Compressive wavefront sensing with weak values.
Howland, Gregory A; Lum, Daniel J; Howell, John C
2014-08-11
We demonstrate a wavefront sensor that unites weak measurement and the compressive-sensing, single-pixel camera. Using a high-resolution spatial light modulator (SLM) as a variable waveplate, we weakly couple an optical field's transverse-position and polarization degrees of freedom. By placing random, binary patterns on the SLM, polarization serves as a meter for directly measuring random projections of the wavefront's real and imaginary components. Compressive-sensing optimization techniques can then recover the wavefront. We acquire high quality, 256 × 256 pixel images of the wavefront from only 10,000 projections. Photon-counting detectors give sub-picowatt sensitivity.
Correlations between corneal and total wavefront aberrations
Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo
2002-06-01
Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.
Numerical estimation of the curvature of a light wavefront in a weak gravitational field
Miguel, A San; Pascual-Sanchez, J -F
2009-01-01
The geometry of a light wavefront evolving in the 3--space associated with a post-Newtonian relativistic spacetime from a flat wavefront is studied numerically by means of the ray tracing method. For a discretization of the bidimensional wavefront the surface fitting technique is used to determine the curvature of this surface at each vertex of the mesh. The relationship between the curvature of a wavefront and the change of the arrival time at different points on the Earth is also numerically discussed.
Universal sensitivity of speckle intensity correlations to wavefront change in light diffusers
Kim, KyungDuk; Lee, KyeoReh; Park, YongKeun
2016-01-01
Here, we present a concept based on the realization that a complex medium can be used as a simple interferometer. Changes in the wavefront of an incident coherent beam can be retrieved by analyzing changes in speckle patterns when the beam passes through a light diffuser. We demonstrate that the spatial intensity correlations of the speckle patterns are independent of the light diffusers, and are solely determined by the phase changes of an incident beam. With numerical simulations using the random matrix theory, and an experimental pressure-driven wavefront-deforming setup using a microfluidic channel, we theoretically and experimentally confirm the universal sensitivity of speckle intensity correlations, which is attributed to the conservation of optical field correlation despite multiple light scattering. This work demonstrates that a complex media is a simple interferometer, and presents opportunities to replace complicated reference-beam-assisted interferometers with a simple and compact scattering layer...
Correlation between Post-LASIK Starburst Symptom and Ocular Wavefront Aberrations
Institute of Scientific and Technical Information of China (English)
LIU Yong-Ji; MU Guo-Guang; WANG Zhao-Qi; WANG Yan
2006-01-01
Monochromatic aberrations in post laser in-situ keratomileusis (LASIK) eyes are measured. The data are categorized into reference group and starburst group according to the visual symptoms. Statistic analysis has been made to find the correJation between the ocular wavefront aberrations and the starburst symptom. The rms aberrations of the 3rd and 4th orders for the starburst group are significantly larger than those for the reference group. The starburst symptom shows a strong correlation with vertical coma, total coma, spherical aberrations. For 3-mm pupil size and 5.8-mm pupil size, the modulation transfer function (MTF) of the starburst group are lower than those of the reference group, but their visual acuities are close. MTF and PSF analyses are made for two groups, and the results are consistent with the statistical analysis, which means the difference between the two groups is mainly due to the third- and fourth-order Zernike aberrations.
Magnified Weak Lensing Cross Correlation Tomography
Energy Technology Data Exchange (ETDEWEB)
Ulmer, Melville P., Clowe, Douglas I.
2010-11-30
This project carried out a weak lensing tomography (WLT) measurement around rich clusters of galaxies. This project used ground based photometric redshift data combined with HST archived cluster images that provide the WLT and cluster mass modeling. The technique has already produced interesting results (Guennou et al, 2010,Astronomy & Astrophysics Vol 523, page 21, and Clowe et al, 2011 to be submitted). Guennou et al have validated that the necessary accuracy can be achieved with photometric redshifts for our purposes. Clowe et al titled "The DAFT/FADA survey. II. Tomographic weak lensing signal from 10 high redshift clusters," have shown that for the **first time** via this purely geometrical technique, which does not assume a standard rod or candle, that a cosmological constant is **required** for flat cosmologies. The intent of this project is not to produce the best constraint on the value of the dark energy equation of state, w. Rather, this project is to carry out a sustained effort of weak lensing tomography that will naturally feed into the near term Dark Energy Survey (DES) and to provide invaluable mass calibration for that project. These results will greatly advance a key cosmological method which will be applied to the top-rated ground-based project in the Astro2020 decadal survey, LSST. Weak lensing tomography is one of the key science drivers behind LSST. CO-I Clowe is on the weak lensing LSST committee, and senior scientist on this project, at FNAL James Annis, plays a leading role in the DES. This project has built on successful proposals to obtain ground-based imaging for the cluster sample. By 1 Jan, it is anticipated the project will have accumulated complete 5-color photometry on 30 (or about 1/3) of the targeted cluster sample (public webpage for the survey is available at http://cencos.oamp.fr/DAFT/ and has a current summary of the observational status of various clusters). In all, the project has now been awarded the equivalent of over 60
Magnified Weak Lensing Cross Correlation Tomography
Energy Technology Data Exchange (ETDEWEB)
Ulmer, Melville P., Clowe, Douglas I.
2010-11-30
This project carried out a weak lensing tomography (WLT) measurement around rich clusters of galaxies. This project used ground based photometric redshift data combined with HST archived cluster images that provide the WLT and cluster mass modeling. The technique has already produced interesting results (Guennou et al, 2010,Astronomy & Astrophysics Vol 523, page 21, and Clowe et al, 2011 to be submitted). Guennou et al have validated that the necessary accuracy can be achieved with photometric redshifts for our purposes. Clowe et al titled "The DAFT/FADA survey. II. Tomographic weak lensing signal from 10 high redshift clusters," have shown that for the **first time** via this purely geometrical technique, which does not assume a standard rod or candle, that a cosmological constant is **required** for flat cosmologies. The intent of this project is not to produce the best constraint on the value of the dark energy equation of state, w. Rather, this project is to carry out a sustained effort of weak lensing tomography that will naturally feed into the near term Dark Energy Survey (DES) and to provide invaluable mass calibration for that project. These results will greatly advance a key cosmological method which will be applied to the top-rated ground-based project in the Astro2020 decadal survey, LSST. Weak lensing tomography is one of the key science drivers behind LSST. CO-I Clowe is on the weak lensing LSST committee, and senior scientist on this project, at FNAL James Annis, plays a leading role in the DES. This project has built on successful proposals to obtain ground-based imaging for the cluster sample. By 1 Jan, it is anticipated the project will have accumulated complete 5-color photometry on 30 (or about 1/3) of the targeted cluster sample (public webpage for the survey is available at http://cencos.oamp.fr/DAFT/ and has a current summary of the observational status of various clusters). In all, the project has now been awarded the equivalent of over 60
Enhancing robustness of multiparty quantum correlations using weak measurement
Energy Technology Data Exchange (ETDEWEB)
Singh, Uttam, E-mail: uttamsingh@hri.res.in [Quantum Information and Computation Group, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Mishra, Utkarsh, E-mail: utkarsh@hri.res.in [Quantum Information and Computation Group, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Dhar, Himadri Shekhar, E-mail: dhar.himadri@gmail.com [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)
2014-11-15
Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol.
Weak diffusion limits of dynamic conditional correlation models
DEFF Research Database (Denmark)
Hafner, Christian M.; Laurent, Sebastien; Violante, Francesco
The properties of dynamic conditional correlation (DCC) models are still not entirely understood. This paper fills one of the gaps by deriving weak diffusion limits of a modified version of the classical DCC model. The limiting system of stochastic differential equations is characterized by a dif......The properties of dynamic conditional correlation (DCC) models are still not entirely understood. This paper fills one of the gaps by deriving weak diffusion limits of a modified version of the classical DCC model. The limiting system of stochastic differential equations is characterized...... by a diffusion matrix of reduced rank. The degeneracy is due to perfect collinearity between the innovations of the volatility and correlation dynamics. For the special case of constant conditional correlations, a non-degenerate diffusion limit can be obtained. Alternative sets of conditions are considered...... for the rate of convergence of the parameters, obtaining time-varying but deterministic variances and/or correlations. A Monte Carlo experiment confirms that the quasi approximate maximum likelihood (QAML) method to estimate the diffusion parameters is inconsistent for any fixed frequency, but that it may...
Cross correlation of Cosmic Microwave background and Weak Lensing
Lee, Seokcheon
2015-01-01
The integrated Sachs-Wolfe (ISW) effect and its non-linear extension Rees-Sciama (RS) effect provide us the information of the time evolution of gravitational potential. The cross-correlation between the cosmic microwave background (CMB) and the large scale structure (LSS) is known as a promising way to extract the ISW (RS) effect. It is known that the RS effect shows the unique behavior by changing the anti-correlated cross correlation between the CMB and the mass tracer into the positively correlated cross correlation compared to the linear ISW effect. We show that the dependence of this flipping scale of the cross-correlation between RS and weak lensing on dark energy models. However, there exists the degeneracy between DE and $\\Omega_{\\rm{m}0}$ which might be broken by redshift dependent observables. The cross-correlation between the momentum field and the density field might be served as the better observable to be used for this purpose.
Measuring weak lensing correlations of Type Ia supernovae
Scovacricchi, D.; Nichol, R. C.; Macaulay, E.; Bacon, D.
2017-03-01
We study the feasibility of detecting weak lensing spatial correlations between supernova (SN) Type Ia magnitudes with present (Dark Energy Survey, DES) and future (Large Synoptic Survey Telescope, LSST) surveys. We investigate the angular auto-correlation function of SN magnitudes (once the background cosmology has been subtracted) and cross-correlation with galaxy catalogues. We examine both analytical and numerical predictions, the latter using simulated galaxy catalogues from the MICE Grand Challenge Simulation. We predict that we will be unable to detect the SN auto-correlation in DES, while it should be detectable with the LSST SN deep fields (15 000 SNe on 70 deg2) at ≃6σ level of confidence (assuming 0.15 mag of intrinsic dispersion). The SN-galaxy cross-correlation function will deliver much higher signal to noise, being detectable in both surveys with an integrated signal to noise of ∼100 (up to 30 arcmin separations). We predict joint constraints on the matter density parameter (Ωm) and the clustering amplitude (σ8) by fitting the auto-correlation function of our mock LSST deep fields. When assuming a Gaussian prior for Ωm, we can achieve a 25 per cent measurement of σ8 from just these LSST supernovae (assuming 0.15 mag of intrinsic dispersion). These constraints will improve significantly if the intrinsic dispersion of SNe Ia can be reduced.
Measuring weak lensing correlations of Type Ia Supernovae
Scovacricchi, D; Macaulay, E; Bacon, D
2016-01-01
We study the feasibility of detecting weak lensing spatial correlations between Supernova (SN) Type Ia magnitudes with present (Dark Energy Survey, DES) and future (Large Synoptic Survey Telescope, LSST) surveys. We investigate the angular auto-correlation function of SN magnitudes (once the background cosmology has been subtracted) and cross-correlation with galaxy catalogues. We examine both analytical and numerical predictions, the latter using simulated galaxy catalogues from the MICE Grand Challenge Simulation. We predict that we will be unable to detect the SN auto-correlation in DES, while it should be detectable with the LSST SN deep fields (15,000 SNe on 70 deg^2) at ~6sigma level of confidence (assuming 0.15 magnitudes of intrinsic dispersion). The SN-galaxy cross-correlation function will deliver much higher signal-to-noise, being detectable in both surveys with an integrated signal-to-noise of ~100 (up to 30 arcmin separations). We predict joint constraints on the matter density parameter (Omega_m...
Gravitational force in weakly correlated particle spatial distributions.
Gabrielli, Andrea; Masucci, Adolfo Paolo; Labini, Francesco Sylos
2004-03-01
We study the statistics of the gravitational (Newtonian) force in a particular class of weakly correlated spatial distributions of pointlike and unitary mass particles generated by the so-called Gauss-Poisson point processes. In particular we extend to these distributions the analysis that Chandrasekhar introduced for purely Poisson processes. In this way we can find the explicit asymptotic behavior of the probability density function of the force for both large and small values of the field as a generalization of the Holtzmark statistics. In particular, we show how the modifications at large fields depend on the density correlations introduced at small scales. The validity of the introduced approximations is positively tested through a direct comparison with the analysis of the statistics of the gravitational force in numerical simulations of Gauss-Poisson processes.
Yu, Siyuan; Ma, Zhongtian; Ma, Jing; Wu, Feng; Tan, Liying
2015-03-23
In some applications of optical communication systems, such as inter-satellites optical communication, the correlation of the bidirectional tracking beams changes in far-field as a result of wave-front deformation. Far-field correlation model with wave-front deformation on tracking stability is established. Far-field correlation function and factor have been obtained. Combining with parameters of typical laser communication systems, the model is corrected. It shows that deformation pointing-tracking errors θ(A) and θ(B), far-field correlation factor δ depend on RMS of deformation error rms, which decline with a increasing rms including Tilt and Coma. The principle of adjusting far-field correlation factor with wave-front deformation to compensate deformation pointing-tracking errors has been given, through which the deformation pointing-tracking error is reduced to 18.12″ (Azimuth) and 17.65″ (Elevation). Work above possesses significant reference value on optimization design in inter-satellites optical communication.
Freeman, Simon E; Buckingham, Michael J; Freeman, Lauren A; Lammers, Marc O; D'Spain, Gerald L
2015-01-01
A seven element, bi-linear hydrophone array was deployed over a coral reef in the Papahãnaumokuãkea Marine National Monument, Northwest Hawaiian Islands, in order to investigate the spatial, temporal, and spectral properties of biological sound in an environment free of anthropogenic influences. Local biological sound sources, including snapping shrimp and other organisms, produced curved-wavefront acoustic arrivals at the array, allowing source location via focusing to be performed over an area of 1600 m(2). Initially, however, a rough estimate of source location was obtained from triangulation of pair-wise cross-correlations of the sound. Refinements to these initial source locations, and source frequency information, were then obtained using two techniques, conventional and adaptive focusing. It was found that most of the sources were situated on or inside the reef structure itself, rather than over adjacent sandy areas. Snapping-shrimp-like sounds, all with similar spectral characteristics, originated from individual sources predominantly in one area to the east of the array. To the west, the spectral and spatial distributions of the sources were more varied, suggesting the presence of a multitude of heterogeneous biological processes. In addition to the biological sounds, some low-frequency noise due to distant breaking waves was received from end-fire north of the array.
Continuum Coupling and Pair Correlation in Weakly Bound Deformed Nuclei
Oba, Hiroshi
2009-01-01
We formulate a new Hartree-Fock-Bogoliubov method applicable to weakly bound deformed nuclei using the coordinate-space Green's function technique. An emphasis is put on treatment of quasiparticle states in the continuum, on which we impose the correct boundary condition of the asymptotic out-going wave. We illustrate this method with numerical examples.
Evidence for weak electronic correlations in Fe-pnictides
Energy Technology Data Exchange (ETDEWEB)
Yang, W.L.
2010-04-29
Using x-ray absorption and resonant inelastic x-ray scattering, charge dynamics at and near the Fe L edges is investigated in Fe pnictide materials, and contrasted to that measured in other Fe compounds. It is shown that the XAS and RIXS spectra for 122 and 1111 Fe pnictides are each qualitatively similar to Fe metal. Cluster diagonalization, multiplet, and density-functional calculations show that Coulomb correlations are much smaller than in the cuprates, highlighting the role of Fe metallicity and strong covalency in these materials. Best agreement with experiment is obtained using Hubbard parameters U {approx}< 2eV and J {approx} 0.8eV.
Evidence for weak electronic correlations in Fe-Pnictides
Energy Technology Data Exchange (ETDEWEB)
Yang, W. L.; Sorini, A. P.; Chen, C-C.; Moritz, B.; Lee, W.-S.; Vernay, F.; Olalde-Velasco, P.; Denlinger, J. D.; Delley, B.; Chu, J.-H.; Analytis, J.G.; Fisher, I. R.; Ren, Z. A.; Yang, J.; Lu, W.; Zhao, Z. X.; van den Brink, J.; Hussain, Z.; Shen, Z.-X.; Devereaux, T. P.
2009-06-11
Using x-ray absorption and resonant inelastic x-ray scattering, charge dynamics at and near the Fe L edges is investigated in Fe pnictide materials, and contrasted tothat measured in other Fe compounds. It is shown that the XAS and RIXS spectra for 122 and 1111 Fe pnictides are each qualitatively similar to Fe metal. Cluster diagonalization, multiplet, and density-functional calculations show that Coulomb correlations are much smaller than in the cuprates, highlighting the role of Fe metallicity and strong covalency in these materials. Best agreement with experiment is obtained using Hubbard parameters U<~;; 2eV and J ~;; 0.8eV.
Institute of Scientific and Technical Information of China (English)
王宗国; 覃绍京; 康凯; 王垂林
2012-01-01
We calculated numerically the localization length of one-dimensional Anderson model with correlated diagonal disorder. For zero energy point in the weak disorder limit, we showed that the localization length changes continuously as the correlation of the disorder increases. We found that higher order terms of the correlation must be included into the current perturbation result in order to give the correct localization length, arid to connect smoothly the anomaly at zero correlation with the perturbation result for large correlation.
Xiao, Xing; Yao, Yao; Xie, Ying-Mao; Wang, Xing-Hua; Li, Yan-Ling
2016-09-01
Based on the quantum technique of weak measurement, we propose a scheme to protect the entanglement from correlated amplitude damping decoherence. In contrast to the results of memoryless amplitude damping channel, we show that the memory effects play a significant role in the suppression of entanglement sudden death and protection of entanglement under severe decoherence. Moreover, we find that the initial entanglement could be drastically amplified by the combination of weak measurement and quantum measurement reversal even under the correlated amplitude damping channel. The underlying mechanism can be attributed to the probabilistic nature of weak measurements.
Ravikumar, Ayeswarya; Marsack, Jason D; Bedell, Harold E; Shi, Yue; Applegate, Raymond A
2013-11-26
We determined the degree to which change in visual acuity (VA) correlates with change in optical quality using image-quality (IQ) metrics for both normal and keratoconic wavefront errors (WFEs). VA was recorded for five normal subjects reading simulated, logMAR acuity charts generated from the scaled WFEs of 15 normal and seven keratoconic eyes. We examined the correlations over a large range of acuity loss (up to 11 lines) and a smaller, more clinically relevant range (up to four lines). Nine IQ metrics were well correlated for both ranges. Over the smaller range of primary interest, eight were also accurate and precise in estimating the variations in logMAR acuity in both normal and keratoconic WFEs. The accuracy for these eight best metrics in estimating the mean change in logMAR acuity ranged between ±0.0065 to ±0.017 logMAR (all less than one letter), and the precision ranged between ±0.10 to ±0.14 logMAR (all less than seven letters).
Cross-correlation of weak lensing and gamma rays: implications for the nature of dark matter
Tröster, Tilman; Camera, Stefano; Fornasa, Mattia; Regis, Marco; van Waerbeke, Ludovic; Harnois-Déraps, Joachim; Ando, Shin'ichiro; Bilicki, Maciej; Erben, Thomas; Fornengo, Nicolao; Heymans, Catherine; Hildebrandt, Hendrik; Hoekstra, Henk; Kuijken, Konrad; Viola, Massimo
2017-05-01
We measure the cross-correlation between Fermi gamma-ray photons and over 1000 deg2 of weak lensing data from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), the Red Cluster Sequence Lensing Survey (RCSLenS), and the Kilo Degree Survey (KiDS). We present the first measurement of tomographic weak lensing cross-correlations and the first application of spectral binning to cross-correlations between gamma rays and weak lensing. The measurements are performed using an angular power spectrum estimator while the covariance is estimated using an analytical prescription. We verify the accuracy of our covariance estimate by comparing it to two internal covariance estimators. Based on the non-detection of a cross-correlation signal, we derive constraints on weakly interacting massive particle (WIMP) dark matter. We compute exclusion limits on the dark matter annihilation cross-section , decay rate Γdec and particle mass mDM. We find that in the absence of a cross-correlation signal, tomography does not significantly improve the constraining power of the analysis. Assuming a strong contribution to the gamma-ray flux due to small-scale clustering of dark matter and accounting for known astrophysical sources of gamma rays, we exclude the thermal relic cross-section for particle masses of mDM ≲ 20 GeV.
Khoshbakht, Roya; Soltanzadeh, Akbar; Zamani, Babak; Abdi, Siyamak; Gharagozli, Kourosh; Kahrizi, Kimia; Khoshbakht, Rahem; Nafissi, Shahriar
2014-07-01
Myotonic dystrophy type 1 (DM-1) is a multi-system disorder affecting the muscles, brain, cardiovascular system, endocrine system, eyes and skin. Diagnosis is made by clinical, electrodiagnostic and genetic studies. This study aimed to determine the correlation between CTG expansion and distribution of muscle weakness and clinical and electrophysiological findings. Genetically confirmed DM-1 patients presenting to Shariati Hospital between 2005 and 2011 were included in this study. Clinical, electrodiagnostic and genetic testing was performed and the correlation between CTG expansion and distribution of muscle weakness and clinical and electromyographic findings was studied. Thirty-three genetically confirmed DM-1 patients were enrolled. Myotonia, bifacial weakness and distal upper limb weakness were seen in all patients. Diabetes mellitus was found in one patient (3%), cardiac disturbance in eight (24.2%), cataracts in eight (24.2%), hypogonadism in five (15.2%), frontal baldness in 13 (39.4%), temporalis wasting in 14 (42.4%), temporomandibular joint disorder in seven (21.2%) and mental retardation in eight (24.2%). The mean number of CTG repeats, measured by Southern blot, was 8780 (range 500-15,833). A negative correlation was found between CTG expansion and age of onset. Temporalis wasting and mental retardation were positively correlated with CTG expansion. No relationship was found between weakness distribution, electromyographic findings, other systemic features and CTG expansion. In this study of DM-1 in Iran, we found a correlation between CTG expansion and age of onset, temporalis wasting and mental disability. No correlation between CTG expansion and electrodiagnostic and other clinical findings were detected.
Cross-correlation of weak lensing and gamma rays: implications for the nature of dark matter
Tröster, Tilman; Fornasa, Mattia; Regis, Marco; van Waerbeke, Ludovic; Harnois-Déraps, Joachim; Ando, Shin'ichiro; Bilicki, Maciej; Erben, Thomas; Fornengo, Nicolao; Heymans, Catherine; Hildebrandt, Hendrik; Hoekstra, Henk; Kuijken, Konrad; Viola, Massimo
2016-01-01
We measure the cross-correlation between Fermi-LAT gamma-ray photons and over 1000 deg$^2$ of weak lensing data from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), the Red Cluster Sequence Lensing Survey (RCSLenS), and the Kilo Degree Survey (KiDS). We present the first measurement of tomographic weak lensing cross-correlations and the first application of spectral binning to cross-correlations between gamma rays and weak lensing. The measurements are performed using an angular power spectrum estimator while the covariance is estimated using an analytical prescription. We verify the accuracy of our covariance estimate by comparing it to two internal covariance estimators. Based on the non-detection of a cross-correlation signal, we derive constraints on weakly interacting massive particle (WIMP) dark matter. We compute exclusion limits on the dark matter annihilation cross-section $\\langle\\sigma_\\rm{ann} v \\rangle$, decay rate $\\Gamma_\\rm{dec}$, and particle mass $m_\\rm{DM}$. We find that in th...
Texier, Christophe; Montambaux, Gilles
2016-08-01
We consider the electronic transport in multi-terminal mesoscopic networks of weakly disordered metallic wires. After a brief description of the classical transport, we analyse the weak localisation (WL) correction to the four-terminal resistances, which involves an integration of the Cooperon over the wires with proper weights. We provide an interpretation of these weights in terms of classical transport properties. We illustrate the formalism on examples and show that weak localisation to four-terminal conductances may become large in some situations. In a second part, we study the correlations of four-terminal resistances and show that integration of Diffuson and Cooperon inside the network involves the same weights as the WL. The formulae are applied to multiconnected wire geometries.
Texier, Christophe; Montambaux, Gilles
2016-01-01
We consider the electronic transport in multi-terminal mesoscopic networks of weakly disordered metallic wires. After a brief description of the classical transport, we analyse the weak localisation (WL) correction to the four-terminal resistances, which involves an integration of the Cooperon over the wires with proper weights. We provide an interpretation of these weights in terms of classical transport properties. We illustrate the formalism on examples and show that weak localisation to four-terminal conductances may become large in some situations. In a second part, we study the correlations of four-terminal resistances and show that integration of Diffuson and Cooperon inside the network involves the same weights as the WL. The formulae are applied to multiconnected wire geometries.
Why is the correlation between gene importance and gene evolutionary rate so weak?
Directory of Open Access Journals (Sweden)
Zhi Wang
2009-01-01
Full Text Available One of the few commonly believed principles of molecular evolution is that functionally more important genes (or DNA sequences evolve more slowly than less important ones. This principle is widely used by molecular biologists in daily practice. However, recent genomic analysis of a diverse array of organisms found only weak, negative correlations between the evolutionary rate of a gene and its functional importance, typically measured under a single benign lab condition. A frequently suggested cause of the above finding is that gene importance determined in the lab differs from that in an organism's natural environment. Here, we test this hypothesis in yeast using gene importance values experimentally determined in 418 lab conditions or computationally predicted for 10,000 nutritional conditions. In no single condition or combination of conditions did we find a much stronger negative correlation, which is explainable by our subsequent finding that always-essential (enzyme genes do not evolve significantly more slowly than sometimes-essential or always-nonessential ones. Furthermore, we verified that functional density, approximated by the fraction of amino acid sites within protein domains, is uncorrelated with gene importance. Thus, neither the lab-nature mismatch nor a potentially biased among-gene distribution of functional density explains the observed weakness of the correlation between gene importance and evolutionary rate. We conclude that the weakness is factual, rather than artifactual. In addition to being weakened by population genetic reasons, the correlation is likely to have been further weakened by the presence of multiple nontrivial rate determinants that are independent from gene importance. These findings notwithstanding, we show that the principle of slower evolution of more important genes does have some predictive power when genes with vastly different evolutionary rates are compared, explaining why the principle can be
The impact of correlated noise on galaxy shape estimation for weak lensing
Gurvich, Alex
2015-01-01
The robust estimation of the tiny distortions (shears) of galaxy shapes caused by weak gravitational lensing in the presence of much larger shape distortions due to the point-spread function (PSF) has been widely investigated. One major problem is that most galaxy shape measurement methods are subject to bias due to pixel noise in the images ("noise bias"). Noise bias is usually characterized using uncorrelated noise fields; however, real images typically have low-level noise correlations due to galaxies below the detection threshold, and some types of image processing can induce further noise correlations. We investigate the effective detection significance and its impact on noise bias in the presence of correlated noise for one method of galaxy shape estimation. For a fixed noise variance, the biases in galaxy shape estimates can differ substantially for uncorrelated versus correlated noise. However, use of an estimate of detection significance that accounts for the noise correlations can almost entirely re...
CMBR Weak Lensing and HI 21-cm Cross-correlation Angular Power Spectrum
Sarkar, Tapomoy Guha
2009-01-01
Weak gravitational lensing of the CMBR manifests as a secondary anisotropy in the temperature maps. The effect, quantified through the shear and convergence fields imprint the underlying large scale structure (LSS), geometry and evolution history of the Universe. It is hence perceived to be an important observational probe of cosmology. De-lensing the CMBR temperature maps is also crucial for detecting the gravitational wave generated B-modes. Future observations of redshifted 21-cm radiation from the cosmological neutral hydrogen (HI) distribution hold the potential of probing the LSS over a large redshift range. We have investigated the correlation between post-reionization HI signal and weak lensing convergence field. Assuming that the HI follows the dark matter distribution, the cross-correlation angular power spectrum at a multipole \\ell is found to be proportional to the cold dark matter power spectrum evaluated at \\ell/r, where r denotes the comoving distance to the redshift where the HI is located. Th...
Lindner, Benjamin; Doiron, Brent; Longtin, Andre; Maler, Leonard; Bastian, Joseph
2004-03-01
The spiking activity of pyramidal cells in the weakly electric fish is studied. It is experimentally shown that the oscillatory spiking activity of these cells increases with the spatial correlations of external stochastic input. A model network of integrate-and-fire (IF) neurons with delayed inhibitory feedback reproduces this effect. Moreover, a novel analytical approach for stochastic neuron models with weak feedback is presented that leads to a simple expression for the power spectrum of the spike train of a single neuron. The analytical results agree well with simulation results of the leaky IF neurons; they also show the same qualitative features as the experimental spectra and are helpful in understanding the deeper origin of the correlation-induced oscillations.
Complex wavefront sensing with a plenoptic sensor
Wu, Chensheng; Ko, Jonathan; Davis, Christopher C.
2016-09-01
There are many techniques to achieve basic wavefront sensing tasks in the weak atmospheric turbulence regime. However, in strong and deep turbulence situations, the complexity of a propagating wavefront increases significantly. Typically, beam breakup will happen and various portions of the beam will randomly interfere with each other. Consequently, some conventional techniques for wavefront sensing turn out to be inaccurate and misleading. For example, a Shack-Hartmann sensor will be confused by multi-spot/zero-spot result in some cells. The curvature sensor will be affected by random interference patterns for both the image acquired before the focal plane and the image acquired after the focal plane. We propose the use of a plenoptic sensor to solve complex wavefront sensing problems. In fact, our results show that even for multiple beams (their wavelengths can be the same) passing through the same turbulent channel, the plenoptic sensor can reconstruct the turbulence-induced distortion accurately. In this paper, we will demonstrate the plenoptic mapping principle to analyze and reconstruct the complex wavefront of a distorted laser beam.
Institute of Scientific and Technical Information of China (English)
Li Yue; Yang Baojun; Lu Peng; Li Shizhe
2003-01-01
In this letter, with the synthesis of usual cross-correlation detecting method andchaotic detecting method, a new detecting system for the weak periodic pulse signal is constituted,in which the two methods can play respective preponderance. Theoretical analyses and simulationstudies have shown that the detecting system is very sensitive to the periodic pulse signal understrong noise background and has exceedingly powerful capability of suppressing complex noise.
Integrated Wavefront Corrector Project
National Aeronautics and Space Administration — One of the critical issues for NASA missions requiring high contrast astrophysical imaging such as Terrestrial Planet Finder (TPF) is wavefront control. Without use...
SKA Weak Lensing I: Cosmological Forecasts and the Power of Radio-Optical Cross-Correlations
Harrison, Ian; Camera, Stefano; Zuntz, Joe; Brown, L.
2016-09-01
We construct forecasts for cosmological parameter constraints from weak gravitational lensing surveys involving the Square Kilometre Array (SKA). Considering matter content, dark energy and modified gravity parameters, we show that the first phase of the SKA (SKA1) can be competitive with other Stage III experiments such as the Dark Energy Survey (DES) and that the full SKA (SKA2) can potentially form tighter constraints than Stage IV optical weak lensing experiments, such as those that will be conducted with LSST, WFIRST-AFTA or Euclid-like facilities. Using weak lensing alone, going from SKA1 to SKA2 represents improvements by factors of ˜10 in matter, ˜10 in dark energy and ˜5 in modified gravity parameters. We also show, for the first time, the powerful result that comparably tight constraints (within ˜5%) for both Stage III and Stage IV experiments, can be gained from cross-correlating shear maps between the optical and radio wavebands, a process which can also eliminate a number of potential sources of systematic errors which can otherwise limit the utility of weak lensing cosmology.
Towards efficient orbital-dependent density functionals for weak and strong correlation
Zhang, Igor Ying; Perdew, John P; Scheffler, Matthias
2016-01-01
We present a new paradigm for the design of exchange-correlation functionals in density-functional theory. Electron pairs are correlated explicitly by means of the recently developed second order Bethe-Goldstone equation (BGE2) approach. Here we propose a screened BGE2 (sBGE2) variant that efficiently regulates the coupling of a given electron pair. sBGE2 correctly dissociates H$_2$ and H$_2^+$, a problem that has been regarded as a great challenge in density-functional theory for a long time. The sBGE2 functional is then taken as a building block for an orbital-dependent functional, termed ZRPS, which is a natural extension of the PBE0 hybrid functional. While worsening the good performance of sBGE2 in H$_2$ and H$_2^{+}$, ZRPS yields a remarkable and consistent improvement over other density functionals across various chemical environments from weak to strong correlation.
Parker, Stephen R; Ivanov, Eugene N; Tobar, Michael E
2015-01-01
Weakly Interacting Slim Particles (WISPs), such as axions, are highly motivated dark matter candidates. The most sensitive experimental searches for these particles exploit WISP-to-photon conversion mechanisms and use resonant cavity structures to enhance the resulting power signal. For WISPs to constitute Cold Dark Matter their required masses correspond to photons in the microwave spectrum. As such, searches for these types of WISPs are primarily limited by the thermal cavity noise and the broadband first-stage amplifier noise. In this work we propose and then verify two cross-correlation measurement techniques for cavity-based WISP searches. These are two channel measurement schemes where the cross-spectrum is computed, rejecting uncorrelated noise sources while still retaining correlated signals such as those generated by WISPs. The first technique allows for the cavity thermal spectrum to be observed with an enhanced resolution. The second technique cross-correlates two individual cavity/amplifier system...
Herschel-ATLAS/GAMA: SDSS cross-correlation induced by weak lensing
González-Nuevo, J; Negrello, M; Danese, L; De Zotti, G; Amber, S; Baes, M; Bland-Hawthorn, J; Bourne, N; Brough, S; Bussmann, R S; Cai, Z -Y; Cooray, A; Dunne, L; Dye, S; Eales, S; Ibar, E; Ivison, R; Liske, J; Loveday, J; Maddox, S; Michałowski, M J; Schneider, M D; Scott, D; Smith, M W L; Valiante, E; Xia, J -Q
2014-01-01
We report a highly significant ($>10\\sigma$) spatial correlation between galaxies with $S_{350\\mu\\rm m}\\ge 30\\,$mJy detected in the equatorial fields of the \\textsl{Herschel} Astrophysical Terahertz Large Area Survey (H-ATLAS) with estimated redshifts $\\gtrsim 1.5$, and SDSS or GAMA galaxies at $0.2\\le z\\le 0.6$. The significance of the cross-correlation is much higher than those reported so far for samples with non-overlapping redshift distributions selected in other wavebands. Extensive, realistic simulations of clustered sub-mm galaxies amplified by foreground structures confirm that the cross-correlation is explained by weak gravitational lensing ($\\mu<2$). The simulations also show that the measured amplitude and range of angular scales of the signal are larger than can be accounted for by galaxy-galaxy weak lensing. However, for scales $\\lesssim 2\\,$arcmin, the signal can be reproduced if SDSS/GAMA galaxies act as signposts of galaxy groups/clusters with halo masses in the range ~$10^{13.2}$--$10^{14...
Energy Technology Data Exchange (ETDEWEB)
Berges, J. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik]|[California Univ., Santa Barbara, CA (United States). Inst. for Theoretical Physics; Rothkopf, A. [Tokyo Univ. (Japan). Dept. of Physics; Schmidt, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2008-02-15
Strongly correlated systems far from equilibrium can exhibit scaling solutions with a dynamically generated weak coupling. We show this by investigating isolated systems described by relativistic quantum field theories for initial conditions leading to nonequilibrium instabilities, such as parametric resonance or spinodal decomposition. The non-thermal fixed points prevent fast thermalization if classical-statistical fluctuations dominate over quantum fluctuations. We comment on the possible significance of these results for the heating of the early universe after inflation and the question of fast thermalization in heavy-ion collision experiments. (orig.)
Tracking quasi-stationary flow of weak fluorescent signals by adaptive multi-frame correlation.
Ji, L; Danuser, G
2005-12-01
We have developed a novel cross-correlation technique to probe quasi-stationary flow of fluorescent signals in live cells at a spatial resolution that is close to single particle tracking. By correlating image blocks between pairs of consecutive frames and integrating their correlation scores over multiple frame pairs, uncertainty in identifying a globally significant maximum in the correlation score function has been greatly reduced as compared with conventional correlation-based tracking using the signal of only two consecutive frames. This approach proves robust and very effective in analysing images with a weak, noise-perturbed signal contrast where texture characteristics cannot be matched between only a pair of frames. It can also be applied to images that lack prominent features that could be utilized for particle tracking or feature-based template matching. Furthermore, owing to the integration of correlation scores over multiple frames, the method can handle signals with substantial frame-to-frame intensity variation where conventional correlation-based tracking fails. We tested the performance of the method by tracking polymer flow in actin and microtubule cytoskeleton structures labelled at various fluorophore densities providing imagery with a broad range of signal modulation and noise. In applications to fluorescent speckle microscopy (FSM), where the fluorophore density is sufficiently low to reveal patterns of discrete fluorescent marks referred to as speckles, we combined the multi-frame correlation approach proposed above with particle tracking. This hybrid approach allowed us to follow single speckles robustly in areas of high speckle density and fast flow, where previously published FSM analysis methods were unsuccessful. Thus, we can now probe cytoskeleton polymer dynamics in living cells at an entirely new level of complexity and with unprecedented detail.
Quantum correlations responsible for remote state creation: strong and weak control parameters
Doronin, S. I.; Zenchuk, A. I.
2017-03-01
We study the quantum correlations between the two remote qubits (sender and receiver) connected by the transmission line (homogeneous spin-1/2 chain) depending on the parameters of the sender's and receiver's initial states (control parameters). We consider two different measures of quantum correlations: the entanglement (a traditional measure) and the informational correlation (based on the parameter exchange between the sender and receiver). We find the domain in the control parameter space yielding (i) zero entanglement between the sender and receiver during the whole evolution period and (ii) non-vanishing informational correlation between the sender and receiver, thus showing that the informational correlation is responsible for the remote state creation. Among the control parameters, there are the strong parameters (which strongly effect the values of studied measures) and the weak ones (whose effect is negligible), therewith the eigenvalues of the initial state are given a privileged role. We also show that the problem of small entanglement (concurrence) in quantum information processing is similar (in certain sense) to the problem of small determinants in linear algebra. A particular model of 40-node spin-1/2 communication line is presented.
Metzen, Michael G; Hofmann, Volker; Chacron, Maurice J
2016-01-01
Neural representations of behaviorally relevant stimulus features displaying invariance with respect to different contexts are essential for perception. However, the mechanisms mediating their emergence and subsequent refinement remain poorly understood in general. Here, we demonstrate that correlated neural activity allows for the emergence of an invariant representation of natural communication stimuli that is further refined across successive stages of processing in the weakly electric fish Apteronotus leptorhynchus. Importantly, different patterns of input resulting from the same natural communication stimulus occurring in different contexts all gave rise to similar behavioral responses. Our results thus reveal how a generic neural circuit performs an elegant computation that mediates the emergence and refinement of an invariant neural representation of natural stimuli that most likely constitutes a neural correlate of perception. DOI: http://dx.doi.org/10.7554/eLife.12993.001 PMID:27128376
Advanced Wavefront Control Techniques
Energy Technology Data Exchange (ETDEWEB)
Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G
2001-02-21
Programs at LLNL that involve large laser systems--ranging from the National Ignition Facility to new tactical laser weapons--depend on the maintenance of laser beam quality through precise control of the optical wavefront. This can be accomplished using adaptive optics, which compensate for time-varying aberrations that are often caused by heating in a high-power laser system. Over the past two decades, LLNL has developed a broad capability in adaptive optics technology for both laser beam control and high-resolution imaging. This adaptive optics capability has been based on thin deformable glass mirrors with individual ceramic actuators bonded to the back. In the case of high-power lasers, these adaptive optics systems have successfully improved beam quality. However, as we continue to extend our applications requirements, the existing technology base for wavefront control cannot satisfy them. To address this issue, this project studied improved modeling tools to increase our detailed understanding of the performance of these systems, and evaluated novel approaches to low-order wavefront control that offer the possibility of reduced cost and complexity. We also investigated improved beam control technology for high-resolution wavefront control. Many high-power laser systems suffer from high-spatial-frequency aberrations that require control of hundreds or thousands of phase points to provide adequate correction. However, the cost and size of current deformable mirrors can become prohibitive for applications requiring more than a few tens of phase control points. New phase control technologies are becoming available which offer control of many phase points with small low-cost devices. The goal of this project was to expand our wavefront control capabilities with improved modeling tools, new devices that reduce system cost and complexity, and extensions to high spatial and temporal frequencies using new adaptive optics technologies. In FY 99, the second year of
Correlators of left charges and weak operators in finite volume chiral perturbation theory
Hernández, Pilar; Laine, Mikko
2003-01-01
We compute the two-point correlator between left-handed flavour charges, and the three-point correlator between two left-handed charges and one strangeness violating DeltaI = 3/2 weak operator, at next-to-leading order in finite volume SU(3)L × SU(3)R chiral perturbation theory, in the so-called epsilon-regime. Matching these results with the corresponding lattice measurements would in principle allow to extract the pion decay constant F, and the effective chiral theory parameter g27, which determines the Delta I = 3/2 amplitude of the weak decays K to pipi as well as the kaon mixing parameter BK in the chiral limit. We repeat the calculations in the replica formulation of quenched chiral perturbation theory, finding only mild modifications. In particular, a properly chosen ratio of the three-point and two-point functions is shown to be identical in the full and quenched theories at this order.
Wavefront coding with adaptive optics
Agbana, Temitope E.; Soloviev, Oleg; Bezzubik, Vitalii; Patlan, Vsevolod; Verhaegen, Michel; Vdovin, Gleb
2015-03-01
We have implemented an extended depth of field optical system by wavefront coding with a micromachined membrane deformable mirror. This approach provides a versatile extension to standard wavefront coding based on fixed phase mask. First experimental results validate the feasibility of the use of adaptive optics for variable depth wavefront coding in imaging optical systems.
Fast & Furious focal-plane wavefront sensing
Korkiakoski, Visa; Doelman, Niek; Kenworthy, Matthew; Otten, Gilles; Verhaegen, Michel
2014-01-01
We present two complementary algorithms suitable for using focal-plane measurements to control a wavefront corrector with an extremely high spatial resolution. The algorithms use linear approximations to iteratively minimize the aberrations seen by the focal-plane camera. The first algorithm, Fast & Furious (FF), uses a weak-aberration assumption and pupil symmetries to achieve fast wavefront reconstruction. The second algorithm, an extension to FF, can deal with an arbitrary pupil shape; it uses a Gerchberg-Saxton style error reduction to determine the pupil amplitudes. Simulations and experimental results are shown for a spatial light modulator controlling the wavefront with a resolution of 170 x 170 pixels. The algorithms increase the Strehl ratio from ~0.75 to 0.98-0.99, and the intensity of the scattered light is reduced throughout the whole recorded image of 320 x 320 pixels. The remaining wavefront rms error is estimated to be ~0.15 rad with FF and ~0.10 rad with FF-GS.
Telomere Length in Elderly Caucasians Weakly Correlates with Blood Cell Counts
Directory of Open Access Journals (Sweden)
Ewa Gutmajster
2013-01-01
Full Text Available Background. Age-related decrease in bone marrow erythropoietic capacity is often accompanied by the telomere length shortening in peripheral white blood cells. However, limited and conflicting data hamper the conclusive opinion regarding this relationship. Therefore, the aim of this study was to assess an association between telomere length and peripheral blood cell count parameters in the Polish elderly population. Material and Methods. The substudy included 1573 of 4981 subjects aged 65 years or over, participants of the population-based PolSenior study. High-molecular-weight DNA was isolated from blood mononuclear cells. Telomere length (TL was measured by QRT-PCR as abundance of telomere template versus a single gene copy encoding acidic ribosomal phosphoprotein P0. Results. Only white blood count (WBC was significantly different in TL tertile subgroups in all subjects (P=0.02 and in men (P=0.01, but not in women. Merely in men significant but weak positive correlations were found between TL and WBC (r=0.11, P<0.05 and RBC (r=0.08, P<0.05. The multiple regression analysis models confirmed a weak, independent contribution of TL to both RBC and WBC. Conclusions. In the elderly, telomere shortening limits hematopoiesis capacity to a very limited extent.
Telomere Length in Elderly Caucasians Weakly Correlates with Blood Cell Counts
Witecka, Joanna; Koscinska-Marczewska, Justyna; Szwed, Malgorzata; Owczarz, Magdalena; Mossakowska, Malgorzata; Milewicz, Andrzej; Zejda, Jan; Wiecek, Andrzej
2013-01-01
Background. Age-related decrease in bone marrow erythropoietic capacity is often accompanied by the telomere length shortening in peripheral white blood cells. However, limited and conflicting data hamper the conclusive opinion regarding this relationship. Therefore, the aim of this study was to assess an association between telomere length and peripheral blood cell count parameters in the Polish elderly population. Material and Methods. The substudy included 1573 of 4981 subjects aged 65 years or over, participants of the population-based PolSenior study. High-molecular-weight DNA was isolated from blood mononuclear cells. Telomere length (TL) was measured by QRT-PCR as abundance of telomere template versus a single gene copy encoding acidic ribosomal phosphoprotein P0. Results. Only white blood count (WBC) was significantly different in TL tertile subgroups in all subjects (P = 0.02) and in men (P = 0.01), but not in women. Merely in men significant but weak positive correlations were found between TL and WBC (r = 0.11, P < 0.05) and RBC (r = 0.08, P < 0.05). The multiple regression analysis models confirmed a weak, independent contribution of TL to both RBC and WBC. Conclusions. In the elderly, telomere shortening limits hematopoiesis capacity to a very limited extent. PMID:24453794
Measuring the Galaxy-Galaxy-Mass Three-point Correlation Function with Weak Gravitational Lensing
Johnston, D E
2006-01-01
We discuss the galaxy-galaxy-mass three-point correlation function and show how to measure it with weak gravitational lensing. The method entails choosing a large of pairs of foreground lens galaxies and constructing a mean shear map with respect to their axis, by averaging the ellipticities of background source galaxies. An average mass map can be reconstructed from this shear map and this will represent the average mass distribution around pairs of galaxies. We show how this mass map is related to the projected galaxy-galaxy-mass three-point correlation function. Using a large N-body dark matter simulation populated with galaxies using the Halo Occupation Distribution (HOD) bias prescription, we compute these correlation functions, mass maps, and shear maps. The resultant mass maps are distinctly bimodal, tracing the galaxy centers and remaining anisotropic up to scales much larger than the galaxy separation. At larger scales, the shear is approximately tangential about the center of the pair but with small...
Cross-correlation Weak Lensing of SDSS Galaxy Clusters I: Measurements
Energy Technology Data Exchange (ETDEWEB)
Sheldon, Erin S.; Johnston, David E.; Scranton, Ryan; Koester, Ben P.; McKay, Timothy A.; Oyaizu, Hiroaki; Cunha, Carlos; Lima, Marcos; Lin, Huan; Frieman, Joshua A.; Wechsler, Risa H.; Annis, James; Mandelbaum, Rachel; Bahcall, Neta A.; Fukugita, Masataka
2007-09-28
This is the first in a series of papers on the weak lensing effect caused by clusters of galaxies in Sloan Digital Sky Survey. The photometrically selected cluster sample, known as MaxBCG, includes {approx}130,000 objects between redshift 0.1 and 0.3, ranging in size from small groups to massive clusters. We split the clusters into bins of richness and luminosity and stack the surface density contrast to produce mean radial profiles. The mean profiles are detected over a range of scales, from the inner halo (25 kpc/h) well into the surrounding large scale structure (30 Mpc/h), with a significance of 15 to 20 in each bin. The signal over this large range of scales is best interpreted in terms of the cluster-mass cross-correlation function. We pay careful attention to sources of systematic error, correcting for them where possible and bounding them where not. We find that the profiles scale strongly with richness and luminosity. We find the signal within a given richness bin depends upon luminosity, suggesting that luminosity is more closely correlated with mass than galaxy counts. We split the samples by redshift but detect no significant evolution. The profiles are not well described by power laws. In a subsequent series of papers we invert the profiles to three-dimensional mass profiles, show that they are well fit by a halo model description, measure mass-to-light ratios and provide a cosmological interpretation.
Wu, Lin; Wang, Yang; Pan, Shirui
2016-10-04
It is now well established that sparse representation models are working effectively for many visual recognition tasks, and have pushed forward the success of dictionary learning therein. Recent studies over dictionary learning focus on learning discriminative atoms instead of purely reconstructive ones. However, the existence of intraclass diversities (i.e., data objects within the same category but exhibit large visual dissimilarities), and interclass similarities (i.e., data objects from distinct classes but share much visual similarities), makes it challenging to learn effective recognition models. To this end, a large number of labeled data objects are required to learn models which can effectively characterize these subtle differences. However, labeled data objects are always limited to access, committing it difficult to learn a monolithic dictionary that can be discriminative enough. To address the above limitations, in this paper, we propose a weakly-supervised dictionary learning method to automatically learn a discriminative dictionary by fully exploiting visual attribute correlations rather than label priors. In particular, the intrinsic attribute correlations are deployed as a critical cue to guide the process of object categorization, and then a set of subdictionaries are jointly learned with respect to each category. The resulting dictionary is highly discriminative and leads to intraclass diversity aware sparse representations. Extensive experiments on image classification and object recognition are conducted to show the effectiveness of our approach.
Cross-correlation Weak Lensing of SDSS Galaxy Clusters III: Mass-to-light Ratios
Sheldon, Erin S; Masjedi, Morad; McKay, Timothy A; Blanton, Michael R; Scranton, Ryan; Wechsler, Risa H; Koester, Ben P; Hansen, Sarah M; Frieman, Joshua A; Annis, James
2007-01-01
We present measurements of the excess mass-to-light ratio (M/L) measured around MaxBCG galaxy clusters observed in the SDSS. Using cross-correlation weak lensing, we measure the excess mass density profile above the universal mean \\Delta \\rho(r) = \\rho(r) - \\bar{\\rho} for clusters in bins of richness and optical luminosity. We also measure the excess ^{0.25}i-band luminosity density \\Delta l(r) = l(r) - \\bar{l}. For both mass and light, we de-project the profiles to produce 3D mass and light profiles over scales from 25 kpc/h to 22 Mpc/h. From these profiles we calculate the cumulative excess mass \\Delta M(r) and excess light \\Delta L(r) as a function of separation from the BCG. On small scales, where \\rho(r) >> \\bar{\\rho}, the integrated M/L profile may be interpreted as the cluster M/L. We find the (\\Delta M/\\Delta L)_{200}, the M/L within r_{200}, scales with cluster mass as a power law with index 0.33+/-0.02. On large scales, where \\rho(r) . We find /b^2_{ml} = 362+/-54 h measured in the ^{0.25}i-bandpass...
Cross-correlation Weak Lensing of SDSS Galaxy Clusters I: Measurements
Sheldon, Erin S; Scranton, Ryan; Koester, Ben P; McKay, Timothy A; Oyaizu, Hiroaki; Cunha, Carlos; Lima, Marcos; Lin, Huan; Frieman, Joshua A; Wechsler, Risa H; Annis, James; Mandelbaum, Rachel; Bahcall, Neta A; Fukugita, Masataka
2007-01-01
This is the first in a series of papers on the weak lensing effect caused by clusters of galaxies in Sloan Digital Sky Survey. The photometrically selected cluster sample, known as MaxBCG, includes ~130,000 objects between redshift 0.1 and 0.3, ranging in size from small groups to massive clusters. We split the clusters into bins of richness and luminosity and stack the surface density contrast to produce mean radial profiles. The mean profiles are detected over a range of scales, from the inner halo (25 kpc/h) well into the surrounding large scale structure (30 Mpc/h), with a significance of 15 to 20 in each bin. The signal over this large range of scales is best interpreted in terms of the cluster-mass cross-correlation function. We pay careful attention to sources of systematic error, correcting for them where possible and bounding them where not. We find that the profiles scale strongly with richness and luminosity. We find the signal within a given richness bin depends upon luminosity, suggesting that lu...
Gaussian weighting of ocular wave-front measurements.
Schwiegerling, Jim
2004-11-01
The measurement of ocular wave-front error gives insight into the optical performance of the eye and possibly a means for assessing visual performance. The visual system responds not only to the quality of the optical image formed on the retina but also to the processing that occurs in the retina and the brain. To develop a metric of visual performance based on wave-front error measurements, these latter processes must somehow be incorporated. In representing the wave-front error in terms of Zernike polynomials, it appears that terms with lower angular frequency have a greater deleterious effect on visual performance than higher-angular-frequency terms. A technique for weighting the pupil function of the eye with a Gaussian filter is demonstrated. It is further demonstrated that the variance of the Gaussian-weighted wave-front error is well correlated with visual performance.
Wavefront Measurement in Ophthalmology
Molebny, Vasyl
Wavefront sensing or aberration measurement in the eye is a key problem in refractive surgery and vision correction with laser. The accuracy of these measurements is critical for the outcome of the surgery. Practically all clinical methods use laser as a source of light. To better understand the background, we analyze the pre-laser techniques developed over centuries. They allowed new discoveries of the nature of the optical system of the eye, and many served as prototypes for laser-based wavefront sensing technologies. Hartmann's test was strengthened by Platt's lenslet matrix and the CCD two-dimensional photodetector acquired a new life as a Hartmann-Shack sensor in Heidelberg. Tscherning's aberroscope, invented in France, was transformed into a laser device known as a Dresden aberrometer, having seen its reincarnation in Germany with Seiler's help. The clinical ray tracing technique was brought to life by Molebny in Ukraine, and skiascopy was created by Fujieda in Japan. With the maturation of these technologies, new demands now arise for their wider implementation in optometry and vision correction with customized contact and intraocular lenses.
Bahrdt, J
2005-01-01
The design of beamlines for VUV and x-ray FEL facilities requires a detailed knowledge of the coherent radiation source. Time dependent simulations with FEL codes like GENESIS provide the electric field distribution at the end of the FEL which represents the complete information. Ray tracing codes used to transform the light from the source to the sample are generally based on geometrical optics and do not include directly the coherent properties of the FEL radiation. On the other hand Fourier optic techniques are usually applied to the propagation across normal incidence optics. We present an algorithm based on physical optics which permits the propagation of wavefronts across grazing incidence optics including interference effects, diffraction, polarization variation and pulse lengthening. Some examples are given for the proposed BESSY soft x-ray FEL.
Observation of electron weak localization and correlation effects in disordered graphene
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
We have studied the electron transport properties of a disordered graphene sample, where the disorder was intentionally strengthened by Ga+ ion irradiation. The magneto-conductance of the sample exhibits a typical two-dimensional electron weak localization behavior, with electron-electron interaction as the dominant dephasing mechanism. The absence of electron anti-weak localization in the sample implies strong intersublattice and/or intervalley scattering caused by the disorders. The temperature and bias-voltage dependencies of conductance clearly reveal the suppression of conductance at low energies, indicating opening of a Coulomb gap due to electron-electron interaction in the disordered graphene sample.
Phase-Controlled Magnetic Mirror for Wavefront Correction
Hagopian, John; Wollack, Edward
2011-01-01
Typically, light interacts with matter via the electric field and interaction with weakly bound electrons. In a magnetic mirror, a patterned nanowire is fabricated over a metallic layer with a dielectric layer in between. Oscillation of the electrons in the nanowires in response to the magnetic field of incident photons causes a re-emission of photons and operation as a "magnetic mirror." By controlling the index of refraction in the dielectric layer using a local applied voltage, the phase of the emitted radiation can be controlled. This allows electrical modification of the reflected wavefront, resulting in a deformable mirror that can be used for wavefront control. Certain applications require wavefront quality in the few-nanometer regime, which is a major challenge for optical fabrication and alignment of mirrors or lenses. The use of a deformable magnetic mirror allows for a device with no moving parts that can modify the phase of incident light over many spatial scales, potentially with higher resolution than current approaches. Current deformable mirrors modify the incident wavefront by using nano-actuation of a substrate to physically bend the mirror to a desired shape. The purpose of the innovation is to modify the incident wavefront for the purpose of correction of fabrication and alignment-induced wavefront errors at the system level. The advanced degree of precision required for some applications such as gravity wave detection (LISA - Laser Interferometer Space Antenna) or planet finding (FKSI - Fourier-Kelvin Stellar Interferometer) requires wavefront control at the limits of the current state of the art. All the steps required to fabricate a magnetic mirror have been demonstrated. The modification is to apply a bias voltage to the dielectric layer so as to change the index of refraction and modify the phase of the reflected radiation. Light is reflected off the device and collected by a phase-sensing interferometer. The interferometer determines the
Tracking biochemical changes correlated with ultra-weak photon emission using metabolomics
Burgos, R.C.R.; Cervinková, K.; Laan, T. van der; Ramautar, R.; Wijk, E.P.A. van; Cifra, M.; Koval, S.; Berger, R.; Hankemeier, T.; Greef, J. van der
2016-01-01
Ultra-weak photon emission (UPE) is light emitted spontaneously by biological systems without the use of specific luminescent complexes. UPE is emitted in the near-UV/UV–Vis/near-IR spectra during oxidative metabolic reactions; however, the specific pathways involved in UPE remain poorly understood.
Wavefront sensing reveals optical coherence.
Stoklasa, B; Motka, L; Rehacek, J; Hradil, Z; Sánchez-Soto, L L
2014-01-01
Wavefront sensing is a set of techniques providing efficient means to ascertain the shape of an optical wavefront or its deviation from an ideal reference. Owing to its wide dynamical range and high optical efficiency, the Shack-Hartmann wavefront sensor is nowadays the most widely used of these sensors. Here we show that it actually performs a simultaneous measurement of position and angular spectrum of the incident radiation and, therefore, when combined with tomographic techniques previously developed for quantum information processing, the Shack-Hartmann wavefront sensor can be instrumental in reconstructing the complete coherence properties of the signal. We confirm these predictions with an experimental characterization of partially coherent vortex beams, a case that cannot be treated with the standard tools. This seems to indicate that classical methods employed hitherto do not fully exploit the potential of the registered data.
Observation of electron weak localization and correlation effects in disordered graphene
Institute of Scientific and Technical Information of China (English)
TAN ChangLing; TAN ZhenBing; MA Li; QU FanMing; YANG Fan; CHEN Jun; LIU GuangTong; YANG HaiFang; YANG ChangLi; LU Li
2009-01-01
We have studied the electron transport properties of a disordered graphene sample,where the disorder was intentionally strengthened by Ga+ ion irradiation.The magneto-conductance of the sample exhibits a typical two-dimensional electron weak localization behavior,with electron-electron interaction as the dominant dephasing mechanism.The absence of electron anti-weak localization in the sample implies strong intersublattice and/or intervalley scattering caused by the disorders.The temperature and bias-voltage dependencies of conductance clearly reveal the suppression of conductance at low ener-gies,indicating opening of a Coulomb gap due to electron-electron interaction in the disordered gra-phene sample.
Asphericity analysis using corneal wavefront and topographic meridional fits
Arba-Mosquera, Samuel; Merayo-Lloves, Jesús; de Ortueta, Diego
2010-03-01
The calculation of corneal asphericity as a 3-D fit renders more accurate results when it is based on the corneal wavefront aberrations rather than on the corneal topography of the principal meridians. A more accurate prediction could be obtained for hyperopic treatments compared to myopic treatments. We evaluate a method to calculate corneal asphericity and asphericity changes after refractive surgery. Sixty eyes of 15 consecutive myopic patients and 15 consecutive hyperopic patients (n=30 each) are retrospectively evaluated. Preoperative and 3-month-postoperative topographic and corneal wavefront analyses are performed using corneal topography. Ablations are performed using a laser with an aberration-free profile. Topographic changes in asphericity and corneal aberrations are evaluated for a 6-mm corneal diameter. The induction of corneal spherical aberrations and asphericity changes correlates with the achieved defocus correction. Preoperatively as well as postoperatively, asphericity calculated from the topography meridians correlates with asphericity calculated from the corneal wavefront in myopic and hyperopic treatments. A stronger correlation between postoperative asphericity and the ideally expected/predicted asphericity is obtained based on aberration-free assumptions calculated from corneal wavefront values rather than from the meridians. In hyperopic treatments, a better correlation can be obtained compared to the correlation in myopic treatments. Corneal asphericity calculated from corneal wavefront aberrations represents a 3-D fit of the corneal surface; asphericity calculated from the main topographic meridians represents a 2-D fit of the principal corneal meridians. Postoperative corneal asphericity can be calculated from corneal wavefront aberrations with higher fidelity than from corneal topography of the principal meridians. Hyperopic treatments show a greater accuracy than myopic treatments.
Larsen, Patricia; Challinor, Anthony
2016-10-01
Correlations of galaxy ellipticities with large-scale structure, due to galactic tidal interactions, provide a potentially significant contaminant to measurements of cosmic shear. However, these intrinsic alignments are still poorly understood for galaxies at the redshifts typically used in cosmic shear analyses. For spiral galaxies, it is thought that tidal torquing is significant in determining alignments resulting in zero correlation between the intrinsic ellipticity and the gravitational potential in linear theory. Here, we calculate the leading-order correction to this result in the tidal-torque model from non-linear evolution, using second-order perturbation theory, and relate this to the contamination from intrinsic alignments to the recently measured cross-correlation between galaxy ellipticities and the cosmic microwave background (CMB) lensing potential. On the scales relevant for CMB lensing observations, the squeezed limit of the gravitational bispectrum dominates the correlation. Physically, the large-scale mode that sources CMB lensing modulates the small-scale power and hence the intrinsic ellipticity, due to non-linear evolution. We find that the angular cross-correlation from tidal torquing has a very similar scale dependence as in the linear alignment model, believed to be appropriate for elliptical galaxies. The amplitude of the cross-correlation is predicted to depend strongly on the formation redshift, being smaller for galaxies that formed at higher redshift when the bispectrum of the gravitational potential was smaller. Finally, we make simple forecasts for constraints on intrinsic alignments from the correlation of forthcoming cosmic shear measurements with current CMB lensing measurements. We note that cosmic variance can be significantly reduced in measurements of the difference in the intrinsic alignments for elliptical and spiral galaxies if these types can be separated (e.g. using colour).
Correlative methods for dual-species quantum tests of the weak equivalence principle
Barrett, B; Chichet, L; Battelier, B; Gominet, P -A; Bertoldi, A; Bouyer, P; Landragin, A
2015-01-01
Matter-wave interferometers utilizing non-identical elements intrinsically have different sensitivities, and the analysis tools available until now are insufficient for accurately estimating the atomic phase difference under many experimental conditions. In this work, we describe and demonstrate two new methods for extracting the differential phase between dual-species atom interferometers for precise tests of the weak equivalence principle. The first method is a generalized Bayesian analysis, which uses knowledge of the system noise to estimate the differential phase based on a statistical model. The second method utilizes a mechanical accelerometer to reconstruct single-sensor interference fringes based on measurements of the vibration-induced phase. An improved ellipse-fitting algorithm is also implemented as a third method for comparison. These analysis tools are investigated using both numerical simulations and experimental data from simultaneous $^{87}$Rb and $^{39}$K interferometers, and both new techn...
Baldauf, Tobias; Seljak, Uros; Mandelbaum, Rachel
2009-01-01
The clustering of matter on cosmological scales is an essential probe for studying the physical origin and composition of our Universe. To date, most of the direct studies have focused on shear-shear weak lensing correlations, but it is also possible to extract the dark matter clustering by combining galaxy-clustering and galaxy-galaxy-lensing measurements. In this study we develop a method that can constrain the dark matter correlation function from galaxy clustering and galaxy-galaxy-lensing measurements, by focusing on the correlation coefficient between the galaxy and matter overdensity fields. To generate a mock galaxy catalogue for testing purposes, we use the Halo Occupation Distribution approach applied to a large ensemble of N-body simulations to model pre-existing SDSS Luminous Red Galaxy sample observations. Using this mock catalogue, we show that a direct comparison between the excess surface mass density measured by lensing and its corresponding galaxy clustering quantity is not optimal. We devel...
Wavefront Sensing for WFIRST with a Linear Optical Model
Jurling, Alden S.; Content, David A.
2012-01-01
In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.
Wavefront sensing for WFIRST with a linear optical model
Jurling, Alden S.; Content, David A.
2012-09-01
In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.
DEFF Research Database (Denmark)
Andersen, Brian Møller; Graser, S.; Hirschfeld, P. J.
2012-01-01
Recent experimental and theoretical studies have highlighted the possible role of an electronic nematic liquid in underdoped cuprate superconductors. We calculate, within a model of d-wave superconductor with Hubbard correlations, the spin susceptibility in the case of a small explicitly broken...
The Stock Exchange of Suriname: Returns, Volatility, Correlations and Weak-form Efficiency
Bodeutsch, Denice; Franses, Philip Hans
2014-01-01
markdownabstract__Abstract__ The empirical properties of stock returns are studied for 10 companies listed at the Suriname Stock Exchange (SSE), which is a young and growing stock market. Individual stock returns are found to be predictable from the own past to some extent, but the equal-weighted index returns are not. Dynamic correlations with large Latin-American stock markets appear to be zero. It is concluded that there is much more efficiency to be gained for the SSE.
Detection of weak gravitational lensing magnification from Galaxy-QSO cross-correlation in the SDSS
Gaztañaga, E
2003-01-01
We report a detection of galaxy-QSO cross-correlation w_{GQ} in the Sloan Digital Sky Survey (SDSS) Early Data Release (EDR) over 0.2-30 arc-minute scales. We cross-correlate galaxy samples of different mean depths r'=19-22 (z_G =0.15-0.35) with the main QSO population (i'_Q <19.2) at \\zbar_Q \\simeq 1.6. We find positive detection in most cases (except for the faintest QSOs as expeceted) with up to 8-sigma significance. The amplitude of the signal on arc-minute scales is about 20% at z_G=0.15 decreasing to 10% at z_G =0.35 This is a few times larger than currently expected from structure formation LCDM models o but confirms, at a higher significance, previous measurements by several groups. The shape and redshift evolution agrees well with being a lensing signal. We also find a 3-sigma detection for the (pseudo) skewness (galaxy-galaxy-QSO correlation): S_3 = 18.6 \\pm 5.7$ The data indicates very strong non-linear amplitude for the underlaying matter fluctuations scales of 0.2$ Mpc/h, in apparent contradic...
Correlation of CMB with large-scale structure: II. Weak lensing
Hirata, Christopher M; Padmanabhan, Nikhil; Seljak, Uros; Bahcall, Neta
2008-01-01
We investigate the correlation of gravitational lensing of the cosmic microwave background (CMB) with several tracers of large-scale structure, including luminous red galaxies (LRGs), quasars, and radio sources. The lensing field is reconstructed based on the CMB maps from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite; the LRGs and quasars are observed by the Sloan Digital Sky Survey (SDSS); and the radio sources are observed in the NRAO VLA Sky Survey (NVSS). Combining all three large-scale structure samples, we find evidence for a positive cross-correlation at the $2.5\\sigma$ level ($1.8\\sigma$ for the SDSS samples and $2.1\\sigma$ for NVSS); the cross-correlation amplitude is $1.06\\pm 0.42$ times that expected for the WMAP cosmological parameters. Our analysis extends other recent analyses in that we carefully determine bias weighted redshift distribution of the sources, which is needed for a meaningful cosmological interpretation of the detected signal. We investigate contamination of the signa...
Spatial Light Modulator for wavefront correction
Vyas, Akondi; Banyal, Ravinder Kumar; Prasad, B Raghavendra
2009-01-01
We present a liquid crystal method of correcting the phase of an aberrated wavefront using a spatial light modulator. A simple and efficient lab model has been demonstrated for wavefront correction. The crux of a wavefront correcting system in an adaptive optics system lies in the speed and the image quality that can be achieved. The speeds and the accuracy of wavefront representation using Zernike polynomials have been presented using a very fast method of computation.
Cross-correlating Planck tSZ with RCSLenS weak lensing: Implications for cosmology and AGN feedback
Hojjati, Alireza; Harnois-Déraps, Joachim; McCarthy, Ian G; van Waerbeke, Ludovic; Choi, Ami; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Hinshaw, Gary; Ma, Yin-Zhe; Miller, Lance; Viola, Massimo; Tanimura, Hideki
2016-01-01
We present measurements of the spatial mapping between (hot) baryons and the total matter in the Universe, via the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) map from Planck and the weak gravitational lensing maps from the Red Sequence Cluster Survey (RCSLenS). The cross-correlations are performed on the map level where all the sources (including diffuse intergalactic gas) contribute to the signal. We consider two configuration-space correlation function estimators, $\\xi^{ y-\\kappa}$ and $\\xi^ {y-\\gamma_{t}}$, and a Fourier space estimator, $C_{\\ell}^{y-\\kappa}$, in our analysis. We detect a significant correlation out to three degrees of angular separation on the sky. Based on statistical noise only, we can report 13$\\sigma$ and 17$\\sigma$ detections of the cross-correlation using the configuration-space $y-\\kappa$ and $y-\\gamma_{t}$ estimators, respectively. Including a heuristic estimate of the sampling variance yields a detection significance of 6$\\sigma$ and 8$\\sigma$, respectively. A ...
Horton, Dane M; Wiederman, Steven D; Saint, David A
2012-06-01
The relation between lecture attendance and learning is surprisingly weak, and the role of learning styles in this is poorly understood. We hypothesized that 1) academic performance is related to lecture attendance and 2) learning style influences lecture attendance and, consequently, affects performance. We also speculated that the availability of alternative resources would affect this relationship. Second-year Bachelor of Science physiology students (n = 120) self-reported their lecture attendance in a block of 21 lectures (attendance not compulsory) and use of alternative resources. Overall self-reported lecture attendance was 73 ± 2%. Female students (n = 71) attended more lectures (16.4 ± 0.6) than male students (14.3 ± 0.08, n = 49) and achieved a higher composite mark in all assessments (73.6% vs. 69.3%, P lecture attendance (r = 0.29, n = 49, P lectures) reported significantly more use of lecture recordings (37 ± 8%, n = 15, vs. 10 ± 1%, n = 85, P Lecture attendance was not correlated with measured learning style. We concluded that lecture attendance is only weakly correlated with academic performance and is not related to learning style. The substitution of alternative materials for lecture attendance appears to have a greater role than learning style in determining academic outcomes.
Cross-correlation of CMB with large-scale structure: weak gravitational lensing
Hirata, C M; Seljak, U; Schlegel, D J; Brinkmann, J; Hirata, Christopher M.; Padmanabhan, Nikhil; Seljak, Uros; Schlegel, David; Brinkmann, Jonathan
2004-01-01
We present the results of a search for gravitational lensing of the cosmic microwave background (CMB) in cross-correlation with the projected density of luminous red galaxies (LRGs). The CMB lensing reconstruction is performed using the first year of Wilkinson Microwave Anisotropy Probe (WMAP) data, and the galaxy maps are obtained using the Sloan Digital Sky Survey (SDSS) imaging data. We find no detection of lensing; our constraint on the galaxy bias derived from the galaxy-convergence cross-spectrum is $b_g=1.81\\pm 1.92$ ($1\\sigma$, statistical), as compared to the expected result of $b_g\\sim 1.7$ for this sample. We discuss possible instrument-related systematic errors and show that the Galactic foregrounds are not important. We do not find any evidence for point source or thermal Sunyaev-Zel'dovich effect contamination.
Wavefront reconstruction by modal decomposition
CSIR Research Space (South Africa)
Schulze, C
2012-08-01
Full Text Available We propose a new method to determine the wavefront of a laser beam based on modal decomposition by computer-generated holograms. The hologram is encoded with a transmission function suitable for measuring the amplitudes and phases of the modes...
Wavefront Sensing via High Speed DSP
Smith, J. Scott; Dean, Bruce
2004-01-01
Future light-weighted and segmented primary mirror systems require active optical control to maintain mirror positioning and figure to within nanometer tolerances. Current image-based wavefront sensing approaches rely on post-processing techniques to return an estimate of the aberrated optical wavefront with accuracies to the nanometer level. But the lag times between wavefront sensing, and then control, contributes to a significant latency in the wavefront sensing implementation. In this analysis we demonstrate accelerated image-based wavefront sensing performance using multiple digital signal processors (DSP's). The computational architecture is discussed as well as the heritage leading to the approach.
Kilbinger, M; Guy, J; Astier, Pierre; Tereno, I; Fu, L; Wraith, D; Coupon, J; Mellier, Y; Balland, C; Bouchet, F R; Hamana, T; Hardin, D; McCracken, H J; Pain, R; Regnault, N; Schultheiss, M; Yahagi, H
2008-01-01
We combine measurements of weak gravitational lensing from the CFHTLS-Wide survey, supernovae Ia from CFHT SNLS and CMB anisotropies from WMAP5 to obtain joint constraints on cosmological parameters, in particular, the dark energy equation of state parameter w. We assess the influence of systematics in the data on the results and look for possible correlations with cosmological parameters. We implement an MCMC algorithm to sample the parameter space of a flat CDM model with a dark-energy component of constant w. Systematics in the data are parametrised and included in the analysis. We determine the influence of photometric calibration of SNIa data on cosmological results by calculating the response of the distance modulus to photometric zero-point variations. The weak lensing data set is tested for anomalous field-to-field variations and a systematic shape measurement bias for high-z galaxies. Ignoring photometric uncertainties for SNLS biases cosmological parameters by at most 20% of the statistical errors, ...
Cross-correlating Planck tSZ with RCSLenS weak lensing: implications for cosmology and AGN feedback
Hojjati, Alireza; Tröster, Tilman; Harnois-Déraps, Joachim; McCarthy, Ian G.; van Waerbeke, Ludovic; Choi, Ami; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Hinshaw, Gary; Ma, Yin-Zhe; Miller, Lance; Viola, Massimo; Tanimura, Hideki
2017-10-01
We present measurements of the spatial mapping between (hot) baryons and the total matter in the Universe, via the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) map from Planck and the weak gravitational lensing maps from the Red Cluster Sequence Lensing Survey (RCSLenS). The cross-correlations are performed on the map level where all the sources (including diffuse intergalactic gas) contribute to the signal. We consider two configuration-space correlation function estimators, ξy-κ and ξ ^ {y-γ t}, and a Fourier-space estimator, C_{ℓ}^{y-κ}, in our analysis. We detect a significant correlation out to 3° of angular separation on the sky. Based on statistical noise only, we can report 13σ and 17σ detections of the cross-correlation using the configuration-space y-κ and y-γt estimators, respectively. Including a heuristic estimate of the sampling variance yields a detection significance of 7σ and 8σ, respectively. A similar level of detection is obtained from the Fourier-space estimator, C_{ℓ}^{y-κ}. As each estimator probes different dynamical ranges, their combination improves the significance of the detection. We compare our measurements with predictions from the cosmo-OverWhelmingly Large Simulations suite of cosmological hydrodynamical simulations, where different galactic feedback models are implemented. We find that a model with considerable active galactic nuclei (AGN) feedback that removes large quantities of hot gas from galaxy groups and Wilkinson Microwave Anisotropy Probe 7-yr best-fitting cosmological parameters provides the best match to the measurements. All baryonic models in the context of a Planck cosmology overpredict the observed signal. Similar cosmological conclusions are drawn when we employ a halo model with the observed 'universal' pressure profile.
Modal liquid crystal wavefront corrector.
Kotova, S; Kvashnin, M; Rakhmatulin, M; Zayakin, O; Guralnik, I; Klimov, N; Clark, P; Love, Gordon; Naumov, A; Saunter, C; Loktev, M; Vdovin, G; Toporkova, L
2002-11-04
Results are presented of the properties of a liquid crystal wavefront corrector for adaptive optics. The device is controlled using modal addressing in which case the device behaves more like a continuous facesheet deformable mirror than a segmented one. Furthermore, the width and shape of the influence functions are electrically controllable. We describe the construction of the device, the optical properties, and we show experimental results of low order aberration generation.
Hinnen, K.; Verhaegen, M.; Doelman, N.
2005-01-01
Even though the wavefront distortion introduced by atmospheric turbulence is a dynamic process, its temporal evolution is usually neglected in the adaptive optics (AO) control design. Most AO control systems consider only the spatial correlation in a separate wavefront reconstruction step. By accoun
Kruscha, Alexandra; Lindner, Benjamin
2016-08-01
We consider a homogeneous population of stochastic neurons that are driven by weak common noise (stimulus). To capture and analyze the joint firing events within the population, we introduce the partial synchronous output of the population. This is a time series defined by the events that at least a fixed fraction γ ∈[0 ,1 ] of the population fires simultaneously within a small time interval. For this partial synchronous output we develop two analytical approaches to the correlation statistics. In the Gaussian approach we represent the synchronous output as a nonlinear transformation of the summed population activity and approximate the latter by a Gaussian process. In the combinatorial approach the synchronous output is represented by products of box-filtered spike trains of the single neurons. In both approaches we use linear-response theory to derive approximations for statistical measures that hold true for weak common noise. In particular, we calculate the mean value and power spectrum of the synchronous output and the cross-spectrum between synchronous output and common noise. We apply our results to the leaky integrate-and-fire neuron model and compare them to numerical simulations. The combinatorial approach is shown to provide a more accurate description of the statistics for small populations, whereas the Gaussian approximation yields compact formulas that work well for a sufficiently large population size. In particular, in the Gaussian approximation all statistical measures reveal a symmetry in the synchrony threshold γ around the mean value of the population activity. Our results may contribute to a better understanding of the role of coincidence detection in neural signal processing.
Broadband, Common-path, Interferometric Wavefront Sensor
Wallace, James Kent (Inventor)
2015-01-01
Hybrid sensors comprising Shack-Hartmann Wavefront Sensor (S-HWFS) and Zernike Wavefront Sensor (Z-WFS) capabilities are presented. The hybrid sensor includes a Z-WFS optically arranged in-line with a S-HWFS such that the combined wavefront sensor operates across a wide dynamic range and noise conditions. The Z-WFS may include the ability to introduce a dynamic phase shift in both transmissive and reflective modes.
Bobrov, Dmitry; Rozhkov, Mikhail
2016-01-01
The method of waveform cross correlation (WCC) allows remote monitoring of weak seismic activity induced by underground tests. This type of monitoring is considered as a principal task of on-site inspection under the Comprehensive nuclear-test-ban treaty. On September 11, 2016, a seismic event with body wave magnitude 2.1 was found in automatic processing near the epicenter of the underground explosion conducted by the DPRK on September 9, 2016. This event occurred approximately two days after the test. Using the WCC method, two array stations of the International Monitoring System (IMS), USRK and KSRS, detected Pn-wave arrivals, which were associated with a unique event. Standard automatic processing at the International Data Centre (IDC) did not create an event hypothesis, but in the following interactive processing based on WCC detections, an IDC analyst was able to create a two-station event . Location and other characteristics of this small seismic source indicate that it is likely an aftershock of the p...
Warren, Sean N.; Kallu, Raj R.; Barnard, Chase K.
2016-11-01
Underground gold mines in Nevada are exploiting increasingly deeper ore bodies comprised of weak to very weak rock masses. The Rock Mass Rating (RMR) classification system is widely used at underground gold mines in Nevada and is applicable in fair to good-quality rock masses, but is difficult to apply and loses reliability in very weak rock mass to soil-like material. Because very weak rock masses are transition materials that border engineering rock mass and soil classification systems, soil classification may sometimes be easier and more appropriate to provide insight into material behavior and properties. The Unified Soil Classification System (USCS) is the most likely choice for the classification of very weak rock mass to soil-like material because of its accepted use in tunnel engineering projects and its ability to predict soil-like material behavior underground. A correlation between the RMR and USCS systems was developed by comparing underground geotechnical RMR mapping to laboratory testing of bulk samples from the same locations, thereby assigning a numeric RMR value to the USCS classification that can be used in spreadsheet calculations and geostatistical analyses. The geotechnical classification system presented in this paper including a USCS-RMR correlation, RMR rating equations, and the Geo-Pick Strike Index is collectively introduced as the Weak Rock Mass Rating System (W-RMR). It is the authors' hope that this system will aid in the classification of weak rock masses and more usable design tools based on the RMR system. More broadly, the RMR-USCS correlation and the W-RMR system help define the transition between engineering soil and rock mass classification systems and may provide insight for geotechnical design in very weak rock masses.
CMOS-based Integrated Wavefront Sensor
De Lima Monteiro, D.W.
2002-01-01
This thesis addresses the design, implementation and performance of an integrated Hartmann-Shack wavefront sensor suitable for real-time operation and compatible with a standard technology. A wavefront sensor can be used for the detection of distortions in the profile of a light beam or of an optica
Energy Technology Data Exchange (ETDEWEB)
Johnston, David E.; Sheldon, Erin S.; Wechsler, Risa H.; Rozo, Eduardo; Koester, Benjamin P.; Frieman, Joshua A.; McKay, Timothy A.; Evrard, August E.; Becker, Matthew; Annis, James
2007-09-28
We interpret and model the statistical weak lensing measurements around 130,000 groups and clusters of galaxies in the Sloan Digital Sky Survey presented by Sheldon et al. (2007). We present non-parametric inversions of the 2D shear profiles to the mean 3D cluster density and mass profiles in bins of both optical richness and cluster i-band luminosity. Since the mean cluster density profile is proportional to the cluster-mass correlation function, the mean profile is spherically symmetric by the assumptions of large-scale homogeneity and isotropy. We correct the inferred 3D profiles for systematic effects, including non-linear shear and the fact that cluster halos are not all precisely centered on their brightest galaxies. We also model the measured cluster shear profile as a sum of contributions from the brightest central galaxy, the cluster dark matter halo, and neighboring halos. We infer the relations between mean cluster virial mass and optical richness and luminosity over two orders of magnitude in cluster mass; the virial mass at fixed richness or luminosity is determined with a precision of {approx} 13% including both statistical and systematic errors. We also constrain the halo concentration parameter and halo bias as a function of cluster mass; both are in good agreement with predictions from N-body simulations of LCDM models. The methods employed here will be applicable to deeper, wide-area optical surveys that aim to constrain the nature of the dark energy, such as the Dark Energy Survey, the Large Synoptic Survey Telescope and space-based surveys.
Digital pyramid wavefront sensor with tunable modulation.
Akondi, Vyas; Castillo, Sara; Vohnsen, Brian
2013-07-29
The pyramid wavefront sensor is known for its high sensitivity and dynamic range that can be tuned by mechanically altering its modulation amplitude. Here, a novel modulating digital scheme employing a reflecting phase only spatial light modulator is demonstrated. The use of the modulator allows an easy reconfigurable pyramid with digital control of the apex angle and modulation geometry without the need of any mechanically moving parts. Aberrations introduced by a 140-actuator deformable mirror were simultaneously sensed with the help of a commercial Hartmann-Shack wavefront sensor. The wavefronts reconstructed using the digital pyramid wavefront sensor matched very closely with those sensed by the Hartmann-Shack. It is noted that a tunable modulation is necessary to operate the wavefront sensor in the linear regime and to accurately sense aberrations. Through simulations, it is shown that the wavefront sensor can be extended to astronomical applications as well. This novel digital pyramid wavefront sensor has the potential to become an attractive option in both open and closed loop adaptive optics systems.
Individual eye model based on wavefront aberration
Guo, Huanqing; Wang, Zhaoqi; Zhao, Qiuling; Quan, Wei; Wang, Yan
2005-03-01
Based on the widely used Gullstrand-Le Grand eye model, the individual human eye model has been established here, which has individual corneal data, anterior chamber depth and the eyeball depth. Furthermore, the foremost thing is that the wavefront aberration calculated from the individual eye model is equal to the eye's wavefront aberration measured with the Hartmann-shack wavefront sensor. There are four main steps to build the model. Firstly, the corneal topography instrument was used to measure the corneal surfaces and depth. And in order to input cornea into the optical model, high-order aspheric surface-Zernike Fringe Sag surface was chosen to fit the corneal surfaces. Secondly, the Hartmann-shack wavefront sensor, which can offer the Zernike polynomials to describe the wavefront aberration, was built to measure the wavefront aberration of the eye. Thirdly, the eye's axial lengths among every part were measured with A-ultrasonic technology. Then the data were input into the optical design software-ZEMAX and the crystalline lens's shapes were optimized with the aberration as the merit function. The individual eye model, which has the same wavefront aberrations with the real eye, is established.
Optimization design of an adaptive CFRC reflector for high order wave-front error control
Lan, Lan; Fang, Houfei; Wu, Ke; Jiang, Shuidong; Zhou, Yang
2017-04-01
The trend in future space high precision reflectors is going towards large aperture, lightweight and actively controlled deformable antennas. An adaptive shape control system for a Carbon Fiber Reinforced Composite (CFRC) reflector is conducted by Piezoelectric Ceramic Transducer (PZT) actuators. This adaptive shape control system has been shown to effectively mitigate common low order wave-front error, but it is inevitably plagued by high order wave-front error control. In order to improve the controllability of the adaptive CFRC reflector control system for high order wave-front error, the design of adaptive CFRC reflector requires optimizing further. According to numerical and experimental results, the print-through error induced by manufacturing and PZT actuators actuation is a type of predominant high order wave-front error. This paper describes a design which some secondary rib elements are embedded within the triangular cells of the primary ribs. These small secondary ribs are designed to support the reflector surface's weak region. Controllability of this new adaptive CFRC reflector control system with small secondary ribs is evaluated by generalized Zernike functions. This new design scheme can reduce high order residual error and suppress the high order wave-front error such as print-through error. Finally, design parameters of the adaptive CFRC reflector control system with small secondary ribs, such as primary rib height, secondary rib height, cut-out height of primary rib, are optimized.
Wavefront Control for Extreme Adaptive Optics
Energy Technology Data Exchange (ETDEWEB)
Poyneer, L A
2003-07-16
Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.
Advanced Imaging Optics Utilizing Wavefront Coding.
Energy Technology Data Exchange (ETDEWEB)
Scrymgeour, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boye, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Adelsberger, Kathleen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-06-01
Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise. Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.
Bardeau, S.; Soucail, G.; Kneib, J.-P.; Czoske, O.; Ebeling, H.; Hudelot, P.; Smail, I.; Smith, G. P.
2007-01-01
Aims. We present a wide-field multi-color survey of a homogeneous sample of eleven clusters of galaxies for which we measure total masses and mass distributions from weak lensing. This sample, spanning a small range in both X-ray luminosity and redshift, is ideally suited to determining the normalis
Wavefronts and Light Cones for Kerr Spacetimes
Frutos-Alfaro, Francisco; Mueller, Thomas; Adis, Daria
2014-01-01
We investigate the light propagation by means of simulations of wavefronts and light cones for Kerr spacetimes. Simulations of this kind give us a new insight to better understand the light propagation in presence of massive rotating black holes. A relevant result is that wavefronts are back scattered with winding around the black hole. To generate these visualizations, an interactive computer program with a graphical user interface, called JWFront, was written in Java.
Mandelbaum, R; Ishak, M; Seljak, U; Brinkmann, J; Mandelbaum, Rachel; Hirata, Christopher M.; Ishak, Mustapha; Seljak, Uros; Brinkmann, Jonathan
2006-01-01
The power spectrum of weak lensing shear caused by large-scale structure is an emerging tool for precision cosmology, in particular for measuring the effects of dark energy on the growth of structure at low redshift. One potential source of systematic error is intrinsic alignments of ellipticities of neighbouring galaxies (II correlation) that could mimic the correlations due to lensing. A related possibility pointed out by Hirata and Seljak (2004) is correlation between the intrinsic ellipticities of galaxies and the density field responsible for gravitational lensing shear (GI correlation). We present constraints on both the II and GI correlations using 265 908 spectroscopic galaxies from the SDSS, and using galaxies as tracers of the mass in the case of the GI analysis. The availability of redshifts in the SDSS allows us to select galaxies at small radial separations, which both reduces noise in the intrinsic alignment measurement and suppresses galaxy- galaxy lensing (which otherwise swamps the GI correla...
Coded Shack-Hartmann Wavefront Sensor
Wang, Congli
2016-12-01
Wavefront sensing is an old yet fundamental problem in adaptive optics. Traditional wavefront sensors are limited to time-consuming measurements, complicated and expensive setup, or low theoretically achievable resolution. In this thesis, we introduce an optically encoded and computationally decodable novel approach to the wavefront sensing problem: the Coded Shack-Hartmann. Our proposed Coded Shack-Hartmann wavefront sensor is inexpensive, easy to fabricate and calibrate, highly sensitive, accurate, and with high resolution. Most importantly, using simple optical flow tracking combined with phase smoothness prior, with the help of modern optimization technique, the computational part is split, efficient, and parallelized, hence real time performance has been achieved on Graphics Processing Unit (GPU), with high accuracy as well. This is validated by experimental results. We also show how optical flow intensity consistency term can be derived, using rigor scalar diffraction theory with proper approximation. This is the true physical law behind our model. Based on this insight, Coded Shack-Hartmann can be interpreted as an illumination post-modulated wavefront sensor. This offers a new theoretical approach for wavefront sensor design.
Wavefront sensors for adaptive optical systems
Lukin, V. P.; Botygina, N. N.; Emaleev, O. N.; Konyaev, P. A.
2010-10-01
A high precision Shack-Hartmann wavefront (WF) sensor has been developed on the basis of a low-aperture off-axis diffraction lens array. The device is capable of measuring WF slopes at array sub-apertures of size 640x640 μm with an error not exceeding 4.80 arcsec (0.15 pixel), which corresponds to the standard deviation equal to 0.017λ at the reconstructed WF with wavelength λ . Also the modification of this sensor for adaptive system of solar telescope using extended scenes as tracking objects, such as sunspot, pores, solar granulation and limb, is presented. The software package developed for the proposed WF sensors includes three algorithms of local WF slopes estimation (modified centroids, normalized cross-correlation and fast Fourier-demodulation), as well as three methods of WF reconstruction (modal Zernike polynomials expansion, deformable mirror response functions expansion and phase unwrapping), that can be selected during operation with accordance to the application.
Yanagisawa, Takashi
2016-11-01
The ground state of the two-dimensional (2D) Hubbard model is investigated by adopting improved wave functions that take into account intersite electron correlation beyond the Gutzwiller ansatz. The ground-state energy is lowered considerably, giving the best estimate of the ground-state energy for the 2D Hubbard model. There is a crossover from weakly to strongly correlated regions as the on-site Coulomb interaction U increases. The antiferromagnetic correlation induced by U is reduced for hole doping when U is large, being greater than the bandwidth, thus increasing the kinetic energy gain. The spin and charge fluctuations are induced in the strongly correlated region. These antiferromagnetic and kinetic charge fluctuations induce electron pairings, which results in high-temperature superconductivity.
The wavefront of the radio signal emitted by cosmic ray air showers
Energy Technology Data Exchange (ETDEWEB)
Apel, W.D.; Bekk, K.; Blümer, J.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R. [Institut für Kernphysik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Arteaga-Velázquez, J.C. [Instituto de Física y Matemáticas, Universidad Michoacana, Edificio C-3, Cd. Universitaria, C.P. 58040 Morelia, Michoacán (Mexico); Bähren, L.; Falcke, H. [ASTRON, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo (Netherlands); Bertaina, M.; Cantoni, E.; Chiavassa, A.; Pierro, F. Di [Dipartimento di Fisica, Università degli Studi di Torino, Via Giuria 1, 10125 Torino (Italy); Biermann, P.L. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Str. Reactorului no. 30, P.O. Box MG-6, Bucharest-Magurele (Romania); De Souza, V. [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense 400, Pq. Arnold Schmidt, São Carlos (Brazil); Fuchs, B. [Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gemmeke, H. [Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Grupen, C., E-mail: frank.schroeder@kit.edu [Faculty of Natural Sciences and Engineering, Universität Siegen, Walter-Flex-Straße 3, 57072 Siegen (Germany); and others
2014-09-01
Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above 10{sup 17} eV and zenith angles smaller than 45{sup o}, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances ∼> 50 m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately 140 g/c {sup 2}. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, X{sub max}, better than 30 g/c {sup 2}. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.
Casalderrey-Solana, Jorge; Milhano, Jose Guilherme; Pablos, Daniel; Rajagopal, Krishna
2015-01-01
We confront a hybrid strong/weak coupling model for jet quenching to data from LHC heavy ion collisions. The model combines the perturbative QCD physics at high momentum transfer and the strongly coupled dynamics of non- abelian gauge theories plasmas in a phenomenological way. By performing a full Monte Carlo simulation, and after fitting one single parameter, we successfully describe several jet observables at the LHC, including dijet and photon jet measurements. Within current theoretical and experimental uncertainties, we find that such observables show little sensitivity to the specifics of the microscopic energy loss mechanism. We also present a new observable, the ratio of the fragmentation function of inclusive jets to that of the associated jets in dijet pairs, which can discriminate among different medium models. Finally, we discuss the importance of plasma response to jet passage in jet shapes.
The wavefront of the radio signal emitted by cosmic ray air showers
Apel, W D; Bähren, L; Bekk, K; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Cantoni, E; Chiavassa, A; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Fuchs, B; Gemmeke, H; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huber, D; Huege, T; Isar, P G; Kampert, K -H; Kang, D; Krömer, O; Kuijpers, J; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Melissas, M; Morello, C; Oehlschläger, J; Palmieri, N; Pierog, T; Rautenberg, J; Rebel, H; Roth, M; Rühle, C; Saftoiu, A; Schieler, H; Schmidt, A; Schröder, F G; Sima, O; Toma, G; Trinchero, G C; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A
2014-01-01
Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above $10^{17}$eV and zenith angles smaller than $45^\\circ$, we find that the radio wavefront of cosmic-ray air showers is of hyperbolic shape. At axis distances $\\gtrsim 50$m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is lim...
Asymmetric cryptography based on wavefront sensing.
Peng, Xiang; Wei, Hengzheng; Zhang, Peng
2006-12-15
A system of asymmetric cryptography based on wavefront sensing (ACWS) is proposed for the first time to our knowledge. One of the most significant features of the asymmetric cryptography is that a trapdoor one-way function is required and constructed by analogy to wavefront sensing, in which the public key may be derived from optical parameters, such as the wavelength or the focal length, while the private key may be obtained from a kind of regular point array. The ciphertext is generated by the encoded wavefront and represented with an irregular array. In such an ACWS system, the encryption key is not identical to the decryption key, which is another important feature of an asymmetric cryptographic system. The processes of asymmetric encryption and decryption are formulized mathematically and demonstrated with a set of numerical experiments.
Alpizar, Yeranddy A; Sanchez, Alicia; Radwan, Ahmed; Radwan, Islam; Voets, Thomas; Talavera, Karel
2013-11-01
It is often observed in intracellular Ca(2+) imaging experiments that the amplitudes of the Ca(2+) signals elicited by newly characterized TRP agonists do not correlate with the amplitudes of the responses evoked subsequently by a specific potent agonist. We investigated this rather controversial phenomenon by first testing whether it is inherent to the comparison of the effects of weak and strong stimuli. Using five well-characterized TRP channel agonists in commonly used heterologous expression systems we found that the correlation between the amplitudes of the Ca(2+) signals triggered by two sequentially applied stimuli is only high when both stimuli are strong. Using mathematical simulations of intracellular Ca(2+) dynamics we illustrate that the innate heterogeneity in expression and functional properties of Ca(2+) extrusion (e.g. plasma membrane Ca(2+) ATPase) and influx (TRP channels) pathways across a cellular population is a sufficient condition for low correlation between the amplitude of Ca(2+) signals elicited by weak and strong stimuli. Taken together, our data demonstrate that this phenomenon is an expected outcome of intracellular Ca(2+) imaging experiments that cannot be taken as evidence for lack of specificity of low-efficacy stimuli, or as an indicator of the need of other cellular components for channel stimulation.
Curvature sensor for ocular wavefront measurement.
Díaz-Doutón, Fernando; Pujol, Jaume; Arjona, Montserrat; Luque, Sergio O
2006-08-01
We describe a new wavefront sensor for ocular aberration determination, based on the curvature sensing principle, which adapts the classical system used in astronomy for the living eye's measurements. The actual experimental setup is presented and designed following a process guided by computer simulations to adjust the design parameters for optimal performance. We present results for artificial and real young eyes, compared with the Hartmann-Shack estimations. Both methods show a similar performance for these cases. This system will allow for the measurement of higher order aberrations than the currently used wavefront sensors in situations in which they are supposed to be significant, such as postsurgery eyes.
Method and apparatus for wavefront sensing
Bahk, Seung-Whan
2016-08-23
A method of measuring characteristics of a wavefront of an incident beam includes obtaining an interferogram associated with the incident beam passing through a transmission mask and Fourier transforming the interferogram to provide a frequency domain interferogram. The method also includes selecting a subset of harmonics from the frequency domain interferogram, individually inverse Fourier transforming each of the subset of harmonics to provide a set of spatial domain harmonics, and extracting a phase profile from each of the set of spatial domain harmonics. The method further includes removing phase discontinuities in the phase profile, rotating the phase profile, and reconstructing a phase front of the wavefront of the incident beam.
Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air
Energy Technology Data Exchange (ETDEWEB)
Dergachev, A A; Kandidov, V P; Shlenov, S A [Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation); Ionin, A A; Mokrousova, D V; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S; Shustikova, A P [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)
2014-12-31
We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)
Johnston, David E; Wechsler, Risa H; Rozo, Eduardo; Koester, Benjamin P; Frieman, Joshua A; McKay, Timothy A; Evrard, August E; Becker, Matthew R; Annis, James
2007-01-01
We interpret and model the statistical weak lensing measurements around 130,000 groups and clusters of galaxies in the Sloan Digital Sky Survey presented by Sheldon et al. 2007 (Paper I). We present non-parametric inversions of the 2D shear profiles to the mean 3D cluster density and mass profiles in bins of both optical richness and cluster i-band luminosity. We correct the inferred 3D profiles for systematic effects, including non-linear shear and the fact that cluster halos are not all precisely centered on their brightest galaxies. We also model the measured cluster shear profile as a sum of contributions from the brightest central galaxy, the cluster dark matter halo, and neighboring halos. We infer the relations between mean cluster virial mass and optical richness and luminosity over two orders of magnitude in cluster mass; the virial mass at fixed richness or luminosity is determined with a precision of 13% including both statistical and systematic errors. We also constrain the halo concentration para...
Directory of Open Access Journals (Sweden)
G. Arul Elango
2017-01-01
Full Text Available The Civilian Global Positioning System (GPS receivers often encounter problems of interference and noise which degrade the receiver performance. The conventional methods of parallel code phase search acquisition with coherent, non-coherent and differential coherent detection for weak signal acquisition fail to enhance the signal for all conditions especially, when the Carrier to Noise ratio (C/N0 falls below 15 dB-Hz. Hence, the GPS receiver has to employ sophisticated techniques to excise the noise and to improve the Signal-to-Noise Ratio (SNR of the signal for further processing. In this paper, a pre-filtering technique of reduced rank Singular Spectral Analysis (SSA is proposed for noise excision and is processed through coherent, non-coherent and differential detection postcorrelation methods to retrieve the signal embedded in noise. Monte Carlo simulations carried out to examine the acquisition sensitivity at various power levels with the different postcorrelation approaches indicate that the SSA combined with differential detection approach provides a significant performance improvement with lesser mean acquisition time. It has 96% probability of detection at a worst signal power level of −159 dBm (i.e. C/N0 15 dB-Hz, compared to other conventional methods.
D'Alberto, Paolo
2011-01-01
The correlation of the result lists provided by search engines is fundamental and it has deep and multidisciplinary ramifications. Here, we present automatic and unsupervised methods to assess whether or not search engines provide results that are comparable or correlated. We have two main contributions: First, we provide evidence that for more than 80% of the input queries - independently of their frequency - the two major search engines share only three or fewer URLs in their search results, leading to an increasing divergence. In this scenario (divergence), we show that even the most robust measures based on comparing lists is useless to apply; that is, the small contribution by too few common items will infer no confidence. Second, to overcome this problem, we propose the fist content-based measures - i.e., direct comparison of the contents from search results; these measures are based on the Jaccard ratio and distribution similarity measures (CDF measures). We show that they are orthogonal to each other ...
Phase error correction in wavefront curvature sensing via phase retrieval
DEFF Research Database (Denmark)
Almoro, Percival; Hanson, Steen Grüner
2008-01-01
Wavefront curvature sensing with phase error correction system is carried out using phase retrieval based on a partially-developed volume speckle field. Various wavefronts are reconstructed: planar, spherical, cylindrical, and a wavefront passing through the side of a bare optical fiber. Spurious...
Hybrid iterative wavefront shaping for high-speed focusing through scattering media
Hemphill, Ashton S.; Wang, Lihong V.
2016-03-01
A major limiting factor of optical imaging in biological applications is the diffusion of light by tissue, preventing focusing at depths greater than ~1 mm in the body. To overcome this issue, phase-based wavefront shaping alters the phase of sections of the incident wavefront to counteract aberrations in phase caused by scattering. This enables focusing through scattering media beyond the optical diffusion limit and increases signal compared to amplitude-based compensation. However, in previous studies, speed of optimization has typically been limited by the use of a liquid crystal spatial light modulator (SLM) for measurement and display. SLMs usually have refresh rates of less than 100 Hz and require much longer than the speckle correlation time of tissue in vivo, usually on the order of milliseconds, to determine the optimal wavefront. Here, we present a phase-based iterative wavefront shaping method based on an onaxis digital micromirror device (DMD) in conjunction with an electro-optic modulator (EOM) for measurement and a fast SLM for display. By combining phase modulation from an EOM with the modal selection of the DMD, we take advantage of DMDs higher refresh rate, approximately 23 kHz, for iterative phase measurement. The slower SLM requires one update for display following the rapid determination of the optimal wavefront via the DMD, allowing for high-speed wavefront shaping. Using this system, we are able to focus through scattering media using 64 modes in under 8 milliseconds, on the order of the speckle correlation time for tissue in vivo.
High-speed SPGD wavefront controller for an adaptive optics system without wavefront sensor
Wang, Caixia; Li, Xinyang; Li, Mei; Ye, Jongwei; Chen, Bo
2010-10-01
A non-conventional adaptive optics system based on direct system performance metric optimization is illustrated. The system does not require wave-front sensor which is difficult to work under the poor condition such as beam cleanup for the anomalous light beam. The system comprises a high speed wavefront controller based on Stochastic Parallel Gradient Descent (SPGD) Algorithm, a deformable mirror, a tip/tilt mirror and a far-field system performance metric sensor. The architecture of the wave-front controller is based on a combination of Field Programmable Gate Array (FPGA) and floating-point Digital Signal Processor (DSP). The Zernike coefficient information is applied to improve the iteration speed. The experimental results show that the beam cleanup system based on SPGD keep a high iteration speed. The controller can compensate the wavefront aberration and tilt excursion effectively.
Laurent, Sébastien; Pierce, Matthieu; Delehaye, Marion; Yefsah, Tarik; Chevy, Frédéric; Salomon, Christophe
2017-03-10
We study three-body recombination in an ultracold Bose-Fermi mixture. We first show theoretically that, for weak interspecies coupling, the loss rate is proportional to Tan's contact. Second, using a ^{7}Li/^{6}Li mixture we probe the recombination rate in both the thermal and dual superfluid regimes. We find excellent agreement with our model in the BEC-BCS crossover. At unitarity where the fermion-fermion scattering length diverges, we show that the loss rate is proportional to n_{f}^{4/3}, where n_{f} is the fermionic density. This unusual exponent signals nontrivial two-body correlations in the system. Our results demonstrate that few-body losses can be used as a quantitative probe of quantum correlations in many-body ensembles.
Goense, J B M; Ratnam, R
2003-10-01
An important problem in sensory processing is deciding whether fluctuating neural activity encodes a stimulus or is due to variability in baseline activity. Neurons that subserve detection must examine incoming spike trains continuously, and quickly and reliably differentiate signals from baseline activity. Here we demonstrate that a neural integrator can perform continuous signal detection, with performance exceeding that of trial-based procedures, where spike counts in signal- and baseline windows are compared. The procedure was applied to data from electrosensory afferents of weakly electric fish (Apteronotus leptorhynchus), where weak perturbations generated by small prey add approximately 1 spike to a baseline of approximately 300 spikes s(-1). The hypothetical postsynaptic neuron, modeling an electrosensory lateral line lobe cell, could detect an added spike within 10-15 ms, achieving near ideal detection performance (80-95%) at false alarm rates of 1-2 Hz, while trial-based testing resulted in only 30-35% correct detections at that false alarm rate. The performance improvement was due to anti-correlations in the afferent spike train, which reduced both the amplitude and duration of fluctuations in postsynaptic membrane activity, and so decreased the number of false alarms. Anti-correlations can be exploited to improve detection performance only if there is memory of prior decisions.
Liquid crystal wavefront corrector on silicon
Loktev, M.; Vdovin, G.; Nanver, L.
2005-01-01
A reflective-type liquid crystal (LC) wavefront corrector with modal addressing is described. The corrector’s backplane has an array of pixel electrodes interconnected by a network of discrete resistors. The resistive network serves to form the local voltage profile that controls the phase distribut
The Asymmetric Pupil Fourier Wavefront Sensor
Martinache, Frantz
2013-01-01
This paper introduces a novel wavefront sensing approach that relies on the Fourier analysis of a single conventional direct image. In the high Strehl ratio regime, the relation between the phase measured in the Fourier plane and the wavefront errors in the pupil can be linearized, as was shown in a previous work that introduced the notion of generalized closure-phase, or kernel-phase. The technique, to be usable as presented requires two conditions to be met: (1) the wavefront errors must be kept small (of the order of one radian or less) and (2) the pupil must include some asymmetry, that can be introduced with a mask, for the problem to become solvable. Simulations show that this asymmetric pupil Fourier wavefront sensing or APF-WFS technique can improve the Strehl ratio from 50 to over 90 % in just a few iterations, with excellent photon noise sensitivity properties, suggesting that on-sky close loop APF-WFS is possible with an extreme adaptive optics system.
Implementation of a Wavefront-Sensing Algorithm
Smith, Jeffrey S.; Dean, Bruce; Aronstein, David
2013-01-01
A computer program has been written as a unique implementation of an image-based wavefront-sensing algorithm reported in "Iterative-Transform Phase Retrieval Using Adaptive Diversity" (GSC-14879-1), NASA Tech Briefs, Vol. 31, No. 4 (April 2007), page 32. This software was originally intended for application to the James Webb Space Telescope, but is also applicable to other segmented-mirror telescopes. The software is capable of determining optical-wavefront information using, as input, a variable number of irradiance measurements collected in defocus planes about the best focal position. The software also uses input of the geometrical definition of the telescope exit pupil (otherwise denoted the pupil mask) to identify the locations of the segments of the primary telescope mirror. From the irradiance data and mask information, the software calculates an estimate of the optical wavefront (a measure of performance) of the telescope generally and across each primary mirror segment specifically. The software is capable of generating irradiance data, wavefront estimates, and basis functions for the full telescope and for each primary-mirror segment. Optionally, each of these pieces of information can be measured or computed outside of the software and incorporated during execution of the software.
Improved wavefront reconstruction algorithm from slope measurements
Phuc, Phan Huy; Manh, Nguyen The; Rhee, Hyug-Gyo; Ghim, Young-Sik; Yang, Ho-Soon; Lee, Yun-Woo
2017-03-01
In this paper, we propose a wavefront reconstruction algorithm from slope measurements based on a zonal method. In this algorithm, the slope measurement sampling geometry used is the Southwell geometry, in which the phase values and the slope data are measured at the same nodes. The proposed algorithm estimates the phase value at a node point using the slope measurements of eight points around the node, as doing so is believed to result in better accuracy with regard to the wavefront. For optimization of the processing time, a successive over-relaxation method is applied to iteration loops. We use a trial-and-error method to determine the best relaxation factor for each type of wavefront in order to optimize the iteration time and, thus, the processing time of the algorithm. Specifically, for a circularly symmetric wavefront, the convergence rate of the algorithm can be improved by using the result of a Fourier Transform as an initial value for the iteration. Various simulations are presented to demonstrate the improvements realized when using the proposed algorithm. Several experimental measurements of deflectometry are also processed by using the proposed algorithm.
Fast & Furious focal-plane wavefront sensing
Korkiakoski, V.A.; Keller, C.U.; Doelman, N.; Kenworthy, M.; Otten, G.; Verhaegen, M.H.G.
2014-01-01
We present two complementary algorithms suitable for using focal-plane measurements to control a wavefront corrector with an extremely high-spatial resolution. The algorithms use linear approximations to iteratively minimize the aberrations seen by the focal-plane camera. The first algorithm, Fast &
A modified phase diversity wavefront sensor with a diffraction grating
Institute of Scientific and Technical Information of China (English)
Luo Qun; Huang Lin-Hai; Gu Nai-Ting; Rao Chang-Hui
2012-01-01
The phase diversity wavefront sensor is one of the tools used to estimate wavefront aberration,and it is often used as a wavefront sensor in adaptive optics systems.However,the performance of the traditional phase diversity wavefront sensor is limited by the accuracy and dynamic ranges of the intensity distribution at the focus and defocus positions of the CCD camera.In this paper,a modified phase diversity wavefront sensor based on a diffraction grating is proposed to improve the ability to measure the wavefront aberration with larger amplitude and higher spatial frequency.The basic principle and the optics construction of the proposed method are also described in detail.The noise propagation property of the proposed method is also analysed by using the numerical simulation method,and comparison between the diffraction grating phase diversity wavefront sensor and the traditional phase diversity wavefront sensor is also made.The simulation results show that the diffraction grating phase diversity wavefront sensor can obviously improve the ability to measure the wavefront aberration,especially the wavefront aberration with larger amplitude and higher spatial frequency.
Optical wavefront distortion due to supersonic flow fields
Institute of Scientific and Technical Information of China (English)
CHEN ZhiQiang; FU Song
2009-01-01
The optical wavefront distortion caused by a supersonic flow field around a half model of blunt nose cone was studied in a wind tunnel. A Shack-Hartmann wavefront sensor was used to measure the dis-totted optical wavefront. Interesting optical parameters including the peak variation (PV), root of mean square (RMS) and Strehl ratio were obtained under different test conditions during the experiment. During the establishing process of the flow field in the wind tunnel test section, the wavefront shape was unstable. However after the flow field reached the steady flow state, the wavefront shape kept sta-ble, and the relative error of wavefront aberration was found small. The Shack-Hartmann wavefront sensor developed was proved to be credible in measuring quantitatively the optical phase change of light traveling through the flow field around model window.
Ganzer, Patrick Daniel; Meyers, Eric Christopher; Sloan, Andrew Michael; Maliakkal, Reshma; Ruiz, Andrea; Kilgard, Michael Paul; Rennaker, Robert LeMoine
2016-01-01
Spinal cord injury usually occurs at the level of the cervical spine and results in profound impairment of forelimb function. In this study, we recorded awake behaving intramuscular electromyography (EMG) from the biceps and triceps muscles of the impaired forelimb during volitional and reflexive forelimb movements before and after unilateral cervical spinal cord injury (cSCI) in rats. C5/C6 hemicontusion reduced volitional forelimb strength by more than 50% despite weekly rehabilitation for one month post-injury. Triceps EMG during volitional strength assessment was reduced by more than 60% following injury, indicating reduced descending drive. Biceps EMG during reflexive withdrawal from a thermal stimulus was increased by 500% following injury, indicating flexor withdrawal hyperreflexia. The reduction in volitional forelimb strength was significantly correlated with volitional and reflexive biceps EMG activity. Our results support the hypothesis that biceps hyperreflexia and descending volitional drive both significantly contribute to forelimb strength deficits after cSCI and provide new insight into dynamic muscular dysfunction after cSCI. The use of multiple automated quantitative measures of forelimb dys-function in the rodent cSCI model will likely aid the search for effective regenerative, pharmacological, and neuroprosthetic treatments for spinal cord injury. PMID:27033345
Al Kaissi, Ali; Ryabykh, Sergey; Ochirova, Polina; Kenis, Vladimir; Hofstätter, Jochen G.; Grill, Franz; Ganger, Rudolf; Kircher, Susanne Gerit
2017-01-01
Marked ligamentous hyperlaxity and muscle weakness/wasting associated with awkward gait are the main deficits confused with the diagnosis of myopathy. Seven children (6 boys and 1 girl with an average age of 8 years) were referred to our department because of diverse forms of skeletal abnormalities. No definitive diagnosis was made, and all underwent a series of sophisticated investigations in other institutes in favor of myopathy. We applied our methodology through the clinical and radiographic phenotypes followed by targeted genotypic confirmation. Three children (2 boys and 1 girl) were compatible with the diagnosis of progressive pseudorheumatoid chondrodysplasia. The genetic mutation was correlated with the WISP 3 gene actively expressed by articular chondrocytes and located on chromosome 6. Klinefelter syndrome was the diagnosis in 2 boys. Karyotyping confirmed 47,XXY (aneuploidy of Klinefelter syndrome). And 2 boys were finally diagnosed with Morquio syndrome (MPS type IV A) as both showed missense mutations in the N-acetylgalactosamine-sulfate sulfatase gene. Misdiagnosis can lead to the initiation of a long list of sophisticated investigations. PMID:28210640
Directory of Open Access Journals (Sweden)
Tim Lauterbach
Full Text Available Organized assembly or aggregation of sphingolipid-binding ligands, such as certain toxins and pathogens, has been suggested to increase binding affinity of the ligand to the cell membrane and cause membrane reorganization or distortion. Here we show that the diffusion behavior of the fluorescently tagged sphingolipid-interacting peptide probe SBD (Sphingolipid Binding Domain is altered by modifications in the construction of the peptide sequence that both result in a reduction in binding to ganglioside-containing supported lipid membranes, and at the same time increase aggregation on the cell plasma membrane, but that do not change relative amounts of secondary structural features. We tested the effects of modifying the overall charge and construction of the SBD probe on its binding and diffusion behavior, by Surface Plasmon Resonance (SPR; Biacore analysis on lipid surfaces, and by Fluorescence Correlation Spectroscopy (FCS on live cells, respectively. SBD binds preferentially to membranes containing the highly sialylated gangliosides GT1b and GD1a. However, simple charge interactions of the peptide with the negative ganglioside do not appear to be a critical determinant of binding. Rather, an aggregation-suppressing amino acid composition and linker between the fluorophore and the peptide are required for optimum binding of the SBD to ganglioside-containing supported lipid bilayer surfaces, as well as for interaction with the membrane. Interestingly, the strength of interactions with ganglioside-containing artificial membranes is mirrored in the diffusion behavior by FCS on cell membranes, with stronger binders displaying similar characteristic diffusion profiles. Our findings indicate that for aggregation-prone peptides, aggregation occurs upon contact with the cell membrane, and rather than giving a stronger interaction with the membrane, aggregation is accompanied by weaker binding and complex diffusion profiles indicative of heterogeneous
Barlow, Peter W.; Fisahn, Joachim; Yazdanbakhsh, Nima; Moraes, Thiago A.; Khabarova, Olga V.; Gallep, Cristiano M.
2013-01-01
Background Correlative evidence suggests a relationship between the lunisolar tidal acceleration and the elongation rate of arabidopsis roots grown under free-running conditions of constant low light. Methods Seedlings of Arabidopsis thaliana were grown in a controlled-climate chamber maintained at a constant temperature and subjected to continuous low-level illumination from fluorescent tubes, conditions that approximate to a ‘free-running’ state in which most of the abiotic factors that entrain root growth rates are excluded. Elongation of evenly spaced, vertical primary roots was recorded continuously over periods of up to 14 d using high temporal- and spatial-resolution video imaging and were analysed in conjunction with geophysical variables. Key Results and Conclusions The results confirm the lunisolar tidal/root elongation relationship. Also presented are relationships between the hourly elongation rates and the contemporaneous variations in geomagnetic activity, as evaluated from the disturbance storm time and ap indices. On the basis of time series of root elongation rates that extend over ≥4 d and recorded at different seasons of the year, a provisional conclusion is that root elongation responds to variation in the lunisolar force and also appears to adjust in accordance with variations in the geomagnetic field. Thus, both lunisolar tidal acceleration and the geomagnetic field should be considered as modulators of root growth rate, alongside other, stronger and more well-known abiotic environmental regulators, and perhaps unexplored factors such as air ions. Major changes in atmospheric pressure are not considered to be a factor contributing to oscillations of root elongation rate. PMID:23532042
Directory of Open Access Journals (Sweden)
Maximilian Neumann
2016-08-01
Full Text Available The chemokine-like receptor 1 (CMKLR1 ligands resolvin E1 and chemerin are known to modulate inflammatory response. The progression of non-alcoholic fatty liver disease (NAFLD to non-alcoholic steatohepatitis (NASH is associated with inflammation. Here it was analyzed whether hepatic CMKLR1 expression is related to histological features of NASH. Therefore, CMKLR1 mRNA was quantified in liver tissue of 33 patients without NAFLD, 47 patients with borderline NASH and 38 patients with NASH. Hepatic CMKLR1 mRNA was not associated with gender and body mass index (BMI in the controls and the whole study group. CMKLR1 expression was similar in controls and in patients with borderline NASH and NASH. In male patients weak positive correlations with inflammation, fibrosis and NASH score were identified. In females CMKLR1 was not associated with features of NAFLD. Liver CMKLR1 mRNA tended to be higher in type 2 diabetes patients of both genders and in hypercholesterolemic women. In summary, this study shows that hepatic CMKLR1 mRNA is weakly associated with features of NASH in male patients only.
Weak Convergence and Weak Convergence
Directory of Open Access Journals (Sweden)
Narita Keiko
2015-09-01
Full Text Available In this article, we deal with weak convergence on sequences in real normed spaces, and weak* convergence on sequences in dual spaces of real normed spaces. In the first section, we proved some topological properties of dual spaces of real normed spaces. We used these theorems for proofs of Section 3. In Section 2, we defined weak convergence and weak* convergence, and proved some properties. By RNS_Real Mizar functor, real normed spaces as real number spaces already defined in the article [18], we regarded sequences of real numbers as sequences of RNS_Real. So we proved the last theorem in this section using the theorem (8 from [25]. In Section 3, we defined weak sequential compactness of real normed spaces. We showed some lemmas for the proof and proved the theorem of weak sequential compactness of reflexive real Banach spaces. We referred to [36], [23], [24] and [3] in the formalization.
Roll, W G; Persinger, M A; Webster, D L; Tiller, S G; Cook, C M
2002-02-01
Experiments were designed to help elucidate the neurophysiological correlates for the experiences reported by Sean Harribance. For most of his life he has routinely experienced "flashes of images" of objects that were hidden and of accurate personal information concerning people with whom he was not familiar. The specificity of details for target pictures of people was correlated positively with the proportion of occipital alpha activity. Results from a complete neuropsychological assessment, Single Photon Emission Computed Tomography (SPECT), and screening electroencephalography suggested that his experiences were associated with increased activity within the parietal lobe and occipital regions of the right hemisphere. Sensed presences (subjectively localized to his left side) were evoked when weak, magnetic fields, whose temporal structure simulated long-term potentiation in the hippocampus, were applied over his right temporoparietal lobes. These results suggest that the phenomena attributed to paranormal or "extrasensory" processes are correlated quantitatively with morphological and functional anomalies involving the right parietotemporal cortices (or its thalamic inputs) and the hippocampal formation.
Cryogenic wavefront correction using membrane deformable mirrors.
Dyson, H; Sharples, R; Dipper, N; Vdovin, G
2001-01-01
Micro-machined membrane deformable mirrors (MMDMs) are being evaluated for their suitability as wavefront correctors at cryogenic temperatures. Presented here are experimental results for the change in the initial mirror figure of 37-channel MMDMs from OKO Technologies upon cooling to T=78K. The changes in the influence functions are also explored. Of the sample of 3 mirrors tested, one was found to have sufficiently small initial static aberrations to be useful as a wavefront corrector at this temperature. The influence functions at T=78K were found to be similar in shape to both those at room temperature and theoretical predictions of the MMDMs surface shape. The magnitude of the surface deflection at T=78K was reduced by around 20% compared with room temperature values.
Propofol effects on atrial fibrillation wavefront delays.
Cervigón, Raquel; Moreno, Javier; Millet, José; Pérez-Villacastín, Julián; Castells, Francisco
2010-08-01
Since the cardiac activity during atrial fibrillation (AF) may be influenced by autonomic modulations, in this study, a novel method to quantify the effects of the most common anesthetic agent (propofol) in AF ablation procedures is introduced. This study has two main objectives: first, to assess whether the sedation earlier to radio frequency ablation affects the arrhythmia itself, and second, to provide new information that contributes to a better understanding of the influence of the autonomic nervous system on AF. The methodology presented is based on the measurement of synchronization and delay indexes between two atrial activations at adjacent intracavitary electrodes. These parameters aim to estimate whether two activations at different sites may be caused by the same propagating wavefront, or otherwise, are the consequence of independent wavefronts. The results showed that the mentioned indexes have a different behavior at both atria: the right atrium becomes more synchronized with propofol administration, whereas the synchronization index decreases at the left atrium.
Wavefront-sensing-based autofocusing in microscopy
Xu, Jing; Tian, Xiaolin; Meng, Xin; Kong, Yan; Gao, Shumei; Cui, Haoyang; Liu, Fei; Xue, Liang; Liu, Cheng; Wang, Shouyu
2017-08-01
Massive image acquisition is required along the optical axis in the classical image-analysis-based autofocus method, which significantly decreases autofocus efficiency. A wavefront-sensing-based autofocus technique is proposed to increase the speed of autofocusing and obtain high localization accuracy. Intensities at different planes along the optical axis can be computed numerically after extracting the wavefront at defocus position with the help of the transport-of-intensity equation method. According to the focus criterion, the focal plane can then be determined, and after sample shifting to this plane, the in-focus image can be recorded. The proposed approach allows for fast, precise focus detection with fewer image acquisitions compared to classical image-analysis-based autofocus techniques, and it can be applied in commercial microscopes only with an extra illumination filter.
Microgenetic optimization algorithm for optimal wavefront shaping
Anderson, Benjamin R; Gunawidjaja, Ray; Eilers, Hergen
2015-01-01
One of the main limitations of utilizing optimal wavefront shaping in imaging and authentication applications is the slow speed of the optimization algorithms currently being used. To address this problem we develop a micro-genetic optimization algorithm ($\\mu$GA) for optimal wavefront shaping. We test the abilities of the $\\mu$GA and make comparisons to previous algorithms (iterative and simple-genetic) by using each algorithm to optimize transmission through an opaque medium. From our experiments we find that the $\\mu$GA is faster than both the iterative and simple-genetic algorithms and that both genetic algorithms are more resistant to noise and sample decoherence than the iterative algorithm.
Wavefront reconstruction using computer-generated holograms
Schulze, Christian; Flamm, Daniel; Schmidt, Oliver A.; Duparré, Michael
2012-02-01
We propose a new method to determine the wavefront of a laser beam, based on modal decomposition using computer-generated holograms (CGHs). Thereby the beam under test illuminates the CGH with a specific, inscribed transmission function that enables the measurement of modal amplitudes and phases by evaluating the first diffraction order of the hologram. Since we use an angular multiplexing technique, our method is innately capable of real-time measurements of amplitude and phase, yielding the complete information about the optical field. A measurement of the Stokes parameters, respectively of the polarization state, provides the possibility to calculate the Poynting vector. Two wavefront reconstruction possibilities are outlined: reconstruction from the phase for scalar beams and reconstruction from the Poynting vector for inhomogeneously polarized beams. To quantify single aberrations, the reconstructed wavefront is decomposed into Zernike polynomials. Our technique is applied to beams emerging from different kinds of multimode optical fibers, such as step-index, photonic crystal and multicore fibers, whereas in this work results are exemplarily shown for a step-index fiber and compared to a Shack-Hartmann measurement that serves as a reference.
Fiber coupler end face wavefront surface metrology
Compertore, David C.; Ignatovich, Filipp V.; Marcus, Michael A.
2015-09-01
Despite significant technological advances in the field of fiber optic communications, one area remains surprisingly `low-tech': fiber termination. In many instances it involves manual labor and subjective visual inspection. At the same time, high quality fiber connections are one of the most critical parameters in constructing an efficient communication link. The shape and finish of the fiber end faces determines the efficiency of a connection comprised of coupled fiber end faces. The importance of fiber end face quality becomes even more critical for fiber connection arrays and for in the field applications. In this article we propose and demonstrate a quantitative inspection method for the fiber connectors using reflected wavefront technology. The manufactured and polished fiber tip is illuminated by a collimated light from a microscope objective. The reflected light is collected by the objective and is directed to a Shack-Hartmann wavefront sensor. A set of lenses is used to create the image of the fiber tip on the surface of the sensor. The wavefront is analyzed by the sensor, and the measured parameters are used to obtain surface properties of the fiber tip, and estimate connection loss. For example, defocus components in the reflected light indicate the presence of bow in the fiber end face. This inspection method provides a contact-free approach for quantitative inspection of fiber end faces and for estimating the connection loss, and can potentially be integrated into a feedback system for automated inspection and polishing of fiber tips and fiber tip arrays.
Refractive error sensing from wavefront slopes.
Navarro, Rafael
2010-01-01
The problem of measuring the objective refractive error with an aberrometer has shown to be more elusive than expected. Here, the formalism of differential geometry is applied to develop a theoretical framework of refractive error sensing. At each point of the pupil, the local refractive error is given by the wavefront curvature, which is a 2 × 2 symmetric matrix, whose elements are directly related to sphere, cylinder, and axis. Aberrometers usually measure the local gradient of the wavefront. Then refractive error sensing consists of differentiating the gradient, instead of integrating as in wavefront sensing. A statistical approach is proposed to pass from the local to the global (clinically meaningful) refractive error, in which the best correction is assumed to be the maximum likelihood estimation. In the practical implementation, this corresponds to the mode of the joint histogram of the 3 different elements of the curvature matrix. Results obtained both in computer simulations and with real data provide a close agreement and consistency with the main optical image quality metrics such as the Strehl ratio.
High order dark wavefront sensing simulations
Ragazzoni, Roberto; Farinato, Jacopo; Viotto, Valentina; Bergomi, Maria; Dima, Marco; Magrin, Demetrio; Marafatto, Luca; Greggio, Davide; Carolo, Elena; Vassallo, Daniele
2016-01-01
Dark wavefront sensing takes shape following quantum mechanics concepts in which one is able to "see" an object in one path of a two-arm interferometer using an as low as desired amount of light actually "hitting" the occulting object. A theoretical way to achieve such a goal, but in the realm of wavefront sensing, is represented by a combination of two unequal beams interferometer sharing the same incoming light, and whose difference in path length is continuously adjusted in order to show different signals for different signs of the incoming perturbation. Furthermore, in order to obtain this in white light, the path difference should be properly adjusted vs the wavelength used. While we incidentally describe how this could be achieved in a true optomechanical setup, we focus our attention to the simulation of a hypothetical "perfect" dark wavefront sensor of this kind in which white light compensation is accomplished in a perfect manner and the gain is selectable in a numerical fashion. Although this would ...
Al-Hamdani, Yasmine S; von Lilienfeld, O Anatole; Michaelides, Angelos
2016-01-01
Density functional theory (DFT) studies of weakly interacting complexes have recently focused on the importance of van der Waals dispersion forces whereas, the role of exchange has received far less attention. Here, by exploiting the subtle binding between water and a boron and nitrogen doped benzene derivative (1,2-azaborine) we show how exact exchange can alter the binding conformation within a complex. Benchmark values have been calculated for three orientations of the water monomer on 1,2-azaborine from explicitly correlated quantum chemical methods, and we have also used diffusion quantum Monte Carlo. For a host of popular DFT exchange-correlation functionals we show that the lack of exact exchange leads to the wrong lowest energy orientation of water on 1,2-azaborine. As such, we suggest that a high proportion of exact exchange and the associated improvement in the electronic structure could be needed for the accurate prediction of physisorption sites on doped surfaces and in complex organic molecules. ...
Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion
Taylor, Travis S.; Gregory, Don A.
2002-11-01
Real-time liquid crystal television-based technique for simulating optical wavefront distortion due to atmospheric turbulence is presented and demonstrated. A liquid crystal television (LCTV) operating in the "phase mostly" mode was used as an array of spatially correlated phase delays. A movie of the arrays in motion was then generated and displayed on the LCTV. The turbulence simulation system was verified by passing a collimated and doubled diode pumped Nd:YVO 4 laser beam (532 nm) through the transparent LCTV screen. The beam was then passed through a lens and the power spectra of the turbulence information carrying beam was detected as a measure of the far-field distribution. The same collimated laser beam, without the LCTV, was also transmitted down an open-air range and the power spectra detected as a measure of a real far-field distribution. Accepted turbulence parameters were measured for both arrangements and then compared.
Wave-front analysis of personal eye protection.
Eppig, Timo; Zoric, Katja; Speck, Alexis; Zelzer, Benedikt; Götzelmann, Jens; Nagengast, Dieter; Langenbucher, Achim
2012-07-30
Shack-Hartmann wave-front sensing has been successfully applied to many fields of optical testing including the human eye itself. We propose wave-front measurement for testing protective eye wear for production control and investigation of aberrations. Refractive power data is derived from the wave-front data and compared to a subjective measurement technique based on a focimeter. Additional image quality classification was performed with a multivariate model using objective parameters to resample a subjectively determined visual quality. Wave-front measurement advances optical testing of protective eye wear and may be used for objective quality control.
All-digital wavefront sensing for structured light beams.
Dudley, Angela; Milione, Giovanni; Alfano, Robert R; Forbes, Andrew
2014-06-02
We present a new all-digital technique to extract the wavefront of a structured light beam. Our method employs non-homogeneous polarization optics together with dynamic, digital holograms written to a spatial light modulator to measure the phase relationship between orthogonal polarization states in real-time, thereby accessing the wavefront information. Importantly, we show how this can be applied to measuring the wavefront of propagating light fields, over extended distances, without any moving components. We illustrate the versatility of the tool by measuring propagating optical vortices, Bessel, Airy and speckle fields. The comparison of the extracted and programmed wavefronts yields excellent agreement.
Without the weak force, the sun wouldn't shine. The weak force causes beta decay, a form of radioactivity that triggers nuclear fusion in the heart of the sun. The weak force is unlike other forces: it is characterised by disintegration. In beta decay, a down quark transforms into an up quark and an electron is emitted. Some materials are more radioactive than others because the delicate balance between the strong force and the weak force varies depending on the number of particles in the atomic nucleus. We live in the midst of a natural radioactive background that varies from region to region. For example, in Cornwall where there is a lot of granite, levels of background radiation are much higher than in the Geneva region. Text for the interactive: Move the Geiger counter to find out which samples are radioactive - you may be surprised. It is the weak force that is responsible for the Beta radioactivity here. The electrons emitted do not cross the plastic cover. Why do you think there is some detected radioa...
Medhi, Biswajit; Hegde, Gopalakrishna M; Gorthi, Sai Siva; Reddy, Kalidevapura Jagannath; Roy, Debasish; Vasu, Ram Mohan
2016-08-01
A simple noninterferometric optical probe is developed to estimate wavefront distortion suffered by a plane wave in its passage through density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a continuous-tone sinusoidal grating. Through a geometrical optics, eikonal approximation to the distorted wavefront, a bilinear approximation to it is related to the location-dependent shift (distortion) suffered by the grating, which can be read out space-continuously from the projected grating image. The processing of the grating shadow is done through an efficient Fourier fringe analysis scheme, either with a windowed or global Fourier transform (WFT and FT). For comparison, wavefront slopes are also estimated from shadows of random-dot patterns, processed through cross correlation. The measured slopes are suitably unwrapped by using a discrete cosine transform (DCT)-based phase unwrapping procedure, and also through iterative procedures. The unwrapped phase information is used in an iterative scheme, for a full quantitative recovery of density distribution in the shock around the model, through refraction tomographic inversion. Hypersonic flow field parameters around a missile-shaped body at a free-stream Mach number of ∼8 measured using this technique are compared with the numerically estimated values. It is shown that, while processing a wavefront with small space-bandwidth product (SBP) the FT inversion gave accurate results with computational efficiency; computation-intensive WFT was needed for similar results when dealing with larger SBP wavefronts.
UA wavefront control lab: design overview and implementation of new wavefront sensing techniques
Miller, Kelsey; Guyon, Olivier; Codona, Johanan; Knight, Justin; Rodack, Alexander
2015-09-01
We present an overview of the design of a new testbed for studying coronagraphic imaging and wavefront control using a variety of pupil and coronagraph architectures. The testbed is designed to explore optimal use of starlight (including starlight rejected by the coronagraph) for wavefront control, system self-calibration, and point spread function (PSF) calibration. It is also compatible with coronagraph designs for centrally obscured and segmented apertures, and includes shaped or apodized pupils, a range of focal plane masks and Lyot stops of multiple sizes, and an optional PIAA apodizing stage. Starlight is reflected and imaged from the focal plane mask and Lyot stop for low-order wavefront sensing. Both a segmented and a continuous sheet MEMS DM are included to simulate segmented telescope pupils, apply known test phase patterns, and implement a controllable phase apodization coronagraph. The testbed is adaptable and is currently being used to investigate three different techniques: (1) the differential optical transfer function (dOTF), (2) low-order wavefront sensing (LOWFS) with a hybrid-Lyot coronagraph, and (3) linear dark field control (LDFC).
Hsieh, Yi-Ling; Ilevbare, Grace A; Van Eerdenbrugh, Bernard; Box, Karl J; Sanchez-Felix, Manuel Vincente; Taylor, Lynne S
2012-10-01
To examine the precipitation and supersaturation behavior of ten weak bases in terms of the relationship between pH-concentration-time profiles and the solid state properties of the precipitated material. Initially the compound was dissolved at low pH, followed by titration with base to induce precipitation. Upon precipitation, small aliquots of acid or base were added to induce slight subsaturation and supersaturation respectively and the resultant pH gradient was determined. The concentration of the unionized species was calculated as a function of time and pH using mass and charge balance equations. Two patterns of behavior were observed in terms of the extent and duration of supersaturation arising following an increase in pH and this behavior could be rationalized based on the crystallization tendency of the compound. For compounds that did not readily crystallize, an amorphous precipitate was formed and a prolonged duration of supersaturation was observed. For compounds that precipitated to crystalline forms, the observed supersaturation was short-lived. This study showed that supersaturation behavior has significant correlation with the solid-state properties of the precipitate and that pH-metric titration methods can be utilized to evaluate the supersaturation behavior.
Shen, Yue; White, Martin; Zheng, Zheng; Myers, Adam D; Guo, Hong; Kirkpatrick, Jessica A; Padmanabhan, Nikhil; Parejko, John K; Ross, Nicholas P; Schlegel, David J; Schneider, Donald P; Streblyanska, Alina; Swanson, Molly E C; Zehavi, Idit; Pan, Kaike; Bizyaev, Dmitry; Brewington, Howard; Ebelke, Garrett; Malanushenko, Viktor; Malanushenko, Elena; Oravetz, Daniel; Simmons, Audrey; Snedden, Stephanie
2012-01-01
We present the measurement of the two-point cross-correlation function (CCF) of 8,198 Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) quasars and 349,608 DR10 CMASS galaxies from the Baryonic Oscillation Spectroscopic Survey (BOSS) at redshift ~0.5 (0.3=0.53 from the CCF measurements. This linear bias corresponds to a characteristic host halo mass of ~4x10^12 M_sun/h, compared to ~10^13 M_sun/h characteristic host halo mass for CMASS galaxies. We divide the quasar sample in luminosity and constrain the luminosity dependence of quasar bias to be db_Q/dlogL=0.20+-0.34 or 0.11+-0.32 (depending on different luminosity divisions) for quasar luminosities -23.5>M_i(z=2)>-25.5, implying a weak luminosity dependence of quasar clustering for the bright end of the quasar population at ~0.5. We compare our measurements with theoretical predictions, Halo Occupation Distribution (HOD) models and mock catalogs. These comparisons suggest quasars reside in a broad range of host halos, and the host halo mass distributions...
Measuring optical transmission matrices by wavefront shaping
Yoon, Jonghee; Park, Jongchan; Park, YongKeun
2015-01-01
We introduce a simple but practical method to measure the optical transmission matrix (TM) of complex media. The optical TM of a complex medium is obtained by modulating the wavefront of a beam impinging on the complex medium and imaging the transmitted full-field speckle intensity patterns. Using the retrieved TM, we demonstrate the generation and linear combination of multiple foci on demand through the complex medium. This method will be used as a versatile tool for coherence control of waves through turbid media.
Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy
Antonello, J.; Werkhoven, T. van; Verhaegen, M.; Truong, H.H.; Keller, C.U.; Gerritsen, H.C.
2014-01-01
Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront shaping device, such as a deformable mirror (DM) to an existing microscope. The abe
The National Ignition Facility (NIF) wavefront control system
Energy Technology Data Exchange (ETDEWEB)
Van Atta, L; Bliss, E; Bruns, D; Feldman, M; Grey, A; Henesian, M; J; Koch, J; LaFiandra, C; Lawson; Sacks, R; Salmon, T; Toeppen, J; Winters, S; Woods, B; Zacharias, R
1998-08-17
A wavefront control system will be employed on NIF to correct beam aberrations that otherwise would limit the minimum target focal spot size. For most applications, NIF requires a focal spot that is a few times the diffraction limit. Sources of aberrations that must be corrected include prompt pump-induced distortions in the laser slabs, thermal distortions in the laser slabs from previous shots, manufacturing figure errors in the optics, beam off-axis effects, gas density variations, and gravity, mounting, and coating- induced optic distortions. The NIF Wavefront Control System consists of five subsystems: 1) a deformable mirror, 2) a wavefront sensor, 3) a computer controller, 4) a wavefront reference system, and 5) a system of fast actuators to allow the wavefront control system to operate to within one second of the laser shot. The system includes the capability for in situ calibrations and operates in closed loop prior to the shot. Shot wavefront data is recorded. This paper describes the function, realization, and performance of each wavefront control subsystem. Subsystem performance will be characterized by computer models and by test results. The focal spot improvement in the NIF laser system effected by the wavefront control system will be characterized through computer models.
Geometry of fast magnetosonic rays, wavefronts and shock waves
Núñez, Manuel
2016-11-01
Fast magnetosonic waves in a two-dimensional plasma are studied in the geometrical optics approximation. The geometry of rays and wavefronts influences decisively the formation and ulterior evolution of shock waves. It is shown that the curvature of the curve where rays start and the angle between rays and wavefronts are the main parameters governing a wide variety of possible outcomes.
Improving active space telescope wavefront control using predictive thermal modeling
Gersh-Range, Jessica; Perrin, Marshall D.
2015-01-01
Active control algorithms for space telescopes are less mature than those for large ground telescopes due to differences in the wavefront control problems. Active wavefront control for space telescopes at L2, such as the James Webb Space Telescope (JWST), requires weighing control costs against the benefits of correcting wavefront perturbations that are a predictable byproduct of the observing schedule, which is known and determined in advance. To improve the control algorithms for these telescopes, we have developed a model that calculates the temperature and wavefront evolution during a hypothetical mission, assuming the dominant wavefront perturbations are due to changes in the spacecraft attitude with respect to the sun. Using this model, we show that the wavefront can be controlled passively by introducing scheduling constraints that limit the allowable attitudes for an observation based on the observation duration and the mean telescope temperature. We also describe the implementation of a predictive controller designed to prevent the wavefront error (WFE) from exceeding a desired threshold. This controller outperforms simpler algorithms even with substantial model error, achieving a lower WFE without requiring significantly more corrections. Consequently, predictive wavefront control based on known spacecraft attitude plans is a promising approach for JWST and other future active space observatories.
Vyas, Akondi; Prasad, B Raghavendra
2010-01-01
We present the details of predicting atmospheric turbulence by mining Zernike moment data obtained from simulations as well as experiments. Temporally correlated optical wave-fronts were simulated such that they followed Kolmogorov phase statistics. The wave-fronts reconstructed either by modal or zonal methods can be represented in terms of Zernike moments. The servo lag error in adaptive optics is minimized by predicting Zernike moments in the near future by using the data from the immediate past. It is shown statistically that the prediction accuracy depends on the number of past phase screens used for prediction and servo lag time scales. The algorithm is optimized in terms of these parameters for real time and efficient operation of the adaptive optics system. On an average, we report more than 3% improvement in the wave-front compensation after prediction. This analysis helps in optimizing the design parameters for sensing and correction in closed loop adaptive optics systems.
Wavefront dislocations of Gaussian beams nesting optical vortices in a turbulent atmosphere
Institute of Scientific and Technical Information of China (English)
Yixin Zhang(张逸新); Chunkan Tao(陶纯堪)
2004-01-01
A phase singularity of the light field created by interference of two Gaussian singular beams which propagate in a weak and near ground turbulent atmosphere is analyzed by the Rytov approximation and the short-term averaging method of the dislocation-position. We demonstrate that an edge or circular dislocation may be formed by both parallel and coaxial or noncoaxial collimated beams with different or equal beam-width interfere. The edge or circular short-term wavefront dislocations of super position field depend on the atmospheric turbulence strength, beam propagation distance, amplitude ratio, dislocation of nesting vortices, and beam-width or beam-width ratio of the individual beams.
Wavefront Compensation Segmented Mirror Sensing and Control
Redding, David C.; Lou, John Z.; Kissil, Andrew; Bradford, Charles M.; Woody, David; Padin, Stephen
2012-01-01
The primary mirror of very large submillimeter-wave telescopes will necessarily be segmented into many separate mirror panels. These panels must be continuously co-phased to keep the telescope wavefront error less than a small fraction of a wavelength, to ten microns RMS (root mean square) or less. This performance must be maintained continuously across the full aperture of the telescope, in all pointing conditions, and in a variable thermal environment. A wavefront compensation segmented mirror sensing and control system, consisting of optical edge sensors, Wavefront Compensation Estimator/Controller Soft ware, and segment position actuators is proposed. Optical edge sensors are placed two per each segment-to-segment edge to continuously measure changes in segment state. Segment position actuators (three per segment) are used to move the panels. A computer control system uses the edge sensor measurements to estimate the state of all of the segments and to predict the wavefront error; segment actuator commands are computed that minimize the wavefront error. Translational or rotational motions of one segment relative to the other cause lateral displacement of the light beam, which is measured by the imaging sensor. For high accuracy, the collimator uses a shaped mask, such as one or more slits, so that the light beam forms a pattern on the sensor that permits sensing accuracy of better than 0.1 micron in two axes: in the z or local surface normal direction, and in the y direction parallel to the mirror surface and perpendicular to the beam direction. Using a co-aligned pair of sensors, with the location of the detector and collimated light source interchanged, four degrees of freedom can be sensed: transverse x and y displacements, as well as two bending angles (pitch and yaw). In this approach, each optical edge sensor head has a collimator and an imager, placing one sensor head on each side of a segment gap, with two parallel light beams crossing the gap. Two sets
Energy Technology Data Exchange (ETDEWEB)
Kiesel, Maximilian Ludwig
2013-02-08
A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate Na{sub x}CoO{sub 2} and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general
Relationship between corneal and ocular higher order wavefront aberrations and age in children
Saito, Aya; Ito, Misae; Kawamorita, Takushi; Shimizu, Kimiya
2017-05-01
Abstract Purpose To evaluate the relationship between corneal and ocular higher order wavefront aberrations (HOAs) and age in young subjects aged 20 years or less. Methods Corneal and ocular HOAs of the right eyes of 87 normal subjects were measured using videokeratography and the Hartmann-Shack wavefront aberrometer (KR-9000PW; Topcon Corp., Tokyo, Japan). The HOAs were calculated using Zernike polynomials up to the sixth order. From the Zernike coefficients, the root mean squares (RMS) of coma and spherical aberration were calculated. Results Corneal spherical-like aberrations significantly correlated with age (r = 0.420, p Conclusion In children, the corneal and ocular total HOAs did not vary with age. Compared to the previous reports in adults, we found fewer corneal and ocular HOAs in children.
Selleri, Franco
2015-01-01
Weak Relativity is an equivalent theory to Special Relativity according to Reichenbach’s definition, where the parameter epsilon equals to 0. It formulates a Neo-Lorentzian approach by replacing the Lorentz transformations with a new set named “Inertial Transformations”, thus explaining the Sagnac effect, the twin paradox and the trip from the future to the past in an easy and elegant way. The cosmic microwave background is suggested as a possible privileged reference system. Most importantly, being a theory based on experimental proofs, rather than mutual consensus, it offers a physical description of reality independent of the human observation.
Prototype pipeline for LSST wavefront sensing and reconstruction
Claver, Charles F.; Chandrasekharan, Srinivasan; Liang, Ming; Xin, Bo; Alagoz, Enver; Arndt, Kirk; Shipsey, Ian P.
2012-09-01
The Large Synoptic Survey Telescope (LSST) uses an Active Optics System (AOS) to maintain system alignment and surface figure on its three large mirrors. Corrective actions fed to the LSST AOS are determined from 4 curvature based wavefront sensors located on the corners of the inscribed square within the 3.5 degree field of view. Each wavefront sensor is a split detector such that the halves are 1mm on either side of focus. In this paper we describe the development of the Active Optics Pipeline prototype that simulates processing the raw image data from the wavefront sensors through to wavefront estimation on to the active optics corrective actions. We also describe various wavefront estimation algorithms under development for the LSST active optics system. The algorithms proposed are comprised of the Zernike compensation routine which improve the accuracy of the wavefront estimate. Algorithm development has been aided by a bench top optical simulator which we also describe. The current software prototype combines MATLAB modules for image processing, tomographic reconstruction, atmospheric turbulence and Zemax for optical ray-tracing to simulate the closed loop behavior of the LSST AOS. We describe the overall simulation model and results for image processing using simulated images and initial results of the wavefront estimation algorithms.
Wavefront shaping for opaque cylindrical lenses
Di Battista, Diego; Ancora, Daniele; Lemonaki, Krystalia; Liapis, Evangelos; Tzortzakis, Stelios; Zacharakis, Giannis
2016-01-01
Wavefront shaping has revolutionized the concepts of optical imaging and focusing. Contrary to what was believed, strong scattering in the optical paths can be exploited in favor of light focusing through turbid media and ultimately improve optical imaging and light manipulation capabilities. The use of light shapers and appropriately engineered scattering structures, i.e. opaque lenses enables the production of nano-scale confined foci and of extended fields of view. Exploiting this concept we fabricate configurable scattering structures by direct femtosecond laser writing. The properly shaped light trespassing the customized structure, a photonic lattice of parallel rods, forms a light-sheet at user defined positions. We demonstrate that our technique enables light-sheets with sub-micron resolution and extended depth of focus, a significant advantage when compared to the existing free space systems. Moreover, our approach permits to focus light of different wavelengths onto the same defined position without...
Manipulation of wavefront using helical metamaterials.
Yang, Zhenyu; Wang, Zhaokun; Tao, Huan; Zhao, Ming
2016-08-01
Helical metamaterials, a kind of 3-dimensional structure, has relatively strong coupling effect among the helical nano-wires. Therefore, it is expected to be a good candidate for generating phase shift and controlling wavefront with high efficiency. In this paper, using the finite-difference time-domain (FDTD) method, we studied the phase shift properties in the helical metamaterials. It is found that the phase shift occurs for both transmitted and reflected light waves. And the maximum of reflection coefficients can reach over 60%. In addition, the phase shift (φ) is dispersionless in the range of 600 nm to 860 nm, that is, it is only dominated by the initial angle (θ) of the helix. The relationship between them is φ = ± 2θ. Using Jones calculus we give a further explanation for these properties. Finally, by arranging the helixes in an array with a constant phase gradient, the phenomenon of anomalous refraction was also observed in a broad wavelength range.
The NGS Pyramid wavefront sensor for ERIS
Riccardi, A.; Antichi, J.; Quirós-Pacheco, F.; Esposito, S.; Carbonaro, L.; Agapito, G.; Biliotti, V.; Briguglio, R.; Di Rico, G.; Dolci, M.; Ferruzzi, D.; Pinna, E.; Puglisi, A.; Xompero, M.; Marchetti, E.; Fedrigo, E.; Le Louarn, M.; Conzelmann, R.; Delabre, B.; Amico, P.; Hubin, N.
2014-07-01
ERIS is the new Single Conjugate Adaptive Optics (AO) instrument for VLT in construction at ESO with the collaboration of Max-Planck Institut fuer Extraterrestrische Physik, ETH-Institute for Astronomy and INAF - Osservatorio Astrofisico di Arcetri. The ERIS AO system relies on a 40×40 sub-aperture Pyramid Wavefront Sensor (PWFS) for two operating modes: a pure Natural Guide Star high-order sensing for high Strehl and contrast correction and a low-order visible sensing in support of the Laser Guide Star AO mode. In this paper we present in detail the preliminary design of the ERIS PWFS that is developed under the responsibility of INAF-Osservatorio Astrofisico di Arcetri in collaboration with ESO.
Hamilton's Optics: The Power of Wavefronts
Indian Academy of Sciences (India)
2016-06-01
Building on work by Fermat and Huygens, Hamiltontransformed the study of geometrical opticsin his very first paper, presented when still inhis teens. His ‘characteristic function’ was ananalytical way to describe wavefronts, and in hishands a powerful tool to look at families of raysrather than isolated ones. His prediction of internaland external conical refraction in somecrystals and its spectacular verification in a fewmonths established his reputation among his contemporaries.This formulation of optics uncoveredmany general properties, not easy to seein the conventional method of tracing individualrays. The deepest outcome of his early opticalwork was a parallel view of the mechanics ofparticles, which played a fundamental role in thebirth of quantum mechanics and continues to bethe standard framework for classical mechanicsup to the present time.
Wavefront Propagation and Fuzzy Based Autonomous Navigation
Directory of Open Access Journals (Sweden)
Adel Al-Jumaily
2005-06-01
Full Text Available Path planning and obstacle avoidance are the two major issues in any navigation system. Wavefront propagation algorithm, as a good path planner, can be used to determine an optimal path. Obstacle avoidance can be achieved using possibility theory. Combining these two functions enable a robot to autonomously navigate to its destination. This paper presents the approach and results in implementing an autonomous navigation system for an indoor mobile robot. The system developed is based on a laser sensor used to retrieve data to update a two dimensional world model of therobot environment. Waypoints in the path are incorporated into the obstacle avoidance. Features such as ageing of objects and smooth motion planning are implemented to enhance efficiency and also to cater for dynamic environments.
Revisiting static modulation in pyramid wavefront sensing
Marafatto, L.; Ragazzoni, R.; Vassallo, D.; Bergomi, M.; Biondi, F.; Farinato, J.; Greggio, D.; Magrin, D.; Viotto, V.
2016-07-01
The Pyramid Sensor (PS) is based on the Focault knife-edge test, yielding then, in geometrical approximation, only the sign of the wavefront slope. To provide linear measurements of the wavefront slopes the PS relies on a technique known as modulation, which also plays a central role to improve the linear range of the pyramid WFS, very small in the nonmodulated case. In the main PS using modulation so far, this task is achieved by moving optical components in the WFS, increasing the complexity of the system. An attractive idea to simplify the optical and mechanical design of a pyramid WFS is to work without any dynamic modulation. This concept was only merely described and functionally tested in the framework of MAD, and subsequently, with a holographic diffuser. The latter produce a sort of random distribution of the light coming out from the pupil plane, leading to sort of inefficient modulation, as most of the rays are focused in the central region of the light diffused by such device. The bi-dimensional original grating is, in contrast, producing a well defined deterministic distribution of the light onto a specifically shaped pattern. A crude option has been already discussed as a possibility, and it is here generalized to holographic plates leading to various distribution of lights, including a circle whose diameter would match the required modulation pattern, or more cost effective approaches like the one of a square pattern. These holographic diffusers would exhibit also zero-th and high order patterns and the actual size of the equivalent modulation would be linearly wavelength dependent, leading to colour effects that requires a careful handling in order to properly choose the right amount of equivalent modulation.
Propagation of aberrated wavefronts using a ray transfer matrix.
Raasch, Thomas W
2014-05-01
A ray transfer matrix is used to calculate the propagation of aberrated wavefronts across a homogeneous refractive index. The wavefront is represented by local surface normals, i.e., by a ray bundle, and the propagation is accomplished by transferring those rays across the space. Wavefront shape is generated from the slopes and positions of the collection of rays. Calculation methods are developed for the paraxial case, for higher-order expansions, and for the exact tangent case. A numerical example is used to compare results between an analytical method and the methods developed here.
Initial Performance of the Keck AO Wavefront Controller System
Energy Technology Data Exchange (ETDEWEB)
Johansson, E M; Acton, D S; An, J R; Avicola, K; Beeman, B V; Brase, J M; Carrano, C J; Gathright, J; Gavel, D T; Hurd, R L; Lai, O; Lupton, W; Macintosh, B A; Max, C E; Olivier, S S; Shelton, J C; Stomski, P J; Tsubota, K; Waltjen, K E; Watson, J A; Wizinowich, P L
2001-03-01
The wavefront controller for the Keck Observatory AO system consists of two separate real-time control loops: a tip-tilt control loop to remove tilt from the incoming wavefront, and a deformable mirror control loop to remove higher-order aberrations. In this paper, we describe these control loops and analyze their performance using diagnostic data acquired during the integration and testing of the AO system on the telescope. Disturbance rejection curves for the controllers are calculated from the experimental data and compared to theory. The residual wavefront errors due to control loop bandwidth are also calculated from the data, and possible improvements to the controller performance are discussed.
Telescope Multi-Field Wavefront Control with a Kalman Filter
Lou, John Z.; Redding, David; Sigrist, Norbert; Basinger, Scott
2008-01-01
An effective multi-field wavefront control (WFC) approach is demonstrated for an actuated, segmented space telescope using wavefront measurements at the exit pupil, and the optical and computational implications of this approach are discussed. The integration of a Kalman Filter as an optical state estimator into the wavefront control process to further improve the robustness of the optical alignment of the telescope will also be discussed. Through a comparison of WFC performances between on-orbit and ground-test optical system configurations, the connection (and a possible disconnection) between WFC and optical system alignment under these circumstances are analyzed. Our MACOS-based computer simulation results will be presented and discussed.
Ning, Yu; Sun, Quan; Wang, Hongyan; Wu, Wuming; Du, Shaojun; Xu, Xiaojun
2015-05-01
In a high-power laser system, a beam splitter refers to the mirror which locates at the cross point of the path of highpower beam and the weak light section. Because of the thermo-optic effect and elasto-optic effect, a beam splitter deforms under intense laser radiation. This deformation adds extra phase on the incident waves and deliveries inaccurate information to the wavefront sensor. Consequently, the output laser focuses at finite distance and gets divergent when arrives at the target. To settle the above problem, this paper presents a new method for real-time correction of the thermal distortion of beam splitter, based on algorithm of the data fusion of two Shack-Hartmann wavefront sensors (SH-WFS). Different from the traditional AO system, which contains a wavefront sensor, a corrector and a servo controller, two extra Shack-Hartmann wavefront detectors are adopted in our AO system, to detect the transmitted and reflected aberrations of beam splitter mirror. And these aberrations are real-timely delivered to the wavefront sensor. Based on coordinate conversion and data fusion algorithm, it makes the wavefront sensor of AO can "see" the aberrations of splitter mirror by itself. Thus, the servo system controls the corrector to compensate these aberrations correctly. In this paper, the theoretical model of data fusion algorithm is carried out. A closed-loop AO system, which consists of a typical AO system and two extra Shack-Hartmann wavefront detectors, is set up to validate the data fusion algorithm. Experimental results show that, the distortion of a CaF2 beam splitter can be real-time corrected when the AO closedloop control is on. The beam quality factor of output laser decreases from 4 to 1.7 times of diffraction limit.
Hemphill, Ashton S.; Tay, Jian Wei; Wang, Lihong V.
2016-12-01
One of the prime limiting factors of optical imaging in biological applications is the diffusion of light by tissue, which prevents focusing at depths greater than the optical diffusion limit (typically ˜1 mm). To overcome this challenge, wavefront shaping techniques that use a spatial light modulator (SLM) to correct the phase of the incident wavefront have recently been developed. These techniques are able to focus light through scattering media beyond the optical diffusion limit. However, the low speeds of typically used liquid crystal SLMs limit the focusing speed. Here, we present a method using a digital micromirror device (DMD) and an electro-optic modulator (EOM) to measure the scattering-induced aberrations, and using a liquid crystal SLM to apply the correction to the illuminating wavefront. By combining phase modulation from an EOM with the DMD's ability to provide selective illumination, we exploit the DMD's higher refresh rate for phase measurement. We achieved focusing through scattering media in less than 8 ms, which is sufficiently short for certain in vivo applications, as it is comparable to the speckle correlation time of living tissue.
Holographic Wavefront Correction for ShADOE LIDAR Receivers Project
National Aeronautics and Space Administration — Current shared aperture diffractive optical elements (ShADOE) have intrinsic residual wavefront errors on the order of 50 waves which limits the angular resolution...
Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection.
Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei
2013-01-01
We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators.
A Method for Wavefront Curvature Ranging of Speech Sources ...
African Journals Online (AJOL)
A Method for Wavefront Curvature Ranging of Speech Sources. ... A new approach for estimating the location of a speech source in a reverberant environment is presented. The approach ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT
Holographic Wavefront Correction for SHADOE LIDAR Receivers Project
National Aeronautics and Space Administration — Current shared aperture diffractive optical elements (SHADOE) have intrinsic residual wavefront errors on the order of 20 waves which limits the angular resolution...
Angle-sensitive pixel design for wavefront sensing
Zheng, Guoan
2013-01-01
Conventional image sensors are only responsive to the intensity variation of the incoming light wave. By encoding the wavefront information into the balanced detection scheme, we demonstrate an image sensor pixel design that is capable to detect both the local intensity and wavefront information simultaneously. With the full compatibility to the CMOS fabrication process, the proposed pixel design can benefit a variety of applications, including phase microscopy, lensless imaging and machine vision.
Pyramid wavefront sensors for astronomy and for the human eye
Bergomi, Maria
2013-01-01
WaveFront Sensors (WFSs) may be defined as the heart of an adaptive optics system since they analyze the radiation coming from reference sources and allow to quantify the distortion of a wavefront. Among the varieties of existing WFSs, my PhD research thesis focuses especially on innovative optical systems taking advantage of the peculiarities of the Pyramid WFS. In my PhD project I have designed, implemented, characterized or studied three different applications characterized by the f...
Advanced wavefront measurement and analysis of laser system modeling
Energy Technology Data Exchange (ETDEWEB)
Wolfe, C.R.; Auerback, J.M. [Lawrence Livermore National Lab., CA (United States)
1994-11-15
High spatial resolution measurements of the reflected or transmitted wavefronts of large aperture optical components used in high peak power laser systems is now possible. These measurements are produced by phase shifting interferometry. The wavefront data is in the form of 3-D phase maps that reconstruct the wavefront shape. The emphasis of this work is on the characterization of wavefront features in the mid-spatial wavelength range (from 0.1 to 10.0 mm) and has been accomplished for the first time. Wavefront structure from optical components with spatial wavelengths in this range are of concern because their effects in high peak power laser systems. At high peak power, this phase modulation can convert to large magnitude intensity modulation by non-linear processes. This can lead to optical damage. We have developed software to input the measured phase map data into beam propagation codes in order to model this conversion process. We are analyzing this data to: (1) Characterize the wavefront structure produced by current optical components, (2) Refine our understanding of laser system performance, (3) Develop a database from which future optical component specifications can be derived.
Wavefront sensing in a partially illuminated, rotating pupil
Bertram, Thomas; Kumar Radhakrishnan Santhakumari, Kalyan; Marafatto, Luca; Arcidiacono, Carmelo; Berwein, Jürgen; Ragazzoni, Roberto; Herbst, Thomas M.
2014-08-01
LINC-NIRVANA is the near-infrared interferometric imaging camera for the Large Binocular Telescope. Once operational, it will provide an unprecedented combination of angular resolution, sensitivity, and field of view. Its pyramid-based layer-oriented MCAO systems are conjugated to the ground layer and to an additional layer in the upper atmosphere. The Groundlayer Wavefront Sensor optically coadds the light of up to 12 reference stars in the pupil, the Highlayer Wavefront Sensor optically combines the light of up to 8 reference stars in its metapupil. Each Wavefront Sensor has its own associated field derotator. It introduces a dependency of the sensor-actuator relation on the angle of the field derotator, which requires regular updates of the reconstructor in closed loop. In addition, the Highlayer Wavefront Sensor has to be able to reconstruct the incoming wavefronts by analyzing an only partially illuminated metapupil. The distribution of illuminated subapertures depends on the distribution of reference stars. For each pointing, a specific reconstruction matrix has to be generated, which only considers the illuminated subapertures. In this contribution we will present the concept of LINC-NIRVANA's wavefront reconstruction mechanism and report on laboratory and on-sky tests.
Optical differentiation wavefront sensing with binary pixelated transmission filters.
Qiao, J; Mulhollan, Z; Dorrer, C
2016-05-02
Sensors measuring the spatial phase of optical waves are widely used in optics. The optical differentiation wavefront sensor (ODWS) reconstructs the wavefront of an optical wave from wavefront slope measurements obtained by inducing linear field-transmission gradients in the far-field. Its dynamic range and sensitivity can be adjusted simply by changing the gradient slope. We numerically and experimentally demonstrate the possibility of implementing the spatially varying transmission gradient using distributions of small pixels that are either transparent or opaque. Binary pixelated filters are achromatic and can be fabricated with high accuracy at relatively low cost using commercial lithography techniques. We study the impact of the noise resulting from pixelation and binarization of the far-field filter for various test wavefronts and sensor parameters. The induced wavefront error is approximately inversely proportional to the pixel size. For an ODWS with dynamic range of 100 rad/mm over a 1-cm pupil, the error is smaller than λ/15 for a wide range of test wavefronts when using 2.5-μm pixels. We experimentally demonstrate the accuracy and consistency of a first-generation ODWS based on binary pixelated filters.
The Wavefront Control System for the National Ignition Facility
Energy Technology Data Exchange (ETDEWEB)
Van Atta, L; Perez, M; Zacharias, R; Rivera, W
2001-10-15
The National Ignition Facility (NIF) requires that pulses from each of the 192 laser beams be positioned on target with an accuracy of 50 {micro}m rms. Beam quality must be sufficient to focus a total of 1.8 MJ of 0.351-{micro}m light into a 600-{micro}m-diameter volume. An optimally flat beam wavefront can achieve this pointing and focusing accuracy. The control system corrects wavefront aberrations by performing closed-loop compensation during laser alignment to correct for gas density variations. Static compensation of flashlamp-induced thermal distortion is established just prior to the laser shot. The control system compensates each laser beam at 10 Hz by measuring the wavefront with a 77-lenslet Hartmann sensor and applying corrections with a 39-actuator deformable mirror. The distributed architecture utilizes SPARC AXi computers running Solaris to perform real-time image processing of sensor data and PowerPC-based computers running VxWorks to compute mirror commands. A single pair of SPARC and PowerPC processors accomplishes wavefront control for a group of eight beams. The software design uses proven adaptive optic control algorithms that are implemented in a multi-tasking environment to economically control the beam wavefronts in parallel. Prototype tests have achieved a closed-loop residual error of 0.03 waves rms. aberrations, the spot size requirement and goal could not be met without a wavefront control system.
Extension of the modal wave-front reconstruction algorithm to non-uniform illumination.
Ma, Xiaoyu; Mu, Jie; Rao, ChangHui; Yang, Jinsheng; Rao, XueJun; Tian, Yu
2014-06-30
Attempts are made to eliminate the effects of non-uniform illumination on the precision of wave-front measurement. To achieve this, the relationship between the wave-front slope at a single sub-aperture and the distributions of the phase and light intensity of the wave-front were first analyzed to obtain the relevant theoretical formulae. Then, based on the principle of modal wave-front reconstruction, the influence of the light intensity distribution on the wave-front slope is introduced into the calculation of the reconstruction matrix. Experiments were conducted to prove that the corrected modal wave-front reconstruction algorithm improved the accuracy of wave-front reconstruction. Moreover, the correction is conducive to high-precision wave-front measurement using a Hartmann wave-front sensor in the presence of non-uniform illumination.
Photon counting arrays for AO wavefront sensors
Vallerga, J; McPhate, J; Mikulec, Bettina; Clark, Allan G; Siegmund, O; CERN. Geneva
2005-01-01
Future wavefront sensors for AO on large telescopes will require a large number of pixels and must operate at high frame rates. Unfortunately for CCDs, there is a readout noise penalty for operating faster, and this noise can add up rather quickly when considering the number of pixels required for the extended shape of a sodium laser guide star observed with a large telescope. Imaging photon counting detectors have zero readout noise and many pixels, but have suffered in the past with low QE at the longer wavelengths (>500 nm). Recent developments in GaAs photocathode technology, CMOS ASIC readouts and FPGA processing electronics have resulted in noiseless WFS detector designs that are competitive with silicon array detectors, though at ~40% the QE of CCDs. We review noiseless array detectors and compare their centroiding performance with CCDs using the best available characteristics of each. We show that for sub-aperture binning of 6x6 and greater that noiseless detectors have a smaller centroid error at flu...
Greenfield, Michael D; Alem, Sylvain; Limousin, Denis; Bailey, Nathan W
2014-12-01
Fisher's mechanism of sexual selection is a fundamental element of evolutionary theory. In it nonrandom mate choice causes a genetic covariance between a male trait and female preference for that trait and thereby generates a positive feedback process sustaining accelerated coevolution of the trait and preference. Numerous theoretical models of Fisher's mechanism have confirmed its mathematical underpinnings, yet biologists have often failed to find evidence for trait-preference genetic correlation in populations in which the mechanism was expected to function. We undertook a survey of the literature to conduct a formal meta-analysis probing the incidence and strength of trait-preference correlation among animal species. Our meta-analysis found significant positive genetic correlations in fewer than 20% of the species studied and an overall weighted correlation that is slightly positive. Importantly, a significant positive correlation was not found in any thorough study that included multiple subgroups. We discuss several ways in which the dynamic, multivariate nature of mate choice may reduce the trait-preference genetic correlation predicted by Fisher's mechanism. We then entertain the possibilities that Fisherian-like processes sometimes function without genetic correlation, and that mate choice may persist in a population as long as genetic correlation, and therefore Fisher's mechanism, occurs intermittently.
Rahbar, Kambiz; Faez, Karim; Attaran-Kakhki, Ebrahim
2012-06-01
Reduction of image quality under the effects of wavefront aberration of the optical system has a direct impact on the vision system's performance. This paper tries to estimate the amount of aberration with the use of wavelet transform profilometry. The basic idea is based on the principle that under aberration effects, the position of the fringes' image on the image plane will change, and this change correlates with the amount of aberration. So the distribution of aberration function can directly be extracted through measuring the amount of changes in the fringes' image on the image plane. Experimental results and the empirical validity of this idea are evaluated.
Genesis of return stroke current evolution at the wavefront
Kumar, Udaya; Raysaha, Rosy Balaram
2013-07-01
The channel dynamics at the wavefront is complex and is primarily responsible for the evolution of return stroke current. The enhancement of channel conductance at the wavefront is necessary for the evolution of current and hence, return stroke. In this regard several questions arise like: (i) what causes the enhancement of conductance, (ii) as the channel core temperature and electrical conductance are closely related, does one support the other and (iii) is the increase in core temperature on the nascent section of the channel the result of free burning arc of the wavefront just below. The present work investigates on these issues with appropriate transient thermal analysis and a macroscopic physical model for the lightning return stroke. Results clearly indicate that the contribution from the thermal field of the wavefront region to the adjacent nascent channel section is negligible as compared to the field enhancement brought in by the same. In other words, the whole process of return stroke evolution is dependent on the local heat generation at the nascent section caused by the enhancement of electric field due to the arrival of the wavefront.
Wavefront measurement of plastic lenses for mobile-phone applications
Huang, Li-Ting; Cheng, Yuan-Chieh; Wang, Chung-Yen; Wang, Pei-Jen
2016-08-01
In camera lenses for mobile-phone applications, all lens elements have been designed with aspheric surfaces because of the requirements in minimal total track length of the lenses. Due to the diffraction-limited optics design with precision assembly procedures, element inspection and lens performance measurement have become cumbersome in the production of mobile-phone cameras. Recently, wavefront measurements based on Shack-Hartmann sensors have been successfully implemented on injection-molded plastic lens with aspheric surfaces. However, the applications of wavefront measurement on small-sized plastic lenses have yet to be studied both theoretically and experimentally. In this paper, both an in-house-built and a commercial wavefront measurement system configured on two optics structures have been investigated with measurement of wavefront aberrations on two lens elements from a mobile-phone camera. First, the wet-cell method has been employed for verifications of aberrations due to residual birefringence in an injection-molded lens. Then, two lens elements of a mobile-phone camera with large positive and negative power have been measured with aberrations expressed in Zernike polynomial to illustrate the effectiveness in wavefront measurement for troubleshooting defects in optical performance.
Non-iterative adaptive optical microscopy using wavefront sensing
Tao, X.; Azucena, O.; Kubby, J.
2016-03-01
This paper will review the development of wide-field and confocal microscopes with wavefront sensing and adaptive optics for correcting refractive aberrations and compensating scattering when imaging through thick tissues (Drosophila embryos and mouse brain tissue). To make wavefront measurements in biological specimens we have modified the laser guide-star techniques used in astronomy for measuring wavefront aberrations that occur as star light passes through Earth's turbulent atmosphere. Here sodium atoms in Earth's mesosphere, at an altitude of 95 km, are excited to fluoresce at resonance by a high-power sodium laser. The fluorescent light creates a guide-star reference beacon at the top of the atmosphere that can be used for measuring wavefront aberrations that occur as the light passes through the atmosphere. We have developed a related approach for making wavefront measurements in biological specimens using cellular structures labeled with fluorescent proteins as laser guide-stars. An example is a fluorescently labeled centrosome in a fruit fly embryo or neurons and dendrites in mouse brains. Using adaptive optical microscopy we show that the Strehl ratio, the ratio of the peak intensity of an aberrated point source relative to the diffraction limited image, can be improved by an order of magnitude when imaging deeply into live dynamic specimens, enabling near diffraction limited deep tissue imaging.
Online estimation of the wavefront outer scale profile from adaptive optics telemetry
Guesalaga, A.; Neichel, B.; Correia, C. M.; Butterley, T.; Osborn, J.; Masciadri, E.; Fusco, T.; Sauvage, J.-F.
2017-02-01
We describe an online method to estimate the wavefront outer scale profile, L0(h), for very large and future extremely large telescopes. The stratified information on this parameter impacts the estimation of the main turbulence parameters [turbulence strength, Cn2(h); Fried's parameter, r0; isoplanatic angle, θ0; and coherence time, τ0) and determines the performance of wide-field adaptive optics (AO) systems. This technique estimates L0(h) using data from the AO loop available at the facility instruments by constructing the cross-correlation functions of the slopes between two or more wavefront sensors, which are later fitted to a linear combination of the simulated theoretical layers having different altitudes and outer scale values. We analyse some limitations found in the estimation process: (i) its insensitivity to large values of L0(h) as the telescope becomes blind to outer scales larger than its diameter; (ii) the maximum number of observable layers given the limited number of independent inputs that the cross-correlation functions provide and (iii) the minimum length of data required for a satisfactory convergence of the turbulence parameters without breaking the assumption of statistical stationarity of the turbulence. The method is applied to the Gemini South multiconjugate AO system that comprises five wavefront sensors and two deformable mirrors. Statistics of L0(h) at Cerro Pachón from data acquired during 3 yr of campaigns show interesting resemblance to other independent results in the literature. A final analysis suggests that the impact of error sources will be substantially reduced in instruments of the next generation of giant telescopes.
Comparative study of infrared wavefront sensing solutions for adaptive optics
Plantet, C.; Fusco, T.; Guerineau, N.; Derelle, S.; Robert, C.
2016-07-01
The development of new low-noise infrared detectors, such as RAPID (CEA LETI/Sofradir) or SAPHIRA (Selex), has given the possibility to consider infrared wavefront sensing at low ux. We propose here a comparative study of near infrared (J and H bands) wavefront sensing concepts for mid and high orders estimation on a 8m- class telescope, relying on three existing wavefront sensors: the Shack-Hartmann sensor, the pyramid sensor and the quadri-wave lateral shearing interferometer. We consider several conceptual designs using the RAPID camera, making a trade-off between background flux, optical thickness and compatibility with a compact cryostat integration. We then study their sensitivity to noise in order to compare them in different practical scenarios. The pyramid provides the best performance, with a gain up to 0.5 magnitude, and has an advantageous setup.
Miniaturized Shack-Hartmann Wavefront-Sensors for Starbugs
Goodwin, Michael; Richards, Samuel; Zheng, Jessica; Lawrence, Jon; Leon-Saval, Sergio; Argyros, Alexander
2014-01-01
The ability to position multiple miniaturized wavefront sensors precisely over large focal surfaces are advantageous to multi-object adaptive optics. The Australian Astronomical Observatory (AAO) has prototyped a compact and lightweight Shack-Hartmann wavefront-sensor that fits into a standard Starbug parallel fibre positioning robot. Each device makes use of a polymer coherent fibre imaging bundle to relay an image produced by a microlens array placed at the telescope focal plane to a re-imaging camera mounted elsewhere. The advantages of the polymer fibre bundle are its high-fill factor, high-throughput, low weight, and relatively low cost. Multiple devices can also be multiplexed to a single low-noise camera for cost efficiencies per wavefront sensor. The use of fibre bundles also opens the possibility of applications such as telescope field acquisition, guiding, and seeing monitors to be positioned by Starbugs. We present the design aspects, simulations and laboratory test results.
Polarization-resolved microscopy through scattering media via wavefront shaping
de Aguiar, Hilton B; Brasselet, Sophie
2015-01-01
Wavefront shaping has revolutionized imaging deep in scattering media, being able to spatially and temporally refocus light through or inside the medium. However, wavefront shaping is not compatible yet with polarization-resolved microscopy given the need of polarizing optics to refocus light with a controlled polarization state. Here, we show that wavefront shaping is not only able to restore a focus, but it can also recover the injected polarization state without using any polarizing optics at the detection. This counter-intuitive effect occurs up to several transport mean free path thick samples, which exhibit a speckle with a completely scrambled state. Remarkably, an arbitrary rotation of the input polarization does not degrade the quality of the focus. This unsupervised re-polarization - out of the originally scrambled polarization state - paves the way for polarization-resolved structural microscopy at unprecedented depths. We exploit this phenomenon and demonstrate second harmonic generation (SHG) str...
Modeling on Bessel beam guide star beacon for wavefront sensing
Sun, Quan; Luo, Ruiyao; Yang, Yi; Wu, Wuming; Du, Shaojun; Ning, Yu
2017-06-01
Bessel beam has the advantages of reducing scattering artefacts and increasing the quality of the image and penetration. This paper proposed to generate a guide star by Bessel beam with vortex phase, and to use the beacon with special spot structure to measure the atmosphere turbulence aberrations. With the matching algorithm of measured characteristic spot in each subaperture, the detection accuracy of Hartmann wavefront sensor can be improved. Based on wave optics theory, the modeling of Bessel beam guide star and wavefront sensing system was built. The laser guide star beacon generated by Bessel beam with vortex phase and beacon echo wave measured by Hartmann sensor were both simulated. Compared with the results measured by echo wave from Gauss beam generated guide star beacon, this novel method can reduce the error of wavefront detection and increase the detection accuracy of Hartmann sensor.
Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations
Indekeu, Joseph O.; Smets, Ruben
2017-08-01
Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.
Hartmann wavefront sensors and their application at FLASH.
Keitel, Barbara; Plönjes, Elke; Kreis, Svea; Kuhlmann, Marion; Tiedtke, Kai; Mey, Tobias; Schäfer, Bernd; Mann, Klaus
2016-01-01
Different types of Hartmann wavefront sensors are presented which are usable for a variety of applications in the soft X-ray spectral region at FLASH, the free-electron laser (FEL) in Hamburg. As a typical application, online measurements of photon beam parameters during mirror alignment are reported on. A compact Hartmann sensor, operating in the wavelength range from 4 to 38 nm, was used to determine the wavefront quality as well as aberrations of individual FEL pulses during the alignment procedure. Beam characterization and alignment of the focusing optics of the FLASH beamline BL3 were performed with λ(13.5 nm)/116 accuracy for wavefront r.m.s. (w(rms)) repeatability, resulting in a reduction of w(rms) by 33% during alignment.
Wavefront manipulation with a dipolar metasurface under coherent control
Kang, Ming; Wang, Hui-Tian; Zhu, Weiren
2017-07-01
Full phase manipulation with equal amplitude is critical for optical wavefront engineering in various systems. Here we theoretically explore a general approach for optical wavefront manipulation using dipolar metasurfaces under the coherent control. From the microscopic perspective, we theoretically show that the dispersion of a dipolar metasurface under the coherent control can provide the phase manipulation within a full range of [0, 2π] and retain an equal amplitude simultaneously. As an example, such a dipolar metasurface can be constructed by compensatory H-shaped unit resonators to avoid polarization conversion. Specifically, we confirm the feasibility of designed metasurfaces for achieving the beam bending and the vortex-phase beam by the full-wave simulation. The proposed approach enriches the well-established wavefront engineering for extending the functionality of metasurface under the coherent control.
Acoustic Wavefront Manipulation: Impedance Inhomogeneity and Extraordinary Reflection
Zhao, Jiajun; Chen, Zhining; Li, Baowen
2013-01-01
Optical wavefront can be manipulated by interfering elementary beams with phase inhomogeneity. Therefore a surface allowing huge, abrupt and position-variant phase change would enable all possibilities of wavefront engineering. However, one may not have the luxury of efficient abrupt-phase-changing materials in acoustics. This motivates us to establish a counterpart mechanism for acoustics, in order to empower the wide spectrum of novel acoustic applications. Remarkably, the proposed impedance-governed generalized Snell's law (IGSL) of reflection is distinguished from that in optics. Via the manipulation of inhomogeneous acoustic impedance, extraordinary reflection can be tailored for unprecedented wavefront manipulation while ordinary reflection can be surprisingly switched on or off. Our results may power the acoustic-wave manipulation and engineering. We demonstrate novel acoustic applications by planar surfaces designed with IGSL.
Imaging spheres with general incident wavefronts using a dipole decomposition
Izen, Steven H.; Ovryn, Ben
1998-06-01
Although scattering for spheres with plane wave illumination was solved precisely by Mie in 1909, often it is of interest to image spheres with non-planar illumination. An extension of Mie theory which incorporates non-planar illumination requires knowledge of the coefficients for a spherical harmonic expansion of the incident wavefront about the center of the sphere. These coefficients have been determined for a few special cases, such as Gaussian beams, which have a relatively simple model. Using a vectorized Huygen's principle, a general vector wavefront can be represented as a superposition of dipole sources. We have computed the spherical wave function expansion coefficients of an arbitrarily placed dipole and hence the scattering from a sphere illuminated by a general wavefront can be computed. As a special case, Mie's solution of plane wave scattering was recovered. POtential applications include scattering with partially coherent illumination. Experimental results from the scattering from polystyrene spheres using Koehler illumination show agreement with numerical tests.
Spatio-temporal wavefront shaping in a microwave cavity
del Hougne, Philipp; Fink, Mathias; Lerosey, Geoffroy
2016-01-01
Controlling waves in complex media has become a major topic of interest, notably through the concepts of time reversal and wavefront shaping. Recently, it was shown that spatial light modulators can counter-intuitively focus waves both in space and time through multiple scattering media when illuminated with optical pulses. In this letter we transpose the concept to a microwave cavity using flat arrays of electronically tunable resonators. We prove that maximizing the Green's function between two antennas at a chosen time yields diffraction limited spatio-temporal focusing. Then, changing the photons' dwell time inside the cavity, we modify the relative distribution of the spatial and temporal degrees of freedom (DoF), and we demonstrate that it has no impact on the field enhancement: wavefront shaping makes use of all available DoF, irrespective of their spatial or temporal nature. Our results prove that wavefront shaping using simple electronically reconfigurable arrays of reflectors is a viable approach to...
Energy Technology Data Exchange (ETDEWEB)
Vallinotto, Alberto; Viel, Matteo; Das, Sudeep; Spergel, David N.
2009-10-01
We expect a detectable correlation between two seemingly unrelated quantities: the four point function of the cosmic microwave background (CMB) and the amplitude of flux decrements in quasar (QSO) spectra. The amplitude of CMB convergence in a given direction measures the projected surface density of matter. Measurements of QSO flux decrements trace the small-scale distribution of gas along a given line-of-sight. While the cross-correlation between these two measurements is small for a single line-of-sight, upcoming large surveys should enable its detection. This paper presents analytical estimates for the signal to noise (S/N) for measurements of the cross-correlation between the flux decrement and the convergence, {delta}F{kappa}, and for measurements of the cross-correlation between the variance in flux decrement and the convergence, <({delta}F){sup 2}{kappa}>. For the ongoing BOSS (SDSS III) and Planck surveys, we estimate an S/N of 30 and 9.6 for these two correlations. For the proposed BigBOSS and ACTPOL surveys, we estimate an S/N of 130 and 50 respectively. Since <({delta}F){sup 2}{kappa}> {proportional_to} {delta}{sub s}{sup 4}, the amplitude of these cross-correlations can potentially be used to measure the amplitude of {delta}{sub 8} at z {approx} 2 to 2.5% with BOSS and Planck and even better with future data sets. These measurements have the potential to test alternative theories for dark energy and to constrain the mass of the neutrino. The large potential signal estimated in our analytical calculations motivate tests with non-linear hydrodynamical simulations and analyses of upcoming data sets.
Wavefront sensors and algorithms for adaptive optical systems
Lukin, V. P.; Botygina, N. N.; Emaleev, O. N.; Konyaev, P. A.
2010-07-01
The results of recent works related to techniques and algorithms for wave-front (WF) measurement using Shack-Hartmann sensors show their high efficiency in solution of very different problems of applied optics. The goal of this paper was to develop a sensitive Shack-Hartmann sensor with high precision WF measurement capability on the base of modern technology of optical elements making and new efficient methods and computational algorithms of WF reconstruction. The Shack-Hartmann sensors sensitive to small WF aberrations are used for adaptive optical systems, compensating the wave distortions caused by atmospheric turbulence. A high precision Shack-Hartmann WF sensor has been developed on the basis of a low-aperture off-axis diffraction lens array. The device is capable of measuring WF slopes at array sub-apertures of size 640×640 μm with an error not exceeding 4.80 arcsec (0.15 pixel), which corresponds to the standard deviation equal to 0.017λ at the reconstructed WF with wavelength λ . Also the modification of this sensor for adaptive system of solar telescope using extended scenes as tracking objects, such as sunspot, pores, solar granulation and limb, is presented. The software package developed for the proposed WF sensors includes three algorithms of local WF slopes estimation (modified centroids, normalized cross-correlation and fast Fourierdemodulation), as well as three methods of WF reconstruction (modal Zernike polynomials expansion, deformable mirror response functions expansion and phase unwrapping), that can be selected during operation with accordance to the application.
Broadband manipulation of acoustic wavefronts by pentamode metasurface
Energy Technology Data Exchange (ETDEWEB)
Tian, Ye; Wei, Qi, E-mail: weiqi@nju.edu.cn; Cheng, Ying [Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Xu, Zheng [School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Liu, Xiaojun, E-mail: liuxiaojun@nju.edu.cn [Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China)
2015-11-30
An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing.
Wavefront sensing with all-digital Stokes measurements
CSIR Research Space (South Africa)
Dudley, Angela L
2014-09-25
Full Text Available . INTRODUCTION The quest for efficient and precise measurement techniques of the phase (or wavefront) of an optical field has led to some conventional, state-of-the-art methods, ranging from ray tracing [1], pyramid sensors [2], interferometers [3, 4...] on our SLM, to construct an adjustment-free, computer-controlled measurement scheme. We illustrate the robustness of our technique by measuring the wavefront of a variety of static and propagating optical fields such as vortex, Bessel, Airy and speckle...
Min Gong; Yi Liu; Bi Yang
2013-01-01
Effective methods of evaluating postoperative visual quality include wavefront aberration and contrast sensitivity test. This article provides a review of the concepts and clinical applications as well as their interactions of wavefront aberration and contrast sensitivity test.This article also provides a comprehensive assessment of the effectiveness of wavefront aberration and contrast sensitivity test as evaluation tools of postoperative visual quality.
Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent
2012-10-01
Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.
Crass, Jonathan; Femenia, Bruno; King, David L; Mackay, Craig D; Rebolo-López, Rafael; Labadie, Lucas; Garrido, Antonio Pérez; Balcells, Marc; Sánchez, Anastasio Díaz; Fuensalida, Jesús Jimenez; Lopez, Roberto L; Oscoz, Alejandro; Prieto, Jorge A Pérez; Rodríguez-Ramos, Luis F; Villó, Isidro
2012-01-01
The Adaptive Optics Lucky Imager (AOLI) is a new instrument under development to demonstrate near diffraction limited imaging in the visible on large ground-based telescopes. We present the adaptive optics system being designed for the instrument comprising a large stroke deformable mirror, fixed component non-linear curvature wavefront sensor and photon-counting EMCCD detectors. We describe the optical design of the wavefront sensor where two photoncounting CCDs provide a total of four reference images. Simulations of the optical characteristics of the system are discussed, with their relevance to low and high order AO systems. The development and optimisation of high-speed wavefront reconstruction algorithms are presented. Finally we discuss the results of simulations to demonstrate the sensitivity of the system.
Weak Galois and Weak Cocleft Coextensions
Institute of Scientific and Technical Information of China (English)
J.N. Alonso (A)lvarez; J.M. Fernández Vilaboa; R. González Rodríguez; A.B. Rodríguez Raposo
2007-01-01
For a weak entwining structure (A, C,ψ) living in a braided monoidal category with equalizers and coequalizers, we formulate the notion of weak A-Galois coextension with normal basis and we show that these Galois coextensions are equivalent to the weak A-cocleft coextensions introduced by the authors.
Schmitt, Sebastian; Anders, Frithjof B.
2010-04-01
The quantum transport through nanoscale junctions is governed by the charging energy U of the device. We employ the recently developed scattering-states numerical renormalization-group approach to open quantum systems to study nonequilibrium Green’s functions and current-voltage characteristics of such junctions for small and intermediate values of U . We establish the accuracy of the approach by a comparison with diagrammatic Kadanoff-Baym-Keldysh results which become exact in the weak-coupling limit U→0 . We demonstrate the limits of the diagrammatic expansions at intermediate values of the charging energy. While the numerical renormalization-group approach correctly predicts only one single, universal low-energy scale at zero bias voltage, some diagrammatic expansions yield two different low-energy scales for the magnetic and the charge fluctuations. At large voltages, however, the self-consistent second Born as well as the GW approximation reproduce the scattering-states renormalization-group spectral functions for symmetric junctions while for asymmetric junctions the voltage-dependent redistribution of spectral weight differs significantly in the different approaches. The second-order perturbation theory does not capture the correct single-particle dynamics at large bias and violates current conservation for asymmetric junctions.
Receding-horizon adaptive contyrol of aero-optical wavefronts
Tesch, J.; Gibson, S.; Verhaegen, M.
2013-01-01
A new method for adaptive prediction and correction of wavefront errors in adaptive optics (AO) is introduced. The new method is based on receding-horizon control design and an adaptive lattice filter. Experimental results presented illustrate the capability of the new adaptive controller to predict
Bending light on demand by holographic sculpturing its wavefront
Latychevskaia, Tatiana
2015-01-01
A classical light beam propagates along a straight line and does not bend unless in a medium of variable refractive index. It is well known that by modifying the wavefront in a certain manner, the light intensity can be turned into a certain shape. Examples are optical lenses or Fresnel Zone Plates for focusing an incident wave to a point at the focal plane. Another example are Airy beams created by modifying the phase distribution of the wavefront into an Airy function resulting in a bending of the light intensity while propagating. A further example is holography, where the phase of the wavefront passing through a hologram is changed to mimic the object wavefront, thus providing the illusion that the original object is present in space. However, all these known techniques allow for limited light modifications: either focusing within a limited region in space2 or shaping a certain class of parametric curves along the optical axis or creating a bend in a quadratic-dependent declination as in the case of Airy ...
Liquid deformable mirror for high-order wavefront correction
Vuelban, E.M.; Bhattacharya, N.; Braat, J.J.M.
2006-01-01
We propose and demonstrate a novel liquid deformable mirror, based on electrocapillary actuation, for highorder wavefront correction. The device consists of a two-dimensional array of vertically oriented microchannels filled with two immiscible liquids, an aqueous electrolyte, and a viscous dielectr
Describing the Corneal Shape after Wavefront-Optimized Photorefractive Keratectomy
de Jong, Tim; Wijdh, Robert H. J.; Koopmans, Steven A.; Jansonius, Nomdo M.
2014-01-01
PURPOSE: To develop a procedure for describing wavefront-optimized photorefractive keratectomy (PRK) corneas and to characterize PRK-induced changes in shape. METHODS: We analyzed preoperative and postoperative corneal elevation data of 41 eyes of 41 patients (mean [±SD] age, 38 [±11] years) who und
Note on wavefront dislocation in surface water waves
Karjanto, Natanael; Groesen, van E.
2007-01-01
At singular points of a wave field, where the amplitude vanishes, the phase may become singular and wavefront dislocation may occur. In this Letter we investigate for wave fields in one spatial dimension the appearance of these essentially linear phenomena. We introduce the Chu–Mei quotient as it is
11 A METHOD FOR WAVEFRONT CURVATURE RANGING OF ...
African Journals Online (AJOL)
algorithm estimates the curvature of the incident wavefront of the source with ... A narrow-band (NB) filter is used to increase the SNR of the measured signal ..... oCher-scua:s cootn'bute to the varimce about this mean. This property forms the ...
Linear-constraint wavefront control for exoplanet coronagraphic imaging systems
Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean
2017-01-01
A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.
Wavefronts and caustic associated with Durnin’s beams
de Jesús Cabrera-Rosas, Omar; Espíndola-Ramos, Ernesto; Alejandro Juárez-Reyes, Salvador; Julián-Macías, Israel; Ortega-Vidals, Paula; Silva-Ortigoza, Gilberto; Silva-Ortigoza, Ramón; Sosa-Sánchez, Citlalli Teresa
2017-01-01
The aim of the present work is to give a geometrical characterization of Durnin’s beams. That is, we compute the wavefronts and caustic associated with the nondiffracting solutions to the scalar wave equation introduced by Durnin. To this end, first we show that in an isotropic optical medium \\psi ({r},t)={{{e}}}{{i}[{k}0S({r})-ω t]} is an exact solution of the wave equation, if and only if, S is a solution of both the eikonal and Laplace equations, then from one and two-parameter families of this type of solution and the superposition principle we define new solutions of the wave equation, in particular we show that the ideal nondiffracting beams are one example of this type of construction in free space. Using this fact, the wavefronts and caustic associated with those beams are computed. We find that their caustic has only one branch, which is invariant under translations along the direction of evolution of the beam. Finally, the Bessel beam of order m is worked out explicitly and we find that it is characterized by wavefronts that are deformations of conical ones and the caustic is an infinite cylinder of radius proportional to m. In the case m = 0, the wavefronts are cones and the caustic degenerates into an infinite line.
All-digital wavefront sensing for structured light beams
CSIR Research Space (South Africa)
Dudley, Angela L
2014-01-01
Full Text Available We present a new all-digital technique to extract the wavefront of a structured light beam. Our method employs non-homogeneous polarization optics together with dynamic, digital holograms written to a spatial light modulator to measure the phase...
Focal plane wave-front sensin8 algorithm for high-contrast imaging
Institute of Scientific and Technical Information of China (English)
DOU JiangPei; REN DeQing; ZHU YongTian; ZHANG Xi
2009-01-01
High-contrast imaging provided by a coronagraph is critical for the direction imaging of the Earth-like planet orbiting its bright parent star. A major limitation for such direct imaging is the speckle noise that is induced from the wave-front error of an optical system. We derive an algorithm for the wave-front measurement directly from 3 focal plane images. The 3 images are achieved through a deformable mirror to provide specific phases for the optics system. We introduce an extra amplitude modulation on one deformable mirror configuration to create an uncorrelated wave-front, which is a critical procedure for wave-front sensing. The simulation shows that the reconstructed wave-front is consistent with the original wave-front theoretically, which indicates that such an algorithm is a promising technique for the wave-front measurement for the high-contrast imaging.
Iteratively Weighted Centroiding for Shack-Hartmann Wave-Front Sensors
Energy Technology Data Exchange (ETDEWEB)
Baker, K L; Moallem, M M
2007-02-28
Several techniques have been used with Shack-Hartmann wavefront sensors to determine the local wave-front gradient across each lenslet. In this article we introduce an iterative weighted technique which is specifically targeted for open-loop applications such as aberrometers and metrology. In this article the iterative centroiding technique is compared to existing techniques such as center-of-mass with thresholding, weighted center-of-gravity, matched filter and cross-correlation. Under conditions of low signal-to-noise ratio, the iterative weighted centroiding algorithm is demonstrated to produce a lower variance in the reconstructed phase than existing techniques. The iteratively weighted algorithm was also compared in closed-loop and demonstrated to have the lowest error variance along with the weighted center-of-gravity, however, the iteratively weighted algorithm removes the bulk of the aberration in roughly half the iterations than the weighted center-of-gravity algorithm. This iterative weighted algorithm is also well suited to applications such as guiding on telescopes.
Institute of Scientific and Technical Information of China (English)
Yong Hua LI; Hai Bin KAN; Bing Jun YU
2004-01-01
In this paper, a special kind of partial algebras called projective partial groupoids is defined.It is proved that the inverse image of all projections of a fundamental weak regular *-semigroup under the homomorphism induced by the maximum idempotent-separating congruence of a weak regular *-semigroup has a projective partial groupoid structure. Moreover, a weak regular *-product which connects a fundamental weak regular *-semigroup with corresponding projective partial groupoid is defined and characterized. It is finally proved that every weak regular *-product is in fact a weak regular *-semigroup and any weak regular *-semigroup is constructed in this way.
Broadband Phase Retrieval for Image-Based Wavefront Sensing
Dean, Bruce H.
2007-01-01
A focus-diverse phase-retrieval algorithm has been shown to perform adequately for the purpose of image-based wavefront sensing when (1) broadband light (typically spanning the visible spectrum) is used in forming the images by use of an optical system under test and (2) the assumption of monochromaticity is applied to the broadband image data. Heretofore, it had been assumed that in order to obtain adequate performance, it is necessary to use narrowband or monochromatic light. Some background information, including definitions of terms and a brief description of pertinent aspects of image-based phase retrieval, is prerequisite to a meaningful summary of the present development. Phase retrieval is a general term used in optics to denote estimation of optical imperfections or aberrations of an optical system under test. The term image-based wavefront sensing refers to a general class of algorithms that recover optical phase information, and phase-retrieval algorithms constitute a subset of this class. In phase retrieval, one utilizes the measured response of the optical system under test to produce a phase estimate. The optical response of the system is defined as the image of a point-source object, which could be a star or a laboratory point source. The phase-retrieval problem is characterized as image-based in the sense that a charge-coupled-device camera, preferably of scientific imaging quality, is used to collect image data where the optical system would normally form an image. In a variant of phase retrieval, denoted phase-diverse phase retrieval [which can include focus-diverse phase retrieval (in which various defocus planes are used)], an additional known aberration (or an equivalent diversity function) is superimposed as an aid in estimating unknown aberrations by use of an image-based wavefront-sensing algorithm. Image-based phase-retrieval differs from such other wavefront-sensing methods, such as interferometry, shearing interferometry, curvature
The Geometry And Significance Of Weak Energy
Parks, A D
2000-01-01
Summary: The theory of weak values for quantum mechanical observables has come to serve as a useful basis for contemporary discussions concerning such varied topics as the tunnelling-time controversy and quantum stochastic processes. An intrinsic complex-valued weak energy has recently been observed experimentally and reported in the literature. In this paper it is shown that: (a) the real and imaginary valued parts of this weak energy have geometric interpretations related to a phase acquired from parallel transport in Hilbert space and the variational dynamics occurring in the associated projective Hilbert space, respectively; (b) the weak energy defines functions which translate correlation amplitudes and probabilities in time; (c) correlation probabilities can be controlled by manipulating the weak energy and there exists a condition of weak stationarity that guarantees their time invariance; and (d) a time-weak energy uncertainty relation of the usual form prevails when a suitable set of dynamical constr...
Institute of Scientific and Technical Information of China (English)
丁锋; 郭航; 冯伟泉; 王剑
2015-01-01
In the vibration test of spacecraft, some of its components will undergo the processes of aging, even failure because of long time use. For a qualitative analysis, the FMEA method is used to analyze the overall test bench, and the weakest link for the test bench is identified. For a horizontal sliding table's reliability series model in the subsystem, it is shown that it complies with the weak correlation theory. Then, the traditional reliability formula and the weak correlation are used, respectively, to predict the reliability of the model. A comparison shows that the weak correlation is better than the traditional reliability formula under the condition that all parts are not completely independent according to the actual situation. That is to say it is more effective for the reliability assessment of the horizontal sliding bench. The method is of theoretical and practical significance for mechanical system reliability calculations.%航天器振动试验台部分元件在长时间使用的情况下易老化，甚至失效。采用FMEA方法对试验台整体定性分析，得出最薄弱环节；针对试验台中水平滑台的可靠性串联模型，分析并确定了其符合弱相关界限理论。使用传统可靠性公式和弱相关界限理论对串联模型的可靠性进行了计算，通过对比证实，弱相关界限理论比传统可靠性公式更符合实际情况，对水平滑台可靠度的评定更有效。该方法对机械系统可靠度计算具有理论和实际指导意义。
Weak measurements and supraluminal communication
Belinsky, A V
2016-01-01
There is suggested a version of the experiment with a correlated pair of particles in the entangled state. The experiment demonstrates that, in the case of weak and/or non-demolition measurements of one of the particles, it is possible to transmit information with a speed not limited by velocity of light.
Weakly Nonlinear Geometric Optics for Hyperbolic Systems of Conservation Laws
Chen, Gui-Qiang; Zhang, Yongqian
2012-01-01
We establish an $L^1$-estimate to validate the weakly nonlinear geometric optics for entropy solutions of nonlinear hyperbolic systems of conservation laws with arbitrary initial data of small bounded variation. This implies that the simpler geometric optics expansion function can be employed to study the properties of general entropy solutions to hyperbolic systems of conservation laws. Our analysis involves new techniques which rely on the structure of the approximate equations, besides the properties of the wave-front tracking algorithm and the standard semigroup estimates.
Common-Path Interferometric Wavefront Sensing for Space Telescopes
Wallace, James Kent
2011-01-01
This paper presents an optical configuration for a common-path phase-shifting interferometric wavefront sensor.1 2 This sensor has a host of attractive features which make it well suited for space-based adaptive optics. First, it is strictly reflective and therefore operates broadband, second it is common mode and therefore does not suffer from systematic errors (like vibration) that are typical in other interferometers, third it is a phase-shifting interferometer and therefore benefits from both the sensitivity of interferometric sensors as well as the noise rejection afforded by synchronous detection. Unlike the Shack-Hartman wavefront sensor, it has nearly uniform sensitivity to all pupil modes. Optical configuration, theory and simulations for such a system will be discussed along with predicted performance.
Terahertz wavefront control by tunable metasurface made of graphene ribbons
Energy Technology Data Exchange (ETDEWEB)
Yatooshi, Takumi; Ishikawa, Atsushi, E-mail: a-ishikawa@okayama-u.ac.jp; Tsuruta, Kenji [Department of Electrical and Electronic Engineering, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530 (Japan)
2015-08-03
We propose a tunable metasurface consisting of an array of graphene ribbons on a silver mirror with a SiO{sub 2} gap layer to control reflected wavefront at terahertz frequencies. The graphene ribbons exhibit localized plasmon resonances depending on their Fermi levels to introduce abrupt phase shifts along the metasurface. With interference of the Fabry-Perot resonances in the SiO{sub 2} layer, phase shift through the system is largely accumulated, covering the 0-to-2π range for full control of the wavefront. Numerical simulations prove that wide-angle beam steering up to 53° with a high reflection efficiency of 60% is achieved at 5 THz within a switching time shorter than 0.6 ps.
10 um wavefront spatial filtering first results with chalcogenide fibers
Bordé, P J; Nguyen, T; Amy-Klein, A; Daussy, C; Raynal, P; Léger, A; Mazé, G; Borde, Pascal; Perrin, Guy; Nguyen, Thanh; Amy-Klein, Anne; Daussy, Christophe; Raynal, Pierre-Ivan; Leger, Alain; Maze, Gwenael
2003-01-01
Wavefront cleaning by single-mode fibers has proved to be efficient in optical-infrared interferometry to improve calibration quality. For instance, the FLUOR instrument has demonstrated the capability of fluoride glass single-mode fibers in this respect in the K and L bands. New interferometric instruments developped for the mid-infrared require the same capability for the 8-12 um range. We have initiated a program to develop single-mode fibers in the prospect of the VLTI mid-infrared instrument MIDI and of the ESA/DARWIN and NASA/TPF missions that require excellent wavefront quality. In order to characterize the performances of chalcogenide fibers we are developping, we have set up an experiment to measure the far-field pattern radiated at 10 um. In this paper, we report the first and promising results obtained with this new component.
Discontinuous Electromagnetic Fields Using Huygens Sources For Wavefront Manipulation
Selvanayagam, Michael
2013-01-01
We introduce the idea of discontinuous electric and magnetic fields at a boundary to design and shape wavefronts in an arbitrary manner. To create this discontinuity in the field we use electric and magnetic currents which act like a Huygens source to radiate the desired wavefront. These currents can be synthesized either by an array of electric and magnetic dipoles or by a combined impedance and admittance surface. A dipole array is an active implementation to impose discontinuous fields while the impedance/admittance surface acts as a passive one. We then expand on our previous work showing how electric and magnetic dipole arrays can be used to cloak an object demonstrating two novel cloaking schemes. We also show how to arbitrarily refract a beam using a set of impedance and admittance surfaces. Refraction using the idea of discontinuous fields is shown to be a more general case of refraction using phase discontinuities.
Telescope interferometers: an alternative to classical wavefront sensors
Henault, Francois
2008-01-01
Several types of Wavefront Sensors (WFS) are nowadays available in the field of Adaptive Optics (AO). Generally speaking, their basic principle consists in measuring slopes or curvatures of Wavefront Errors (WFE) transmitted by a telescope, subsequently reconstructing WFEs digitally. Such process, however, does not seem to be well suited for evaluating co-phasing or piston errors of future large segmented telescopes in quasi real-time. This communication presents an original, recently proposed technique for direct WFE sensing. The principle of the device, which is named "Telescope-Interferometer" (TI), is based on the addition of a reference optical arm into the telescope pupil plane. Then incident WFEs are deduced from Point Spread Function (PSF) measurements at the telescope focal plane. Herein are described two different types of TIs, and their performance are discussed in terms of intrinsic measurement accuracy and spatial resolution. Various error sources are studied by means of numerical simulations, am...
Coronagraph-Integrated Wavefront Sensing with a Sparse Aperture Mask
Subedi, Hari; Kasdin, N Jeremy; Cavanagh, Kathleen; Riggs, A J Eldorado
2015-01-01
Stellar coronagraph performance is highly sensitive to optical aberrations. In order to effectively suppress starlight for exoplanet imaging applications, low-order wavefront aberrations entering a coronagraph such as tip-tilt, defocus and coma must be determined and compensated. Previous authors have established the utility of pupil-plane masks (both non-redundant/sparse-aperture and generally asymmetric aperture masks) for wavefront sensing. Here we show how a sparse aperture mask (SAM) can be integrated with a coronagraph to measure low-order, differential phase aberrations. Starlight rejected by the coronagraph's focal plane stop is collimated to a relay pupil, where the mask forms an interference fringe pattern on a subsequent detector. Our numerical Fourier propagation models show that the information encoded in the fringe intensity distortions is sufficient to accurately discriminate and estimate Zernike phase modes extending from tip-tilt up to radial degree $n=5$, with amplitude up to $\\lambda/20$ RM...
Wavefront modulation of water surface wave by a metasurface
Institute of Scientific and Technical Information of China (English)
孙海涛; 程营; 王敬时; 刘晓峻
2015-01-01
We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell’s law, negative refraction and‘driven’ surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in‘driven’ surface mode. This work may have potential applications in water wave energy extraction and coastal protection.
Hybrid architecture active wavefront sensing and control system, and method
Feinberg, Lee D. (Inventor); Dean, Bruce H. (Inventor); Hyde, Tristram T. (Inventor)
2011-01-01
According to various embodiments, provided herein is an optical system and method that can be configured to perform image analysis. The optical system can comprise a telescope assembly and one or more hybrid instruments. The one or more hybrid instruments can be configured to receive image data from the telescope assembly and perform a fine guidance operation and a wavefront sensing operation, simultaneously, on the image data received from the telescope assembly.
Specification and Measurement of Mid-Frequency Wavefront Errors
Institute of Scientific and Technical Information of China (English)
XUAN Bin; XIE Jing-jiang
2006-01-01
Mid-frequency wavefront errors can be of the most importance for some optical components, but they're not explicitly covered by corresponding international standards such as ISO 10110. The testing methods for the errors also have a lot of aspects to be improved. This paper gives an overview of the specifications especially of PSD. NIF,developed by America, and XMM, developed by Europe, have both discovered some new testing methods.
Wavefront Reconstruction and Mirror Surface Optimizationfor Adaptive Optics
2014-06-01
correction. A DM has a reflective surface with actuators along the back struc- ture that apply forces causing the mirror surface to adapt to a desired shape...actuators. The actuators cause forces along the back of the mirror structure and the mirror surface deflects to form the conjugate shape of the wavefront...optical axis of the primary mirror. The interferometer and null corrector are mounted to remove the 81 Interferometer Null corrector Hexapod ❋✐❣✉r
Study of the wavefront aberrations in children with amblyopia
Institute of Scientific and Technical Information of China (English)
ZHAO Peng-fei; ZHOU Yue-hua; WANG Ning-li; ZHANG Jing
2010-01-01
Background Amblyopia is a common ophthalmological condition and the wavefront aberrometer is a relatively new diagnostic tool used globally to measure optical characteristics of human eyes as well as to study refractive errors in amblyopic eyes. We studied the wavefront aberration of the amblyopic children's eyes and analyzed the mechanism of the wavefront aberration in the formation of the amblyopia, try to investigate the new evidence of the treatment of the amblyopia, especially in the refractory amblyopia.Methods The WaveScan Wavefront System (VISX, USA) aberrometer was used to investigate four groups of children under dark accommodation and cilliary muscle paralysis. There were 45 cases in the metropic group, 87 in the amblyopic group, 92 in the corrected-amblyopic group and 38 in the refractory amblyopic group. One-way analysis of variance (ANOVA), t-test and multivariate linear regression were used to analyze all the data.Results Third order to 6th order aberrations showed a decreasing trend whereas in the higher order aberrations the main ones were 3rd order coma (Z3-1-Z31), trefoil (Z3-3-Z33) and 4th order aberration (Z40); and 3rd order coma represented the highest percentage of all three main aberrations. Within 3rd order coma, vertical coma (Z3-1) accounted for a greater percentage than horizontal coma (Z31). Significant differences of vertical coma were found among all clinical groups of children: vertical coma in the amblyopic group (0.17±0.15) was significantly higher than in the metropic group (0.11±0.13, P0.05).Conclusions Although lower order aberrations such as defocus (myopia and hyperopia) and astigmatism are major factors determining the quality of the retinal image, higher order aberrations also need to be considered in amblyopic eyes as their effects are significant.
Novel technology for reducing wavefront image processing latency
Barr, David; Schwartz, Noah; Vick, Andy; Coughlan, John; Halsall, Rob; Basden, Alastair; Dipper, Nigel
2016-07-01
Adaptive optics is essential for the successful operation of the future Extremely Large Telescopes (ELTs). At the heart of these AO system lies the real-time control which has become computationally challenging. A majority of the previous efforts has been aimed at reducing the wavefront reconstruction latency by using many-core hardware accelerators such as Xeon Phis and GPUs. These modern hardware solutions offer a large numbers of cores combined with high memory bandwidths but have restrictive input/output (I/O). The lack of efficient I/O capability makes the data handling very inefficient and adds both to the overall latency and jitter. For example a single wavefront sensor for an ELT scale adaptive optics system can produce hundreds of millions of pixels per second that need to be processed. Passing all this data through a CPU and into GPUs or Xeon Phis, even by reducing memory copies by using systems such as GPUDirect, is highly inefficient. The Mellanox TILE series is a novel technology offering a high number of cores and multiple 10 Gbps Ethernet ports. We present results of the TILE-Gx36 as a front-end wavefront sensor processing unit. In doing so we are able to greatly reduce the amount of data needed to be transferred to the wavefront reconstruction hardware. We show that the performance of the Mellanox TILE-GX36 is in-line with typical requirements, in terms of mean calculation time and acceptable jitter, for E-ELT first-light instruments and that the Mellanox TILE series is a serious contender for all E-ELT instruments.
The speed of reaction-diffusion wavefronts in nonsteady media
Energy Technology Data Exchange (ETDEWEB)
Mendez, Vicenc [Departament de Medicina, Facultat de Ciencies de la Salut, Universitat Internacional de Catalunya. c/Gomera s/n, 08190-Sant Cugat del Valles (Barcelona) (Spain); Fort, Joaquim [Departament de Fisica, Universitat de Girona, Campus Montilivi, 17071 Girona, Catalonia (Spain); Pujol, Toni [Departament de Fisica, Universitat de Girona, Campus Montilivi, 17071 Girona, Catalonia (Spain)
2003-04-11
The evolution of the speed of wavefronts for reaction-diffusion equations with time-varying parameters is analysed. We make use of singular perturbative analysis to study the temporal evolution of the speed for pushed fronts. The analogy with Hamilton-Jacobi dynamics allows us to consider the problem for pulled fronts, which is described by Kolmogorov-Petrovskii-Piskunov (KPP) reaction kinetics. Both analytical studies are in good agreement with the results of numerical solutions.
The speed of reaction-diffusion wavefronts in nonsteady media
Méndez, V; Pujol, T
2003-01-01
The evolution of the speed of wavefronts for reaction-diffusion equations with time-varying parameters is analysed. We make use of singular perturbative analysis to study the temporal evolution of the speed for pushed fronts. The analogy with Hamilton-Jacobi dynamics allows us to consider the problem for pulled fronts, which is described by Kolmogorov-Petrovskii-Piskunov (KPP) reaction kinetics. Both analytical studies are in good agreement with the results of numerical solutions.
Preparing for JWST wavefront sensing and control operations
Perrin, Marshall D.; Acton, D. Scott; Lajoie, Charles-Philippe; Knight, J. Scott; Lallo, Matthew D.; Allen, Marsha; Baggett, Wayne; Barker, Elizabeth; Comeau, Thomas; Coppock, Eric; Dean, Bruce H.; Hartig, George; Hayden, William L.; Jordan, Margaret; Jurling, Alden; Kulp, Trey; Long, Joseph; McElwain, Michael W.; Meza, Luis; Nelan, Edmund P.; Soummer, Remi; Stansberry, John; Stark, Christopher; Telfer, Randal; Welsh, Andria L.; Zielinski, Thomas P.; Zimmerman, Neil T.
2016-07-01
The James Webb Space Telescopes segmented primary and deployable secondary mirrors will be actively con- trolled to achieve optical alignment through a complex series of steps that will extend across several months during the observatory's commissioning. This process will require an intricate interplay between individual wavefront sensing and control tasks, instrument-level checkout and commissioning, and observatory-level calibrations, which involves many subsystems across both the observatory and the ground system. Furthermore, commissioning will often exercise observatory capabilities under atypical circumstances, such as fine guiding with unstacked or defocused images, or planning targeted observations in the presence of substantial time-variable offsets to the telescope line of sight. Coordination for this process across the JWST partnership has been conducted through the Wavefront Sensing and Control Operations Working Group. We describe at a high level the activities of this group and the resulting detailed commissioning operations plans, supporting software tools development, and ongoing preparations activities at the Science and Operations Center. For each major step in JWST's wavefront sensing and control, we also explain the changes and additions that were needed to turn an initial operations concept into a flight-ready plan with proven tools. These efforts are leading to a robust and well-tested process and preparing the team for an efficient and successful commissioning of JWSTs active telescope.
Research on technique of wavefront retrieval based on Foucault test
Yuan, Lvjun; Wu, Zhonghua
2010-05-01
During finely grinding the best fit sphere and initial stage of polishing, surface error of large aperture aspheric mirrors is too big to test using common interferometer. Foucault test is widely used in fabricating large aperture mirrors. However, the optical path is disturbed seriously by air turbulence, and changes of light and dark zones can not be identified, which often lowers people's judging ability and results in making mistake to diagnose surface error of the whole mirror. To solve the problem, the research presents wavefront retrieval based on Foucault test through digital image processing and quantitative calculation. Firstly, real Foucault image can be gained through collecting a variety of images by CCD, and then average these image to eliminate air turbulence. Secondly, gray values are converted into surface error values through principle derivation, mathematical modeling, and software programming. Thirdly, linear deviation brought by defocus should be removed by least-square method to get real surface error. At last, according to real surface error, plot wavefront map, gray contour map and corresponding pseudo color contour map. The experimental results indicates that the three-dimensional wavefront map and two-dimensional contour map are able to accurately and intuitively show surface error on the whole mirrors under test, and they are beneficial to grasp surface error as a whole. The technique can be used to guide the fabrication of large aperture and long focal mirrors during grinding and initial stage of polishing the aspheric surface, which improves fabricating efficiency and precision greatly.
Common-Path Wavefront Sensing for Advanced Coronagraphs
Wallace, J. Kent; Serabyn, Eugene; Mawet, Dimitri
2012-01-01
Imaging of faint companions around nearby stars is not limited by either intrinsic resolution of a coronagraph/telescope system, nor is it strictly photon limited. Typically, it is both the magnitude and temporal variation of small phase and amplitude errors imparted to the electric field by elements in the optical system which will limit ultimate performance. Adaptive optics systems, particularly those with multiple deformable mirrors, can remove these errors, but they need to be sensed in the final image plane. If the sensing system is before the final image plane, which is typical for most systems, then the non-common path optics between the wavefront sensor and science image plane will lead to un-sensed errors. However, a new generation of high-performance coronagraphs naturally lend themselves to wavefront sensing in the final image plane. These coronagraphs and the wavefront sensing will be discussed, as well as plans for demonstrating this with a high-contrast system on the ground. Such a system will be a key system-level proof for a future space-based coronagraph mission, which will also be discussed.
Curvature Wavefront Sensing for the Large Synoptic Survey Telescope
Xin, Bo; Liang, Ming; Chandrasekharan, Srinivasan; Angeli, George; Shipsey, Ian
2015-01-01
The Large Synoptic Survey Telescope (LSST) will use an active optics system (AOS) to maintain alignment and surface figure on its three large mirrors. Corrective actions fed to the LSST AOS are determined from information derived from 4 curvature wavefront sensors located at the corners of the focal plane. Each wavefront sensor is a split detector such that the halves are 1mm on either side of focus. In this paper we describe the extensions to published curvature wavefront sensing algorithms needed to address challenges presented by the LSST, namely the large central obscuration, the fast f/1.23 beam, off-axis pupil distortions, and vignetting at the sensor locations. We also describe corrections needed for the split sensors and the effects from the angular separation of different stars providing the intra- and extra-focal images. Lastly, we present simulations that demonstrate convergence, linearity, and negligible noise when compared to atmospheric effects when the algorithm extensions are applied to the LS...
FOCAL PLANE WAVEFRONT SENSING USING RESIDUAL ADAPTIVE OPTICS SPECKLES
Energy Technology Data Exchange (ETDEWEB)
Codona, Johanan L.; Kenworthy, Matthew, E-mail: jlcodona@gmail.com [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)
2013-04-20
Optical imperfections, misalignments, aberrations, and even dust can significantly limit sensitivity in high-contrast imaging systems such as coronagraphs. An upstream deformable mirror (DM) in the pupil can be used to correct or compensate for these flaws, either to enhance the Strehl ratio or suppress the residual coronagraphic halo. Measurement of the phase and amplitude of the starlight halo at the science camera is essential for determining the DM shape that compensates for any non-common-path (NCP) wavefront errors. Using DM displacement ripples to create a series of probe and anti-halo speckles in the focal plane has been proposed for space-based coronagraphs and successfully demonstrated in the lab. We present the theory and first on-sky demonstration of a technique to measure the complex halo using the rapidly changing residual atmospheric speckles at the 6.5 m MMT telescope using the Clio mid-IR camera. The AO system's wavefront sensor measurements are used to estimate the residual wavefront, allowing us to approximately compute the rapidly evolving phase and amplitude of speckle halo. When combined with relatively short, synchronized science camera images, the complex speckle estimates can be used to interferometrically analyze the images, leading to an estimate of the static diffraction halo with NCP effects included. In an operational system, this information could be collected continuously and used to iteratively correct quasi-static NCP errors or suppress imperfect coronagraphic halos.
Focal Plane Wavefront Sensing using Residual Adaptive Optics Speckles
Codona, Johanan L
2013-01-01
Optical imperfections, misalignments, aberrations, and even dust can significantly limit sensitivity in high-contrast imaging systems such as coronagraphs. An upstream deformable mirror (DM) in the pupil can be used to correct or compensate for these flaws, either to enhance Strehl ratio or suppress residual coronagraphic halo. Measurement of the phase and amplitude of the starlight halo at the science camera is essential for determining the DM shape that compensates for any non-common-path (NCP) wavefront errors. Using DM displacement ripples to create a series of probe and anti-halo speckles in the focal plane has been proposed for space-based coronagraphs and successfully demonstrated in the lab. We present the theory and first on-sky demonstration of a technique to measure the complex halo using the rapidly-changing residual atmospheric speckles at the 6.5m MMT telescope using the Clio mid-IR camera. The AO system's wavefront sensor (WFS) measurements are used to estimate the residual wavefront, allowing ...
X-ray pulse wavefront metrology using speckle tracking
Energy Technology Data Exchange (ETDEWEB)
Berujon, Sebastien, E-mail: berujon@esrf.eu; Ziegler, Eric; Cloetens, Peter [European Synchrotron Radiation Facility, BP-220, F-38043 Grenoble (France)
2015-05-09
The theoretical description and experimental implementation of a speckle-tracking-based instrument which permits the characterisation of X-ray pulse wavefronts. An instrument allowing the quantitative analysis of X-ray pulsed wavefronts is presented and its processing method explained. The system relies on the X-ray speckle tracking principle to accurately measure the phase gradient of the X-ray beam from which beam optical aberrations can be deduced. The key component of this instrument, a semi-transparent scintillator emitting visible light while transmitting X-rays, allows simultaneous recording of two speckle images at two different propagation distances from the X-ray source. The speckle tracking procedure for a reference-less metrology mode is described with a detailed account on the advanced processing schemes used. A method to characterize and compensate for the imaging detector distortion, whose principle is also based on speckle, is included. The presented instrument is expected to find interest at synchrotrons and at the new X-ray free-electron laser sources under development worldwide where successful exploitation of beams relies on the availability of an accurate wavefront metrology.
3D imaging and wavefront sensing with a plenoptic objective
Rodríguez-Ramos, J. M.; Lüke, J. P.; López, R.; Marichal-Hernández, J. G.; Montilla, I.; Trujillo-Sevilla, J.; Femenía, B.; Puga, M.; López, M.; Fernández-Valdivia, J. J.; Rosa, F.; Dominguez-Conde, C.; Sanluis, J. C.; Rodríguez-Ramos, L. F.
2011-06-01
Plenoptic cameras have been developed over the last years as a passive method for 3d scanning. Several superresolution algorithms have been proposed in order to increase the resolution decrease associated with lightfield acquisition with a microlenses array. A number of multiview stereo algorithms have also been applied in order to extract depth information from plenoptic frames. Real time systems have been implemented using specialized hardware as Graphical Processing Units (GPUs) and Field Programmable Gates Arrays (FPGAs). In this paper, we will present our own implementations related with the aforementioned aspects but also two new developments consisting of a portable plenoptic objective to transform every conventional 2d camera in a 3D CAFADIS plenoptic camera, and the novel use of a plenoptic camera as a wavefront phase sensor for adaptive optics (OA). The terrestrial atmosphere degrades the telescope images due to the diffraction index changes associated with the turbulence. These changes require a high speed processing that justify the use of GPUs and FPGAs. Na artificial Laser Guide Stars (Na-LGS, 90km high) must be used to obtain the reference wavefront phase and the Optical Transfer Function of the system, but they are affected by defocus because of the finite distance to the telescope. Using the telescope as a plenoptic camera allows us to correct the defocus and to recover the wavefront phase tomographically. These advances significantly increase the versatility of the plenoptic camera, and provides a new contribution to relate the wave optics and computer vision fields, as many authors claim.
Analysis of wavefront reconstruction in 8 meter ring solar telescope
Dai, Yichun; Jin, Zhenyu
2016-07-01
Chinese Giant Solar Telescope (CGST) is the next generation infrared and optical solar telescope of China, which is proposed and pushed by the solar astronomy community of China and listed into the National Plans of Major Science and Technology Infrastructures. CGST is currently proposed to be an 8 meter Ring Solar Telescope (RST) with width of 1 meter, the hollow and symmetric structure of such an annular aperture facilitates the thermal control and high precision magnetic field measurement for a solar telescope. Adaptive optics (AO) is an indispensable tool of RST to obtain diffraction limited observations. How to realize AO involved wavefront sensing and correcting, and the degree of compensating in a narrow annular aperture is the primary problem of AO implementation of RST. Wavefront reconstruction involved problems of RST are first investigated and discussed in this paper using end to end simulation based on Shack-Hartmann wavefront sensing (SHWFS). The simulation results show that performance of zonal reconstruction with measurement noise no more than 0.05 arc sec can meets the requirement of RST for diffraction-limited imaging at wavelength of 1μm, which satisfies most science cases of RST in near infrared waveband.
Lee, Hun; Park, Si Yoon; Yong Kang, David Sung; Ha, Byoung Jin; Choi, Jin Young; Kim, Eung Kweon; Seo, Kyoung Yul; Kim, Tae-Im
2016-06-01
To evaluate the effects of photorefractive keratectomy (PRK) combined with corneal wavefront-guided ablation profiles and hyperaspheric ablation profiles on changes in higher-order aberrations (HOAs). Yonsei University College of Medicine and Eyereum Clinic, Seoul, South Korea. Comparative observational case series. Medical records of patients who had corneal wavefront-guided hyperaspheric PRK, corneal wavefront-guided mild-aspheric PRK, or non-corneal wavefront-guided mild-aspheric PRK were analyzed. The logMAR uncorrected distance visual acuity (UDVA), manifest refraction spherical equivalent (MRSE), and changes in corneal aberrations (root-mean-square [RMS] HOAs, spherical aberration, coma) were evaluated 1, 3, and 6 months postoperatively. The records of 61 patients (96 eyes) were reviewed. There was no statistically significant difference in logMAR UDVA or MRSE between the 3 groups at any timepoint. Corneal RMS HOAs were significantly smaller in the corneal wavefront-guided hyperaspheric group and the corneal wavefront-guided mild-aspheric group than in the noncorneal wavefront-guided mild-aspheric group at each timepoint. Corneal spherical aberration was significantly smaller for corneal wavefront-guided hyperaspheric PRK than for noncorneal wavefront-guided mild-aspheric PRK 6 months postoperatively. Changes in corneal spherical aberration (preoperatively and 6 months postoperatively) in corneal wavefront-guided hyperaspheric PRK were significantly smaller than in corneal wavefront-guided mild-aspheric PRK (P = .046). Corneal coma was significantly smaller with corneal wavefront-guided hyperaspheric PRK and corneal wavefront-guided mild-aspheric PRK than with noncorneal wavefront-guided mild-aspheric PRK 3 months and 6 months postoperatively. Corneal wavefront-guided hyperaspheric PRK induced less corneal spherical aberration 6 months postoperatively than corneal wavefront-guided mild-aspheric PRK and noncorneal wavefront-guided mild-aspheric PRK
Chen, Hua; Hou, Lv; Zhou, Xinglin
2016-08-20
We present a new apparatus for active compensation of wavefront aberrations by controllable heating of a lens using a film heater matrix. The annular electric film heater matrix, comprising 24 individual heaters, is attached to the periphery of a lens. Utilizing the linear superposition, and wavefront change proportional to the heating energy properties induced by heating, a controllable wavefront can be defined by solving a linear function. The two properties of wavefront change of a lens have been confirmed through a specially designed experiment. The feasibility of the compensation method is validated by compensating the wavefront of a plate lens. The results show that the wavefront of the lens changes from 12.52 to 2.95 nm rms after compensation. With a more precise electric controlling board, better results could be achieved.
Focal plane wave-front sensing algorithm for high-contrast imaging
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
High-contrast imaging provided by a coronagraph is critical for the direction imaging of the Earth-like planet orbiting its bright parent star.A major limitation for such direct imaging is the speckle noise that is induced from the wave-front error of an optical system.We derive an algorithm for the wave-front measurement directly from 3 focal plane images.The 3 images are achieved through a deformable mirror to provide specific phases for the optics system.We introduce an extra amplitude modulation on one deformable mirror configuration to create an uncorrelated wave-front,which is a critical procedure for wave-front sensing.The simulation shows that the reconstructed wave-front is consistent with the original wave-front theoretically,which indicates that such an algorithm is a promising technique for the wave-front measurement for the high-contrast imaging.
Simulation of wavefront reconstruction in beam reshaping system for rectangular laser beam
Zhou, Qiong; Liu, Wenguang; Jiang, Zongfu
2014-05-01
A new method to calculating the wavefront of slap laser is studied in this paper. The method is based on the ray trace theory of geometrical optics. By using the Zemax simulation software and Matlab calculation software, the wavefront of rectangular beam in beam reshaping system is reconstructed. Firstly, with the x- and y-slope measurement of reshaping beam the direction cosine of wavefront can be calculated. Then, the inverse beam path of beam reshaping system is built by using Zemax simulation software and the direction cosine of rectangular beam can be given, too. Finally, Southwell zonal model is used to reconstruct the wavefront of rectangular beam in computer simulation. Once the wavefront is received, the aberration of laser can be eliminated by using the proper configuration of beam reshaping system. It is shown that this method to reconstruct the wavefront of rectangular beam can evidently reduce the negative influence of additional aberration induced by beam reshaping system.
Wavefront Control and Image Restoration with Less Computing
Lyon, Richard G.
2010-01-01
PseudoDiversity is a method of recovering the wavefront in a sparse- or segmented- aperture optical system typified by an interferometer or a telescope equipped with an adaptive primary mirror consisting of controllably slightly moveable segments. (PseudoDiversity should not be confused with a radio-antenna-arraying method called pseudodiversity.) As in the cases of other wavefront- recovery methods, the streams of wavefront data generated by means of PseudoDiversity are used as feedback signals for controlling electromechanical actuators of the various segments so as to correct wavefront errors and thereby, for example, obtain a clearer, steadier image of a distant object in the presence of atmospheric turbulence. There are numerous potential applications in astronomy, remote sensing from aircraft and spacecraft, targeting missiles, sighting military targets, and medical imaging (including microscopy) through such intervening media as cells or water. In comparison with prior wavefront-recovery methods used in adaptive optics, PseudoDiversity involves considerably simpler equipment and procedures and less computation. For PseudoDiversity, there is no need to install separate metrological equipment or to use any optomechanical components beyond those that are already parts of the optical system to which the method is applied. In Pseudo- Diversity, the actuators of a subset of the segments or subapertures are driven to make the segments dither in the piston, tilt, and tip degrees of freedom. Each aperture is dithered at a unique frequency at an amplitude of a half wavelength of light. During the dithering, images on the focal plane are detected and digitized at a rate of at least four samples per dither period. In the processing of the image samples, the use of different dither frequencies makes it possible to determine the separate effects of the various dithered segments or apertures. The digitized image-detector outputs are processed in the spatial
Algorithm study of wavefront reconstruction based on the cyclic radial shear interferometer
Li Da Hai; Chen Huai Xin; Chen Zhen Pei; Chen Bo Fei; Jing Feng
2002-01-01
The author presents a new algorithm of wavefront reconstruction based on the cyclic radial shear interferometer. The algorithm is a technique that the actual wavefront can be reconstructed directly and accurately from the distribution of phase difference which is obtained from the radial shearing pattern by Fourier transform. It can help to measure accurately the distorted wavefront of ICF in-process. An experiment is presented to test the algorithm
Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue
2014-11-01
Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.
Asymptotic stability of monostable wavefronts in discrete-time integral recursions
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The aim of this work is to study the traveling wavefronts in a discrete-time integral recursion with a Gauss kernel in R2.We first establish the existence of traveling wavefronts as well as their precise asymptotic behavior.Then,by employing the comparison principle and upper and lower solutions technique,we prove the asymptotic stability and uniqueness of such monostable wavefronts in the sense of phase shift and circumnutation.We also obtain some similar results in R.
Cofinitely weak supplemented modules
Alizade, Rafail; Büyükaşık, Engin
2003-01-01
We prove that a module M is cofinitely weak supplemented or briefly cws (i.e., every submodule N of M with M/N finitely generated, has a weak supplement) if and only if every maximal submodule has a weak supplement. If M is a cws-module then every M-generated module is a cws-module. Every module is cws if and only if the ring is semilocal. We study also modules, whose finitely generated submodules have weak supplements.
Institute of Scientific and Technical Information of China (English)
丁夏畦; 罗佩珠
2004-01-01
In this paper the authors introduce some new ideas on generalized numbers and generalized weak functions. They prove that the product of any two weak functions is a generalized weak function. So in particular they solve the problem of the multiplication of two generalized functions.
Wavefront sensing based on phase contrast theory and coherent optical processing
Lei, Huang; Qi, Bian; Chenlu, Zhou; Tenghao, Li; Mali, Gong
2016-07-01
A novel wavefront sensing method based on phase contrast theory and coherent optical processing is proposed. The wavefront gradient field in the object plane is modulated into intensity distribution in a gang of patterns, making high-density detection available. By applying the method, we have also designed a wavefront sensor. It consists of a classical coherent optical processing system, a CCD detector array, two pieces of orthogonal composite sinusoidal gratings, and a mechanical structure that can perform real-time linear positioning. The simulation results prove and demonstrate the validity of the method and the sensor in high-precision measurement of the wavefront gradient field.
Laundy, David; Alcock, Simon G.; Alianelli, Lucia; Sutter, John P.; Sawhney, Kawal J. S.; Chubar, Oleg
2014-09-01
A full wave propagation of X-rays from source to sample at a storage ring beamline requires simulation of the electron beam source and optical elements in the beamline. The finite emittance source causes the appearance of partial coherence in the wave field. Consequently, the wavefront cannot be treated exactly with fully coherent wave propagation or fully incoherent ray tracing. We have used the wavefront code Synchrotron Radiation Workshop (SRW) to perform partially coherent wavefront propagation using a parallel computing cluster at the Diamond Light Source. Measured mirror profiles have been used to correct the wavefront for surface errors.
Structural features of sequential weak measurements
Diósi, Lajos
2016-07-01
We discuss the abstract structure of sequential weak measurement (WM) of general observables. In all orders, the sequential WM correlations without postselection yield the corresponding correlations of the Wigner function, offering direct quantum tomography through the moments of the canonical variables. Correlations in spin-1/2 sequential weak measurements coincide with those in strong measurements, they are constrained kinematically, and they are equivalent with single measurements. In sequential WMs with postselection, an anomaly occurs, different from the weak value anomaly of single WMs. In particular, the spread of polarization σ ̂ as measured in double WMs of σ ̂ will diverge for certain orthogonal pre- and postselected states.
Ray equations of a weak shock in a hyperbolic system of conservation laws in multi-dimensions
Indian Academy of Sciences (India)
Phoolan Prasad
2016-05-01
In this paper we give a complete proof of a theorem, which states that ‘for a weak shock, the shock ray velocity is equal to the mean of the ray velocities of nonlinear wavefronts just ahead and just behind the shock, provided we take the wavefronts ahead and behind to be instantaneously coincident with the shock front. Similarly, the rate of turning of the shock front is also equal to the mean of the rates of turning of such wavefronts just ahead and just behind the shock’. A particular case of this theorem for shock propagation in gasdynamics has been used extensively in applications. Since it is useful also in other physical systems, we present here the theorem in its most general form.
Arbitrary optical wavefront shaping via spin-to-orbit coupling
Larocque, Hugo; Bouchard, Frédéric; Fickler, Robert; Upham, Jeremy; Boyd, Robert W; Karimi, Ebrahim
2016-01-01
Converting spin angular momentum to orbital angular momentum has been shown to be a practical and efficient method for generating optical beams carrying orbital angular momentum and possessing a space-varying polarized field. Here, we present novel liquid crystal devices for tailoring the wavefront of optical beams through the Pancharatnam-Berry phase concept. We demonstrate the versatility of these devices by generating an extensive range of optical beams such as beams carrying $\\pm200$ units of orbital angular momentum along with Bessel, Airy and Ince-Gauss beams. We characterize both the phase and the polarization properties of the generated beams, confirming our devices' performance.
Towards feasible and effective predictive wavefront control for adaptive optics
Energy Technology Data Exchange (ETDEWEB)
Poyneer, L A; Veran, J
2008-06-04
We have recently proposed Predictive Fourier Control, a computationally efficient and adaptive algorithm for predictive wavefront control that assumes frozen flow turbulence. We summarize refinements to the state-space model that allow operation with arbitrary computational delays and reduce the computational cost of solving for new control. We present initial atmospheric characterization using observations with Gemini North's Altair AO system. These observations, taken over 1 year, indicate that frozen flow is exists, contains substantial power, and is strongly detected 94% of the time.
Towards feasible and effective predictive wavefront control for adaptive optics
Energy Technology Data Exchange (ETDEWEB)
Poyneer, L A; Veran, J
2008-06-04
We have recently proposed Predictive Fourier Control, a computationally efficient and adaptive algorithm for predictive wavefront control that assumes frozen flow turbulence. We summarize refinements to the state-space model that allow operation with arbitrary computational delays and reduce the computational cost of solving for new control. We present initial atmospheric characterization using observations with Gemini North's Altair AO system. These observations, taken over 1 year, indicate that frozen flow is exists, contains substantial power, and is strongly detected 94% of the time.
Deformable Membrane Mirror for Wavefront Correction (Short Communication
Directory of Open Access Journals (Sweden)
Amita Gupta
2009-11-01
Full Text Available Deformable or adaptive mirrors are used in modern adaptive optics systems for direct correction of the aberrations in the light wavefront. Conventional deformable mirrors used for this purpose are expensive electromechanical devices. Deformable membrane mirror fabricated using microelectromechanical systems (MEMS technology is a low cost, compact adaptive optical element for correction of the lower-order optical aberrations such as defocus and astigmatism. In this paper, important aspects of device design and simulation, fabrication techniques, and test results are discussed.Defence Science Journal, 2009, 59(6, pp.590-594, DOI:http://dx.doi.org/10.14429/dsj.59.1563
On Weakly Semicommutative Rings*
Institute of Scientific and Technical Information of China (English)
CHEN WEI-XING; CUI SHU-YING
2011-01-01
A ring R is said to be weakly scmicommutative if for any a, b ∈ R,ab = 0 implies aRb C_ Nil(R), where Nil(R) is the set of all nilpotcnt elements in R.In this note, we clarify the relationship between weakly semicommutative rings and NI-rings by proving that the notion of a weakly semicommutative ring is a proper generalization of NI-rings. We say that a ring R is weakly 2-primal if the set of nilpotent elements in R coincides with its Levitzki radical, and prove that if R is a weakly 2-primal ring which satisfies oα-condition for an endomorphism α of R (that is, ab = 0 （←→） aα(b) ＝ 0 where a, b ∈ R) then the skew polynomial ring R[π; αα]is a weakly 2-primal ring, and that if R is a ring and I is an ideal of R such that I and R/I are both weakly semicommutative then R is weakly semicommutative.Those extend the main results of Liang et al. 2007 (Taiwanese J. Math., 11(5)(2007),1359-1368) considerably. Moreover, several new results about weakly semicommutative rings and NI-rings are included.
Meskers, A.J.H.; Voigt, D.; Spronck, J.W.
2013-01-01
Many error sources can affect the accuracy of displacement measuring interferometer systems. In heterodyne interferometry two laser source frequencies constitute the finally detected wavefront. When the wavefronts of these source frequencies are non-ideal and one of them walks off the detector, the
Extracting hysteresis from nonlinear measurement of wavefront-sensorless adaptive optics system
Song, H.; Vdovin, G.; Fraanje, R.; Schitter, G.; Verhaegen, M.
2008-01-01
In many scientific and medical applications wavefront-sensorless adaptive optics (AO) systems are used to correct the wavefront aberration by optimizing a certain target parameter, which is nonlinear with respect to the control signal to the deformable mirror (DM). Hysteresis is the most common nonl
Expected gain in the pyramid wavefront sensor with limited Strehl ratio
Viotto, V.; Ragazzoni, R.; Bergomi, M.; Magrin, D.; Farinato, J.
2016-09-01
Context. One of the main properties of the pyramid wavefront sensor is that, once the loop is closed, and as the reference star image shrinks on the pyramid pin, the wavefront estimation signal-to-noise ratio can considerably improve. This has been shown to translate into a gain in limiting magnitude when compared with the Shack-Hartmann wavefront sensor, in which the sampling on the wavefront is performed before the light is split into four quadrants, which does not allow the quality of the focused spot to increase. Since this property is strictly related to the size of the re-imaged spot on the pyramid pin, the better the wavefront correction, the higher the gain. Aims: The goal of this paper is to extend the descriptive and analytical computation of this gain that was given in a previous paper, to partial wavefront correction conditions, which are representative for most of the wide field correction adaptive optics systems. Methods: After focusing on the low Strehl ratio regime, we analyze the minimum spatial sampling required for the wavefront sensor correction to still experience a considerable gain in sensitivity between the pyramid and the Shack-Hartmann wavefront sensors. Results: We find that the gain can be described as a function of the sampling in terms of the Fried parameter.
Dai, Guang-Ming
2006-02-15
The set of Fourier series is discussed following some discussion of Zernike polynomials. Fourier transforms of Zernike polynomials are derived that allow for relating Fourier series expansion coefficients to Zernike polynomial expansion coefficients. With iterative Fourier reconstruction, Zernike representations of wavefront aberrations can easily be obtained from wavefront derivative measurements.
Maurer, Tana; Deaver, Dawne; Howell, Christopher; Moyer, Steve; Nguyen, Oanh; Mueller, Greg; Ryan, Denise; Sia, Rose K.; Stutzman, Richard; Pasternak, Joseph; Bower, Kraig
2014-06-01
Major decisions regarding life and death are routinely made on the modern battlefield, where visual function of the individual soldier can be of critical importance in the decision-making process. Glasses in the combat environment have considerable disadvantages: degradation of short term visual performance can occur as dust and sweat accumulate on lenses during a mission or patrol; long term visual performance can diminish as lenses become increasingly scratched and pitted; during periods of intense physical trauma, glasses can be knocked off the soldier's face and lost or broken. Although refractive surgery offers certain benefits on the battlefield when compared to wearing glasses, it is not without potential disadvantages. As a byproduct of refractive surgery, elevated optical aberrations can be induced, causing decreases in contrast sensitivity and increases in the symptoms of glare, halos, and starbursts. Typically, these symptoms occur under low light level conditions, the same conditions under which most military operations are initiated. With the advent of wavefront aberrometry, we are now seeing correction not only of myopia and astigmatism but of other, smaller optical aberrations that can cause the above symptoms. In collaboration with the Warfighter Refractive Eye Surgery Program and Research Center (WRESP-RC) at Fort Belvoir and Walter Reed National Military Medical Center (WRNMMC), the overall objective of this study is to determine the impact of wavefront guided (WFG) versus wavefront-optimized (WFO) photorefractive keratectomy (PRK) on military task visual performance. Psychophysical perception testing was conducted before and after surgery to measure each participant's performance regarding target detection and identification using thermal imagery. The results are presented here.
Wavefront-error evaluation by mathematical analysis of experimental Foucault-test data
Wilson, R. G.
1975-01-01
The diffraction theory of the Foucault test provides an integral formula expressing the complex amplitude and irradiance distribution in the Foucault pattern of a test mirror (lens) as a function of wavefront error. Recent literature presents methods of inverting this formula to express wavefront error in terms of irradiance in the Foucault pattern. The present paper describes a study in which the inversion formulation was applied to photometric Foucault-test measurements on a nearly diffraction-limited mirror to determine wavefront errors for direct comparison with ones determined from scatter-plate interferometer measurements. The results affirm the practicability of the Foucault test for quantitative wavefront analysis of very small errors, and they reveal the fallacy of the prevalent belief that the test is limited to qualitative use only. Implications of the results with regard to optical testing and the potential use of the Foucault test for wavefront analysis in orbital space telescopes are discussed.
Real-time wavefront-shaping through scattering media by all optical feedback
Nixon, Micha; Small, Eran; Bromberg, Yaron; Friesem, Asher A; Silberberg, Yaron; Davidson, Nir
2013-01-01
Focusing light through dynamically varying heterogeneous media is a sought-after goal with important applications ranging from free-space communication to nano-surgery. The underlying challenge is to control the optical wavefront with a large number of degrees-of-freedom (DOF) at timescales shorter than the medium dynamics. Recently, many advancements have been reported following the demonstration of focusing through turbid samples by wavefront-shaping, using spatial light modulators (SLMs) having >1000 DOF. Unfortunately, SLM-based wavefront-shaping requires feedback from a detector/camera and is limited to slowly-varying samples. Here, we demonstrate a novel approach for wavefront-shaping using all-optical feedback. We show that the complex wavefront required to focus through highly scattering samples, including thin biological tissues, can be generated at sub-microsecond timescales by the process of field self-organization inside a multimode laser cavity, without requiring electronic feedback or SLMs. This...
Near infrared reflective shearing point diffraction interferometer for dynamic wavefront measurement
Zhu, Wenhua; Chen, Lei; Zheng, Donghui
2016-09-01
A near infrared reflective shearing point diffraction interferometer (NIRSPDI) is designed for large-aperture dynamic wave-front measurement. The PDI is integrated on the small substrate with properly designed thin film. The wave-front under test is reflected by the front and rear surfaces of the substrate respectively to generate an interferogram with high linear-carrier frequency, which is used to reconstruct the wave-front by means of the Fourier transform algorithm. In this article, the system error and the major parameters of NIRSPDI are discussed. In addition, we give an effective method to adjust NIRSPDI for fast measurement. Experimentally NIRSPDI was calibrated by a standard spherical surface and then it was applied to the dynamic wave-front with a diameter of 400mm. The measured results show the error of whole system which verifies that the proposed NIRSPDI is a powerful tool for large-aperture dynamic wave-front measurement.
A Demonstration of Wavefront Sensing and Mirror Phasing from the Image Domain
Pope, Benjamin; Cheetham, Anthony; Martinache, Frantz; Norris, Barnaby; Tuthill, Peter
2014-01-01
In astronomy and microscopy, distortions in the wavefront affect the dynamic range of a high contrast imaging system. These aberrations are either imposed by a turbulent medium such as the atmosphere, by static or thermal aberrations in the optical path, or by imperfectly phased subapertures in a segmented mirror. Active and adaptive optics (AO), consisting of a wavefront sensor and a deformable mirror, are employed to address this problem. Nevertheless, the non-common-path between the wavefront sensor and the science camera leads to persistent quasi-static speckles that are difficult to calibrate and which impose a floor on the image contrast. In this paper we present the first experimental demonstration of a novel wavefront sensor requiring only a minor asymmetric obscuration of the pupil, using the science camera itself to detect high order wavefront errors from the speckle pattern produced. We apply this to correct errors imposed on a deformable microelectromechanical (MEMS) segmented mirror in a closed l...
Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system
Song, H.; Fraanje, R.; Schitter, G.; Kroese, H.; Vdovin, G.; Verhaegen, M.
2010-01-01
In many scientific and medical applications, such as laser systems and microscopes, wavefront-sensor-less (WFSless) adaptive optics (AO) systems are used to improve the laser beam quality or the image resolution by correcting the wavefront aberration in the optical path. The lack of direct wavefront
Wavefront modulation of water surface wave by a metasurface
Sun, Hai-Tao; Cheng, Ying; Wang, Jing-Shi; Liu, Xiao-Jun
2015-10-01
We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell’s law, negative refraction and ‘driven’ surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in ‘driven’ surface mode. This work may have potential applications in water wave energy extraction and coastal protection. Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant Nos. 11474162, 11274171, 11274099, and 11204145), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 20110091120040 and 20120091110001).
Wavefront shaping based on three-dimensional optoacoustic feedback
Deán-Ben, X. L.; Estrada, Héctor; Ozbek, Ali; Razansky, Daniel
2015-07-01
Wavefront shaping techniques have recently evolved as a promising tool to control the light distribution in optically-scattering media. These techniques are based on spatially-modulating the phase of an incident light beam to create positive interference (focusing) at specific locations in the speckle pattern of the scattered wavefield. The optimum phase distribution (mask) of the spatial light modulator that allows focusing at the target location(s) is determined iteratively by monitoring the light intensity at such target. In this regard, optoacoustic (photoacoustic) imaging may provide the convenient advantage of simultaneous feedback information on light distribution in an entire region of interest. Herein, we showcase that volumetric optoacoustic images can effectively be used as a feedback mechanism in an iterative optimization algorithm allowing controlling the light distribution after propagation through a scattering sample. Experiments performed with absorbing microparticles distributed in a three-dimensional region showcase the feasibility of enhancing the light intensity at specific points. The advantages provided by optoacoustic imaging in terms of spatial and temporal resolution anticipate new capabilities of wavefront shaping techniques in biomedical optics.
Fast modulation and dithering on a pyramid wavefront sensor bench
van Kooten, Maaike; Bradley, Colin; Veran, Jean-Pierre; Herriot, Glen; Lardiere, Olivier
2016-07-01
A pyramid wavefront sensor (PWFS) bench has been setup at NRC-Herzberg (Victoria, Canada) to investigate, first, the feasibility of a double roof prism PWFS, and second, test the proposed pyramid wavefront sensing methodology to be used in NFIRAOS for the Thirty Meter Telescope. Traditional PWFS require shallow angles and strict apex tolerances, making them difficult to manufacture. Roof prisms, on the other hand, are common optical components and can easily be made to the desired specifications. Understanding the differences between a double roof prism PWFS and traditional PWFS will allow for the double roof prism PWFS to become more widely used as an alternative to the standard pyramid, especially in a laboratory setting. In this work, the response of the double roof prism PWFS as the amount of modulation is changed, is compared to an ideal PWFS modelled using the adaptive optics toolbox, OOMAO in MATLAB. The object oriented toolbox uses physical optics to model complete AO systems. Fast modulation and dithering using a PI mirror has been implemented using a micro-controller to drive the mirror and trigger the camera. The various trade offs of this scheme, in a controlled laboratory environment, are studied and reported.
Wavefront construction Kirchhoff migration with ray-amplitude corrections
Energy Technology Data Exchange (ETDEWEB)
Fehler, Michael C.; Hildebrand, S. T. (Steve T.); Huang, L. (Lian-Jie); Alde, D. M. (Douglas M.)
2002-01-01
Kirchhoff migration using ray tracing travel times has been a popular imaging method for many years. There are significant limitations in the ability of Kirchhoff migration using only first arrivals to reliably image regions of complex structure. Thus, new methods for imaging have been sought. One approach for improving imaging capability is to use ray tracing methods that allow the calculation of multiple-valued travel time tables to be used in migration. Additional improvements in ray-based imaging methods may be obtained by including amplitudes and phases of rays calculated using some ray tracing approach. One approach for calculating multiple-valued travel time tables along with estimates of amplitudes and phases is the use of wavefront construction ray tracing. We introduce our wavefront construction-based migration algorithm and present some example images obtained using the method. We compare the images obtained with those obtained using a dual-domain wave-equation migration method that we call Extended Local Rytov Fourier migration method.
Optically sensitive Medipix2 detector for adaptive optics wavefront sensing
Vallerga, John; Tremsina, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan G; CERN. Geneva
2005-01-01
A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ("Medipix2") with individual pixels that amplify, discriminate and count input events. The detector has 256 x 256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest.
X-ray pulse wavefront metrology using speckle tracking.
Berujon, Sebastien; Ziegler, Eric; Cloetens, Peter
2015-07-01
An instrument allowing the quantitative analysis of X-ray pulsed wavefronts is presented and its processing method explained. The system relies on the X-ray speckle tracking principle to accurately measure the phase gradient of the X-ray beam from which beam optical aberrations can be deduced. The key component of this instrument, a semi-transparent scintillator emitting visible light while transmitting X-rays, allows simultaneous recording of two speckle images at two different propagation distances from the X-ray source. The speckle tracking procedure for a reference-less metrology mode is described with a detailed account on the advanced processing schemes used. A method to characterize and compensate for the imaging detector distortion, whose principle is also based on speckle, is included. The presented instrument is expected to find interest at synchrotrons and at the new X-ray free-electron laser sources under development worldwide where successful exploitation of beams relies on the availability of an accurate wavefront metrology.
X-ray wavefront modeling of Bragg diffraction from crystals
Sutter, John P.
2011-09-01
The diffraction of an X-ray wavefront from a slightly distorted crystal can be modeled by the Takagi-Taupin theory, an extension of the well-known dynamical diffraction theory for perfect crystals. Maxwell's equations applied to a perturbed periodic medium yield two coupled differential equations in the incident and diffracted amplitude. These equations are discretized for numerical calculation into the determination of the two amplitudes on the points of an integration mesh, beginning with the incident amplitudes at the crystal's top surface. The result is a set of diffracted amplitudes on the top surface (in the Bragg geometry) or the bottom surface (in the Laue geometry), forming a wavefront that in turn can be propagated through free space using the Fresnel- Huygens equations. The performance of the Diamond Light Source I20 dispersive spectrometer has here been simulated using this method. Methods are shown for transforming displacements calculated by finite element analysis into local lattice distortions, and for efficiently performing 3-D linear interpolations from these onto the Takagi-Taupin integration mesh, allowing this method to be extended to crystals under thermal load or novel mechanical bender designs.
Idiopathic isolated orbicularis weakness
MacVie, O P; Majid, M A; Husssin, H M; Ung, T; Manners, R M; Ormerod, I; Pawade, J; Harrad, R A
2012-01-01
Purpose Orbicularis weakness is commonly associated with seventh nerve palsy or neuromuscular and myopathic conditions such as myotonic dystrophy and myasethenia gravis. We report four cases of idiopathic isolated orbicularis weakness. Methods All four cases were female and the presenting symptoms of ocular irritation and epiphora had been present for over 7 years in three patients. All patients had lagophthalmos and three had ectropion. Three patients underwent full investigations which excluded known causes of orbicularis weakness. Two patients underwent oribularis oculi muscle biopsy and histological confirmation of orbicularis atrophy. Results All patients underwent surgery to specifically address the orbicularis weakness with satisfactory outcomes and alleviation of symptoms in all cases. Isolated orbicularis weakness may be a relatively common entity that is frequently overlooked. Conclusion Early recognition of this condition may lead to better management and prevent patients undergoing unnecessary surgical procedures. PMID:22322997
Martin, O. A.; Gendron, É.; Rousset, G.; Gratadour, D.; Vidal, F.; Morris, T. J.; Basden, A. G.; Myers, R. M.; Correia, C. M.; Henry, D.
2017-01-01
Context. Canary is the multi-object adaptive optics (MOAO) on-sky pathfinder developed in the perspective of multi-object spectrograph on extremely large telescopes (ELTs). In 2013, Canary was operated on-sky at the William Herschel telescope (WHT), using three off-axis natural guide stars (NGS) and four off-axis Rayleigh laser guide stars (LGS), in open-loop, with the on-axis compensated turbulence observed with a H-band imaging camera and a Truth wave-front sensor (TS) for diagnostic purposes. Aims: Our purpose is to establish a reliable and accurate wave-front error breakdown for LGS MOAO. This will enable a comprehensive analysis of Canary on-sky results and provide tools for validating simulations of MOAO systems for ELTs. Methods: To evaluate the MOAO performance, we compared the Canary on-sky results running in MOAO, in single conjugated adaptive optics (SCAO) and in ground layer adaptive optics (GLAO) modes, over a large set of data acquired in 2013. We provide a statistical study of the seeing. We also evaluated the wave-front error breakdown from both analytic computations, one based on a MOAO system modelling and the other on the measurements from the Canary TS. We have focussed especially on the tomographic error and we detail its vertical error decomposition. Results: We show that Canary obtained 30.1%, 21.4% and 17.1% H-band Strehl ratios in SCAO, MOAO and GLAO respectively, for median seeing conditions with 0.66'' of total seeing including 0.59'' at the ground. Moreover, we get 99% of correlation over 4500 samples, for any AO modes, between two analytic computations of residual phase variance. Based on these variances, we obtain a reasonable Strehl-ratio (SR) estimation when compared to the measured IR image SR. We evaluate the gain in compensation for the altitude turbulence brought by MOAO when compared to GLAO.
Weak decays. [Lectures, phenomenology
Energy Technology Data Exchange (ETDEWEB)
Wojcicki, S.
1978-11-01
Lectures are given on weak decays from a phenomenological point of view, emphasizing new results and ideas and the relation of recent results to the new standard theoretical model. The general framework within which the weak decay is viewed and relevant fundamental questions, weak decays of noncharmed hadrons, decays of muons and the tau, and the decays of charmed particles are covered. Limitation is made to the discussion of those topics that either have received recent experimental attention or are relevant to the new physics. (JFP) 178 references
Weakly asymptotically hyperbolic manifolds
Allen, Paul T; Lee, John M; Allen, Iva Stavrov
2015-01-01
We introduce a class of "weakly asymptotically hyperbolic" geometries whose sectional curvatures tend to $-1$ and are $C^0$, but are not necessarily $C^1$, conformally compact. We subsequently investigate the rate at which curvature invariants decay at infinity, identifying a conformally invariant tensor which serves as an obstruction to "higher order decay" of the Riemann curvature operator. Finally, we establish Fredholm results for geometric elliptic operators, extending the work of Rafe Mazzeo and John M. Lee to this setting. As an application, we show that any weakly asymptotically hyperbolic metric is conformally related to a weakly asymptotically hyperbolic metric of constant negative curvature.
The construction of individual eye model based on eye's wavefront aberration measurement
Wang, Zhao-Qi; Guo, Huan-Qing
2005-08-01
Based on the widely used Gullstrand-Le Grand eye model, the individual human eye model has been established here, which has individual corneal data, anterior chamber depth and the eyeball depth. Furthermore the foremost thing is that the wavefront aberration calculated from the individual eye model is equal to the eye's wavefront aberration measured with the Hartmann-shack wavefront sensor. There were four main steps to build the model. Firstly, the corneal topography instrument was used to measure the corneal surfaces and depth. And in order to input cornea into the optical model, high order aspheric surface-Zernike Fringe Sag surface was chosen to fit the corneal surfaces. Secondly, the Hartmann-shack wavefront sensor, which can offer the Zernike polynomials to describe the wavefront aberration, was built to measure the wavefront aberration of the eye. Thirdly, the eye's axial lengths among every part were measured with A-ultrasonic technology. Then the data were input into the optical design software -ZEMAX and the crystalline lens's shapes were optimized with the aberration as the merit function. The individual eye model, which has the same wavefront aberrations with the real eye, is established.
Hosoya, Akio
2010-01-01
We develop a formal theory of the weak values with emphasis on the consistency conditions and a probabilistic interpretation in the counter-factual processes. We present the condition for the choice of the post-selected state to give a negative weak value of a given projection operator and strange values of an observable in general. The general framework is applied to Hardy's paradox and the spin $1/2$ system to explicitly address the issues of counter-factuality and strange weak values. The counter-factual arguments which characterize the paradox specifies the pre-selected state and a complete set of the post-selected states clarifies how the strange weak values emerge.
Broadband reflected wavefronts manipulation using structured phase gradient metasurfaces
Wang, Xiao-Peng; Wan, Le-Le; Chen, Tian-Ning; Song, Ai-Ling; Du, Xiao-Wen
2016-06-01
Acoustic metasurface (AMS) is a good candidate to manipulate acoustic waves due to special acoustic performs that cannot be realized by traditional materials. In this paper, we design the AMS by using circular-holed cubic arrays. The advantages of our AMS are easy assemble, subwavelength thickness, and low energy loss for manipulating acoustic waves. According to the generalized Snell's law, acoustic waves can be manipulated arbitrarily by using AMS with different phase gradients. By selecting suitable hole diameter of circular-holed cube (CHC), some interesting phenomena are demonstrated by our simulations based on finite element method, such as the conversion of incoming waves into surface waves, anomalous reflections (including negative reflection), acoustic focusing lens, and acoustic carpet cloak. Our results can provide a simple approach to design AMSes and use them in wavefront manipulation and manufacturing of acoustic devices.
Multicore-Optimized Wavefront Diamond Blocking for Optimizing Stencil Updates
Malas, T.
2015-07-02
The importance of stencil-based algorithms in computational science has focused attention on optimized parallel implementations for multilevel cache-based processors. Temporal blocking schemes leverage the large bandwidth and low latency of caches to accelerate stencil updates and approach theoretical peak performance. A key ingredient is the reduction of data traffic across slow data paths, especially the main memory interface. In this work we combine the ideas of multicore wavefront temporal blocking and diamond tiling to arrive at stencil update schemes that show large reductions in memory pressure compared to existing approaches. The resulting schemes show performance advantages in bandwidth-starved situations, which are exacerbated by the high bytes per lattice update case of variable coefficients. Our thread groups concept provides a controllable trade-off between concurrency and memory usage, shifting the pressure between the memory interface and the CPU. We present performance results on a contemporary Intel processor.
Monotone traveling wavefronts of the KPP-Fisher delayed equation
Gomez, Adrian
2010-01-01
In the early 2000's, Gourley (2000), Wu et al. (2001), Ashwin et al. (2002) initiated the study of the positive wavefronts in the delayed Kolmogorov-Petrovskii-Piskunov-Fisher equation. Since then, this model has become one of the most popular objects in the studies of traveling waves for the monostable delayed reaction-diffusion equations. In this paper, we give a complete solution to the problem of existence and uniqueness of monotone waves in the KPP-Fisher equation. We show that each monotone traveling wave can be found via an iteration procedure. The proposed approach is based on the use of special monotone integral operators (which are different from the usual Wu-Zou operator) and appropriate upper and lower solutions associated to them. The analysis of the asymptotic expansions of the eventual traveling fronts at infinity is another key ingredient of our approach.
System and Method for Null-Lens Wavefront Sensing
Hill, Peter C. (Inventor); Thompson, Patrick L. (Inventor); Aronstein, David L. (Inventor); Bolcar, Matthew R. (Inventor); Smith, Jeffrey S. (Inventor)
2015-01-01
A method of measuring aberrations in a null-lens including assembly and alignment aberrations. The null-lens may be used for measuring aberrations in an aspheric optic with the null-lens. Light propagates from the aspheric optic location through the null-lens, while sweeping a detector through the null-lens focal plane. Image data being is collected at locations about said focal plane. Light is simulated propagating to the collection locations for each collected image. Null-lens aberrations may extracted, e.g., applying image-based wavefront-sensing to collected images and simulation results. The null-lens aberrations improve accuracy in measuring aspheric optic aberrations.
Fast wavefront optimization for focusing through biological tissue (Conference Presentation)
Blochet, Baptiste; Bourdieu, Laurent; Gigan, Sylvain
2017-02-01
The propagation of light in biological tissues is rapidly dominated by multiple scattering: ballistic light is exponentially attenuated, which limits the penetration depth of conventional microscopy techniques. For coherent light, the recombination of the different scattered paths creates a complex interference: speckle. Recently, different wavefront shaping techniques have been developed to coherently manipulate the speckle. It opens the possibility to focus light through complex media and ultimately to image in them, provided however that the medium can be considered as stationary. We have studied the possibility to focus in and through time-varying biological tissues. Their intrinsic temporal dynamics creates a fast decorrelation of the speckle pattern. Therefore, focusing through biological tissues requires fast wavefront shaping devices, sensors and algorithms. We have investigated the use of a MEMS-based spatial light modulator (SLM) and a fast photodetector, combined with FPGA electronics to implement a closed-loop optimization. Our optimization process is just limited by the temporal dynamics of the SLM (200µs) and the computation time (45µs), thus corresponding to a rate of 4 kHz. To our knowledge, it's the fastest closed loop optimization using phase modulators. We have studied the focusing through colloidal solutions of TiO2 particles in glycerol, allowing tunable temporal stability, and scattering properties similar to biological tissues. We have shown that our set-up fulfills the required characteristics (speed, enhancement) to focus through biological tissues. We are currently investigating the focusing through acute rat brain slices and the memory effect in dynamic scattering media.
Statistics of turbulence parameters at Maunakea using the multiple wavefront sensor data of RAVEN
Ono, Yoshito H.; Correia, Carlos M.; Andersen, Dave R.; Lardière, Olivier; Oya, Shin; Akiyama, Masayuki; Jackson, Kate; Bradley, Colin
2017-03-01
Prior statistical knowledge of atmospheric turbulence is essential for designing, optimizing and evaluating tomographic adaptive optics systems. We present the statistics of the vertical profiles of C_N^2 and the outer scale at Maunakea estimated using a SLOpe Detection And Ranging (SLODAR) method from on-sky telemetry taken by a multi-object adaptive optics (MOAO) demonstrator, called RAVEN, on the Subaru telescope. In our SLODAR method, the profiles are estimated by fitting the theoretical autocorrelations and cross-correlations of measurements from multiple Shack-Haltmann wavefront sensors to the observed correlations via the non-linear Levenberg-Marquardt Algorithm (LMA). The analytical derivatives of the spatial phase structure function with respect to its parameters for the LMA are also developed. From a total of 12 nights in the summer season, a large ground C_N^2 fraction of 54.3 per cent is found, with median estimated seeing of 0.460 arcsec. This median seeing value is below the results for Maunakea from the literature (0.6-0.7 arcsec). The average C_N^2 profile is in good agreement with results from the literature, except for the ground layer. The median value of the outer scale is 25.5 m and the outer scale is larger at higher altitudes; these trends of the outer scale are consistent with findings in the literature.
Statistics of Turbulence Parameters at Maunakea using multiple wave-front sensor data of RAVEN
Ono, Yoshito H; Andersen, Dave R; Lardiere, Olivier; Oya, Shin; Akiyama, Masayuki; Jackson, Kate; Bradley, Colin
2016-01-01
Prior statistical knowledge of the atmospheric turbulence is essential for designing, optimizing and evaluating tomographic adaptive optics systems. We present the statistics of the vertical profiles of $C_N^2$ and the outer scale at Maunakea estimated using a Slope Detection And Ranging (SLODAR) method from on-sky telemetry taken by RAVEN, which is a MOAO demonstrator in the Subaru telescope. In our SLODAR method, the profiles are estimated by a fit of the theoretical auto- and cross-correlation of measurements from multiple Shack-Haltmann wavefront sensors to the observed correlations via the non-linear Levenberg-Marquardt Algorithm (LMA), and the analytic derivatives of the spatial phase structure function with respect to its parameters for the LMA are also developed. The estimated profile has the median total seeing of 0.460$^{\\prime\\prime}$ and large $C_N^2$ fraction of the ground layer of 54.3%. The $C_N^2$ profile has a good agreement with the result from literatures, except for the ground layer. The m...
Operation modes of a liquid-crystal modal wave-front corrector.
Loktev, Mikhail; Vdovin, Gleb; Guralnik, Igor
2004-04-10
Liquid-crystal modal wave-front correctors provide much better wave-front correction than do piston correctors with the same number of actuators; moreover, use of additional degrees of freedom of the driving ac voltage signals may further improve device performance. Some practical aspects of the operation of liquid-crystal modal wave-front correctors are discussed. Special attention is paid to the interference of various contact responses and to the formation of required phase shapes through wider control of signal frequencies and electric phase shifts. The study is based on an analytic approach and numerical investigation; major theoretical conclusions are verified experimentally.
Wavefront-sensor-based electron density measurements for laser-plasma accelerators
Energy Technology Data Exchange (ETDEWEB)
Plateau, Guillaume; Matlis, Nicholas; Geddes, Cameron; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; van Mourik, Reinier; Leemans, Wim
2010-02-20
Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength, hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, have greater phase sensitivity, straightforward analysis, improving shot-to-shot plasma-density diagnostics.
The DeMi CubeSat: Wavefront Control with a MEMS Deformable Mirror in Space
Douglas, Ewan S.; Bendek, Eduardo; Marinan, Anne; Belikov, Ruslan; Merck, John; Cahoy, Kerri Lynn
2017-01-01
High-contrast imaging instruments on future space telescopes will require precise wavefront correction to detect small exoplanets near their host stars. High-actuator count microelectromechanical system (MEMS) deformable mirrors provide a compact form of wavefront control. The 6U DeMi CubeSat will demonstrate wavefront control with a MEMS deformable mirror over a yearlong mission. The payload includes both an internal laser source and a small telescope, with both focal plane and pupil plane sensing, for deformable mirror characterization. We detail the DeMi payload design, and describe future astrophysics enabled by high-actuator count deformable mirrors and small satellites.
Yu, Hyeonseung; Jo, YoungJu; Lee, KyeoReh; Tuchin, Valery V; Jeong, Yong; Park, YongKeun
2016-01-01
We demonstrate that simultaneous application of optical clearing agents (OCAs) and complex wavefront shaping in optical coherence tomography (OCT) can provide significant enhancement of the penetration depth and imaging quality. OCA reduces optical inhomogeneity of a highly scattering sample, and the wavefront shaping of illumination light controls multiple scattering, resulting in an enhancement of the penetration depth and signal-to-noise ratio. A tissue phantom study shows that concurrent applications of OCA and wavefront shaping successfully operate in OCT imaging. The penetration depth enhancement is further demonstrated for ex vivo mouse ears, revealing hidden structures inaccessible with conventional OCT imaging.
Wavefront sensing for deformable space-based optics exploiting natural and synthetic guide stars
McComas, Brian K.; Friedman, Edward J.
2002-08-01
Natural and synthetic guide stars can serve as beacons for Shack-Hartmann wavefront sensors in space-based applications. In this paper, the authors determine the key equations that govern the optimization of the wavefront sensor employed on a space- based imaging system. There are two major products of this analysis. First, the number of subapertures can be optimized. Second, the number of modes used in the wavefront recovery can be optimized. Finally, the process for optimizing these values is explained. For the examples shown, the optimal number of retrieved modes and the optimal number of subapertures are determined.
Electromagnetic and Weak transitions in light nuclei
Energy Technology Data Exchange (ETDEWEB)
M. Viviani; L.E. Marcucci; A. Kievsky; S. Rosati; R. Schiavilla
2002-09-01
Recent advances in the study of the p -- d radiative and mu -- {sup 3}He weak capture processes by our group are presented and discussed. The trinucleon bound and scattering states have been obtained from variational calculations by expanding the corresponding wave functions in terms of correlated hyper-spherical harmonic functions. The electromagnetic and weak transition currents include one- and two-body operators. The accuracy achieved in these calculations allows for interesting comparisons with experimental data.
Joyal, André
2009-01-01
We define weak units in a semi-monoidal 2-category $\\CC$ as cancellable pseudo-idempotents: they are pairs $(I,\\alpha)$ where $I$ is an object such that tensoring with $I$ from either side constitutes a biequivalence of $\\CC$, and $\\alpha: I \\tensor I \\to I$ is an equivalence in $\\CC$. We show that this notion of weak unit has coherence built in: Theorem A: $\\alpha$ has a canonical associator 2-cell, which automatically satisfies the pentagon equation. Theorem B: every morphism of weak units is automatically compatible with those associators. Theorem C: the 2-category of weak units is contractible if non-empty. Finally we show (Theorem E) that the notion of weak unit is equivalent to the notion obtained from the definition of tricategory: $\\alpha$ alone induces the whole family of left and right maps (indexed by the objects), as well as the whole family of Kelly 2-cells (one for each pair of objects), satisfying the relevant coherence axioms.
Hartmann-Shack test with random masks for modal wavefront reconstruction.
Soloviev, Oleg; Vdovin, Gleb
2005-11-14
The paper discusses the influence of the geometry of a Hartmann-(Shack) wavefront sensor on the total error of modal wavefront reconstruction. A mathematical model is proposed, which describes the modal wavefront reconstruction in terms of linear operators. The model covers the most general case and is not limited by the orthogonality of decomposition basis or by the method chosen for decomposition. The total reconstruction error is calculated for any given statistics of the wavefront to be measured. Based on this estimate, the total reconstruction error is calculated for regular and randomised Hartmann masks. The calculations demonstrate that random masks with non-regular Fourier spectra provide absolute minimum error and allow to double the number of decomposition modes.
Chong, Katie E; Staude, Isabelle; James, Anthony; Dominguez, Jason; Liu, Sheng; Subramania, Ganapathi S; Decker, Manuel; Neshev, Dragomir N; Brener, Igal; Kivshar, Yuri S
2016-01-01
Subwavelength-thin metasurfaces have shown great promises for the control of optical wavefronts, thus opening new pathways for the development of efficient flat optics. In particular, Huygens' metasurfaces based on all-dielectric resonant meta-atoms have already shown a huge potential for practical applications with their polarization insensitivity and high transmittance efficiency. Here, we experimentally demonstrate a polarization insensitive holographic Huygens' metasurface based on dielectric resonant meta-atoms capable of complex wavefront control at telecom wavelengths. Our metasurface produces a hologram image in the far-field with 82% transmittance efficiency and 40% imaging efficiency. Such efficient complex wavefront control shows that Huygens' metasurfaces based on resonant dielectric meta-atoms are a big step towards practical applications of metasurfaces in wavefront design related technologies, including computer-generated holograms, ultra-thin optics, security and data storage devices.
Calibrating the interaction matrix for the LINC-NIRVANA high layer wavefront sensor.
Zhang, Xianyu; Arcidiacono, Carmelo; Conrad, Albert R; Herbst, Thomas M; Gaessler, Wolfgang; Bertram, Thomas; Ragazzoni, Roberto; Schreiber, Laura; Diolaiti, Emiliano; Kuerster, Martin; Bizenberger, Peter; Meschke, Daniel; Rix, Hans-Walter; Rao, Changhui; Mohr, Lars; Briegel, Florian; Kittmann, Frank; Berwein, Juergen; Trowitzsch, Jan
2012-03-26
LINC-NIRVANA is a near-infrared Fizeau interferometric imager that will operate at the Large Binocular Telescope. In preparation for the commissioning of this instrument, we conducted experiments for calibrating the high-layer wavefront sensor of the layer-oriented multi-conjugate adaptive optics system. For calibrating the multi-pyramid wavefront sensor, four light sources were used to simulate guide stars. Using this setup, we developed the push-pull method for calibrating the interaction matrix. The benefits of this method over the traditional push-only method are quantified, and also the effects of varying the number of push-pull frames over which aberrations are averaged is reported. Finally, we discuss a method for measuring mis-conjugation between the deformable mirror and the wavefront sensor, and the proper positioning of the wavefront sensor detector with respect to the four pupil positions.
Single-Grating Talbot Imaging for Wavefront Sensing and X-Ray Metrology
Energy Technology Data Exchange (ETDEWEB)
Grizolli, Walan; Shi, Xianbo; Kolodziej, Tomasz; Shvyd' ko, Yuri; Assoufid, Lahsen
2017-01-01
Single-grating Talbot imaging relies on high-spatial-resolution detectors to perform accurate measurements of X-ray beam wavefronts. The wavefront can be retrieved with a single image, and a typical measurement and data analysis can be performed in few seconds. These qualities make it an ideal tool for synchrotron beamline diagnostics and in-situ metrology. The wavefront measurement can be used both to obtain a phase contrast image of an object and to characterize an X-ray beam. In this work, we explore the concept in two cases: at-wavelength metrology of 2D parabolic beryllium lenses and a wavefront sensor using a diamond crystal beam splitter.
Modeling the Effect of Wave-front Aberrations in Fiber-based Scanning Optical Microscopy
Verstraete, H.R.G.W.; Verhaegen, M.H.G.; Kalkman, J.
2013-01-01
In scanning microscopy and optical coherence tomography, aberrations of the wave-front cause a loss in intensity and resolution. Intensity and resolution are quantified using Fresnel propagation, Fraunhofer diffraction, and the calculation of overlap integrals.
Performance of wavefront-sensorless adaptive optics using modal and zonal correction
Anzuola, Esdras; Segel, Max; Gladysz, Szymon; Stein, Karin
2016-10-01
Unconventional wavefront sensing strategies are being developed to provide alternatives for measuring the wavefront deformation of a laser beam propagating through strong turbulence and/or along a horizontal-path. In this paper we present results from two "wavefront-sensorless" approaches: stochastic parallel gradient descent (SPGD) and its modal version (M-SPGD). We compare the performance of both algorithms through experimental measurements under emulated dynamic atmospheric turbulence by using the coupling efficiency in a single mode fiber as performance metric. We estimate probability density function of coupling efficiency for free-space optical links using adaptive optics (AO) as a function of key parameters such us turbulence strength and AO loop rate. We demonstrate faster convergence rate of the M-SPGD algorithm as compared to the traditional SPGD, although classic SPGD achieves higher correction. Additionally, we constrain the main temporal requirements of an AO system using wavefront-sensorless architectures.
Brousseau, Denis; Thibaul, Simon; Ritcey, Anna M; Parent, Jocelyn; Seddiki, Omar; Dery, Jean-Philippe; Faucher, Luc; Vassallo, Julien; Naderian, Azadeh
2008-01-01
We present the research status of a deformable mirror made of a magnetic liquid whose surface is actuated by a triangular array of small current carrying coils. We demonstrate that the mirror can correct a 11 microns low order aberrated wavefront to a residual RMS wavefront error 0.05 microns. Recent developments show that these deformable mirrors can reach a frequency response of several hundred hertz. A new method for linearizing the response of these mirrors is also presented.
Optogenetic signaling-pathway regulation through scattering skull using wavefront shaping
Yoon, Jonghee; Lee, KyeoReh; Kim, Nury; Kim, Jin Man; Park, Jongchan; Choi, Chulhee; Heo, Won Do; Park, YongKeun
2015-01-01
We introduce a non-invasive approach for optogenetic regulation in biological cells through highly scattering skull tissue using wavefront shaping. The wavefront of the incident light was systematically controlled using a spatial light modulator in order to overcome multiple light-scattering in a mouse skull layer and to focus light on the target cells. We demonstrate that illumination with shaped waves enables spatiotemporal regulation of intracellular Ca2+ level at the individual-cell level.
FGF4 and FGF8 comprise the wavefront activity that controls somitogenesis
L A Naiche; Holder, Nakisha; Lewandoski, Mark
2011-01-01
Somites form along the embryonic axis by sequential segmentation from the presomitic mesoderm (PSM) and differentiate into the segmented vertebral column as well as other unsegmented tissues. Somites are thought to form via the intersection of two activities known as the clock and the wavefront. Previous work has suggested that fibroblast growth factor (FGF) activity may be the wavefront signal, which maintains the PSM in an undifferentiated state. However, it is unclear which (if any) of the...
WEAK CONVERGENCE OF SOME SERIES
Institute of Scientific and Technical Information of China (English)
2000-01-01
This paper continues the study of [1] on weak functions.The weak convergence theory is investigated in complex analysis,Fourier transform and Mellin transform.A Mobius inverse formula of weak functions is obtained.
Rogers, J. M.; Walcott, G. P.; Gladden, J. D.; Melnick, S. B.; Ideker, R. E.; Kay, M. W.
2008-01-01
It has been proposed that ventricular fibrillation (VF) waves emanate from stable localized sources, often called 'mother rotors'. However, evidence for the existence of these rotors is conflicting. Using a new panoramic optical mapping system that can image nearly the entire ventricular epicardium, we recently excluded epicardial mother rotors as the drivers of Wiggers' stage II VF in the isolated swine heart. Furthermore, we were unable to find evidence that VF requires sustained intramural sources. The present study was designed to test the following hypotheses: (i) VF is driven by a specific region, and (ii) rotors that are long-lived, though not necessarily permanent, are the primary generators of VF wavefronts. Using panoramic optical mapping, we mapped VF wavefronts from six isolated swine hearts. Wavefronts were tracked to characterize their activation pathways and to locate their originating sources. We found that the wavefronts that participate in epicardial re-entry were not confined to a compact region; rather they activated the entire epicardial surface. New wavefronts feeding into the epicardial activation pattern were generated over the majority of the epicardium and almost all of them were associated with rotors or repetitive breakthrough patterns that lasted for less than 2 s. These findings indicate that epicardial wavefronts in this model are generated by many transitory epicardial sources distributed over the entire surface of the heart.
Large field-of-view wavefront control for deep brain imaging (Conference Presentation)
Park, Jung-Hoon; Cui, Meng
2016-03-01
The biggest obstacle for deep tissue imaging is the scattering of light due to the heterogeneous distribution of biological tissue. In this respect, multiphoton microscopy has an inherent advantage as the scattering is significantly reduced by the use of longer excitation wavelengths. However, as we go deeper into the brain, effects of scattering still accumulate resulting in a loss of resolution and increased background noise. Adaptive optics is an ideal tool of choice to correct for such distortions of the excitation wavefront; the incident light can be tuned to cancel out the wavefront distortion experienced while propagating into greater depths resulting in a diffraction limited focus at the depth of interest. However, the biggest limitation of adaptive optics for in vivo brain imaging is its limited corrected field-of-view (FOV). For typical multiphoton laser scanning microscopes, the wavefront corrector for adaptive optics is placed at the pupil plane. This means that a single correction wavefront is applied to the entire scanned FOV which results in inefficient correction as the correction is averaged over the entire FOV. In this work, we demonstrate a novel approach to measure and display different correction wavefronts over different segments of the FOV. The application of the different correction wavefronts for each segment is realized in parallel resulting in fast aberration corrected imaging over a large FOV for high resolution in vivo brain imaging.
A demonstration of wavefront sensing and mirror phasing from the image domain
Pope, Benjamin; Cvetojevic, Nick; Cheetham, Anthony; Martinache, Frantz; Norris, Barnaby; Tuthill, Peter
2014-05-01
In astronomy and microscopy, distortions in the wavefront affect the dynamic range of a high-contrast imaging system. These aberrations are either imposed by a turbulent medium such as the atmosphere, by static or thermal aberrations in the optical path, or by imperfectly phased subapertures in a segmented mirror. Active and adaptive optics (AO), consisting of a wavefront sensor and a deformable mirror, are employed to address this problem. Nevertheless, the non-common-path between the wavefront sensor and the science camera leads to persistent quasi-static speckles that are difficult to calibrate and which impose a floor on the image contrast. In this paper, we present the first experimental demonstration of a novel wavefront sensor requiring only a minor asymmetric obscuration of the pupil, using the science camera itself to detect high-order wavefront errors from the speckle pattern produced. We apply this to correct errors imposed on a deformable microelectromechanical segmented mirror in a closed loop, restoring a high-quality point spread function and residual wavefront errors of the order of ˜10 nm using 1600 nm light, from a starting point of ˜300 nm in piston and ˜0.3 mrad in tip-tilt. We recommend this as a method for measuring the non-common-path error in AO-equipped ground based telescopes, as well as an approach to phasing difficult segmented mirrors such as on the James Webb Space Telescope primary and as a future direction for extreme AO.
X-ray grating interferometer for in situ and at-wavelength wavefront metrology.
Kayser, Yves; David, Christian; Flechsig, Uwe; Krempasky, Juraj; Schlott, Volker; Abela, Rafael
2017-01-01
A wavefront metrology setup based on the X-ray grating interferometry technique for spatially resolved, quantitative, in situ and at-wavelength measurements of the wavefront at synchrotron radiation and hard X-ray free-electron laser beamlines is reported. Indeed, the ever-increasing demands on the optical components to preserve the wavefront shape and the coherence of the delivered X-ray beam call for more and more sensitive diagnostic instruments. Thanks to its angular sensitivity, X-ray grating interferometry has been established in recent years as an adequate wavefront-sensing technique for quantitatively assessing the quality of the X-ray wavefront under working conditions and hence for the in situ investigation of X-ray optical elements. In order to characterize the optical elements at any given beamline by measuring the aberrations introduced in the wavefront, a transportable X-ray grating interferometry setup was realised at the Swiss Light Source (SLS). The instrument, which is expected to be a valuable tool for investigating the quality of the X-ray beam delivered at an endstation, will be described hereafter in terms of the hardware setup and the related data analysis procedure. Several exemplary experiments performed at the X05DA Optics beamline of the SLS will be presented.
Closed-loop focal plane wavefront control with the SCExAO instrument
Martinache, Frantz; Jovanovic, Nemanja; Guyon, Olivier
2016-09-01
Aims: This article describes the implementation of a focal plane based wavefront control loop on the high-contrast imaging instrument SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane images acquired after an asymmetric mask is introduced in the pupil of the instrument. Methods: This absolute sensor is used here in a closed-loop to compensate for the non-common path errors that normally affects any imaging system relying on an upstream adaptive optics system.This specific implementation was used to control low-order modes corresponding to eight zernike modes (from focus to spherical). Results: This loop was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape used as a zero-point by the high-order wavefront sensor. The paper details the range of errors this wavefront-sensing approach can operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance. Conclusions: Beyond this application, because of its low hardware impact, the asymmetric pupil Fourier wavefront sensor (APF-WFS) can easily be ported in a wide variety of wavefront sensing contexts, for ground- as well space-borne telescopes, and for telescope pupils that can be continuous, segmented or even sparse. The technique is powerful because it measures the wavefront where it really matters, at the level of the science detector.
Research on encoding multi-gray-scale phase hologram and wavefront reconstruction.
Zhang, Hongxin; Zhou, Hao; Li, Jingyao; Qiao, Yujing; Gao, Wei
2016-04-01
Application of computer-generated holography for wavefront generation is beneficial for optical interferometry and 3D image display. However, there is a noticeable encoding error in computer-generated holograms, which is encoded by using the object's wavefront function in a computer. The encoding error will be transmitted and amplified during fabrication of a hologram, which can cause a reconstructed error in the generated wavefront. A correction method of encoding errors based on the least-squares fitting is proposed. A validating experiment is completed by using a liquid crystal spatial light modulator to reconstruct a group of paraboloid wavefronts. The results show that encoding errors increase the reconstructed error of a wavefront less than optical system errors, and the root-mean-square value drops 0.022λ after the correction of the encoding error, but it falls 0.092λ after the correction of optical system errors. The total error has been reduced by 0.114λ. This research is helpful for prediction of encoding errors and improvement of wavefront reconstruction accuracy.
DEFF Research Database (Denmark)
Kohlenbach, Ulrich Wilhelm
2002-01-01
We show that the so-called weak Markov's principle (WMP) which states that every pseudo-positive real number is positive is underivable in E-HA + AC. Since allows one to formalize (atl eastl arge parts of) Bishop's constructive mathematics, this makes it unlikely that WMP can be proved within the...
On closed weak supplemented modules
Institute of Scientific and Technical Information of China (English)
ZENG Qing-yi; SHI Mei-hua
2006-01-01
A module M is called closed weak supplemented if for any closed submodule N of M, there is a submodule K of M such that M=K+N and K(c)N＜＜M. Any direct summand of closed weak supplemented module is also closed weak supplemented.Any nonsingular image of closed weak supplemented module is closed weak supplemented. Nonsingular V-rings in which all nonsingular modules are closed weak supplemented are characterized in Section 4.
High-speed imaging and wavefront sensing with an infrared avalanche photodiode array
Baranec, Christoph; Riddle, Reed; Hall, Donald; Jacobson, Shane; Law, Nicholas M; Chun, Mark
2015-01-01
Infrared avalanche photodiode arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared avalanche photodiode array that achieves a correlated double sampling read noise of 0.73 e- in the lab, and a total noise of 2.52 e- on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics system at the Palomar Observatory 1.5-m telescope. We report here on the improved image quality achieved simultaneously at visible and infrared wavelengths by using the array as part of an image stabilization control-loop with adaptive-optics sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity as well as future uses of this technology in other adaptive optics and high-contrast imaging applications.
Telescope Alignment From Sparsely Sampled Wavefront Measurements Over Pupil Subapertures
Bloemhof, Eric E.; An, Xin; Kuan, Gary M.; Moore, Douglas M.; OShay, Joseph F.; Tang, Hong; Page, Norman A.
2012-01-01
Alignment of two-element telescopes is a classic problem. During recent integration and test of the Space Interferometry Mission s (SIM s) Astrometric Beam Combiner (ABC), the innovators were faced with aligning two such telescope subsystems in the presence of a further complication: only two small subapertures in each telescope s pupil were accessible for measuring the wavefront with a Fizeau interferometer. This meant that the familiar aberrations that might be interpreted to infer system misalignments could be viewed only over small sub-regions of the pupil, making them hard to recognize. Further, there was no contiguous surface of the pupil connecting these two subapertures, so relative phase piston information was lost; the underlying full-aperture aberrations therefore had an additional degree of ambiguity. The solution presented here is to recognize that, in the absence of phase piston, the Zygo measurements primarily provide phase tilt in the subaperture windows of interest. Because these windows are small and situated far from the center of the (inaccessible) unobscured full aperture, any aberrations that are higher-order than tilt will be extremely high-order on the full aperture, and so not necessary or helpful to the alignment. Knowledge of the telescope s optical prescription allows straightforward evaluation of sensitivities (subap mode strength per unit full-aperture aberration), and these can be used in a predictive matrix approach to move with assurance to an aligned state. The technique is novel in every operational way compared to the standard approach of alignment based on full-aperture aberrations or searching for best rms wavefront. This approach is closely grounded in the observable quantities most appropriate to the problem. It is also more intuitive than inverting full phase maps (or subaperture Zernike spectra) with a ray-tracing program, which must certainly work in principle, but in practice met with limited success. Even if such
Correlation effects in focused transmission through disordered media
Hsu, Chia Wei; Goetschy, Arthur; Cao, Hui; Stone, A Douglas
2016-01-01
By controlling the many degrees of freedom in the incident wavefront, one can manipulate wave propagation in complex structures. Such wavefront-shaping methods have been used extensively for controlling light transmitted into wavelength-scale regions (speckles), a property that is insensitive to correlations in the speckle pattern. Extending coherent control to larger regions should reveal correlation effects and is of great interest for several applications. Here we show with optical wavefront-shaping experiments that long-range correlations substantially increase the dynamic range of control over light transmitted onto larger target regions, when the number of targeted speckles, $M_2$, exceeds the dimensionless conductance $g$. Using a filtered random matrix ensemble appropriate for describing coherent diffusion in an open geometry, we show analytically that $M_2/g$ appears as the controlling parameter in universal scaling laws for several statistical properties of interest--predictions that we quantitative...
Pupil phase discontinuity measurement: comparison of different wavefront sensing concepts
El Hadi, K.; Sauvage, J.-F.; Dohlen, K.; Fusco, T.; Neichel, B.; Marchis, F.; N'Diaye, M.
2016-07-01
The Laboratoire d'Astrophysique de Marseille is involved in the preparation of the E-ELT instrumentation framework: In particular, an ESO-EELT M1 mirror segment (1.5 m) has been demonstrated and different wavefront sensing (WFS) concepts among which Pyramid, Zernike phase mask sensor (ZELDA), Phase diversity or still NL Curvature) are also investigated. Segmented mirrors are widely used today in diverse domains: fiber coupling, laser beam shaping, microscopy or retina imaging. If, these mirrors offer a solution to realize important monolithic sizes for giant telescopes in astronomy, they also raise the problem of segments cophasing and measurement of phase discontinuities. In this work, we aim to investigate a suitable WFS approach for pupil phase discontinuity measurement. Coupling a segmented PTT mirror (Iris AO) with four different WFS (Shack-Hartmann, Quadriwave Lateral Shearing Interferometer, Pyramid and Zernike Phase Mask), we study their sensitivity to segmented pupil: in particular, segment phasing, stability, saturation, flat, or still the addressing mode are then performed and compared.
Wavefront sensing with the differential optical transfer function
Hart, Michael; Codona, Johanan L.
2012-10-01
Recently a new technique for estimating the complex field in the pupil of a telescope from image-plane intensity measurements has been introduced by Codona.1, 2 The simplest form of the method uses two images of a point source, one with a small modification introduced in the pupil. The algorithm to recover the pupil field uses a functional derivative of the optical transfer function (OTF), and is simple and non-iterative. The derivative is approximated empirically by the difference between the Fourier transforms of the two PSFs: the differential OTF or dOTF. In keeping with the Hermitian symmetry of the OTF, the dOTF includes two conjugate copies of the pupil field overlapping at the point of modification. By placing the modification near the edge of the pupil, the overlap region can be kept small. It can be eliminated altogether by using a second modification and a third image. The technique can be used in broadband light, at the cost of blurring in the recovered phase that is proportional to the fractional bandwidth. Although the dOTF is unlikely to find application in high frame rate astronomical adaptive optics, it has many potential uses such as optical shop testing, non-common-path wavefront error estimation, segmented telescope phasing and general imaging system diagnostics. In this paper, we review the dOTF concept, theory, and initial experiments to demonstrate the technique.
Beamlet pulse-generation and wavefront-control system
Energy Technology Data Exchange (ETDEWEB)
Van Wonterghem, B.M.; Salmon, J.T.; Wilcox, R.W.
1996-06-01
The Beamlet pulse-generation system (or {open_quotes}front end{close_quotes}) refers to the laser hardware that generates the spatially and temporally shaped pulse that is injected into the main laser cavity. All large ICF lasers have pulse-generation systems that typically consist of a narrow-band oscillator, elector-optic modulators for temporal and bandwidth shaping, and one or more preamplifiers. Temporal shaping is used to provide the desired laser output pulse shape and also to compensate for gain saturation effects in the large-aperture amplifiers. Bandwidth is applied to fulfill specific target irradiation requirements and to avoid stimulated Brillouin scattering (SBS) in large-aperture laser components. Usually the sharp edge of the beam`s spatial intensity profile is apodized before injection in the main amplifier beam line. This prevents large-amplitude ripples on the intensity profile. Here the authors briefly review the front-end design and discuss improvements to the oscillator and modulator systems. Their main focus, however, is to describe Beamlet`s novel beam-shaping and wavefront-control systems that have recently been fully activated and tested.
Harmonic source wavefront aberration correction for ultrasound imaging
Dianis, Scott W.; von Ramm, Olaf T.
2011-01-01
A method is proposed which uses a lower-frequency transmit to create a known harmonic acoustical source in tissue suitable for wavefront correction without a priori assumptions of the target or requiring a transponder. The measurement and imaging steps of this method were implemented on the Duke phased array system with a two-dimensional (2-D) array. The method was tested with multiple electronic aberrators [0.39π to 1.16π radians root-mean-square (rms) at 4.17 MHz] and with a physical aberrator 0.17π radians rms at 4.17 MHz) in a variety of imaging situations. Corrections were quantified in terms of peak beam amplitude compared to the unaberrated case, with restoration between 0.6 and 36.6 dB of peak amplitude with a single correction. Standard phantom images before and after correction were obtained and showed both visible improvement and 14 dB contrast improvement after correction. This method, when combined with previous phase correction methods, may be an important step that leads to improved clinical images. PMID:21303031
Suppressing Anomalous Localized Waffle Behavior in Least Squares Wavefront Reconstructors
Energy Technology Data Exchange (ETDEWEB)
Gavel, D
2002-10-08
A major difficulty with wavefront slope sensors is their insensitivity to certain phase aberration patterns, the classic example being the waffle pattern in the Fried sampling geometry. As the number of degrees of freedom in AO systems grows larger, the possibility of troublesome waffle-like behavior over localized portions of the aperture is becoming evident. Reconstructor matrices have associated with them, either explicitly or implicitly, an orthogonal mode space over which they operate, called the singular mode space. If not properly preconditioned, the reconstructor's mode set can consist almost entirely of modes that each have some localized waffle-like behavior. In this paper we analyze the behavior of least-squares reconstructors with regard to their mode spaces. We introduce a new technique that is successful in producing a mode space that segregates the waffle-like behavior into a few ''high order'' modes, which can then be projected out of the reconstructor matrix. This technique can be adapted so as to remove any specific modes that are undesirable in the final reconstructor (such as piston, tip, and tilt for example) as well as suppress (the more nebulously defined) localized waffle behavior.
Continuous shearlet frames and resolution of the wavefront set
Grohs, Philipp
2010-12-04
In recent years directional multiscale transformations like the curvelet- or shearlet transformation have gained considerable attention. The reason for this is that these transforms are-unlike more traditional transforms like wavelets-able to efficiently handle data with features along edges. The main result in Kutyniok and Labate (Trans. Am. Math. Soc. 361:2719-2754, 2009) confirming this property for shearlets is due to Kutyniok and Labate where it is shown that for very special functions ψ with frequency support in a compact conical wegde the decay rate of the shearlet coefficients of a tempered distribution f with respect to the shearlet ψ can resolve the wavefront set of f. We demonstrate that the same result can be verified under much weaker assumptions on ψ, namely to possess sufficiently many anisotropic vanishing moments. We also show how to build frames for L2(ℝ2)from any such function. To prove our statements we develop a new approach based on an adaption of the Radon transform to the shearlet structure. © 2010 Springer-Verlag.
Monotone traveling wavefronts of the KPP-Fisher delayed equation
Gomez, Adrian; Trofimchuk, Sergei
In the early 2000's, Gourley (2000), Wu et al. (2001), Ashwin et al. (2002) initiated the study of the positive wavefronts in the delayed Kolmogorov-Petrovskii-Piskunov-Fisher equation u(t,x)=Δu(t,x)+u(t,x)(1-u(t-h,x)), u⩾0, x∈R. Since then, this model has become one of the most popular objects in the studies of traveling waves for the monostable delayed reaction-diffusion equations. In this paper, we give a complete solution to the problem of existence and uniqueness of monotone waves in Eq. (*). We show that each monotone traveling wave can be found via an iteration procedure. The proposed approach is based on the use of special monotone integral operators (which are different from the usual Wu-Zou operator) and appropriate upper and lower solutions associated to them. The analysis of the asymptotic expansions of the eventual traveling fronts at infinity is another key ingredient of our approach.
Wavefront aberrations of x-ray dynamical diffraction beams.
Liao, Keliang; Hong, Youli; Sheng, Weifan
2014-10-01
The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.
Weak Polarized Electron Scattering
Erler, Jens; Mantry, Sonny; Souder, Paul A
2014-01-01
Scattering polarized electrons provides an important probe of the weak interactions. Precisely measuring the parity-violating left-right cross section asymmetry is the goal of a number of experiments recently completed or in progress. The experiments are challenging, since A_{LR} is small, typically between 10^(-4) and 10^(-8). By carefully choosing appropriate targets and kinematics, various pieces of the weak Lagrangian can be isolated, providing a search for physics beyond the Standard Model. For other choices, unique features of the strong interaction are studied, including the radius of the neutron density in heavy nuclei, charge symmetry violation, and higher twist terms. This article reviews the theory behind the experiments, as well as the general techniques used in the experimental program.
Energy Technology Data Exchange (ETDEWEB)
Suzuki, M.
1988-04-01
Dynamical mechanism of composite W and Z is studied in a 1/N field theory model with four-fermion interactions in which global weak SU(2) symmetry is broken explicitly by electromagnetic interaction. Issues involved in such a model are discussed in detail. Deviation from gauge coupling due to compositeness and higher order loop corrections are examined to show that this class of models are consistent not only theoretically but also experimentally.
Wavefront sensing and adaptive control in phased array of fiber collimators
Lachinova, Svetlana L.; Vorontsov, Mikhail A.
2011-03-01
A new wavefront control approach for mitigation of atmospheric turbulence-induced wavefront phase aberrations in coherent fiber-array-based laser beam projection systems is introduced and analyzed. This approach is based on integration of wavefront sensing capabilities directly into the fiber-array transmitter aperture. In the coherent fiber array considered, we assume that each fiber collimator (subaperture) of the array is capable of precompensation of local (onsubaperture) wavefront phase tip and tilt aberrations using controllable rapid displacement of the tip of the delivery fiber at the collimating lens focal plane. In the technique proposed, this tip and tilt phase aberration control is based on maximization of the optical power received through the same fiber collimator using the stochastic parallel gradient descent (SPGD) technique. The coordinates of the fiber tip after the local tip and tilt aberrations are mitigated correspond to the coordinates of the focal-spot centroid of the optical wave backscattered off the target. Similar to a conventional Shack-Hartmann wavefront sensor, phase function over the entire fiber-array aperture can then be retrieved using the coordinates obtained. The piston phases that are required for coherent combining (phase locking) of the outgoing beams at the target plane can be further calculated from the reconstructed wavefront phase. Results of analysis and numerical simulations are presented. Performance of adaptive precompensation of phase aberrations in this laser beam projection system type is compared for various system configurations characterized by the number of fiber collimators and atmospheric turbulence conditions. The wavefront control concept presented can be effectively applied for long-range laser beam projection scenarios for which the time delay related with the double-pass laser beam propagation to the target and back is compared or even exceeds the characteristic time of the atmospheric turbulence change
Weakly isolated horizon information loss paradox
Chen, Ge-Rui
2014-01-01
In this paper we investigate the information loss paradox of weakly isolated horizon(WIH) based on the Parikh and Wilczek's tunneling spectrum. We find that there are correlations among Hawking radiations from weakly isolated horizon, the information can be carried out in terms of correlations between sequential emissions, and the radiation is an entropy conservation process. We generalize Refs.[11-13]' results to a more general spacetime. Through revisiting the calculation of tunneling of weakly isolated horizon, we find that Ref.[12]'s requirement that radiating particles have the same angular momenta of unit mass as that of black hole is not needed, and the energy and angular momenta of emitting particles are very arbitrary, which should be restricted only by keeping the cosmic censorship of black hole.
DEFF Research Database (Denmark)
Haagerup, Uffe; Knudby, Søren
2015-01-01
The weak Haagerup property for locally compact groups and the weak Haagerup constant were recently introduced by the second author [27]. The weak Haagerup property is weaker than both weak amenability introduced by Cowling and the first author [9] and the Haagerup property introduced by Connes [6......] and Choda [5]. In this paper, it is shown that a connected simple Lie group G has the weak Haagerup property if and only if the real rank of G is zero or one. Hence for connected simple Lie groups the weak Haagerup property coincides with weak amenability. Moreover, it turns out that for connected simple...... Lie groups the weak Haagerup constant coincides with the weak amenability constant, although this is not true for locally compact groups in general. It is also shown that the semidirect product R2 × SL(2,R) does not have the weak Haagerup property....
Optimal Weak Lensing Skewness Measurements
Zhang, T J; Zhang, P; Dubinski, J; Zhang, Tong-Jie; Pen, Ue-Li; Zhang, Pengjie; Dubinski, John
2003-01-01
Weak lensing measurements are entering a precision era to statistically map the distribution of matter in the universe. The most common measurement has been of the variance of the projected surface density of matter, which corresponds to the induced correlation in alignments of background galaxies. This measurement of the fluctuations is insensitive to the total mass content, like using waves on the ocean to measure its depths. But when the depth is shallow as happens near a beach, waves become skewed. Similarly, a measurement of skewness in the projected matter distribution directly measures the total matter content of the universe. While skewness has already been convincingly detected, its constraint on cosmology is still weak. We address optimal analyses for the CFHT Legacy Survey in the presence of noise. We show that a compensated Gaussian filter with a width of 2.5 arc minutes optimizes the cosmological constraint, yielding $\\Delta \\Omega_m/\\Omega_m\\sim 10%$. This is significantly better than other filt...
Weak martingale Hardy spaces and weak atomic decompositions
Institute of Scientific and Technical Information of China (English)
HOU; Youliang; REN; Yanbo
2006-01-01
In this paper we define some weak martingale Hardy spaces and three kinds of weak atoms. They are the counterparts of martingale Hardy spaces and atoms in the classical martingale Hp-theory. And then three atomic decomposition theorems for martingales in weak martingale Hardy spaces are proved. With the help of the weak atomic decompositions of martingale, a sufficient condition for a sublinear operator defined on the weak martingale Hardy spaces to be bounded is given. Using the sufficient condition, we obtain a series of martingale inequalities with respect to the weak Lp-norm, the inequalities of weak (p ,p)-type and some continuous imbedding relationships between various weak martingale Hardy spaces. These inequalities are the weak versions of the basic inequalities in the classical martingale Hp-theory.
Inversion assuming weak scattering
DEFF Research Database (Denmark)
Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus
2013-01-01
The study of weak scattering from inhomogeneous media or interface roughness has long been of interest in sonar applications. In an acoustic backscattering model of a stationary field of volume inhomogeneities, a stochastic description of the field is more useful than a deterministic description...... due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...
Erler, Jens
2013-01-01
This is a review of electroweak precision physics with particular emphasis on low-energy precision measurements in the neutral current sector of the electroweak theory and includes future experimental prospects and the theoretical challenges one faces to interpret these observables. Within the minimal Standard Model they serve as determinations of the weak mixing angle which are competitive with and complementary to those obtained near the Z-resonance. In the context of new physics beyond the Standard Model these measurements are crucial to discriminate between models and to reduce the allowed parameter space within a given model. We illustrate this for the minimal supersymmetric Standard Model with or without R-parity.
Measurement of weak radioactivity
Theodorsson , P
1996-01-01
This book is intended for scientists engaged in the measurement of weak alpha, beta, and gamma active samples; in health physics, environmental control, nuclear geophysics, tracer work, radiocarbon dating etc. It describes the underlying principles of radiation measurement and the detectors used. It also covers the sources of background, analyzes their effect on the detector and discusses economic ways to reduce the background. The most important types of low-level counting systems and the measurement of some of the more important radioisotopes are described here. In cases where more than one type can be used, the selection of the most suitable system is shown.
Weakly broken galileon symmetry
Energy Technology Data Exchange (ETDEWEB)
Pirtskhalava, David [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Santoni, Luca; Trincherini, Enrico [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); INFN, Sezione di Pisa, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Vernizzi, Filippo [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, Gif-sur-Yvette cédex, F-91191 (France)
2015-09-01
Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.
Effect of Pupil Size on Wavefront Refraction during Orthokeratology.
Faria-Ribeiro, Miguel; Navarro, Rafael; González-Méijome, José Manuel
2016-11-01
It has been hypothesized that central and peripheral refraction, in eyes treated with myopic overnight orthokeratology, might vary with changes in pupil diameter. The aim of this work was to evaluate the axial and peripheral refraction and optical quality after orthokeratology, using ray tracing software for different pupil sizes. Zemax-EE was used to generate a series of 29 semi-customized model eyes based on the corneal topography changes from 29 patients who had undergone myopic orthokeratology. Wavefront refraction in the central 80 degrees of the visual field was calculated using three different quality metrics criteria: Paraxial curvature matching, minimum root mean square error (minRMS), and the Through Focus Visual Strehl of the Modulation Transfer Function (VSMTF), for 3- and 6-mm pupil diameters. The three metrics predicted significantly different values for foveal and peripheral refractions. Compared with the Paraxial criteria, the other two metrics predicted more myopic refractions on- and off-axis. Interestingly, the VSMTF predicts only a marginal myopic shift in the axial refraction as the pupil changes from 3 to 6 mm. For peripheral refraction, minRMS and VSMTF metric criteria predicted a higher exposure to peripheral defocus as the pupil increases from 3 to 6 mm. The results suggest that the supposed effect of myopic control produced by ortho-k treatments might be dependent on pupil size. Although the foveal refractive error does not seem to change appreciably with the increase in pupil diameter (VSMTF criteria), the high levels of positive spherical aberration will lead to a degradation of lower spatial frequencies, that is more significant under low illumination levels.
Aligning a more than 100 degrees of freedom wavefront sensor
Marafatto, Luca; Bergomi, Maria; Brunelli, Alessandro; Dima, Marco; Farinato, Jacopo; Farisato, Giancarlo; Lessio, Luigi; Magrin, Demetrio; Ragazzoni, Roberto; Viotto, Valentina; Bertram, Thomas; Bizenberger, Peter; Brangier, Matthieu; Briegel, Florian; Conrad, Albert; De Bonis, Fulvio; Herbst, Tom; Hofferbert, Ralph; Kittmann, Frank; Kürster, Martin; Meschke, Daniel; Mohr, Lars; Rohloff, Ralf-Rainer
2012-07-01
LINC-NIRVANA is the Fizeau beam combiner for the LBT, with the aim to retrieve the sensitivity of a 12m telescope and the spatial resolution of a 22.8m one. Despite being only one of the four wavefront sensors of a layer-oriented MCAO system, the GWS, which is retrieving the deformation introduced by the lower atmosphere, known to be the main aberration source, reveals a noticeable internal opto-mechanical complexity. The presence of 12 small devices used to select up to the same number of NGSs, with 3 optical components each, moving in a wide annular 2'-6' arcmin Field of View and sending the light to a common pupil re-imager, and the need to obtain and keep a very good super-imposition of the pupil images on the CCD camera, led to an overall alignment procedure in which more than a hundred of degrees of freedom have to be contemporary adjusted. The rotation of the entire WFS to compensate for the sky movement, moreover, introduces a further difficulty both in the alignment and in ensuring the required pupil superposition stability. A detailed description of the alignment procedure is presented here, together with the lessons learned managing the complexity of such a WFS, which led to considerations regarding future instruments, like a possible review of numerical versus optical co-add approach, above all if close to zero read-out noise detectors will be soon available. Nevertheless, the GWS AIV has been carried out and the system will be soon mounted at LBT to perform what is called the Pathfinder experiment, which consists in ground-layer correction, taking advantage of the Adaptive Secondary deformable Mirror.
An Optical Wavefront Sensor Based on a Double Layer Microlens Array
Directory of Open Access Journals (Sweden)
Hsiang-Chun Wei
2011-10-01
Full Text Available In order to determine light aberrations, Shack-Hartmann optical wavefront sensors make use of microlens arrays (MLA to divide the incident light into small parts and focus them onto image planes. In this paper, we present the design and fabrication of long focal length MLA with various shapes and arrangements based on a double layer structure for optical wavefront sensing applications. A longer focal length MLA could provide high sensitivity in determining the average slope across each microlens under a given wavefront, and spatial resolution of a wavefront sensor is increased by numbers of microlenses across a detector. In order to extend focal length, we used polydimethysiloxane (PDMS above MLA on a glass substrate. Because of small refractive index difference between PDMS and MLA interface (UV-resin, the incident light is less refracted and focused in further distance. Other specific focal lengths could also be realized by modifying the refractive index difference without changing the MLA size. Thus, the wavefront sensor could be improved with better sensitivity and higher spatial resolution.
The shape of the radio wavefront of extensive air showers as measured with LOFAR
Corstanje, A; Nelles, A; Buitink, S; Enriquez, J E; Falcke, H; Frieswijk, W; Hörandel, J R; Krause, M; Rachen, J P; Scholten, O; ter Veen, S; Thoudam, S; Trinh, G; Akker, M van den; Alexov, A; Anderson, J; Avruch, I M; Bell, M E; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J; Butcher, H R; Ciardi, B; de Gasperin, F; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Engels, D; Fallows, R A; Ferrari, C; Garrett, M A; Griessmeier, J; Gunst, A W; Hamaker, J P; Hoeft, M; Horneffer, A; Iacobelli, M; Juette, E; Karastergiou, A; Kohler, J; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Maat, P; Mann, G; McFadden, R; McKay-Bukowski, D; Mevius, M; Munk, H; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D; Smirnov, O; Stewart, A; Swinbank, J; Tagger, M; Tang, Y; Tasse, C; Toribio, C; Vermeulen, R; Vocks, C; van Weeren, R J; Wijnholds, S J; Wucknitz, O; Yatawatta, S; Zarka, P
2014-01-01
Extensive air showers, induced by high energy cosmic rays impinging on the Earth's atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical or conical shape of the wavefront has been proposed, but measurements of individual air showers have been inconclusive so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed the wavefront by measuring pulse arrival times to sub-nanosecond accuracy in 200 to 350 individual antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parametrization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry can be s...
First tests of wavefront sensing with a constellation of laser guide beacons
Lloyd-Hart, M; Milton, N M; Stalcup, T; Snyder, M; Putnam, N; Angel, J R P
2005-01-01
Adaptive optics to correct current telescopes over wide fields, or future very large telescopes over even narrow fields, will require real-time wavefront measurements made with a constellation of laser beacons. Here we report the first such measurements, made at the 6.5 m MMT with five Rayleigh beacons in a 2 arcmin pentagon. Each beacon is made with a pulsed beam at 532 nm, of 4 W at the exit pupil of the projector. The return is range-gated from 20-29 km and recorded at 53 Hz by a 36-element Shack-Hartmann sensor. Wavefronts derived from the beacons are compared with simultaneous wavefronts obtained for individual natural stars within or near the constellation. Observations were made in seeing averaging 1.0 arcsec with 2/3 of the aberration measured to be from a ground layer of mean height 380 m. Under these conditions, subtraction of the simple instantaneous average of the five beacon wavefronts from the stellar wavefronts yielded a 40% rms reduction in the measured modes of the distortion over a 2 arcmin ...
Negating effects from sodium profile variations for TMT: the MOR truth wavefront sensor of NFIRAOS
Andersen, David R.; Conan, Rodolphe; Ellerbroek, Brent; Herriot, Glen; Véran, Jean-Pierre
2008-07-01
The Moderate Order Radial (MOR) Truth Wavefront Sensor (TWFS) of NFIRAOS, the facility AO system for TMT, is a visible light order 12x12 subaperture Shack-Hartmann WFS. Its role is to sense radial wavefront errors arising from variations in the Sodium layer profile that are not sensed by the on-instrument near infrared tip-tilt focus wavefront sensor at a sampling frequency on the order of one Herz. It works in concert with the High Order Low bandwidth (HOL) TWFS, which will use a 120x120 subaperture Shack-Hartmann WFS that senses slow variations in telescope flexure and the rotation of the pupil. Top-level requirements for NFIRAOS leave little margin for degradation in sky coverage or additional implementation wavefront errors introduced by the operation of the MOR TWFS. In this paper, we explore MOR TWFS design trade studies on the number of subapertures, sampling rate, the width of the MOR TWFS visible bandpass, and the split in light between the MOR and HOL TWFS, and present a design for a system which meets the top level requirements by not degrading the high sky coverage of NFIRAOS (50% sky coverage at the Galactic poles) and rejecting the radial modes with a residual wavefront error of 10nm.
Wavefront control of high power laser beams for the National Ignition Facility (NIF)
Energy Technology Data Exchange (ETDEWEB)
Bliss, E; Feldman, M; Grey, A; Koch, J; Lund, L; Sacks, R; Smith, D; Stolz, C; Van Atta, L; Winters, S; Woods, B; Zacharias, R
1999-09-22
The use of lasers as the driver for inertial confinement fusion and weapons physics experiments is based on their ability to produce high-energy short pulses in a beam with low divergence. Indeed, the focus ability of high quality laser beams far exceeds alternate technologies and is a major factor in the rationale for building high power lasers for such applications. The National Ignition Facility (NIF) is a large, 192-beam, high-power laser facility under construction at the Lawrence Livermore National Laboratory for fusion and weapons physics experiments. Its uncorrected minimum focal spot size is limited by laser system aberrations. The NIF includes a Wavefront Control System to correct these aberrations to yield a focal spot small enough for its applications. Sources of aberrations to be corrected include prompt pump-induced distortions in the laser amplifiers, previous-shot thermal distortions, beam off-axis effects, and gravity, mounting, and coating-induced optic distortions. Aberrations from gas density variations and optic manufacturing figure errors are also partially corrected. This paper provides an overview of the NIF Wavefront Control System and describes the target spot size performance improvement it affords. It describes provisions made to accommodate the NIF's high fluence (laser beam and flashlamp), large wavefront correction range, wavefront temporal bandwidth, temperature and humidity variations, cleanliness requirements, and exception handling requirements (e.g. wavefront out-of-limits conditions).
End-To-End performance test of the LINC-NIRVANA Wavefront-Sensor system.
Berwein, Juergen; Bertram, Thomas; Conrad, Al; Briegel, Florian; Kittmann, Frank; Zhang, Xiangyu; Mohr, Lars
2011-09-01
LINC-NIRVANA is an imaging Fizeau interferometer, for use in near infrared wavelengths, being built for the Large Binocular Telescope. Multi-conjugate adaptive optics (MCAO) increases the sky coverage and the field of view over which diffraction limited images can be obtained. For its MCAO implementation, Linc-Nirvana utilizes four total wavefront sensors; each of the two beams is corrected by both a ground-layer wavefront sensor (GWS) and a high-layer wavefront sensor (HWS). The GWS controls the adaptive secondary deformable mirror (DM), which is based on an DSP slope computing unit. Whereas the HWS controls an internal DM via computations provided by an off-the-shelf multi-core Linux system. Using wavefront sensor data collected from a prior lab experiment, we have shown via simulation that the Linux based system is sufficient to operate at 1kHz, with jitter well below the needs of the final system. Based on that setup we tested the end-to-end performance and latency through all parts of the system which includes the camera, the wavefront controller, and the deformable mirror. We will present our loop control structure and the results of those performance tests.
First laboratory results with the LINC-NIRVANA high layer wavefront sensor
Zhang, Xianyu; Gaessler, Wolfgang; Conrad, Albert R.; Bertram, Thomas; Arcidiacono, Carmelo; Herbst, Thomas M.; Kuerster, Martin; Bizenberger, Peter; Meschke, Daniel; Rix, Hans-Walter; Rao, Changhui; Mohr, Lars; Briegel, Florian; Kittmann, Frank; Berwein, Juergen; Trowitzsch, Jan; Schreiber, Laura; Ragazzoni, Roberto; Diolaiti, Emiliano
2011-08-01
In the field of adaptive optics, multi-conjugate adaptive optics (MCAO) can greatly increase the size of the corrected field of view (FoV) and also extend sky coverage. By applying layer oriented MCAO (LO-MCAO) [4], together with multiple guide stars (up to 20) and pyramid wavefront sensors [7], LINC-NIRVANA (L-N for short) [1] will provide two AO-corrected beams to a Fizeau interferometer to achieve 10 milliarcsecond angular resolution on the Large Binocular Telescope. This paper presents first laboratory results of the AO performance achieved with the high layer wavefront sensor (HWS). This sensor, together with its associated deformable mirror (a Xinetics-349), is being operated in one of the L-N laboratories. AO reference stars, spread across a 2 arc-minute FoV and with aberrations resulting from turbulence introduced at specific layers in the atmosphere, are simulated in this lab environment. This is achieved with the Multi-Atmosphere Phase screen and Stars (MAPS) [2] unit. From the wavefront data, the approximate residual wavefront error after correction has been calculated for different turbulent layer altitudes and wind speeds. Using a somewhat undersampled CCD, the FWHM of stars in the nearly 2 arc-minute FoV has also been measured. These test results demonstrate that the high layer wavefront sensor of LINC-NIRVANA will be able to achieve uniform AO correction across a large FoV.
Estimating the point spread function of an imaging system using wavefront measurement
Mao, Hongjun; Liang, Yonghui; Huang, Zongfu; Liu, Jin; Jiang, Pengzhi
2016-10-01
An imaging system is constructed by atmosphere turbulence and ground-based telescope when the latter is used to observe a space object. The wavefront measurement produced by adaptive optics system can be used to estimate the point spread function (PSF) of the imaging system since it contains the wavefront aberration information of the light from the object. But the detector noise of the wavefront sensor (WFS) will inevitably bring estimation error. Based on the statistical theory, a method is presented to improve the PSF estimation accuracy by eliminating the noise error from the wavefront measurement. The numerical simulation shows that the estimation error of this method could be lower than 10%. It also indicates that the higher the signal-noise ratio (SNR) of the WFS is, the more frames of the wavefront measurements are used, and the bigger the Fried constant is, the more accurate the estimation will be. The work in this paper can be applied to performance evaluation of imaging system, deconvolution of AO images, as well as photometric analysis of space object.
Study on the modification of measured wavefront aberration data for customized visual correction
Liu, Ming; Zhang, Yong; Zhang, Zhidong; Quan, Wei; An, Li
2008-12-01
Wavefront aberration of human eye is an important foundation for customized vision correction. In most current aberrometers, near infrared light is used to measure ocular wavefront aberration, whereas for customized visual correction, wavefront aberration data in visible range are required. With the measured wavefront aberration, corneal topography and eye's axial lengths data, individual eye models for twenty normal human eyes are constructed with the optical design software ZEMAX. Changing the incidence light wavelength and the refractive indexes of eye models, the values of defocus, astigmatism, higher-order aberrations in the measuring wavelength (833nm) and at the most sensitive wavelength of human eye (555nm) are obtained. Average focus shift between 833nm and 555nm is found to be about 0.94D, and different slightly for different individuals; the differences of astigmatism and higher-order aberrations between 833nm and 555nm are quite slight. For customized visual correction, the measured defocus value should be modified, whereas the measured astigmatism and higher-order aberrations could be used directly for the current correction precision. Individual eye model is a useful tool for accurate transformation of the measured wavefront aberration data into the data for visible spectrum.
Representation of wavefronts in free-form transmission pupils with Complex Zernike Polynomials
Navarro, Rafael; Rivera, Ricardo; Aporta, Justiniano
2011-01-01
Purpose To propose and evaluate Complex Zernike polynomials (CZPs) to represent general wavefronts with non uniform intensity (amplitude) in free-from transmission pupils. Methods They consist of three stages: (1) theoretical formulation; (2) numerical implementation; and (3) two studies of the fidelity of the reconstruction obtained as a function of the number of Zernike modes used (36 or 91). In the first study, we generated complex wavefronts merging wave aberration data from a group of 11 eyes, with a generic Gaussian model of the Stiles-Crawford effective pupil transmission. In the second study we simulated the wavefront passing through different pupil stop shapes (annular, semicircular, elliptical and triangular). Results The reconstructions of the wave aberration (phase of the generalized pupil function) were always good, the reconstruction RMS error was of the order of 10−4 wave lengths, no matter the number of modes used. However, the reconstruction of the amplitude (effective transmission) was highly dependent of the number of modes used. In particular, a high number of modes is necessary to reconstruct sharp edges, due to their high frequency content. Conclusions CZPs provide a complete orthogonal basis able to represent generalized pupil functions (or complex wavefronts). This provides a unified general framework in contrast to the previous variety of ad oc solutions. Our results suggest that complex wavefronts require a higher number of CZP, but they seem especially well-suited for inhomogeneous beams, pupil apodization, etc.
X-ray wavefront characterization using a rotating shearing interferometer technique.
Wang, Hongchang; Sawhney, Kawal; Berujon, Sébastien; Ziegler, Eric; Rutishauser, Simon; David, Christian
2011-08-15
A fast and accurate method to characterize the X-ray wavefront by rotating one of the two gratings of an X-ray shearing interferometer is described and investigated step by step. Such a shearing interferometer consists of a phase grating mounted on a rotation stage, and an absorption grating used as a transmission mask. The mathematical relations for X-ray Moiré fringe analysis when using this device are derived and discussed in the context of the previous literature assumptions. X-ray beam wavefronts without and after X-ray reflective optical elements have been characterized at beamline B16 at Diamond Light Source (DLS) using the presented X-ray rotating shearing interferometer (RSI) technique. It has been demonstrated that this improved method allows accurate calculation of the wavefront radius of curvature and the wavefront distortion, even when one has no previous information on the grating projection pattern period, magnification ratio and the initial grating orientation. As the RSI technique does not require any a priori knowledge of the beam features, it is suitable for routine characterization of wavefronts of a wide range of radii of curvature.
X-ray wavefront characterization using a rotating shearing interferometer technique
Wang, Hongchang; Sawhney, Kawal; Berujon, Sébastien; Ziegler, Eric; Rutishauser, Simon; David, Christian
2011-08-01
A fast and accurate method to characterize the X-ray wavefront by rotating one of the two gratings of an X-ray shearing interferometer is described and investigated step by step. Such a shearing interferometer consists of a phase grating mounted on a rotation stage, and an absorption grating used as a transmission mask. The mathematical relations for X-ray Moiré fringe analysis when using this device are derived and discussed in the context of the previous literature assumptions. X-ray beam wavefronts without and after X-ray reflective optical elements have been characterized at beamline B16 at Diamond Light Source (DLS) using the presented X-ray rotating shearing interferometer (RSI) technique. It has been demonstrated that this improved method allows accurate calculation of the wavefront radius of curvature and the wavefront distortion, even when one has no previous information on the grating projection pattern period, magnification ratio and the initial grating orientation. As the RSI technique does not require any a priori knowledge of the beam features, it is suitable for routine characterization of wavefronts of a wide range of radii of curvature.
Wavefront alignment research of segmented mirror synthetic aperture optical (SAO) system
Deng, Jian; An, Xiaoqiang; Tian, Hao
2010-05-01
Wavefront control technology and imaging experiment are introduced for a segmented mirror SAO system with deformable sub-mirrors. This system is a RC style with 300mm aperture, 4.5 F#, +/-0.4°FOV, 0.45~0.75μm wave band, and diffraction-limit design MTF. The primary mirror is composed by three sub-mirrors, with parabolic shape, and each deformable sub-mirror has 19 actuators to control and keep the surface shape, and 5 actuators to align sub-mirrors location in 5 degree of freedom. Interferometer is used to feed back and control exit wavefront error, and base on measurement and finite element analysis, location and quanitity of actuators are optimized, making the surface shape and misadjustment errors interact and compensate each other, and the synthetic system exit pupil wavefront error is controlled. The integrated exit pupil wavefront errors are gotten by ZYGO interferometer, and central FOV is 0.077λRMS, and edge FOV is 0.093λRMS. At the end, an imaging experiment is executed, and good results are obtained, which proves, the deformable sub-mirrors have the ability to meliorate alignment and the latter can retroact the former, and this relationship iterate make system exit pupil wavefront error convergence and improve segmented mirror SAO system imaging ability.
Wakunami, K.; Oi, R.; Senoh, T.; Sasaki, H.; Ichihashi, Y.; Yamamoto, K.
2016-06-01
A hologram recording technique, generally called as "wavefront printer", has been proposed by several research groups for static three-dimensional (3D) image printing. Because the pixel number of current spatial light modulators (SLMs) is not enough to reconstruct the entire wavefront in recording process, typically, hologram data is divided into a set of subhologram data and each wavefront is recorded sequentially as a small sub-hologram cell in tiling manner by using X-Y motorized stage. However since previous works of wavefront printer do not optimize the cell size, the reconstructed images were degraded by obtrusive split line due to visible cell size caused by too large cell size for human eyesight, or by diffraction effect due to discontinuity of phase distribution caused by too small cell size. In this paper, we introduce overlapping recording approach of sub-holograms to achieve both conditions: enough smallness of apparent cell size to make cells invisible and enough largeness of recording cell size to suppress diffraction effect by keeping the phase continuity of reconstructed wavefront. By considering observing condition and optimization of the amount of overlapping and cell size, in the experiment, the proposed approach showed higher quality 3D image reconstruction while the conventional approach suffered visible split lines and cells.
An iterative wavefront sensing algorithm for high-contrast imaging systems *
Institute of Scientific and Technical Information of China (English)
Jiang-Pei Dou; De-Qing Ren; Yong-Tian Zhu
2011-01-01
Wavefront sensing from multiple focal plane images is a promising technique for high-contrast imaging systems. However, the wavefront error of an optics system can be properly reconstructed only when it is very small. This paper presents an iterative optimization algorithm for the direct measurement of large static wavefront errors from only one focal plane image. We first measure the intensity of the pupil image to get the pupil function of the system and acquire the aberrated image on the focal plane with a phase error that will be measured. Then we induce a dynamic phase on the tested pupil function and calculate the associated intensity of the reconstructed image on the focal plane. The algorithm will then try to minimize the intensity difference between the reconstructed image and the aberrated test image in the focal plane, where the induced phase is a variable of the optimization algorithm.The simulation shows that the wavefront of an optical system can theoretically be reconstructed with high precision, which indicates that such an iterative algorithm may be an effective way to perform wavefront sensing for high-contrast imaging systems.
Institute of Scientific and Technical Information of China (English)
HUANG Yueqin; ZHANG Jianzhong
2008-01-01
A kind of three-dimensional(3-D) sound ray tracing algorithm in heterogeneous media is studied. This algorithm includes two steps: the first step computes the wavefront traveltimes forward; the second step traces the sound rays backward. In the first step, the computation of wavefront traveltimes at discrete grid points from the sound source, was found on Eikonal equation solutions and carried out by GMM (Group marching method) wavefront marching method based on level set. In the second step, sound ray tracing was proceeded gradually from the receiver to each cell towards the sound source, with wavefront traveltimes computed in the first step. Time values on arbitrary positions in each cuboid cell can be expressed by linear interpolation of wavefront traveltimes at the same cell's grid points. Thus,an algorithm of 3-D sound ray tracing in heterogeneous media is put forward. The simulation results indicate that this method can improve both the accuracy and the efficiency of 3-D sound ray tracing greatly.
Nuclear Dependence in Weak Structure Functions and the Determination of Weak Mixing Angle
Athar, M Sajjad; Simo, I Ruiz; Vacas, M J Vicente
2013-01-01
We have studied nuclear medium effects in the weak structure functions $F^A_2(x)$ and $F^A_3(x)$ and in the extraction of weak mixing angle using Paschos Wolfenstein(PW) relation. We have modified the PW relation for nonisoscalar nuclear target. We have incorporated the medium effects like Pauli blocking, Fermi motion, nuclear binding energy, nucleon correlations, pion $\\&$ rho cloud contributions, and shadowing and antishadowing effects.
Alberico, W M
2004-01-01
The focus of these Lectures is on the weak decay modes of hypernuclei, with special attention to Lambda-hypernuclei. The subject involves many fields of modern theoretical and experimental physics, from nuclear structure to the fundamental constituents of matter and their interactions. The various weak decay modes of Lambda-hypernuclei are described: the mesonic mode and the non-mesonic ones. The latter are the dominant decay channels of medium--heavy hypernuclei, where, on the contrary, the mesonic decay is disfavoured by Pauli blocking effect on the outgoing nucleon. In particular, one can distinguish between one-body and two-body induced decays. Theoretical models employed to evaluate the (partial and total) decay widths of hypernuclei are illustrated, and their results compared with existing experimental data. Open problems and recent achievements are extensively discussed, in particular the determination of the ratio Gamma_n/Gamma_p, possible tests of the Delta I=1/2 rule in non-mesonic decays and the pu...
Jolley, Sarah E; Bunnell, Aaron E; Hough, Catherine L
2016-11-01
Survivorship after critical illness is an increasingly important health-care concern as ICU use continues to increase while ICU mortality is decreasing. Survivors of critical illness experience marked disability and impairments in physical and cognitive function that persist for years after their initial ICU stay. Newfound impairment is associated with increased health-care costs and use, reductions in health-related quality of life, and prolonged unemployment. Weakness, critical illness neuropathy and/or myopathy, and muscle atrophy are common in patients who are critically ill, with up to 80% of patients admitted to the ICU developing some form of neuromuscular dysfunction. ICU-acquired weakness (ICUAW) is associated with longer durations of mechanical ventilation and hospitalization, along with greater functional impairment for survivors. Although there is increasing recognition of ICUAW as a clinical entity, significant knowledge gaps exist concerning identifying patients at high risk for its development and understanding its role in long-term outcomes after critical illness. This review addresses the epidemiologic and pathophysiologic aspects of ICUAW; highlights the diagnostic challenges associated with its diagnosis in patients who are critically ill; and proposes, to our knowledge, a novel strategy for identifying ICUAW. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
DEFF Research Database (Denmark)
Johansen, Jannick Vaaben; Manniche, Claus; Kjær, Per
2013-01-01
Hypovitaminosis D has previously been reported in both the general population, in people with chronic musculoskeletal pain, and in people with low back pain (LBP). Myopathy-related symptoms such as diffuse bone and muscle pain, weakness and paresthesia in the legs, have also been observed in people...... with non-specific LBP and associations with low levels of Vitamin D have been suggested. The objectives of this study were to investigate (1) Vitamin D levels in patients seeking care for LBP in a Danish out-patient secondary care setting, and (2) their possible relationship with myopathy-related symptoms...
Enhancing QKD security with weak measurements
Farinholt, Jacob M.; Troupe, James E.
2016-10-01
Publisher's Note: This paper, originally published on 10/24/2016, was replaced with a corrected/revised version on 11/8/2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. In the late 1980s, Aharonov and colleagues developed the notion of a weak measurement of a quantum observable that does not appreciably disturb the system.1, 2 The measurement results are conditioned on both the pre-selected and post-selected state of the quantum system. While any one measurement reveals very little information, by making the same measurement on a large ensemble of identically prepared pre- and post-selected (PPS) states and averaging the results, one may obtain what is known as the weak value of the observable with respect to that PPS ensemble. Recently, weak measurements have been proposed as a method of assessing the security of QKD in the well-known BB84 protocol.3 This weak value augmented QKD protocol (WV-QKD) works by additionally requiring the receiver, Bob, to make a weak measurement of a particular observable prior to his strong measurement. For the subset of measurement results in which Alice and Bob's measurement bases do not agree, the weak measurement results can be used to detect any attempt by an eavesdropper, Eve, to correlate her measurement results with Bob's. Furthermore, the well-known detector blinding attacks, which are known to perfectly correlate Eve's results with Bob's without being caught by conventional BB84 implementations, actually make the eavesdropper more visible in the new WV-QKD protocol. In this paper, we will introduce the WV-QKD protocol and discuss its generalization to the 6-state single qubit protocol. We will discuss the types of weak measurements that are optimal for this protocol, and compare the predicted performance of the 6- and 4-state WV-QKD protocols.
Wavefront depinning in semiconductor superlattices due to discrete-mapping failure
Institute of Scientific and Technical Information of China (English)
Wang Jun; Zheng Zhi-Gang
2008-01-01
We investigate the wavefronts depinning in current biased,infinitely long semiconductor superlattice systems by the method of discrete mapping and show that the wavefront depinning corresponds to the discrete mapping failure.For parameter values near the lower critical current in both discrete drift model (DD model) and discrete drift-diffusion model (DDD model),the mapping failure is determined by the important mapping step from the bottom of branch γ to branch α.For the upper critical parameters in DDD model,the key mapping step is from branch γ to the top of the corresponding branch α,and we may need several active wells to describe the wavefronts.
High contrast imaging of exoplanets on ELTs using a super-Nyquist wavefront control scheme
Gerard, Benjamin L
2016-01-01
One of the key science goals for extremely large telescopes (ELTs) is the detailed characterization of already known directly imaged exoplanets. The typical adaptive optics (AO) Nyquist control region for ELTs is ~0.4 arcseconds, placing many already known directly imaged planets outside the DM control region and not allowing any standard wavefront control scheme to remove speckles that would allow higher SNR images/spectra to be acquired. This can be fixed with super-Nyquist wavefront control (SNWFC), using a sine wave phase plate to allow for wavefront control outside the central DM Nyquist region. We demonstrate that SNWFC is feasible through a simple, deterministic, non-coronagraphic, super-Nyquist speckle nulling technique in the adaptive optics laboratory at the National Research Council of Canada. We also present results in simulation of how SNWFC using the self coherent camera (SCC) can be used for high contrast imaging. This technique could be implemented on future high contrast imaging instruments t...
Lai, Puxiang; Tay, Jian Wei; Wang, Lihong V
2014-01-01
Non-invasively focusing light into strongly scattering media, such as biological tissue, is highly desirable but challenging. Recently, wavefront shaping technologies guided by ultrasonic encoding or photoacoustic sensing have been developed to address this limitation. So far, these methods provide only acoustic diffraction-limited optical focusing. Here, we introduce nonlinear photoacoustic wavefront shaping (PAWS), which achieves optical diffraction-limited (i.e. single-speckle-grain) focusing in scattering media. We develop an efficient dual-pulse excitation approach to generate strong nonlinear photoacoustic (PA) signals based on the Grueneisen memory effect. These nonlinear PA signals are used as feedback to guide iterative wavefront optimization. By maximizing the amplitude of the nonlinear PA signal, light is effectively focused to a single optical speckle grain. Experimental results demonstrate a clear optical focus on the scale of 5-7 micrometers, which is ~10 times smaller than the acoustic focus in...
Optimization of scanning strategy of digital Shack-Hartmann wavefront sensing.
Guo, Wenjiang; Zhao, Liping; Li, Xiang; Chen, I-Ming
2012-01-01
In the traditional Shack-Hartmann wavefront sensing (SHWS) system, a lenslet array with a bigger configuration is desired to achieve a higher lateral resolution. However, practical implementation limits the configuration and this parameter is contradicted with the measurement range. We have proposed a digital scanning technique by making use of the high flexibility of a spatial light modulator to sample the reflected wavefront [X. Li, L. P. Zhao, Z. P. Fang, and C. S. Tan, "Improve lateral resolution in wavefront sensing with digital scanning technique," in Asia-Pacific Conference of Transducers and Micro-Nano Technology (2006)]. The lenslet array pattern is programmed to laterally scan the whole aperture. In this paper, the methodology to optimize the scanning step for the purpose of form measurement is proposed. The correctness and effectiveness are demonstrated in numerical simulation and experimental investigation.
Zonal wavefront sensing using a grating array printed on a polyester film
Energy Technology Data Exchange (ETDEWEB)
Pathak, Biswajit; Boruah, Bosanta R., E-mail: brboruah@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India); Kumar, Suraj [Department of Applied Sciences, Gauhati University, Guwahati, Assam 781014 (India)
2015-12-15
In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.
Gousset, Silvère; Petit, Cyril; Michau, Vincent; Fusco, Thierry; Robert, Clelia
2015-12-01
Near-infrared wavefront sensing allows for the enhancement of sky coverage with adaptive optics. The recently developed HgCdTe avalanche photodiode arrays are promising due to their very low detector noise, but still present an imperfect cosmetic that may directly impact real-time wavefront measurements for adaptive optics and thus degrade performance in astronomical applications. We propose here a model of a Shack-Hartmann wavefront measurement in the presence of residual fixed pattern noise and defective pixels. To adjust our models, a fine characterization of such an HgCdTe array, the RAPID sensor, is proposed. The impact of the cosmetic defects on the Shack-Hartmann measurement is assessed through numerical simulations. This study provides both a new insight on the applicability of cadmium mercury telluride (CMT) avalanche photodiodes detectors for astronomical applications and criteria to specify the cosmetic qualities of future arrays.
On distributed wavefront reconstruction for large-scale adaptive optics systems.
de Visser, Cornelis C; Brunner, Elisabeth; Verhaegen, Michel
2016-05-01
The distributed-spline-based aberration reconstruction (D-SABRE) method is proposed for distributed wavefront reconstruction with applications to large-scale adaptive optics systems. D-SABRE decomposes the wavefront sensor domain into any number of partitions and solves a local wavefront reconstruction problem on each partition using multivariate splines. D-SABRE accuracy is within 1% of a global approach with a speedup that scales quadratically with the number of partitions. The D-SABRE is compared to the distributed cumulative reconstruction (CuRe-D) method in open-loop and closed-loop simulations using the YAO adaptive optics simulation tool. D-SABRE accuracy exceeds CuRe-D for low levels of decomposition, and D-SABRE proved to be more robust to variations in the loop gain.
Effect of the laser wavefront in a laser-plasma accelerator
Beaurepaire, B; Bocoum, M; Böhle, F; Jullien, A; Rousseau, J-P; Lefrou, T; Douillet, D; Iaquaniello, G; Lopez-Martens, R; Lifschitz, A; Faure, J
2015-01-01
A high repetition rate electron source was generated by tightly focusing kHz, few-mJ laser pulses into an underdense plasma. This high intensity laser-plasma interaction led to stable electron beams over several hours but with strikingly complex transverse distributions even for good quality laser focal spots. Analysis of the experimental data, along with results of PIC simulations demonstrate the role of the laser wavefront on the acceleration of electrons. Distortions of the laser wavefront cause spatial inhomogeneities in the out-of-focus laser distribution and consequently, the laser pulse drives an inhomogenous transverse wakefield whose focusing/defocusing properties affect the electron distribution. These findings explain the experimental results and suggest the possibility of controlling the electron spatial distribution in laser-plasma accelerators by tailoring the laser wavefront.
Bayesian inference for a wavefront model of the Neolithisation of Europe
Baggaley, Andrew W; Shukurov, Anvar; Boys, Richard J; Golightly, Andrew
2012-01-01
We consider a wavefront model for the spread of Neolithic culture across Europe, and use Bayesian inference techniques to provide estimates for the parameters within this model, as constrained by radiocarbon data from Southern and Western Europe. Our wavefront model allows for both an isotropic background spread (incorporating the effects of local geography), and a localized anisotropic spread associated with major waterways. We introduce an innovative numerical scheme to track the wavefront, allowing us to simulate the times of the first arrival at any site orders of magnitude more efficiently than traditional PDE approaches. We adopt a Bayesian approach to inference and use Gaussian process emulators to facilitate further increases in efficiency in the inference scheme, thereby making Markov chain Monte Carlo methods practical. We allow for uncertainty in the fit of our model, and also infer a parameter specifying the magnitude of this uncertainty. We obtain a magnitude for the background spread of order 1 ...
Kaplan, L
1998-01-01
We examine the consequences of classical ergodicity for the localization properties of individual quantum eigenstates in the classical limit. We note that the well known Schnirelman result is a weaker form of quantum ergodicity than the one implied by random matrix theory. This suggests the possibility of systems with non-gaussian random eigenstates which are nonetheless ergodic in the sense of Schnirelman and lead to ergodic transport in the classical limit. These we call "weakly quantum ergodic.'' Indeed for a class of "slow ergodic" classical systems, it is found that each eigenstate becomes localized to an ever decreasing fraction of the available state space, in the semiclassical limit. Nevertheless, each eigenstate in this limit covers phase space evenly on any classical scale, and long-time transport properties betwen individual quantum states remain ergodic due to the diffractive effects which dominate quantum phase space exploration.
Weak homology of elliptical galaxies
Bertin, G; Principe, M D
2002-01-01
We start by studying a small set of objects characterized by photometric profiles that have been pointed out to deviate significantly from the standard R^{1/4} law. For these objects we confirm that a generic R^{1/n} law, with n a free parameter, can provide superior fits (the best-fit value of n can be lower than 2.5 or higher than 10), better than those that can be obtained by a pure R^{1/4} law, by an R^{1/4}+exponential model, and by other dynamically justified self--consistent models. Therefore, strictly speaking, elliptical galaxies should not be considered homologous dynamical systems. Still, a case for "weak homology", useful for the interpretation of the Fundamental Plane of elliptical galaxies, could be made if the best-fit parameter n, as often reported, correlates with galaxy luminosity L, provided the underlying dynamical structure also follows a systematic trend with luminosity. We demonstrate that this statement may be true even in the presence of significant scatter in the correlation n(L). Pr...
Koukourakis, Nektarios; Fregin, Bob; König, Jörg; Büttner, Lars; Czarske, Jürgen W
2016-09-19
Imaging-based flow measurement techniques, like particle image velocimetry (PIV), are vulnerable to time-varying distortions like refractive index inhomogeneities or fluctuating phase boundaries. Such distortions strongly increase the velocity error, as the position assignment of the tracer particles and the decrease of image contrast exhibit significant uncertainties. We demonstrate that wavefront shaping based on spatially distributed guide stars has the potential to significantly reduce the measurement uncertainty. Proof of concept experiments show an improvement by more than one order of magnitude. Possible applications for the wavefront shaping PIV range from measurements in jets and film flows to biomedical applications.
Transmitted wavefront error of a volume phase holographic grating at cryogenic temperature.
Lee, David; Taylor, Gordon D; Baillie, Thomas E C; Montgomery, David
2012-06-01
This paper describes the results of transmitted wavefront error (WFE) measurements on a volume phase holographic (VPH) grating operating at a temperature of 120 K. The VPH grating was mounted in a cryogenically compatible optical mount and tested in situ in a cryostat. The nominal root mean square (RMS) wavefront error at room temperature was 19 nm measured over a 50 mm diameter test aperture. The WFE remained at 18 nm RMS when the grating was cooled. This important result demonstrates that excellent WFE performance can be obtained with cooled VPH gratings, as required for use in future cryogenic infrared astronomical spectrometers planned for the European Extremely Large Telescope.
Wave propagation of the traffic flow dynamic model based on wavefront expansion
Institute of Scientific and Technical Information of China (English)
李莉; 施鹏飞
2004-01-01
This paper discusses propagation of perturbations along traffic flow modeled by a modified second-order macroscopic model through the wavefront expansion technique. The coefficients in this expansion satisfy a sequence of transport equations that can be solved analytically. One of these analytic solutions yields information about wavefront shock. Numerical simulations based on a Padé approximation of this expansion were done at the end of this paper and results showed that propagation of perturbations at traffic flow speed conforms to the theoretical analysis results.
High-precision system identification method for a deformable mirror in wavefront control.
Huang, Lei; Ma, Xingkun; Bian, Qi; Li, Tenghao; Zhou, Chenlu; Gong, Mali
2015-05-10
Based on a mathematic model, the relation between the accuracy of the influence matrix and the performance of the wavefront correction is established. Based on the least squares method, a two-step system identification is proposed to improve the accuracy of the influence matrix, where the measurement noise can be suppressed and the nonlinearity of the deformable mirror can be compensated. The validity of the two-step system identification method is tested in the experiment, where improvements in wavefront correction precision as well as closed-loop control efficiency were observed.
X-ray active mirror coupled with a Hartmann wavefront sensor
Energy Technology Data Exchange (ETDEWEB)
Idir, Mourad, E-mail: mourad.idir@synchrotron-soleil.f [Synchrotron SOLEIL, L' orme des Merisiers, BP 48, 91 192 Gif sur Yvette (France); Mercere, Pascal [Synchrotron SOLEIL, L' orme des Merisiers, BP 48, 91 192 Gif sur Yvette (France); Modi, Mohammed H. [X-ray Optics Section, Raja Ramanna Centre for Advanced Technology, Indore (India); Dovillaire, Guillaume; Levecq, Xavier; Bucourt, Samuel [Imagine Optic, 18 rue Charles de Gaulle, Orsay 91400 (France); Escolano, Lionel; Sauvageot, Paul [ISP System, ZI de la Herray BP 10047, Vic en Bigorre (France)
2010-05-01
This paper reports on the design and performances of a test prototype active X-ray mirror (AXM) which has been designed and manufactured in collaboration with the French Small and Medium Enterprise mechanical company ISP System for the national French storage ring SOLEIL. Coupled with this active X-ray mirror and also in collaboration with another French Small and Medium Enterprise (Imagine Optic) a lot of efforts have been done in order to design and fabricate a wavefront X-ray analyzer based on the Hartmann principle (Hartman wavefront sensor, HWS).
2D wave-front shaping in optical superlattices using nonlinear volume holography.
Yang, Bo; Hong, Xu-Hao; Lu, Rong-Er; Yue, Yang-Yang; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan
2016-07-01
Nonlinear volume holography is employed to realize arbitrary wave-front shaping during nonlinear processes with properly designed 2D optical superlattices. The concept of a nonlinear polarization wave in nonlinear volume holography is investigated. The holographic imaging of irregular patterns was performed using 2D LiTaO3 crystals with fundamental wave propagating along the spontaneous polarization direction, and the results agree well with the theoretical predictions. This Letter not only extends the application area of optical superlattices, but also offers an efficient method for wave-front shaping technology.
110 °C range athermalization of wavefront coding infrared imaging systems
Feng, Bin; Shi, Zelin; Chang, Zheng; Liu, Haizheng; Zhao, Yaohong
2017-09-01
110 °C range athermalization is significant but difficult for designing infrared imaging systems. Our wavefront coding athermalized infrared imaging system adopts an optical phase mask with less manufacturing errors and a decoding method based on shrinkage function. The qualitative experiments prove that our wavefront coding athermalized infrared imaging system has three prominent merits: (1) working well over a temperature range of 110 °C; (2) extending the focal depth up to 15.2 times; (3) achieving a decoded image being approximate to its corresponding in-focus infrared image, with a mean structural similarity index (MSSIM) value greater than 0.85.
Directory of Open Access Journals (Sweden)
Shuang Li
2015-06-01
Full Text Available This article concerns the existence of traveling wavefronts for a nonlocal diffusive predator-prey system with functional response of Holling type II. We first establish the existence principle for the system with a general functional response by using a fixed point theorem and upper-lower solution technique. We apply this result to a predator-prey model with Holling type II functional response. We deduce the existence of traveling wavefronts that connect the zero equilibrium and the positive equilibrium.
Geometry and dynamics of fast magnetosonic wavefronts near magnetic null points
Núñez, Manuel
2017-02-01
The behavior of two-dimensional fast magnetosonic waves in the vicinity of isolated points where the magnetic field vanishes is studied analytically. The geometry of rays and wavefronts is described, and the curvature of both is found using conformal mapping techniques. These results are applied to the formation of shock waves, obtaining that shock formation is guaranteed at a finite time for any initial condition of the perturbation when the wavefront is concave and the rays tend to focus, whereas otherwise shocks occur only for a certain range of initial conditions.
Occlusion culling for computer generated hologram based on ray-wavefront conversion.
Wakunami, Koki; Yamashita, Hiroaki; Yamaguchi, Masahiro
2013-09-23
We propose a new method for occlusion culling in the computation of a hologram based on the mutual conversion between light-rays and wavefront. Since the occlusion culling is performed with light-ray information, conventional rendering techniques such as ray-tracing or image-based rendering can be employed. On the other hand, the wavefront is derived for the calculation of light propagation, the hologram of 3-D objects can be obtained in high accuracy. In the numerical experiment, we demonstrate that our approach can reproduce a high-resolution image for deep 3-D scene with correct occlusion effect between plural objects.
Leszczyński, Adam
2015-01-01
We present a method to calibrate wavefront distortion of the spatial light modulator setup by registering far field images of several gaussian beams diffracted off the modulator. The Fourier transform of resulting interference images reveals phase differences between typically 5 movable points on the modulator. Repeating this measurement yields wavefront surface. Next, the amplitude efficiency is calibrated be registering near field image. As a verification we produced a superposition of 7th and 8th Bessel beams with different phase velocities and observed their interference.
Leszczyński, Adam; Wasilewski, Wojciech
2016-04-01
We present a method to calibrate wavefront distortion of the spatial light modulator setup by registering far-field images of several Gaussian beams diffracted off the modulator. The Fourier transform of resulting interference images reveals phase differences among typically five movable points on the modulator. Repeating this measurement yields a wavefront surface. Next, the amplitude efficiency is calibrated for registering the near-field image. For verification, we produced a superposition of seventh and eighth Bessel beams with different phase velocities and observed their interference.
Biometric iris image acquisition system with wavefront coding technology
Hsieh, Sheng-Hsun; Yang, Hsi-Wen; Huang, Shao-Hung; Li, Yung-Hui; Tien, Chung-Hao
2013-09-01
Biometric signatures for identity recognition have been practiced for centuries. Basically, the personal attributes used for a biometric identification system can be classified into two areas: one is based on physiological attributes, such as DNA, facial features, retinal vasculature, fingerprint, hand geometry, iris texture and so on; the other scenario is dependent on the individual behavioral attributes, such as signature, keystroke, voice and gait style. Among these features, iris recognition is one of the most attractive approaches due to its nature of randomness, texture stability over a life time, high entropy density and non-invasive acquisition. While the performance of iris recognition on high quality image is well investigated, not too many studies addressed that how iris recognition performs subject to non-ideal image data, especially when the data is acquired in challenging conditions, such as long working distance, dynamical movement of subjects, uncontrolled illumination conditions and so on. There are three main contributions in this paper. Firstly, the optical system parameters, such as magnification and field of view, was optimally designed through the first-order optics. Secondly, the irradiance constraints was derived by optical conservation theorem. Through the relationship between the subject and the detector, we could estimate the limitation of working distance when the camera lens and CCD sensor were known. The working distance is set to 3m in our system with pupil diameter 86mm and CCD irradiance 0.3mW/cm2. Finally, We employed a hybrid scheme combining eye tracking with pan and tilt system, wavefront coding technology, filter optimization and post signal recognition to implement a robust iris recognition system in dynamic operation. The blurred image was restored to ensure recognition accuracy over 3m working distance with 400mm focal length and aperture F/6.3 optics. The simulation result as well as experiment validates the proposed code
Servin, Manuel
2012-01-01
This paper presents a digital interferometric method to demodulate Placido fringe patterns. This method uses a computer-stored conic-wavefront as reference carrier. Even though, Placido mires are widely used in corneal topographers. This is not however a paper on corneal topography and/or its clinical use. This paper focuses on the theoretical aspects to phase-demodulate Placido mires using synchronous interferometric techniques. Placido patterns may also be applied to test optical wavefronts using a Placido-Hartmann opaque plate with periodic annular apertures. This test is sensitive to the radial slope of the measuring wavefront. Another wavefront testing approach may use a Placido-Hartmann-Shack screen with a periodic array of toroidal lenslets. This periodic screen is sensitive to the wavefront's radial-slope at the focal plane of the lenslets. In brief, digital interferometric methods are herein applied for the first time to demodulate conic-carrier Placido images. Finally it should be mentioned that thi...
Baranec, Christoph; Dekany, Richard
2008-10-01
We introduce a Shack-Hartmann wavefront sensor for adaptive optics that enables dynamic control of the spatial sampling of an incoming wavefront using a segmented mirror microelectrical mechanical systems (MEMS) device. Unlike a conventional lenslet array, subapertures are defined by either segments or groups of segments of a mirror array, with the ability to change spatial pupil sampling arbitrarily by redefining the segment grouping. Control over the spatial sampling of the wavefront allows for the minimization of wavefront reconstruction error for different intensities of guide source and different atmospheric conditions, which in turn maximizes an adaptive optics system's delivered Strehl ratio. Requirements for the MEMS devices needed in this Shack-Hartmann wavefront sensor are also presented.
Respiratory muscle weakness in peripheral neuropathies.
Burakgazi, Ahmet Z; Höke, Ahmet
2010-12-01
Common peripheral neuropathies do not usually cause diaphragmatic weakness and subsequent respiratory compromise. However, respiratory involvement is relatively common in Guillain-Barré syndrome (GBS). Experience in GBS has led to a standardized approach to manage respiratory problems in peripheral neuropathies. Diaphragmatic weakness is not common in chronic inflammatory demyelinating polyneuropathy and extremely rare in multifocal motor neuropathy. The linkage has been described between certain subtypes of Charcot-Marie-Tooth (CMT) disease such as CMT2C and CMT4B1 and diaphragmatic weakness. A correlation usually has not been found between electrophysiologic findings and clinical respiratory signs or spirometric abnormalities in peripheral neuropathies except in amplitudes of evoked phrenic nerve responses. Careful and frequent assessment of respiratory function by a qualified team of healthcare professionals and physicians is essential. Criteria established for mechanical ventilation in GBS cases may be applied to other peripheral neuropathies with respiratory compromise as necessary.
Weak lensing in the Dark Energy Survey
Troxel, Michael
2016-03-01
I will present the current status of weak lensing results from the Dark Energy Survey (DES). DES will survey 5000 square degrees in five photometric bands (grizY), and has already provided a competitive weak lensing catalog from Science Verification data covering just 3% of the final survey footprint. I will summarize the status of shear catalog production using observations from the first year of the survey and discuss recent weak lensing science results from DES. Finally, I will report on the outlook for future cosmological analyses in DES including the two-point cosmic shear correlation function and discuss challenges that DES and future surveys will face in achieving a control of systematics that allows us to take full advantage of the available statistical power of our shear catalogs.
Zhu, Zhaoyi; Mu, Quanquan; Li, Dayu; Yang, Chengliang; Cao, Zhaoliang; Hu, Lifa; Xuan, Li
2016-10-17
The centroid-based Shack-Hartmann wavefront sensor (SHWFS) treats the sampled wavefronts in the sub-apertures as planes, and the slopes of the sub-wavefronts are used to reconstruct the whole pupil wavefront. The problem is that the centroid method may fail to sense the high-order modes for strong turbulences, decreasing the precision of the whole pupil wavefront reconstruction. To solve this problem, we propose a sub-wavefront estimation method for SHWFS based on the focal plane sensing technique, by which more Zernike modes than the two slopes can be sensed in each sub-aperture. In this paper, the effects on the sub-wavefront estimation method of the related parameters, such as the spot size, the phase offset with its set amplitude and the pixels number in each sub-aperture, are analyzed and these parameters are optimized to achieve high efficiency. After the optimization, open-loop measurement is realized. For the sub-wavefront sensing, we achieve a large linearity range of 3.0 rad RMS for Zernike modes Z2 and Z3, and 2.0 rad RMS for Zernike modes Z4 to Z6 when the pixel number does not exceed 8 × 8 in each sub-aperture. The whole pupil wavefront reconstruction with the modified SHWFS is realized to analyze the improvements brought by the optimized sub-wavefront estimation method. Sixty-five Zernike modes can be reconstructed with a modified SHWFS containing only 7 × 7 sub-apertures, which could reconstruct only 35 modes by the centroid method, and the mean RMS errors of the residual phases are less than 0.2 rad2, which is lower than the 0.35 rad2 by the centroid method.
Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.
2016-01-01
The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES) test chamber. In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing, and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) F-number and pupil-distortion measurements made using a pseudo-nonredundant mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated and/or rotated across the exit pupil of the system. Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish
Dosen, K
2010-01-01
An operad (this paper deals with non-symmetric operads) may be conceived as a partial algebra with a family of insertion operations, Gerstenhaber's circle-i products, which satisfy two kinds of associativity, one of them involving commutativity. A Cat-operad is an operad enriched over the category Cat of small categories, as a 2-category with small hom-categories is a category enriched over Cat. The notion of weak Cat-operad is to the notion of Cat-operad what the notion of bicategory is to the notion of 2-category. The equations of operads like associativity of insertions are replaced by isomorphisms in a category. The goal of this paper is to formulate conditions concerning these isomorphisms that ensure coherence, in the sense that all diagrams of canonical arrows commute. This is the sense in which the notions of monoidal category and bicategory are coherent. The coherence proof in the paper is much simplified by indexing the insertion operations in a context-independent way, and not in the usual manner. ...
The Q_weak Experimental Apparatus
Allison, T; Androic, D; Armstrong, D S; Asaturyan, A; Averett, T D; Averill, R; Balewski, J; Beaufait, J; Beminiwattha, R S; Benesch, J; Benmokhtar, F; Bessuille, J; Birchall, J; Bonnell, E; Bowman, J; Brindza, P; Brown, D B; Carlini, R D; Cates, G D; Cavness, B; Clark, G; Cornejo, J C; Dusa, S Covrig; Dalton, M M; Davis, C A; Dean, D C; Deconinck, W; Diefenbach, J; Dow, K; Dowd, J F; Dunne, J A; Dutta, D; Duvall, W S; Echols, J R; Elaasar, M; Falk, W R; Finelli, K D; Finn, J M; Gaskell, D; Gericke, M T W; Grames, J; Gray, V M; Grimm, K; Guo, F; Hansknecht, J; Harrison, D J; Henderson, E; Hoskins, J R; Ihloff, E; Johnston, K; Jones, D; Jones, M; Jones, R; Kargiantoulakis, M; Kelsey, J; Khan, N; King, P M; Korkmaz, E; Kowalski, S; Kubera, A; Leacock, J; Leckey, J P; Lee, A R; Lee, J H; Lee, L; Liang, Y; MacEwan, S; Mack, D; Magee, J A; Mahurin, R; Mammei, J; Martin, J W; McCreary, A; McDonald, M H; McHugh, M J; Medeiros, P; Meekins, D; Mei, J; Michaels, R; Micherdzinska, A; Mkrtchyan, A; Mkrtchyan, H; Morgan, N; Musson, J; Mesick, K E; Narayan, A; Ndukum, L Z; Nelyubin, V; Nuruzzaman,; van Oers, W T H; Opper, A K; Page, S A; Pan, J; Paschke, K D; Phillips, S K; Pitt, M L; Poelker, M; Rajotte, J F; Ramsay, W D; Roberts, W R; Roche, J; Rose, P W; Sawatzky, B; Seva, T; Shabestari, M H; Silwal, R; Simicevic, N; Smith, G R; Sobczynski, S; Solvignon, P; Spayde, D T; Stokes, B; Storey, D W; Subedi, A; Subedi, R; Suleiman, R; Tadevosyan, V; Tobias, W A; Tvaskis, V; Urban, E; Waidyawansa, B; Wang, P; Wells, S P; Wood, S A; Yang, S; Zhamkochyan, S; Zielinski, R B
2014-01-01
The Jefferson Lab Q_weak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from an unpolarized liquid hydrogen target at small momentum transfer. A custom apparatus was designed for this experiment to meet the technical challenges presented by the smallest and most precise ${\\vec{e}}$p asymmetry ever measured. Technical milestones were achieved at Jefferson Lab in target power, beam current, beam helicity reversal rate, polarimetry, detected rates, and control of helicity-correlated beam properties. The experiment employed 180 microA of 89% longitudinally polarized electrons whose helicity was reversed 960 times per second. The electrons were accelerated to 1.16 GeV and directed to a beamline with extensive instrumentation to measure helicity-correlated beam properties that can induce false asymmetries. Moller and Compton polarimetry were used to measure the electron beam polarization to better than 1%. The ...
Weak Total Resolvability In Graphs
Directory of Open Access Journals (Sweden)
Casel Katrin
2016-02-01
Full Text Available A vertex v ∈ V (G is said to distinguish two vertices x, y ∈ V (G of a graph G if the distance from v to x is di erent from the distance from v to y. A set W ⊆ V (G is a total resolving set for a graph G if for every pair of vertices x, y ∈ V (G, there exists some vertex w ∈ W − {x, y} which distinguishes x and y, while W is a weak total resolving set if for every x ∈ V (G−W and y ∈ W, there exists some w ∈ W −{y} which distinguishes x and y. A weak total resolving set of minimum cardinality is called a weak total metric basis of G and its cardinality the weak total metric dimension of G. Our main contributions are the following ones: (a Graphs with small and large weak total metric bases are characterised. (b We explore the (tight relation to independent 2-domination. (c We introduce a new graph parameter, called weak total adjacency dimension and present results that are analogous to those presented for weak total dimension. (d For trees, we derive a characterisation of the weak total (adjacency metric dimension. Also, exact figures for our parameters are presented for (generalised fans and wheels. (e We show that for Cartesian product graphs, the weak total (adjacency metric dimension is usually pretty small. (f The weak total (adjacency dimension is studied for lexicographic products of graphs.
Experimental Verification of Sparse Aperture Mask for Low Order Wavefront Sensing
Subedi, Hari; Kasdin, N. Jeremy
2017-01-01
To directly image exoplanets, future space-based missions are equipped with coronagraphs which manipulate the diffraction of starlight and create regions of high contrast called dark holes. Theoretically, coronagraphs can be designed to achieve the high level of contrast required to image exoplanets, which are billions of times dimmer than their host stars, however the aberrations caused by optical imperfections and thermal fluctuations cause the degradation of contrast in the dark holes. Focal plane wavefront control (FPWC) algorithms using deformable mirrors (DMs) are used to mitigate the quasi-static aberrations caused by optical imperfections. Although the FPWC methods correct the quasi-static aberrations, they are blind to dynamic errors caused by telescope jitter and thermal fluctuations. At Princeton's High Contrast Imaging Lab we have developed a new technique that integrates a sparse aperture mask with the coronagraph to estimate these low-order dynamic wavefront errors. This poster shows the effectiveness of a SAM Low-Order Wavefront Sensor in estimating and correcting these errors via simulation and experiment and compares the results to other methods, such as the Zernike Wavefront Sensor planned for WFIRST.
High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging
Amitonova, L. V.; Descloux, A.; Petschulat, J.; Frosz, M. H.; Ahmed, G.; Babic, F.; Jiang, X.; Mosk, A. P.; Russell, P. S. J.; Pinkse, P.W.H.
2016-01-01
We demonstrate that a high-numerical-aperture photonic crystal fiber allows lensless focusing at an unparalleled res- olution by complex wavefront shaping. This paves the way toward high-resolution imaging exceeding the capabilities of imaging with multi-core single-mode optical fibers. We analyze t
Koek, W.D.; Zwet, E.J. van
2015-01-01
When using a commonly-used quadri-wave lateral shearing interferometer wavefront sensor (QWLSI WFS) for beam size measurements on a high power CO2 laser, artefacts have been observed in the measured irradiance distribution. The grating in the QWLSI WFS not only generates the diffracted first orders
Spatial-frequency analysis algorithm for in-situ measurement of wavefront
Liu, Qian; Wang, Yang; Ji, Fang; He, Jianguo
2015-05-01
To apply phase-shifting interferometry (PSI) to in-situ measurement, we have proposed an algorithm to detect and suppress phase-shifting error and contrast fluctuation. The phase shift and contrast are analyzed in spatial-frequency domain. The strength of baseband and sideband implies the pattern contrast. The position and phase angle of the sideband indicates the tilt gradients and translational value of phase shift. Thus, the phase shift error and contrast fluctuation could be extracted. A contrast-compensated equation is established to calculate the wavefront phase. The proposed algorithm was applied to the interferograms subjecting to vibration and wavefront phase was calculated. The experimental results show that, under vibration of one micron amplitude and 60Hz frequency, the error of wavefront PV value is less than 0.01wave and the 2σ repeatability is less than 0.01wave. For no hardware is required, the proposed algorithm provides a cost-effective method for wavefront in-situ measurement with PSI.
2011-03-01
during our journey through the rigorous AFIT curriculum . Last, but not least, I would like to thank my wife who sacrificed as much as I did to assure...54 36. Transverse magnification...The optical field of the wavefront is typically represented as a complex number in the plane transverse to propagation with amplitude A and a phase
Characterization of wavefront errors in mouse cranial bone using second-harmonic generation
Tehrani, Kayvan Forouhesh; Kner, Peter; Mortensen, Luke J.
2017-03-01
Optical aberrations significantly affect the resolution and signal-to-noise ratio of deep tissue microscopy. As multiphoton microscopy is applied deeper into tissue, the loss of resolution and signal due to propagation of light in a medium with heterogeneous refractive index becomes more serious. Efforts in imaging through the intact skull of mice cannot typically reach past the bone marrow (˜150 μm of depth) and have limited resolution and penetration depth. Mechanical bone thinning or optical ablation of bone enables deeper imaging, but these methods are highly invasive and may impact tissue biology. Adaptive optics is a promising noninvasive alternative for restoring optical resolution. We characterize the aberrations present in bone using second-harmonic generation imaging of collagen. We simulate light propagation through highly scattering bone and evaluate the effect of aberrations on the point spread function. We then calculate the wavefront and expand it in Zernike orthogonal polynomials to determine the strength of different optical aberrations. We further compare the corrected wavefront and the residual wavefront error, and suggest a correction element with high number of elements or multiconjugate wavefront correction for this highly scattering environment.
Novel method of high-accuracy wavefront-phase and amplitude correction for coronagraphy
Bowers, Charles W.; Woodgate, Bruce E.; Lyon, Richard G.
2003-11-01
Detection of extra-solar, and especially terrestrial-like planets, using coronagraphy requires an extremely high level of wavefront correction. For example, the study of Woodruff et al. (2002) has shown that phase uniformity of order 10-4λ(rms) must be achieved over the critical range of spatial frequencies to produce the ~1010 contrast needed for the Terrestrial Planet Finder (TPF) mission. Correction of wavefront phase errors to this level may be accomplished by using a very high precision deformable mirror (DM). However, not only phase but also amplitude uniformity of the same scale (~10-4) and over the same spatial frequency range must be simultaneously obtained to remove all residual speckle in the image plane. We present a design for producing simultaneous wavefront phase and amplitude uniformity to high levels from an input wavefront of lower quality. The design uses a dual Michelson interferometer arrangement incorporating two DM and a single, fixed mirror (all at pupils) and two beamsplitters: one with unequal (asymmetric) beam splitting and one with symmetric beam splitting. This design allows high precision correction of both phase and amplitude using DM with relatively coarse steps and permits a simple correction algorithm.
The MCAO systems within LINC-NIRVANA: control aspects beyond wavefront correction
Bertram, T.; Arcidiacono, C.; Berwein, J.; Bizenberger, P.; Briegel, F.; Diolaiti, E.; Farinato, J.; Gässler, W.; Herbst, T. M.; Hofferbert, R.; Kittmann, F.; Kürster, M.; Ragazzoni, R.; Schreiber, L.; Trowitzsch, J.; Viotto, V.
2010-07-01
LINC-NIRVANA is the near-infrared homothetic imaging camera for the Large Binocular Telescope. Once operational, it will provide an unprecedented combination of angular resolution, sensitivity and field of view. Its layer-oriented MCAO systems (one for each arm of the interferometer) are conjugated to the ground layer and an additional layer in the upper atmosphere. In this contribution MCAO wavefront control is discussed in the context of the overall control scheme for LINC-NIRVANA. Special attention is paid to a set of auxiliary control tasks which are mandatory for MCAO operation: The Fields of View of each wavefront sensor in the instrument have to be derotated independent from each other and independently from the science field. Any wavefront information obtained by the sensors has to be matched to the time invariant modes of the deformable mirrors in the system. The tip/tilt control scheme is outlined, in which atmospheric, but also instrumental tip/tilt corrections are sensed with the high layer wavefront sensor and corrected by the adaptive secondary mirror of the LBT. Slow image motion effects on the science detector have to be considered, which are caused by flexure in the non-common path between AO and the science camera, atmospheric differential refraction, and alignment tolerances of the derotators. Last but not least: The sensor optics (pyramids) have to be accurately positioned at the images of natural reference stars.
Koek, W.D.; Zwet, E.J. van
2015-01-01
When using a commonly-used quadri-wave lateral shearing interferometer wavefront sensor (QWLSI WFS) for beam size measurements on a high power CO2 laser, artefacts have been observed in the measured irradiance distribution. The grating in the QWLSI WFS not only generates the diffracted first orders
Calibrating a high-Esolution wavefront corrector with a static focal-Plane camera
Korkiakoski, V.; Doelman, N.J.; Codona, J.; Kenworthy, M.; Otten, G.; Keller, C.U.
2013-01-01
We present a method to calibrate a high-resolution wavefront (WF)-correcting device with a single, static camera, located in the focal-plane; no moving of any component is needed. The method is based on a localized diversity and differential optical transfer functions to compute both the phase and a
Tool to estimate optical metrics from summary wave-front analysis data in the human eye
Jansonius, Nomdo M.
2013-01-01
Purpose Studies in the field of cataract and refractive surgery often report only summary wave-front analysis data data that are too condensed to allow for a retrospective calculation of metrics relevant to visual perception. The aim of this study was to develop a tool that can be used to estimate t
Two-Sided Pyramid Wavefront Sensor in the Direct Phase Mode
Energy Technology Data Exchange (ETDEWEB)
Phillion, D; Baker, K
2006-04-12
The two-sided pyramid wavefront sensor has been extensively simulated in the direct phase mode using a wave optics code. The two-sided pyramid divides the focal plane so that each half of the core only interferes with the speckles in its half of the focal plane. A relayed image of the pupil plane is formed at the CCD camera for each half. Antipodal speckle pairs are separated so that a pure phase variation causes amplitude variations in the two images. The phase is reconstructed from the difference of the two amplitudes by transforming cosine waves into sine waves using the Hilbert transform. There are also other corrections which have to be applied in Fourier space. The two-sided pyramid wavefront sensor performs extremely well: After two or three iterations, the phase error varies purely in y. The two-sided pyramid pair enables the phase to be completely reconstructed. Its performance has been modeled closed loop with atmospheric turbulence and wind. Both photon noise and read noise were included. The three-sided and four-sided pyramid wavefront sensors have also been studied in direct phase mode. Neither performs nearly as well as does the two-sided pyramid wavefront sensor.
Ferran, C.; Bosch, S.; Carnicer, A.
2012-01-01
A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…
The shape of the radio wavefront of extensive air showers as measured with LOFAR
Corstanje, A.; et al., [Unknown; Swinbank, J.
2015-01-01
Extensive air showers, induced by high energy cosmic rays impinging on the Earth’s atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or hyper
Strauch, Matthias; Konijnenberg, Sander; Shao, Yifeng; Urbach, H. Paul
2017-02-01
Liquid lenses are used to correct for low order wavefront aberrations. Electrowetting liquid lenses can nowadays control defocus and astigmatism effectively, so they start being used for ophthalmology applications. To increase the performance and applicability, we introduce a new driving mechanism to create, detect and correct higher order aberrations using standing waves on the liquid interface. The speed of a liquid lens is in general limited, because the liquid surface cannot follow fast voltage changes, while providing a spherical surface. Surface waves are created instead and with them undesired aberrations. We try to control those surface waves to turn them into an effective wavefront shaping tool. We introduce a model, which treats the liquid lens as a circular vibrating membrane with adjusted boundary conditions. Similar to tunable acoustic gradient (TAG) lenses, the nature of the surface modes are predicted to be Bessel functions. Since Bessel functions are a full set of orthogonal basis functions any surface can be created as a linear combination of different Bessel functions. The model was investigated experimentally in two setups. First the point spread functions were studied and compared to a simulation of the intensity distribution created by Fresnel propagated Bessel surfaces. Second the wavefronts were measured directly using a spatial light modulator. The surface resonance frequencies confirm the predictions made by the model as well as the wavefront measurements. By superposition of known surface modes, it is possible to create new surface shapes, which can be used to simulate and measure the human eye.
Efficient Irregular Wavefront Propagation Algorithms on Hybrid CPU-GPU Machines.
Teodoro, George; Pan, Tony; Kurc, Tahsin; Kong, Jun; Cooper, Lee; Saltz, Joel
2013-04-01
We address the problem of efficient execution of a computation pattern, referred to here as the irregular wavefront propagation pattern (IWPP), on hybrid systems with multiple CPUs and GPUs. The IWPP is common in several image processing operations. In the IWPP, data elements in the wavefront propagate waves to their neighboring elements on a grid if a propagation condition is satisfied. Elements receiving the propagated waves become part of the wavefront. This pattern results in irregular data accesses and computations. We develop and evaluate strategies for efficient computation and propagation of wavefronts using a multi-level queue structure. This queue structure improves the utilization of fast memories in a GPU and reduces synchronization overheads. We also develop a tile-based parallelization strategy to support execution on multiple CPUs and GPUs. We evaluate our approaches on a state-of-the-art GPU accelerated machine (equipped with 3 GPUs and 2 multicore CPUs) using the IWPP implementations of two widely used image processing operations: morphological reconstruction and euclidean distance transform. Our results show significant performance improvements on GPUs. The use of multiple CPUs and GPUs cooperatively attains speedups of 50× and 85× with respect to single core CPU executions for morphological reconstruction and euclidean distance transform, respectively.
Xuan, Li; He, Bin; Hu, Li-Fa; Li, Da-Yu; Xu, Huan-Yu; Zhang, Xing-Yun; Wang, Shao-Xin; Wang, Yu-Kun; Yang, Cheng-Liang; Cao, Zhao-Liang; Mu, Quan-Quan; Lu, Xing-Hai
2016-09-01
Multi-conjugation adaptive optics (MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view (FOV). The atmospheric tomographic phase reconstruction and projection of three-dimensional turbulence volume onto wavefront correctors, such as deformable mirrors (DMs) or liquid crystal wavefront correctors (LCWCs), is a very important step in the data processing of an MCAO’s controller. In this paper, a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized configuration of multi laser guide stars (LGSs) and the reasonable conjugation heights of LCWCs. Analytical formulations are derived for the different configurations and are used to generate optimized parameters for MCAO. Several examples are given to demonstrate our LGSs configuration optimization method. Compared with traditional methods, our method has minimum wavefront tomographic error, which will be helpful to get higher imaging resolution at large FOV in MCAO. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Amplitude and phase beam characterization using a two-dimensional wavefront sensor
Energy Technology Data Exchange (ETDEWEB)
Neal, D.R.; Alford, W.J.; Gruetzner, J.K.; Warren, M.E.
1996-09-01
We have developed a two-dimensional Shack-Hartman wavefront sensor that uses binary optic lenslet arrays to directly measure the wavefront slope (phase gradient) and amplitude of the laser beam. This sensor uses an array of lenslets that dissects the beam into a number of samples. The focal spot location of each of these lenslets (measured by a CCD camera) is related to the incoming wavefront slope over the lenslet. By integrating these measurements over the laser aperture, the wavefront or phase distribution can be determined. Since the power focused by each lenslet is also easily determined, this allows a complete measurement of the intensity and phase distribution of the laser beam. Furthermore, all the information is obtained in a single measurement. Knowing the complete scalar field of the beam allows the detailed prediction of the actual beam`s characteristics along its propagation path. In particular, the space- beamwidth product M{sup 2}, can be obtained in a single measurement. The intensity and phase information can be used in concert with information about other elements in the optical train to predict the beam size, shape, phase and other characteristics anywhere in the optical train. We present preliminary measurements of an Ar{sup +} laser beam and associated M{sup 2} calculations.
Optimal control strategy to reduce the temporal wavefront error in AO systems
Doelman, N.J.; Hinnen, K.J.G.; Stoffelen, F.J.G.; Verhaegen, M.H.
2004-01-01
An Adaptive Optics (AO) system for astronomy is analysed from a control point of view. The focus is put on the temporal error. The AO controller is identified as a feedback regulator system, operating in closed-loop with the aim of rejecting wavefront disturbances. Limitations on the performance of
High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging
Amitonova, L. V.; Descloux, A.; Petschulat, J.; Frosz, M. H.; Ahmed, G.; Babic, F.; Jiang, X.; Mosk, A. P.; Russell, P. S. J.; Pinkse, P.W.H.
2016-01-01
We demonstrate that a high-numerical-aperture photonic crystal fiber allows lensless focusing at an unparalleled res- olution by complex wavefront shaping. This paves the way toward high-resolution imaging exceeding the capabilities of imaging with multi-core single-mode optical fibers. We analyze t
Bandwidth and Wavefront Reduction for Static Variable Ordering in Symbolic Model Checking
Meijer, Jeroen; Pol, van de Jaco
2015-01-01
We demonstrate the applicability of bandwidth and wavefront reduction algorithms to static variable ordering. In symbolic model checking event locality plays a major role in time and memory usage. For example, in Petri nets event locality can be captured by dependency matrices, where nonzero entries
Flight path-driven mitigation of wavefront curvature effects in SAR images
Doerry, Armin W.
2009-06-23
A wavefront curvature effect associated with a complex image produced by a synthetic aperture radar (SAR) can be mitigated based on which of a plurality of possible flight paths is taken by the SAR when capturing the image. The mitigation can be performed differently for different ones of the flight paths.
Snapshot coherence-gated direct wavefront sensing for multi-photon microscopy
Van Werkhoven, T.I.M.; Antonello, J.; Truong, H.H.; Verhaegen, M.; Gerritsen, H.C.; Keller, C.U.
2014-01-01
Deep imaging in turbid media such as biological tissue is challenging due to scattering and optical aberrations. Adaptive optics has the potential to compensate the tissue aberrations. We present a wavefront sensing scheme for multi-photon scanning microscopes using the pulsed, near-infrared light r
FGF4 and FGF8 comprise the wavefront activity that controls somitogenesis.
Naiche, L A; Holder, Nakisha; Lewandoski, Mark
2011-03-08
Somites form along the embryonic axis by sequential segmentation from the presomitic mesoderm (PSM) and differentiate into the segmented vertebral column as well as other unsegmented tissues. Somites are thought to form via the intersection of two activities known as the clock and the wavefront. Previous work has suggested that fibroblast growth factor (FGF) activity may be the wavefront signal, which maintains the PSM in an undifferentiated state. However, it is unclear which (if any) of the FGFs expressed in the PSM comprise this activity, as removal of any one gene is insufficient to disrupt early somitogenesis. Here we show that when both Fgf4 and Fgf8 are deleted in the PSM, expression of most PSM genes is absent, including cycling genes, WNT pathway genes, and markers of undifferentiated PSM. Significantly, markers of nascent somite cell fate expand throughout the PSM, demonstrating the premature differentiation of this entire tissue, a highly unusual phenotype indicative of the loss of wavefront activity. When WNT signaling is restored in mutants, PSM progenitor markers are partially restored but premature differentiation of the PSM still occurs, demonstrating that FGF signaling operates independently of WNT signaling. This study provides genetic evidence that FGFs are the wavefront signal and identifies the specific FGF ligands that encode this activity. Furthermore, these data show that FGF action maintains WNT signaling, and that both signaling pathways are required in parallel to maintain PSM progenitor tissue.
Experimental study of an optimised Pyramid wave-front sensor for Extremely Large Telescopes
Bond, Charlotte Z.; El Hadi, Kacem; Sauvage, Jean-François; Correia, Carlos; Fauvarque, Olivier; Rabaud, Didier; Lamb, Masen; Neichel, Benoit; Fusco, Thierry
2016-07-01
Over the last few years the Laboratoire d'Astrophysique de Marseille (LAM) has been heavily involved in R&D for adaptive optics systems dedicated to future large telescopes, particularly in preparation for the European Extremely Large Telescope (E-ELT). Within this framework an investigation into a Pyramid wave-front sensor is underway. The Pyramid sensor is at the cutting edge of high order, high precision wave-front sensing for ground based telescopes. Investigations have demonstrated the ability to achieve a greater sensitivity than the standard Shack-Hartmann wave-front sensor whilst the implementation of a Pyramid sensor on the Large Binocular Telescope (LBT) has provided compelling operational results.1, 2 The Pyramid now forms part of the baseline for several next generation Extremely Large Telescopes (ELTs). As such its behaviour under realistic operating conditions must be further understood in order to optimise performance. At LAM a detailed investigation into the performance of the Pyramid aims to fully characterise the behaviour of this wave-front sensor in terms of linearity, sensitivity and operation. We have implemented a Pyramid sensor using a high speed OCAM2 camera (with close to 0 readout noise and a frame rate of 1.5kHz) in order to study the performance of the Pyramid within a full closed loop adaptive optics system. This investigation involves tests on all fronts, from theoretical models and numerical simulations to experimental tests under controlled laboratory conditions, with an aim to fully understand the Pyramid sensor in both modulated and non-modulated configurations. We include results demonstrating the linearity of the Pyramid signals, compare measured interaction matrices with those derived in simulation and evaluate the performance in closed loop operation. The final goal is to provide an on sky comparison between the Pyramid and a Shack-Hartmann wave-front sensor, at Observatoire de la Côte d'Azur (ONERA-ODISSEE bench). Here we
Translation correlations in anisotropically scattering media
Judkewitz, Benjamin; Vellekoop, Ivo M; Yang, Changhuei
2014-01-01
Controlling light propagation across scattering media by wavefront shaping holds great promise for a wide range of applications in biomedical imaging. However finding the right wavefront to shape is a challenge when the scattering transmission matrix is not known. Correlations in transmission matrices, especially the so-called memory-effect, have been exploited to address this limitation. However, the traditional memory-effect applies to thin scattering layers at a distance from the target, which precludes its use within thick scattering media. Here, we report on analogous transmission matrix correlations within thick anisotropically scattering media, with wide-ranging implications for biomedical imaging. We use a simple conceptual framework to explain these findings and relate them to the traditional memory effect.
Testbed Demonstration of Low Order Wavefront Sensing and Control Technology for WFIRST Coronagraph
Shi, Fang; Balasubramanian, K.; Cady, E.; Kern, B.; Lam, R.; Mandic, M.; Patterson, K.; Poberezhskiy, I.; Shields, J.; Seo, J.; Tang, H.; Truong, T.; Wilson, D.
2017-01-01
NASA’s WFIRST-AFTA Coronagraph will be capable of directly imaging and spectrally characterizing giant exoplanets similar to Neptune and Jupiter, and possibly even super-Earths, around nearby stars. To maintain the required coronagraph performance in a realistic space environment, a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem is necessary. The LOWFS/C will use the rejected stellar light to sense and suppress the telescope pointing drift and jitter as well as low order wavefront errors due to the changes in thermal loading of the telescope and the rest of the observatory. The LOWFS/C uses a Zernike phase contrast wavefront sensor with the phase shifting disk combined with the stellar light rejecting occulting mask, a key concept to minimize the non-common path error. Developed as a part of the Dynamic High Contrast Imaging Testbed (DHCIT), the LOWFS/C subsystem also consists of an Optical Telescope Assembly Simulator (OTA-S) to generate the realistic line-of-sight (LoS) drift and jitter as well as low order wavefront error from WFIRST-AFTA telescope’s vibration and thermal drift. The entire LOWFS/C subsystem have been integrated, calibrated, and tested in the Dynamic High Contrast Imaging Testbed. In this presentation we will show the results of LOWFS/C performance during the dynamic coronagraph tests in which we have demonstrated that LOWFS/C is able to maintain the coronagraph contrast with the presence of WFIRST like line-of-sight drift and jitter as well as low order wavefront drifts.
Weak compactness of biharmonic maps
Directory of Open Access Journals (Sweden)
Shenzhou Zheng
2012-10-01
Full Text Available This article shows that if a sequence of weak solutions of a perturbed biharmonic map satisfies $Phi_ko 0$ in $(W^{2,2}^*$ and $u_kightharpoonup u$ weakly in $W^{2,2}$, then $u$ is a biharmonic map. In particular, we show that the space of biharmonic maps is sequentially compact under the weak-$W^{2,2}$ topology.
Liu, Z. H.; Yaresko, A. N.; Li, Y.; Dai, P. C.; Zhang, H.; Büchner, B.; Lin, C. T.; Borisenko, S. V.
2017-03-01
Using the angle-resolved photoemission spectroscopy and band structure calculations we study the electronic structure of KFeCoAs2, which is isoelectronic to the parent material of 122 series of iron-based superconductors BaFe2As2. Although band structure calculations predict nearly identical dispersions of the electronic states in both compounds, experiment reveals drastic differences in both the global renormalization and Fermi surfaces. On the basis of the comparison of electronic structures of these two isoelectronic compounds, we demonstrate local magnetic correlations as a vital role for the peculiar low-energy electron dynamics of iron-based superconductors.
Institute of Scientific and Technical Information of China (English)
米泽民; 李翠娥; 郝铁锁; 范百成; 刘艳花
2012-01-01
为了能够顺利地完成当地的测土配方施肥项目，通过进行“3414”常规5个处理的试验研究，了解测土配方施肥重要的参数，土壤养分的校正系数的数值以及它们之间与投肥之间的相互关系。结果表明，氮的校正系数与土壤中的碱解氮呈负相关关系，与土壤中的有效磷、速效钾以及在合理的范围内磷肥的投入、氮肥的利用率、缺钾区的相对产量呈正相关关系，与缺氮区的相对产量没有显著的相关关系；磷的校正系数与磷肥的利用率呈显著的正相关关系，与土壤养分含量的碱解氮、有效磷、速效钾以及氮、磷、钾肥的投入呈负相关关系，与氮肥利用率和缺磷区相对产量及缺钾区相对产量亦有显著的负相关关系；速效钾的校正系数除与速效钾呈负相关关系外，与氮肥和钾肥的利用率及缺磷区的相对产量呈正相关关系，而与缺钾区相对产量的关系则是以相对产量的85％为界，小于85％是正相关关系。大于85％呈负相关关系。%In order to finishing the project fertilizing proportion Based on soil test favorably, through the experiment of five treatments with ＇3414＇, know the important coefficient of researching of fertilizing proportion based on soil test, the relative relationship of soil nutrition correlation coefficient with putting fertilizer and different soil nutrition. Be cognizant of the soil nutrition correlation coefficient, it was negative relative relationship between soil nutrition correlation coefficient of nitrogen with quick results nitrogen, there were positive relative relationship with available phosphorus, the quick available kaliums, phosphoric fertilizer that had been fertilized and the rate of utilized nitric fertilizer ＆ relative output of kaliums be lacked, hut there was not relative relationship with Relative output of nitrogen be lacked. It is negative relative relationship between soil
Wave-front correction of high-intensity fs laser beams by using closed-loop adaptive optics system
Institute of Scientific and Technical Information of China (English)
WANG; Zhaohua; JIN; Zhan; ZHENG; Jiaan; WANG; Peng; WEI; Zh
2005-01-01
We developed an adaptive optics system to correct the wave-front distortion of an intense fs laser beam from our multi-TW laser system, Jiguang II. In this paper, the instruments of the adaptive optical system are described and the experimental results of the closed-loop wave-front correction are presented. A distorted laser wave-front of 20 wavelengths of P-V values was corrected to 0.15 wavelength of P-V values. The beam quality of the laser system varies from 3.5 diffraction limit to 1.5 diffraction limit.
Weak gravitational lensing with the Square Kilometre Array
Brown, M L; Camera, S; Harrison, I; Joachimi, B; Metcalf, R B; Pourtsidou, A; Takahashi, K; Zuntz, J A; Abdalla, F B; Bridle, S; Jarvis, M; Kitching, T D; Miller, L; Patel, P
2015-01-01
We investigate the capabilities of various stages of the SKA to perform world-leading weak gravitational lensing surveys. We outline a way forward to develop the tools needed for pursuing weak lensing in the radio band. We identify the key analysis challenges and the key pathfinder experiments that will allow us to address them in the run up to the SKA. We identify and summarize the unique and potentially very powerful aspects of radio weak lensing surveys, facilitated by the SKA, that can solve major challenges in the field of weak lensing. These include the use of polarization and rotational velocity information to control intrinsic alignments, and the new area of weak lensing using intensity mapping experiments. We show how the SKA lensing surveys will both complement and enhance corresponding efforts in the optical wavebands through cross-correlation techniques and by way of extending the reach of weak lensing to high redshift.
Anomalously Weak Solar Convection
Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.
2012-01-01
Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.
[Systemic lupus erythematosus and weakness].
Vinagre, Filipe; Santos, Maria José; da Silva, José Canas
2006-01-01
We report a case of a 13-year old young girl, with Juvenile Systemic Lupus Erythematosus and recent onset of muscle weakness. Investigations lead to the diagnosis of Myasthenia Gravis. The most important causes of muscle weakness in lupus patients are discussed.
Wilby, Michael J; Snik, Frans; Korkiakoski, Visa; Pietrow, Alexander G M
2016-01-01
The raw coronagraphic performance of current high-contrast imaging instruments is limited by the presence of a quasi-static speckle (QSS) background, resulting from instrumental non-common path errors (NCPEs). Rapid development of efficient speckle subtraction techniques in data reduction has enabled final contrasts of up to 10-6 to be obtained, however it remains preferable to eliminate the underlying NCPEs at the source. In this work we introduce the coronagraphic Modal Wavefront Sensor (cMWS), a new wavefront sensor suitable for real-time NCPE correction. This pupil-plane optic combines the apodizing phase plate coronagraph with a holographic modal wavefront sensor, to provide simultaneous coronagraphic imaging and focal-plane wavefront sensing using the science point spread function. We first characterise the baseline performance of the cMWS via idealised closed-loop simulations, showing that the sensor successfully recovers diffraction-limited coronagraph performance over an effective dynamic range of +/...
Liu, Bin; Liu, Chong; Shen, Lifeng; Wang, Chunhua; Ye, Zhibin; Liu, Dong; Xiang, Zhen
2016-04-18
A method for beam quality management is presented in a master oscillator power amplifier (MOPA) using Nd:YVO4 as the gain medium by extra-cavity periodic reproduction of wavefront aberrations. The wavefront aberration evolution of the intra-cavity beams is investigated for both symmetrical and asymmetrical resonators. The wavefront aberration reproduction process is successfully realized outside the cavity in four-stage amplifiers. In the MOPA with a symmetrical oscillator, the laser power increases linearly and the beam quality hardly changes. In the MOPA with an asymmetrical oscillator, the beam quality is deteriorated after the odd-stage amplifier and is improved after the even-stage amplifier. The wavefront aberration reproduction during the extra-cavity beam propagation in the amplifiers is equivalent to that during the intra-cavity propagation. This solution helps to achieve the effective beam quality management in laser amplifier chains.
Can weak lensing surveys confirm BICEP2 ?
Chisari, Nora Elisa; Schmidt, Fabian
2014-01-01
The detection of B-modes in the Cosmic Microwave Background (CMB) polarization by the BICEP2 experiment, if interpreted as evidence for a primordial gravitational wave background, has enormous ramifications for cosmology and physics. It is crucial to test this hypothesis with independent measurements. A gravitational wave background leads to B-modes in galaxy shape correlations (shear) both through lensing and tidal alignment effects. Since the systematics and foregrounds of galaxy shapes and CMB polarization are entirely different, a detection of a cross-correlation between the two observables would provide conclusive proof for the existence of a primordial gravitational wave background. We find that upcoming weak lensing surveys will be able to detect the cross-correlation between B-modes of the CMB and galaxy shapes. However, this detection is not sufficient to confirm or falsify the hypothesis of a primordial origin for CMB B-mode polarization.
Extracting hysteresis from nonlinear measurement of wavefront-sensorless adaptive optics system.
Song, H; Vdovin, G; Fraanje, R; Schitter, G; Verhaegen, M
2009-01-01
In many scientific and medical applications wavefront-sensorless adaptive optics (AO) systems are used to correct the wavefront aberration by optimizing a certain target parameter, which is nonlinear with respect to the control signal to the deformable mirror (DM). Hysteresis is the most common nonlinearity of DMs, which can be corrected if the information about the hysteresis behavior is present. We report a general approach to extract hysteresis from the nonlinear behavior of the adaptive optical system, with the illustration of a Foucault knife test, where the voltage-intensity relationship consists of both hysteresis and some memoryless nonlinearity. The hysteresis extracted here can be used for modeling and linearization of the AO system.
Wave-front correction of femtosecond terawatt lasers by deformable mirrors.
Druon, F; Chériaux, G; Faure, J; Nees, J; Nantel, M; Maksimchuk, A; Mourou, G; Chanteloup, J C; Vdovin, G
1998-07-01
Wave-front correction and focal spot improvement of femtosecond laser beams have been achieved, for the first time to our knowledge, with a deformable mirror with an on-line single-shot three-wave lateral shearing interferometer diagnostic. Wave-front distortions of a 100-fs laser that are due to third-order nonlinear effects have been compensated for. This technique, which permits correction in a straightforward process that requires no feedback loop, is also used on a 10-TW Ti:sapphire-Nd:phosphate glass laser in the subpicosecond regime. We also demonstrate that having a focal spot close to the diffraction limit does not constitute a good criterion for the quality of the laser in terms of peak intensity.
Dai, Fengzhao; Tang, Feng; Wang, Xiangzhao; Sasaki, Osami; Zhang, Min
2013-06-10
In a recent paper [J. Opt. Soc. Am. A 29, 2038 (2012)], we proposed a generalized high spatial resolution zonal wavefront reconstruction method for lateral shearing interferometry. The test wavefront can be reconstructed with high spatial resolution by using linear interpolation on a subgrid for initial values estimation. In the current paper, we utilize the difference between the Zernike polynomial fitting method and linear interpolation in determining the subgrid initial values. The validity of the proposed method is investigated through comparison with the previous high spatial resolution zonal method. Simulation results show that the proposed method is more accurate and more stable to shear ratios compared with the previous method. A comprehensive comparison of the properties of the proposed method, the previous high spatial resolution zonal method, and the modal method is performed.
Polarization dOTF: on-sky focal plane wavefront sensing
Brooks, Keira J; Kenworthy, Matthew A; Crawford, Steven M; Codona, Johanan L
2016-01-01
The differential Optical Transfer Function (dOTF) is a focal plane wavefront sensing method that uses a diversity in the pupil plane to generate two different focal plane images. The difference of their Fourier transforms recovers the complex amplitude of the pupil down to the spatial scale of the diversity. We produce two simultaneous PSF images with diversity using a polarizing filter at the edge of the telescope pupil, and a polarization camera to simultaneously record the two images. Here we present the first on-sky demonstration of polarization dOTF at the 1.0m South African Astronomical Observatory telescope in Sutherland, and our attempt to validate it with simultaneous Shack-Hartmann wavefront sensor images.
Wavefront error correction and Earth-like planet detection by Self-Coherent Camera in space
Galicher, R; Rousset, G
2008-01-01
In the context of exoplanet detection, the performance of coronagraphs is limited by wavefront errors. To efficiently correct for these aberrations with a deformable mirror, it is mandatory to measure them using the science detector with a very high accuracy. The Self-Coherent Camera which is based on light incoherence between star and its environment enables an estimation of these wavefront errors. That estimation is directly derived from the encoded speckles in the science image. This avoids differential errors due to beam separation and non common optics. Earth-like planet detection is demonstrated by numerical simulations under realistic assumptions for a space telescope. The Self-Coherent Camera is an attractive technique for future space telescopes. It is also one of the techniques under investigation for the E-ELT planet finder so-called EPICS.
Spline based least squares integration for two-dimensional shape or wavefront reconstruction
Huang, Lei; Xue, Junpeng; Gao, Bo; Zuo, Chao; Idir, Mourad
2017-04-01
In this work, we present a novel method to handle two-dimensional shape or wavefront reconstruction from its slopes. The proposed integration method employs splines to fit the measured slope data with piecewise polynomials and uses the analytical polynomial functions to represent the height changes in a lateral spacing with the pre-determined spline coefficients. The linear least squares method is applied to estimate the height or wavefront as a final result. Numerical simulations verify that the proposed method has less algorithm errors than two other existing methods used for comparison. Especially at the boundaries, the proposed method has better performance. The noise influence is studied by adding white Gaussian noise to the slope data. Experimental data from phase measuring deflectometry are tested to demonstrate the feasibility of the new method in a practical measurement.
Quirós-Pacheco, Fernando; Agapito, Guido; Riccardi, Armando; Esposito, Simone; Le Louarn, Miska; Marchetti, Enrico
2012-07-01
This paper presents the performance analysis based on numerical simulations of the Pyramid Wavefront sensor Module (PWM) to be included in ERIS, the new Adaptive Optics (AO) instrument for the Adaptive Optics Facility (AOF). We have analyzed the performance of the PWM working either in a low-order or in a high-order wavefront sensing mode of operation. We show that the PWM in the high-order sensing mode can provide SR > 90% in K band using bright guide stars under median seeing conditions (0.85 arcsec seeing and 15 m/s of wind speed). In the low-order sensing mode, the PWM can sense and correct Tip-Tilt (and if requested also Focus mode) with the precision required to assist the LGS observations to get an SR > 60% and > 20% in K band, using up to a ~16.5 and ~19.5 R-magnitude guide star, respectively.
Wavefront correction in a shaped-pupil coronagraph using a Gerchberg-Saxton-based estimation scheme
Kay, Jason; Kasdin, N. Jeremy; Belikov, Ruslan
2007-09-01
The detection of extra-solar terrestrial planets requires the use of space-based high-contrast imaging. Stellar photon noise as well as light thrown about by system aberrations necessitate the use of a high quality light suppression system and a method for wavefront correction. We present here a wavefront estimation scheme to be used with estimate-based correction for the shaped pupil coronagraph. In order to properly estimate the field in a reimaged pupil plane, we employ the use of the iterative Gerchberg-Saxton estimation algorithm between it and a second-focus image plane. We utilize the correction algorithm to overcome an ambiguity inherent in Gerchberg-Saxton estimation.
In vivo deep tissue imaging using wavefront shaping optical coherence tomography
Yu, Hyeonseung; Lee, KyeoReh; Jang, Jaeduck; Lim, Jaeguyn; Jang, Wooyoung; Jeong, Yong; Park, YongKeun
2015-01-01
Multiple light scattering in tissue limits the penetration of optical coherence tomography (OCT) imaging. Here, we present in-vivo OCT imaging of a live mouse using wavefront shaping to enhance the penetration depth. A digital micro-mirror device (DMD) was used in a spectral-domain OCT system for complex wavefront shaping of an incident beam which resulted in the optimal delivery of light energy into deep tissue. Ex-vivo imaging of chicken breasts and mouse ear tissues showed enhancements in the strength of the image signals and the penetration depth, and in-vivo imaging of the tail of a live mouse provided a multilayered structure inside the tissue, otherwise invisible in conventional OCT imaging. Signal enhancements by a factor of 3-7 were acquired for various experimental conditions and samples.
Generalized ray-transfer matrix for an optical element having an arbitrary wavefront aberration.
Jeong, Tae Moon; Ko, Do-Kyeong; Lee, Jongmin
2005-11-15
A generalized ray-transfer matrix for describing the action of an optical element having an arbitrary wavefront aberration is obtained. In this generalized ray-transfer matrix, the action of the aberrated optical element is represented by the product of radial ray-transfer matrices and tangential ray-transfer matrices. The refraction angle of an incident ray is calculated from the gradient of the wavefront aberration at the point of incidence, and the radial and tangential ray-transfer matrices directly use the gradient as a matrix component. To show the validity of the generalized ray-transfer matrix, intercept heights from a spot diagram are calculated with the generalized ray-transfer matrix and compared with those calculated with commercial ray-tracing software.
Generation and propagation of a sine-azimuthal wavefront modulated Gaussian beam.
Lao, Guanming; Zhang, Zhaohui; Luo, Meilan; Zhao, Daomu
2016-07-21
We introduce a method for modulating the Gaussian beam by means of sine-azimuthal wavefront and carry out the experimental generation. The analytical propagation formula of such a beam passing through a paraxial ABCD optical system is derived, by which the intensity properties of the sine-azimuthal wavefront modulated Gaussian (SWMG) beam are examined both theoretically and experimentally. Both of the experimental and theoretical results show that the SWMG beam goes through the process from beam splitting to a Gaussian-like profile, which is closely determined by the phase factor and the propagation distance. Appropriate phase factor and short distance are helpful for the splitting of beam. However, in the cases of large phase factor and focal plane, the intensity distributions tend to take a Gaussian form. Such unique features may be of importance in particle trapping and medical applications.
The LINC-NIRVANA high layer wavefront sensor laboratory experiment: progress report
Zhang, Xianyu; Conrad, Albert R.; Meschke, Daniel; Bertram, Thomas; Herbst, Thomas M.; Arcidiacono, Carmelo; Bizenberger, Peter; Gaessler, Wolfgang; Schreiber, Laura; Ragazzoni, Roberto; Kuerster, Martin; De Bonis, Fulvio; Mohr, Lars; Farinato, Jacopo; Diolaiti, Emiliano; Rix, Hans-Walter; Rao, Changhui; Briegel, Florian; Kittmann, Frank; Berwein, Juergen; Trowitzsch, Jan; Brangier, Matthieu
2012-07-01
LINC-NIRVANA is a near infrared interferometric imager with a pair of layer-oriented multi-conjugate adaptive optics systems (ground layer and high layer) for the Large Binocular Telescope. To prepare for the commissioning of LINC-NIRVANA, we have integrated the high layer wavefront sensor and its associated deformable mirror (a Xinetics-349) in a laboratory, located at Max Planck Institute for Astronomy, in Heidelberg, Germany. Together with a telescope simulator, which includes a rotating field and phase screens that introduce the effects of the atmosphere, we tested the acquisition of multiple guide stars, calibrating the system with the push-pull method, and characterizing the wavefront sensor together with the deformable mirror. We have closed the AO loop with up to 200 Zernike modes and with multiple guide stars. The AO correction demonstrated that uniform correction can be achieved in a large field of view. We report the current status and results of the experiment.
Gao, Jingkun; Deng, Bin; Qin, Yuliang; Wang, Hongqiang; Li, Xiang
2016-12-14
An efficient wide-angle inverse synthetic aperture imaging method considering the spherical wavefront effects and suitable for the terahertz band is presented. Firstly, the echo signal model under spherical wave assumption is established, and the detailed wavefront curvature compensation method accelerated by 1D fast Fourier transform (FFT) is discussed. Then, to speed up the reconstruction procedure, the fast Gaussian gridding (FGG)-based nonuniform FFT (NUFFT) is employed to focus the image. Finally, proof-of-principle experiments are carried out and the results are compared with the ones obtained by the convolution back-projection (CBP) algorithm. The results demonstrate the effectiveness and the efficiency of the presented method. This imaging method can be directly used in the field of nondestructive detection and can also be used to provide a solution for the calculation of the far-field RCSs (Radar Cross Section) of targets in the terahertz regime.
Riggs, A. J. Eldorado; Cady, Eric J.; Prada, Camilo M.; Kern, Brian D.; Zhou, Hanying; Kasdin, N. Jeremy; Groff, Tyler D.
2016-07-01
For direct imaging and spectral characterization of cold exoplanets in reflected light, the proposed Wide-Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) will carry two types of coronagraphs. The High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory has been testing both coronagraph types and demonstrated their abilities to achieve high contrast. Focal plane wavefront correction is used to estimate and mitigate aberrations. As the most time-consuming part of correction during a space mission, the acquisition of probed images for electric field estimation needs to be as short as possible. We present results from the HCIT of narrowband, low-signal wavefront estimation tests using a shaped pupil Lyot coronagraph (SPLC) designed for the WFIRST CGI. In the low-flux regime, the Kalman filter and iterated extended Kalman filter provide faster correction, better achievable contrast, and more accurate estimates than batch process estimation.
Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice.
Wahl, Daniel J; Jian, Yifan; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V
2016-01-01
Cellular-resolution in vivo fluorescence imaging is a valuable tool for longitudinal studies of retinal function in vision research. Wavefront sensorless adaptive optics (WSAO) is a developing technology that enables high-resolution imaging of the mouse retina. In place of the conventional method of using a Shack-Hartmann wavefront sensor to measure the aberrations directly, WSAO uses an image quality metric and a search algorithm to drive the shape of the adaptive element (i.e. deformable mirror). WSAO is a robust approach to AO and it is compatible with a compact, low-cost lens-based system. In this report, we demonstrated a hill-climbing algorithm for WSAO with a variable focus lens and deformable mirror for non-invasive in vivo imaging of EGFP (enhanced green fluorescent protein) labelled ganglion cells and microglia cells in the mouse retina.
Energy Technology Data Exchange (ETDEWEB)
Johnson, M A; Phillion, D W; Sommargren, G E; Decker, T A; Taylor, J S; Gomei, Y; Kakuchi, O; Takeuchi, S
2005-07-01
We have built and calibrated a set of 532-nm wavelength wavefront reference sources that fill a numerical aperture of 0.3. Early data show that they have a measured departure from sphericity of less than 0.2 nm RMS (0.4 milliwaves) and a reproducibility of better than 0.05 nm rms. These devices are compact, portable, fiber-fed, and are intended as sources of measurement and reference waves in wavefront measuring interferometers used for metrology of EUVL optical elements and systems. Keys to wave front accuracy include fabrication of an 800-nm pinhole in a smooth reflecting surface as well as a calibration procedure capable of measuring axisymmetric and non-axisymmetric errors.
Fast method of calculating a photorealistic hologram based on orthographic ray-wavefront conversion.
Igarashi, Shunsuke; Nakamura, Tomoya; Yamaguchi, Masahiro
2016-04-01
A computer-generated hologram based on ray-wavefront conversion can reconstruct photorealistic three-dimensional (3D) images containing deep virtual objects and complicated physical phenomena; however, the required computational cost has been a problem that needs to be solved. In this Letter, we introduce the concept of an orthographic projection in the ray-wavefront conversion technique for reducing the computational cost without degrading the image quality. In the proposed method, plane waves with angular spectra of the object are obtained via orthographic ray sampling and Fourier transformation, and only the plane waves incident on the hologram plane are numerically propagated. We verified this accelerated computational method theoretically and experimentally, and demonstrated optical reconstruction of a deep 3D image in which the effects of occlusions, transmission, refraction, and reflection were faithfully reproduced.
Focal plane wavefront sensor achromatization : The multireference self-coherent camera
Delorme, J -R; Baudoz, P; Rousset, G; Mazoyer, J; Dupuis, O
2016-01-01
High contrast imaging and spectroscopy provide unique constraints for exoplanet formation models as well as for planetary atmosphere models. But this can be challenging because of the planet-to-star small angular separation and high flux ratio. Recently, optimized instruments like SPHERE and GPI were installed on 8m-class telescopes. These will probe young gazeous exoplanets at large separations (~1au) but, because of uncalibrated aberrations that induce speckles in the coronagraphic images, they are not able to detect older and fainter planets. There are always aberrations that are slowly evolving in time. They create quasi-static speckles that cannot be calibrated a posteriori with sufficient accuracy. An active correction of these speckles is thus needed to reach very high contrast levels (>1e7). This requires a focal plane wavefront sensor. Our team proposed the SCC, the performance of which was demonstrated in the laboratory. As for all focal plane wavefront sensors, these are sensitive to chromatism and...
Wavefront metrology measurements at SACLA by means of X-ray grating interferometry.
Kayser, Yves; Rutishauser, Simon; Katayama, Tetsuo; Ohashi, Haruhiko; Kameshima, Takashi; Flechsig, Uwe; Yabashi, Makina; David, Christian
2014-04-21
The knowledge of the X-ray wavefront is of importance for many experiments at synchrotron sources and hard X-ray free-electron lasers. We will report on metrology measurements performed at the SACLA X-ray Free Electron Laser by means of grating interferometry which allows for an at-wavelength, in-situ, and single-shot characterization of the X-ray wavefront. At SACLA the grating interferometry technique was used for the study of the X-ray optics installed upstream of the end station, two off-set mirror systems and a double crystal monochromator. The excellent quality of the optical components was confirmed by the experimental results. Consequently grating interferometry presents the ability to support further technical progresses in X-ray mirror manufacturing and mounting.
Sparse aperture differential piston measurements using the pyramid wave-front sensor
Arcidiacono, Carmelo; Yan, Zhaojun; Zheng, Lixin; Agapito, Guido; Wang, Chaoyan; Zhu, Nenghong; Zhu, Liyun; Cai, Jianqing; Tang, Zhenghong
2016-01-01
In this paper we report on the laboratory experiment we settled in the Shanghai Astronomical Observatory (SHAO) to investigate the pyramid wavefront sensor (WFS) ability to measure the differential piston on a sparse aperture. The ultimate goal is to verify the ability of the pyramid WFS work in closed loop to perform the phasing of the primary mirrors of a sparse Fizeau imaging telescope. In the experiment we installed on the optical bench we performed various test checking the ability to flat the wave-front using a deformable mirror and to measure the signal of the differential piston on a two pupils setup. These steps represent the background from which we start to perform full closed loop operation on multiple apertures. These steps were also useful to characterize the achromatic double pyramids (double prisms) manufactured in the SHAO optical workshop.
Chromatic Effect for THz Generation in a Novel Wave-front Tilt Scheme
Li, Bin; Liu, Xiaoqing; Chen, Jianhui; Deng, Haixiao; Feng, Chao; Feng, Lie; Lan, Taihe; Liu, Bo; Liu, Jia; Wang, Dong; Wang, Xingtao; Zeng, Zhinan; Zhang, lijian; Zhang, Tong; Zhao, Zhentang
2016-01-01
Deriving single or few cycle terahertz pulse (THz) by intense femtosecond laser through cascaded optical rectification in electro-optic crystals is a crucial technique in cutting-edge time-resolved spectroscopy to characterize micro-scale structures and ultrafast dynamics. In the past decade, lithium niobate (LN) crystal implementation of wave-front tilt scheme has been prevalently used, while painstaking efforts have been invested in order to achieve higher THz conversion efficiency. In this research we developed a brand new type of LN crystal possessing dual-face-cut and Brewster coupling, and conducted experimental and simulative investigation systematically to optimize the multi-dimensionally entangled parameters in THz generation, predicting the extreme conversion efficiency of 10% is potentially promising at the THz absorption coefficient of 0.5cm-1. More remarkably, we first discovered that the chirp of the driving laser pulse plays a decisive role in the wave-front tilt scheme, and the THz generation ...
Zhao, Hui; Wei, Jingxuan
2014-09-01
The key to the concept of tunable wavefront coding lies in detachable phase masks. Ojeda-Castaneda et al. (Progress in Electronics Research Symposium Proceedings, Cambridge, USA, July 5-8, 2010) described a typical design in which two components with cosinusoidal phase variation operate together to make defocus sensitivity tunable. The present study proposes an improved design and makes three contributions: (1) A mathematical derivation based on the stationary phase method explains why the detachable phase mask of Ojeda-Castaneda et al. tunes the defocus sensitivity. (2) The mathematical derivations show that the effective bandwidth wavefront coded imaging system is also tunable by making each component of the detachable phase mask move asymmetrically. An improved Fisher information-based optimization procedure was also designed to ascertain the optimal mask parameters corresponding to specific bandwidth. (3) Possible applications of the tunable bandwidth are demonstrated by simulated imaging.
Single-Shot Wavefront Measurement of an Injection-seeded Plasma-based Soft X-Ray Laser
Wang, S.; Li, L.; Wang, Y.; Oliva, E.; Yin, L.; Luther, B.; Maynard, G.; Ros, D.; Rocca, J. J.; Zeitoun, Ph.
2013-10-01
The wavefront of a λ = 18.9 nm soft x-ray beam from an injection-seeded plasma amplifier created by irradiation of a solid target was measured using a Hartmann wavefront sensor with an accuracy of λ/32 in a single shot. A significant improvement in wavefront aberrations from 0.51 +/- 0.06 λ rms of high harmonic seed to 0.23 +/- 0.01 λ rms for the amplified seeded beam was observed. The variation of wavefront characteristic as a function of time delay between the injection of the seed and peak of soft x-ray amplifier pump was studied. The wavefront sensor allows for the independent measurement of the different aberrations. The strongest improvement of the wavefront as it exits the amplifier is observed for coma, with values improve by more than a factor of 2, from 0.4l λ to 0.18 λ rms. The measurements were used to reconstruct the soft x-ray source and confirm its high peak brightness of about 1 ×1026 photons/(s.mm2.mrad2. 0.01 % bandwidth). Work supported by AMOS program, Office of Basic Energy Sciences of the US DoE, and the NSF ERC Program with equipment developed under NSF Award MRI-ARRA 09-561, and by LASERLAB3-INREX European project and SHYLAX plus CIBORG RTRA `Triangle de la Physique.'
Soloviev, Oleg; Vdovin, Gleb
2005-05-16
We propose phase retrieval from three or more interferograms corresponding to different tilts of an object wavefront. The algorithm uses the information contained in the interferogram differences to reduce the problem to phase shifting. Three interferograms is the minimum for restoring the phase over most of the image. Four or more interferograms are needed to restore the phase over the whole image. The method works with images including open and closed fringes in any combination.
Campos-García, Manuel; Granados-Agustín, Fermín.; Cornejo-Rodríguez, Alejandro; Estrada-Molina, Amilcar; Avendaño-Alejo, Maximino; Moreno-Oliva, Víctor Iván.
2013-11-01
In order to obtain a clearer interpretation of the Intensity Transport Equation (ITE), in this work, we propose an algorithm to solve it for some particular wavefronts and its corresponding intensity distributions. By simulating intensity distributions in some planes, the ITE is turns into a Poisson equation with Neumann boundary conditions. The Poisson equation is solved by means of the iterative algorithm SOR (Simultaneous Over-Relaxation).
Objective lens simultaneously optimized for pupil ghosting, wavefront delivery and pupil imaging
Olczak, Eugene G (Inventor)
2011-01-01
An objective lens includes multiple optical elements disposed between a first end and a second end, each optical element oriented along an optical axis. Each optical surface of the multiple optical elements provides an angle of incidence to a marginal ray that is above a minimum threshold angle. This threshold angle minimizes pupil ghosts that may enter an interferometer. The objective lens also optimizes wavefront delivery and pupil imaging onto an optical surface under test.
Polarization control of multiply-scattered light through random media by wavefront shaping
Guan, Yefeng; Small, Eran; Zhou, Jianying; Silberberg, Yaron
2015-01-01
We show that the polarization state of coherent light propagating through an optically thick multiple-scattering medium, can be controlled by wavefront shaping, i.e. by controlling only the spatial phase of the incoming field with a spatial light modulator. Any polarization state of light at any spatial position behind the scattering medium can be attained with this technique. Thus, transforming the random medium to an arbitrary optical polarization component becomes possible.
Wavefront Sensing in Space from the PICTURE-B Sounding Rocket
Douglas, Ewan S; Cook, Timothy A; Chakrabarti, Supriya
2016-01-01
A NASA sounding rocket for high contrast imaging with a visible nulling coronagraph, the Planet Imaging Coronagraphic Technology Using a Reconfigurable Experimental Base (PICTURE-B) payload has made two suborbital attempts to observe the warm dust disk inferred around Epsilon Eridani. We present results from the November 2015 launch demonstrating active wavefront sensing in space with a piezoelectric mirror stage and a micromachine deformable mirror along with precision pointing and lightweight optics in space.
Coletta, Nancy J; Marcos, Susana; Troilo, David
2010-11-23
The common marmoset, Callithrix jacchus, is a primate model for emmetropization studies. The refractive development of the marmoset eye depends on visual experience, so knowledge of the optical quality of the eye is valuable. We report on the wavefront aberrations of the marmoset eye, measured with a clinical Hartmann-Shack aberrometer (COAS, AMO Wavefront Sciences). Aberrations were measured on both eyes of 23 marmosets whose ages ranged from 18 to 452 days. Twenty-one of the subjects were members of studies of emmetropization and accommodation, and two were untreated normal subjects. Eleven of the 21 experimental subjects had worn monocular diffusers and 10 had worn binocular spectacle lenses of equal power. Monocular deprivation or lens rearing began at about 45 days of age and ended at about 108 days of age. All refractions and aberration measures were performed while the eyes were cyclopleged; most aberration measures were made while subjects were awake, but some control measurements were performed under anesthesia. Wavefront error was expressed as a seventh-order Zernike polynomial expansion, using the Optical Society of America's naming convention. Aberrations in young marmosets decreased up to about 100 days of age, after which the higher-order RMS aberration leveled off to about 0.10 μm over a 3 mm diameter pupil. Higher-order aberrations were 1.8 times greater when the subjects were under general anesthesia than when they were awake. Young marmoset eyes were characterized by negative spherical aberration. Form-deprived eyes of the monocular deprivation animals had greater wavefront aberrations than their fellow untreated eyes, particularly for asymmetric aberrations in the odd-numbered Zernike orders. Both lens-treated and form-deprived eyes showed similar significant increases in Z3(-3) trefoil aberration, suggesting the increase in trefoil may be related to factors that do not involve visual feedback.
Energy Technology Data Exchange (ETDEWEB)
Neal, D.R.; O`Hern, T.J.; Torczynski, J.R.; Warren, M.E.; Shul, R. [Sandia National Labs., Albuquerque, NM (United States); McKechnie, T.S. [POD Associates, Inc., Albuquerque, NM (United States)
1993-09-01
Optical measurement techniques are extremely useful in fluid mechanics because of their non-invasive nature. However, it is often difficult to separate measurement effects due to pressure, temperature and density in real flows. Using a variation of a Shack-Hartmann wavefront sensor, we have made density measurements that have extremely large dynamic range coupled with excellent sensitivity at high temporal and spatial resolution. We have examined several classes of flow including volumetrically heated gas, turbulence and droplet evaporation.
Incoherent imaging in the presence of unwanted laser radiation: vortex and axicon wavefront coding
Watnik, Abbie T.; Ruane, Garreth J.; Swartzlander, Grover A.
2016-12-01
Vortex and axicon phase masks are introduced to the pupil plane of an imaging system, altering both the point spread function and optical transfer function for monochromatic and broadband coherent and incoherent light. Each phase mask results in the reduction of the maximum irradiance of a localized coherent laser source, while simultaneously allowing for the recovery of the incoherent background scene. We describe the optical system, image processing, and resulting recovered images obtained through this wavefront encoding approach for laser suppression.
Wavefront and ray-density plots using seventh-order matrices
Almeida, José B.
2005-01-01
The optimization of an optical system benefits greatly from a study of its aberrations and an identification of each of its elements' contribution to the overall aberration figures. The matrix formalism developed by one of the authors was the object of a previous paper and allows the expression of image-space coordinates as high-order polynomials of object-space coordinates. In this paper we approach the question of aberrations, both through the evaluation of the wavefront evolution along the...
Ma, Xingkun; Huang, Lei; Bian, Qi; Gong, Mali
2014-09-10
The wavefront correction ability of a deformable mirror with a multireflection waveguide was investigated and compared via simulations. By dividing a conventional actuator array into a multireflection waveguide that consisted of single-actuator units, an arbitrary actuator pattern could be achieved. A stochastic parallel perturbation algorithm was proposed to find the optimal actuator pattern for a particular aberration. Compared with conventional an actuator array, the multireflection waveguide showed significant advantages in correction of higher order aberrations.
Wavefront sensing in space from the PICTURE-B sounding rocket
Douglas, Ewan S.; Mendillo, Christopher B.; Cook, Timothy A.; Chakrabarti, Supriya
2016-07-01
A NASA sounding rocket for high contrast imaging with a visible nulling coronagraph, the Planet Imaging Coronagraphic Technology Using a Reconfigurable Experimental Base (PICTURE-B) payload has made two suborbital attempts to observe the warm dust disk inferred around Epsilon Eridani. We present results from the November 2015 launch demonstrating active wavefront sensing in space with a piezoelectric mirror stage and a micromachine deformable mirror along with precision pointing and lightweight optics in space.
Compensating laser wave-front aberration in atmosphere 1.27 km away with SBS
Institute of Scientific and Technical Information of China (English)
Youlun Ju(鞠有伦); Qi Wang(王骐); Deying Chen(陈德应); Xin Yu(于欣); Yuezhu Wang(王月珠)
2003-01-01
It is reported that the wave-front aberration produced by atmosphere disturbance can be compensated with nonlinear optics phase conjugate technology. The distance of laser propagating in atmosphere is up to 1.27 km away. The result shows that SBS phase conjugating beam energy can be focus in a little area on target. And the biggest energy of phase conjugating beam on target is up to 142 mJ.
Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue
Horstmeyer, Roarke; Ruan, Haowen; Yang, Changhuei
2015-01-01
In the field of biomedical optics, optical scattering has traditionally limited the range of imaging within tissue to a depth of one millimetre. A recently developed class of wavefront-shaping techniques now aims to overcome this limit and achieve diffraction-limited control of light beyond one centimetre. By manipulating the spatial profile of an optical field before it enters a scattering medium, it is possible to create a micrometre-scale focal spot deep within tissue. To successfully oper...
High-Contrast Imaging and Wavefront Control with a PIAA Coronagraph: Laboratory System Validation
Guyon, Olivier; Pluzhnik, Eugene; Martinache, Frantz; Totems, Julien; Tanaka, Shinichiro; Matsuo, Taro; Blain, Celia; Belikov, Ruslan
2010-01-01
The Phase-Induced Amplitude Apodization (PIAA) coronagraph is a high-performance coronagraph concept able to work at small angular separation with little loss in throughput. We present results obtained with a laboratory PIAA system including active wavefront control. The system has a 94.3% throughput (excluding coating losses) and operates in air with monochromatic light. Our testbed achieved a 2.27 × 10-7 raw contrast between 1.65λ/D (inner working angle of the coronagraph configuration tested) and 4.4λ/D (outer working angle). Through careful calibration, we were able to separate this residual light into a dynamic coherent component (turbulence, vibrations) at 4.5 × 10-8 contrast and a static incoherent component (ghosts and/or polarization mismatch) at 1.6 × 10-7 contrast. Pointing errors are controlled at the 10-3λ/D level using a dedicated low-order wavefront sensor. While not sufficient for direct imaging of Earthlike planets from space, the 2.27 × 10-7 raw contrast achieved already exceeds requirements for a ground-based extreme adaptive optics system aimed at direct detection of more massive exoplanets. We show that over a 4 hr period, averaged wavefront errors have been controlled to the 3.5 × 10-9 contrast level. This result is particularly encouraging for ground-based extreme-AO systems relying on long-term stability and absence of static wavefront errors to recover planets much fainter than the fast boiling speckle halo.
Zhou, Fan; Hong, Xin; Miller, Donald T.; Thibos, Larry N.; Bradley, Arthur
2004-05-01
A corneal aberrometer based on Shack-Hartmann wave-front sensing was developed and validated by using calibrated aspheric surfaces. The aberrometer was found to accurately measure corneal reflective aberrations, from which corneal topography and corneal refractive aberrations were derived. Measurements of reflective aberrations correlated well with theory (R^2=0.964 to 0.994). The sag error root mean square (RMS) was small, ranging from 0.1 to 0.17 Âµm for four of the five calibrated surfaces with the fifth at 0.36 Âµm as a result of residual defocus. Measured refractive aberrations matched with theory and whole-eye aberrometry to within a small fraction of a wavelength. Measurements on three human corneas revealed very large refractive astigmatism (0.65-1.2 Âµm) and appreciable levels of trefoil (0.08-0.47 Âµm), coma (0.14-0.19 Âµm), and spherical aberration (0.18-0.25 Âµm). The mean values of these aberrations were significantly larger than the RMS in repeated measurements.
Efficient Solar Scene Wavefront Estimation with Reduced Systematic and RMS Errors: Summary
Anugu, N.; Garcia, P.
2016-04-01
computational efficiency. In the first step, the cross-correlation is implemented at the original image spatial resolution grid (1 pixel). In the second step, the cross-correlation is performed using a sub-pixel level grid by limiting the field of search to 4 × 4 pixels centered at the first step delivered initial position. The generation of these sub-pixel grid based region of interest images is achieved with the bi-cubic interpolation. The correlation matching with sub-pixel grid technique was previously reported in electronic speckle photography Sjö'dahl (1994). This technique is applied here for the solar wavefront sensing. A large dynamic range and a better accuracy in the measurements are achieved with the combination of the original pixel grid based correlation matching in a large field of view and a sub-pixel interpolated image grid based correlation matching within a small field of view. The results revealed that the proposed method outperforms all the different peak-finding algorithms studied in the first approach. It reduces both the systematic error and the RMS error by a factor of 5 (i.e., 75% systematic error reduction), when 5 times improved image sampling was used. This measurement is achieved at the expense of twice the computational cost. With the 5 times improved image sampling, the wave front accuracy is increased by a factor of 5. The proposed solution is strongly recommended for wave front sensing in the solar telescopes, particularly, for measuring large dynamic image shifts involved open loop adaptive optics. Also, by choosing an appropriate increment of image sampling in trade-off between the computational speed limitation and the aimed sub-pixel image shift accuracy, it can be employed in closed loop adaptive optics. The study is extended to three other class of sub-aperture images (a point source; a laser guide star; a Galactic Center extended scene). The results are planned to submit for the Optical Express journal.
Combining Placido and Corneal Wavefront Data for the Detection of Forme Fruste Keratoconus.
Saad, Alain; Gatinel, Damien
2016-08-01
To evaluate the accuracy of a new objective method based on Placido disk-derived data for the detection of eyes at risk of ectasia. One hundred nineteen eyes of 176 patients were included and separated into two groups, normal and forme fruste keratoconus (FFKC), using automated corneal classification software. Normal eyes (n = 114) were classified as negative for keratoconus and keratoconus suspect and had undergone LASIK with unremarkable follow-up for 4 years. The FFKC group was composed of 62 topographically normal eyes of patients with keratoconus in the fellow eye. Anterior topographic parameters, obtained from specular topography using Placido-based indices and corneal wavefront Zernike coefficients, were compared between groups. Receiver operating characteristic (ROC) curves were used to identify cut-off points in discriminating between keratoconic and normal eyes. Validation was performed on an external group of eyes. A discriminant function was built combining four corneal wavefront variables and four Placido variables. The area under the receiver operating characteristic was 0.970 with this eight-variable model. The validation of this function had 63% sensitivity for detecting FFKC and 100% sensitivity for detecting keratoconus, with a specificity of 82%. Indices generated from corneal wavefront and Placido measurements can assist in identifying early or mild forms of keratoconus undetected by a Placido-based neural network program. [J Refract Surg. 2016;32(8):510-516.]. Copyright 2016, SLACK Incorporated.
An Efficient Pipeline Wavefront Phase Recovery for the CAFADIS Camera for Extremely Large Telescopes
Directory of Open Access Journals (Sweden)
Eduardo Magdaleno
2009-12-01
Full Text Available In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain: international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975. It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA. These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO problems in Extremely Large Telescopes (ELTs in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs. Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations.
Jian, Yifan; Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel J.; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Verhaegen, Michel; Sarunic, Marinko V.
2017-02-01
Adaptive optics has been successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retina. Wavefront sensorless adaptive optics (WSAO) is a novel technique that facilitates high resolution ophthalmic imaging; it replaces the Hartmann-Shack Wavefront Sensor with an image-driven optimization algorithm and mitigates some the challenges encountered with sensor-based designs. However, WSAO generally requires longer time to perform aberrations correction than the conventional closed-loop adaptive optics. When used for in vivo retinal imaging applications, motion artifacts during the WSAO optimization process will affect the quality of the aberration correction. A faster converging optimization scheme needs to be developed to account for rapid temporal variation of the wavefront and continuously apply corrections. In this project, we investigate the Databased Online Nonlinear Extremum-seeker (DONE), a novel non-linear multivariate optimization algorithm in combination with in vivo human WSAO OCT imaging. We also report both hardware and software updates of our compact lens based WSAO 1060nm swept source OCT human retinal imaging system, including real time retinal layer segmentation and tracking (ILM and RPE), hysteresis correction for the multi-actuator adaptive lens, precise synchronization control for the 200kHz laser source, and a zoom lens unit for rapid switching of the field of view. Cross sectional images of the retinal layers and en face images of the cone photoreceptor mosaic acquired in vivo from research volunteers before and after WSAO optimization are presented.
The generation of arbitrary vector beams using a division of a wavefront-based setup
Kalita, Ranjan; Gaffar, Md; Boruah, Bosanta R.
2016-07-01
In this paper, we introduce an arbitrary vector-beam-forming scheme using a simple arrangement involving only one liquid crystal spatial light modulator. An arbitrary vector beam can be obtained by overlapping two orthogonally polarized beams. In most of the existing vector-beam-forming schemes the two orthogonally polarized beams are essentially copies of a single incident wavefront. However, in the proposed scheme the two orthogonally polarized beams correspond to two separated parts of a single incident wavefront. Taking a cue from the two-beam interference phenomenon, the present scheme can be referred to as a division of a wavefront-based scheme. The proposed setup offers certain important advantages and is more suitable for the generation of higher average-power vector beams. We demonstrate the working of the vector-beam-forming scheme by generating various vector beams such as radially polarized, azimuthally polarized, and Bessel-Gauss beams and also a boat-shaped beam in the focal volume of a low-numerical-aperture focusing lens. The boat-shaped beam comprises a dark center surrounded by intense light from all but one direction. The beam is realized at the focus of an azimuthally polarized beam in the presence of a moderate amount of coma in the beam. The experimental results obtained using the proposed setup are verified by comparing them with the theoretical results.
Development of a hard x-ray wavefront sensor for the EuXFEL
Berujon, Sebastien; Ziegler, Eric; Cojocaru, Ruxandra; Martin, Thierry
2017-05-01
We present developments on a hard X-ray wavefront sensing instrument for characterizing and monitoring the beam of the European X-ray Free Electron Lasers (EuXFEL). The pulsed nature of the intense X-ray beam delivered by this new class of facility gives rise to strong challenges for the optics and their diagnostic. In the frame of the EUCALL project Work Package 7, we are developing a sensor able to observe the beam in the X-ray energy range [8-40] keV without altering it. The sensor is based on the speckle tracking principle and employs two semi-transparent optics optimized such that their X-ray absorption is reduced. Furthermore, this instrument requires a scattering object with small random features placed in the beam and two cameras to record images of the beam at two different propagation distances. The analysis of the speckle pattern and its distortion from one image to the other allows absolute or differential wavefront recovery from pulse to pulse. Herein, we introduce the stakes and challenges of wavefront sensing at an XFEL source and explain the strategies adopted to fulfil the high requirements set by such a source.
Curatu, Eugene O.; Pettit, George H.; Campin, John A.
2002-06-01
The subject of this paper relates to the ocular optical design and vision analysis of refractive correction of the eye. After the purpose statement and the assumption list, the concept of the schematic eye matching a particular (measured) wavefront is introduced. This concept is based on the fact that the ocular wavefront, together with the corneal topography, can be seen as the mathematical global representation of the eye working in monochromatic light and having a foveal vision. The discussed design technique, including an iterative optimization method, could be applied in any ocular correction that utilizes cornea topography and/or ocular wavefront, e.g. contact lens or intra-corneal implant. However, the application this paper refers to is the ocular refractive correction by a procedure using the LADARVISION. It consists of surgical removal and subsequent replacement of a corneal flap on a stromal surface whose shape has been changed by laser ablation of the tissue. Subsequent sections of this paper are dedicated to establishing the limits of possible refractive correction, the influences of the flap and corneal topography into the refractive correction calculation. Finally a realistic evaluation of the results and a list of possible developments of this new optical design method are discussed.
Bayesian inference for a wave-front model of the neolithization of Europe.
Baggaley, Andrew W; Sarson, Graeme R; Shukurov, Anvar; Boys, Richard J; Golightly, Andrew
2012-07-01
We consider a wave-front model for the spread of neolithic culture across Europe, and use Bayesian inference techniques to provide estimates for the parameters within this model, as constrained by radiocarbon data from southern and western Europe. Our wave-front model allows for both an isotropic background spread (incorporating the effects of local geography) and a localized anisotropic spread associated with major waterways. We introduce an innovative numerical scheme to track the wave front, and use Gaussian process emulators to further increase the efficiency of our model, thereby making Markov chain Monte Carlo methods practical. We allow for uncertainty in the fit of our model, and discuss the inferred distribution of the parameter specifying this uncertainty, along with the distributions of the parameters of our wave-front model. We subsequently use predictive distributions, taking account of parameter uncertainty, to identify radiocarbon sites which do not agree well with our model. These sites may warrant further archaeological study or motivate refinements to the model.
Closed-loop focal plane wavefront control with the SCExAO instrument
Martinache, Frantz; Guyon, Olivier
2016-01-01
This article describes the implementation of a focal plane based wavefront control loop on the high-contrast imaging instrument SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane images acquired after an asymmetric mask is introduced in the pupil of the instrument. This absolute sensor is used here in a closed-loop to compensate the non-common path errors that normally affects any imaging system relying on an upstream adaptive optics system.This specific implementation was used to control low order modes corresponding to eight zernike modes (from focus to spherical). This loop was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape used as a zero-point by the high-order wavefront sensor. The paper precises the range of errors this wavefront sensing approach can operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance. Beyond...
Field depth extension of 2D barcode scanner based on wavefront coding and projection algorithm
Zhao, Tingyu; Ye, Zi; Zhang, Wenzi; Huang, Weiwei; Yu, Feihong
2008-03-01
Wavefront coding (WFC) used in 2D barcode scanners can extend the depth of field into a great extent with simpler structure compared to the autofocus microscope system. With a cubic phase mask (CPM) employed in the STOP, blurred images will be obtained in charge coupled device (CCD), which can be restored by digital filters. Direct methods are used widely in real-time restoration with good computational efficiency but with details smoothed. Here, the results of direct method are firstly filtered by hard-threshold function. The positions of the steps can be detected by simple differential operators. With the positions corrected by projection algorithm, the exact barcode information is restored. A wavefront coding system with 7mm effective focal length and 6 F-number is designed as an example. Although with the different magnification, images of different object distances can be restored by one point spread function (PSF) with 200mm object distance. A QR code (Quickly Response Code) of 31mm X 27mm is used as a target object. The simulation results showed that the sharp imaging objective distance is from 80mm to 355mm. The 2D barcode scanner with wavefront coding extends field depth with simple structure, low cost and large manufacture tolerance. This combination of the direct filter and projection algorithm proposed here could get the exact 2D barcode information with good computational efficiency.
Integration and bench testing for the GRAVITY Coudé IR adaptive optics (CIAO) wavefront sensor
Deen, C.; Yang, P.; Huber, A.; Suarez-Valles, M.; Hippler, S.; Brandner, W.; Gendron, E.; Clénet, Y.; Kendrew, S.; Glauser, A.; Klein, R.; Laun, W.; Lenzen, R.; Neumann, U.; Panduro, J.; Ramos, J.; Rohloff, R.-R.; Salzinger, A.; Zimmerman, N.; Henning, T.; Perraut, K.; Perrin, G.; Straubmeier, C.; Amorim, A.; Eisenhauer, F.
2014-08-01
GRAVITY, a second generation instrument for the Very Large Telescope Interferometer (VLTI), will provide an astrometric precision of order 10 micro-arcseconds, an imaging resolution of 4 milli-arcseconds, and low/medium resolution spectro-interferometry. These improvements to the VLTI represent a major upgrade to its current infrared interferometric capabilities, allowing detailed study of obscured environments (e.g. the Galactic Center, young dusty planet-forming disks, dense stellar cores, AGN, etc...). Crucial to the final performance of GRAVITY, the Coudé IR Adaptive Optics (CIAO) system will correct for the effects of the atmosphere at each of the VLT Unit Telescopes. CIAO consists of four new infrared Shack-Hartmann wavefront sensors (WFS) and associated real-time computers/software which will provide infrared wavefront sensing from 1.45-2.45 microns, allowing AO corrections even in regions where optically bright reference sources are scarce. We present here the latest progress on the GRAVITY wavefront sensors. We describe the adaptation and testing of a light-weight version of the ESO Standard Platform for Adaptive optics Real Time Applications (SPARTA-Light) software architecture to the needs of GRAVITY. We also describe the latest integration and test milestones for construction of the initial wave front sensor.
Interferometric adaptive optics for high power laser pointing, wave-front control and phasing
Energy Technology Data Exchange (ETDEWEB)
Baker, K L; Stappaerts, E A; Homoelle, D C; Henesian, M A; Bliss, E S; Siders, C W; Barty, C J
2009-01-21
Implementing the capability to perform fast ignition experiments, as well as, radiography experiments on the National Ignition Facility (NIF) places stringent requirements on the control of each of the beam's pointing and overall wavefront quality. One quad of the NIF beams, 4 beam pairs, will be utilized for these experiments and hydrodynamic and particle-in-cell simulations indicate that for the fast ignition experiments, these beams will be required to deliver 50% (4.0 kJ) of their total energy (7.96 kJ) within a 40 {micro}m diameter spot at the end of a fast ignition cone target. This requirement implies a stringent pointing and overall phase conjugation error budget on the adaptive optics system used to correct these beam lines. The overall encircled energy requirement is more readily met by phasing of the beams in pairs but still requires high Strehl ratios, Sr, and rms tip/tilt errors of approximately one {micro}rad. To accomplish this task we have designed an interferometric adaptive optics system capable of beam pointing, high Strehl ratio and beam phasing with a single pixilated MEMS deformable mirror and interferometric wave-front sensor. We present the design of a testbed used to evaluate the performance of this wave-front sensor below along with simulations of its expected performance level.
Wavefront picking for 3D tomography and full-waveform inversion
AlTheyab, Abdullah
2016-09-08
We have developed an efficient approach for picking firstbreak wavefronts on coarsely sampled time slices of 3D shot gathers. Our objective was to compute a smooth initial velocity model for multiscale full-waveform inversion (FWI). Using interactive software, first-break wavefronts were geometrically modeled on time slices with a minimal number of picks. We picked sparse time slices, performed traveltime tomography, and then compared the predicted traveltimes with the data in-between the picked slices. The picking interval was refined with iterations until the errors in traveltime predictions fell within the limits necessary to avoid cycle skipping in early arrivals FWI. This approach was applied to a 3D ocean-bottom-station data set. Our results indicate that wavefront picking has 28% fewer data slices to pick compared with picking traveltimes in shot gathers. In addition, by using sparse time samples for picking, data storage is reduced by 88%, and therefore allows for a faster visualization and quality control of the picks. Our final traveltime tomogram is sufficient as a starting model for early arrival FWI. © 2016 Society of Exploration Geophysicists.
Rozova, Vlada S; Khaydukov, Eugenyi V; Zvyagin, Andrei V
2016-07-20
A retroemission device (REM) is an incoherent holographic device that represents a lenslet array situated on a substrate containing fluorescent material. Each lenslet focuses each wavelet of an optical wavefront incident on the REM device into a diffraction-limited volume (voxel) in the fluorescent material, so that the voxel coordinates encode the angle of incidence and curvature of the wavelet. The back-propagating fraction of the excited fluorescence is collected by the lenslet and quasi-collimated into a back-propagating wavelet. All wavelets are combined to reconstruct the incident wavefront propagating in the backward direction. We present a theoretical model of REM based on Fresnel-Kirchhoff approximation describing the reconstructed 3D image characteristics versus the thickness of the fluorescence film at the focal plane of the lenslets. Results of the computer simulations of the REM-based images of a point source, two axially separated point sources and an extended object (a circular rim) situated in the sagittal plane are presented. These results speak in favor of using a fluorescence film of minimum diffraction-limited thickness at the lenslet back focal plane. This REM structure minimizes the fluorescence background and improves the 3D imaging resolution in virtue of the exclusion of out-of-voxel fluorescence contributions to the reconstructed wavefront.
Precision Metrology Using Weak Measurements
Zhang, Lijian; Datta, Animesh; Walmsley, Ian A.
2015-05-01
Weak values and measurements have been proposed as a means to achieve dramatic enhancements in metrology based on the greatly increased range of possible measurement outcomes. Unfortunately, the very large values of measurement outcomes occur with highly suppressed probabilities. This raises three vital questions in weak-measurement-based metrology. Namely, (Q1) Does postselection enhance the measurement precision? (Q2) Does weak measurement offer better precision than strong measurement? (Q3) Is it possible to beat the standard quantum limit or to achieve the Heisenberg limit with weak measurement using only classical resources? We analyze these questions for two prototypical, and generic, measurement protocols and show that while the answers to the first two questions are negative for both protocols, the answer to the last is affirmative for measurements with phase-space interactions, and negative for configuration space interactions. Our results, particularly the ability of weak measurements to perform at par with strong measurements in some cases, are instructive for the design of weak-measurement-based protocols for quantum metrology.
Precision metrology using weak measurements.
Zhang, Lijian; Datta, Animesh; Walmsley, Ian A
2015-05-29
Weak values and measurements have been proposed as a means to achieve dramatic enhancements in metrology based on the greatly increased range of possible measurement outcomes. Unfortunately, the very large values of measurement outcomes occur with highly suppressed probabilities. This raises three vital questions in weak-measurement-based metrology. Namely, (Q1) Does postselection enhance the measurement precision? (Q2) Does weak measurement offer better precision than strong measurement? (Q3) Is it possible to beat the standard quantum limit or to achieve the Heisenberg limit with weak measurement using only classical resources? We analyze these questions for two prototypical, and generic, measurement protocols and show that while the answers to the first two questions are negative for both protocols, the answer to the last is affirmative for measurements with phase-space interactions, and negative for configuration space interactions. Our results, particularly the ability of weak measurements to perform at par with strong measurements in some cases, are instructive for the design of weak-measurement-based protocols for quantum metrology.
Acute muscular weakness in children
Directory of Open Access Journals (Sweden)
Ricardo Pablo Javier Erazo Torricelli
Full Text Available ABSTRACT Acute muscle weakness in children is a pediatric emergency. During the diagnostic approach, it is crucial to obtain a detailed case history, including: onset of weakness, history of associated febrile states, ingestion of toxic substances/toxins, immunizations, and family history. Neurological examination must be meticulous as well. In this review, we describe the most common diseases related to acute muscle weakness, grouped into the site of origin (from the upper motor neuron to the motor unit. Early detection of hyperCKemia may lead to a myositis diagnosis, and hypokalemia points to the diagnosis of periodic paralysis. Ophthalmoparesis, ptosis and bulbar signs are suggestive of myasthenia gravis or botulism. Distal weakness and hyporeflexia are clinical features of Guillain-Barré syndrome, the most frequent cause of acute muscle weakness. If all studies are normal, a psychogenic cause should be considered. Finding the etiology of acute muscle weakness is essential to execute treatment in a timely manner, improving the prognosis of affected children.
Aronstein, David L.; Smith, J. S.; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.
2016-07-01
The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES) test chamber. In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing, and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) f/# and pupil-distortion measurements made using a pseudo-nonredundant mask (PNRM), and 3) pupil-geometry predictions for each SI field point tested, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse-translation diversity (TTD) sweeps instead of focus sweeps, in which a subaperture is translated and/or rotated across the exit pupil of the system from one image to the next. Several optical-performance requirements that were verified during this ISIM Element-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also gives an overview of the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis
Measuring Incompatible Observables by Exploiting Sequential Weak Values.
Piacentini, F; Avella, A; Levi, M P; Gramegna, M; Brida, G; Degiovanni, I P; Cohen, E; Lussana, R; Villa, F; Tosi, A; Zappa, F; Genovese, M
2016-10-21
One of the most intriguing aspects of quantum mechanics is the impossibility of measuring at the same time observables corresponding to noncommuting operators, because of quantum uncertainty. This impossibility can be partially relaxed when considering joint or sequential weak value evaluation. Indeed, weak value measurements have been a real breakthrough in the quantum measurement framework that is of the utmost interest from both a fundamental and an applicative point of view. In this Letter, we show how we realized for the first time a sequential weak value evaluation of two incompatible observables using a genuine single-photon experiment. These (sometimes anomalous) sequential weak values revealed the single-operator weak values, as well as the local correlation between them.
Weak measurements with orbital angular momentum pointer states
Puentes, G; Torres, J P
2012-01-01
Weak measurements are a unique tool for accessing information about weakly interacting quantum systems with minimal back-action. Joint weak measurements of single-particle operators with pointer states characterized by a two-dimensional Gaussian distribution can provide, in turn, key information about quantum correlations which can be of relevance for quantum information applications. In this paper, we demonstrate that by employing two-dimensional pointer states endowed with orbital angular momentum (OAM), it is possible to extract second-order weak values of single particle operators, an unaccessible quantity with Gaussian pointer states only. An important application of the results presented here is in the non-destructive measurement of single-particle operator weak variances, via two-dimensional pointer displacements.
On-Orbit Multi-Field Wavefront Control with a Kalman Filter
Lou, John; Sigrist, Norbert; Basinger, Scott; Redding, David
2008-01-01
A document describes a multi-field wavefront control (WFC) procedure for the James Webb Space Telescope (JWST) on-orbit optical telescope element (OTE) fine-phasing using wavefront measurements at the NIRCam pupil. The control is applied to JWST primary mirror (PM) segments and secondary mirror (SM) simultaneously with a carefully selected ordering. Through computer simulations, the multi-field WFC procedure shows that it can reduce the initial system wavefront error (WFE), as caused by random initial system misalignments within the JWST fine-phasing error budget, from a few dozen micrometers to below 50 nm across the entire NIRCam Field of View, and the WFC procedure is also computationally stable as the Monte-Carlo simulations indicate. With the incorporation of a Kalman Filter (KF) as an optical state estimator into the WFC process, the robustness of the JWST OTE alignment process can be further improved. In the presence of some large optical misalignments, the Kalman state estimator can provide a reasonable estimate of the optical state, especially for those degrees of freedom that have a significant impact on the system WFE. The state estimate allows for a few corrections to the optical state to push the system towards its nominal state, and the result is that a large part of the WFE can be eliminated in this step. When the multi-field WFC procedure is applied after Kalman state estimate and correction, the stability of fine-phasing control is much more certain. Kalman Filter has been successfully applied to diverse applications as a robust and optimal state estimator. In the context of space-based optical system alignment based on wavefront measurements, a KF state estimator can combine all available wavefront measurements, past and present, as well as measurement and actuation error statistics to generate a Maximum-Likelihood optimal state estimator. The strength and flexibility of the KF algorithm make it attractive for use in real-time optical system
Development of a pyramidal wavefront sensor test-bench at INO
Turbide, Simon; Wang, Min; Gauvin, Jonny; Martin, Olivier; Savard, Maxime; Bourqui, Pascal; Veran, Jean-Pierre; Deschenes, William; Anctil, Genevieve; Chateauneuf, François
2013-12-01
The key technical element of the adaptive optics in astronomy is the wavefront sensing (WFS). One of the advantages of the pyramid wavefront sensor (P-WFS) over the widely used Shack-Hartmann wavefront sensor seems to be the increased sensitivity in closed-loop applications. A high-sensitivity and large dynamic-range WFS, such as P-WFS technology, still needs to be further investigated for proper justification in future Extremely Large Telescopes application. At INO, we have recently carried out the optical design, testing and performance evaluation of a P-WFS bench setup. The optical design of the bench setup mainly consists of the super-LED fiber source, source collimator, spatial light modulator (SLM), relay lenses, tip-tilt mirror, Fourier-transforming lens, and a four-faceted glass pyramid with a large vertex angle as well as pupil re-imaged optics. The phase-only SLM has been introduced in the bench setup to generate atmospheric turbulence with a maximum phase shift of more than 2π at each pixel (256 grey levels). Like a modified Foucault knife-edge test, the refractive pyramid element is used to produce four images of the entrance pupil on a CCD camera. The Fourier-transforming lens, which is used before the pyramid prism, is designed for telecentric output to allow dynamic modulation (rotation of the beam around the pyramid-prism center) from a tip-tilt mirror. Furthermore, a P-WFS diffraction-based model has been developed. This model includes most of the system limitations such as the SLM discrete voltage steps and the CCD pixel pitch. The pyramid effects (edges and tip) are considered as well. The modal wavefront reconstruction algorithm relies on the construction of an interaction matrix (one for each modulation's amplitude). Each column of the interaction matrix represents the combination of the four pupil images for a given wavefront aberration. The nice agreement between the data and the model suggest that the limitation of the system is not the P
Visible and Infrared Wavefront Sensing detectors review in Europe - part I
Feautrier, Philippe; Gach, Jean-luc
2013-12-01
The purpose of this review is to give an overview of the state of the art wavefront sensor detectors developments held in Europe for the last decade. A major breakthrough has been achieved with the development by e2v technologies of the CCD220 between 2004 and 2012. Another major breakthrough is currently achieved with the very successful development of fast low noise infrared arrays called RAPID. The astonishing results of this device will be showed for the first time in an international conference at AO4ELT3.The CCD220, a 240x240 pixels 8 outputs EMCCD (CCD with internal multiplication), offers less than 0.2 e readout noise at a frame rate of 1500 Hz with negligible dark current. The OCAM2 camera is the commercial product that drives this advanced device. This system, commercialized by First Light Imaging, is quickly described in this paper. An upgrade of OCAM2 is currently developed to boost its frame rate to 2 kHz, opening the window of XAO wavefront sensing for the ELT using 4 synchronized cameras and pyramid wavefront sensing. This upgrade and the results obtained are described extensively elsewhere in this conference (Gach et al).Since this major success, new detector developments started in Europe. The NGSD CMOS device is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with ESO involvement. The spot elongation from a LGS Shack Hartman wavefront sensor necessitates an increase of the pixel format. The NGSD will be a 880x840 pixels CMOS detector with a readout noise of 3 e (goal 1e) at 700 Hz frame rate. New technologies will be developed for that purpose: advanced CMOS pixel architecture, CMOS back thinned and back illuminated device for very high QE, full digital outputs with signal digital conversion on chip. This innovative device will be used on the European ELT but also interests potentially all giant telescopes.Additional developments also started in 2009 for wavefront sensing in the infrared based on a new technological breakthrough
Wavefront sensor based diagnostic of FERMI FEL photon beam (Conference Presentation)
Raimondi, Lorenzo; Mahne, Nicola; Manfredda, Michele; Svetina, Cristian; Cocco, Daniele; Capotondi, Flavio; Pedersoli, Emanuele; Kiskinova, Maya; Zangrando, Marco
2016-09-01
FERMI is the first seeded EUV-SXR free electron laser (FEL) user facility, and it is operated at Elettra Sincrotrone Trieste. Two of the four already operating beamlines, namely LDM (Low Density Matter) and DiProI (Diffraction and Projection Imaging), use a Kirkpatrick-Baez (K-B) active X-ray optics system for focusing the FEL pulses onto the target under investigation. A wafefront sensor is used as diagnostic for the characterization of the focused spot and for the optimization of the parameters of these active optical systems as well. The aim of this work is, first, to describe in detail the optimization procedure using the wavefront sensor through the minimization of the Zernike coefficients, and second, report on the final results obtained on the K-B optical system at the DiProI endstation. The wavefront sensor, mounted out of focus behind the DiProI chamber, allows to compute the intensity distribution of the FEL beam, typically a mix between several modes resulting in a "noisy hyper-Gaussian" intensity profile, and the wavefront residual from ideal propagation shape and after tilt correction. Combining these two measures we can obtain the electric field of the wave out of focus. Propagating back the electric field we reconstruct the focal spot in far field approximation. In this way the sensor works as a diagnostic reconstructing the focal spot. On the other hand, after modelling the electric field with a Zernike polynomial it is easy and fast to optimize the mirror bending and the optical system angles by minimizing the aberrations, quantified in terms of Zernike coefficients. Since each coefficient corresponds to a single parameter, they can be minimized one at the time. Online wavefront measurements have made possible the optimization of the bending acting on the mirror curvature, and of the (pitch and roll) angle positions of the K-B system. From the wavefront measurements we have inferred a focal spot for DiProI of 5.5 μm x 6.2 μm at 32 nm wavelength
... stroke After injury to a nerve During a flare-up of multiple sclerosis (MS) You may feel ... Duchenne) Myotonic dystrophy POISONING Botulism Poisoning ( insecticides , nerve gas) Shellfish poisoning OTHER Not enough healthy red blood ...
Peripheral facial weakness (Bell's palsy).
Basić-Kes, Vanja; Dobrota, Vesna Dermanović; Cesarik, Marijan; Matovina, Lucija Zadro; Madzar, Zrinko; Zavoreo, Iris; Demarin, Vida
2013-06-01
Peripheral facial weakness is a facial nerve damage that results in muscle weakness on one side of the face. It may be idiopathic (Bell's palsy) or may have a detectable cause. Almost 80% of peripheral facial weakness cases are primary and the rest of them are secondary. The most frequent causes of secondary peripheral facial weakness are systemic viral infections, trauma, surgery, diabetes, local infections, tumor, immune disorders, drugs, degenerative diseases of the central nervous system, etc. The diagnosis relies upon the presence of typical signs and symptoms, blood chemistry tests, cerebrospinal fluid investigations, nerve conduction studies and neuroimaging methods (cerebral MRI, x-ray of the skull and mastoid). Treatment of secondary peripheral facial weakness is based on therapy for the underlying disorder, unlike the treatment of Bell's palsy that is controversial due to the lack of large, randomized, controlled, prospective studies. There are some indications that steroids or antiviral agents are beneficial but there are also studies that show no beneficial effect. Additional treatments include eye protection, physiotherapy, acupuncture, botulinum toxin, or surgery. Bell's palsy has a benign prognosis with complete recovery in about 80% of patients, 15% experience some mode of permanent nerve damage and severe consequences remain in 5% of patients.
Manche, Edward E.; Haw, Weldon W.
2011-01-01
Purpose To compare the safety and efficacy of wavefront-guided laser in situ keratomileusis (LASIK) vs photorefractive keratectomy (PRK) in a prospective randomized clinical trial. Methods A cohort of 68 eyes of 34 patients with −0.75 to −8.13 diopters (D) of myopia (spherical equivalent) were randomized to receive either wavefront-guided PRK or LASIK in the fellow eye using the VISX CustomVue laser. Patients were evaluated at 1 day, 1 week, and months 1, 3, 6, and 12. Results At 1 month, uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), 5% and 25% contrast sensitivity, induction of higher-order aberrations (HOAs), and subjective symptoms of vision clarity, vision fluctuation, ghosting, and overall self-assessment of vision were worse (P0.05). At 1 year, mean spherical equivalent was reduced 94% to −0.27 ± 0.31 D in the LASIK group and reduced 96% to −0.17 ± 0.41 D in the PRK group. At 1 year, 91% of eyes were within ±0.50 D and 97 % were within ±1.0 D in the PRK group. At 1 year, 88% of eyes were within ±0.50 D and 97% were within ±1.0 D in the LASIK group. At 1 year, 97% of eyes in the PRK group and 94% of eyes in the LASIK group achieved an UCVA of 20/20 or better (P=0.72). Refractive stability was achieved in both PRK and LASIK groups after 1 month. There were no intraoperative or postoperative flap complications in the LASIK group. There were no instances of corneal haze in the PRK group. Conclusions Wavefront-guided LASIK and PRK are safe and effective at reducing myopia. At 1 month postoperatively, LASIK demonstrates an advantage over PRK in UCVA, BSCVA, low-contrast acuity, induction of total HOAs, and several subjective symptoms. At postoperative month 3, these differences between PRK and LASIK results had resolved. PMID:22253488
Elastic properties of superconductors and materials with weakly correlated spins
Binek, Christian
2017-01-01
It is shown that in the ergodic regime, the temperature dependence of Young?s modulus is solely determined by the magnetic properties of a material. For the large class of materials with paramagnetic or diamagnetic response, simple functional forms of the temperature derivative of Young?s modulus are derived and compared with experimental data and empirical results. Superconducting materials in the Meissner phase are ideal diamagnets. As such, they display remarkable elastic properties. Const...
Elastic properties of superconductors and materials with weakly correlated spins.
Binek, Christian
2017-07-07
It is shown that in the ergodic regime, the temperature dependence of Young's modulus is solely determined by the magnetic properties of a material. For the large class of materials with paramagnetic or diamagnetic response, simple functional forms of the temperature derivative of Young's modulus are derived and compared with experimental data and empirical results. Superconducting materials in the Meissner phase are ideal diamagnets. As such, they display remarkable elastic properties. Constant diamagnetic susceptibility gives rise to a temperature independent elastic modulus for ceramic and single crystalline superconductors alike. The thermodynamic approach established in this report, paves the way to tailor elastic material parameters through the design of magnetic properties.