillan for short-range correlations in the Coulomb fluid with a semiempirical representation of intermediate-range correlations, through which the requirement of thermodynamic consistency on the ''compressibility'' and the known equation of state of the system are satisfied. Excellent agreement is found with the available computer simulation data on the structure of the fluid. The approach becomes inapplicable at intermediate and weak couplings where effects of penetration in the Coulomb hole of each particle become important. (author)
Continuum orbital approximations in weak-coupling theories for inelastic electron scattering
International Nuclear Information System (INIS)
Peek, J.M.; Mann, J.B.
1977-01-01
Two approximations, motivated by heavy-particle scattering theory, are tested for weak-coupling electron-atom (ion) inelastic scattering theory. They consist of replacing the one-electron scattering orbitals by their Langer uniform approximations and the use of an average trajectory approximation which entirely avoids the necessity for generating continuum orbitals. Numerical tests for a dipole-allowed and a dipole-forbidden event, based on Coulomb-Born theory with exchange neglected, reveal the error trends. It is concluded that the uniform approximation gives a satisfactory prediction for traditional weak-coupling theories while the average approximation should be limited to collision energies exceeding at least twice the threshold energy. The accuracy for both approximations is higher for positive ions than for neutral targets. Partial-wave collision-strength data indicate that greater care should be exercised in using these approximations to predict quantities differential in the scattering angle. An application to the 2s 2 S-2p 2 P transition in Ne VIII is presented
Study on characteristics of coupled cavity chain filled with plasma
International Nuclear Information System (INIS)
Li Jianqing; Xiao Shu; Mo Yuanlong
2003-01-01
In this paper, by using rigorous field analysis, a coupled-cavity (CC) chain filled with plasma has been analyzed. How the hybrid wave between the cavity mode and plasma mode is formed has been studied. The periodical CC chain filled with plasma demonstrates periodical TG modes with a cutoff frequency of zero. When the plasma density increase to a large scale, the cavity mode of the CC chain overlaps the TG mode, these two modes couple with each other and form the hybrid modes. In the case of hybrid modes, the 'cold' bandwidth and the 'warm' bandwidth expand, and the coupled impedance increases about 5 times larger than that of the vacuum. As a whole, the slow wave characteristics are improved substantially due to the formation of the hybrid mode
International Nuclear Information System (INIS)
Lu, LingFeng
2016-01-01
Ion Cyclotron Resonant Heating (ICRH) by waves in 30-80 MHz range is currently used in magnetic fusion plasmas. Excited by phased arrays of current straps at the plasma periphery, these waves exist under two polarizations. The Fast Wave tunnels through the tenuous plasma edge and propagates to its center where it is absorbed. The parasitically emitted Slow Wave only exists close to the launchers. How much power can be coupled to the center with 1 A current on the straps? How do the emitted radiofrequency (RF) near and far fields interact parasitically with the edge plasma via RF sheath rectification at plasma-wall interfaces? To address these two issues simultaneously, in realistic geometry over the size of ICRH antennas, this thesis upgraded and tested the Self-consistent Sheaths and Waves for ICH (SSWICH) code. SSWICH couples self-consistently RF wave propagation and Direct Current (DC) plasma biasing via non-linear RF and DC sheath boundary conditions (SBCs) at plasma/wall interfaces. Its upgrade is full wave and was implemented in two dimensions (toroidal/radial). New SBCs coupling the two polarizations were derived and implemented along shaped walls tilted with respect to the confinement magnetic field. Using this new tool in the absence of SBCs, we studied the impact of a density decaying continuously inside the antenna box and across the Lower Hybrid (LH) resonance. Up to the memory limits of our workstation, the RF fields below the LH resonance changed with the grid size. However the coupled power spectrum hardly evolved and was only weakly affected by the density inside the box. In presence of SBCs, SSWICH-FW simulations have identified the role of the fast wave on RF sheath excitation and reproduced some key experimental observations. SSWICH-FW was finally adapted to conduct the first electromagnetic and RF-sheath 2D simulations of the cylindrical magnetized plasma device ALINE. (author) [fr
Solar terrestrial coupling through space plasma processes
International Nuclear Information System (INIS)
Birn, J.
2000-01-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project investigates plasma processes that govern the interaction between the solar wind, charged particles ejected from the sun, and the earth's magnetosphere, the region above the ionosphere governed by the terrestrial magnetic field. Primary regions of interest are the regions where different plasma populations interact with each other. These are regions of particularly dynamic plasma behavior, associated with magnetic flux and energy transfer and dynamic energy release. The investigations concerned charged particle transport and energization, and microscopic and macroscopic instabilities in the magnetosphere and adjacent regions. The approaches combined space data analysis with theory and computer simulations
International Nuclear Information System (INIS)
Winkler, R.; Wilhelm, J.
A detailed description is presented of calculating the nonstationary electron distribution function in a weakly ionized collision-dominated plasma from the Boltzmann kinetic equation respecting the effects of the time-dependent electric field, collision processes and the electron formation and loss. The finite difference approximation was used for numerical solution. Using the Crank-Nicolson method and parabolic interpolation between the grid points the Boltzmann equation was transformed to a system of linear equations which was then solved by iterations at a preset accuracy. Using the calculated distribution function values, the macroscopic plasma parameters were determined and the balance of electron density and energy checked in each time step. The mathematical procedure is illustrated using a neon plasma perturbed by a rectangular electric pulse. The time development shown of the distribution function at moments when the pulse was switched on and off demonstrates the great stability of the numerical solution. (J.U.)
Coupling of RF antennas to large volume helicon plasma
Directory of Open Access Journals (Sweden)
Lei Chang
2018-04-01
Full Text Available Large volume helicon plasma sources are of particular interest for large scale semiconductor processing, high power plasma propulsion and recently plasma-material interaction under fusion conditions. This work is devoted to studying the coupling of four typical RF antennas to helicon plasma with infinite length and diameter of 0.5 m, and exploring its frequency dependence in the range of 13.56-70 MHz for coupling optimization. It is found that loop antenna is more efficient than half helix, Boswell and Nagoya III antennas for power absorption; radially parabolic density profile overwhelms Gaussian density profile in terms of antenna coupling for low-density plasma, but the superiority reverses for high-density plasma. Increasing the driving frequency results in power absorption more near plasma edge, but the overall power absorption increases with frequency. Perpendicular stream plots of wave magnetic field, wave electric field and perturbed current are also presented. This work can serve as an important reference for the experimental design of large volume helicon plasma source with high RF power.
Some remarks on coherent nonlinear coupling of waves in plasmas
International Nuclear Information System (INIS)
Wilhelmsson, H.
1976-01-01
The analysis of nonlinear processes in plasma physics has given rise to a basic set of coupled equations. These equations describe the coherent nonlinear evolution of plasma waves. In this paper various possibilities of analysing these equations are discussed and inherent difficulties in the description of nonlinear interactions between different types of waves are pointed out. Specific examples of stimulated excitation of waves are considered. These are the parametric excitation of hybrid resonances in hot magnetized multi-ion component plasma and laser-plasma interactions. (B.D.)
SU-8 etching in inductively coupled oxygen plasma
DEFF Research Database (Denmark)
Rasmussen, Kristian Hagsted; Keller, Stephan Sylvest; Jensen, Flemming
2013-01-01
Structuring or removal of the epoxy based, photo sensitive polymer SU-8 by inductively coupled plasma reactive ion etching (ICP-RIE) was investigated as a function of plasma chemistry, bias power, temperature, and pressure. In a pure oxygen plasma, surface accumulation of antimony from the photo......-initiator introduced severe roughness and reduced etch rate significantly. Addition of SF6 to the plasma chemistry reduced the antimony surface concentration with lower roughness and higher etch rate as an outcome. Furthermore the etch anisotropy could be tuned by controlling the bias power. Etch rates up to 800 nm...
On coupling fluid plasma and kinetic neutral physics models
Directory of Open Access Journals (Sweden)
I. Joseph
2017-08-01
Full Text Available The coupled fluid plasma and kinetic neutral physics equations are analyzed through theory and simulation of benchmark cases. It is shown that coupling methods that do not treat the coupling rates implicitly are restricted to short time steps for stability. Fast charge exchange, ionization and recombination coupling rates exist, even after constraining the solution by requiring that the neutrals are at equilibrium. For explicit coupling, the present implementation of Monte Carlo correlated sampling techniques does not allow for complete convergence in slab geometry. For the benchmark case, residuals decay with particle number and increase with grid size, indicating that they scale in a manner that is similar to the theoretical prediction for nonlinear bias error. Progress is reported on implementation of a fully implicit Jacobian-free Newton–Krylov coupling scheme. The present block Jacobi preconditioning method is still sensitive to time step and methods that better precondition the coupled system are under investigation.
Rice, Anne M; Mahling, Ryan; Fealey, Michael E; Rannikko, Anika; Dunleavy, Katie; Hendrickson, Troy; Lohese, K Jean; Kruggel, Spencer; Heiling, Hillary; Harren, Daniel; Sutton, R Bryan; Pastor, John; Hinderliter, Anne
2014-09-01
Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.
On plasma coupling and turbulence effects in low velocity stopping
Energy Technology Data Exchange (ETDEWEB)
Kurilenkov, Yu K [Unified Institute for High Temperatures of Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412 Moscow (Russian Federation); Maynard, G [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France); Barriga-Carrasco, M D [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France); Valuev, A A [Unified Institute for High Temperatures of Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412 Moscow (Russian Federation)
2006-04-28
The problem of stopping power (SP) for projectile ions is analysed in terms of the dielectric function and effective collision frequency for moderately dense and strongly coupled plasmas (SCP). We consider several issues regarding the calculation of stopping power for correlated ensembles of particles and oscillators. In particular, effects of group (few particle) modes, transition from positive to negative dispersion and excitation of collective modes up to suprathermal level at plasma targets are addressed. Linear SP of dense suprathermal (nonlinear) plasma targets at different levels of target plasma turbulence is estimated. The force of suprathermal plasma oscillations on the projectile ions is mostly in the nature of increased frictional drag. The results obtained show the possibility of increasing low velocity stopping (up to 'turbulent' values) in comparison with losses in equilibrium dense plasma targets. Experimental conditions to create specific turbulent targets as well as some connection between stopping phenomena and SCP transport properties are discussed briefly.
On plasma coupling and turbulence effects in low velocity stopping
International Nuclear Information System (INIS)
Kurilenkov, Yu K; Maynard, G; Barriga-Carrasco, M D; Valuev, A A
2006-01-01
The problem of stopping power (SP) for projectile ions is analysed in terms of the dielectric function and effective collision frequency for moderately dense and strongly coupled plasmas (SCP). We consider several issues regarding the calculation of stopping power for correlated ensembles of particles and oscillators. In particular, effects of group (few particle) modes, transition from positive to negative dispersion and excitation of collective modes up to suprathermal level at plasma targets are addressed. Linear SP of dense suprathermal (nonlinear) plasma targets at different levels of target plasma turbulence is estimated. The force of suprathermal plasma oscillations on the projectile ions is mostly in the nature of increased frictional drag. The results obtained show the possibility of increasing low velocity stopping (up to 'turbulent' values) in comparison with losses in equilibrium dense plasma targets. Experimental conditions to create specific turbulent targets as well as some connection between stopping phenomena and SCP transport properties are discussed briefly
Implication of two-coupled differential Van der Pol Duffing oscillator in weak signal detection
International Nuclear Information System (INIS)
Peng Hanghang; Xu Xuemei; Yang Bingchu; Yin Linzi
2016-01-01
The principle of the Van der Pol Duffing oscillator for state transition and for determining critical value is described, which has been studied to indicate that the application of the Van der Pol Duffing oscillator in weak signal detection is feasible. On the basis of this principle, an improved two-coupled differential Van der Pol Duffing oscillator is proposed which can identify signals under any frequency and ameliorate signal-to-noise ratio (SNR). The analytical methods of the proposed model and the construction of the proposed oscillator are introduced in detail. Numerical experiments on the properties of the proposed oscillator compared with those of the Van der Pol Duffing oscillator are carried out. Our numerical simulations have confirmed the analytical treatment. The results demonstrate that this novel oscillator has better detection performance than the Van der Pol Duffing oscillator. (author)
Implication of Two-Coupled Differential Van der Pol Duffing Oscillator in Weak Signal Detection
Peng, Hang-hang; Xu, Xue-mei; Yang, Bing-chu; Yin, Lin-zi
2016-04-01
The principle of the Van der Pol Duffing oscillator for state transition and for determining critical value is described, which has been studied to indicate that the application of the Van der Pol Duffing oscillator in weak signal detection is feasible. On the basis of this principle, an improved two-coupled differential Van der Pol Duffing oscillator is proposed which can identify signals under any frequency and ameliorate signal-to-noise ratio (SNR). The analytical methods of the proposed model and the construction of the proposed oscillator are introduced in detail. Numerical experiments on the properties of the proposed oscillator compared with those of the Van der Pol Duffing oscillator are carried out. Our numerical simulations have confirmed the analytical treatment. The results demonstrate that this novel oscillator has better detection performance than the Van der Pol Duffing oscillator.
Bremsstrahlung function, leading Lüscher correction at weak coupling and localization
Energy Technology Data Exchange (ETDEWEB)
Bonini, Marisa; Griguolo, Luca; Preti, Michelangelo [Dipartimento di Fisica e Scienze della Terra,Università di Parma and INFN Gruppo Collegato di Parma,Viale G.P. Usberti 7/A, 43100 Parma (Italy); Seminara, Domenico [Dipartimento di Fisica, Università di Firenze and INFN Sezione di Firenze,via G. Sansone 1, 50019 Sesto Fiorentino (Italy)
2016-02-26
We discuss the near BPS expansion of the generalized cusp anomalous dimension with L units of R-charge. Integrability provides an exact solution, obtained by solving a general TBA equation in the appropriate limit: we propose here an alternative method based on supersymmetric localization. The basic idea is to relate the computation to the vacuum expectation value of certain 1/8 BPS Wilson loops with local operator insertions along the contour. These observables localize on a two-dimensional gauge theory on S{sup 2}, opening the possibility of exact calculations. As a test of our proposal, we reproduce the leading Lüscher correction at weak coupling to the generalized cusp anomalous dimension. This result is also checked against a genuine Feynman diagram approach in N=4 Super Yang-Mills theory.
Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling
Wang, Chen; Ren, Jie; Cao, Jianshu
2015-07-01
Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices.
Quantum Key Distribution Based on a Weak-Coupling Cavity QED Regime
International Nuclear Information System (INIS)
Li Chun-Yan; Li Yan-Song
2011-01-01
We present a quantum key distribution scheme using a weak-coupling cavity QED regime based on quantum dense coding. Hybrid entanglement states of photons and electrons are used to distribute information. We just need to transmit photons without storing them in the scheme. The electron confined in a quantum dot, which is embedded in a microcavity, is held by one of the legitimate users throughout the whole communication process. Only the polarization of a single photon and spin of electron measurements are applied in this protocol, which are easier to perform than collective-Bell state measurements. Linear optical apparatus, such as a special polarizing beam splitter in a circular basis and single photon operations, make it more flexible to realize under current technology. Its efficiency will approach 100% in the ideal case. The security of the scheme is also discussed. (general)
Chaotic dynamics dependence on doping density in weakly coupled GaAs/AlAs superlattices
International Nuclear Information System (INIS)
Yang Gui; Zhang Fengying; Li Yuanhong; Li Yuqi
2012-01-01
A discrete sequential tunneling model is used for studying the influence of the doping density on the dynamical behaviors in weakly coupled GaAs/AlAs superlattices. Driven by the DC bias, the system exhibits self-sustained current oscillations induced by the period motion of the unstable electric field domain, and an electrical hysteresis in the loop of current density voltage curve is deduced. It is found that the hysteresis range strongly depends on the doping density, and the width of the hysteresis loop increases with increasing the doping density. By adding an external driving ac voltage, more complicated nonlinear behaviors are observed including quasiperiodicity, period-3, and the route of an inverse period-doubling to chaos when the driving frequency changes. (semiconductor physics)
Electric-field domain boundary instability in weakly coupled semiconductor superlattices
Energy Technology Data Exchange (ETDEWEB)
Rasulova, G. K., E-mail: rasulova@sci.lebedev.ru [P.N. Lebedev Physical Institute of Russian Academy of Sciences, 119991 Moscow (Russian Federation); Pentin, I. V. [Moscow State Pedagogical University, 119991 Moscow (Russian Federation); Brunkov, P. N. [A. F. Ioffe Physical and Technical Institute of Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg (Russian Federation); Egorov, A. Yu. [National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg (Russian Federation)
2016-05-28
Damped oscillations of the current were observed in the transient current pulse characteristics of a 30-period weakly coupled GaAs/AlGaAs superlattice (SL). The switching time of the current is exponentially decreased as the voltage is verged towards the current discontinuity region indicating that the space charge necessary for the domain boundary formation is gradually accumulated in a certain SL period in a timescale of several hundreds ns. The spectral features in the electroluminescence spectra of two connected in parallel SL mesas correspond to the energy of the intersubband transitions and the resonance detuning of subbands caused by charge trapping in the quantum wells (QWs) residing in a region of the expanded domain boundary. The obtained results support our understanding of the origin of self-oscillations as a cyclic dynamics of the subband structure in the QWs forming the expanded domain boundary.
Select problems of the electrodynamics of superconducting weak-coupled systems
International Nuclear Information System (INIS)
Belenov, E.M.; Vedeneev, S.I.; Uskov, A.V.
1988-01-01
The interaction of currents in superconducting Josephson elements irradiated by electromagnetic fields in a cavity and a waveguide is considered theoretically. The possibility of using weak-coupled systems to implement stimulated emission oscillators tunable over a broad range from 10 10 to 10 13 Hz is investigated. The properties of a superconducting point contact for use as a nonlinear element in a reference frequency circuit from the microwave to the optical ranges are investigated theoretically. The possibility of frequency synthesis by means of a single nonlinear element from the microwave range to the optical range is demonstrated together with the capacity for precision laser frequency measurements. The noise aspects of using superconducting elements for laser frequency measurements are investigated
Jeans instability of self-gravitating magnetized strongly coupled plasma
International Nuclear Information System (INIS)
Prajapati, R P; Sharma, P K; Sanghvi, R K; Chhajlani, R K
2012-01-01
We investigate the Jeans instability of self-gravitating magnetized strongly coupled plasma. The equations of the problem are formulated using the generalized hydrodynamic model and a general dispersion relation is obtained using the normal mode analysis. This dispersion relation is discussed for transverse and longitudinal mode of propagations. The modified condition of Jeans instability is obtained for magnetized strongly coupled plasma. We find that strong coupling of plasma particles modify the fundamental criterion of Jeans gravitational instability. In transverse mode it is found that Jeans instability criterion gets modified due to the presence of magnetic field, shear viscosity and fluid viscosity but in longitudinal mode it is unaffected due to the presence of magnetic field. From the curves we found that all these parameters have stabilizing influence on the growth rate of Jeans instability.
High efficiency nebulization for helium inductively coupled plasma mass spectrometry
International Nuclear Information System (INIS)
Jorabchi, Kaveh; McCormick, Ryan; Levine, Jonathan A.; Liu Huiying; Nam, S.-H.; Montaser, Akbar
2006-01-01
A pneumatically-driven, high efficiency nebulizer is explored for helium inductively coupled plasma mass spectrometry. The aerosol characteristics and analyte transport efficiencies of the high efficiency nebulizer for nebulization with helium are measured and compared to the results obtained with argon. Analytical performance indices of the helium inductively coupled plasma mass spectrometry are evaluated in terms of detection limits and precision. The helium inductively coupled plasma mass spectrometry detection limits obtained with the high efficiency nebulizer at 200 μL/min are higher than those achieved with the ultrasonic nebulizer consuming 2 mL/min solution, however, precision is generally better with high efficiency nebulizer (1-4% vs. 3-8% with ultrasonic nebulizer). Detection limits with the high efficiency nebulizer at 200 μL/min solution uptake rate approach those using ultrasonic nebulizer upon efficient desolvation with a heated spray chamber followed by a Peltier-cooled multipass condenser
Role of nuclear couplings in the inelastic excitation of weakly-bound neutron-rich nuclei
Energy Technology Data Exchange (ETDEWEB)
Dasso, C.H. [Niels Bohr Institute, Copenhagen (Denmark); Lenzi, S.M.; Vitturi, A. [Universita di Padova (Italy)
1996-12-31
Much effort is presently devoted to the study of nuclear systems far from the stability line. Particular emphasis has been placed in light systems such as {sup 11}Li, {sup 8}B and others, where the very small binding energy of the last particles causes their density distribution to extend considerably outside of the remaining nuclear core. Some of the properties associated with this feature are expected to characterize also heavier systems in the vicinity of the proton or neutron drip lines. It is by now well established that low-lying concentrations of multipole strength arise from pure configurations in which a peculiar matching between the wavelength of the continuum wavefunction of the particles and the range of the weakly-bound hole states occurs. To this end the authors consider the break-up of a weakly-bound system in a heavy-ion collision and focus attention in the inelastic excitation of the low-lying part of the continuum. They make use of the fact that previous investigations have shown that the multipole response in this region is not of a collective nature and describe their excited states as pure particle-hole configurations. Since the relevant parameter determining the strength distributions is the binding energy of the last bound orbital they find it most convenient to use single-particle wavefunctions generated by a sperical square-well potential with characteristic nuclear dimensions and whose depth has been adjusted to give rise to a situation in which the last occupied neutron orbital is loosely-bound. Spin-orbit couplings are, for the present purpose, ignored. The results of this investigation clearly indicate that nuclear couplings have the predominant role in causing projectile dissociation in many circumstances, even at bombarding energies remarkably below the Coulomb barrier.
Weakly dynamic dark energy via metric-scalar couplings with torsion
Energy Technology Data Exchange (ETDEWEB)
Sur, Sourav; Bhatia, Arshdeep Singh, E-mail: sourav.sur@gmail.com, E-mail: arshdeepsb@gmail.com [Department of Physics and Astrophysics, University of Delhi, New Delhi, 110 007 (India)
2017-07-01
We study the dynamical aspects of dark energy in the context of a non-minimally coupled scalar field with curvature and torsion. Whereas the scalar field acts as the source of the trace mode of torsion, a suitable constraint on the torsion pseudo-trace provides a mass term for the scalar field in the effective action. In the equivalent scalar-tensor framework, we find explicit cosmological solutions representing dark energy in both Einstein and Jordan frames. We demand the dynamical evolution of the dark energy to be weak enough, so that the present-day values of the cosmological parameters could be estimated keeping them within the confidence limits set for the standard LCDM model from recent observations. For such estimates, we examine the variations of the effective matter density and the dark energy equation of state parameters over different redshift ranges. In spite of being weakly dynamic, the dark energy component differs significantly from the cosmological constant, both in characteristics and features, for e.g. it interacts with the cosmological (dust) fluid in the Einstein frame, and crosses the phantom barrier in the Jordan frame. We also obtain the upper bounds on the torsion mode parameters and the lower bound on the effective Brans-Dicke parameter. The latter turns out to be fairly large, and in agreement with the local gravity constraints, which therefore come in support of our analysis.
Weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field
International Nuclear Information System (INIS)
Sato, Masahiro; Oshikawa, Masaki
2002-01-01
We study weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field. Applying mean-field (MF) theory, spin-wave theory and chain MF (CMF) theory, we can see analytically some effects of the staggered field in this higher dimensional spin system. In particular, when the staggered field and the inter-chain inter-action compete with each other, we conjecture from the MF theory that a nontrivial phase is present. The spin wave theory predicts that the behavior of the gaps induced by a staggered field is different between the competitive case and the non-competitive case. When the inter-chain interactions are weak enough, we can improve the MF phase diagram by using CMF theory and the analytical results of field theories. The ordered phase region predicted by the CMF theory is fairly smaller than one of the MF theory. Cu-benzoate, CuCl 2 · 2DMSO (dimethylsulphoxide), BaCu 2 (Si 1-x Ge x ) 2 O 7 , etc., could be described by our model in enough low temperature. (author)
The tunnel magnetoresistance in chains of quantum dots weakly coupled to external leads
International Nuclear Information System (INIS)
Weymann, Ireneusz
2010-01-01
We analyze numerically the spin-dependent transport through coherent chains of three coupled quantum dots weakly connected to external magnetic leads. In particular, using the diagrammatic technique on the Keldysh contour, we calculate the conductance, shot noise and tunnel magnetoresistance (TMR) in the sequential and cotunneling regimes. We show that transport characteristics greatly depend on the strength of the interdot Coulomb correlations, which determines the spatial distribution of the electron wavefunction in the chain. When the correlations are relatively strong, depending on the transport regime, we find both negative TMR as well as TMR enhanced above the Julliere value, accompanied with negative differential conductance (NDC) and super-Poissonian shot noise. This nontrivial behavior of tunnel magnetoresistance is associated with selection rules that govern tunneling processes and various high-spin states of the chain that are relevant for transport. For weak interdot correlations, on the other hand, the TMR is always positive and not larger than the Julliere TMR, although super-Poissonian shot noise and NDC can still be observed.
Helicon wave coupling to a chiral-plasma column
International Nuclear Information System (INIS)
Torres-Silva, H.; Reggiani, N.; Sakanaka, P.H.
1995-01-01
Inductive helicon wave coupling to a chiro-plasma column is studied numerically. In our theoretical model, the RF current distribution of the chiro-plasma is taken into account using the constitutive relations of a chiral-plasma. Computational results based on the data of present-day helicon devices are show. In particular, we discuss the role of magnetic-field-aligned electron landau damping for the helicon wave absorption. In many a see, the numerical findings can be understood reasonably in terms of the wavenumber spectra of the helicon wave dispersion relation for slow and fast wave of a chiral-plasma. In general however, the full electromagnetic treatment is necessary in order to describe and to understand the inductive coupling in the helicon wave regime. (author). 9 refs., 1 fig
Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry
Farnsworth, Paul B.; Spencer, Ross L.
2017-08-01
Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.
A new class of strongly coupled plasmas inspired by sonoluminescence
Bataller, Alexander; Plateau, Guillaume; Kappus, Brian; Putterman, Seth
2014-10-01
Sonoluminescence originates in a strongly coupled plasma with a near liquid density and a temperature of ~10,000 K. This plasma is in LTE and therefore, it should be a general thermodynamic state. To test the universality of sonoluminescence, similar plasma conditions were generated using femtosecond laser breakdown in high pressure gases. Calibrated streak spectroscopy reveals both transport and thermodynamic properties of a strongly coupled plasma. A blackbody spectrum, which persists long after the exciting laser has turned off, indicates the presence of a highly ionized LTE microplasma. In parallel with sonoluminescence, this thermodynamic state is achieved via a considerable reduction in the ionization potential. We gratefully acknowledge support from DARPA MTO for research on microplasmas. We thank Brian Naranjo, Keith Weninger, Carlos Camara, Gary Williams, and John Koulakis for valuable discussions.
Development of a low-cost inductively coupled argon plasma
International Nuclear Information System (INIS)
Ripson, P.A.M.
1983-01-01
The aim of this investigation is to drastically reduce running costs of an inductively coupled plasma. This is done by reducing the argon consumption from 20 l/min to about 1 l/min. First, a sample introduction system operating on 0.1 l/min of carrier argon is described. This system ensures a high ratio of plasma argon and carrier argon even at the low total argon consumptions intended. Next, the developed low consumption plasma is presented. In the proposed design, air is blown perpendicularly against the outside of the torch. A different coil has been developed to make air-cooling efficient. Preliminary data on coupling efficiency for the air-cooled plasma are presented. A similarly low argon consumption has been achieved with water as an external coolant medium. It is concluded that a cheaper alternative to the current ICP has become available. (Auth.)
Inductively-coupled plasma mass spectrometry
International Nuclear Information System (INIS)
Dale, L.
1990-01-01
The instrument in operation at the Lucas Heights Research Laboratories is a VG Plasma-quad PQ 2. A schematic diagram of the instrument components is presented along with its applicability to various fields of research and its perceived limitations. Apart from its high sensitivity the capability for rapid multi-element analysis in one of its major advantages over other instrumental method analysis. The necessity to present the sample in the form of a solution is probably its major drawback. 4 tabs, 7 figs
International Nuclear Information System (INIS)
Golden, Kenneth I.
2002-01-01
The main research accomplishments/findings of the project were the following: (1) Publication of an in-depth review article in Physics of Plasmas on the quasilocalized charge approximation (QLCA) in strongly coupled plasma physics and its application to a variety of Coulomb systems: the model one-component plasma in three and two dimensions, binary ionic mixtures, charged particle bilayers, and laboratory dusty plasmas. (2) In the strongly coupled Coulomb liquid phase, the physical basis of the QLCA, namely, the caging of particles trapped in slowly fluctuating local potential minima, is supported by molecular dynamics simulation of the classical three-dimensional one-component plasma. (3) The QLCA theory, when applied to the analysis of the collective modes in strongly coupled charged particle bilayers, predicts the existence of a remarkable long-wavelength energy gap in the out-of-phase excitation spectrum. More recent theoretical calculations based on the three principal frequency-moment sum rules reveal that the gap persists for arbitrary coupling strengths and over the entire classical to quantum domain all the way down to zero temperature. The existence of the energy gap has now been confirmed in a molecular dynamics simulation of the charged particle bilayer. (4) New compressibility and third-frequency-moment sum rules for multilayer plasmas were formulated and applied to the analysis of the dynamical structure function of charged particle bilayers and superlattices. (5) An equivalent of the Debye-Huckel weak coupling equilibrium theory for classical charged particle bilayer and superlattice plasmas was formulated. (6) The quadratic fluctuation-dissipation theorem (QFDT) for layered classical plasmas was formulated. (7) The QFDT was applied to a powerful kinetic theory-based description of the density-density response function and long-wavelength plasma mode behavior in strongly coupled two-dimensional Coulomb fluids in the weakly degenerate quantum domain
Equation of state of strongly coupled plasma mixtures
International Nuclear Information System (INIS)
DeWitt, H.E.
1984-01-01
Thermodynamic properties of strongly coupled (high density) plasmas of mixtures of light elements have been obtained by Monte Carlo simulations. For an assumed uniform charge background the equation of state of ionic mixtures is a simple extension of the one-component plasma EOS. More realistic electron screening effects are treated in linear response theory and with an appropriate electron dielectric function. Results have been obtained for the ionic pair distribution functions, and for the electric microfield distribution
Non-Equilibrium Modeling of Inductively Coupled RF Plasmas
2015-01-01
wall can be approximated with the expression for an infinite solenoid , B(r = R) = µ0NIc, where quan- tities N and Ic are the number of turns per unit...Modeling of non-equilibrium plasmas in an induc- tively coupled plasma facility. AIAA Paper 2014– 2235, 2014. 45th AIAA Plasmadynamics and Lasers ...1993. 24th Plas- madynamics and Laser Conference, Orlando, FL. [22] M. Capitelli, I. Armenise, D. Bruno, M. Caccia- tore, R. Celiberto, G. Colonna, O
Study of optical emission spectroscopy with inductively coupled plasma torch
International Nuclear Information System (INIS)
Bauer, M.
1982-01-01
Inductively coupled plasma optical emission spectroscopy is an excellent tool for quantitative multielement trace analysis. This paper describes the performance of a computer-controlled sequential measurement system. Chemical and ionization interferences are shown to be negligible due to the characteristics of the inductively coupled plasma, spectral interferences are eliminated by using a high-resolution monochromator and computer data handling. Good accuracy is achieved for most of the interesting elements, as is shown from both an interlaboratory test and from comparison of the results of water samples from the rivers Elbe and Weser with those achieved with neutron activation and X-ray fluorescence analysis. (orig.) [de
Effect of weak nonlinearities on the plane waves in a plasma stream
International Nuclear Information System (INIS)
Seshadri, S.R.
1976-01-01
The effect of weak nonlinearities on the monochromatic plane waves in a cold infinite plasma stream is investigated for the case in which the waves are progressing parallel to the drift velocity. The fast and the slow space-charge waves undergo amplitude-dependent frequency and wave number shifts. There is a long time slow modulation of the amplitude of the electromagnetic mode which becomes unstable to this nonlinear wave modulation. The importance of using the relativistically correct equation of motion for predicting correctly the modulational stability of the electromagnetic mode is pointed out. (author)
Self excitation of second harmonic ion-acoustic waves in a weakly magnetized plasma
International Nuclear Information System (INIS)
Tsukabayashi, I.; Yagishita, T.; Nakamura, Y.
1994-01-01
Electrostatic ion-acoustic waves in a weakly magnetized plasma are investigated experimentally. It is observed that finite amplitudes ion acoustic waves excite a new second harmonic wave train behind the initial ion waves excite a new second harmonic wave train behind the initial ion waves in a parallel magnetic field. The excitation of higher harmonic waves can be explained by non-linearity of finite amplitude ion-acoustic waves. The newly excited second harmonics waves satisfy a dispersion relation of the ion-acoustic waves. (author). 3 refs, 5 figs
Kinetic theory of cross-modulation in a weakly ionized plasma
International Nuclear Information System (INIS)
Garrett, A.J.M.
1991-01-01
Cross-modulation in plasma is an electromagnetic wave interaction in which the modulation of one 'disturbing' wave is imposed nonlinearly on the transport properties of the medium, and thence onto a second, 'wanted' wave propagating linearly through it. This analysis is restricted to weakly ionized plasma with allowance for ambient magnetic field, as in the lower ionosphere. A kinetic description is used, based on the Boltzmann equation for the electrons, with electron-molecule collisions described by Boltzmann's collision integral. Because of the small mass ratio this simplifies to a differential form. There is no cross-modulation if the collision frequency is independent of collision speed, when contributions from all parts of velocity space cancel. (author)
Screening in weakly ionized dusty plasmas; effect of dust density perturbations
International Nuclear Information System (INIS)
Tolias, P.; Ratynskaia, S.
2013-01-01
The screening of the charge of a non-emitting dust grain immersed in a weakly ionized dusty plasma is studied on the basis of a self-consistent hydrodynamic description. The dust number density is considered large enough so that the test grain is not isolated from other grains and dust collective effects are important. Not only dust charge perturbations but also dust density perturbations are taken into account, the latter are shown to have a strong effect on both the short and long range part of the potential. The realization of collective attraction via the newly obtained potential is discussed, a mechanism that could be central to the understanding of phase-transitions and self-organization processes in dusty plasmas.
Ideal MHD equilibrium of a weakly toroidal plasma column with elongated cross-section
International Nuclear Information System (INIS)
Heesch, E.J.M. van; Schuurman, W.
1980-07-01
Solutions are obtained of the ideal MHD equations describing the equilibrium of a weakly toroidal plasma with an elliptic cross-section surrounded by a force-free magnetic field with constant ratio between current density and magnetic field strength. The force-free field parameter causes the stagnation points to recede along the major axis of the ellipse. Above a certain value of the force-free field parameter, stagnation points do not exist, so that the compression ratio of the plasma column is no longer limited. The analysis was carried out to first order in the force-free field parameter as well as to second order for an estimate of the error
Measurements of the weak bonding interfacial stiffness by using air-coupled ultrasound
Directory of Open Access Journals (Sweden)
Wen-Lin Wu
2017-12-01
Full Text Available An air-coupled ultrasonic method, focusing on the problem that weak bonding interface is difficult to accurately measure using conventional nondestructive testing technique, is proposed to evaluate the bond integrity. Based on the spring model and the potential function theory, a theoretical model is established to predict the through-transmission spectrum in double-layer adhesive structure. The result of a theoretical algorithm shows that all the resonant transmission peaks move towards higher frequency with the increase of the interfacial stiffness. The reason for these movements is related to either the normal stiffness (KN or the transverse stiffness (KT. A method to optimize the measurement parameters (i.e. the incident angle and testing frequency is put forward through analyzing the relationship between the resonant transmission peaks and the interfacial spring stiffness at the frequency below 1MHz. The air-coupled ultrasonic testing experiments at the normal and oblique incident angle respectively are carried out to verify the theoretical analysis and to accurately measure the interfacial stiffness of double-layer adhesive composite plate. The experimental results are good agreement with the results from the theoretical algorithm, and the relationship between bonding time and interfacial stiffness is presented at the end of this paper.
Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma
International Nuclear Information System (INIS)
Wang Hongyu; Sun Peng; Zhao Shuangyun; Li Yang; Jiang Wei
2016-01-01
We analyzed perpendicularly configured dual-frequency (DF) capacitively coupled plasmas (CCP). In this configuration, two pairs of electrodes are arranged oppositely, and the discharging is perpendicularly driven by two radio frequency (RF) sources. Particle-in-cell/Monte Carlo (PIC/MC) simulation showed that the configuration had some advantages as this configuration eliminated some dual frequency coupling effects. Some variation and potential application of the discharging configuration is discussed briefly. (paper)
K. Karmakar, P.; Borah, B.
2014-05-01
This paper adopts an inertia-centric evolutionary model to study the excitation mechanism of new gravito-electrostatic eigenmode structures in a one-dimensional (1-D) planar self-gravitating dust molecular cloud (DMC) on the Jeans scale. A quasi-neutral multi-fluid consisting of warm electrons, warm ions, neutral gas and identical inertial cold dust grains with partial ionization is considered. The grain-charge is assumed not to vary at the fluctuation evolution time scale. The neutral gas particles form the background, which is weakly coupled with the collapsing grainy plasma mass. The gravitational decoupling of the background neutral particles is justifiable for a higher inertial mass of the grains with higher neutral population density so that the Jeans mode frequency becomes reasonably large. Its physical basis is the Jeans assumption of a self-gravitating uniform medium adopted for fiducially analytical simplification by neglecting the zero-order field. So, the equilibrium is justifiably treated initially as “homogeneous”. The efficacious inertial role of the thermal species amidst weak collisions of the neutral-charged grains is taken into account. A standard multiscale technique over the gravito-electrostatic equilibrium yields a unique pair of Korteweg-de Vries (KdV) equations. It is integrated numerically by the fourth-order Runge-Kutta method with multi-parameter variation for exact shape analyses. Interestingly, the model is conducive for the propagation of new conservative solitary spectral patterns. Their basic physics, parametric features and unique characteristics are discussed. The results go qualitatively in good correspondence with the earlier observations made by others. Tentative applications relevant to space and astrophysical environments are concisely highlighted.
LLNL large-area inductively coupled plasma (ICP) source: Experiments
International Nuclear Information System (INIS)
Richardson, R.A.; Egan, P.O.; Benjamin, R.D.
1995-05-01
We describe initial experiments with a large (76-cm diameter) plasma source chamber to explore the problems associated with large-area inductively coupled plasma (ICP) sources to produce high density plasmas useful for processing 400-mm semiconductor wafers. Our experiments typically use a 640-nun diameter planar ICP coil driven at 13.56 MHz. Plasma and system data are taken in Ar and N 2 over the pressure range 3-50 mtorr. RF inductive power was run up to 2000W, but typically data were taken over the range 100-1000W. Diagnostics include optical emission spectroscopy, Langmuir probes, and B probes as well as electrical circuit measurements. The B and E-M measurements are compared with models based on commercial E-M codes. Initial indications are that uniform plasmas suitable for 400-mm processing are attainable
International Nuclear Information System (INIS)
Lim, Jong Hyeuk; Kim, Kyong Nam; Park, Jung Kyun; Yeom, Geun Young
2008-01-01
This study examined the effect of the antenna capacitance of an inductively coupled plasma (ICP) source, which was varied using an internal linear antenna, on the electrical and plasma characteristics of the ICP source. The inductive coupling at a given rf current increased with decreasing antenna capacitance. This was caused by a decrease in the inner copper diameter of the antenna made from coaxial copper/quartz tubing, which resulted in a higher plasma density and lower plasma potential. By decreasing the diameter of the copper tube from 25 to 10 mm, the plasma density of a plasma source size of 2750x2350 mm 2 was increased from approximately 8x10 10 /cm 3 to 1.5x10 11 /cm 3 at 15 mTorr Ar and 9 kW of rf power
International Nuclear Information System (INIS)
Kishine, Jun-Ichiro; Yonemitsu, Kenji
1998-01-01
Physical nature of dimensional crossovers in weakly coupled Hubbard chains and ladders has been discussed within the framework of the perturbative renormalization-group (PRG) approach. The difference between these two cases originates from different universality classes which the corresponding isolated systems belong to. In the present work, we discuss the nature of the dimensional crossovers in the weakly coupled chains and ladders, with emphasis on the difference between the two cases within the framework of the PRG approach. The difference of the universality class of the isolated chain and ladder profoundly affects the relevance or irrelevance of the inter-chain/ladder one-particle hopping. The strong coupling phase of the isolated ladder makes the one-particle process irrelevant so that the d-wave superconducting transition can be induced via the two-particle crossover in the weakly coupled ladders. The weak coupling phase of the isolated chain makes the one-particle process relevant so that the two-particle crossover can hardly be realized in the coupled chains. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
Antenna coupling study for ICWC plasma characterization in TEXTOR
Indian Academy of Sciences (India)
2015-11-27
Home; Journals; Pramana – Journal of Physics; Volume 80; Issue 1. Antenna coupling study for ICWC plasma characterization in ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: ...
Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas
Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.
2017-10-01
We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.
Numerical experiments on 2D strongly coupled complex plasmas
International Nuclear Information System (INIS)
Hou Lujing; Ivlev, A V; Thomas, H M; Morfill, G E
2010-01-01
The Brownian Dynamics simulation method is briefly reviewed at first and then applied to study some non-equilibrium phenomena in strongly coupled complex plasmas, such as heat transfer processes, shock wave excitation/propagation and particle trapping, by directly mimicking the real experiments.
Experimental measurements of Helicon wave coupling in KSTAR plasmas
Energy Technology Data Exchange (ETDEWEB)
Kim, H. J.; Wi, H. H.; Wang, S. J.; Park, S. Y.; Jeong, J. H.; Han, J. W.; Kwak, J. G.; Oh, Y. K. [National Fusion Research Institute, Daejeon (Korea, Republic of); Chun, M. H.; Yu, I. H. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)
2016-05-15
KSTAR tokamak can be a good platform to test this current drive concept because it has adequate machine parameters. Furthermore, KSTAR will have high electron beta plasmas in near future with additional ECH power. In 2015 KSTAR experiments, low-power traveling wave antenna has been designed, fabricated and installed for helicon wave coupling tests in KSTAT plasmas. In 2016 KSTAR campaign, 200 kW klystron power will be combined using three coaxial hybrid couplers and three dummy loads. High power RF will be fed into the traveling wave antenna with two coaxial feeders through two dual disk windows and 6 inch coaxial transmission line system. Current status and plan for high power helicon wave current drive system in KSTAR will be presented. Mock-up TWA antenna installed at the KSTAR reveals high couplings in both L- and H-mode plasmas. The coupling can be easily controlled by radial outer gap without degradation of plasma confinement or local gas puffing with slight decrease of plasma confinement.
Molecules Designed to Contain Two Weakly Coupled Spins with a Photoswitchable Spacer.
Uber, Jorge Salinas; Estrader, Marta; Garcia, Jordi; Lloyd-Williams, Paul; Sadurní, Anna; Dengler, Dominik; van Slageren, Joris; Chilton, Nicholas F; Roubeau, Olivier; Teat, Simon J; Ribas-Ariño, Jordi; Aromí, Guillem
2017-10-04
Controlling the charges and spins of molecules lies at the heart of spintronics. A photoswitchable molecule consisting of two independent spins separated by a photoswitchable moiety was designed in the form of new ligand H 4 L, which features a dithienylethene photochromic unit and two lateral coordinating moieties, and yields molecules with [MM⋅⋅⋅MM] topology. Compounds [M 4 L 2 (py) 6 ] (M=Cu, 1; Co, 2; Ni, 3; Zn, 4) were prepared and studied by single-crystal X-ray diffraction (SCXRD). Different metal centers can be selectively distributed among the two chemically distinct sites of the ligand, and this enables the preparation of many double-spin systems. Heterometallic [MM'⋅⋅⋅M'M] analogues with formulas [Cu 2 Ni 2 L 2 (py) 6 ] (5), [Co 2 Ni 2 L 2 (py) 6 ] (6), [Co 2 Cu 2 L 2 (py) 6 ] (7), [Cu 2 Zn 2 L 2 (py) 6 ] (8), and [Ni 2 Zn 2 L 2 (py) 6 ] (9) were prepared and analyzed by SCXRD. Their composition was established unambiguously. All complexes exhibit two weakly interacting [MM'] moieties, some of which embody two-level quantum systems. Compounds 5 and 8 each exhibit a pair of weakly coupled S=1/2 spins that show quantum coherence in pulsed Q-band EPR spectroscopy, as required for quantum computing, with good phase memory times (T M =3.59 and 6.03 μs at 7 K). Reversible photoswitching of all the molecules was confirmed in solution. DFT calculations on 5 indicate that the interaction between the two spins of the molecule can be switched on and off on photocyclization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
AETHER: A simulation platform for inductively coupled plasma
Energy Technology Data Exchange (ETDEWEB)
Turkoz, Emre, E-mail: emre.turkoz@boun.edu.tr; Celik, Murat
2015-04-01
An in-house code is developed to simulate the inductively coupled plasma (ICP). The model comprises the fluid, electromagnetic and transformer submodels. Fluid equations are solved to evaluate the plasma flow parameters, including the plasma and neutral densities, ion and neutral velocities, electron flux, electron temperature, and electric potential. The model relies on the ambipolar approximation and offers the evaluation of plasma parameters without solving the sheath region. The electromagnetic model handles the calculation of the electric and magnetic fields using the magnetic vector potential. The transformer model captures the effect of the matching circuit utilized in laboratory experiments for RF power deposition. The continuity and momentum equations are solved using finite volume method. The energy, electric potential, and magnetic vector potential equations are solved using finite difference method. The resulting linear systems of equations are solved with iterative solvers including Jacobi and GMRES. The code is written using the C++ programming language, it works in parallel and has graphical user interface. The model is applied to study ICP characteristics of a plasma confined within a cylindrical chamber with dielectric walls for two different power deposition cases. The results obtained from the developed model are verified using the plasma module of COMSOL Multiphysics. The model is also applied to a plasma source configuration, and it is demonstrated that there is an overall increase in the plasma potential when current is extracted from ICP with a biased wall electrode.
The influence of ion temperature on solitary waves in collisionless weak relativistic plasma
International Nuclear Information System (INIS)
Cerepaniuc, Adina
2004-01-01
Korteweg-de Vries equation is used to study the influence of the ion temperature, on the ion acoustic waves in the frame of collisionless plasma's weak relativistic effect. In the literature it is discussed the influence of ion temperature on the ion acoustic wave in a relativistic plasma for a ratio of the ion flow velocity to the light velocity between 0 and 1. In this paper, the dependence of the phase velocity on the relativistic effect for different values of the ratio of the ion temperature to the electron temperature is studied. In case of weak relativistic effect (ratio of the ion flow velocity to the light velocity is 10 -6 and the step of the representation is 10 -6 ) we noticed the occurrence of an antisoliton within soliton amplitude graphical representation as function of the relativistic effect and the temperature ratio. The novelty of this article consists in the fact that a much smaller interval is considered for velocity ratio (size) and we studied the influence of ion temperature on ion acoustic wave in a collisionless relativistic plasma. We performed the numerical calculation of equations and we plotted the phase velocity and the amplitude of soliton wave as a function of velocity ratio and the temperature ratio. We considered the step of velocity ratio variation equal with 10 -6 and the step of temperature ratio variation 10 -2 . The observation made in this paper refines the results of other authors who studied these equations for velocity ratio variation of 10 -1 . In herein chosen interval we observed new phenomena that were not noticed in the case of choosing larger intervals. (author)
Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2016-01-01
We have previously introduced a hybrid strong/weak coupling model for jet quenching in heavy ion collisions that describes the production and fragmentation of jets at weak coupling, using PYTHIA, and describes the rate at which each parton in the jet shower loses energy as it propagates through the strongly coupled plasma, dE/dx, using an expression computed holographically at strong coupling. The model has a single free parameter that we fit to a single experimental measurement. We then confront our model with experimental data on many other jet observables, focusing here on boson-jet observables, finding that it provides a good description of present jet data. Next, we provide the predictions of our hybrid model for many measurements to come, including those for inclusive jet, dijet, photon-jet and Z-jet observables in heavy ion collisions with energy $\\sqrt{s}=5.02$ ATeV coming soon at the LHC. As the statistical uncertainties on near-future measurements of photon-jet observables are expected to be much sm...
LH-power coupling in advanced tokamak plasmas in JET
International Nuclear Information System (INIS)
Joffrin, E.; Erents, K.; Gormezano, C.
2000-02-01
Lower Hybrid Current Drive (LHCD) is the most efficient tool to generate non-inductive current in tokamak plasmas. In JET, significant modifications of the current profile have been recently achieved in coupling up to 3MW of LH power in optimised shear discharges. However, the improved particle confinement during optimised shear plasmas results in a sharp decrease of the electron density in front the launcher close or below the cut-off density (ne=1.7.10 17 m -3 for f LH =37GHz) and makes difficult the coupling of the LH power. Deuterium gas near the launcher can help to improve the coupling, but has also the effect of increasing the ELM activity leading to the erosion of the internal transport barrier (ITB). Future development of lower hybrid launcher should include the constraints imposed by scenario such as the optimised shear. (author)
International Nuclear Information System (INIS)
Tang, Deli; Chu, Paul K.
2003-01-01
The enhancement of planar radio frequency (RF) inductively coupled argon plasma is studied in the presence of an assistant anode and an external magnetic field at low pressure. The influence of the assistant anode and magnetic field on the efficiency of RF power absorption and plasma parameters is investigated. An external axial magnetic field is coupled into the plasma discharge region by an external electromagnetic coil outside the discharge chamber and an assistant cylindrical anode is inserted into the discharge chamber to enhance the plasma discharge. The plasma parameters and density profile are measured by an electrostatic Langmuir probe at different magnetic fields and anode voltages. The RF power absorption by the plasma can be effectively enhanced by the external magnetic field compared with the nonmagnetized discharge. The plasma density can be further increased by the application of a voltage to the assistant anode. Owing to the effective power absorption and enhanced plasma discharge by the assistant anode in a longitudinal magnetic field, the plasma density can be enhanced by more than a factor of two. Meanwhile, the nonuniformity of the plasma density is less than 10% and it can be achieved in a process chamber with a diameter of 600 mm
Energy Technology Data Exchange (ETDEWEB)
Lafranceschina, Jacopo, E-mail: jlafranceschina@alaska.edu; Wackerbauer, Renate, E-mail: rawackerbauer@alaska.edu [Department of Physics, University of Alaska, Fairbanks, Alaska 99775-5920 (United States)
2015-01-15
Spatiotemporal chaos collapses to either a rest state or a propagating pulse solution in a ring network of diffusively coupled, excitable Morris-Lecar neurons. Weak excitatory synapses can increase the Lyapunov exponent, expedite the collapse, and promote the collapse to the rest state rather than the pulse state. A single traveling pulse solution may no longer be asymptotic for certain combinations of network topology and (weak) coupling strengths, and initiate spatiotemporal chaos. Multiple pulses can cause chaos initiation due to diffusive and synaptic pulse-pulse interaction. In the presence of chaos initiation, intermittent spatiotemporal chaos exists until typically a collapse to the rest state.
Evidence of weak pair coupling in the penetration depth of bi-based high-Tc superconductors
International Nuclear Information System (INIS)
Thompson, J.R.; Sun, Yang Ren; Ossandon, J.G.; Christen, D.K.; Chakoumakos, B.C.; Sales, B.C.; Kerchner, H.R.; Sonder, E.
1990-01-01
The magnetic penetration depth λ(T) has been investigated in Bi(Pb)SrCaCuO high-T c compounds having 2- and 3-layers of copper-oxygen per unit cell. Studies of the magnetization in the vortex state were employed and the results were compared with weak and strong coupling calculations. The temperature dependence of λ is described well by BCS theory in the clean limit, giving evidence for weak pair coupling in this family of materials. For the short component of the λ tensor, we obtain values of 292 and 220 nm (T = 0) for Bi-2212 and (BiPb)-2223, respectively
International Nuclear Information System (INIS)
Lafranceschina, Jacopo; Wackerbauer, Renate
2015-01-01
Spatiotemporal chaos collapses to either a rest state or a propagating pulse solution in a ring network of diffusively coupled, excitable Morris-Lecar neurons. Weak excitatory synapses can increase the Lyapunov exponent, expedite the collapse, and promote the collapse to the rest state rather than the pulse state. A single traveling pulse solution may no longer be asymptotic for certain combinations of network topology and (weak) coupling strengths, and initiate spatiotemporal chaos. Multiple pulses can cause chaos initiation due to diffusive and synaptic pulse-pulse interaction. In the presence of chaos initiation, intermittent spatiotemporal chaos exists until typically a collapse to the rest state
Anisotropy and multi-band effects in weak-coupling superconductors
International Nuclear Information System (INIS)
Berger, T.L.
1977-01-01
The techniques of second quantization and thermodynamic Green functions are used to investigate energy gap anisotropy and multi-band effects in pure, single-crystal, weak-coupling superconductors. A generalized version of the standard Gorkov factorization is used to linearize the Green functions equations of motion. The effects of lattice periodicity and band structure are taken into account by means of Bloch wave expansions and Bloch transforms. A pairing selection rule is derived which indicates the possibility of pairing between single particle states belonging to different bands, as well as the usual Cooper pairing. It is shown that the interband gap parameter, which is coupled to the usual gap parameter by the Green functions equations of motion, can only contribute indirectly to the tunneling electric current and the thermodynamic potential. In the absence of interband pairing, the equations of motion lead to the usual BCS gap equation. Also, in the absence of interband pairing, the gap parameter is found to be equal to the diagonal matrix element of the superconductor pair potential between electronic Bloch states. An essentially temperature independent anisotropy function which contains all angular dependence of the gap is shown to evolve naturally from this formalism. The overall temperature dependence of the gap is investigated and it is found that with a change of temperature, the magnitude of the gap in different directions changes in the same ration. The ordinary Markowitz-Kadanoff model is shown to be inappropriate for the case of a multi-band superconductor and a generalized version of this model is introduced and discussed. A special case of this model is considered which leads to gap discontinuities at Brillouin zone boundaries
Irradiation of intense characteristic x-rays from weakly ionized linear molybdenum plasma
International Nuclear Information System (INIS)
Sato, Eiichi; Hayasi, Yasuomi
2003-01-01
In the plasma flash x-ray generator, a high-voltage main condenser of approximately 200 nF is charged up to 55 kV by a power supply, and electric charges in the condenser are discharged to an x-ray tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is a demountable triode that is connected to a turbo molecular pump with a pressure of approximately 1 mPa. As electron flows from the cathode electrode are roughly converged to a rod molybdenum target of 2.0 mm in diameter by the electric field in the x-ray tube, weakly ionized linear plasma, which consists of molybdenum ions and electrons, forms by target evaporation. At a charging voltage of 55 kV, the maximum tube voltage was almost equal to the charging voltage of the main condenser, and the peak current was about 20 kA. When the charging voltage was increased, the linear plasma formed, and the K-series characteristic x-ray intensities increased. The K lines were quite sharp and intense, and hardly any bremsstrahlung rays were detected. The x-ray pulse widths were approximately 700 ns, and the time-integrated x-ray intensity had a value of approximately 35 μC/kg at 1.0 m from the x-ray source with a charging voltage of 50 kV. (author)
International Nuclear Information System (INIS)
Tang, D.L.; Fu, R.K.Y.; Tian, X.B.; Chu, P.K.
2003-01-01
Plasmas with higher density and better uniformity are produced using an improved planar radio frequency (rf) inductively coupled plasma configuration in plasma immersion ion implantation (PIII). An axial magnetic field is produced by external electromagnetic coils outside the discharge chamber. The rf power can be effectively absorbed by the plasma in the vicinity of the electron gyrofrequency due to the enhanced resonant absorption of electromagnetic waves in the whistler wave range, which can propagate nearly along the magnetic field lines thus greatly increases the plasma density. The plasma is confined by a longitudinal multipolar cusp magnetic field made of permanent magnets outside the process chamber. It can improve the plasma uniformity without significantly affecting the ion density. The plasma density can be increased from 3x10 9 to 1x10 10 cm -3 employing an axial magnetic field of several Gauss at 1000 W rf power and 5x10 -4 Torr gas pressure. The nonuniformity of the plasma density is less than 10% and can be achieved in a process chamber with a diameter of 600 mm. Since the plasma generation and process chambers are separate, plasma extinction due to the plasma sheath touching the chamber wall in high-energy PIII can be avoided. Hence, low-pressure, high-energy, and high-uniformity ion implantation can be accomplished using this setup
Powder processing and spheroidizing with thermal inductively coupled plasma
International Nuclear Information System (INIS)
Nutsch, G.; Linke, P.; Zakharian, S.; Dzur, B.; Weiss, K.-H.
2001-01-01
Processing of advanced powder materials for the spraying industry is one of the most promising applications of the thermal RF inductively coupled plasma. By selecting the feedstock carefully and adjusting the RF plasma parameters, unique materials with high quality can be achieved. Powders injected in the hot plasma core emerge with modified shapes, morphology, crystal structure and chemical composition. Ceramic oxide powders such as Al 2 O 3 , ZrO 2 , SiO 2 are spheroidized with a high spheroidization rate. By using the RF induction plasma spheroidizing process tungsten melt carbide powders are obtained with a high spheroidization rate at high feeding rates by densification of agglomerated powders consisting of di-tungsten carbide and monocarbide with a definite composition. This kind of ball-like powders is particularly suited for wear resistant applications. (author)
Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes
Brotons-Gisbert, Mauro; Martínez-Pastor, Juan P.; Ballesteros, Guillem C.; Gerardot, Brian D.; Sánchez-Royo, Juan F.
2018-01-01
Two-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in MoS2 single layers, light extraction from arbitrarily oriented dipole monolayers, and single-photon emission in 2D materials. Also, it has been successfully applied to retrieve exciton-cavity interaction parameters from MoS2 microcavity experiments. The present model appears as a powerful and versatile tool for the design of new optoelectronic devices based on 2D semiconductors such as quantum light sources and polariton lasers.
Yan, Derong; Huang, Haiying; He, Tianbai; Zhang, Fajun
2011-10-04
We have studied the coupling behavior of microphase separation and autophobic dewetting in weakly segregated poly(ε-caprolactone)-block-poly(L-lactide) (PCL-b-PLLA) diblock co-polymer ultrathin films on carbon-coated mica substrates. At temperatures higher than the melting point of the PLLA block, the co-polymer forms a lamellar structure in bulk with a long period of L ∼ 20 nm, as determined using small-angle X-ray scattering. The relaxation procedure of ultrathin films with an initial film thickness of h = 10 nm during annealing has been followed by atomic force microscopy (AFM). In the experimental temperature range (100-140 °C), the co-polymer dewets to an ultrathin film of itself at about 5 nm because of the strong attraction of both blocks with the substrate. Moreover, the dewetting velocity increases with decreasing annealing temperatures. This novel dewetting kinetics can be explained by a competition effect of the composition fluctuation driven by the microphase separation with the dominated dewetting process during the early stage of the annealing process. While dewetting dominates the relaxation procedure and leads to the rupture of the ultrathin films, the composition fluctuation induced by the microphase separation attempts to stabilize them because of the matching of h to the long period (h ∼ 1/2L). The temperature dependence of these two processes leads to this novel relaxation kinetics of co-polymer thin films. © 2011 American Chemical Society
Formation of Hydro-acoustic Waves in Dissipative Coupled Weakly Compressible Fluids
Abdolali, A.; Kirby, J. T., Jr.; Bellotti, G.
2014-12-01
Recent advances in deep sea measurement technology provide an increasing opportunity to detect and interpret hydro-acoustic waves as a component in improved Tsunami Early Warning Systems (TEWS). For the idealized case of a homogeneous water column above a moving but otherwise rigid bottom (in terms of assessing acoustic wave interaction), the description of the infinite family of acoustic modes is characterized by local water depth at source area; i.e. the period of the first acoustic mode is given by four times the required time for sound to travel from the seabed to the surface. Spreading off from earthquake zone, the dominant spectrum is filtered and enriched by seamounts and barriers. This study focuses on the characteristics of hydro-acoustic waves generated by sudden sea bottom motion in a weakly compressible fluid coupled with an underlying sedimentary layer, where the added complexity of the sediment layer rheology leads to both the lowering of dominant spectral peaks and wave attenuation across the full spectrum. To overcome the computational difficulties of three-dimensional models, we derive a depth integrated equation valid for varying water depth and sediment thickness. Damping behavior of the two layered system is initially taken into account by introducing the viscosity of fluid-like sedimentary layer. We show that low frequency pressure waves which are precursor components of tsunamis contain information of seafloor motion.
Noise-enhanced chaos in a weakly coupled GaAs/(Al,Ga)As superlattice
Yin, Zhizhen; Song, Helun; Zhang, Yaohui; Ruiz-García, Miguel; Carretero, Manuel; Bonilla, Luis L.; Biermann, Klaus; Grahn, Holger T.
2017-01-01
Noise-enhanced chaos in a doped, weakly coupled GaAs /Al0.45Ga0.55As superlattice has been observed at room temperature in experiments as well as in the results of the simulation of nonlinear transport based on a discrete tunneling model. When external noise is added, both the measured and simulated current-versus-time traces contain irregularly spaced spikes for particular applied voltages, which separate a regime of periodic current oscillations from a region of no current oscillations at all. In the voltage region without current oscillations, the electric-field profile consist of a low-field domain near the emitter contact separated by a domain wall consisting of a charge accumulation layer from a high-field regime closer to the collector contact. With increasing noise amplitude, spontaneous chaotic current oscillations appear over a wider bias voltage range. For these bias voltages, the domain boundary between the two electric-field domains becomes unstable and very small current or voltage fluctuations can trigger the domain boundary to move toward the collector and induce chaotic current spikes. The experimentally observed features are qualitatively very well reproduced by the simulations. Increased noise can consequently enhance chaotic current oscillations in semiconductor superlattices.
Liao, Lifu; Yang, Jing; Yuan, Jintao
2007-05-15
A new spectrophotometric titration method coupled with chemometrics for the simultaneous determination of mixtures of weak acids has been developed. In this method, the titrant is a mixture of sodium hydroxide and an acid-base indicator, and the indicator is used to monitor the titration process. In a process of titration, both the added volume of titrant and the solution acidity at each titration point can be obtained simultaneously from an absorption spectrum by least square algorithm, and then the concentration of each component in the mixture can be obtained from the titration curves by principal component regression. The method only needs the information of absorbance spectra to obtain the analytical results, and is free of volumetric measurements. The analyses are independent of titration end point and do not need the accurate values of dissociation constants of the indicator and the acids. The method has been applied to the simultaneous determination of the mixtures of benzoic acid and salicylic acid, and the mixtures of phenol, o-chlorophenol and p-chlorophenol with satisfactory results.
A weakly coupled semiconductor superlattice as a harmonic hypersonic-electrical transducer
International Nuclear Information System (INIS)
Poyser, C L; Akimov, A V; Campion, R P; Kent, A J; Balanov, A G
2015-01-01
We study experimentally and theoretically the effects of high-frequency strain pulse trains on the charge transport in a weakly coupled semiconductor superlattice. In a frequency range of the order of 100 GHz such excitation may be considered as single harmonic hypersonic excitation. While travelling along the axis of the SL, the hypersonic acoustic wavepacket affects the electron tunnelling, and thus governs the electrical current through the device. We reveal how the change of current depends on the parameters of the hypersonic excitation and on the bias applied to the superlattice. We have found that the changes in the transport properties of the superlattices caused by the acoustic excitation can be largely explained using the current–voltage relation of the unperturbed system. Our experimental measurements show multiple peaks in the dependence of the transferred charge on the repetition rate of the strain pulses in the train. We demonstrate that these resonances can be understood in terms of the spectrum of the applied acoustic perturbation after taking into account the multiple reflections in the metal film serving as a generator of hypersonic excitation. Our findings suggest an application of the semiconductor superlattice as a hypersonic-electrical transducer, which can be used in various microwave devices. (paper)
Huang, Yawen; Shao, Ling; Frangi, Alejandro F
2018-03-01
Multi-modality medical imaging is increasingly used for comprehensive assessment of complex diseases in either diagnostic examinations or as part of medical research trials. Different imaging modalities provide complementary information about living tissues. However, multi-modal examinations are not always possible due to adversary factors, such as patient discomfort, increased cost, prolonged scanning time, and scanner unavailability. In additionally, in large imaging studies, incomplete records are not uncommon owing to image artifacts, data corruption or data loss, which compromise the potential of multi-modal acquisitions. In this paper, we propose a weakly coupled and geometry co-regularized joint dictionary learning method to address the problem of cross-modality synthesis while considering the fact that collecting the large amounts of training data is often impractical. Our learning stage requires only a few registered multi-modality image pairs as training data. To employ both paired images and a large set of unpaired data, a cross-modality image matching criterion is proposed. Then, we propose a unified model by integrating such a criterion into the joint dictionary learning and the observed common feature space for associating cross-modality data for the purpose of synthesis. Furthermore, two regularization terms are added to construct robust sparse representations. Our experimental results demonstrate superior performance of the proposed model over state-of-the-art methods.
International Nuclear Information System (INIS)
Wang Zhigang; Zheng Zhiren; Yu Junhua
2007-01-01
The transient gain property of a weak probe field in an asymmetric semiconductor coupled double quantum well structure is reported. The transient process of the system, which is induced by the external coherent coupling field, shows the property of no inverse gain. We find that the transient behavior of the probe field can be tuned by the change of tunneling barrier. Both the amplitude of the transient gain and the frequency of the oscillation can be affected by the lifetime broadening
Energy exchange in strongly coupled plasmas with electron drift
International Nuclear Information System (INIS)
Akbari-Moghanjoughi, M.; Ghorbanalilu, M.
2015-01-01
In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam
International Nuclear Information System (INIS)
Lee, Ho-Jun; Kim, Yun-Gi
2012-01-01
The characteristics of weakly magnetized inductively coupled plasma (MICP) are investigated using a self-consistent simulation based on the drift–diffusion approximation with anisotropic transport coefficients. MICP is a plasma source utilizing the cavity mode of the low-frequency branch of the right-hand circularly polarized wave. The model system is 700 mm in diameter and has a 250 mm gap between the radio-frequency window and wafer holder. The model chamber size is chosen to verify the applicability of this type of plasma source to the 450 mm wafer process. The effects of electron density distribution and external axial magnetic field on the propagation properties of the plasma wave, including the wavelength modulation and refraction toward the high-density region, are demonstrated. The restricted electron transport and thermal conductivity in the radial direction due to the magnetic field result in small temperature gradient along the field lines and off-axis peak density profile. The calculated impedance seen from the antenna terminal shows that MICP has a resistance component that is two to threefold higher than that of ICP. This property is practically important for large-size, low-pressure plasma sources because high resistance corresponds to high power-transfer efficiency and stable impedance matching characteristics. For the 0.665 Pa argon plasma, MICP shows a radial density uniformity of 6% within 450 mm diameter, which is much better than that of nonmagnetized ICP.
Kishine, Jun-ichiro; Yonemitsu, Kenji
1997-01-01
Physical nature of dimensional crossovers in weakly coupled Hubbard chains and ladders has been discussed within the framework of the perturbative renormalization-group approach. The difference between these two cases originates from different universality classes which the corresponding isolated systems belong to.
Akulov, Y A
2002-01-01
Data on the chemical shifts of half-lives for atomic and molecular tritium were used to determine the ratio of axial-vector-to-vector weak coupling constants for beta decay of triton (G sub A /G sub V) sub t = -1.2646 +- 0.0035
Gauge-invariant master field in U(∞) LGT: A pathway from the strong to weak coupling phases
International Nuclear Information System (INIS)
Kazakov, V.A.; Migdal, A.A.
1987-01-01
We propose and test a new computational method for SU(∞) lattice gauge and spin theories. It is based on calculation of the effective action depending only on N (rather than N 2 ) gauge invariant degrees of freedom, by means of some modification of the strong coupling expansion. We show using the example of a one-plaquette model that the stationary point equation for this action describes the weak coupling phase as well as the strong coupling phase. It is argued that such an equation predicts a phase transition for D-dimensional gauge theory, in accordance with Monte Carlo data. (orig.)
Atomic fluorescence spectrometry with the inductively coupled plasma
International Nuclear Information System (INIS)
Omenetto, N.; Winefordner, J.D.
1987-01-01
Atomic fluorescence spectrometry (AFS) is based on the radiational activation of atoms and ions produced in a suitable atomizer (ionizer) and the subsequent measurement of the resulting radiational deactivation, called fluorescence. Atomic fluorescence spectrometry has been of considerable interest to researchers in atomic spectrometry because of its use for both analytical and diagnostic purposes. Unfortunately, the analytical applications of AFS have suffered from the lack of commercial instrumentation until the recent marketing of the Baird multiple-element, hollow cathode lamp-excited inductively coupled plasma system. This chapter is concerned strictly with the use of the inductively coupled plasma (ICP) as a cell and as a source for AFS. Many of the major references concerning the ICP in analytical AFS are categorized in Table 9.1, along with several reviews and diagnostical studies. For more detailed discussions of the fundamental aspects of AFS, the reader is referred to previous reviews
Capacity-coupled multidischarge for atmospheric plasma production
International Nuclear Information System (INIS)
Mase, Hiroshi; Fujiwara, Tamiya; Sato, Noriyoshi
2003-01-01
We propose a method of plasma production by capacity-coupled multidischarge (CCMD) at atmospheric pressure. The discharge gaps in the CCMD consist of a common electrode and a number of compact electrodes (CCE) which are directly coupled with small capacitors for quenching the discharge. A simple CCE structure is provided by a cylindrical capacitor, the inner conductor of which is used as a gap electrode. A short pulse discharge is observed to appear homogeneously at each CCE. A charge transfer for the single-pulsed discharge is 10-100 times as large as that of the conventional dielectric barrier discharge. A high efficiency of ozone production has been confirmed in the CCMD using O 2 gas. A device configuration of the CCMD is quite flexible with respect to its geometrical shape and size. The CCMD could be used to produce plasmas for various kinds of industrial applications at atmospheric pressure
Oblique non-neutral solitary Alfven modes in weakly nonlinear pair plasmas
International Nuclear Information System (INIS)
Verheest, Frank; Lakhina, G S
2005-01-01
The equal charge-to-mass ratio for both species in pair plasmas induces a decoupling of the linear eigenmodes between waves that are charge neutral or non-neutral, also at oblique propagation with respect to a static magnetic field. While the charge-neutral linear modes have been studied in greater detail, including their weakly and strongly nonlinear counterparts, the non-neutral mode has received less attention. Here the nonlinear evolution of a solitary non-neutral mode at oblique propagation is investigated in an electron-positron plasma. Employing the framework of reductive perturbation analysis, a modified Korteweg-de Vries equation (with cubic nonlinearity) for the lowest-order wave magnetic field is obtained. In the linear approximation, the non-neutral mode has its magnetic component orthogonal to the plane spanned by the directions of wave propagation and of the static magnetic field. The linear polarization is not maintained at higher orders. The results may be relevant to the microstructure in pulsar radiation or to the subpulses
Statics and thermodynamics of strongly coupled multicomponent plasmas
International Nuclear Information System (INIS)
Rosenfeld, Y.
1980-01-01
A description of strongly coupled plasmas, in which the direct correlation functions, c/sub i/j(r), are obtained by simple scaling from a universal function, is derived and found to be in full agreement with available computer simulation data, which it thus extends for arbitrary mixtures. It is thermodynamically consistent with the ''ion-sphere'' charge-averaging prediction for the enhancement factors for nuclear reaction rates, the results for which confirm the universality of the bridge functions for mixtures
Experiment on dust acoustic solitons in strongly coupled dusty plasma
International Nuclear Information System (INIS)
Boruah, Abhijit; Sharma, Sumita Kumari; Bailung, Heremba
2015-01-01
Dusty plasma, which contains nanometer to micrometer sized dust particles along with electrons and ions, supports a low frequency wave called Dust Acoustic wave, analogous to ion acoustic wave in normal plasma. Due to high charge and low temperature of the dust particles, dusty plasma can easily transform into a strongly coupled state when the Coulomb interaction potential energy exceeds the dust kinetic energy. Dust acoustic perturbations are excited in such strongly coupled dusty plasma by applying a short negative pulse (100 ms) of amplitude 5 - 20 V to an exciter. The perturbation steepens due to nonlinear effect and forms a solitary structure by balancing dispersion present in the medium. For specific discharge conditions, excitation amplitude above a critical value, the perturbation is found to evolve into a number of solitons. The experimental results on the excitation of multiple dust acoustic solitons in the strongly coupled regime are presented in this work. The experiment is carried out in radio frequency discharged plasma produced in a glass chamber at a pressure 0.01 - 0.1 mbar. Few layers of dust particles (∼ 5 μm in diameter) are levitated above a grounded electrode inside the chamber. Wave evolution is observed with the help of green laser sheet and recorded in a high resolution camera at high frame rate. The high amplitude soliton propagates ahead followed by smaller amplitude solitons with lower velocity. The separation between the solitons increases as time passes by. The characteristics of the observed dust acoustic solitons such as amplitude-velocity and amplitude- Mach number relationship are compared with the solutions of Korteweg-de Vries (KdV) equation. (author)
Jet quenching in a strongly coupled anisotropic plasma
Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego
2012-08-01
The jet quenching parameter of an anisotropic plasma depends on the relative orientation between the anisotropic direction, the direction of motion of the parton, and the direction along which the momentum broadening is measured. We calculate the jet quenching parameter of an anisotropic, strongly coupled {N} = 4 plasma by means of its gravity dual. We present the results for arbitrary orientations and arbitrary values of the anisotropy. The anisotropic value can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. We compare our results to analogous calculations for the real-world quark-gluon plasma and find agreement in some cases and disagreement in others.
Diagnostic studies of ion beam formation in inductively coupled plasma
Energy Technology Data Exchange (ETDEWEB)
Jacobs, Jenee L. [Iowa State Univ., Ames, IA (United States)
2015-01-01
This dissertation describes a variety of studies focused on the plasma and the ion beam in inductively coupled plasma mass spectrometry (ICP-MS). The ability to use ICP-MS for measurements of trace elements in samples requires the analytes to be efficiently ionized. Updated ionization efficiency tables are discussed for ionization temperatures of 6500 K and 7000 K with an electron density of 1 x 10^{15} cm^{-3}. These values are reflective of the current operating parameters of ICP-MS instruments. Calculations are also discussed for doubly charged (M^{2+}) ion formation, neutral metal oxide (MO) ionization, and metal oxide (MO^{+}) ion dissociation for similar plasma temperature values. Ionization efficiency results for neutral MO molecules in the ICP have not been reported previously.
Effective potential kinetic theory for strongly coupled plasmas
Baalrud, Scott D.; Daligault, Jérôme
2016-11-01
The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.
Equilibrium statistical mechanics of strongly coupled plasmas by numerical simulation
International Nuclear Information System (INIS)
DeWitt, H.E.
1977-01-01
Numerical experiments using the Monte Carlo method have led to systematic and accurate results for the thermodynamic properties of strongly coupled one-component plasmas and mixtures of two nuclear components. These talks are intended to summarize the results of Monte Carlo simulations from Paris and from Livermore. Simple analytic expressions for the equation of state and other thermodynamic functions have been obtained in which there is a clear distinction between a lattice-like static portion and a thermal portion. The thermal energy for the one-component plasma has a simple power dependence on temperature, (kT)/sup 3 / 4 /, that is identical to Monte Carlo results obtained for strongly coupled fluids governed by repulsive l/r/sup n/ potentials. For two-component plasmas the ion-sphere model is shown to accurately represent the static portion of the energy. Electron screening is included in the Monte Carlo simulations using linear response theory and the Lindhard dielectric function. Free energy expressions have been constructed for one and two component plasmas that allow easy computation of all thermodynamic functions
International Nuclear Information System (INIS)
Sarkar, S.; Maity, S.
2013-01-01
In this paper we have investigated the effect of weak nonthermality of ion velocity distribution on Jean’s instability in a complex plasma in presence of secondary electrons and negatively charged dust grains. The primary and secondary electron temperatures are assumed equal. Thus plasma under consideration consists of three components: Boltzman distributed electrons, non-thermal ions and negatively charged inertial dust grains. From the linear dispersion relation we have calculated the real frequency and growth rate of the Jean’s mode. Numerically we have found that secondary electron emission destabilizes Jean’s mode when ion nonthermality is weak. (author)
Control of plasma density distribution via wireless power transfer in an inductively coupled plasma
International Nuclear Information System (INIS)
Lee, Hee-Jin; Lee, Hyo-Chang; Kim, Young-Cheol; Chung, Chin-Wook
2013-01-01
With an enlargement of the wafer size, development of large-area plasma sources and control of plasma density distribution are required. To control the spatial distribution of the plasma density, wireless power transfer is applied to an inductively coupled plasma for the first time. An inner powered antenna and an outer resonant coil connected to a variable capacitor are placed on the top of the chamber. As the self-resonance frequency ω r of the resonant coil is adjusted, the power transfer rate from the inner powered coil to the outer resonant coil is changed and the dramatic evolution of the plasma density profile is measured. As ω r of the outer resonant coil changes from the non-resonant condition (where ω r is not the driving angular frequency ω rf ) to the resonant condition (where ω r = ω rf ), the plasma density profile evolves from a convex shape with maximal plasma density at the radial center into a concave shape with maximal plasma density in the vicinity of the resonant antenna coil. This result shows that the plasma density distribution can be successfully controlled via wireless resonance power transfer. (fast track communication)
Gäckle, M.; Merten, D.
2010-12-01
Methods permitting to test the influence of the matrix as well as of its local and temporal distribution on the plasma conditions in laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) are developed. For this purpose, the MS interface is used as plasma probe allowing to investigate the average plasma condition within the ICP zone observed in terms of temporal and spatial distribution of the matrix. Inserted matrix particles, particularly when being atomized and ionized, can cause considerable changes in both electron density and plasma temperature thus influencing the ionization equilibrium of the individual analytes. In this context, the plasma probe covers a region of the plasma for which no local thermodynamic equilibrium can be assumed. The differences in temperature, identified within the region of the plasma observed, amounted up to 3000 K. While in the central region conditions were detected that would not allow efficient atomization and ionization of the matrix, these conditions improve considerably towards the margin of the area observed. Depending on the nature as well as on the temporally and locally variable density of the matrix, this can lead to varying intensity ratios of the analytes and explain fractionation effects. By means of a derived equation it is shown that the deviation of the intensity ratio from the concentration ratio turns out to be more serious the higher the difference of the ionization potential of the analytes observed, the lower the plasma temperature and the higher the matrix concentration within the area observed.
Energy Technology Data Exchange (ETDEWEB)
Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.
2009-04-23
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
International Nuclear Information System (INIS)
Schekochihin, A.A.; Cowley, S.C.; Dorland, W.; Hammett, G.W.; Howes, G.G.; Quataert, E.; Tatsuno, T.
2009-01-01
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the 'inertial range' above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-field strength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
Generalized fluid equations for parallel transport in collisional to weakly collisional plasmas
International Nuclear Information System (INIS)
Zawaideh, E.; Najmabadi, F.; Conn, R.W.
1986-01-01
A new set of two-fluid equations that are valid from collisional to weakly collisional limits is derived. Starting from gyrokinetic equations in flux coordinates with no zero-order drifts, a set of moment equations describing plasma transport along the field lines of a space- and time-dependent magnetic field is derived. No restriction on the anisotropy of the ion distribution function is imposed. In the highly collisional limit, these equations reduce to those of Braginskii, while in the weakly collisional limit they are similar to the double adiabatic or Chew, Goldberger, and Low (CGL) equations [Proc. R. Soc. London, Ser. A 236, 112 (1956)]. The new set of equations also exhibits a physical singularity at the sound speed. This singularity is used to derive and compute the sound speed. Numerical examples comparing these equations with conventional transport equations show that in the limit where the ratio of the mean free path lambda to the scale length of the magnetic field gradient L/sub B/ approaches zero, there is no significant difference between the solution of the new and conventional transport equations. However, conventional fluid equations, ordinarily expected to be correct to the order (lambda/L/sub B/) 2 , are found to have errors of order (lambda/L/sub u/) 2 = (lambda/L/sub B/) 2 /(1-M 2 ) 2 , where L/sub u/ is the scale length of the flow velocity gradient and M is the Mach number. As such, the conventional equations may contain large errors near the sound speed (Mroughly-equal1)
Energy Technology Data Exchange (ETDEWEB)
Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States); Ishizaki, Akihito [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan)
2015-08-14
Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.
Effect of single aerosol droplets on plasma impedance in the inductively coupled plasma
Energy Technology Data Exchange (ETDEWEB)
Chan, George C.-Y., E-mail: gcchan@indiana.edu; Zhu, Zhenli; Hieftje, Gary M.
2012-10-15
The impedance of an inductively coupled plasma was indirectly monitored by two different means-through a RF-probe coil placed inside the torch housing and from tapping the phase-detector signal of the impedance-matching network. During single-droplet introduction, temporal spikes in both the RF-probe coil and the phase-detector signals were readily observed, indicating a momentary change in plasma impedance. The changes in plasma impedance were found to be due solely to plasma perturbation by droplet introduction, and not to an artifact caused by imperfect automatic impedance matching. The temporal changes in plasma impedance were found to be directly proportional to the temporally integrated atomic emission of hydrogen, which is assumed in turn to be directly proportional to the volume of the introduced droplet. A small satellite droplet, with an estimated diameter of 27 {mu}m (i.e., {approx} 10 pL in volume), caused a readily measurable change in plasma impedance. By assuming that the change in RF-probe voltage is directly proportional to the variation in RF power delivered by the load coil, the instantaneous power change coupled to the plasma during single-droplet introduction was estimated. Typical increases in peak RF power and total energy coupled to the plasma, for a single 50-{mu}m droplet introduction, were thereby estimated to be around 8 to 11 W and 0.03 to 0.04 J, respectively. This impedance change was also exploited as a trigger to signal the droplet-introduction event into the plasma. This trigger signal was obtained through a combination of the RF-probe and the phase-detector signals and offered typical jitter from 1 to 2 ms. With the proper choice of a trigger threshold, no trigger misfire resulted and the achievable efficiencies of the trigger signal were 99.95, 97.18 and 74.33% for plasma forward power levels of 900, 1200, and 1500 W, respectively. The baseline noise on the RF-probe coil and the phase-detector signals, which increase with plasma
Dhatt, Sharmistha; Bhattacharyya, Kamal
2012-08-01
Appropriate constructions of Padé approximants are believed to provide reasonable estimates of the asymptotic (large-coupling) amplitude and exponent of an observable, given its weak-coupling expansion to some desired order. In many instances, however, sequences of such approximants are seen to converge very poorly. We outline here a strategy that exploits the idea of fractional calculus to considerably improve the convergence behavior. Pilot calculations on the ground-state perturbative energy series of quartic, sextic, and octic anharmonic oscillators reveal clearly the worth of our endeavor.
Four point function of R-currents in N=4 SYM in the Regge limit at weak coupling
Energy Technology Data Exchange (ETDEWEB)
Bartels, J.; Mischler, A.M.; Salvadore, M. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2008-04-15
We compute, in N = 4 super Yang-Mills, the four point correlation function of R-currents in the Regge limit in the leading logarithmic approximation at weak coupling. Such a correlator is the closest analog to photon-photon scattering within QCD, and there is a well defined procedure to perform the analogous computation at strong coupling via AdS/CFT. The main result of this paper is, on the gauge theory side, the proof of Regge factorization and the explicit computation of the R-current impact factors. (orig.)
International Nuclear Information System (INIS)
Kato, K.G.; Benford, G.; Tzach, D.
1983-01-01
Prodigious quantities of microwave energy are observed uniformly across a wide frequency band when a relativistic electron beam (REB) penetrates a plasma. Measurement calculations are illustrated. A model of Compton-like boosting of ambient plasma waves by beam electrons, with collateral emission of high frequency photons, qualitatively explain the spectra. A transition in spectral behavior is observed from the weak to strong turbulence theories advocated for Type III solar burst radiation, and further into the regime the authors characterize as super-strong REB-plasma interactions
Fluid model of inductively coupled plasma etcher based on COMSOL
International Nuclear Information System (INIS)
Cheng Jia; Ji Linhong; Zhu Yu; Shi Yixiang
2010-01-01
Fluid dynamic models are generally appropriate for the investigation of inductively coupled plasmas. A commercial ICP etcher filled with argon plasma is simulated in this study. The simulation is based on a multiphysical software, COMSOL(TM), which is a partial differential equation solver. Just as with other plasma fluid models, there are drift-diffusion approximations for ions, the quasi-neutrality assumption for electrons movements, reduced Maxwell equations for electromagnetic fields, electron energy equations for electron temperatures and the Navier-Stokes equation for neutral background gas. The two-dimensional distribution of plasma parameters are shown at 200 W of power and 1.33 Pa (10 mTorr) of pressure. Then the profile comparison of the electron number density and temperature with respect to power is illustrated. Finally we believe that there might be some disagreement between the predicted values and the real ones, and the reasons for this difference would be the Maxwellian eedf assumption and the lack of the cross sections of collisions and the reaction rates. (semiconductor physics)
Flow injection analysis in inductively coupled plasma spectrometry
International Nuclear Information System (INIS)
Rosias, Maria F.G.G.
1995-10-01
The main features of flow injection analysis (FIA) as contribution to the inductively coupled plasma (Icp) spectrometry are described. A systematic review of researches using the combined FIA-Icp and the benefits of this association are presented. Flow systems were proposed to perform on-line Icp solution management for multielemental determination by atomic emission spectrometry (Icp-AES) or mass spectrometry. The inclusion of on-line ion exchangers in flow systems for matrix separation and/or analyte preconcentration are presented. Together with those applications the new advent of instruments with facilities for multielement detection on flow injection signals are described. (author). 75 refs., 19 figs
Drag force in a strongly coupled anisotropic plasma
Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego
2012-08-01
We calculate the drag force experienced by an infinitely massive quark propagating at constant velocity through an anisotropic, strongly coupled {N} = 4 plasma by means of its gravity dual. We find that the gluon cloud trailing behind the quark is generally misaligned with the quark velocity, and that the latter is also misaligned with the force. The drag coefficient μ can be larger or smaller than the corresponding isotropic value depending on the velocity and the direction of motion. In the ultra-relativistic limit we find that generically μ ∝ p. We discuss the conditions under which this behaviour may extend to more general situations.
Ion deposition by inductively coupled plasma mass spectrometry
International Nuclear Information System (INIS)
Hu, K.; Houk, R.S.
1996-01-01
An atmospheric pressure inductively coupled plasma (ICP) is used with a quadrupole mass spectrometer (MS) for ion deposition. The deposited element is introduced as a nebulized aqueous solution. Modifications to the ICP-MS device allow generation and deposition of a mass-resolved beam of 165 Ho + at 5x10 12 ions s -1 . The ICP is a universal, multielement ion source that can potentially be used for applications such as deposition of mixtures of widely varying stoichiometry or of alternating layers of different elements. copyright 1996 American Vacuum Society
Magnetohydrodynamic stability of tokamak plasmas with poloidal mode coupling
International Nuclear Information System (INIS)
Shigueoka, H.; Sakanaka, P.H.
1987-01-01
The stability behavior with respect to internal modes is examined for a class of tokamak equilibria with non-circular cross sections. The surfaces of the constant poloidal magnetic flux ψ (R,Z) are obtained numerically by solving the Grad-Shafranov's equation with a specified shape for the outmost plasma surface. The equation of motion for ideal MHD stability is written in a ortogonal coordinate system (ψ, χ, φ). Th e stability analysis is performance numerically in a truncated set of coupled m (poloidal wave number) equations. The calculations involve no approximations, and so all parameters of the equilibrium solution can be arbitrarily varied. (author) [pt
Directory of Open Access Journals (Sweden)
S. A. El-Wakil
2012-01-01
Full Text Available The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV equation for small- but finite-amplitude electrostatic ion-acoustic waves in weakly relativistic plasma consisting of warm ions and isothermal electrons. An algebraic method with computerized symbolic computation is applied in obtaining a series of exact solutions of the KdV equation. Numerical studies have been made using plasma parameters which reveal different solutions, that is, bell-shaped solitary pulses, rational pulses, and solutions with singularity at finite points, which called “blowup” solutions in addition to the propagation of an explosive pulses. The weakly relativistic effect is found to significantly change the basic properties (namely, the amplitude and the width of the ion-acoustic waves. The result of the present investigation may be applicable to some plasma environments, such as ionosphere region.
Weak-microcavity organic light-emitting diodes with improved light out-coupling.
Cho, Sang-Hwan; Song, Young-Woo; Lee, Joon-gu; Kim, Yoon-Chang; Lee, Jong Hyuk; Ha, Jaeheung; Oh, Jong-Suk; Lee, So Young; Lee, Sun Young; Hwang, Kyu Hwan; Zang, Dong-Sik; Lee, Yong-Hee
2008-08-18
We propose and demonstrate weak-microcavity organic light-emitting diode (OLED) displays with improved light-extraction and viewing-angle characteristics. A single pair of low- and high-index layers is inserted between indium tin oxide (ITO) and a glass substrate. The electroluminescent (EL) efficiencies of discrete red, green, and blue weak-microcavity OLEDs are enhanced by 56%, 107%, and 26%, respectively, with improved color purity. Moreover, full-color passive-matrix bottom-emitting OLED displays are fabricated by employing low-index layers of two thicknesses. As a display, the EL efficiency of white color was 27% higher than that of a conventional OLED display.
DEFF Research Database (Denmark)
Piligkos, S.; Slep, L.D.; Weyhermuller, T.
2009-01-01
bands of the minority spin Ni(II) ligand field bands were observed to change sign relative to the parent complex 2. This behavior has been analyzed. The present work hence provides a benchmark study for the application of MCD spectroscopy to weakly interacting transition metal dinners. (C) 2008 Elsevier...
Xu, Dazhi; Cao, Jianshu
2016-08-01
The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.
Trottier, H. D.; Shakespeare, N. H.; Lepage, G. P.; MacKenzie, P. B.
2002-05-01
Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 34 to 164) and couplings (from β~9 to β~60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.
Inductively coupled plasma mass spectrometry (ICP-MS)
International Nuclear Information System (INIS)
Shimamura, Tadashi
1997-01-01
The period of investigation for the previous general remarks on the progress of ICP-MS was from January, 1991 to September, 1993. In the investigation of this time, for the object of the Chemical Abstracts from January, 1994 to September, 1996, retrieval was carried out by using the STN International. As the key words, ICP-MS, Inductively Coupled Plasma Mass Spectrometry or Inductively Coupled Plasma Mass Spectrometer was used. The number of hit was 373 in 1994, 462 in 1995, and 356 as of September, 1996, 1191 in total. The cumulative number of the papers from 1980 to 1996 is shown. It is known how rapidly the ICP-MS has pervaded as the means of analysis. In order to cope with the enormous number of papers, this time, it was decided to do the review by limiting to the papers which were published in the main journals deeply related to analytical chemistry. As to the tendency in the last three years, it is summarized as how to overcome the spectrum interference and matrix effect in the ICP-MS and the trend of using the ICP-MS as the high sensitivity detector for separation techniques. The technical basic research of the ICP-MS on spectrum interference, sample introduction method and others and the analysis of living body samples are reported. (K.I.)
Competition between the symmetry breaking and onset of collapse in weakly coupled atomic condensates
International Nuclear Information System (INIS)
Salasnich, L.; Toigo, F.; Malomed, B. A.
2010-01-01
We analyze the symmetry breaking of matter-wave solitons in a pair of cigar-shaped traps coupled by tunneling of atoms. The model is based on a system of linearly coupled nonpolynomial Schroedinger equations. Unlike the well-known spontaneous-symmetry-breaking (SSB) bifurcation in coupled cubic equations, in the present model the SSB competes with the onset of collapse in this system. Stability regions of symmetric and asymmetric solitons, as well as the collapse region, are identified in the system's parameter space.
Low-pressure water-cooled inductively coupled plasma torch
Seliskar, Carl J.; Warner, David K.
1988-12-27
An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an r.f. induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the r.f. heating coil is disposed around the outer tube above and adjacent to the water inlet.
About the EDF formation in a capacitively coupled argon plasma
International Nuclear Information System (INIS)
Tatanova, M; Thieme, G; Basner, R; Hannemann, M; Golubovskii, Yu B; Kersten, H
2006-01-01
The formation of the electron distribution function (EDF) in the bulk plasma of a capacitively coupled radio-frequency (rf) discharge in argon generated in the plasma-chemical reactor PULVA-INP is investigated experimentally and theoretically. Measurements of the EDF and internal plasma parameters were performed by means of a Langmuir probe at pressures of 0.5-100 Pa and discharge powers of 5-100 W. The observed EDFs have revealed a two-temperature behaviour at low pressures and evolved into a Maxwellian distribution at high gas pressures and large discharge powers. Theoretical determination of the EDF is based on the numerical solution of the Boltzmann kinetic equation in the local and non-local approaches under experimental conditions. The model includes elastic and inelastic electron-atom collisions and electron-electron interactions. Low electron temperatures and relatively high ionization degrees are the features of the PULVA-INP rf discharge. This leads to significant influence of the electron-electron collisions on the EDF formation. The modelled and measured distributions show good agreement in a wide range of discharge parameters, except for a range of low gas pressures, where the stochastic electron heating is intense. Additionally, mechanisms of the EDF formation in the dc and rf discharge were compared under similar discharge conditions
About the EDF formation in a capacitively coupled argon plasma
Energy Technology Data Exchange (ETDEWEB)
Tatanova, M [Institute of Physics, Saint-Petersburg State University, ul. Ulianovskaja 1, 198504 Saint-Petersburg (Russian Federation); Thieme, G [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany); Basner, R [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany); Hannemann, M [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany); Golubovskii, Yu B [Institute of Physics, Saint-Petersburg State University, ul. Ulianovskaja 1, 198504 Saint-Petersburg (Russian Federation); Kersten, H [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany)
2006-08-01
The formation of the electron distribution function (EDF) in the bulk plasma of a capacitively coupled radio-frequency (rf) discharge in argon generated in the plasma-chemical reactor PULVA-INP is investigated experimentally and theoretically. Measurements of the EDF and internal plasma parameters were performed by means of a Langmuir probe at pressures of 0.5-100 Pa and discharge powers of 5-100 W. The observed EDFs have revealed a two-temperature behaviour at low pressures and evolved into a Maxwellian distribution at high gas pressures and large discharge powers. Theoretical determination of the EDF is based on the numerical solution of the Boltzmann kinetic equation in the local and non-local approaches under experimental conditions. The model includes elastic and inelastic electron-atom collisions and electron-electron interactions. Low electron temperatures and relatively high ionization degrees are the features of the PULVA-INP rf discharge. This leads to significant influence of the electron-electron collisions on the EDF formation. The modelled and measured distributions show good agreement in a wide range of discharge parameters, except for a range of low gas pressures, where the stochastic electron heating is intense. Additionally, mechanisms of the EDF formation in the dc and rf discharge were compared under similar discharge conditions.
Modeling of magnetically enhanced capacitively coupled plasma sources: Ar discharges
International Nuclear Information System (INIS)
Kushner, Mark J.
2003-01-01
Magnetically enhanced capacitively coupled plasma sources use transverse static magnetic fields to modify the performance of low pressure radio frequency discharges. Magnetically enhanced reactive ion etching (MERIE) sources typically use magnetic fields of tens to hundreds of Gauss parallel to the substrate to increase the plasma density at a given pressure or to lower the operating pressure. In this article results from a two-dimensional hybrid-fluid computational investigation of MERIE reactors with plasmas sustained in argon are discussed for an industrially relevant geometry. The reduction in electron cross field mobility as the magnetic field increases produces a systematic decrease in the dc bias (becoming more positive). This decrease is accompanied by a decrease in the energy and increase in angular spread of the ion flux to the substrate. Similar trends are observed when decreasing pressure for a constant magnetic field. Although for constant power the magnitudes of ion fluxes to the substrate increase with moderate magnetic fields, the fluxes decreased at larger magnetic fields. These trends are due, in part, to a reduction in the contributions of more efficient multistep ionization
Matrix effects in inductively coupled plasma mass spectrometry
International Nuclear Information System (INIS)
Chen, Xiaoshan.
1995-01-01
The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the open-quotes Fasselclose quotes TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids
ICRF plasma production in Tore Supra: analysis of antenna coupling and plasma properties
International Nuclear Information System (INIS)
Beaumont, B.; Becoulet, A.; Lyssoivan, A.
1999-01-01
A study of RF plasma production frequency range ω. 2ω ci has been undertaken on Tore Supra taking into account antenna coupling predictions of theory and the TEXTOR-94 database. Two scenarios for RF discharges have been tested (fixed frequency of the RF generator): operation with pure toroidal magnetic field, at standard and lower B T and operation in the magnetic configuration with a small vertical (B V ) field superimposed on B T (B V T ). (authors)
Detection of light-matter interaction in the weak-coupling regime by quantum light
Bin, Qian; Lü, Xin-You; Zheng, Li-Li; Bin, Shang-Wu; Wu, Ying
2018-04-01
"Mollow spectroscopy" is a photon statistics spectroscopy, obtained by scanning the quantum light scattered from a source system. Here, we apply this technique to detect the weak light-matter interaction between the cavity and atom (or a mechanical oscillator) when the strong system dissipation is included. We find that the weak interaction can be measured with high accuracy when exciting the target cavity by quantum light scattered from the source halfway between the central peak and each side peak. This originally comes from the strong correlation of the injected quantum photons. In principle, our proposal can be applied into the normal cavity quantum electrodynamics system described by the Jaynes-Cummings model and an optomechanical system. Furthermore, it is state of the art for experiment even when the interaction strength is reduced to a very small value.
Cheng, Heyong; Shen, Lihuan; Liu, Jinhua; Xu, Zigang; Wang, Yuanchao
2018-04-01
Nanoliter high-performance liquid chromatography shows low consumption of solvents and samples, offering one of the best choices for arsenic speciation in precious samples in combination with inuctively coupled plasma mass spectrometry. A systematic investigation on coupling nanoliter high-performance liquid chromatography to inductively coupled plasma mass spectrometry from instrument design to injected sample volume and mobile phase was performed in this study. Nanoflow mobile phase was delivered by flow splitting using a conventional high-pressure pump with reuse of mobile phase waste. Dead volume was minimized to 60 nL for the sheathless interface based on the previously developed nanonebulizer. Capillary columns for nanoliter high-performance liquid chromatography were found to be sensitive to sample loading volume. An apparent difference was also found between the mobile phases for nanoliter and conventional high-performance liquid chromatography. Baseline separation of arsenite, arsenate, monomethylarsenic, and dimethylarsenic was achieved within 11 min on a 15 cm C 18 capillary column and within 12 min on a 25 cm strong anion exchange column. Detection limits of 0.9-1.8 μg/L were obtained with precisions variable in the range of 1.6-4.2%. A good agreement between determined and certified values of a certified reference material of human urine (GBW 09115) validated its accuracy along with good recoveries (87-102%). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multiple spatial scaling and the weak coupling approximation. II. Homogeneous kinetic equation
Energy Technology Data Exchange (ETDEWEB)
Kleinsmith, P E [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)
1977-08-01
A modified form of the Bogoliubov plasma cluster expansion is applied to the derivation of a divergence-free kinetic equation from the BBGKY hierarchy. Special attention is given to the conditions under which the Landau kinetic equation may be derived from this more general formulation.
International Nuclear Information System (INIS)
Bolotin, H.H.; Kennedy, D.L.; Linard, B.J.; Stuchbery, A.E.
1979-01-01
The lifetimes of five excited states in 197 Au up to an excitation energy of 885 keV were measured by the recoil-distance method (RDM). These levels were populated by Coulomb excitation using both 90 MeV 20 Ne and 120 MeV 35 Cl ion beams. The experimentally determined spectroscopy of the low-lying levels 3/2 + (ground state) and 1/2 + , (3/2) + 2 , 5/2 + and 7/2 + at 77.3, 268.8, 278.9, and 547.5 keV excitation energy, respectively, has been critically compared with the detailed predictions of the de-Shalit weak-coupling core-excitation model. When the model is taken to represent the case of a dsub(3/2) proton hole coupled to a 198 Hg core, the model parameters obtained are in accord with the criteria implicit for weak core coupling and, at the same time, are in remarkably good agreement with virtually all measured E2 and M1 transition rates. (Auth.)
The electrical conductivity of a weakly non-ideal, dense plasma
Rosado, R.J.; Leclair, J.; Schram, D.C.
1977-01-01
The electrical conductance of a non-ideal plasma was measured and compared with Spitzer's formula for ideal plasmas and a correction to this formula proposed by Rovinskii. The measured conductance proved to agree better with the Spitzer result
Magnetic Excitations in Weakly Coupled Spin Dimers and Chains Material Cu2Fe2Ge4O13
International Nuclear Information System (INIS)
Masuda, Takatsugu; Zheludev, Andrey I.; Sales, Brian C.; Imai, S.; Uchinokura, K.; Park, S.
2005-01-01
Magnetic excitations in a weakly coupled spin dimers and chains compound Cu 2 Fe 2 Ge 4 O 13 are measured by inelastic neutron scattering. Both structure factors and dipsersion of low-energy excitations up to 10 meV energy transfer are well described by a semiclassical spin wave theory involving interacting Fe 3+ (S=5/2) chains. Additional dispersionsless excitations are observed at higher energies, at ℎω=24 meV, and associated with singlet-triplet transitions within Cu 2+ dimers. Both types of excitations can be understood by treating weak interactions between the Cu 2+ and Fe 3+ subsystems at the level of the mean-field random phase approximation. However, this simple model fails to account for the measured temperature dependence of the 24 meV mode.
International Nuclear Information System (INIS)
Bartels, J.; Wu, T.T.
1988-01-01
This paper contains the first part of a systematic semiclassical analysis of the weak-coupling limit of lattice gauge theories, using the Hamiltonian formulation. The model consists of an N 3 cubic lattice of pure SU(2) Yang-Mills theory, and in this first part we limit ourselves to the subspace of constant field configurations. We investigate the flow of classical trajectories, with a particular emphasis on the existence and location of caustics. There the ground-state wave function is expected to peak. It is found that regions densely filled with caustics are very close to the origin, i.e., in the domain of weak field configurations. This strongly supports the expectation that caustics are essential for quantities of physical interest
Finding structure in the dark: Coupled dark energy, weak lensing, and the mildly nonlinear regime
Miranda, Vinicius; González, Mariana Carrillo; Krause, Elisabeth; Trodden, Mark
2018-03-01
We reexamine interactions between the dark sectors of cosmology, with a focus on robust constraints that can be obtained using only mildly nonlinear scales. While it is well known that couplings between dark matter and dark energy can be constrained to the percent level when including the full range of scales probed by future optical surveys, calibrating matter power spectrum emulators to all possible choices of potentials and couplings requires many computationally expensive n-body simulations. Here we show that lensing and clustering of galaxies in combination with the cosmic microwave background (CMB) are capable of probing the dark sector coupling to the few percent level for a given class of models, using only linear and quasilinear Fourier modes. These scales can, in principle, be described by semianalytical techniques such as the effective field theory of large-scale structure.
Two-qubit gate operations in superconducting circuits with strong coupling and weak anharmonicity
International Nuclear Information System (INIS)
Lü Xinyou; Ashhab, S; Cui Wei; Wu Rebing; Nori, Franco
2012-01-01
We theoretically study the implementation of two-qubit gates in a system of two coupled superconducting qubits. In particular, we analyze two-qubit gate operations under the condition that the coupling strength is comparable with or even larger than the anharmonicity of the qubits. By numerically solving the time-dependent Schrödinger equation under the assumption of negligible decoherence, we obtain the dependence of the two-qubit gate fidelity on the system parameters in the case of both direct and indirect qubit-qubit coupling. Our numerical results can be used to identify the ‘safe’ parameter regime for experimentally implementing two-qubit gates with high fidelity in these systems. (paper)
International Nuclear Information System (INIS)
Kato, K.G.; Benford, G.; Tzach, D.
1983-01-01
Prodigious quantities of microwave energy distributed uniformly across a wide frequency band are observed when a relativistic electron beam (REB) penetrates a plasma. Typical measured values are 20 MW total for Δνapprox. =40 GHz with preliminary observations of bandwidths as large as 100 GHz. An intense annular pulsed REB (Iapprox. =128 kA; rapprox. =3 cm; Δrapprox. =1 cm; 50 nsec FWHM; γapprox. =3) is sent through an unmagnetized or weakly magnetized plasma column (n/sub plasma/approx.10 13 cm -3 ). Beam-to-plasma densities of 0.01 >ω/sub p/ and weak harmonic structure is wholly unanticipated from Langmuir scattering or soliton collapse models. A model of Compton-like boosting of ambient plasma waves by the beam electrons, with collateral emission of high-frequency photons, qualitatively explains these spectra. Power emerges largely in an angle approx.1/γ, as required by Compton mechanisms. As n/sub b//n/sub p/ falls, ω/sub p/-2ω/sub p/ structure and harmonic power ratios consistent with soliton collapse theories appear. With further reduction of n/sub b//n/sub p/ only the ω/sub p/ line persists
The analog of Blanc's law for drift velocities of electrons in gas mixtures in weakly ionized plasma
International Nuclear Information System (INIS)
Chiflikian, R.V.
1995-01-01
The analog of Blanc's law for drift velocities of electrons in multicomponent gas mixtures in weakly ionized spatially homogeneous low-temperature plasma is derived. The obtained approximate-analytical expressions are valid for average electron energy in the 1--5 eV range typical for plasma conditions of low-pressure direct current (DC) discharges. The accuracy of these formulas is ±5%. The analytical criterion of the negative differential conductivity (NDC) of electrons in binary mixtures of gases is obtained. NDC of electrons is predicted in He:Kr and He:Xe rare gas mixtures. copyright 1995 American Institute of Physics
Energy Technology Data Exchange (ETDEWEB)
Patil, S. D., E-mail: sdpatilphy@gmail.com [Department of Physics, Devchand College, Arjunnagar, Dist.: Kolhapur 591 237 (India); Takale, M. V. [Department of Physics, Shivaji University, Kolhapur 416 004 (India)
2016-05-06
This paper presents an influence of light absorption on self-focusing of laser beam propagation in plasma. The differential equation for beam-width parameter is obtained using the Wentzel-Kramers-Brillouin and paraxial approximations through parabolic equation approach. The nonlinearity in dielectric function is assumed to be aroused due to the combined effect of weakly relativistic and ponderomotive regime. To highlight the nature of propagation, behavior of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. The present work is helpful to understand issues related to the beam propagation in laser plasma interaction experiments where light absorption plays a vital role.
Gyergyek, T.; Čerček, M.; Jelić, N.; Stanojević, M.
1993-05-01
A potential relaxation instability (PRI) is modulated by an external signal using an additional grid to modulate the radial plasma potential profile in a magnetized plasma column in a linear magnetized discharge plasma device. It is observed that the electrode current oscillations follow the van der Pol equation with an external forcing term, and the linear growth rate of the instability is measured.
International Nuclear Information System (INIS)
Vio, Laurent; Cretier, Gerard; Rocca, Jean-Louis; Chartier, Frederic; Geertsen, Valerie; Gourgiotis, Alkiviadis; Isnard, Helene
2012-01-01
This study is a large project initiated by the French Nuclear Agency, and concerns the development of a new electrolyte system for the separation of lanthanides by isotachophoresis. This new system is based on a leading electrolyte that incorporates 2-hydroxy-2-methylbutyric acid as complexing agent. The optimization of separation conditions (complexing agent concentration, pH, capillary dimensions, injection conditions, and current intensity) performed by experiments on a commercial capillary instrument with contactless conductivity detection, which allows to improve the separation of 13 lanthanides (La to Lu, except Pm and Ho). We have also directly coupled the isotachophoresis to an inductively coupled plasma mass spectrometer to visualize the mono-elementary elution bands and demonstrate the potentiality of the method for isotope ratio measurements. The application to a simulated solution representative of a fraction of fission products present in a MOX spent fuel is presented in this paper to demonstrate the possible application in future on nuclear fuel samples. (authors)
Formation of Exceptionally Weak C–C Bonds by Metal-Templated Pinacol Coupling
Folkertsma, Emma; Benthem, Sanne H.; Witteman, Léon; Van Slagmaat, Christian A. M. R.; Lutz, Martin; Klein Gebbink, Robertus J.m.; Moret, Marc-etienne
2017-01-01
The ability of the bis(imidazolyl)ketone ligand BMdiPhIK (bis(1-methyl-4,5-diphenylimidazolyl)ketone) to function as a redox active ligand has been investigated. The reduction of [M(BMdiPhIK)Cl2] (M = Fe and Zn) complexes resulted in a pinacol-type coupling to form dinuclear complexes featuring very
Arrigoni, E.
1999-01-01
We study the problem of the crossover from one- to higher-dimensional metals by considering an array of Luttinger liquids (one-dimensional chains) coupled by a weak interchain hopping {\\tp.} We evaluate the exact asymptotic low-energy behavior of the self-energy in the anisotropic infinite-dimension limit. This limit extends the dinamical mean field concept to the case of a chain embedded in a self-consistent medium. The system flows to a Fermi-liquid fixed point for energies below the dimens...
A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas
International Nuclear Information System (INIS)
Munafò, A.; Alfuhaid, S. A.; Panesi, M.; Cambier, J.-L.
2015-01-01
The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients
Coupled tearing modes in plasmas with differential rotation
International Nuclear Information System (INIS)
Dewar, R.L.; Persson, M.
1993-08-01
The global asymptotic matching equations for multiple coupled resistive modes of arbitrary parity in a cylindrical plasma are derived. Three different variational principles are given for the outer region matching data, while the inner-region analysis features a careful treatment of the symmetry-breaking effect of a gradient in the equilibrium current for a zero-β slab model. It is concluded that the usual constant-ψ result remains valid and constrains the matrix matching formalism. The dispersion relation is compared with initial value calculations of a double tearing mode when there are small relative rotation velocities between the rational surfaces. In treating differential rotation within the asymptotic matching formalism, flow is ignored in the outer region and is assumed to affect the inner response solely through a Doppler shift. It is shown that the relative rotation can have a strong stabilizing effect by making all but one rational surface effectively ideal. 40 refs., 6 figs
International Nuclear Information System (INIS)
Tinck, S; Bogaerts, A
2011-01-01
In this paper, an O 2 inductively coupled plasma used for plasma enhanced atomic layer deposition of Al 2 O 3 thin films is investigated by means of modeling. This work intends to provide more information about basic plasma properties such as species densities and species fluxes to the substrate as a function of power and pressure, which might be hard to measure experimentally. For this purpose, a hybrid model developed by Kushner et al is applied to calculate the plasma characteristics in the reactor volume for different chamber pressures ranging from 1 to 10 mTorr and different coil powers ranging from 50 to 500 W. Density profiles of the various oxygen containing plasma species are reported as well as fluxes to the substrate under various operating conditions. Furthermore, different orientations of the substrate, which can be placed vertically or horizontally in the reactor, are taken into account. In addition, special attention is paid to the recombination process of atomic oxygen on the different reactor walls under the stated operating conditions. From this work it can be concluded that the plasma properties change significantly in different locations of the reactor. The plasma density near the cylindrical coil is high, while it is almost negligible in the neighborhood of the substrate. Ion and excited species fluxes to the substrate are found to be very low and negligible. Finally, the orientation of the substrate has a minor effect on the flux of O 2 , while it has a significant effect on the flux of O. In the horizontal configuration, the flux of atomic oxygen can be up to one order of magnitude lower than in the vertical configuration.
Quantum Simulations of Strongly Coupled Quark-Gluon Plasma
International Nuclear Information System (INIS)
Filinov, V.S.; Bonitz, M.; Ivanov, Yu.B.
2013-01-01
particles. This method has been successfully applied to strongly coupled electrodynamic plasmas (EMP). A strongly correlated behavior of the QGP is expected to show up in long-ranged spatial correlations of quarks and gluons which, in fact, may give rise to liquid-like and, possibly, solid-like structures. This expectation is based on a very similar behavior observed in electrodynamic plasmas. We have done already the first calculation of the QGP equation of state, spatial and color pair distribution functions, diffusion coefficients and shear viscosity. The preliminary results has already been reported and discussed at the international conferences and meetings and are accepted for publications. (author)
Beam-plasma coupling physics in support of active experiments
Yakymenko, K.; Delzanno, G. L.; Roytershteyn, V.
2017-12-01
The recent development of compact relativistic accelerators might open up a new era of active experiments in space, driven by important scientific and national security applications. Examples include using electron beams to trace magnetic field lines and establish causality between physical processes occurring in the magnetosphere and those in the ionosphere. Another example is the use of electron beams to trigger waves in the near-Earth environment. Waves could induce pitch-angle scattering and precipitation of energetic electrons, acting as an effective radiation belt remediation scheme. In this work, we revisit the coupling between an electron beam and a magnetized plasma in the framework of linear cold-plasma theory. We show that coupling can occur through two different regimes. In the first, a non-relativistic beam radiates through whistler waves. This is well known, and was in fact the focus of many rockets and space-shuttle campaigns aimed at demonstrating whistler emissions in the eighties. In the second regime, the beam radiates through extraordinary (R-X) modes. Nonlinear simulations with a highly-accurate Vlasov code support the theoretical results qualitatively and demonstrate that the radiated power through R-X modes can be much larger than in the whistler regime. Test-particle simulations in the wave electromagnetic field will also be presented to assess the efficiency of these waves in inducing pitch-angle scattering via wave-particle interactions. Finally, the implications of these results for a rocket active experiment in the ionosphere and for a radiation belt remediation scheme will be discussed.
Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments
Energy Technology Data Exchange (ETDEWEB)
Shin, Dong-Wook, E-mail: shindong37@skku.edu; Kim, Tae Sung; Yoo, Ji-Beom, E-mail: jbyoo@skku.edu
2016-10-15
Highlights: • Substitution doping is a promising method for opening the energy band gap of graphene. • Substitution doping with phosphorus in the graphene lattice has numerous advantage such as high band gap, low formation energy, and high net charge density compared to nitrogen. • V{sub dirac} of Inductively coupled plasma (ICP) and triphenylphosphine (TPP) treated graphene was −57 V, which provided clear evidence of n-type doping. • Substitutional doping of graphene with phosphorus is verified by the XPS spectra of P 2p core level and EELS mapping of phosphorus. • The chemical bonding between P and graphene is very stable for a long time in air (2 months). - Abstract: Graphene is considered a host material for various applications in next-generation electronic devices. However, despite its excellent properties, one of the most important issues to be solved as an electronic material is the creation of an energy band gap. Substitution doping is a promising method for opening the energy band gap of graphene. Herein, we demonstrate the substitutional doping of graphene with phosphorus using inductively coupled plasma (ICP) and triphenylphosphine (TPP) treatments. The electrical transfer characteristics of the phosphorus doped graphene field effect transistor (GFET) have a V{sub dirac} of ∼ − 54 V. The chemical bonding between P and C was clearly observed in XPS spectra, and uniform distribution of phosphorus within graphene domains was confirmed by EELS mapping. The capability for substitutional doping of graphene with phosphorus can significantly promote the development of graphene based electronic devices.
Energy Technology Data Exchange (ETDEWEB)
Baxter, Douglas C., E-mail: douglas.baxter@alsglobal.com [ALS Scandinavia AB, Aurorum 10, 977 75 Lulea (Sweden); Faarinen, Mikko [ALS Scandinavia AB, Aurorum 10, 977 75 Lulea (Sweden); Osterlund, Helene; Rodushkin, Ilia [ALS Scandinavia AB, Aurorum 10, 977 75 Lulea (Sweden); Division of Geosciences, Lulea University of Technology, 977 87 Lulea (Sweden); Christensen, Morten [ALS Scandinavia AB, Maskinvaegen 2, 183 53 Taeby (Sweden)
2011-09-09
Highlights: {center_dot} We determine methylmercury in serum and plasma using isotope dilution calibration. {center_dot} Separation by gas chromatography and detection by inductively coupled plasma mass spectrometry. {center_dot} Data for 50 specimens provides first reference range for methylmercury in serum. {center_dot} Serum samples shown to be stable for 11 months in refrigerator. - Abstract: A method for the determination of methylmercury in plasma and serum samples was developed. The method uses isotope dilution with {sup 198}Hg-labeled methylmercury, extraction into dichloromethane, back-extraction into water, aqueous-phase ethylation, purge and trap collection, thermal desorption, separation by gas chromatography, and mercury isotope specific detection by inductively coupled plasma mass spectrometry. By spiking 2 mL sample with 1.2 ng tracer, measurements in a concentration interval of (0.007-2.9) {mu}g L{sup -1} could be performed with uncertainty amplification factors <2. A limit of quantification of 0.03 {mu}g L{sup -1} was estimated at 10 times the standard deviation of concentrations measured in preparation blanks. Within- and between-run relative standard deviations were <10% at added concentration levels of 0.14 {mu}g L{sup -1}, 0.35 {mu}g L{sup -1} and 2.8 {mu}g L{sup -1}, with recoveries in the range 82-110%. Application of the method to 50 plasma/serum samples yielded a median (mean; range) concentration of methylmercury of 0.081 (0.091; <0.03-0.19) {mu}g L{sup -1}. This is the first time methylmercury has been directly measured in this kind of specimen, and is therefore the first estimate of a reference range.
Electron temperatures of inductively coupled Cl2-Ar plasmas
International Nuclear Information System (INIS)
Fuller, N.C.M.; Donnelly, Vincent M.; Herman, Irving P.
2002-01-01
Trace rare gases optical emission spectroscopy has been used to measure the electron temperature, T e , in a high-density inductively coupled Cl 2 -Ar plasma at 18 mTorr as function of the 13.56 MHz radio frequency power and Ar fraction. Only the Kr and Xe emission lines were used to determine T e , because of evidence of radiation trapping when the Ar emission lines were also used for larger Ar fractions. At 600 W (10.6 W cm-2), T e increases from ∼4.0±0.5 eV to ∼6.0±2.0 eV as the Ar fraction increases from 1% to 96%. In the H (inductive, bright) mode, T e , for a 'neat' chlorine plasma (including 1% of each He/Ne/Ar/Kr/Xe) increases only slightly from ∼3.8 to 4.0 eV as power increases from 450 to 750 W. This increase is much larger for larger Ar fractions, such as from ∼4.0 to 7.3 eV for 78% Ar. Most of these effects can be understood using the fundamental particle balance equation
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling.
Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min
2017-06-11
The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10 - 7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications.
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling
Directory of Open Access Journals (Sweden)
Chen Gong
2017-06-01
Full Text Available The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC and wireless power transfer (WPT. However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically, since the NFC signal (especially for the uplink from the in-body part to the out-body part could be too weak to be detected. Traditional load shift keying (LSK requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK modulation, its downlink data are modulated on the power carrier (2 MHz, while its uplink data are modulated on another carrier (125 kHz. The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10 - 7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications.
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling
Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min
2017-01-01
The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10−7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications. PMID:28604610
The scattering matrix is non-trivial for weakly coupled P(phi)2 models
International Nuclear Information System (INIS)
Osterwalder, K.; Seneor, R.
1976-01-01
It is shown that for sufficiently small coupling constant lambda the lambdaP(phi) 2 quantum field theory models have a scattering matrix which is different from 1. The other method is to write the scattering matrix elements as polynomials in lambda, whose coefficients, though themselves functions of lamda, are uniformly bounded for lambda sufficiently small. The first order term in that expansion is the one given by perturbation theory. (Auth.)
International Nuclear Information System (INIS)
Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor
2010-01-01
Electron-hydrogen scattering in weakly coupled hot-dense plasmas has been investigated using the convergent-close-coupling method. The Yukawa-type Debye-Hueckel potential has been used to describe the plasma screening effects. The target structure, excitation dynamics, and ionization process change dramatically as the screening is increased. Excitation cross sections for the 1s→2s,2p,3s,3p,3d and 2s→2p,3s,3p,3d transitions and total and total ionization cross sections for the scattering from the 1s and 2s states are presented. Calculations cover the energy range from thresholds to high energies (250 eV) for various Debye lengths. We find that as the screening increases, the excitation and total cross sections decrease, while the total ionization cross sections increase.
Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors
Fang, Yan; Yashin, Victor V.; Dickerson, Samuel J.; Balazs, Anna C.
2018-05-01
We consider a network of coupled oscillating units, where each unit comprises a self-oscillating polymer gel undergoing the Belousov-Zhabotinsky (BZ) reaction and an overlaying piezoelectric (PZ) cantilever. Through chemo-mechano-electrical coupling, the oscillations of the networked BZ-PZ units achieve in-phase or anti-phase synchronization, enabling, for example, the storage of information within the system. Herein, we develop numerical and computational models to show that the introduction of capacitors into the BZ-PZ system enhances the dynamical behavior of the oscillating network by yielding additional stable synchronization modes. We specifically show that the capacitors lead to a redistribution of charge in the system and alteration of the force that the PZ cantilevers apply to the underlying gel. Hence, the capacitors modify the strength of the coupling between the oscillators in the network. We utilize a linear stability analysis to determine the phase behavior of BZ-PZ networks encompassing different capacitances, force polarities, and number of units and then verify our findings with numerical simulations. Thus, through analytical calculations and numerical simulations, we determine the impact of the capacitors on the existence of the synchronization modes, their stability, and the rate of synchronization within these complex dynamical systems. The findings from our study can be used to design robotic materials that harness the materials' intrinsic, responsive properties to perform such functions as sensing, actuation, and information storage.
Strongly coupled semiclassical plasma: interaction model and some properties
International Nuclear Information System (INIS)
Baimbetov, N.F.; Bekenov, N.A.
1999-01-01
In the report a fully ionized strongly coupled hydrogen plasma is considered. The density number is considered within range n=n e =n i ≅(10 21 -2·10 25 )sm -3 , and the temperature domian is T≅(5·10 4 -10 6 ) K. The coupling parameter Γ is defined by Γ=e 2 /αk B T, where k B is the Boltzmann constant and e is electrical charge, α=(3/4πn) 1/3 is the average distance between the particles (Wigner-Seitz radius). The dimensionless density parameter r s =α/α B is given in terms of the Bohr radius α B =ℎ 2 /me 2 ∼0.529·10 - 8 sm. The degeneracy parameter for the electron was defined by the ratio between the thermal energy k B T and the Fermi energy E F :Θ=k B T/E F ∼0.54·r s /Γ. The intermediate temperature-density region, where Γ≥1; Θ≅1; T>13.6 eV is examined. A semiclassical effective potential which account for the short-range, quantum diffraction and symmetry effects of charge carriers screening
Polyatomic ions in inductively coupled plasma-mass spectrometry
International Nuclear Information System (INIS)
Ferguson, Jill Wisnewski; Dudley, Timothy J.; Sears, Kyle C.; McIntyre, Sally M.; Gordon, Mark S.; Houk, R.S.
2009-01-01
Several polyatomic ions in inductively coupled plasma-mass spectrometry are studied experimentally and by computational methods. Novel calculations based on spin-restricted open shell second order perturbation theory (ZAPT2) and coupled cluster (CCSD(T)) theory are performed to determine the energies, structures and partition functions of the ions. These values are combined with experimental data to evaluate a dissociation constant and gas kinetic temperature (T gas ) value. In our opinion, the resulting T gas value can sometimes be interpreted to deduce the location where the polyatomic ion of interest is generated. The dissociation of N 2 H + to N 2 + leads to a calculated T gas of 4550 to 4900 K, depending on the computational data used. The COH + to CO + system yields a similar temperature, which is not surprising considering the similar energies and structures of COH + and N 2 H + . The dissociation of H 2 CO + to HCO + leads to a much lower T gas ( 2 COH + to HCOH + generates a T gas value between those from the other H x CO + ions studied here. All of these measured T gas values correspond to formation of extra polyatomic ion in the interface or extraction region. The computations reveal the existence of isomers such as HCO + and COH + , and H 2 CO + and HCOH + , which have virtually the same m/z values and need to be considered in the interpretation of results.
Self-organization observed in either fusion or strongly coupled plasmas
International Nuclear Information System (INIS)
Himura, Haruhiko; Sanpei, Akio
2011-01-01
If self-organization happens in the fusion plasma, the plasma alters its shape by weakening the confining magnetic field. The self-organized plasma is stable and robust, so its configuration is conserved even during transport in asymmetric magnetic fields. The self-organization of the plasma is driven by an electrostatic potential. Examples of the plasma that has such strong potential are non-neutral plasmas of pure ions or electrons and dusty plasmas. In the present paper, characteristic phenomena of strongly coupled plasmas such as particle aggregation and formation of the ordered structure are discussed. (T.I.)
Stochastic mean-field dynamics for fermions in the weak coupling limit
Energy Technology Data Exchange (ETDEWEB)
Lacroix, D
2005-09-15
Assuming that the effect of the residual interaction beyond mean-field is weak and can be treated as a statistical ensemble of two-body interactions, a Markovian quantum jump theory is developed for fermionic systems. In this theory, jumps occur between many-body densities formed of pairs of states D |{phi}{sub a}> <|{phi}{sub b}| / <|{phi}{sub b} | |{phi} {sub a}> where |{phi}{sub a}> and |{phi}{sub b}> are anti-symmetrized products of single-particle states. The underlying Stochastic Mean-Field (SMF) theory is discussed and applied to the monopole vibration of a spherical {sup 40}Ca nucleus under the influence of a statistical ensemble of two-body contact interactions. In this example, the mean-field evolution of one-body observables is recovered by averaging over different stochastic trajectories while fluctuations beyond mean-field are observed. Finally, the nature of the fluctuations is discussed. (author)
Stochastic mean-field dynamics for fermions in the weak coupling limit
International Nuclear Information System (INIS)
Lacroix, D.
2005-09-01
Assuming that the effect of the residual interaction beyond mean-field is weak and can be treated as a statistical ensemble of two-body interactions, a Markovian quantum jump theory is developed for fermionic systems. In this theory, jumps occur between many-body densities formed of pairs of states D |Φ a > b | / b | |Φ a > where |Φ a > and |Φ b > are anti-symmetrized products of single-particle states. The underlying Stochastic Mean-Field (SMF) theory is discussed and applied to the monopole vibration of a spherical 40 Ca nucleus under the influence of a statistical ensemble of two-body contact interactions. In this example, the mean-field evolution of one-body observables is recovered by averaging over different stochastic trajectories while fluctuations beyond mean-field are observed. Finally, the nature of the fluctuations is discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Motie, Iman [Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Bokaeeyan, Mahyar, E-mail: Mehyar9798@gmail.com [Department of Engineering, University of Applied Science and Technology (UAST)-Mohandesan Center, Mashhad (Iran, Islamic Republic of)
2015-02-15
A close analysis of dust charging process in the presence of radio frequency (RF) discharge on low pressure and fully ionized plasma for both weak and strong discharge's electric field is considered. When the electromagnetic waves pass throughout fully ionized plasma, the collision frequency of the plasma is derived. Moreover, the disturbed distribution function of plasma particles in the presence of the RF discharge is obtained. In this article, by using the Krook model, we separate the distribution function in two parts, the Maxwellian part and the perturbed part. The perturbed part of distribution can make an extra current, so-called the accretion rate of electron (or ion) current, towards a dust particle as a function of the average electron-ion collision frequency. It is proven that when the potential of dust grains increases, the accretion rate of electron current experiences an exponential reduction. Furthermore, the accretion rate of electron current for a strong electric field is relatively smaller than that for a weak electric field. The reasons are elaborated.
International Nuclear Information System (INIS)
Eerdunchaolu; Xiao Xin; Han Chao; Xin Wei; Wuyunqimuge
2012-01-01
Based on the Huybrechts' linear-combination operator, effects of thermal lattice vibration on the effective potential of weak-coupling bipolaron in semiconductor quantum dots are studied by using the LLP variational method and quantum statistical theory. The results show that the absolute value of the induced potential of the bipolaron increases with increasing the electron-phonon coupling strength, but decreases with increasing the temperature and the distance of electrons, respectively; the absolute value of the effective potential increases with increasing the radius of the quantum dot, electron-phonon coupling strength and the distance of electrons, respectively, but decreases with increasing the temperature; the temperature and electron-phonon interaction have the important influence on the formation and state properties of the bipolaron: the bipolarons in the bound state are closer and more stable when the electron-phonon coupling strength is larger or the temperature is lower; the confinement potential and coulomb repulsive potential between electrons are unfavorable to the formation of bipolarons in the bound state. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Electron acceleration by electromagnetic irradiation of a weakly-collisional plasma
International Nuclear Information System (INIS)
Karfidov, D.M.; Lukina, N.A.; Sergeychev, K.F.
1989-01-01
In this paper, electron acceleration is investigated experimentally in both a homogeneous and an inhomogeneous plasma. In the first case acceleration is produced by development of a parametric instability, while in the second case acceleration in a plasma resonance field is used. It is demonstrated that multiple electron passes through a resonant field will produce and accelerated electron energy spectrum characterized by the effective temperature. It is established that the electron replacement current flowing in the interaction region between the plasma and a spatially-limited microwave field excites ion-acoustic turbulence in plasma and also produces an anomalously low thermal conductivity and an anomalously high resistivity
International Nuclear Information System (INIS)
Callas, J.L.
1987-05-01
The goal of this thesis is to determine experimentally the cross section for nu/sub μ/e → nu/sub μ/e scattering from a sample of over 100 expected nu/sub μ/e → nu/sub μ/e events collected by the E734 neutrino detector in BNL wide band neutrino beam. By combining these results with results from an anti-neutrino determination of the cross section for anti nu/sub μ/e → anti nu/sub μ/e scattering in the form of a ratio of cross sections, the weak coupling constants for the electron, g/sub V/ and g/sub A/ can be determined in a model independent way to within a four fold ambiguity where three of the ambiguities can be eliminated by results from e + e - experiments. The predictions of the Standard Model for the weak coupling constants can then be tested and a precise determination of the electroweak mixing parameter, sin 2 θ/sub W/ can be made
International Nuclear Information System (INIS)
Feu, W H M; Villas-Boas, J M; Cury, L A; Guimaraes, P S S; Vieira, G S; Tanaka, R Y; Passaro, A; Pires, M P; Landi, S M; Souza, P L
2009-01-01
A study of magnetotunnelling in weakly coupled multi-quantum wells reveals a new phenomenon which constitutes a kind of memory effect in the sense that the electrical resistance of the sample after application of the magnetic field is different from before and contains the information that a magnetic field was applied previously. The change in the electric field domain configuration triggered by the magnetic field was compared for two samples, one strictly periodic and another with a thicker quantum well inserted into the periodic structure. For applied biases at which two electric field domains are present in the sample, as the magnetic field is increased a succession of discontinuous reductions in the electrical resistance is observed due to the magnetic field-induced rearrangement of the electric field domains, i.e. the domain boundary jumps from well to well as the magnetic field is changed. The memory effect is revealed for the aperiodic structure as the electric field domain configuration triggered by the magnetic field remains stable after the field is reduced back to zero. This effect is related to the multi-stability in the current-voltage characteristics observed in some weakly coupled multi-quantum well structures.
A bridge between weak and strong coupling regions: BRS symmetries as a guiding principle
International Nuclear Information System (INIS)
Shintani, M.
1987-04-01
By imposing extended BRS symmetries on the Yang-Mills Lagrangian, we obtained two types of BRS invariant Lagrangians, i.e. Lagrangians of the non-gauge type and the gauge type. A Lagrangian of the non-gauge type, which was previously obtained by us, can yield the linearly rising potential between a quark and anti-quark pair at the one-loop level. By smoothly relating the running coupling constant in the confining region to that in the asymptotically free region, we deduce a relationship between the string tensions and Λ QCD , which shows good agreement with experiments. (author). 20 refs, 1 fig
DEFF Research Database (Denmark)
Jacobsen, Jens Christian Brings; Aalkjær, Christian; Matchkov, Vladimir
2008-01-01
development of force known as vasomotion. We present experimental data showing a considerable heterogeneity in cellular calcium dynamics in the vascular wall. In stimulated vessels, some SMCs remain quiescent, whereas others display waves of variable frequency. At the onset of vasomotion, all SMCs...... are enrolled into synchronized oscillation.Simulations of coupled SMCs show that the experimentally observed cellular recruitment, the presence of quiescent cells and the variation in oscillation frequency may arise if the cell population is phenotypically heterogeneous. In this case, quiescent cells can...
Aerosol detection efficiency in inductively coupled plasma mass spectrometry
Hubbard, Joshua A.; Zigmond, Joseph A.
2016-05-01
An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but
Harmonic emission due to the nonlinear coupling of a Gaussian laser and a plasma wave
Energy Technology Data Exchange (ETDEWEB)
Pathak, R; Jain, R K [Department of Mathematics, SSL Jain College, Vidisha, MP, 464001 (India); Parashar, J [Department of Physics, Samrat Ashok Technological Institute, Vidisha, MP, 464001 (India)
2010-04-15
A high-power Gaussian laser propagating through a plasma couples with a large-amplitude plasma wave and undergoes scattering to produce harmonics. The process is sensitive to the phase matching angle between the laser and plasma wave numbers and the plasma wave frequency. For larger harmonics, the phase matching angle is high. The efficiency of the process is comparatively high at higher plasma wave frequencies.
Could a Weak Coupling Massless SU(5) Theory Underly the Standard Model S-Matrix
White, Alan R.
2011-04-01
The unitary Critical Pomeron connects to a unique massless left-handed SU(5) theory that, remarkably, might provide an unconventional underlying unification for the Standard Model. Multi-regge theory suggests the existence of a bound-state high-energy S-Matrix that replicates Standard Model states and interactions via massless fermion anomaly dynamics. Configurations of anomalous wee gauge boson reggeons play a vacuum-like role. All particles, including neutrinos, are bound-states with dynamical masses (there is no Higgs field) that are formed (in part) by anomaly poles. The contributing zero-momentum chirality transitions break the SU(5) symmetry to vector SU(3)⊗U(1) in the S-Matrix. The high-energy interactions are vector reggeon exchanges accompanied by wee boson sums (odd-signature for the strong interaction and even-signature for the electroweak interaction) that strongly enhance couplings. The very small SU(5) coupling, αQUD ≲ 1/120, should be reflected in small (Majorana) neutrino masses. A color sextet quark sector, still to be discovered, produces both Dark Matter and Electroweak Symmetry Breaking. Anomaly color factors imply this sector could be produced at the LHC with large cross-sections, and would be definitively identified in double pomeron processes.
Observables in muon capture on 23Na and the effective weak couplings ga and gp
International Nuclear Information System (INIS)
Johnson, B.L.; Gorringe, T.P.; Armstrong, D.S.; Bauer, J.; Hasinoff, M.D.; Kovash, M.A.; Measday, D.F.; Moftah, B.A.; Porter, R.; Wright, D.H.
1996-01-01
We report measurements of capture rates and hyperfine dependences in muon capture on 23 Na to various states in Ne and F isotopes. We also report comparisons of the capture rates and hyperfine dependences for six 23 Na → 23 Ne transitions with the 1s-0d shell model with the empirical effective interaction of Brown and Wildenthal and the realistic effective interaction of Kuo and Brown. Fits to the data with the Brown and Wildenthal interaction yield an effective coupling g a = -1.01 ± 0.07 and an effective coupling ratio g p /g a = 6.5 ± 2.4. The value of g a is consistent with values of g a extracted from β + /β - decay and (p,n)/(n,p) charge exchange data, and the value of g p /g a is consistent with the predictions of PCAC and pion-pole dominance. We evaluate the nuclear model dependence of these values of g a and g p /g a and examine the role of the Gamow-Teller and other matrix elements in the 23 Na → 23 Ne transitions. copyright 1996 The American Physical Society
van Londen, L.; Goekoop, J.G.; Kerkhof, G.A.; Zwindeman, K.H.; Wiegant, V.M.; de Wied, D.
2001-01-01
Earlier work has shown that plasma vasopressin levels of depressed patients were higher than those of healthy controls. The aim of the present study was to determine whether plasma vasopressin levels were correlated to parameters of the circadian rhythm. 41 patients with major depression (aged 22-77
Microwave power coupling in a surface wave excited plasma
Directory of Open Access Journals (Sweden)
Satyananda Kar
2015-01-01
Full Text Available In recent decades, different types of plasma sources have been used for various types of plasma processing, such as, etching and thin film deposition. The critical parameter for effective plasma processing is high plasma density. One type of high density plasma source is Microwave sheath-Voltage combination Plasma (MVP. In the present investigation, a better design of MVP source is reported, in which over-dense plasma is generated for low input microwave powers. The results indicate that the length of plasma column increases significantly with increase in input microwave power.
Determination of the coherence length in high-mobility semiconductor-coupled Josephson weak links
International Nuclear Information System (INIS)
Kleinsasser, A.W.
1991-01-01
A Nb-InAs-Nb superconductor-semiconductor-superconductor weak link based on a high-mobility homoepitaxial n-InAs film was reported recently [Akazaki, Kawakami, and Nittu J. Appl. Phys. 66, 6121 (1989)]. Measurements of the electron concentration, effective mass, and mobility allowed the coherence length in the normal link to be calculated. The mobility was high enough that the dirty limit was not applicable in the temperature range (∼2--7 K) over which the device critical current was measured. The temperature dependence of the critical current could not be fit by the usual theoretical form, even though an expression for the coherence length was used that should be applicable in both the clean and dirty limits. In this paper is demonstrated an excellent fit to the data, obtained by using the magnitude of the coherence length as a fitting parameter and assuming the dirty limit temperature dependence. This implies a coherence length proportional to T -1/2 but far shorter than that calculated from the known material parameters. It is suggested that a different scaling length may apply in high-mobility devices
International Nuclear Information System (INIS)
Topin, S.; Baglan, N.; Aupiais, J.
2009-01-01
Full text: Aiming to investigate plutonium speciation at trace levels, we coupled capillary electrophoresis, a high resolution separation technique with inductively coupled plasma mass spectrometry, a detector with high sensitivity for plutonium. The research work performed to optimize the coupling is discussed based on the following criteria: the migration time, the resolution and the detection limit. The capabilities of the analytical tool are demonstrated by determining thermodynamic constants for pentavalent plutonium, and neptunium as a reference, in the presence of inorganic ligands. (author)
Activating persulfate by Fe⁰ coupling with weak magnetic field: performance and mechanism.
Xiong, Xinmei; Sun, Bo; Zhang, Jing; Gao, Naiyun; Shen, Jimin; Li, Jialing; Guan, Xiaohong
2014-10-01
Weak magnetic field (WMF) and Fe(0) were proposed to activate PS synergistically (WMF-Fe(0)/PS) to degrade dyes and aromatic contaminants. The removal rates of orange G (OG) by WMF-Fe(0)/PS generally decreased with increasing initial pH (3.0-10.0) and increased with increasing Fe(0) (0.5-3.0 mM) or PS dosages (0.5-3.0 mM). Compared to its counterpart without WMF, the WMF-Fe(0)/PS process could induce a 5.4-28.2 fold enhancement in the removal rate of OG under different conditions. Moreover, the application of WMF significantly enhanced the decolorization rate and the mineralization of OG. The degradation rates of caffeine, 4-nitrophenol, benzotriazole and diuron by Fe(0)/PS were improved by 2.1-11.1 fold due to the superimposed WMF. Compared to many other sulfate radical-based advanced oxidation technologies under similar reaction conditions, WMF-Fe(0)/PS technology could degrade selected organic contaminants with much greater rates. Sulfate radical was identified to be the primary radical species responsible for the OG degradation at pH 7.0 in WMF-Fe(0)/PS process. This study unraveled that the presence of WMF accelerated the corrosion rate of Fe(0) and thus promoted the release of Fe(2+), which induced the increased production of sulfate radicals from PS and promoted the degradation of organic contaminants. Employing WMF to enhance oxidation capacity of Fe(0)/PS is a novel, efficient, promising and environmental-friendly method since it does not need extra energy and costly reagents. Copyright © 2014 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Trottier, H.D.; Shakespeare, N.H.; Lepage, G.P.; Mackenzie, P.B.
2002-01-01
Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 3 4 to 16 4 ) and couplings (from β≅9 to β≅60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported
Wang, X. Y.; Dou, J. M.; Shen, H.; Li, J.; Yang, G. S.; Fan, R. Q.; Shen, Q.
2018-03-01
With the continuous strengthening of power grids, the network structure is becoming more and more complicated. An open and regional data modeling is used to complete the calculation of the protection fixed value based on the local region. At the same time, a high precision, quasi real-time boundary fusion technique is needed to seamlessly integrate the various regions so as to constitute an integrated fault computing platform which can conduct transient stability analysis of covering the whole network with high accuracy and multiple modes, deal with the impact results of non-single fault, interlocking fault and build “the first line of defense” of the power grid. The boundary fusion algorithm in this paper is an automatic fusion algorithm based on the boundary accurate coupling of the networking power grid partition, which takes the actual operation mode for qualification, complete the boundary coupling algorithm of various weak coupling partition based on open-loop mode, improving the fusion efficiency, truly reflecting its transient stability level, and effectively solving the problems of too much data, too many difficulties of partition fusion, and no effective fusion due to mutually exclusive conditions. In this paper, the basic principle of fusion process is introduced firstly, and then the method of boundary fusion customization is introduced by scene description. Finally, an example is given to illustrate the specific algorithm on how it effectively implements the boundary fusion after grid partition and to verify the accuracy and efficiency of the algorithm.
Theory of Weak Bipolar Fields and Electron Holes with Applications to Space Plasmas
International Nuclear Information System (INIS)
Goldman, Martin V.; Newman, David L.; Mangeney, Andre
2007-01-01
A theoretical model of weak electron phase-space holes is used to interpret bipolar field structures observed in space. In the limit eφ max /T e max sech 4 (x/α), where φ max depends on the derivative of the trapped distribution at the separatrix, while α depends only on a screening integral over the untrapped distribution. Idealized trapped and passing electron distributions are inferred from the speed, amplitude, and shape of satellite waveform measurements of weak bipolar field structures
Dispersion functions for weakly relativistic magnetized plasmas in inhomogeneous magnetic field
International Nuclear Information System (INIS)
Gaelzer, R.; Schneider, R.S.; Ziebell, L.F.
1995-01-01
The study of wave propagation and absorption inhomogeneous plasmas can be made by using a formulation in which the dielectric properties of the plasma are described by an effective dielectric tensor which incorporates inhomogeneity effects, inserted into a dispersion relation which is formally the same as that of an homogeneous plasma. We have recently utilized this formalism in the study of electron cyclotron absorption in inhomogeneous media, both in the case of homogeneous magnetic field and in the case of inhomogeneous magnetic field. In the present paper we resume the study of the case with inhomogeneous magnetic field, in order to introduce a generalized dispersion function useful for the case of a Maxwellian plasma, and discuss some of its properties. (author). 10 refs
Analysis of plasma coupling with the prototype DIII-D ICRF antenna
International Nuclear Information System (INIS)
Ryan, P.M.; Hoffman, D.J.; Bigelow, T.S.; Baity, F.W.; Gardner, W.L.; Mayberry, M.J.; Rothe, K.E.
1988-01-01
Coupling to plasma in the H-mode is essential to the success of future ignited machines such as CIT. To ascertain voltage and current requirements for high-power second harmonic heating (2 MW in a 35- by 50-cm port), coupling to the DIII-D tokamak with a prototype compact loop antenna has been measured. The results show good loading for L-mode and limiter plasmas, but coupling 2 MW to an H-mode plasma demands voltages and currents near the limit of present technology. We report the technological analysis and progress that allow coupling of these power densities. 5 refs., 4 figs
Analysis of plasma coupling with the prototype DIII-D ICRF antenna
Energy Technology Data Exchange (ETDEWEB)
Ryan, P.M.; Hoffman, D.J.; Bigelow, T.S.; Baity, F.W.; Gardner, W.L.; Mayberry, M.J.; Rothe, K.E.
1988-01-01
Coupling to plasma in the H-mode is essential to the success of future ignited machines such as CIT. To ascertain voltage and current requirements for high-power second harmonic heating (2 MW in a 35- by 50-cm port), coupling to the DIII-D tokamak with a prototype compact loop antenna has been measured. The results show good loading for L-mode and limiter plasmas, but coupling 2 MW to an H-mode plasma demands voltages and currents near the limit of present technology. We report the technological analysis and progress that allow coupling of these power densities. 5 refs., 4 figs.
Basic Properties of Plasma-Neutral Coupling in the Solar Atmosphere
Goodman, Michael
2015-04-01
Plasma-neutral coupling (PNC) in the solar atmosphere concerns the effects of collisions between charged and neutral species’. It is most important in the chromosphere, which is the weakly ionized, strongly magnetized region between the weakly ionized, weakly magnetized photosphere and the strongly ionized, strongly magnetized corona. The charged species’ are mainly electrons, protons, and singly charged heavy ions. The neutral species’ are mainly hydrogen and helium. The resistivity due to PNC can be several orders of magnitude larger than the Spitzer resistivity. This enhanced resistivity is confined to the chromosphere, and provides a highly efficient dissipation mechanism unique to the chromosphere. PNC may play an important role in many processes such as heating and acceleration of plasma; wave generation, propagation, and dissipation; magnetic reconnection; maintaining the near force-free state of the corona; and limiting mass flux into the corona. It might play a major role in chromospheric heating, and be responsible for the existence of the chromosphere as a relatively thin layer of plasma that emits a net radiative flux 10-100 times greater than that of the overlying corona. The required heating rate might be generated by Pedersen current dissipation triggered by the rapid increase of magnetization with height in the lower chromosphere, where most of the net radiative flux is emitted. Relatively cool regions of the chromosphere might be regions of minimal Pedersen current dissipation due to smaller magnetic field strength or perpendicular current density. This talk will discuss PNC from an MHD point of view, and focus on the basic parameters that determine its effectiveness. These parameters are ionization fraction, magnetization, and the electric field that drives current perpendicular to the magnetic field. By influencing this current and the electric field that drives it, PNC directly influences the rate at which energy is exchanged between the
Observation of Ion Acoustic Waves Excited by Drift Waves in a Weakly Magnetized Plasma
International Nuclear Information System (INIS)
Tsukabayashi, Isao; Sato, Sugiya; Nakamura, Yoshiharu
2003-01-01
Spontaneous fluctuations excited by drift waves are investigated experimentally in magnetic multi-pole plasma. The magnetic multi-pole has been widely used in DP devices and so on. It was observed that the high level of density fluctuations was generated by the drift instability near a magnetic multi-pole or a dipole magnet. The waves propagate to the middle plasma region forming the envelope train waves
Abney, Drew H; Paxton, Alexandra; Dale, Rick; Kello, Christopher T
2015-11-01
Successful interaction requires complex coordination of body movements. Previous research has suggested a functional role for coordination and especially synchronization (i.e., time-locked movement across individuals) in different types of human interaction contexts. Although such coordination has been shown to be nearly ubiquitous in human interaction, less is known about its function. One proposal is that synchrony supports and facilitates communication (Topics Cogn Sci 1:305-319, 2009). However, questions still remain about what the properties of coordination for optimizing communication might look like. In the present study, dyads worked together to construct towers from uncooked spaghetti and marshmallows. Using cross-recurrence quantification analysis, we found that dyads with loosely coupled gross body movements performed better, supporting recent work suggesting that simple synchrony may not be the key to effective performance (Riley et al. 2011). We also found evidence that leader-follower dynamics-when sensitive to the specific role structure of the interaction-impact task performance. We discuss our results with respect to the functional role of coordination in human interaction.
Pairing and superconductivity from weak to strong coupling in the attractive Hubbard model
International Nuclear Information System (INIS)
Toschi, A; Barone, P; Capone, M; Castellani, C
2005-01-01
The finite-temperature phase diagram of the attractive Hubbard model is studied by means of the dynamical mean-field theory. We first consider the normal phase of the model by explicitly frustrating the superconducting ordering. In this case, we obtain a first-order pairing transition between a metallic phase and a paired phase formed by strongly coupled incoherent pairs. The transition line ends in a finite temperature critical point, but a crossover between two qualitatively different solutions still occurs at higher temperature. Comparing the superconducting- and the normal-phase solutions, we find that the superconducting instability always occurs before the pairing transition in the normal phase, i.e. T c > T pairing . Nevertheless, the high-temperature phase diagram at T > T c is still characterized by a crossover from a metallic phase to a preformed pair phase. We characterize this crossover by computing different observables that can be used to identify the pseudogap region, like the spin susceptibility, the specific heat and the single-particle spectral function
International Nuclear Information System (INIS)
Rosenberg, Marelene
2005-01-01
Our theoretical research on dust-plasma interactions has concentrated on three main areas: (a)studies of grain charging and applications; (b) waves and instabilities in weakly correlated dusty plasma with applications to space and laboratory plasmas; (c) waves in strongly coupled dusty plasmas.
Kolmogorov flow in two dimensional strongly coupled dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Gupta, Akanksha; Ganesh, R., E-mail: ganesh@ipr.res.in; Joy, Ashwin [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 382 428 (India)
2014-07-15
Undriven, incompressible Kolmogorov flow in two dimensional doubly periodic strongly coupled dusty plasma is modelled using generalised hydrodynamics, both in linear and nonlinear regime. A complete stability diagram is obtained for low Reynolds numbers R and for a range of viscoelastic relaxation time τ{sub m} [0 < τ{sub m} < 10]. For the system size considered, using a linear stability analysis, similar to Navier Stokes fluid (τ{sub m} = 0), it is found that for Reynolds number beyond a critical R, say R{sub c}, the Kolmogorov flow becomes unstable. Importantly, it is found that R{sub c} is strongly reduced for increasing values of τ{sub m}. A critical τ{sub m}{sup c} is found above which Kolmogorov flow is unconditionally unstable and becomes independent of Reynolds number. For R < R{sub c}, the neutral stability regime found in Navier Stokes fluid (τ{sub m} = 0) is now found to be a damped regime in viscoelastic fluids, thus changing the fundamental nature of transition of Kolmogorov flow as function of Reynolds number R. A new parallelized nonlinear pseudo spectral code has been developed and is benchmarked against eigen values for Kolmogorov flow obtained from linear analysis. Nonlinear states obtained from the pseudo spectral code exhibit cyclicity and pattern formation in vorticity and viscoelastic oscillations in energy.
Feedback control of chlorine inductively coupled plasma etch processing
International Nuclear Information System (INIS)
Lin Chaung; Leou, K.-C.; Shiao, K.-M.
2005-01-01
Feedback control has been applied to poly-Si etch processing using a chlorine inductively coupled plasma. Since the positive ion flux and ion energy incident upon the wafer surface are the key factors that influence the etch rate, the ion current and the root mean square (rms) rf voltage on the wafer stage, which are measured using an impedance meter connected to the wafer stage, are adopted as the controlled variables to enhance etch rate. The actuators are two 13.56 MHz rf power generators, which adjust ion density and ion energy, respectively. The results of closed-loop control show that the advantages of feedback control can be achieved. For example, with feedback control, etch rate variation under the transient chamber wall condition is reduced roughly by a factor of 2 as compared to the open-loop case. In addition, the capability of the disturbance rejection was also investigated. For a gas pressure variation of 20%, the largest etch rate variation is about 2.4% with closed-loop control as compared with as large as about 6% variation using open-loop control. Also the effect of ion current and rms rf voltage on etch rate was studied using 2 2 factorial design whose results were used to derive a model equation. The obtained formula was used to adjust the set point of ion current and rf voltage so that the desired etch rate was obtained
Uranium quantification in semen by inductively coupled plasma mass spectrometry
Todorov, Todor I.; Ejnik, John W.; Guandalini, Gustavo S.; Xu, Hanna; Hoover, Dennis; Anderson, Larry W.; Squibb, Katherine; McDiarmid, Melissa A.; Centeno, Jose A.
2013-01-01
In this study we report uranium analysis for human semen samples. Uranium quantification was performed by inductively coupled plasma mass spectrometry. No additives, such as chymotrypsin or bovine serum albumin, were used for semen liquefaction, as they showed significant uranium content. For method validation we spiked 2 g aliquots of pooled control semen at three different levels of uranium: low at 5 pg/g, medium at 50 pg/g, and high at 1000 pg/g. The detection limit was determined to be 0.8 pg/g uranium in human semen. The data reproduced within 1.4–7% RSD and spike recoveries were 97–100%. The uranium level of the unspiked, pooled control semen was 2.9 pg/g of semen (n = 10). In addition six semen samples from a cohort of Veterans exposed to depleted uranium (DU) in the 1991 Gulf War were analyzed with no knowledge of their exposure history. Uranium levels in the Veterans’ semen samples ranged from undetectable (<0.8 pg/g) to 3350 pg/g. This wide concentration range for uranium in semen is consistent with known differences in current DU body burdens in these individuals, some of whom have retained embedded DU fragments.
Chemical characterization of materials by inductively coupled plasma mass spectrometry
International Nuclear Information System (INIS)
Deb, S.B.; Nagar, B.K.; Saxena, M.K.; Ramakumar, K.L.
2009-11-01
An Inductively Coupled Plasma Mass Spectrometer was procured for trace elemental determination in diverse samples. Since its installation a number of analytical measurements have been carried out on different sample matrices. These include chemical quality control measurements of nuclear fuel and other materials such as uranium metal. Uranium peroxide, ADU, ThO 2 , UO 2 ; isotopic composition of B, Li; chemical characterization of simulated ThO 2 + 2%UO 2 fuel; sodium zirconium phosphate and trace metallic elements in zirconium; Antarctica rock samples and wet phosphoric acid. Necessary separation methodologies required for effective removal of matrix were indigenously developed. In addition, a rigorous analytical protocol, which includes various calibration methodologies such as mass calibration, response calibration, detector cross calibration and linearity check over the entire dynamic range of 109 required for quantitative determination of elements at trace and ultra trace level,, has been standardized. This report summarizes efforts of RACD that have been put in this direction for the application of ICP-MS for analytical measurements. (author)
Plasma breakdown in a capacitively-coupled radiofrequency argon discharge
Smith, H. B.; Charles, C.; Boswell, R. W.
1998-10-01
Low pressure, capacitively-coupled rf discharges are widely used in research and commercial ventures. Understanding of the non-equilibrium processes which occur in these discharges during breakdown is of interest, both for industrial applications and for a deeper understanding of fundamental plasma behaviour. The voltage required to breakdown the discharge V_brk has long been known to be a strong function of the product of the neutral gas pressure and the electrode seperation (pd). This paper investigates the dependence of V_brk on pd in rf systems using experimental, computational and analytic techniques. Experimental measurements of V_brk are made for pressures in the range 1 -- 500 mTorr and electrode separations of 2 -- 20 cm. A Paschen-style curve for breakdown in rf systems is developed which has the minimum breakdown voltage at a much smaller pd value, and breakdown voltages which are significantly lower overall, than for Paschen curves obtained from dc discharges. The differences between the two systems are explained using a simple analytic model. A Particle-in-Cell simulation is used to investigate a similar pd range and examine the effect of the secondary emission coefficient on the rf breakdown curve, particularly at low pd values. Analytic curves are fitted to both experimental and simulation results.
-3000 V dc bias Ti oxidation by inductively coupled plasma
International Nuclear Information System (INIS)
Valencia-Alvarado, R; Lopez-Callejas, R; Barocio, S R; Mercado-Cabrera, A; Pena-Eguiluz, R; Munoz-Castro, A E; De la Piedad-Beneitez, A; De la Rosa-Vazquez, J
2008-01-01
Broadening the outer oxidized layer of titanium by means of plasmas commands considerable interest in the biomedical research area due to its potential in human biocompatibility enhancement. Some early results of titanium substrate superficial oxidation experiments which have been conducted in a cylindrical vessel inductively coupled to a 13.56 MHz RF generator with a 500 W output are presented. The oxidation process was carried out in a 20 % oxygen and 80 % argon mixture at work pressures in the 5x10 -3 -1 mbar range, while the samples were dc biased down to -3000 V. The substrate temperature appears to be directly dependent on this voltage, reaching 685 deg. C at the maximum bias when a diffusive oxidation process gives rise to the TiO 2 and α-TiO rutile phases. These were characterized by means of x-ray diffraction and scanning electron microscopy revealing atomic percentage concentrations of oxygen, with respect to those of titanium, between 68 and 13 at.%. The optimum modified layer depth reached 5 μm at a 5x10 -2 mbar work pressure.
International Nuclear Information System (INIS)
Fu Xi; Zhou Guanghui
2009-01-01
We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors. Both the quantum wire and conductors are described by a hard-wall confining potential. Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density j s,xi T and j s,yi T (i = x, y, z). We find that the elements j T s,xx and j T s,yy have a antisymmetrical relation and the element j T s,yz has the same amount level as j s,xx T and j s,yy T . We also find a net linear spin current density, which has peaks at the center of quantum wire. The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.
WiLE: A Mathematica package for weak coupling expansion of Wilson loops in ABJ(M) theory
Preti, M.
2018-06-01
We present WiLE, a Mathematica® package designed to perform the weak coupling expansion of any Wilson loop in ABJ(M) theory at arbitrary perturbative order. For a given set of fields on the loop and internal vertices, the package displays all the possible Feynman diagrams and their integral representations. The user can also choose to exclude non planar diagrams, tadpoles and self-energies. Through the use of interactive input windows, the package should be easily accessible to users with little or no previous experience. The package manual provides some pedagogical examples and the computation of all ladder diagrams at three-loop relevant for the cusp anomalous dimension in ABJ(M). The latter application gives also support to some recent results computed in different contexts.
Institute of Scientific and Technical Information of China (English)
FU Xi; ZHOU Guang-Hui
2009-01-01
We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors.Both the quantum wire and conductors are described by a hard-wall confining potential.Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density jTs,xi and jTs,yi(I = x, y, z).We lind that the elements jTs,xx and jTs,yy have a antisymmetrical relation and the element jTs,yz has the same amount level jTs,xx and jTs,yy.We also find a net linear spin current density, which has peaks at the center of quantum wire.The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.
International Nuclear Information System (INIS)
Hafeez-Ur-Rehman; Mahmood, S.; Shah, Asif; Haque, Q.
2011-01-01
Two dimensional (2D) solitons are studied in a plasma system comprising of relativistically streaming ions, kappa distributed electrons, and positrons. Kadomtsev-Petviashvili (KP) equation is derived through the reductive perturbation technique. Analytical solution of the KP equation has been studied numerically and graphically. It is noticed that kappa parameters of electrons and positrons as well as the ions relativistic streaming factor have an emphatic influence on the structural as well as propagation characteristics of two dimensional solitons in the considered plasma system. Our results may be helpful in the understanding of soliton propagation in astrophysical and laboratory plasmas, specifically the interaction of pulsar relativistic wind with supernova ejecta and the transfer of energy to plasma by intense electric field of laser beams producing highly energetic superthermal and relativistic particles [L. Arons, Astrophys. Space Sci. Lib. 357, 373 (2009); P. Blasi and E. Amato, Astrophys. Space Sci. Proc. 2011, 623; and A. Shah and R. Saeed, Plasma Phys. Controlled Fusion 53, 095006 (2011)].
International Nuclear Information System (INIS)
Riseborough, P.S.
1989-01-01
An N-fold-degenerate Hubbard model is examined in the weak-coupling regime. The one-electron Green's function is calculated from a systematic expansion of the irreducible self-energy in powers of 1/N. To lowest order in the expansion, one obtains a trivial mean-field theory. In the next leading order in 1/N, one finds that the dynamics are dominated by bosonlike collective excitations. The resulting expansion has the characteristics of the standard weak-coupling field theory, except the inclusion of the 1/N factors extends the regime of applicability to include Stoner-like enhancement factors which can be N times larger. The joint valence-band photoemission and inverse-photoemission spectrum is given by the trace of the imaginary part of the one-electron Green's function. The electronic spectrum has been calculated by truncating the series expansion for the self-energy in the lowest nontrivial order of 1/N. For small values of the Coulomb interaction between the electrons, the spectrum reduces to the form obtained by calculating the self-energy to second order in the Coulomb interaction. The spectra shows a narrowing of the band in the vicinity of the Fermi level and long high-energy band tails. When the boson spectrum softens, indicating the vicinity of a phase transition, the electronic spectrum shows the appearance of satellites. The results are compared with experimental observations of anomalies in the electronic spectra of uranium-based systems. The relation between the electronic spectrum and the thermodynamic mass enhancements is also discussed
Giocoli, Carlo; Moscardini, Lauro; Baldi, Marco; Meneghetti, Massimo; Metcalf, Robert B.
2018-05-01
In this paper, we study the statistical properties of weak lensing peaks in light-cones generated from cosmological simulations. In order to assess the prospects of such observable as a cosmological probe, we consider simulations that include interacting Dark Energy (hereafter DE) models with coupling term between DE and Dark Matter. Cosmological models that produce a larger population of massive clusters have more numerous high signal-to-noise peaks; among models with comparable numbers of clusters those with more concentrated haloes produce more peaks. The most extreme model under investigation shows a difference in peak counts of about 20% with respect to the reference ΛCDM model. We find that peak statistics can be used to distinguish a coupling DE model from a reference one with the same power spectrum normalisation. The differences in the expansion history and the growth rate of structure formation are reflected in their halo counts, non-linear scale features and, through them, in the properties of the lensing peaks. For a source redshift distribution consistent with the expectations of future space-based wide field surveys, we find that typically seventy percent of the cluster population contributes to weak-lensing peaks with signal-to-noise ratios larger than two, and that the fraction of clusters in peaks approaches one-hundred percent for haloes with redshift z ≤ 0.5. Our analysis demonstrates that peak statistics are an important tool for disentangling DE models by accurately tracing the structure formation processes as a function of the cosmic time.
Cannon, Jonathan
2017-01-01
Mutual information is a commonly used measure of communication between neurons, but little theory exists describing the relationship between mutual information and the parameters of the underlying neuronal interaction. Such a theory could help us understand how specific physiological changes affect the capacity of neurons to synaptically communicate, and, in particular, they could help us characterize the mechanisms by which neuronal dynamics gate the flow of information in the brain. Here we study a pair of linear-nonlinear-Poisson neurons coupled by a weak synapse. We derive an analytical expression describing the mutual information between their spike trains in terms of synapse strength, neuronal activation function, the time course of postsynaptic currents, and the time course of the background input received by the two neurons. This expression allows mutual information calculations that would otherwise be computationally intractable. We use this expression to analytically explore the interaction of excitation, information transmission, and the convexity of the activation function. Then, using this expression to quantify mutual information in simulations, we illustrate the information-gating effects of neural oscillations and oscillatory coherence, which may either increase or decrease the mutual information across the synapse depending on parameters. Finally, we show analytically that our results can quantitatively describe the selection of one information pathway over another when multiple sending neurons project weakly to a single receiving neuron.
International Nuclear Information System (INIS)
Zigman, V.J.; Milic, B.S.
1982-01-01
The results of recent experimental measurements of the differential cross-section for elastic scattering of electrons on sodium atoms are used to evaluate the electron steady-state distribution function in a weakly ionized, uniform and non-magnetized sodium plasma placed in a d.c. electric field. The field is assumed to be of moderate intensity, so that the thermal motion of the neutrals has to be taken into account in the evaluation of the distribution function. The resulting 'modified Druyvesteinian function' is applied to study the non-potential instabilities arising from the presence of the field in this particular plasma. Threshold drifts for both very slow and slow modes are obtained and the conditions for the onset of instabilities are discussed. It is shown that the thermal motion of the neutrals affects both critical drifts and the angles of propagation. (author)
Self-similar solutions for implosion and reflection of strong and weak shocks in a plasma
International Nuclear Information System (INIS)
Desai, B.N.; Chavda, L.K.
1980-06-01
We present an improved approximation scheme for finding approximate solutions in analytic form to the self-similar equations of gas dynamics. The method gives better agreement with exact results not only for the weak shocks which were considered previously but also for strong shocks for which the previous method gave poor results. We have considered various shock configurations in spherical and cylindrical geometries. (author)
Plasma-based localized defect for switchable coupling applications
International Nuclear Information System (INIS)
Varault, Stefan; Gabard, Benjamin; Sokoloff, Jerome; Bolioli, Sylvain
2011-01-01
We report in this paper experimental measurements in order to validate the concept of switchable electromagnetic band gap filters based on plasma capillaries in the microwave regime. The plasma tube is embedded inside the structure to create a bistable (plasma on or off) punctual defect. We first investigate two kinds of discharge tubes: Ar-Hg and pure Ne, which we then use to experimentally achieve plasma-based reconfigurable applications, namely, a two-port coupler and a two-port demultiplexer.
3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems
Rauf, Shahid
2008-10-01
Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.
Stimulated Brillouin backscattering losses in weakly inhomogeneous laser-produced plasmas
International Nuclear Information System (INIS)
Eidmann, K.; Brederlow, G.; Brodmann, R.; Petsch, R.; Sigel, R.; Tsarkiris, G.; Volk, R.; Witkowski, S.
1979-02-01
Studies of the reflection from a plane solid target plasma produced with a 1TW iodine laser (lambda = 1.3μm) at pulse durations of 300 ps are presented. The specularly reflected and the backscattered light was observed separately at different angles of incidence, intensities and spot sizes (up to 400 μm). Stimulated Brillouin scattering was identified as the main mechanism for backscattering with saturation at 20 - 30% reflection. (orig.) [de
Proton temperature-anisotropy-driven instabilities in weakly collisional plasmas: Hybrid simulations
Czech Academy of Sciences Publication Activity Database
Hellinger, Petr; Trávníček, Pavel M.
2015-01-01
Roč. 81, č. 1 (2015), 305810103/1-305810103/14 ISSN 0022-3778 R&D Projects: GA ČR GAP209/12/2023 Grant - others:EU(XE) SHOCK Project No. 284515 Institutional support: RVO:67985815 ; RVO:68378289 Keywords : magnetic field * solar wind * mirror instability Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics; BL - Plasma and Gas Discharge Physics (UFA-U) Impact factor: 0.981, year: 2015
Bulk plasma fragmentation in a C4F8 inductively coupled plasma: A hybrid modeling study
International Nuclear Information System (INIS)
Zhao, Shu-Xia; Zhang, Yu-Ru; Gao, Fei; Wang, You-Nian; Bogaerts, Annemie
2015-01-01
A hybrid model is used to investigate the fragmentation of C 4 F 8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. C x F y (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C 4 F 8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C 4 F 8 reaction set used in the model. The C 4 F 8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model
Reznikov, Roman; Diwan, Mustansir; Nobrega, José N; Hamani, Clement
2015-02-01
Most of the available preclinical models of PTSD have focused on isolated behavioural aspects and have not considered individual variations in response to stress. We employed behavioural criteria to identify and characterize a subpopulation of rats that present several features analogous to PTSD-like states after exposure to classical fear conditioning. Outbred Sprague-Dawley rats were segregated into weak- and strong-extinction groups on the basis of behavioural scores during extinction of conditioned fear responses. Animals were subsequently tested for anxiety-like behaviour in the open-field test (OFT), novelty suppressed feeding (NSF) and elevated plus maze (EPM). Baseline plasma corticosterone was measured prior to any behavioural manipulation. In a second experiment, rats underwent OFT, NSF and EPM prior to being subjected to fear conditioning to ascertain whether or not pre-stress levels of anxiety-like behaviours could predict extinction scores. We found that 25% of rats exhibit low extinction rates of conditioned fear, a feature that was associated with increased anxiety-like behaviour across multiple tests in comparison to rats showing strong extinction. In addition, weak-extinction animals showed low levels of corticosterone prior to fear conditioning, a variable that seemed to predict extinction recall scores. In a separate experiment, anxiety measures taken prior to fear conditioning were not predictive of a weak-extinction phenotype, suggesting that weak-extinction animals do not show detectable traits of anxiety in the absence of a stressful experience. These findings suggest that extinction impairment may be used to identify stress-vulnerable rats, thus providing a useful model for elucidating mechanisms and investigating potential treatments for PTSD. Copyright © 2014 Elsevier Ltd. All rights reserved.
Laosunthara, Ampan; Akatsuka, Hiroshi
2016-09-01
In previous study, we experimentally examined physical properties of supersonic flow of weakly ionized expanding arc-jet plasma through an open magnetic field line (Bmax 0.16T). We found supersonic velocity of helium plasma up to Mach 3 and the space potential drop at the end of the magnets. To understand the plasma in numerical point of view, the flows of ion and neutral are treated by particle-based Direct Simulation Monte Carlo (DSMC) method, electron is treated as a fluid. The previous numerical study, we assumed 2 conditions. Ion and electron temperatures were the same (LTE condition). Ion and electron velocities were the same (current-free condition). We found that ion velocity decreased by collision with residual gas molecules (background pressure). We also found that space potential changing with background pressure. In other words, it was indicated that electric field exists and the current-free assumption is not proper. In this study, we add electron continuity and electron momentum equations to obtain electron velocity and space potential. We find that space potential changing with background pressure slightly. It is indicated that electron is essential to space potential formation than ion.
Mapping of coma anisotropies to plasma structures of weak comets: a 3-D hybrid simulation study
Directory of Open Access Journals (Sweden)
N. Gortsas
2009-04-01
Full Text Available The effects of coma anisotropies on the plasma environment of comets have been studied by means of a 3-D hybrid model which treats electrons as a massless, charge-neutralizing fluid, whereas ion dynamics are covered by a kinetic approach. From Earth-based observations as well as from in-situ spacecraft measurements the shape of the coma of many comets is ascertained to be anisotropic. However, most plasma simulation studies deploy a spherically symmetric activity pattern. In this paper anisotropy is studied by considering three different coma shape models. The first model is derived from the Haser model and is characterised by spherically symmetry. This reference model is then compared with two different neutral gas shape models: the dayside restricted model with no nightside activity and a cone shaped model with opening angle of π/2. In all models the integrated surface activity is kept constant. The simulations have been done for the Rosetta target comet 67P/Churyumov-Gerasimenko for two heliocentric distances, 1.30 AU and 3.25 AU. It is found that shock formation processes are modified as a result of increasing spatial confinement. Characteristic plasma structures of comets such as the bow shock, magnetic barrier region and the ion composition boundary exhibit a shift towards the sun. In addition, the cone shaped model leads to a strong increase of the mass-loaded region which in turn leads to a smooth deceleration of the solar wind flow and an increasing degree of mixture between the solar wind and cometary ion species. This creates an additional transport channel of the magnetic field from the magnetic barrier region away which in turn leads to a broadening of this region. In addition, it leads to an ion composition boundary which is only gradually developed.
The stability of weakly collisional plasmas with thermal and composition gradients
DEFF Research Database (Denmark)
Pessah, M.E.; Chakraborty, S.
2013-01-01
and magnitudes of the gradients in the temperature and the mean molecular weight, the plasma can be subject to a wide variety of unstable modes which include modifications to the magnetothermal instability (MTI), the heat-flux-driven buoyancy instability (HBI), and overstable gravity modes previously studied...... in homogeneous media. We also find that there are new modes which are driven by heat conduction and particle diffusion. We discuss the astrophysical implications of our findings for a representative galaxy cluster where helium has sedimented. Our findings suggest that the core insulation that results from...
Weakly nonlinear electromagnetic waves in an electron-ion positron plasma
International Nuclear Information System (INIS)
Rizzato, F.B.; Schneider, R.S.; Dillenburg, D.
1987-01-01
The modulation of a high-frequency electromagnetic wave which is circulary polarized and propagates in a plasma made up of electrons, ions and positrons is investigated. The coefficient of the cubic nonlinear term in the Schroedinger equation may change sign as the relative particle concentrations vary, and consequently a marginal state of modulation instability may exist. To described the system in the neighbourhood of this state an appropriate equation is derived. Particular stationary solutions of this equation are envelope solitary waves, envelope Kinks and envelope hole solitary waves. The dependence of the amplitude of the solutions on the propagation velocity and the particle concentrations is discussed. (author) [pt
Plasma flow measurement using directional Langmuir probe under weakly ion-magnetized conditions
Energy Technology Data Exchange (ETDEWEB)
Nagaoka, Kenichi; Okamoto, Atsushi [Graduate School of Science, Nagoya Univ., Nagoya (Japan); Yoshimura, Shinji; Tanaka, Masayoshi Y. [National Inst. for Fusion Science, Toki, Gifu (Japan)
2000-07-01
It is both experimentally and theoretically demonstrated that ion flow velocity at an arbitrary angle with respect to the magnetic field can be measured with a directional Langmuir probe. Based on the symmetry argument, we show that the effect of magnetic field on directional probe current is exactly canceled in determining the ion flow velocity, and obtain the generalized relation between flow velocity and directional probe currents valid for any flowing direction. The absolute value of the flow velocity is determined by an in situ calibration method of the probe. The applicability limit of the present method to a strongly ion-magnetized plasma is experimentally examined. (author)
Solitary waves in dusty plasmas with weak relativistic effects in electrons and ions
Energy Technology Data Exchange (ETDEWEB)
Kalita, B. C., E-mail: bckalita123@gmail.com [Gauhati University, Department of Mathematics (India); Choudhury, M., E-mail: choudhurymamani@gmail.com [Handique Girls’ College, Department of Mathematics (India)
2016-10-15
Two distinct classes of dust ion acoustic (DIA) solitary waves based on relativistic ions and electrons, dust charge Z{sub d} and ion-to-dust mass ratio Q’ = m{sub i}/m{sub d} are established in this model of multicomponent plasmas. At the increase of mass ratio Q’ due to increase of relativistic ion mass and accumulation of more negative dust charges into the plasma causing decrease of dust mass, relativistic DIA solitons of negative potentials are abundantly observed. Of course, relativistic compressive DIA solitons are also found to exist simultaneously. Further, the decrease of temperature inherent in the speed of light c causes the nonlinear term to be more active that increases the amplitude of the rarefactive solitons and dampens the growth of compressive solitons for relatively low and high mass ratio Q’, respectively. The impact of higher initial streaming of the massive ions is observed to identify the point of maximum dust density N{sub d} to yield rarefactive relativistic solitons of maximum amplitude.
Matthaeus, W. H.; Yang, Y.; Servidio, S.; Parashar, T.; Chasapis, A.; Roytershteyn, V.
2017-12-01
Turbulence cascade transfers energy from large scale to small scale but what happens once kinetic scales are reached? In a collisional medium, viscosity and resistivity remove fluctuation energy in favor of heat. In the weakly collisional solar wind, (or corona, m-sheath, etc.), the sequence of events must be different. Heating occurs, but through what mechanisms? In standard approaches, dissipation occurs though linear wave modes or instabilities and one seeks to identify them. A complementary view is that cascade leads to several channels of energy conversion, interchange and spatial rearrangement that collectively leads to production of internal energy. Channels may be described using compressible MHD & multispecies Vlasov Maxwell formulations. Key steps are: Conservative rearrangement of energy in space; Parallel incompressible and compressible cascades - conservative rearrangment in scale; electromagnetic work on particles that drives flows, both macroscopic and microscopic; and pressure-stress interactions, both compressive and shear-like, that produces internal energy. Examples given from MHD, PIC simulations and MMS observations. A more subtle issue is how entropy is related to this degeneration (or, "dissipation") of macroscopic, fluid-scale fluctuations. We discuss this in terms of Boltzmann and thermodynamic entropies, and velocity space effects of collisions.
Impact of plasma tube wall thickness on power coupling in ICP sources
International Nuclear Information System (INIS)
Nawaz, Anuscheh; Herdrich, Georg
2009-01-01
The inductively heated plasma source at the Institute of Space Systems was investigated with respect to the wall thickness of the plasma tube using an air plasma. For this, the wall thickness of the quartz tube was reduced in steps from 2.5 to 1.25 mm. The significance of reducing the wall thickness was analyzed with respect to both the maximum allowable tube cooling power and the coupling efficiency. While the former results from thermal stresses in the tube's wall, the latter results from a minimization of magnetic field losses near the coil turns of the inductively coupled plasma (ICP) source. Analysis of the thermal stress could be validated by experimental data, i.e. the measurement of the tube cooling power when the respective tube structure failed. The coupling efficiency could be assessed qualitatively by simplified models, and the experimental data recorded show that coupling was improved far more than predicted.
International Nuclear Information System (INIS)
Lu Hai; Wei Chao; Wang Jun; Chao Jingbo; Zhou Tao; Chen Dazhou
2005-01-01
A high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) was combined, and the chromatography conditions were optimized. The stability and homogeneity of a trimethyllead reference material were determined using this method. (authors)
Hyperpolarizabilities of one and two electron ions under strongly coupled plasma
International Nuclear Information System (INIS)
Sen, Subhrangsu; Mandal, Puspajit; Kumar Mukherjee, Prasanta; Fricke, Burkhard
2013-01-01
Systematic investigations on the hyperpolarizabilities of hydrogen and helium like ions up to nuclear charge Z = 7 under strongly coupled plasma environment have been performed. Variation perturbation theory has been adopted to evaluate such properties for the one and two electron systems. For the two electron systems coupled Hartree-Fock theory, which takes care of partial electron correlation effects, has been utilised. Ion sphere model of the strongly coupled plasma, valid for ionic systems only, has been adopted for estimating the effect of plasma environment on the hyperpolarizability. The calculated free ion hyperpolarizability for all the systems is in good agreement with the existing data. Under confinement hyperpolarizabilities of one and two electron ions show interesting trend with respect to plasma coupling strength.
A Concept for Directly Coupled Pulsed Electromagnetic Acceleration of Plasmas
Thio, Y.C. Francis; Cassibry, Jason T.; Eskridge, Richard; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Plasma jets with high momentum flux density are required for a variety of applications in propulsion research. Methods of producing these plasma jets are being investigated at NASA Marshall Space Flight Center. The experimental goal in the immediate future is to develop plasma accelerators which are capable of producing plasma jets with momentum flux density represented by velocities up to 200 km/s and ion density up to 10(exp 24) per cu m, with sufficient precision and reproducibility in their properties, and with sufficiently high efficiency. The jets must be sufficiently focused to allow them to be transported over several meters. A plasma accelerator concept is presented that might be able to meet these requirements. It is a self-switching, shaped coaxial pulsed plasma thruster, with focusing of the plasma flow by shaping muzzle current distribution as in plasma focus devices, and by mechanical tapering of the gun walls. Some 2-D MHD modeling in support of the conceptual design will be presented.
Improved documentation of spectral lines for inductively coupled plasma emission spectrometry
Doidge, Peter S.
2018-05-01
An approach to improving the documentation of weak spectral lines falling near the prominent analytical lines used in inductively coupled plasma optical emission spectrometry (ICP-OES) is described. Measurements of ICP emission spectra in the regions around several hundred prominent lines, using concentrated solutions (up to 1% w/v) of some 70 elements, and comparison of the observed spectra with both recent published work and with the output of a computer program that allows calculation of transitions between the known energy levels, show that major improvements can be made in the coverage of spectral atlases for ICP-OES, with respect to "classical" line tables. It is argued that the atomic spectral data (wavelengths, energy levels) required for the reliable identification and documentation of a large majority of the weak interfering lines of the elements detectable by ICP-OES now exist, except for most of the observed lines of the lanthanide elements. In support of this argument, examples are provided from a detailed analysis of a spectral window centered on the prominent Pb II 220.353 nm line, and from a selected line-rich spectrum (W). Shortcomings in existing analyses are illustrated with reference to selected spectral interferences due to Zr. This approach has been used to expand the spectral-line library used in commercial ICP-ES instruments (Agilent 700-ES/5100-ES). The precision of wavelength measurements is evaluated in terms of the shot-noise limit, while the absolute accuracy of wavelength measurement is characterised through comparison with a small set of precise Ritz wavelengths for Sb I, and illustrated through the identification of Zr III lines; it is further shown that fractional-pixel absolute wavelength accuracies can be achieved. Finally, problems with the wavelengths and classifications of certain Au I lines are discussed.
Electron screening and kinetic-energy oscillations in a strongly coupled plasma
International Nuclear Information System (INIS)
Chen, Y.C.; Simien, C.E.; Laha, S.; Gupta, P.; Martinez, Y.N.; Mickelson, P.G.; Nagel, S.B.; Killian, T.C.
2004-01-01
We study equilibration of strongly coupled ions in an ultracold neutral plasma produced by photoionizing laser-cooled and trapped atoms. By varying the electron temperature, we show that electron screening modifies the equilibrium ion temperature. Even with few electrons in a Debye sphere, the screening is well described by a model using a Yukawa ion-ion potential. We also observe damped oscillations of the ion kinetic energy that are a unique feature of equilibration of a strongly coupled plasma
Slow wave antenna coupling to ion Bernstein waves for plasma heating in ICRF
International Nuclear Information System (INIS)
Sy, W.N-C.; Amano, T.; Ando, R.; Fukuyama, A.; Watari, T.
1984-10-01
The coupling of ICRF power from a slow wave antenna to a plasma with finite temperature is examined theoretically and compared to an independent computer calculation. It is shown that such antennas can be highly efficient in trasferring most of the antenna power directly to ion Bernstein waves, with only a very small fraction going into fast waves. The potentiality of this coupling scheme for plasma heating in ICRF is briefly discussed. (author)
Ideal gas behavior of a strongly-coupled complex (dusty) plasma
Oxtoby, Neil P.; Griffith, Elias J.; Durniak, Céline; Ralph, Jason F.; Samsonov, Dmitry
2012-01-01
In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly-coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.
Plasma myostatin is only a weak predictor for weight maintenance in obese adults.
Tsioga, M N; Oikonomou, D; Vittas, S; Kalscheuer, H; Roeder, E; Wintgens, K F; Nawroth, P P; Wolfrum, C; Rudofsky, G
2015-09-01
Predicting an individual's success in a non-surgical weight loss approach is a demanding need since obesity is becoming an epidemic burden. A possible predictive marker is myostatin, a member of the transforming growth factor b superfamily, which has been shown to be an important regulator of muscle homeostasis. In the present study, we analyzed myostatin as a marker to predict weight loss of patients that participated in a 2 phased weight reduction program, comprising a weight loss period of 12 weeks and a weight stabilization period of 40 weeks. Therefore, 62 obese individuals with a mean BMI of 40.6 kg/m(2) were included. Plasma myostatin was measured with ELISA at the beginning (T0), after weight loss (T1) and at the end of the program (T2). Although significant weight loss of -23.9±14.9 kg was achieved, myostatin did not change significantly during the program (T0>T1: p=0.46; T1>T2: p=0.70; T0>T2: p=0.57). Myostatin at baseline did neither negatively correlate with the achieved weight loss in the weight reduction phase (T0>T1: r=0.27, p=0.16) nor with weight loss during the whole program (T0>T2: r=0.20, p=0.29). Only a minor correlation with myostatin levels after weight loss with weight regain during maintenance period was detected. (T1>T2: r=-0.37, p=0.05). Plasma myostatin might be suitable in predicting weight regain after marked weight loss, but no association with weight loss was observed in patients undergoing a non-surgical weight loss program. Therefore, myostatin does not seem to be a predictor for success in non-surgical weight loss approaches. © Georg Thieme Verlag KG Stuttgart · New York.
Caridad, José M.; Winters, Sinéad; McCloskey, David; Duesberg, Georg S.; Donegan, John F.; Krstić, Vojislav
2017-03-01
Reproducible and enhanced optical detection of molecules in low concentrations demands simultaneously intense and homogeneous electric fields acting as robust signal amplifiers. To generate such sophisticated optical near-fields, different plasmonic nanostructures were investigated in recent years. These, however, exhibit either high enhancement factor (EF) or spatial homogeneity but not both. Small interparticle gaps or sharp nanostructures show enormous EFs but no near-field homogeneity. Meanwhile, approaches using rounded and separated monomers create uniform near-fields with moderate EFs. Here, guided by numerical simulations, we show how arrays of weakly-coupled Ag nanohelices achieve both homogeneous and strong near-field enhancements, reaching even the limit forreproducible detection of individual molecules. The unique near-field distribution of a single nanohelix consists of broad hot-spots, merging with those from neighbouring nanohelices in specific array configurations and generating a wide and uniform detection zone (“hot-volume”). We experimentally assessed these nanostructures via surface-enhanced Raman spectroscopy, obtaining a corresponding EF of ~107 and a relative standard deviation <10%. These values demonstrate arrays of nanohelices as state-of-the-art substrates for reproducible optical detection as well as compelling nanostructures for related fields such as near-field imaging.
International Nuclear Information System (INIS)
Pando L, C.L.; Doedel, E.J.
2004-07-01
We investigate the onset of chaotic dynamics of the one-dimensional discrete nonlinear Schroedinger equation (DNLSE) with periodic boundary conditions in the presence of a single on-site defect. This model describes a ring of weakly- coupled Bose-Einstein condensates. We focus on the transition to global stochasticity in three different scenarios as the defect is changed. We make use of a suitable Poincare section and continuation methods. Numerical continuation enables us to find different families of stationary solutions, where certain bifurcations lead to global stochasticity. The global stochasticity is characterized by chaotic symbolic synchronization between the population inversions of certain pairs of condensates. We have seen that the Poincare cycles are useful to gain insight in the dynamics of this problem. Indeed, the return maps of the Poincare cycles have been used successfully to follow the motion along the stochastic layers of different resonances in the chaotic self-trapping regime. Moreover, the time series of the Poincare cycles suggests that in the global stochasticity regime the dynamics is, to some extent, Markovian, in spite of the fact that the condensates are phase locked with almost the same phase. This phase locking induces a peculiar local interference of the matter waves of the condensates. (author)
Spectral emission from the alkali inductively-coupled plasma: Theory and experiment
Directory of Open Access Journals (Sweden)
R. Bazurto
2018-04-01
Full Text Available The weakly-ionized, alkali inductively-coupled plasma (ICP has a long history as the light source for optical pumping. Today, its most significant application is perhaps in the rubidium atomic frequency standard (RAFS, arguably the workhorse of atomic timekeeping in space, where it is crucial to the RAFS’ functioning and performance (and routinely referred to as the RAFS’ “rf-discharge lamp”. In particular, the photon flux from the lamp determines the signal-to-noise ratio of the device, and variations in ICP brightness define the long-term frequency stability of the atomic clock as a consequence of the ac-Stark shift (i.e., the light-shift. Given the importance of Rb atomic clocks to diverse satellite navigation systems (e.g., GPS, Galileo, BeiDou – and thereby the importance of alkali ICPs to these systems – it is somewhat surprising to find that the physical processes occurring within the discharge are not well understood. As a consequence, researchers do not understand how to improve the spectral emission from the lamp except at a trial-and-error level, nor do they fully understand the nonlinear mechanisms that result in ICP light instability. Here, we take a first step in developing an intuitive, semi-quantitative model of the alkali rf-discharge lamp, and we perform a series of experiments to validate the theory’s predictions.
Spectral emission from the alkali inductively-coupled plasma: Theory and experiment
Bazurto, R.; Huang, M.; Camparo, J.
2018-04-01
The weakly-ionized, alkali inductively-coupled plasma (ICP) has a long history as the light source for optical pumping. Today, its most significant application is perhaps in the rubidium atomic frequency standard (RAFS), arguably the workhorse of atomic timekeeping in space, where it is crucial to the RAFS' functioning and performance (and routinely referred to as the RAFS' "rf-discharge lamp"). In particular, the photon flux from the lamp determines the signal-to-noise ratio of the device, and variations in ICP brightness define the long-term frequency stability of the atomic clock as a consequence of the ac-Stark shift (i.e., the light-shift). Given the importance of Rb atomic clocks to diverse satellite navigation systems (e.g., GPS, Galileo, BeiDou) - and thereby the importance of alkali ICPs to these systems - it is somewhat surprising to find that the physical processes occurring within the discharge are not well understood. As a consequence, researchers do not understand how to improve the spectral emission from the lamp except at a trial-and-error level, nor do they fully understand the nonlinear mechanisms that result in ICP light instability. Here, we take a first step in developing an intuitive, semi-quantitative model of the alkali rf-discharge lamp, and we perform a series of experiments to validate the theory's predictions.
International Nuclear Information System (INIS)
Zigman, V.J.; Milic, B.S.
1995-01-01
The dependence of the attenuation of the longitudinal electron Langmuir waves (ω ∼ ω pe ), in collisional weakly ionized, non-magnetized, uniform and steady-state plasmas placed in external d.c. electric field, on the angle θ between the wave vector and the electron drift rvec u is studied on the ground of the kinetic theory and the linear perturbation technique. The collisionless and collisional contributions to the overall attenuation were evaluated separately, as it was shown previously that in certain instances the elastic e - n encounters (with collision frequency ν en , ν en much-lt ω pe ) may attenuate the Langmuir waves more efficiently than the Landau mechanism. More precisely, it was found that, for any fixed value of E 0 /n n , there exists a critical value of the ratio n n /X above which the collisional attenuation prevails
International Nuclear Information System (INIS)
Becker, Johanna Sabine
2002-01-01
Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new
Nonlinear Excitations in Strongly-Coupled Fermi-Dirac Plasmas
Akbari-Moghanjoughi, M.
2012-01-01
In this paper we use the conventional quantum hydrodynamics (QHD) model in combination with the Sagdeev pseudopotential method to explore the effects of Thomas-Fermi nonuniform electron distribution, Coulomb interactions, electron exchange and ion correlation on the large-amplitude nonlinear soliton dynamics in Fermi-Dirac plasmas. It is found that in the presence of strong interactions significant differences in nonlinear wave dynamics of Fermi-Dirac plasmas in the two distinct regimes of no...
Electro-acoustic coupling in a plasma gas
Sutton, Yvonne
2011-01-01
Sound emission using an ionised medium has been the subject of research since the beginning of the 20th century. The mechanism involves modulation at an audio frequency of an electrically sustained plasma discharge. In a similar effect to lightning, the charged particles in the plasma respond to the varying energy input. With this comes gas heating, molecular excitation, light emission from relaxation of excited molecular states and acoustic emission resulting from thermal expansion within, a...
DEFF Research Database (Denmark)
Bendahl, Lars; Gammelgaard, Bente; Jons, O.
2001-01-01
A demountable direct injection high efficiency nebulizer operating at low sample uptake rates was developed and used for coupling of capillary electrophoresis (CE) with inductively coupled plasma mass spectrometry (ICP-MS). When the nebulizer was used for continuous sample introduction, detection...
DEFF Research Database (Denmark)
Kaiser, W.; Bach, L.; Reithmaier, J. P.
2003-01-01
37 GHz direct-modulation bandwidth could be obtained by a multi-section design with an integrated weakly coupled DBR grating. The laser shows side mode suppression ratios of 45 dB and output powers exceeding 20 mW....
International Nuclear Information System (INIS)
Milic, B.S.; Gajic, D.Z.
1994-01-01
Quasi-perpendicular electromagnetic ion-cyclotron (QPEMIC) modes and instabilities are studied, on the ground of linear theory of perturbations and kinetic equations with BGK collision integrals, in weakly ionized, low-β and moderately non-isothermal plasmas placed in non-parallel electric and magnetic fields. The magnetization is assumed to be sufficiently high to cut off the perpendicular steady-state current. Special attention is given to evaluation of magnitudes of the threshold drifts required for the onset of instabilities. It is found that these drifts are smaller than those for the corresponding quasi-perpendicular electrostatic ion-cyclotron (QPESIC) instabilities studied previously for the same type of plasmas. Both QPEMIC and QPESIC threshold drifts exhibit the same behavioural pattern if the order of harmonic, magnetization, non-isothermality or the angle between the fields are varied. An increase of the angle between the fields lowers the threshold drifts, which means that the presence of u perpendicular to (or E perpendicular to ) facilitates the excitation of both QPEMIC and QPESIC instabilities. The QPEMIC threshold drifts are found to depend on the overall gas pressure, and to decrease as the pressure is lowered, which is a feature not found in the QPESIC case. The discrepancies between the QPEMIC and QPESIC threshold drifts increase if the pressure decreases, or if magnetization, degree of ionization or ion charge number increase. (orig.)
International Nuclear Information System (INIS)
Chankin, A. V.; Stangeby, P. C.
2006-01-01
A system of plasma particle and parallel momentum balance equations is derived appropriate for understanding the role of drifts in the edge and for edge modelling, particularly in the scrape-off layer (SOL) of tokamaks, stellarators and other magnetic confinement devices. The formulation allows for strong collisionality-but also covers the case of weak collisionality and strong drifts, a combination often encountered in the SOL. The most important terms are identified by assessing the magnitude of characteristic velocities and fluxes for the plasma edge region. Explanations of the physical nature of each term are provided. A number of terms that are sometimes not included in edge modelling has been included in the parallel momentum balance equation after detailed analysis of the parallel component of the gradient of the total pressure-stress tensor. This includes terms related to curvature and divergence of the field lines, as well as further contributions coming from viscous forces related mainly to the ion centrifugal drift. All these terms are shown to be roughly of the same order of magnitude as convective momentum fluxes related to drifts and therefore should be included in the momentum balance equation
International Nuclear Information System (INIS)
Punjabi, Sangeeta B.; Joshi, N. K.; Mangalvedekar, H. A.; Lande, B. K.; Das, A. K.; Kothari, D. C.
2012-01-01
A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent (c) . The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.
ICRH antenna S-matrix measurements and plasma coupling characterisation at JET
Monakhov, I.; Jacquet, P.; Blackman, T.; Bobkov, V.; Dumortier, P.; Helou, W.; Lerche, E.; Kirov, K.; Milanesio, D.; Maggiora, R.; Noble, C.; Contributors, JET
2018-04-01
The paper is dedicated to the characterisation of multi-strap ICRH antenna coupling to plasma. Relevance of traditional concept of coupling resistance to antennas with mutually coupled straps is revised and the importance of antenna port excitation consistency for application of the concept is highlighted. A method of antenna S-matrix measurement in presence of plasma is discussed allowing deeper insight into the problem of antenna-plasma coupling. The method is based entirely on the RF plant hardware and control facilities available at JET and it involves application of variable phasing between the antenna straps during the RF plant operations at >100 kW. Unlike traditional techniques relying on low-power (~10 mW) network analysers, the applied antenna voltage amplitudes are relevant to practical conditions of ICRH operations; crucially, they are high enough to minimise possible effects of antenna loading non-linearity due to the RF sheath effects and other phenomena which could affect low-power measurements. The method has been successfully applied at JET to conventional 4-port ICRH antennas energised at frequencies of 33 MHz, 42 MHz and 51 MHz during L-mode plasma discharges while different gas injection modules (GIMs) were used to maintain comparable plasma densities during the pulses. The S-matrix assessment and its subsequent processing yielding ‘global’ antenna coupling resistances in conditions of equalised port maximum voltages allowed consistent description of antenna coupling to plasma at different strap phasing, operational frequencies and applied GIMs. Comprehensive experimental characterisation of mutually coupled antenna straps in presence of plasma also provided a unique opportunity for in-depth verification of TOPICA computer simulations.
Intergrain Coupling in Dusty-Plasma Coulomb Crystals
International Nuclear Information System (INIS)
Mohideen, U.; Smith, M.A.; Rahman, H.U.; Rosenberg, M.; Mendis, D.A.
1998-01-01
We have studied the lattice structure of dusty-plasma Coulomb crystals formed in rectangular conductive grooves as a function of plasma temperature and density. The crystal appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. A simple phenomenological model wherein the intergrain spacing results from an attractive electric-field-induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. copyright 1998 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Kim, Young-Cheol [Department of Nanoscale Semiconductor Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Hyun-Jun; Lee, Hyo-Chang; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of)
2015-12-15
In a plasma discharge system, the power loss at powered line, matching network, and other transmission line can affect the discharge characteristics such as the power transfer efficiency, voltage and current at powered electrode, and plasma density. In this paper, we propose a method to reduce power loss by using a step down transformer mounted between the matching network and the powered electrode in a capacitively coupled argon plasma. This step down transformer decreases the power loss by reducing the current flowing through the matching network and transmission line. As a result, the power transfer efficiency was increased about 5%–10% by using a step down transformer. However, the plasma density was dramatically increased compared to no transformer. This can be understood by the increase in ohmic heating and the decrease in dc-self bias. By simply mounting a transformer, improvement of discharge efficiency can be achieved in capacitively coupled plasmas.
Buividovich, P. V.; Davody, A.
2017-12-01
We develop numerical tools for diagrammatic Monte Carlo simulations of non-Abelian lattice field theories in the t'Hooft large-N limit based on the weak-coupling expansion. First, we note that the path integral measure of such theories contributes a bare mass term in the effective action which is proportional to the bare coupling constant. This mass term renders the perturbative expansion infrared-finite and allows us to study it directly in the large-N and infinite-volume limits using the diagrammatic Monte Carlo approach. On the exactly solvable example of a large-N O (N ) sigma model in D =2 dimensions we show that this infrared-finite weak-coupling expansion contains, in addition to powers of bare coupling, also powers of its logarithm, reminiscent of resummed perturbation theory in thermal field theory and resurgent trans-series without exponential terms. We numerically demonstrate the convergence of these double series to the manifestly nonperturbative dynamical mass gap. We then develop a diagrammatic Monte Carlo algorithm for sampling planar diagrams in the large-N matrix field theory, and apply it to study this infrared-finite weak-coupling expansion for large-N U (N ) ×U (N ) nonlinear sigma model (principal chiral model) in D =2 . We sample up to 12 leading orders of the weak-coupling expansion, which is the practical limit set by the increasingly strong sign problem at high orders. Comparing diagrammatic Monte Carlo with conventional Monte Carlo simulations extrapolated to infinite N , we find a good agreement for the energy density as well as for the critical temperature of the "deconfinement" transition. Finally, we comment on the applicability of our approach to planar QCD at zero and finite density.
Inductively coupled plasma nanoetching of atomic layer deposition alumina
DEFF Research Database (Denmark)
Han, Anpan; Chang, Bingdong; Todeschini, Matteo
2018-01-01
such as silicon dioxide, silicon nitride, and diamond. In this report, we systematically study nanoscale plasma etching of Al2O3 with electron beam lithography and deep UV resist masks. The gas composition and pressure were tuned for optimal etching, and redeposition conditions were mapped. With a BCl3 and Ar...... the resist profile angle. For Al2O3 patterned with deep UV lithography, the smallest structures were 220 nm. For electron beam lithography patterns, the smallest gratings were 18-nm-wide with 50-nm-pitch. Using alumina as a hard mask, we show aspect ratio of 7-10 for subsequent silicon plasma etching, and we......Al2O3 thin-film deposited by atomic layer deposition is an attractive plasma etch mask for Micro and Nano Electro-Mechanical Systems (MEMS and NEMS). 20-nm-thick Al2O3 mask enables through silicon wafer plasma etching. Al2O3 is also an excellent etch mask for other important MEMS materials...
Studzińska, Sylwia; Mounicou, Sandra; Szpunar, Joanna; Łobiński, Ryszard; Buszewski, Bogusław
2015-01-15
This text presents a novel method for the separation and detection of phosphorothioate oligonucleotides with the use of ion pair ultra high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry The research showed that hexafluoroisopropanol/triethylamine based mobile phases may be successfully used when liquid chromatography is coupled with such elemental detection. However, the concentration of both HFIP and TEA influences the final result. The lower concentration of HFIP, the lower the background in ICP-MS and the greater the sensitivity. The method applied for the analysis of serum samples was based on high resolution inductively coupled plasma mass spectrometry. Utilization of this method allows determination of fifty times lower quantity of phosphorothioate oligonucleotides than in the case of quadrupole mass analyzer. Monitoring of (31)P may be used to quantify these compounds at the level of 80 μg L(-1), while simultaneous determination of sulfur is very useful for qualitative analysis. Moreover, the results presented in this paper demonstrate the practical applicability of coupling LC with ICP-MS in determining phosphorothioate oligonucleotides and their metabolites in serum within 7 min with a very good sensitivity. The method was linear in the concentration range between 0.2 and 3 mg L(-1). The limit of detection was in the range of 0.07 and 0.13 mg L(-1). Accuracy varied with concentration, but was in the range of 3%. Copyright © 2014 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.
2011-01-01
Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.
Energy Technology Data Exchange (ETDEWEB)
Lee, Jin-Won; Lee, Yun-Seong, E-mail: leeeeys@kaist.ac.kr; Chang, Hong-Young [Low-temperature Plasma Laboratory, Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); An, Sang-Hyuk [Agency of Defense Development, Yuseong-gu, Daejeon 305-151 (Korea, Republic of)
2014-08-15
In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP) and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources due to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple sources for large-area processes.
The effect of hydrogen on B4C coatings fabrication in inductively coupled plasma torch
Directory of Open Access Journals (Sweden)
Q. J. Guo
2018-02-01
Full Text Available Boron carbide (B4C coatings are prepared by an RF inductively coupled plasma (ICP torch with different amounts of hydrogen introduced into the sheath gas. The effects of the added hydrogen on the characteristics of the plasma are diagnosed by optical emission spectroscopy and high speed photography. The effects on the melting of B4C particles in the plasma are studied by scanning electron microscopy (SEM. The microstructure of the B4C coatings was determined with SEM imaging and x-ray diffraction analysis. The results show that adding hydrogen to the sheath gas leads to plasma contraction, which results in higher gas temperature of plasma. It also enhances B4C particles spheroidizing and improves the compactness of B4C coatings. Plasma processing does not change the main phase of boron carbide. The obtained results on B4C coatings on Cu substrates allows for improving the B4C coatings fabrication process.
Hwang, Sung Won; Shin, Hyunho; Lee, Bongsoo; Choi, Suk-Ho
2016-08-01
We employ inductively-coupled plasma chemical vapor deposition for non-catalytic growth of graphene on a Si (111) wafer or glass substrate, which is useful for practical device applications of graphene without transfer processes. At a RF power (P) of 500 W under C2H2 flow, defect-free 3 ˜ 5-layer graphene is grown on Si (111) wafers, but on glass substrate, the layer is thicker and defective, as characterized by Raman spectroscopy and electron microscopy. The graphene is produced on Si (111) for P down to 190 W whereas it is almost not formed on glass for P < 250 W, possibly resulting from the weak catalytic-reaction-like effect on glass. These results are discussed based on possible growth mechanisms.
Mass spectrometric evidence for suprathermal ionization in an inductively coupled argon plasma
International Nuclear Information System (INIS)
Houk, R.S.; Svec, H.J.; Fassel, V.A.
1981-01-01
Mass spectra have been obtained of species in the axial channel of an inductively coupled argon plasma by extracting ions from the inductively coupled plasma into a vacuum system housing a quadrupole mass spectrometer. Ionization temperatures (T/sub ion/) are obtained from relative count rates of m/z-resolved ions according to two general types of ionization equilibrium considerations: (a) the radio of doubly/singly charged ions of the same element, and (b) the ratio of singly charged ions from two elements of different ionization energy. The T/sub ion/ values derived from measurement of Ar +2 /Ar + , Ba +2 /Ba + , Sr +2 /Sr + , and Cd + /I + are all greater than those expected from excitation temperatures measured by other workers. The latter three values for T/sub ion/ are in reasonable agreement with values obtained by optical spectrometry for a variety of argon inductively coupled plasmas
Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels
Luo, J.; Chen, M.; Wu, W. Y.; Weng, S. M.; Sheng, Z. M.; Schroeder, C. B.; Jaroszynski, D. A.; Esarey, E.; Leemans, W. P.; Mori, W. B.; Zhang, J.
2018-04-01
Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.
Laser pulse propagation and enhanced energy coupling to fast electrons in dense plasma gradients
International Nuclear Information System (INIS)
Gray, R J; Carroll, D C; Yuan, X H; Brenner, C M; Coury, M; Quinn, M N; Tresca, O; McKenna, P; Burza, M; Wahlström, C-G; Lancaster, K L; Neely, D; Lin, X X; Li, Y T
2014-01-01
Laser energy absorption to fast electrons during the interaction of an ultra-intense (10 20 W cm −2 ), picosecond laser pulse with a solid is investigated, experimentally and numerically, as a function of the plasma density scale length at the irradiated surface. It is shown that there is an optimum density gradient for efficient energy coupling to electrons and that this arises due to strong self-focusing and channeling driving energy absorption over an extended length in the preformed plasma. At longer density gradients the laser filaments, resulting in significantly lower overall energy coupling. As the scale length is further increased, a transition to a second laser energy absorption process is observed experimentally via multiple diagnostics. The results demonstrate that it is possible to significantly enhance laser energy absorption and coupling to fast electrons by dynamically controlling the plasma density gradient. (paper)
International Nuclear Information System (INIS)
Vio, Laurent; Cretier, Gerard; Rocca, Jean-Louis; Chartier, Frederic; Geertsen, Valerie; Gourgiotis, Alkiviadis; Isnard, Helene; Morin, Pierre
2012-01-01
This paper presents the conception and fabrication of a micro-system for lanthanides separation and its coupling with a multi-collector inductively coupled plasma mass spectrometer for isotope ratio measurements. The lanthanides separation is based on the isotachophoresis technique and the micro-system conception has been adapted in order to fit with glove box limitations in view of future spent nuclear fuels analysis. The micro-device was tested by using a mixture of standard solutions of natural elements and the separation of 13 lanthanides was successfully performed. The micro-device was then coupled to a multi-collector inductively coupled plasma mass spectrometer for the on-line measurements of Nd and Sm isotope ratios. The isotopes of Nd and Sm were acquired online in multi-collection mode after separation of the two elements with an injection amount of 5 ng. Results obtained on the Nd and Sm isotope ratio measurements on transient signals are presented and discussed. (authors)
Konovalov, Dmitry A.; Cocks, Daniel G.; White, Ronald D.
2017-10-01
The velocity distribution function and transport coefficients for charged particles in weakly ionized plasmas are calculated via a multi-term solution of Boltzmann's equation and benchmarked using a Monte-Carlo simulation. A unified framework for the solution of the original full Boltzmann's equation is presented which is valid for ions and electrons, avoiding any recourse to approximate forms of the collision operator in various limiting mass ratio cases. This direct method using Lebedev quadratures over the velocity and scattering angles avoids the need to represent the ion mass dependence in the collision operator through an expansion in terms of the charged particle to neutral mass ratio. For the two-temperature Burnett function method considered in this study, this amounts to avoiding the need for the complex Talmi-transformation methods and associated mass-ratio expansions. More generally, we highlight the deficiencies in the two-temperature Burnett function method for heavy ions at high electric fields to calculate the ion velocity distribution function, even though the transport coefficients have converged. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.
Shear viscosity of the quark-gluon plasma in a weak magnetic field in perturbative QCD: Leading log
Li, Shiyong; Yee, Ho-Ung
2018-03-01
We compute the shear viscosity of two-flavor QCD plasma in an external magnetic field in perturbative QCD at leading log order, assuming that the magnetic field is weak or soft: e B ˜g4log (1 /g )T2. We work in the assumption that the magnetic field is homogeneous and static, and the electrodynamics is nondynamical in a formal limit e →0 while e B is kept fixed. We show that the shear viscosity takes a form η =η ¯(B ¯)T3/(g4log (1 /g )) with a dimensionless function η ¯(B ¯) in terms of a dimensionless variable B ¯=(e B )/(g4log (1 /g )T2). The variable B ¯ corresponds to the relative strength of the effect of cyclotron motions compared to the QCD collisions: B ¯˜lmfp/lcyclo. We provide a full numerical result for the scaled shear viscosity η ¯(B ¯).
Henault, M.; Wattieaux, G.; Lecas, T.; Renouard, J. P.; Boufendi, L.
2016-02-01
Nanoparticles growing or injected in a low pressure cold plasma generated by a radiofrequency capacitively coupled capacitive discharge induce strong modifications in the electrical parameters of both plasma and discharge. In this paper, a non-intrusive method, based on the measurement of the plasma impedance, is used to determine the volume averaged electron density and effective coupled power to the plasma bulk. Good agreements are found when the results are compared to those given by other well-known and established methods.
HAIFA: A modular, fiber-optic coupled, spectroscopic diagnostic for plasmas
International Nuclear Information System (INIS)
Ramsey, A.T.; Turner, S.L.
1987-01-01
HAIFA is a modular, multichannel, fiber optically coupled spectroscopy diagnostic for tokamak plasmas. It operates in the visible, measuring H/sub α/ radiation, the visible continuum from thermal bremsstrahlung, and selected impurity lines. HAIFA is characterized by high modularity and flexibility, good radiation resistance, high noise immunity, and low cost. Details of design, construction, and calibration are given. The analysis of visible bremsstrahlung radiation measurements to deduce the effective ionic charge in a plasma is discussed
Effects of Reentry Plasma Sheath on Mutual-Coupling Property of Array Antenna
Directory of Open Access Journals (Sweden)
B. W. Bai
2015-01-01
Full Text Available A plasma sheath enveloping a reentry vehicle would cause the failure of on-board antennas, which is an important effect that contributes to the “blackout” problem. The method of replacing the on-board single antenna with the array antennas and using beamforming technology has been proposed to mitigate “blackout” problem by many other researchers. Because the plasma sheath is a reflective medium, plasma will alter the mutual coupling between array elements and degrade the beamforming performance of array antenna. In this paper, the effects of the plasma sheath on the mutual coupling properties between adjacent array elements are studied utilizing the algorithm of finite integration technique. Results show that mutual coupling coefficients of array elements are deteriorating more seriously with the decrease of collision frequency. Moreover, when electron density and collision frequency are both large, plasma sheath improves the mutual coupling property of array elements; this conclusion suggests that replacing the on-board single antenna with the array antennas and using beamforming technology can be adopted to mitigate the blackout problem in this condition.
Interstellar turbulence model : A self-consistent coupling of plasma and neutral fluids
International Nuclear Information System (INIS)
Shaikh, Dastgeer; Zank, Gary P.; Pogorelov, Nikolai
2006-01-01
We present results of a preliminary investigation of interstellar turbulence based on a self-consistent two-dimensional fluid simulation model. Our model describes a partially ionized magnetofluid interstellar medium (ISM) that couples a neutral hydrogen fluid to a plasma through charge exchange interactions and assumes that the ISM turbulent correlation scales are much bigger than the shock characteristic length-scales, but smaller than the charge exchange mean free path length-scales. The shocks have no influence on the ISM turbulent fluctuations. We find that nonlinear interactions in coupled plasma-neutral ISM turbulence are influenced substantially by charge exchange processes
International Nuclear Information System (INIS)
Silva, Filipe da; Pinto, Martin Campos; Després, Bruno; Heuraux, Stéphane
2015-01-01
This work analyzes the stability of the Yee scheme for non-stationary Maxwell's equations coupled with a linear current model with density fluctuations. We show that the usual procedure may yield unstable scheme for physical situations that correspond to strongly magnetized plasmas in X-mode (TE) polarization. We propose to use first order clustered discretization of the vectorial product that gives back a stable coupling. We validate the schemes on some test cases representative of direct numerical simulations of X-mode in a magnetic fusion plasma including turbulence
Energy Technology Data Exchange (ETDEWEB)
Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: pintu@ipr.res.in; Prasad, G.; Sen, A.; Kaw, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2007-09-03
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO{sub 2} dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of {partial_derivative}{omega}/{partial_derivative}k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.
International Nuclear Information System (INIS)
Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P.K.
2007-01-01
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO 2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects
Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.
2007-09-01
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.
Linear coupling of electromagnetic and Jeans modes in self-gravitating plasma streams
International Nuclear Information System (INIS)
Yaroshenko, Victoria V.; Voitenko, Yuriy; Goossens, Marcel
2002-01-01
A new mechanism of linear coupling between electromagnetic (nonpotential) and gravitational disturbances is found for oblique propagation relatively to particle streams. The general dispersion law is derived and applied to the case of two countersteaming dust beams of equal strength and quiasiperpendicular propagation. It reveals a strong linear coupling between the low-frequency aperiodically unstable electromagnetic (AEM) and the Jeans (JM) modes. The coupling is of a mode conversion type, resulting in a frequency gap in the dispersion, and thus significantly modifies the instability criteria. It is shown that, in contrast to the electrostatic case, AEM and JM coupling in streaming self-gravitating plasmas can actually appear even if the plasma frequencies of the dust species greatly exceed the corresponding Jeans frequencies
Effect of vapor plasma on the coupling of laser radiation with aluminum targets
Energy Technology Data Exchange (ETDEWEB)
Shui, V H; Kivel, B; Weyl, G M
1978-12-01
The effect of vapor plasma on thermal and impulse coupling of laser radiation with aluminum targets is studied to understand and explain experimental data showing anomalously high coupling to 10.6-micron laser radiation. Heating of vapor by inverse bremsstrahlung absorption of laser radiation, subsequent reradiation in the uv and deep uv by ionized species, and vapor layer growth are modeled. A computer code has been developed to solve the governing equations. Major conclusions include the following: (1) vapor plasma radiative transport can be an important mechanism for laser/target coupling, (2) aluminum vapor (density times thickness) approximately equal to 10 to the 17th power/sq cm (corresponding to about 0.01 micron of target material) can result in thermal coupling coefficients of 20% or more, and (3) too much vapor reduces the net flux at the target.
Characteristics of dust voids in a strongly coupled laboratory dusty plasma
Bailung, Yoshiko; Deka, T.; Boruah, A.; Sharma, S. K.; Pal, A. R.; Chutia, Joyanti; Bailung, H.
2018-05-01
A void is produced in a strongly coupled dusty plasma by inserting a cylindrical pin (˜0.1 mm diameter) into a radiofrequency discharge argon plasma. The pin is biased externally below the plasma potential to generate the dust void. The Debye sheath model is used to obtain the sheath potential profile and hence to estimate the electric field around the pin. The electric field force and the ion drag force on the dust particles are estimated and their balance accounts well for the maintenance of the size of the void. The effects of neutral density as well as dust density on the void size are studied.
Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code
Energy Technology Data Exchange (ETDEWEB)
Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.
2012-08-29
A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.
Theoretical investigation of phase-controlled bias effect in capacitively coupled plasma discharges
International Nuclear Information System (INIS)
Kwon, Deuk-Chul; Yoon, Jung-Sik
2011-01-01
We theoretically investigated the effect of phase difference between powered electrodes in capacitively coupled plasma (CCP) discharges. Previous experimental result has shown that the plasma potential could be controlled by using a phase-shift controller in CCP discharges. In this work, based on the previously developed radio frequency sheath models, we developed a circuit model to self-consistently determine the bias voltage from the plasma parameters. Results show that the present theoretical model explains the experimental results quite well and there is an optimum value of the phase difference for which the V dc /V pp ratio becomes a minimum.
Inductively Coupled Plasma-Induced Etch Damage of GaN p-n Junctions
International Nuclear Information System (INIS)
SHUL, RANDY J.; ZHANG, LEI; BACA, ALBERT G.; WILLISON, CHRISTI LEE; HAN, JUNG; PEARTON, S.J.; REN, F.
1999-01-01
Plasma-induced etch damage can degrade the electrical and optical performance of III-V nitride electronic and photonic devices. We have investigated the etch-induced damage of an Inductively Coupled Plasma (ICP) etch system on the electrical performance of mesa-isolated GaN pn-junction diodes. GaN p-i-n mesa diodes were formed by Cl 2 /BCl 3 /Ar ICP etching under different plasma conditions. The reverse leakage current in the mesa diodes showed a strong relationship to chamber pressure, ion energy, and plasma flux. Plasma induced damage was minimized at moderate flux conditions (≤ 500 W), pressures ≥2 mTorr, and at ion energies below approximately -275 V
Styrene and methyl methacrylate copolymer synthesized by RF inductively coupled plasma
Energy Technology Data Exchange (ETDEWEB)
Li, Z; Gillon, X; Diallo, M; Houssiau, L; Pireaux, J-J, E-mail: zhiling.li@fundp.ac.be [University of Namur (FUNDP) Research Centre in Physics of Matter and Radiation (PMR), 61, Rue de Bruxelles, 5000 Namur (Belgium)
2011-01-01
A series of random copolymers of styrene and methyl methacrylate was prepared on a silicon substrate by RF pulsed inductively coupled plasma. The plasma gas phase was investigated by optical emission spectroscopy (OES). The physico-chemical characteristics of the deposited copolymer films were analyzed by several surface techniques: X-ray photoelectron spectroscopy (XPS), Fourier-Transform infrared absorption (FT-IR), Time-of-flight secondary ion mass spectrometry (ToF-SIMS), etc. OES of the plasma and FT-IR spectra of the films are predictive: plasma emitting a higher relative benzyl radical signal results in the deposition of a more aromatic plasma polymer. The functional thin films can be deposited by selection of the co-monomers.
International Nuclear Information System (INIS)
Kitajima, Takeshi; Noro, Kouichi; Nakano, Toshiki; Makabe, Toshiaki
2004-01-01
The influence of the driving frequency on the absolute oxygen atom density in an O 2 radio frequency (RF) capacitively coupled plasma (CCP) was investigated using vacuum ultraviolet absorption spectroscopy with pulse modulation of the main plasma. A low-power operation of a compact inductively coupled plasma light source was enabled to avoid the significant measurement errors caused by self-absorption in the light source. The pulse modulation of the main plasma enabled accurate absorption measurement for high plasma density conditions by eliminating background signals due to light emission from the main plasma. As for the effects of the driving frequency, the effect of VHF (100 MHz) drive on oxygen atom production was small because of the modest increase in plasma density of electronegative O 2 in contrast to the significant increase in electron density previously observed for electropositive Ar. The recombination coefficient of oxygen atoms on the electrode surface was obtained from a decay rate in the afterglow by comparison with a diffusion model, and it showed agreement with previously reported values for several electrode materials
International Nuclear Information System (INIS)
Zhou, H.P.; Xu, S.; Zhao, Z.; Xiang, Y.
2014-01-01
Highlights: • A high-density plasma reactor of inductively coupled plasma source is used in this work. • The conductivity and transmittance can be enhanced simultaneously in the hydrogen process. • The formation of additional donors and passivation due to the hydrogen plasma processing. • The photovoltaic improvement due to the improved AZO layer and hetero-interface quality in the solar cells. - Abstract: Al-doped ZnO (AZO) thin films deposited by means of RF magnetron sputtering were processed in a low frequency inductively coupled plasma of H 2 , aiming at heterojunction (HJ) solar cell applications. A variety of characterization results show that the hydrogen plasma processing exerts a significant influence on the microstructures, electrical and optical properties of the AZO films. The incorporation of hydrogen under the optimum treatment simultaneously promoted the transmittance and conductivity due to the hydrogen associated passivation effect on the native defects and the formation of shallow donors in the films, respectively. A p-type c-Si based HJ solar cell with a front AZO contact was also treated in as-generated non-equilibrium hydrogen plasma and the photovoltaic performance of the solar cell was prominently improved. The underlying mechanism was discussed in terms of the beneficial impacts of high-density hydrogen plasma on the properties of AZO itself and the hetero-interfaces involved in the HJ structure (interface defect and energy band configuration)
''SensArray'' voltage sensor analysis in an inductively coupled plasma
International Nuclear Information System (INIS)
Titus, M. J.; Hsu, C. C.; Graves, D. B.
2010-01-01
A commercially manufactured PlasmaVolt sensor wafer was studied in an inductively coupled plasma reactor in an effort to validate sensor measurements. A pure Ar plasma at various powers (25-420 W), for a range of pressures (10-80 mT), and bias voltages (0-250 V) was utilized. A numerical sheath simulation was simultaneously developed in order to interpret experimental results. It was found that PlasmaVolt sensor measurements are proportional to the rf-current through the sheath. Under conditions such that the sheath impedance is dominantly capacitive, sensor measurements follow a scaling law derived from the inhomogeneous sheath model of Lieberman and Lichtenberg, [Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005)]. Under these conditions, sensor measurements are proportional to the square root of the plasma density at the plasma-sheath interface, the one-fourth root of the electron temperature, and the one-fourth root of the rf bias voltage. When the sheath impedance becomes increasingly resistive, the sensor measurements deviate from the scaling law and tend to be directly proportional to the plasma density. The measurements and numerical sheath simulation demonstrate the scaling behavior as a function of changing sheath impedance for various plasma conditions.
Spectroanalytical investigations on inductively coupled N2/Ar and Ar/Ar high frequency plasmas
International Nuclear Information System (INIS)
Malinowski, P.; Mazurkiewicz, M.; Nickel, H.
1981-03-01
In order to improve the detection limits of trace elements in corrosion products of metallic materials, the inductively coupled plasma excitation source (ICP) was applied for spectroscopic analysis. Besides optimizing the working conditions for the mentioned materials, the fundamental research clearing the excitation processes in ICP was carried out. Basicly, two plasma systems were investigated: the nitrogen cooled N 2 /Ar- and pure Ar/Ar-plasma. The computed detection limits for 8 chosen elements are between 0.1 and 50 μg ml -1 in both plasmas. The advantage of ion lines was clearly present; in N 2 /Ar-plasma it was larger than in Ar/Ar-plasma. The excitation temperatures measured with help of ArI, FeI and ZnI lines rise with increasing power and decreasing distance from the induction coil. The distribution of Zn excitation temperature in N 2 /Ar-plasma as well as the measured N + 2 rotational and CN vibrational temperatures indicate, that the toroidal structure of Ar/Ar-plasma is not analogue to the N 2 /Ar-plasma. The values of the various excitation temperatures (Ar, Fe, Zn) and the differences between the excitation, vibration, rotation and ionization temperatures (Tsub(i) > Tsub(n) = Tsub(vib) > Tsub(rot)) indicate an absence of thermal equilibrium in the concerned system. (orig.)
Ortega-Roldan, Jose Luis; Jensen, Malene Ringkjøbing; Brutscher, Bernhard; Azuaga, Ana I; Blackledge, Martin; van Nuland, Nico A J
2009-05-01
The description of the interactome represents one of key challenges remaining for structural biology. Physiologically important weak interactions, with dissociation constants above 100 muM, are remarkably common, but remain beyond the reach of most of structural biology. NMR spectroscopy, and in particular, residual dipolar couplings (RDCs) provide crucial conformational constraints on intermolecular orientation in molecular complexes, but the combination of free and bound contributions to the measured RDC seriously complicates their exploitation for weakly interacting partners. We develop a robust approach for the determination of weak complexes based on: (i) differential isotopic labeling of the partner proteins facilitating RDC measurement in both partners; (ii) measurement of RDC changes upon titration into different equilibrium mixtures of partially aligned free and complex forms of the proteins; (iii) novel analytical approaches to determine the effective alignment in all equilibrium mixtures; and (iv) extraction of precise RDCs for bound forms of both partner proteins. The approach is demonstrated for the determination of the three-dimensional structure of the weakly interacting CD2AP SH3-C:Ubiquitin complex (K(d) = 132 +/- 13 muM) and is shown, using cross-validation, to be highly precise. We expect this methodology to extend the remarkable and unique ability of NMR to study weak protein-protein complexes.
Bhuva, M. P.; Karkari, S. K.; Kumar, Sunil
2018-03-01
An elongated plasma column in the presence of an axial magnetic field has been formed using a cylindrical hollow cathode (HC) and a constricted anode (CA). The plasma characteristics of the central line have been found to vary with the magnetic field strength and the axial distance from the source. It is believed that the primary electrons constituting the discharge current are steered by the axial magnetic field to undertake ionizing collisions along the plasma column. The current carrying electrons from the HC reach the anode by cross-field diffusion towards the central line. The above observation has been substantiated using a phenomenological model which links the observed characteristics of the source with the plasma column. The experimental results are found to be in qualitative agreement with the model.
Induced magnetic-field effects in inductively coupled plasmas
International Nuclear Information System (INIS)
Cohen, R.H.; Rognlien, T.D.
1995-01-01
In inductive plasma sources, the rapid spatial decay of the electric field arising from the skin effect produces a large radio frequency (RF) magnetic field via Faraday's law. We previously determined that this magnetic field leads to a reduction of the electron density in the skin region, as well as a reduction in the collisionless heating rate. The electron deficit leads to the formation of an electrostatic potential which pulls electrons in to restore quasineutrality. Here we calculate the electron density including both the induced and electrostatic fields. If the wave frequency is not too low, the ions respond only to the averaged fields, and hence the electrostatic field is oscillatory, predominantly at the second harmonic of the applied field. We calculate the potential required to establish a constant electron density, and compare with numerical orbit-code calculations. For times short compared to ion transit times, the quasineutral density is just the initial ion density. For timescales long enough that the ions can relax, the density profile can be found from the solution of fluid equations with an effective (ponderomotive-like) potential added. Although the time-varying electrostatic potential is an extra source of heating, the net effect of the induced magnetic and electrostatic fields through trapping, early turning, and direct heating is a significant reduction in collisionless heating for parameters of interest
An ultrasonic nebulizer (USN) was utilized as a sample introduction device for an inductively coupled plasma mass spectrometer in an attempt to increase the sensitivity for As. The USN produced a valence state response difference for As. The As response was suppressed approximate...
Determination of Arsenic in Sinus Wash and Tap Water by Inductively Coupled Plasma-Mass Spectrometry
Donnell, Anna M.; Nahan, Keaton; Holloway, Dawone; Vonderheide, Anne P.
2016-01-01
Arsenic is a toxic element to which humans are primarily exposed through food and water; it occurs as a result of human activities and naturally from the earth's crust. An experiment was developed for a senior level analytical laboratory utilizing an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) for the analysis of arsenic in household…
Atlas of atomic spectral lines of plutonium emitted by an inductively coupled plasma
Energy Technology Data Exchange (ETDEWEB)
Edelson, M.C.; DeKalb, E.L.; Winge, R.K.; Fassel, V.A.
1986-09-01
Optical emission spectra from high-purity Pu-242 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 2280 to 7008 Angstrom wavelength range are presented along with general commentary on ICP-Pu spectroscopy.
Chemical modeling of a high-density inductively-coupled plasma reactor containing silane
Kovalgin, Alexeij Y.; Boogaard, A.; Brunets, I.; Holleman, J.; Schmitz, Jurriaan
We carried out the modeling of chemical reactions in a silane-containing remote Inductively Coupled Plasma Enhanced Chemical Vapor Deposition (ICPECVD) system, intended for deposition of silicon, silicon oxide, and silicon nitride layers. The required electron densities and Electron Energy
Efficient coupling of 527 nm laser beam power to a long scale-length plasma
International Nuclear Information System (INIS)
Moody, J.D.; Divol, L.; Glenzer, S.H.; MacKinnon, A.J.; Froula, D.H.; Gregori, G.; Kruer, W.L.; Meezan, N.B.; Suter, L.J.; Williams, E.A.; Bahr, R.; Seka, W.
2006-01-01
We experimentally demonstrate that application of laser smoothing schemes including smoothing by spectral dispersion (SSD) and polarization smoothing (PS) increases the intensity range for efficient coupling of frequency doubled (527 nm) laser light to a long scale-length plasma with n e /n cr equals 0.14 and T e equals 2 keV. (authors)
Polymerization by plasma of trichloroethylene by means of resistive and inductive coupling
International Nuclear Information System (INIS)
Vasquez, M.; Cruz, G.; Olayo, M.G.; Timoshina, T.; Morales, J.; Olayo, R.
2004-01-01
It was carried out the polymerization for plasma of the trichloroethylene by means of two types of coupling, resistive and inductive with the objective of studying the structure, morphology and the electric properties of the polymers obtained under these conditions. The structure and morphology of the polymers were studied by means of EDS and FT-IR spectroscopies. (Author)
International Nuclear Information System (INIS)
Mahanti, H.S.; Barnes, R.M.
1983-01-01
Inductively coupled plasma-atomic emission spectroscopy is evaluated for the determination of 14 rare earth elements in aluminum. Spectral line interference, limit of detection, and background equivalent concentration values are evaluated, and quantitative recovery is obtained from aluminum samples spiked with rare earth elements. The procedure is simple and suitable for routine process control analysis. 20 references, 5 tables
Concentration of vanadium in crude oil and water using inductively-coupled plasma spectrometry
International Nuclear Information System (INIS)
Amin, Y.M.; Hassan, M.A.; Junkin, K.; Mahat, R.H.; Raphie, B.
1991-01-01
Vanadium is a trace element that is usually associated to crude oil and its products. In this study the concentration of vanadium in a few samples of local crude oil, sea and river water were determined using inductively-coupled plasma spectrometry (ICP). It is hoped that the concentration of vanadium in water can be used to indicate the possible extent of oil contamination
DEFF Research Database (Denmark)
Björn, Erik; Nygren, Yvonne; Nguyen, Tam T. T. N.
2007-01-01
A fast and robust method for the determination of platinum in human subcellular microsamples by inductively coupled plasma mass spectrometry was developed, characterized, and validated. Samples of isolated DNA and exosome fractions from human ovarian (2008) and melanoma (T289) cancer cell lines w...
International Nuclear Information System (INIS)
Xu Hui-Jing; Shu-Xia Zhao; Gao Fei; Zhang Yu-Ru; Li Xue-Chun; Wang You-Nian
2015-01-01
A new type of two-dimensional self-consistent fluid model that couples an equivalent circuit module is used to investigate the mode transition characteristics and hysteresis in hydrogen inductively coupled plasmas at different pressures, by varying the series capacitance of the matching box. The variations of the electron density, temperature, and the circuit electrical properties are presented. As cycling the matching capacitance, at high pressure both the discontinuity and hysteresis appear for the plasma parameters and the transferred impedances of both the inductive and capacitive discharge components, while at low pressure only the discontinuity is seen. The simulations predict that the sheath plays a determinative role on the presence of discontinuity and hysteresis at high pressure, by influencing the inductive coupling efficiency of applied power. Moreover, the values of the plasma transferred impedances at different pressures are compared, and the larger plasma inductance at low pressure due to less collision frequency, as analyzed, is the reason why the hysteresis is not seen at low pressure, even with a wider sheath. Besides, the behaviors of the coil voltage and current parameters during the mode transitions are investigated. They both increase (decrease) at the E to H (H to E) mode transition, indicating an improved (worsened) inductive power coupling efficiency. (paper)
In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy
Braymen, Steven D.
1996-06-11
A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.
Inductively coupled plasma and ion sources: History and state-of-the-art
International Nuclear Information System (INIS)
Hopwood, J.
1994-01-01
Over 100 years ago Hittorf first generated an electrodeless ''ring'' discharge by electromagnetic induction and began a 40 year controversy as to the true physical origin of such a discharge. Even Tesla advocated that these plasmas were merely the result of large electrostatic potential differences rather than electric fields induced by high frequency currents. Through clever experiments using crude spark gaps and leyden jars, the inductive nature of the discharge was confirmed in the late 1920's by MacKinnon, thus supporting the theories and experiments of Sir J.J. Thomson, perhaps the most staunch advocate of the induction mechanism. Today the authors routinely exploit the intense plasmas which are generated by induction. In this talk, the characteristics of inductively coupled plasma (ICP) and ion sources will be reviewed and future applications of intense plasma sources will be discussed. The inductively coupled plasma is Joule heated at moderate gas pressures, but the electromagnetic field penetration of these dense plasmas is limited by the plasma skin depth, typically a few millimeters to a few centimeters. The induction plasma is thus edge heated, a fact that constrains uniformity over large areas if helical induction coils are used. Flat, spiral coils may be used to improve uniformity by driving the plasma using a planar geometry. Issues of dimensional and frequency scaling will be discussed as they apply to large diameter sources. Ion beams extracted from ICPs are used for many applications including space propulsion, high power neutral beams, and materials processing. Broad ion beam (∼10 cm) current densities in excess of 100 mA-cm 2 at 100 keV are obtained in pulsed mode operation. Recently, however, more consumer-oriented applications of less intense ICPs are emerging
Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas
International Nuclear Information System (INIS)
Hu, S. X.
2017-01-01
Here, continuum lowering is a well-known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal-/pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics (QMD) calculations based on the all-electron density-functional theory (DFT). The resulted K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of “single atom in box” (SAIB), developed in this work, accurately predicts K-edge locations as what ab-initio calculations provide.
Plasma physics an introduction
Fitzpatrick, Richard
2014-01-01
Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This book looks at non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. Intended for the student market, the text provides a concise and cohesive introduction to plasma physics theory, and offers a solid foundation for students wishing to take higher level courses in plasma physics.
Plasma Etching of superconducting radio frequency cavity by Ar/Cl2 capacitively coupled Plasma
Upadhyay, Janardan; Popovic, Svetozar; Valente-Feliciano, Anne-Marie; Phillips, Larry; Vuskovic, Lepsha
2016-09-01
We are developing plasma processing technology of superconducting radio frequency (SRF) cavities. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the asymmetry was studied by changing the contour of the inner electrode. The optimized contour of the electrode based on these measurements was chosen for SRF cavity processing. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity is used, which previously mechanically polished, buffer chemically etched afterwards and rf tested at cryogenic temperatures for a baseline test. Plasma processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise manner to establish segmented plasma processing. The cavity is rf tested afterwards at cryogenic temperatures. The rf test and surface condition results are presented.
Institute of Scientific and Technical Information of China (English)
Hao Daoxin; Cheng Jia; Ji Linhong; Sun Yuchun
2012-01-01
The characteristics of cold plasma,especially for a dual-frequency capacitively coupled plasma (CCP),play an important role for plasma enhanced chemical vapor deposition,which stimulates further studies using different methods.In this paper,a 2D fluid model was constructed for N2 gas plasma simulations with CFD-ACE+,a commercial multi-physical software package.First,the distributions of electric potential (Epot),electron number density (Ne),N number density (N) and electron temperature (Te) are described under the condition of high frequency (HF),13.56 MHz,HF voltage,300 V,and low-frequency (LF) voltage,0 V,particularly in the sheath.Based on this,the influence of HF on Ne is further discussed under different HF voltages of 200 V,300 V,400 V,separately,along with the influence of LF,0.3 MHz,and various LF voltages of 500 V,600 V,700 V.The results show that sheaths of about 3 mm are formed near the two electrodes,in which Epot and Te vary extensively with time and space,while in the plasma bulk Epot changes synchronously with an electric potential of about 70 V and Te varies only in a small range.N is also modulated by the radio frequency,but the relative change in N is small.Ne varies only in the sheath,while in the bulk it is steady at different time steps.So,by comparing Ne in the plasma bulk at the steady state,we can see that Ne will increase when HF voltage increases.Yet,Ne will slightly decrease with the increase of LF voltage.At the same time,the homogeneity will change in both x and y directions.So both HF and LF voltages should be carefully considered in order to obtain a high-density,homogeneous plasma.
Investigations into the origins of polyatomic ions in inductively coupled plasma-mass spectrometry
Energy Technology Data Exchange (ETDEWEB)
McIntyre, Sally M. [Iowa State Univ., Ames, IA (United States)
2010-01-01
An inductively coupled plasma-mass spectrometer (ICP-MS) is an elemental analytical instrument capable of determining nearly all elements in the periodic table at limits of detection in the parts per quadrillion and with a linear analytical range over 8-10 orders of magnitude. Three concentric quartz tubes make up the plasma torch. Argon gas is spiraled through the outer tube and generates the plasma powered by a looped load coil operating at 27.1 or 40.6 MHz. The argon flow of the middle channel is used to keep the plasma above the innermost tube through which solid or aqueous sample is carried in a third argon stream. A sample is progressively desolvated, atomized and ionized. The torch is operated at atmospheric pressure. To reach the reduced pressures of mass spectrometers, ions are extracted through a series of two, approximately one millimeter wide, circular apertures set in water cooled metal cones. The space between the cones is evacuated to approximately one torr. The space behind the second cone is pumped down to, or near to, the pressure needed for the mass spectrometer (MS). The first cone, called the sampler, is placed directly in the plasma plume and its position is adjusted to the point where atomic ions are most abundant. The hot plasma gas expands through the sampler orifice and in this expansion is placed the second cone, called the skimmer. After the skimmer traditional MS designs are employed, i.e. quadrupoles, magnetic sectors, time-of-flight. ICP-MS is the leading trace element analysis technique. One of its weaknesses are polyatomic ions. This dissertation has added to the fundamental understanding of some of these polyatomic ions, their origins and behavior. Although mainly continuing the work of others, certain novel approaches have been introduced here. Chapter 2 includes the first reported efforts to include high temperature corrections to the partition functions of the polyatomic ions in ICP-MS. This and other objections to preceeding
Energy Technology Data Exchange (ETDEWEB)
Hirsch, Jens, E-mail: J.Hirsch@emw.hs-anhalt.de [Anhalt University of Applied Sciences, Faculty EMW, Bernburger Str. 55, DE-06366 Köthen (Germany); Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Str. 12, DE-06120 Halle (Saale) (Germany); Gaudig, Maria; Bernhard, Norbert [Anhalt University of Applied Sciences, Faculty EMW, Bernburger Str. 55, DE-06366 Köthen (Germany); Lausch, Dominik [Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Str. 12, DE-06120 Halle (Saale) (Germany)
2016-06-30
Highlights: • Fabrication of black silicon through inductively coupled plasma (ICP) processing. • Suppressed formation a self-bias and therefore a reduced ion bombardment of the silicon sample. • Reduction of the average hemispherical reflection between 300 and 1120 nm up to 8% within 5 min ICP process time. • Reflection is almost independent of the angle of incidence up to 60°. • 2.5 ms effective lifetime at 10{sup 15} cm{sup −3} MCD after ALD Al{sub 2}O{sub 3} surface passivation. - Abstract: The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF{sub 6} and O{sub 2} are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 10{sup 15} cm{sup −3} minority carrier density (MCD) after an atomic layer deposition (ALD) with Al{sub 2}O{sub 3}. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique
International Nuclear Information System (INIS)
Zhang Yuru; Xu Xiang; Wang Younian; Bogaerts, Annemie
2012-01-01
A two-dimensional fluid model, including the full set of Maxwell equations, has been developed and applied to investigate the effect of a phase shift between two power sources on the radial uniformity of several plasma characteristics in a hydrogen capacitively coupled plasma. This study was carried out at various frequencies in the range 13.56-200 MHz. When the frequency is low, at 13.56 MHz, the plasma density is characterized by an off-axis peak when both power sources are in-phase (φ = 0), and the best radial uniformity is obtained at φ = π. This trend can be explained because the radial nonuniformity caused by the electrostatic edge effect can be effectively suppressed by the phase-shift effect at a phase difference equal to π. When the frequency rises to 60 MHz, the plasma density profiles shift smoothly from edge-peaked over uniform to centre-peaked as the phase difference increases, due to the pronounced standing-wave effect, and the best radial uniformity is reached at φ = 0.3π. At a frequency of 100 MHz, a similar behaviour is observed, except that the maximum of the plasma density moves again towards the radial edge at the reverse-phase case (φ = π), because of the dominant skin effect. When the frequency is 200 MHz, the bulk plasma density increases significantly with increasing phase-shift values, and a better uniformity is obtained at φ = 0.4π. This is because the density in the centre increases faster than at the radial edge as the phase difference rises, due to the increasing power deposition P z in the centre and the decreasing power density P r at the radial edge. As the phase difference increases to π, the maximum near the radial edge becomes obvious again. This is because the skin effect has a predominant influence on the plasma density under this condition, resulting in a high density at the radial edge. Moreover, the axial ion flux increases monotonically with phase difference, and exhibits similar profiles to the plasma density
International Nuclear Information System (INIS)
Kawaguchi, Hiroshi
1996-01-01
Studies on inductively coupled plasma (ICP) for atomic emission and mass spectrometry accomplished in our laboratory since 1978 are reviewed. In emission spectrometry, the characteristics of the plasma are studied concerning the spatial profiles of spectral line intensity, axial profiles of gas and excitation temperatures, spectral line widths and matrix effect. The studies are particularly emphasized on the instrumentation such as developments of plasma generator, emission spectrometers, water-cooled torches and sample introduction methods. A slew-scan type spectrometer developed in these works represents a predecessor of the current commercial spectrometers. An ICP mass spectrometer was first developed in Japan in this laboratory in 1984. Non-spectroscopic interference of this method was found to have the correlation with the atomic weight of the matrix element. Plasma gases other than argon such as nitrogen and oxygen were used for the ICP to evaluate their performance in mass spectrometry as for the sensitivity and interferences. (author). 63 refs
Effect of low-frequency power on dual-frequency capacitively coupled plasmas
International Nuclear Information System (INIS)
Yuan, Q H; Xin, Y; Huang, X J; Sun, K; Ning, Z Y; Yin, G Q
2008-01-01
In low-pressure dual-frequency capacitively coupled plasmas driven with 60/13.56 MHz, the effect of low-frequency power on the plasma characteristics was investigated using a compensated Langmuir electrostatic probe. At lower pressures (about 10 mTorr), it was possible to control the plasma density and the ion bombardment energy independently. As the pressure increased, this independent control could not be achieved. As the low-frequency power increased for the fixed high-frequency power, the electron energy probability function (EEPF) changed from Druyvesteyn-like to Maxwellian-like at pressures of 50 mTorr and higher, along with a drop in electron temperature. The plasma parameters were calculated and compared with simulation results.
International Nuclear Information System (INIS)
Bang, Jin Young; Chung, Chin Wook
2009-01-01
In plasma, the Boltzmann relation is often used to connect the electron density to the plasma potential because it is not easy to calculate electric potentials on the basis of the Poisson equation due to the quasineutrality. From the Boltzmann relation, the electric potential can be simply obtained from the electron density or vice versa. However, the Boltzmann relation assumes that electrons are in thermal equilibrium and have a Maxwellian distribution, so it cannot be applied to non-Maxwellian distributions. In this paper, the Boltzmann relation for bi-Maxwellian distributions was newly derived from fluid equations and the comparison with the experimental results was given by measuring electron energy probability functions in an inductively coupled plasma. It was found that the spatial distribution of the electron density in bulk plasma is governed by the effective electron temperature, while that of the cold and hot electrons are governed by each electron temperature.
Energy Technology Data Exchange (ETDEWEB)
Morreeuw, J.P.; Dubroca, B. [CEA Centre d' Etudes Scientifiques et Techniques d' Aquitaine, 33 - Le Barp (France); Sangam, A.; Dubroca, B.; Charrier, P.; Tikhonchuk, V.T. [Bordeaux-1 Univ., CELIA, 33 - Talence (France); Sangam, A.; Dubroca, B.; Charrier, P. [Bordeaux-1 Univ., MAB, 33 - Talence (France)
2006-06-15
The laser interaction with an underdense plasma leads to an anisotropic laser heating of electrons. This temperature anisotropy gradient in turn is the source of an early magnetic field, which has an important effect on the plasma evolution, due to the thermal flux reduction. We describe the temperature anisotropy by an evolution equation including the anisotropy-magnetic field coupling and observe a rather efficient magnetic field generation. However at high anisotropy levels, a small-scale instability emerges, leading to a serious problem in numerical calculations. We introduce the kinetics effects, which fix the problem by the anisotropy diffusion through the heat flux tensor. A constant-coefficient Fokker-Planck model in the 2-dimensional geometry allows us to derive an anisotropy diffusion term. The diffusion coefficient is fitted from the kinetic theory of the collisional anisotropic (Weibel) instability growth rate. Such an anisotropy diffusion term wipes out the unphysical instability without any undesirable smoothing. This diffusion along with the viscosity term leads also to a quite good restitution of the Weibel instability growth rate and to the short wavelength cutoff, even in a weakly collisional situation. This allows us to use such a model to predict the emergence of the Weibel instability as well as its saturation. (authors)
International Nuclear Information System (INIS)
Sánchez, Raquel; Todolí, José Luis; Lienemann, Charles-Philippe; Mermet, Jean-Michel
2013-01-01
The fundamentals, applications and latter developments of petroleum products analysis through inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are revisited in the present bibliographic survey. Sample preparation procedures for the direct analysis of fuels by using liquid sample introduction systems are critically reviewed and compared. The most employed methods are sample dilution, emulsion or micro-emulsion preparation and sample decomposition. The first one is the most widely employed due to its simplicity. Once the sample has been prepared, an organic matrix is usually present. The performance of the sample introduction system (i.e., nebulizer and spray chamber) depends strongly upon the nature and properties of the solution finally obtained. Many different devices have been assayed and the obtained results are shown. Additionally, samples can be introduced into the plasma by using an electrothermal vaporization (ETV) device or a laser ablation system (LA). The recent results published in the literature showing the feasibility, advantages and drawbacks of latter alternatives are also described. Therefore, the main goal of the review is the discussion of the different approaches developed for the analysis of crude oil and its derivates by inductively coupled plasma (ICP) techniques. - Highlights: • Analysis of petroleum products by inductively coupled plasma techniques is revisited. • Fundamental studies are included together with reports dealing with applications. • Conventional and non-conventional sample introduction methods are considered. • Sample preparation methods are critically compared and described
Du, Huarong; Wang, Zheng-Xiong; Dong, J. Q.; Liu, S. F.
2014-05-01
The coupling of ion temperature gradient (ITG or ηi) mode and trapped electron mode (TEM) in the presence of impurity ions is numerically investigated in toroidal collisionless plasmas, using the gyrokinetic integral eigenmode equation. A framework for excitations of the ITG modes and TEMs with respect to their driving sources is formulated first, and then the roles of impurity ions played in are analyzed comprehensively. In particular, the characteristics of the ITG and TEM instabilities in the presence of impurity ions are emphasized for both strong and weak coupling (hybrid and coexistent) cases. It is found that the impurity ions with inwardly (outwardly) peaked density profiles have stabilizing (destabilizing) effects on the hybrid (namely the TE-ITG) modes in consistence with previous works. A new finding of this work is that the impurity ions have stabilizing effects on TEMs in small ηi (ηi≤1) regime regardless of peaking directions of their density profiles whereas the impurity ions with density gradient Lez=Lne/Lnz>1 (LezTEMs in large ηi (ηi≥1) regime. In addition, the dependences of the growth rate, real frequency, eigenmode structure, and wave spectrum on charge concentration, charge number, and mass of impurity ions are analyzed in detail. The necessity for taking impurity ion effects on the features of turbulence into account in future transport experimental data analyses is also discussed.
Plasma diagnostics using laser-excited coupled and transmission ring resonators
International Nuclear Information System (INIS)
Haas, R.A.
1976-01-01
In this paper a simple two-level laser model is used to investigate the frequency response of coupled-cavity laser interferometers. It is found that under certain circumstances, often satisfied by molecular gas lasers, the frequency response exhibits a resonant behavior. This behavior severely complicates the interpretation of coupled-cavity laser interferometer measurements of rapidly varying plasmas. To circumvent this limitation a new type of laser interferometer plasma diagnostic with significantly improved time response was developed. In this interferometer the plasma is located in one arm of a transmission ring resonator cavity that is excited by an externally positioned laser. Thus, the laser is decoupled from the interferometer cavity and the time response of the interferometer is then limited by the Q of the ring resonator cavity. This improved time response is acquired without loss of spatial resolution, but requires a more sensitive signal detector since the laser is no longer used as a detector as it is in conventional coupled-cavity laser interferometers. Thus, the new technique incorporates the speed of the Mach--Zender interferometer and the sensitivity of the coupled-cavity laser interferometer. The basic operating principles of this type of interferometer have been verified using a CO 2 laser
Energy Technology Data Exchange (ETDEWEB)
Makonnen, Yoseif; Beauchemin, Diane, E-mail: diane.beauchemin@chem.queensu.ca
2014-09-01
Multivariate optimization of an argon–nitrogen–hydrogen mixed-gas plasma for minimum matrix effects, while maintaining analyte sensitivity as much as possible, was carried out in inductively coupled plasma mass spectrometry. In the presence of 0.1 M Na, the 33.9 ± 3.9% (n = 13 elements) analyte signal suppression on average observed in an all-argon plasma was alleviated with the optimized mixed-gas plasma, the average being − 4.0 ± 8.8%, with enhancement in several cases. An addition of 2.3% v/v N{sub 2} in the outer plasma gas, and 0.50% v/v H{sub 2} to the central channel, as a sheath around the nebulizer gas flow, was sufficient for this drastic increase in robustness. It also reduced the background from ArO{sup +} and Ar{sub 2}{sup +} as well as oxide levels by over an order of magnitude. On the other hand, the background from NO{sup +} and ArN{sup +} increased by up to an order of magnitude while the levels of doubly-charged ions increased to 7% (versus 2.7% in an argon plasma optimized for sensitivity). Furthermore, detection limits were generally degraded by 5 to 15 fold when using the mixed-gas plasma versus the argon plasma for matrix-free solution (although they were better for several elements in 0.1 M Na). Nonetheless, the drastically increased robustness allowed the direct quantitative multielement analysis of certified ore reference materials, as well as the determination of Mo and Cd in seawater, without using any matrix-matching or internal standardization. - Highlights: • Addition of N{sub 2} to the plasma gas and H{sub 2} as a sheath gas results in a very robust ICP. • ArO{sup +} and Ar{sub 2}{sup +} background and oxide levels are reduced by over an order of magnitude. • Multielement analysis of rock digests is possible with a simple external calibration. • No internal standardization or matrix-matching is required for accurate analysis. • Cd and Mo were accurately determined in undiluted seawater.
Experimental benchmark of kinetic simulations of capacitively coupled plasmas in molecular gases
Donkó, Z.; Derzsi, A.; Korolov, I.; Hartmann, P.; Brandt, S.; Schulze, J.; Berger, B.; Koepke, M.; Bruneau, B.; Johnson, E.; Lafleur, T.; Booth, J.-P.; Gibson, A. R.; O'Connell, D.; Gans, T.
2018-01-01
We discuss the origin of uncertainties in the results of numerical simulations of low-temperature plasma sources, focusing on capacitively coupled plasmas. These sources can be operated in various gases/gas mixtures, over a wide domain of excitation frequency, voltage, and gas pressure. At low pressures, the non-equilibrium character of the charged particle transport prevails and particle-based simulations become the primary tools for their numerical description. The particle-in-cell method, complemented with Monte Carlo type description of collision processes, is a well-established approach for this purpose. Codes based on this technique have been developed by several authors/groups, and have been benchmarked with each other in some cases. Such benchmarking demonstrates the correctness of the codes, but the underlying physical model remains unvalidated. This is a key point, as this model should ideally account for all important plasma chemical reactions as well as for the plasma-surface interaction via including specific surface reaction coefficients (electron yields, sticking coefficients, etc). In order to test the models rigorously, comparison with experimental ‘benchmark data’ is necessary. Examples will be given regarding the studies of electron power absorption modes in O2, and CF4-Ar discharges, as well as on the effect of modifications of the parameters of certain elementary processes on the computed discharge characteristics in O2 capacitively coupled plasmas.
International Nuclear Information System (INIS)
Munson, C.P.; Benage, J.F. Jr.; Taylor, A.J.; Trainor, R.J. Jr.; Wood, B.P.; Wysocki, F.J.
1999-01-01
Atlas is a high current (approximately 30 MA peak, with a current risetime approximately 4.5 microsec), high energy (E stored = 24 MJ, E load = 3--6 MJ), pulsed power facility which is being constructed at Los Alamos National Laboratory with a scheduled completion date in the year 2000. When operational, this facility will provide a platform for experiments in high pressure shocks (> 20 Mbar), adiabatic compression (ρ/ρ 0 > 5, P > 10 Mbar), high magnetic fields (approximately 2,000 T), high strain and strain rates (var e psilon > 200%, dvar e psilon/dt approximately 10 4 to 10 6 s -1 ), hydrodynamic instabilities of materials in turbulent regimes, magnetized target fusion, equation of state, and strongly coupled plasmas. For the strongly coupled plasma experiments, an auxiliary capacitor bank will be used to generate a moderate density (< 0.1 solid), relatively cold (approximately 1 eV) plasma by ohmic heating of a conducting material of interest such as titanium. This stargate plasma will be compressed against a central column containing diagnostic instrumentation by a cylindrical conducting liner that is driven radially inward by current from the main Atlas capacitor bank. The plasma is predicted to reach densities of approximately 1.1 times solid, achieve ion and electron temperatures of approximately 10 eV, and pressures of approximately 4--5 Mbar. This is a density/temperature regime which is expected to experience strong coupling, but only partial degeneracy. X-ray radiography is planned for measurements of the material density at discrete times during the experiments; diamond Raman measurements are anticipated for determination of the pressure. In addition, a neutron resonance spectroscopic technique is being evaluated for possible determination of the temperature (through low percentage doping of the titanium with a suitable resonant material). Initial target plasma formation experiments are being planned on an existing pulsed power facility at LANL and
Directory of Open Access Journals (Sweden)
Amelia eGreig
2015-01-01
Full Text Available Computational fluid dynamics (CFD simulations of a radio-frequency (13.56 MHz electro-thermal capacitively coupled plasma (CCP micro-thruster have been performed using the commercial CFD-ACE+ package. Standard operating conditions of a 10 W, 1.5 Torr argon discharge were used to compare with previously obtained experimental results for validation. Results show that the driving force behind plasma production within the thruster is ion-induced secondary electrons ejected from the surface of the discharge tube, accelerated through the sheath to electron temperatures up to 33.5 eV. The secondary electron coefficient was varied to determine the effect on the discharge, with results showing that full breakdown of the discharge did not occur for coefficients coefficients less than or equal to 0.01.
Strongly coupled Coulomb systems with positive dust grains: thermal and UV-induced plasmas
International Nuclear Information System (INIS)
Samarian, A.A.
2000-01-01
Full text: A plasma containing macroscopic dust particles or grains (often referred to as a dusty or colloidal or complex plasma) has the feature that grains may be charged by electron or ion flux or by photo- or thermoelectron emission. Electron emission from a grain surface produces a positive charge; capture of electrons produces the reverse effect making the dust grains negatively charged. Most dusty plasma research is concerned with the ordered dust structures (so-called 'plasma crystal') in glow discharges. The dust grains in these experiments were found to carry a negative charge due to the higher mobility of electrons as compared to ions in the discharge plasma. In recent years, in parallel with the study of the properties of plasma crystals under discharge conditions, attempts to obtain a structure from positively charged dust grains have been made, and structure formation processes for various charging mechanisms, particularly thermoelectron emission and photoemission, have been investigated. In this paper we review the essential features of strongly coupled plasmas with positive dust grains. An ordered structure of CeO 2 grains has been experimentally observed in a combustion products jet. The grains were charged positively and suspended in the plasma flow. Their charge is about 10 3 a and the calculated value of a Coulomb coupling parameter Γ is >10, corresponding to a plasma liquid. The ordered structures of Al 2 O 3 dust grains in propellant combustion products plasma have been observed for the first time. These structures were found in the sheath boundary of condensation region. The obtained data let us estimate the value of parameter Γ =3-40, corresponding to the plasma liquid state. The possibility is studied of the formation of ordered dust grain structures in thermal plasma. The range of the required values of the coupling parameter Γ is calculated using the results of diagnostic measurements carried out in thermal plasma with grains of
International Nuclear Information System (INIS)
Macias-Diaz, J.E.; Puri, A.
2007-01-01
In the present Letter, we simulate the propagation of binary signals in semi-infinite, mechanical chains of coupled oscillators harmonically driven at the end, by making use of the recently discovered process of nonlinear supratransmission. Our numerical results-which are based on a brand-new computational technique with energy-invariant properties-show an efficient and reliable transmission of information
Line photon transport in a non-homogeneous plasma using radiative coupling coefficients
International Nuclear Information System (INIS)
Florido, R.; Gil, J.M.; Rodriguez, R.; Rubiano, J.G.; Martel, P.; Florido, R.; Gil, J.M.; Rodriguez, R.; Rubiano, J.G.; Martel, P.; Minguez, E.
2006-01-01
We present a steady-state collisional-radiative model for the calculation of level populations in non-homogeneous plasmas with planar geometry. The line photon transport is taken into account following an angle- and frequency-averaged escape probability model. Several models where the same approach has been used can be found in the literature, but the main difference between our model and those ones is that the details of geometry are exactly treated in the definition of coupling coefficients and a local profile is taken into account in each plasma cell. (authors)
The determination of transition probabilities with an inductively-coupled plasma discharge
International Nuclear Information System (INIS)
Nieuwoudt, G.
1984-03-01
The 27 MHz inductively-coupled plasma discharge (ICP) is used for the determination of relative transition probabilities of the 451, 459 and 470 nm argon spectral lines. The temperature of the argon plasma is determined with hydrogen as thermometric specie, because of the accurate transition probabilities ( approximately 1% uncertainty) there of. The relative transition probabilities of the specific argon spectral lines were determined by substitution of the measured spectral radiances thereof, together with the hydrogen temperature, in the two-line equation of temperature measurement
Viscosity calculated in simulations of strongly coupled dusty plasmas with gas friction
International Nuclear Information System (INIS)
Feng Yan; Goree, J.; Liu Bin
2011-01-01
A two-dimensional strongly coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity η and the wave-number-dependent viscosity η(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity η(k) is validated by comparing the results of η(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity η in the presence of a modest level of friction as in dusty plasma experiments.
International Nuclear Information System (INIS)
Abdullin, I.Sh.; Avetisov, S.E.; Lipatov, D.V.; Rybakova, E.G.; Bragin, V.E.; Bykanov, A.N.; Kamarentsev, E.N.
1996-01-01
The sterilization effect of capacitively coupled rf discharge plasma treatment of contact lenses was investigated. There were used two types of polymer: highly hydrophilic polymer with water content 76% (Navelen-76) and poly-methylmethacrylate (PMMA). There was demonstrated the possibility of effective sterilization by RF discharge plasma of a set of polymer materials used in ophthalmology. The best results were obtained for hard contact lenses. There was perfect sterilization in this case. There were not perfect sterilization in some cases of soft contact lenses treatment. It may be caused by porous structure of the external layers of this material and limited thickness of the sterilization layer. (author)
Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.
2016-01-01
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of du...
DEFF Research Database (Denmark)
Bendahl, L.; Sidenius, U.; Gammelgaard, Bente
2000-01-01
measured by inductively coupled plasma mass spectrometry (ICP-MS) monitoring the Se-82 isotope. Linear response was observed in the concentration range 0.3-70.8 mu g/l selenium as selenoprotein P with a correlation coefficient of 0.9994. The precision expressed as relative standard deviation was better...... than 2% in this range. The estimated limit of detection was 2 mu g/l and the experimentally verified quantification limit was 5 mu g/l, giving a relative standard deviation less than 2%. (C) 2000 Elsevier Science B.V. All rights reserved...
Improvement of NiMoNb to polyimide adhesion by inductively coupled nitrogen plasma treatment
Energy Technology Data Exchange (ETDEWEB)
Bang, S.-H., E-mail: zxclucy@snu.ac.kr
2016-01-01
Graphical abstract: - Highlights: • NiMoNb was introduced as the adhesion layer for flexible Cu-clad laminate structure. • The effect of sputtering and plasma power on the peel strength was studied. • Plasma pretreatment in inductively coupled plasma greatly affects the peel strength. • FCCL with NiMoNb adhesion layer show outstanding peel strength. - Abstract: In this study, the effect of sputtering power on the peel strength of the flexible copper clad laminate (FCCL) was evaluated before and after heat treatment using 180° peel test. An increase in the sputtering powers from 200 W to 600 W increased film density and improved peel strength. To enhance peel strength much more, an inductively coupled plasma (ICP) was treated on the PI surface using N{sub 2} gas with Ar as a function of RF power. A dramatic enhancement of the peel strength, 923 N/m was achieved, especially after heat treatment by changing ICP power from 200 W to 900 W. The reduction ratio of the peel strength for the 900 W plasma-treated FCCL was only 12%, whereas that for the 200 W plasma-treated FCCL was 43%. The root mean square (RMS) surface roughness with PIs exposed to both 200 W and 900 W plasma treatments was rarely changed, while X-ray photoelectron spectroscopy (XPS) showed the substantial increase of C–N functional groups. To obtain insight the film characteristics, the NiMoNb/PI interfaces were investigated by a high resolution transmission electron microscopy (HR-TEM).
International Nuclear Information System (INIS)
Krishan, S.
2007-01-01
The Stieltjes transform has been used in place of a more common Laplace transform to determine the time evolution of the self-consistent field (SCF) of an unmagnetized semi-infinite plasma, where the plasma electrons together with a primary and a low-density secondary electron beam move perpendicular to the boundary surface. The secondary beam is produced when the primary beam strikes the grid. Such a plasma system has been investigated by Griskey and Stanzel [M. C. Grisky and R. L. Stenzel, Phys. Rev. Lett. 82, 556 (1999)]. The physical phenomenon, observed in their experiment, has been named by them as ''secondary beam instability.'' The character of the instability observed in the experiment is not the same as predicted by the conventional treatments--the field amplitude does not grow with time. In the frequency spectrum, the theory predicts peak values in the amplitude of SCF at the plasma frequency of plasma and secondary beam electrons, decreasing above and below it. The Stieltjes transform for functions, growing exponentially in the long time limit, does not exist, while the Laplace transform technique gives only exponentially growing solutions. Therefore, it should be interesting to know the kind of solutions that an otherwise physically unstable plasma will yield. In the high-frequency limit, the plasma has been found to respond to any arbitrary frequency of the initial field differentiated only by the strength of the resulting SCF. The condition required for exponential growth in the conventional treatments, and the condition for maximum amplitude (with respect to frequency) in the present treatment, have been found to be the same. Nonlinear mode coupling between the modes excited by the plasma electrons and the low-density secondary beam gives rise to two frequency-dependent peaks in the field amplitude, symmetrically located about the much stronger peak due to the plasma electrons, as predicted by the experiment
International Nuclear Information System (INIS)
Nagano, Seido; Ichimaru, Setsuo
1980-01-01
The memory function for the velocity autocorrelation function in a strongly coupled, one-component plasma is analyzed in the short time and long time domains, respectively, with the aid of the frequency-moment sum rules and the hydrodynamic consideration evoking the idea of the generalized Stokes friction. A series of interpolation schemes with successively improved accuracies are then introduced. Numerical investigations of those interpolation schemes clarify the physical origin of the three different types of the velocity autocorrelation function observed in the molecular dynamics simulation at different regimes of the coupling constant. (author)
The concept of coupling impedance in the self-consistent plasma wake field excitation
International Nuclear Information System (INIS)
Fedele, R.; Akhter, T.; De Nicola, S.; Migliorati, M.; Marocchino, A.; Massimo, F.; Palumbo, L.
2016-01-01
Within the framework of the Vlasov–Maxwell system of equations, we describe the self-consistent interaction of a relativistic charged-particle beam with the surroundings while propagating through a plasma-based acceleration device. This is done in terms of the concept of coupling (longitudinal) impedance in full analogy with the conventional accelerators. It is shown that also here the coupling impedance is a very useful tool for the Nyquist-type stability analysis. Examples of specific physical situations are finally illustrated.
Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...
International Nuclear Information System (INIS)
Niu, Hongsen.
1995-01-01
The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (T e ) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (n e ) is in the range 10 8 --10 10 -cm at the skimmer tip and drops abruptly to 10 6 --10 8 cm -3 near the skimmer tip and drops abruptly to 10 6 --10 8 cm -3 downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 10 4 --10 5 downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z 2 intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z 2 fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument
State-space modeling of the radio frequency inductively-coupled plasma generator
International Nuclear Information System (INIS)
Dewangan, Rakesh Kumar; Punjabi, Sangeeta B; Mangalvedekar, H A; Lande, B K; Joshi, N K; Barve, D N
2010-01-01
Computational fluid dynamics models of RF-ICP are useful in understanding the basic transport phenomenon in an ICP torch under a wide variety of operating conditions. However, these models lack the ability to evaluate the effects of the plasma condition on the RF generator. In this paper, simulation of an induction plasma generator has been done using state space modelling by considering inductively coupled plasma as a part of RF network .The time dependent response of the RF-ICP generator circuit to given input excitation has been computed by extracting the circuit's state-space variables and their constraint matrices. MATLAB 7.1 software has been used to solve the state equations. The values of RF coil current, frequency and plasma power has been measured experimentally also at different plate bias voltage. The simulated model is able to predict RF coil current, frequency, plasma power, overall efficiency of the generator. The simulated and measured values are in agreement with each other. This model can prove useful as a design tool for the Induction plasma generator.
International Nuclear Information System (INIS)
Kim, Youngsoo; Lee, Ji-Hye; Kim, Kang-Jin; Lee, Yeonhee
2009-01-01
Different fluorocarbon thin films were deposited on Si substrates using a plasma-polymerization method. Fluorine-containing hydrophobic thin films were obtained by inductively coupled plasma (ICP) and pulsed plasma (PP) with a mixture of fluorocarbon precursors C 2 F 6 , C 3 F 8 , and c-C 4 F 8 and the unsaturated hydrocarbons of C 2 H 2 . The influence on the fluorocarbon surfaces of the process parameters for plasma polymerization, including the gas ratio and the plasma power, were investigated under two plasma-polymerized techniques with different fluorocarbon gas precursors. The hydrophobic properties, surface morphologies, and chemical compositions were elucidated using water contact angle measurements, field emission-scanning electron microscope, x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). In this study, the ICP technique provides coarser grained films and more hydrophobic surfaces as well as a higher deposition rate compared to the PP technique. XPS, FT-IR, and TOF-SIMS analyses indicated that the ICP technique produced more fluorine-related functional groups, including CF 2 and CF 3 , on the surface. From the curve-fitted XPS results, fluorocarbon films grown under ICP technique exhibited less degree of cross-linking and higher CF 2 concentrations than those grown under PP technique.
Choudhary, Mangilal; Mukherjee, S; Bandyopadhyay, P
2016-05-01
A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.
Energy Technology Data Exchange (ETDEWEB)
Alves, Luis C. [Iowa State Univ., Ames, IA (United States)
1993-09-01
A desolvation scheme for introducing aqueous and organic samples into an argon inductively coupled plasma is described; the aerosol generated by nebulizer is heated (+140 C) and cooled (-80 C) repeatedly, and the dried aerosol is then injected into the mass spectrometer. Polyatomic ions are greatly suppressed. This scheme was validated with analysis of seawater and urine reference samples. Finally, the removal of organic solvents by cryogenic desolvation was studied.
Study of hard diamond-like carbon films deposited in an inductively coupled plasma source
International Nuclear Information System (INIS)
Yu Shiji; Ma Tengcai
2003-01-01
Chemical vapor deposition of the hard diamond-like carbon (DLC) films was achieved using an inductively coupled plasma source (ICPS). The microscopy, microhardness, deposition rate and structure characteristic of the DLC films were analyzed. It is shown that the ICPS is suitable for the hard DLC film deposition at relatively low substrate negative bias voltage, and the substrate negative bias voltage greatly affects chemical vapor deposition of the DLC film and its quality
Benros Santos Lopes, Silvania
2016-01-01
Nanoparticles represent a very exciting new area of research. Their small size, ranging from several nanometers to tens of nanometers, is responsible for many changes in the structural, thermal, electromagnetic, optical and mechanical properties in comparison with the bulk solid of the same materials. However, promoting the use of such material requires well-controlled synthesis techniques to be developed. Inductively coupled thermal plasma (ICTP) reactors have been shown to offer unique adva...
Inductively coupled plasma for atomic emission spectroscopy at the Savannah River Plant
International Nuclear Information System (INIS)
Coleman, J.T.
1986-01-01
The Savannah River Plant atomic emission spectroscopy laboratory has been in operation for over 30 years. Routine analytical methods and instrumentation are being replaced with current technology. Laboratory renovation will include the installation of contained dual excitation sources (inductively coupled plasma and d-c arc) with a direct reading spectrometer. The instrument will be used to provide impurity analyses of plutonium, uranium, and other nuclear fuel cycle materials
Non-Hermitian wave packet approximation for coupled two-level systems in weak and intense fields
Energy Technology Data Exchange (ETDEWEB)
Puthumpally-Joseph, Raiju; Charron, Eric [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Sukharev, Maxim [Science and Mathematics Faculty, College of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States)
2016-04-21
We introduce a non-Hermitian Schrödinger-type approximation of optical Bloch equations for two-level systems. This approximation provides a complete and accurate description of the coherence and decoherence dynamics in both weak and strong laser fields at the cost of losing accuracy in the description of populations. In this approach, it is sufficient to propagate the wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing are taken into account via automatically adjusted time-dependent gain and decay rates. The developed formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer comprised of interacting two-level emitters.