Sample records for weakly bound projectile

  1. Calculations on the threshold anomaly of weakly bound projectiles with Sao Paulo and Woods-Saxon polarization potentials

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Camacho, A; Aguilera, E F; Martinez-Quiroz, E [Departamento de Aceleradores, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, C.P. 11801, Mexico, D.F. (Mexico); Gomes, P R S; Lubian, J [Instituto de Fisica, Universidade Federal Fluminenese, Avenida Litoranea s/n, Gragoata, Niteroi, RJ, cep 24210-340 (Brazil); Canto, L F, E-mail: arturo.gomez@inin.gob.m [Instituto de Fisica, Universidade Federal do Rio de Janeiro, C.P. 68528, Rio de Janeiro, R.J., cep 21941-972 (Brazil)


    A thorough study of the energy dependence of the nuclear optical potential in reactions involving the weakly bound projectiles {sup 8}B, {sup 7}Be and {sup 6}Li on the target {sup 58}Ni and {sup 9}Be on {sup 27}Al is carried out by performing a {chi}{sup 2}-analysis of recent measurements of elastic scattering cross sections for energies around and above the Coulomb barrier. For this purpose two different potential types are used: the double folding Sao Paulo potential and the Woods-Saxon potential. The calculations performed for the energy dependence of the real and imaginary parts of the polarization potentials show that these potentials besides satisfying the dispersion relation, for some nuclear systems the uncertainties on the energy dependence of the polarization potentials allow to conclude that these systems present a behavior consistent with the Breakup Theshold Anomaly. In other cases, due to the large uncertainties, it is not possible to make a definitive conclusion about the anomalies.

  2. Inclusive breakup of three-fragment weakly bound nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, B.V.; Frederico, T. [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil); Hussein, M.S., E-mail: [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil); Instituto de Estudos Avançados, Universidade de São Paulo, C.P. 72012, 05508-970 São Paulo, SP (Brazil); Instituto de Física, Universidade de São Paulo, C.P. 66318, 05314-970 São Paulo, SP (Brazil)


    The inclusive breakup of three-fragment projectiles is discussed within a four-body spectator model. Both the elastic breakup and the non-elastic breakup are obtained in a unified framework. Originally developed in the 80's for two-fragment projectiles such as the deuteron, in this paper the theory is successfully generalized to three-fragment projectiles. The expression obtained for the inclusive cross section allows the extraction of the incomplete fusion cross section, and accordingly generalizes the surrogate method to cases such as (t, p) and (t, n) reactions. It is found that two-fragment correlations inside the projectile affect in a conspicuous way the elastic breakup cross section. The inclusive non-elastic breakup cross section is calculated and is found to contain the contribution of a three-body absorption term that is also strongly influenced by the two-fragment correlations. This latter cross section contains the so-called incomplete fusion where more than one compound nuclei are formed. Our theory describes both stable weakly bound three-fragment projectiles and unstable ones such as the Borromean nuclei.

  3. Infrared spectroscopy of weakly bound molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lisa I-Ching


    The infrared spectra of a series of hydrated hydronium cluster ions and of protonated ethane ion are presented. A tandem mass spectrometer is ideally suited to obtaining the spectra of such weakly bound molecular ions. Traditional absorption spectroscopy is not feasible in these situations, so the techniques described in this thesis make use of some consequence of photon absorption with higher sensitivity than simply attenuation of laser power. That consequence is dissociation. By first mass selecting the parent ion under study and then mass selecting the fragment ion formed from dissociation, the near unit detection efficiency of ion counting methods has been used to full advantage.

  4. Influence of projectile breakup on complete fusion

    Indian Academy of Sciences (India)

    illustrates the typical reaction mechanisms following the breakup of weakly bound projectiles. When whole of the projectile fuses with whole of the target, the process is known as direct complete fusion (DCF). If prior to fusion, the projectile breaks up and subsequently all the fragments fuse with the target to form a compound.

  5. Weak Solution and Weakly Uniformly Bounded Solution of Impulsive Heat Equations Containing “Maximum” Temperature


    Oyelami, Benjamin Oyediran


    In this paper, criteria for the existence of weak solutions and uniformly weak bounded solution of impulsive heat equation containing maximum temperature are investigated and results obtained. An example is given for heat flow system with impulsive temperature using maximum temperature simulator and criteria for the uniformly weak bounded of solutions of the system are obtained.

  6. Weak Solution and Weakly Uniformly Bounded Solution of Impulsive Heat Equations Containing “Maximum” Temperature

    Directory of Open Access Journals (Sweden)

    Oyelami, Benjamin Oyediran


    Full Text Available In this paper, criteria for the existence of weak solutions and uniformly weak bounded solution of impulsive heat equation containing maximum temperature are investigated and results obtained. An example is given for heat flow system with impulsive temperature using maximum temperature simulator and criteria for the uniformly weak bounded of solutions of the system are obtained.

  7. Electron Capture Dissociation of Weakly Bound Polypeptide Polycationic Complexes

    DEFF Research Database (Denmark)

    Haselmann, Kim F; Jørgensen, Thomas J D; Budnik, Bogdan A


    We have previously reported that, in electron capture dissociation (ECD), rupture of strong intramolecular bonds in weakly bound supramolecular aggregates can proceed without dissociation of weak intermolecular bonds. This is now illustrated on a series of non-specific peptide-peptide dimers...

  8. Role of nuclear couplings in the inelastic excitation of weakly-bound neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dasso, C.H. [Niels Bohr Institute, Copenhagen (Denmark); Lenzi, S.M.; Vitturi, A. [Universita di Padova (Italy)


    Much effort is presently devoted to the study of nuclear systems far from the stability line. Particular emphasis has been placed in light systems such as {sup 11}Li, {sup 8}B and others, where the very small binding energy of the last particles causes their density distribution to extend considerably outside of the remaining nuclear core. Some of the properties associated with this feature are expected to characterize also heavier systems in the vicinity of the proton or neutron drip lines. It is by now well established that low-lying concentrations of multipole strength arise from pure configurations in which a peculiar matching between the wavelength of the continuum wavefunction of the particles and the range of the weakly-bound hole states occurs. To this end the authors consider the break-up of a weakly-bound system in a heavy-ion collision and focus attention in the inelastic excitation of the low-lying part of the continuum. They make use of the fact that previous investigations have shown that the multipole response in this region is not of a collective nature and describe their excited states as pure particle-hole configurations. Since the relevant parameter determining the strength distributions is the binding energy of the last bound orbital they find it most convenient to use single-particle wavefunctions generated by a sperical square-well potential with characteristic nuclear dimensions and whose depth has been adjusted to give rise to a situation in which the last occupied neutron orbital is loosely-bound. Spin-orbit couplings are, for the present purpose, ignored. The results of this investigation clearly indicate that nuclear couplings have the predominant role in causing projectile dissociation in many circumstances, even at bombarding energies remarkably below the Coulomb barrier.

  9. New error bounds for linear complementarity problems of weakly chained diagonally dominant B-matrices

    Directory of Open Access Journals (Sweden)

    Sun Deshu


    Full Text Available Some new error bounds for the linear complementarity problems are obtained when the involved matrices are weakly chained diagonally dominant B-matrices. Numerical examples are given to show the effectiveness of the proposed bounds.

  10. Intermolecular potential functions from spectroscopic properties of weakly bound complexes

    Energy Technology Data Exchange (ETDEWEB)

    Muenter, J.S.


    Goal is to consolidate the information from high resolution spectroscopy of weakly bound cluster molecules through a theoretical model of intermolecular potential energy surfaces. The ability to construct analytic intermolecular potential functions that accurately predict the interaction energy between small molecules will have a major impact in chemistry, biochemistry, and biology. This document presents the evolution and capabilities of a potential function model developed here, and then describes plans for future developments and applications. This potential energy surface (PES) model was first used on (HCCH){sub 2}, (CO{sub 2}){sub 2}, HCCH - CO{sub 2}; it had to be modified to work with HX dimers and CO{sub 2}-HX complexes. Potential functions have been calculated for 15 different molecular complexes containing 7 different monomer molecules. Current questions, logical extensions and new applications of the model are discussed. The questions are those raised by changing the repulsion and dispersion terms. A major extension of the PES model will be the inclusion of induction effects. Projects in progress include PES calculations on (HCCH){sub 3}, CO{sub 2} containing complexes, (HX){sub 2}, HX - CO{sub 2}, CO{sub 2} - CO, (CO{sub 2}){sub 3}, and (OCS){sub 2}. The first PES calculation for a nonlinear molecule will be for water and ammonia complexes. Possible long-term applications for biological molecules are discussed. Differences between computer programs used for molecular mechanics and dynamics in biological systems are discussed, as is the problem of errors. 12 figs, 74 refs. (DLC)

  11. Study of breakup and transfer of weakly bound nucleus 6Li to explore the low energy reaction dynamics (United States)

    Zhang, G. L.; Zhang, G. X.; Hu, S. P.; Zhang, H. Q.; Gomes, P. R. S.; Lubian, J.; Guo, C. L.; Wu, X. G.; Yang, J. C.; Zheng, Y.; Li, C. B.; He, C. Y.; Zhong, J.; Li, G. S.; Yao, Y. J.; Guo, M. F.; Sun, H. B.; Valiente-Dobòn, J. J.; Goasduff, A.; Siciliano, M.; Galtarosa, F.; Francesco, R.; Testov, D.; Mengoni, D.; Bazzacco, D.; John, P. R.; Qu, W. W.; Wang, F.; Zheng, L.; Yu, L.; Chen, Q. M.; Luo, P. W.; Li, H. W.; Wu, Y. H.; Zhou, W. K.; Zhu, B. J.; Li, E. T.; Hao, X.


    Investigation of the breakup and transfer effect of weakly bound nuclei on the fusion process has been an interesting research topic in the past several years. However, owing to the low intensities of the presently available radioactive ion beam (RIB), it is difficult to clearly explore the reaction mechanisms of nuclear systems with unstable nuclei. In comparison with RIB, the beam intensities of stable weakly bound nuclei such as 6,7Li and 9Be, which have significant breakup probability, are orders of magnitude higher. Precise fusion measurements have already been performed with those stable weakly bound nuclei, and the effect of breakup of those nuclei on the fusion process has been extensively studied. Those nuclei indicated large production cross sections for particles other than the α + x breakup. The particles are originated from non-capture breakup (NCBU), incomplete fusion (ICF) and transfer processes. However, the conclusion of reaction dynamics was not clear and has the contradiction. In our previous experiments we have performed 6Li+96Zr and 154Sm at HI-13 Tandem accelerator of China Institute of Atomic Energy (CIAE) by using HPGe array. It is shown that there is a small complete fusion (CF) suppression on medium-mass target nucleus 96Zr different from about 35% suppression on heavier target nucleus 154Sm at near-barrier energies. It seems that the CF suppression factor depends on the charge of target nuclei. We also observed one neutron transfer process. However, the experimental data are scarce for medium-mass target nuclei. In order to have a proper understanding of the influence of breakup and transfer of weakly bound projectiles on the fusion process, we performed the 6Li+89Y experiment with incident energies of 22 MeV and 34 MeV on Galileo array in cooperation with Si-ball EUCLIDES at Legnaro National Laboratory (LNL) in Italy. Using particle-particle and particle-γ coincidences, the different reaction mechanisms can be clearly explored.

  12. Coupled-channels effects in elastic scattering and near-barrier fusion induced by weakly bound nuclei and exotic halo nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Beck, C. [Institut Pluridisciplinaire Hubert Curien, UMR 7178, IN2P3-CNRS et Universite Louis Pasteur (Strasbourg I), 23 rue du Loess - BP28, F-67037 Strasbourg Cedex 2 (France); Keeley, N. [DSM/DAPNIA/SPhN CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Diaz-Torres, A. [Department of Nuclear Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200 (Australia)


    The influence on fusion of coupling to the breakup process is investigated for reactions where at least one of the colliding nuclei has a sufficiently low binding energy for breakup to become an important process. Elastic scattering, excitation functions for sub-and near-barrier fusion cross sections, and breakup yields are analyzed for {sup 6,7}Li+{sup 59}Co. Continuum-Discretized Coupled-Channels (CDCC) calculations describe well the data at and above the barrier. Elastic scattering with {sup 6}Li (as compared to {sup 7}Li) indicates the significant role of breakup for weakly bound projectiles. A study of {sup 4,6}He induced fusion reactions with a three-body CDCC method for the {sup 6}He halo nucleus is presented. The relative importance of breakup and bound-state structure effects on total fusion is discussed. (authors)

  13. Relativistic effects in the study of weakly bound F and Be nuclei

    Indian Academy of Sciences (India)



    Jan 3, 2018 ... Abstract. Relativistic effects are employed to describe the weakly bound nuclei of 17F and 11Be. In order to calculate the energy levels of the ground state and the excited states of these nuclei, we solved the Dirac equation with pseudospin symmetry in the shell model by using the basic concept of ...

  14. Relativistic effects in the study of weakly bound 17 F and 11 Be nuclei

    Indian Academy of Sciences (India)

    Relativistic effects are employed to describe the weakly bound nuclei of 17 F and 11 B e . In order to calculate the energy levels of the ground state and the excited states of these nuclei, we solved the Dirac equation with pseudospin symmetry in the shell model by using the basic concept of supersymmetric shape ...

  15. Shell-model description of weakly bound and unbound nuclear states

    Energy Technology Data Exchange (ETDEWEB)

    Michel, N. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Joint Institute for Heavy Ion Research, Oak Ridge, TN (United States); Nazarewicz, W. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Warsaw University, Institute of Theoretical Physics, Warsaw (Poland); Ploszajczak, M.; Rotureau, J. [CEA/DSM-CNRS/IN2P3, Grand Accelerateur National d' Ions Lourds (GANIL), Caen (France)


    A consistent description of weakly bound and unbound nuclei requires an accurate description of the particle continuum properties when carrying out multiconfiguration mixing. This is the domain of the Gamow Shell Model (GSM) which is the multiconfigurational shell model in the complex k-plane formulated using a complete Berggren ensemble representing bound single-particle (s.p.) states, s.p. resonances, and non-resonant complex energy continuum states. We discuss the salient features of effective interactions in weakly bound systems and show selected applications of the GSM formalism to p-shell nuclei. Finally, a development of the new non-perturbative scheme based on Density Matrix Renormalization Group methods to select the most significant continuum configurations in GSM calculations is discussed shortly. (orig.)

  16. Photoassociation spectra and the validity of the dipole approximation for weakly bound dimers (United States)

    Cocks, Daniel G.; Whittingham, Ian B.


    Photoassociation (PA) of ultracold metastable helium to the 2s2p manifold is theoretically investigated using a nonperturbative close-coupled treatment in which the laser coupling is evaluated without assuming the dipole approximation. The results are compared with our previous study [D. G. Cocks and I. B. Whittingham, Phys. Rev. A 80, 023417 (2009)], which makes use of the dipole approximation. The approximation is found to strongly affect the PA spectra because the photoassociated levels are weakly bound, and a similar impact is predicted to occur in other systems of a weakly bound nature. The inclusion of the approximation does not affect the resonance positions or widths; however, significant differences are observed in the background of the spectra and the maximum laser intensity at which resonances are discernible. Couplings not satisfying the dipole selection rule |J-1|⩽J'⩽|J+1| do not lead to observable resonances.

  17. Structure of the weakly bound triatomic He2Li and He2Na molecules (United States)

    Suno, Hiroya


    We study the structure of triatomic molecules containing two helium atoms and one alkali-metal atom X (X = Li, Na). The three-body Schrödinger equation is solved in hyperspherical coordinates using the He-He and He-X pair van der Waals potentials available in the literature. We calculate the structural properties of the He2Li and He2Na bound states, and analyze one-dimensional pair and angle distribution functions as well as two-dimensional pair-pair and angle-angle distribution functions. These bound states are characterized by so peculiar weakly bound structures that classifying them into particular sizes and geometrical shapes appears to be elusive. Particularly, the JΠ=0+ excited states of He426Li and He427Li are found to constitute giant triatomic molecules with their size amounting to several hundred bohrs.

  18. Classical simulations of heavy-ion fusion reactions and weakly ...

    Indian Academy of Sciences (India)

    This model is extended to simulate heavy-ion reactions such as 6Li + 209Bi involving the weakly-bound projectile considered as a weakly-bound cluster of deuteron and 4He nuclei, thus, simulating a 3-body system in 3S-CMD model. All the essential features of breakup reactions, such as complete fusion, incomplete fusion ...

  19. Bounds on the number of bound states in the transfer matrix spectrum for some weakly correlated lattice models

    Energy Technology Data Exchange (ETDEWEB)

    O' Carroll, Michael [Departamento de Matematica Aplicada e Estatistica, ICMC-USP, C.P. 668,13560-970 Sao Carlos, Sao Paulo (Brazil)


    We consider the interaction of particles in weakly correlated lattice quantum field theories. In the imaginary time functional integral formulation of these theories there is a relative coordinate lattice Schroedinger operator H which approximately describes the interaction of these particles. Scalar and vector spin, QCD and Gross-Neveu models are included in these theories. In the weakly correlated regime H=H{sub o}+W where H{sub o}=-{gamma}{Delta}{sub l}, 0 < {gamma} Much-Less-Than 1 and {Delta}{sub l} is the d-dimensional lattice Laplacian: {gamma}={beta}, the inverse temperature for spin systems and {gamma}={kappa}{sup 3} where {kappa} is the hopping parameter for QCD. W is a self-adjoint potential operator which may have non-local contributions but obeys the bound Double-Vertical-Line W(x, y) Double-Vertical-Line Less-Than-Or-Slanted-Equal-To cexp ( -a( Double-Vertical-Line x Double-Vertical-Line + Double-Vertical-Line y Double-Vertical-Line )), a large: exp-a={beta}/{beta}{sub o}{sup (1/2)}({kappa}/{kappa}{sub o}) for spin (QCD) models. H{sub o}, W, and H act in l{sub 2}(Z{sup d}), d Greater-Than-Or-Slanted-Equal-To 1. The spectrum of H below zero is known to be discrete and we obtain bounds on the number of states below zero. This number depends on the short range properties of W, i.e., the long range tail does not increase the number of states.

  20. Universal efficiency bounds of weak-dissipative thermodynamic cycles at the maximum power output. (United States)

    Guo, Juncheng; Wang, Junyi; Wang, Yuan; Chen, Jincan


    Based on the assumption of weak dissipation introduced by Esposito et al. [Phys. Rev. Lett. 105, 150603 (2010)], analytic expressions for the efficiency bounds of several classes of typical thermodynamic cycles at the maximum power output are derived. The results obtained are of universal significance. They can be used to conveniently reveal the general characteristics of not only Carnot heat engines, but also isothermal chemical engines, non-Carnot heat engines, flux flow engines, gravitational engines, quantum Carnot heat engines, and two-level quantum Carnot engines at the maximum power output and to directly draw many important conclusions in the literature.

  1. Structure Effects in Collisions Induced by Halo and Weakly Bound Nuclei Around the Coulomb Barrier

    CERN Document Server

    Scuderi, V; Torresi, D; Fisichella, M; Borge, M J G; Randisi, G; Milin, M; Figuera, P; Raabe, R; Di Pietro, A; Amorini, F; Fraile, L M; Vidal, A M; Rizzo, F; Zadro, M; Gomez-Camacho, J; Pellegriti, M G; Papa, M; Jeppesen, H; Santonocito, D; Sanchez, E M R; Acosta, L; Tengblad, O; Lattuada, M; Musumarra, A; Scalia, G


    In this contribution, results concerning different reaction channels for the collisions induced by the three Be isotopes, Be-9,Be-10,Be-11, on a Zn-64 target at energies around the Coulomb barrier will be presented. The experiments with the radioactive Be-10,Be-11 beams were performed at REX-ISOLDE (CERN) whereas the experiment with the stable weakly bound Be-9 beam was performed at LNS Catania. Elastic scattering angular distributions have been measured for the three systems Be-9,Be-10,Be-11 + Zn-64 at the same center of mass energy. The angular distributions were analyzed with optical potentials and reaction cross sections were obtained from optical model calculations, performed with the code PTOLEMY. For the Be-11 + Zn-64 reaction, the break-up angular distribution was also measured.

  2. Bounding the Electromagnetic and Weak Dipole Moments of the Tau-Lepton in a Simplest Little Higgs Model (United States)

    Gutiérrez-Rodríguez, A.

    From the total cross-section for the reaction e+e-→τ+τ-γ at the Z1 pole and in the framework of a simplest little Higgs model (SLHM), we get a limit on the characteristic energy scale of the model f, f ≥ 5.4 TeV, which in turn induces bounds on the electromagnetic and weak dipole moments of the tau-lepton. Our bounds on the electromagnetic moments are consistent with the bounds obtained by the L3 and OPAL collaborations for the reaction e+e-→τ+τ-γ. We also obtained bounds on the tau weak dipole moments which are consistent with the bounds obtained recently by the DELPHI and ALEPH collaborations from the reaction e+e-→τ+τ-.

  3. Systematics of the breakup probability function for {sup 6}Li and {sup 7}Li projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Capurro, O.A., E-mail: [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); Pacheco, A.J.; Arazi, A. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Carnelli, P.F.F. [CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, 25 de Mayo y Francia, B1650BWA San Martín, Buenos Aires (Argentina); Fernández Niello, J.O. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, 25 de Mayo y Francia, B1650BWA San Martín, Buenos Aires (Argentina); and others


    Experimental non-capture breakup cross sections can be used to determine the probability of projectile and ejectile fragmentation in nuclear reactions involving weakly bound nuclei. Recently, the probability of both type of dissociations has been analyzed in nuclear reactions involving {sup 9}Be projectiles onto various heavy targets at sub-barrier energies. In the present work we extend this kind of systematic analysis to the case of {sup 6}Li and {sup 7}Li projectiles with the purpose of investigating general features of projectile-like breakup probabilities for reactions induced by stable weakly bound nuclei. For that purpose we have obtained the probabilities of projectile and ejectile breakup for a large number of systems, starting from a compilation of the corresponding reported non-capture breakup cross sections. We parametrize the results in accordance with the previous studies for the case of beryllium projectiles, and we discuss their systematic behavior as a function of the projectile, the target mass and the reaction Q-value.

  4. Recent developments in fusion and direct reactions with weakly bound nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L.F. [Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21941-972 Rio de Janeiro, RJ (Brazil); Instituto de Física, Universidade Federal Fluminense, Av. Litorânea S-N, 24210-340 Niteroi, RJ (Brazil); Gomes, P.R.S. [Instituto de Física, Universidade Federal Fluminense, Av. Litorânea S-N, 24210-340 Niteroi, RJ (Brazil); Donangelo, R. [Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21941-972 Rio de Janeiro, RJ (Brazil); Instituto de Física, Facultad de Ingeniería, C.C. 30, 11000 Montevideo (Uruguay); Lubian, J. [Instituto de Física, Universidade Federal Fluminense, Av. Litorânea S-N, 24210-340 Niteroi, RJ (Brazil); Hussein, M.S., E-mail: [Instituto de Estudos Avançados, Universidade de São Paulo, C.P. 72012, 05508-970, São Paulo, SP (Brazil); Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, C.P. 66318, 05314-970, São Paulo, SP (Brazil); Departamento de Física, Instituto Tecnológico de Aeronáutica, DCTA 12.228-900, São José dos Campos, SP (Brazil)


    In this Report we give a balanced account of the experimental and theoretical advances acquired over the last decade in the field of near-barrier fusion reactions induced by weakly bound stable and unstable nuclei. The elastic scattering and breakup reactions of these systems are also extensively reviewed as they play an important role in the fusion process. We review several theoretical tools used in the description of the data. The concepts of Complete Fusion (CF), Incomplete Fusion (ICF) and Total Fusion (TF), which is the sum of CF and ICF, are discussed and recent work on the calculation of these quantities is reviewed. The Continuum Discretized Coupled Channels (CDCC) method and its semiclassical version are described in detail and their limitations are pointed out. More importantly, we describe the salient features of the conclusions reached from the more than 40 measurements made, over a decade, of near-barrier fusion, elastic scattering and breakup reactions, and confront these data with the CDCC or other methods appropriate for these processes at the energy regime in question.

  5. Model-Independent Analysis of $B \\to \\pi K$ Decays and Bounds on the Weak Phase $\\gamma$

    CERN Document Server

    Neubert, M


    A general parametrization of the amplitudes for the rare two-body decays B -> pi K is introduced, which makes maximal use of theoretical constraints arising from flavour symmetries of the strong interactions and the structure of the low-energy effective weak Hamiltonian. With the help of this parametrization, a model-independent analysis of the branching ratios and direct CP asymmetries in the various B -> pi K decay modes is performed, and the impact of hadronic uncertainties on bounds on the weak phase gamma = arg(Vub*) is investigated.

  6. Gamow shell-model description of weakly bound and unbound nuclear states

    Energy Technology Data Exchange (ETDEWEB)

    Michel, N.; Nazarewicz, W. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Ploszajczak, M.; Rotureau, J. [Grand Accelerateur National d' Ions Lourds (GANIL), CEA/DSM- NRS/IN2P3, BP 55027, F-14076 Caen Cedex 05 (France)


    Recently, the shell model in the complex k-plane (the so-called Gamow Shell Model) has been formulated using a complex Berggren ensemble representing bound single-particle states, single-particle resonances, and non-resonant continuum states. In this framework, we shall discuss binding energies and energy spectra of neutron-rich helium and lithium isotopes. The single-particle basis used is that of the Hartree-Fock potential generated self-consistently by the finite-range residual interaction. (Author) 21 refs., 5 tabs., 2 figs.

  7. Dynamics of fragment capture for cluster structures of weakly bound 7Li

    Directory of Open Access Journals (Sweden)

    Shrivastava A.


    Full Text Available Role of cluster structures of 7Li on reaction dynamics have been studied by performing exclusive measurements of prompt-γ rays from residues with scattered particles at energy, E/Vb = 1.6, with 198Pt target. Yields of the residues resulting after capture of t and 4,5,6He, corresponding to different excitation energies of the composite system were estimated. The results were compared with three body classical-dynamical model for breakup fusion, constrained by the measured fusion, α and t capture cross-sections. The cross-section of residues from capture of α and t agreed well with the prediction of the model showing dominance of the two step process - breakup fusion, while those from tightly bound 6He showed massive transfer to be the dominant mechanism.

  8. Graphical Method for Determining Projectile Trajectory (United States)

    Moore, J. C.; Baker, J. C.; Franzel, L.; McMahon, D.; Songer, D.


    We present a nontrigonometric graphical method for predicting the trajectory of a projectile when the angle and initial velocity are known. Students enrolled in a general education conceptual physics course typically have weak backgrounds in trigonometry, making inaccessible the standard analytical calculation of projectile range. Furthermore,…

  9. Path integral Monte Carlo approach for weakly bound van der Waals complexes with rotations: algorithm and benchmark calculations. (United States)

    Blinov, Nicholas; Song, XiaoGeng; Roy, Pierre-Nicholas


    A path integral Monte Carlo technique suitable for the treatment of doped helium clusters with inclusion of the rotational degrees of freedom of the dopant is introduced. The extrapolation of the results to the limit of infinite Trotter number is discussed in detail. Benchmark calculations for small weakly bound (4)He(N)--OCS clusters are presented. The Monte Carlo results are compared with those of basis set calculations for the He--OCS dimer. A technique to analyze the orientational imaginary time correlation function is suggested. It allows one to obtain information regarding the effective rotational constant for a doped helium cluster based on a model for the rotational Hamiltonian. The renormalization of the effective rotational constant for (4)He(N)--OCS clusters derived from the orientational imaginary time correlation function is in good agreement with experimental results.

  10. Chirality of weakly bound complexes: The potential energy surfaces for the hydrogen-peroxide−noble-gas interactions

    Energy Technology Data Exchange (ETDEWEB)

    Roncaratti, L. F., E-mail:; Leal, L. A.; Silva, G. M. de [Instituto de Física, Universidade de Brasília, 70910 Brasília (Brazil); Pirani, F. [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, V. [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Instituto de Física, Universidade Federal da Bahia, 40210 Salvador (Brazil); Gargano, R. [Instituto de Física, Universidade de Brasília, 70910 Brasília (Brazil); Departments of Chemistry and Physics, University of Florida, Quantum Theory Project, Gainesville, Florida 32611 (United States)


    We consider the analytical representation of the potential energy surfaces of relevance for the intermolecular dynamics of weakly bound complexes of chiral molecules. In this paper we study the H{sub 2}O{sub 2}−Ng (Ng=He, Ne, Ar, Kr, and Xe) systems providing the radial and the angular dependence of the potential energy surface on the relative position of the Ng atom. We accomplish this by introducing an analytical representation which is able to fit the ab initio energies of these complexes in a wide range of geometries. Our analysis sheds light on the role that the enantiomeric forms and the symmetry of the H{sub 2}O{sub 2} molecule play on the resulting barriers and equilibrium geometries. The proposed theoretical framework is useful to study the dynamics of the H{sub 2}O{sub 2} molecule, or other systems involving O–O and S–S bonds, interacting by non-covalent forces with atoms or molecules and to understand how the relative orientation of the O–H bonds changes along collisional events that may lead to a hydrogen bond formation or even to selectivity in chemical reactions.

  11. Intermolecular potential functions from spectroscopic properties of weakly bound complexes. Third progress report, July 1, 1991--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Muenter, J.S.


    Goal is to consolidate the information from high resolution spectroscopy of weakly bound cluster molecules through a theoretical model of intermolecular potential energy surfaces. The ability to construct analytic intermolecular potential functions that accurately predict the interaction energy between small molecules will have a major impact in chemistry, biochemistry, and biology. This document presents the evolution and capabilities of a potential function model developed here, and then describes plans for future developments and applications. This potential energy surface (PES) model was first used on (HCCH){sub 2}, (CO{sub 2}){sub 2}, HCCH - CO{sub 2}; it had to be modified to work with HX dimers and CO{sub 2}-HX complexes. Potential functions have been calculated for 15 different molecular complexes containing 7 different monomer molecules. Current questions, logical extensions and new applications of the model are discussed. The questions are those raised by changing the repulsion and dispersion terms. A major extension of the PES model will be the inclusion of induction effects. Projects in progress include PES calculations on (HCCH){sub 3}, CO{sub 2} containing complexes, (HX){sub 2}, HX - CO{sub 2}, CO{sub 2} - CO, (CO{sub 2}){sub 3}, and (OCS){sub 2}. The first PES calculation for a nonlinear molecule will be for water and ammonia complexes. Possible long-term applications for biological molecules are discussed. Differences between computer programs used for molecular mechanics and dynamics in biological systems are discussed, as is the problem of errors. 12 figs, 74 refs. (DLC)

  12. Projectile Motion Details. (United States)

    Schnick, Jeffrey W.


    Presents an exercise that attempts to correct for the common discrepancies between theoretical and experimental predictions concerning projectile motion using a spring-loaded projectile ball launcher. Includes common correction factors for student use. (MVL)

  13. Investigations of the potential functions of weakly bound diatomic molecules and laser-assisted excitive Penning ionization

    Energy Technology Data Exchange (ETDEWEB)

    Goble, J.H. Jr.


    Three variations on the Dunham series expansion function of the potential of a diatomic molecule are compared. The differences among these expansions lie in the choice of the expansion variable, lambda. The functional form of these variables are lambda/sub s/ = l-r/sub e//r for the Simon-Parr-Finlan version, lambda/sub T/ - 1-(r/sub e//r)/sup p/ for that of Thakkar, and lambda/sub H/ = 1-exp(-rho(r/r/sub e/-1) for that of Huffaker. A wide selection of molecular systems are examined. It is found that, for potentials in excess of thirty kcal/mole, the Huffaker expansion provides the best description of the three, extrapolating at large internuclear separation to a value within 10% of the true dissociation energy. For potentials that result from the interaction of excited states, all series expansions show poor behavior away from the equilibrium internuclear separation of the molecule. The series representation of the potentials of weakly bound molecules are examined in more detail. The ground states of BeAr/sup +/, HeNe/sup +/, NaAr, and Ar/sub 2/ and the excited states of HeNe+, NaNe, and NaAr are best described by the Thakkar expansion. Finally, the observation of laser-assisted excitive Penning ionization in a flowing afterglow is reported. The reaction Ar(/sup 3/P/sub 2/) + Ca + h nu ..-->.. Ar + Ca/sup +/(5p /sup 2/P/sub J/) + e/sup -/ occurs when the photon energy, h nu, is approximately equal to the energy difference between the metastable argon and one of the fine structure levels of the ion's doublet. By monitoring the cascade fluorescence of the above reaction and comparing it to the flourescence from the field-free process Ar(/sup 3/P/sub 2/) + Ca ..-->.. Ar + Ca/sup +/(4p /sup 2/P/sub J/) + e/sup -/ a surprisingly large cross section of 6.7 x 10/sup 3/ A/sup 2/ is estimated.

  14. Evidence for weakly bound electrons in non-irradiated alkane crystals: The electrons as a probe of structural differences in crystals. (United States)

    Pietrow, M; Gagoś, M; Misiak, L E; Kornarzyński, K; Szurkowski, J; Rochowski, P; Grzegorczyk, M


    It is generally assumed that weakly bound (trapped) electrons in organic solids come only from radiolytical (or photochemical) processes like ionization caused by an excited positron entering the sample. This paper presents evidence for the presence of these electrons in non-irradiated samples of docosane. This can be due to the triboelectrification process. We argue that these electrons can be located (trapped) either in interlamellar gaps or in spaces made by non-planar conformers. Electrons from the former ones are bound more weakly than electrons from the latter ones. The origin of Vis absorption for the samples is explained. These spectra can be used as a probe indicating differences in the solid structures of hydrocarbons.

  15. Weakly bound states of two- and three-boson systems in the crossover from two to three dimensions

    DEFF Research Database (Denmark)

    Yamashita, Marcelo; Bellotti, Filipe Furlan; Frederico, Tobias


    The spectrum and properties of quantum bound states is strongly dependent on the dimensionality of space. How this comes about and how one may theoretically and experimentally study the interpolation between different dimensions is a topic of great interest in different fields of physics. In this...

  16. Teaching Projectile Motion (United States)

    Summers, M. K.


    Described is a novel approach to the teaching of projectile motion of sixth form level. Students are asked to use an analogue circuit to observe projectile motion and to graph the experimental results. Using knowledge of basic dynamics, students are asked to explain the shape of the curves theoretically. (Author/MA)

  17. Projectile Motion Revisited. (United States)

    Lucie, Pierre


    Analyzes projectile motion using symmetry and simple geometry. Deduces the direction of velocity at any point, range, time of flight, maximum height, safety parabola, and maximum range for a projectile launched upon a plane inclined at any angle with respect to the horizontal. (Author/GA)

  18. Weak radiative decays of the B meson and bounds on M{sub H}± in the Two-Higgs-Doublet Model

    Energy Technology Data Exchange (ETDEWEB)

    Misiak, Mikolaj [University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland); CERN, Theoretical Physics Department, Geneva 23 (Switzerland); Steinhauser, Matthias [Karlsruhe Institute of Technology (KIT), Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany)


    In a recent publication (Abdesselam et al. arXiv:1608.02344), the Belle collaboration updated their analysis of the inclusive weak radiative B-meson decay, including the full dataset of (772 ± 11) x 10{sup 6} B anti B pairs. Their result for the branching ratio is now below the Standard Model prediction (Misiak et al. Phys Rev Lett 114:221801, 2015, Czakon et al. JHEP 1504:168, 2015), though it remains consistent with it. However, bounds on the charged Higgs boson mass in the Two-Higgs-Doublet Model get affected in a significant manner. In the so-called Model II, the 95% C.L. lower bound on M{sub H}± is now in the 570-800 GeV range, depending quite sensitively on the method applied for its determination. Our present note is devoted to presenting and discussing the updated bounds, as well as to clarifying several ambiguities that one might encounter in evaluating them. One of such ambiguities stems from the photon energy cutoff choice, which deserves re-consideration in view of the improved experimental accuracy. (orig.)

  19. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya


    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  20. Projectile Motion with Mathematica. (United States)

    de Alwis, Tilak


    Describes how to use the computer algebra system (CAS) Mathematica to analyze projectile motion with and without air resistance. These experiments result in several conjectures leading to theorems. (Contains 17 references.) (Author/ASK)

  1. A Projectile Motion Bullseye. (United States)

    Lamb, William G.


    Explains a projectile motion experiment involving a bow and arrow. Procedures to measure "muzzle" velocity, bow elastic potential energy, range, flight time, wind resistance, and masses are considered. (DH)

  2. Projectile Demilitarization Facilities (United States)

    Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...

  3. Small caliber guided projectile (United States)

    Jones, James F [Albuquerque, NM; Kast, Brian A [Albuquerque, NM; Kniskern, Marc W [Albuquerque, NM; Rose, Scott E [Albuquerque, NM; Rohrer, Brandon R [Albuquerque, NM; Woods, James W [Albuquerque, NM; Greene, Ronald W [Albuquerque, NM


    A non-spinning projectile that is self-guided to a laser designated target and is configured to be fired from a small caliber smooth bore gun barrel has an optical sensor mounted in the nose of the projectile, a counterbalancing mass portion near the fore end of the projectile and a hollow tapered body mounted aft of the counterbalancing mass. Stabilizing strakes are mounted to and extend outward from the tapered body with control fins located at the aft end of the strakes. Guidance and control electronics and electromagnetic actuators for operating the control fins are located within the tapered body section. Output from the optical sensor is processed by the guidance and control electronics to produce command signals for the electromagnetic actuators. A guidance control algorithm incorporating non-proportional, "bang-bang" control is used to steer the projectile to the target.

  4. Characterization and reactivity of the weakly bound complexes of the [H, N, S]{sup −} anionic system with astrophysical and biological implications

    Energy Technology Data Exchange (ETDEWEB)

    Trabelsi, T.; Ajili, Y.; Ben Yaghlane, S.; Jaidane, N.-E. [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications–LSAMA, Université de Tunis El Manar, Tunis (Tunisia); Mogren Al-Mogren, M. [Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Francisco, J. S. [Department of Chemistry and Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47906 (United States); Hochlaf, M., E-mail: [Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Blvd. Descartes, 77454 Marne-la-Vallée (France)


    We investigate the lowest electronic states of doublet and quartet spin multiplicity states of HNS{sup −} and HSN{sup −} together with their parent neutral triatomic molecules. Computations were performed using highly accurate ab initio methods with a large basis set. One-dimensional cuts of the full-dimensional potential energy surfaces (PESs) along the interatomic distances and bending angle are presented for each isomer. Results show that the ground anionic states are stable with respect to the electron detachment process and that the long range parts of the PESs correlating to the SH{sup −} + N, SN{sup −} + H, SN + H{sup −}, NH + S{sup −}, and NH{sup −} + S are bound. In addition, we predict the existence of long-lived weakly bound anionic complexes that can be formed after cold collisions between SN{sup −} and H or SH{sup −} and N. The implications for the reactivity of these species are discussed; specifically, it is shown that the reactions involving SH{sup −}, SN{sup −}, and NH{sup −} lead either to the formation of HNS{sup −} or HSN{sup −} in their electronic ground states or to autodetachment processes. Thus, providing an explanation for why the anions, SH{sup −}, SN{sup −}, and NH{sup −}, have limiting detectability in astrophysical media despite the observation of their corresponding neutral species. In a biological context, we suggest that HSN{sup −} and HNS{sup −} should be incorporated into H{sub 2}S-assisted heme-catalyzed reduction mechanism of nitrites in vivo.

  5. Long clinostation influence on the localization of free and weakly bound calcium in cell walls of Funaria hygrometrica moss protonema cells (United States)

    Nedukha, E. M.

    The pyroantimonate method was used to study the localization of free and weakly bound calcium in cells of moss protonema of Funaria hygrometrica Hedw. cultivated on a clinostat (2 rev/min). Electroncytochemical study of control cells cultivated at 1 g revealed that granular precipitate marked chloroplasts, mitochondria, Golgi apparatus, lipid drops, nucleoplasma, nucleolus, nucleus membranes, cell walls and endoplasmic reticulum. In mitochondria the precipitate was revealed in stroma, in chloroplast it was found on thylakoids and envelope membranes. The cultivation of protonema on clinostat led to the intensification in cytochemical reaction product deposit. A considerable intensification of the reaction was noted in endomembranes, vacuoles, periplasmic space and cell walls. At the same time analysis of pectinase localization was made using the electroncytochemical method. A high reaction intensity in walls in comparison to that in control was found out to be a distinctive pecularity of the cells cultivated on clinostat. It testifies to the fact that increasing of freee calcium concentrations under conditions of clinostation is connected with pectinic substances hydrolysis and breaking of methoxy groups of pectins. Data obtained are discussed in relation to problems of possible mechanisms of disturbance in calcium balance of plant cells and the role of cell walls in gomeostasis of cell grown under conditions of simulated weighlessness.

  6. Concrete structures under projectile impact

    CERN Document Server

    Fang, Qin


    In this book, the authors present their theoretical, experimental and numerical investigations into concrete structures subjected to projectile and aircraft impacts in recent years. Innovative approaches to analyze the rigid, mass abrasive and eroding projectile penetration and perforation are proposed. Damage and failure analyses of nuclear power plant containments impacted by large commercial aircrafts are numerically and experimentally analyzed. Ultra-high performance concrete materials and structures against the projectile impact are developed and their capacities of resisting projectile impact are evaluated. This book is written for the researchers, engineers and graduate students in the fields of protective structures and terminal ballistics.

  7. Microspoiler Actuation for Guided Projectiles (United States)


    Fabrication at Georgia Tech Machine Shop (right). G. Special Comments None. Projectile Aft Body and Fin Set Cam Mechanism Spacer and Guide...between the Georgia Institute of Technology (Georgia Tech ) and the Army Research Laboratory (ARL) for DARPA.  Objective 1: Perform Trade Studies to...authority trade studies will examine scalability of microspoiler performance to various calibers of fin -stabilized projectiles, including small, medium

  8. Breakdown of a space charge limited regime of a sheath in a weakly collisional plasma bounded by walls with secondary electron emission. (United States)

    Sydorenko, D; Kaganovich, I; Raitses, Y; Smolyakov, A


    A new regime of plasma-wall interaction is identified in particle-in-cell simulations of a hot plasma bounded by walls with secondary electron emission. Such a plasma has a strongly non-Maxwellian electron velocity distribution function and consists of bulk plasma electrons and beams of secondary electrons. In the new regime, the plasma sheath is not in a steady space charge limited state even though the secondary electron emission produced by the plasma bulk electrons is so intense that the corresponding partial emission coefficient exceeds unity. Instead, the plasma-sheath system performs relaxation oscillations by switching quasiperiodically between the space charge limited and non-space-charge limited states.

  9. Mercury as the Unaccreted Projectile: Thermal Consequences (United States)

    Asphaug, Erik; Gabriel, Travis; Jackson, Alan; Perera, Viranga


    Mercury retained substantial volatiles during its formation, in far greater proportion than the Moon, despite losing ~2/3 of its rocky mantle. Its volatile-rich geochemistry would contraindicate a giant impact because it would drive away the volatiles, as in the hypothesis for the Moon. However, the thermal consequences of Mercury formation vary considerably between the two giant impact scenarios, ‘direct hit’ (DH; Benz et al. 1989) and ‘hit and run’ (HR; Asphaug and Reufer 2014). Each begins with a differentiated chondritic proto-Mercury (PM) a bit larger than Mars. In DH, PM gets eroded by a very energetic impactor half its mass, at ~6-7 times the escape velocity. To remove half of PM’s mantle, the post-impact target gets completely shock-vaporized and is sheared apart into space. The bound remnant in DH would experience a comparable deposition of shock enthalpy, as in Moon formation, and would expand into a much larger volume of heliocentric space, leading to a dry planet. The bound remnant will go on to re-accrete much of the silicate mantle that it just lost, another challenge for DH. In HR, PM is the projectile that slams into a terrestrial planet twice its size (proto-Venus or proto-Earth). For typical impact angle and speed, a typical outcome is to ‘bounce”. But for HR to explain Mercury, PM must avoid accretion every time it encounters the target, until it is scattered or migrates away (or is accreted, in which case there is no Mercury), leading to multi-HR scenarios. Tides are intense in HR because the projectile grazes the target core; gravity does most of the work of mantle stripping. Shocks play a secondary role. Whereas in DH the impactor blasts the target inside-out, in HR the runner emerges relatively unshocked, and undispersed except for losing the gravitationally-unbound material. HR is a mechanism for collecting low-shocked remnants, because the intensely shocked material ends up bound to the target or escaping to heliocentric space

  10. An Experiment on Projectile Motion

    Indian Academy of Sciences (India)

    IAS Admin

    reading is taken, the reset switch is pressed for taking the next reading. The photogates (attached to launcher and the contact sensor pad) are connected to the microcontroller through USB ports. The timer can also be used in simple pendulum and free fall experiments. In this article, only the projectile motion experiment.

  11. Projectile Motion Gets the Hose (United States)

    Goff, John Eric; Liyanage, Chinthaka


    Students take a weekly quiz in our introductory physics course. During the week in which material focused on projectile motion, we not-so-subtly suggested what problem the students would see on the quiz. The quiz problem was an almost exact replica of a homework problem we worked through in the class preceding the quiz. The goal of the problem is…

  12. Novice Rules for Projectile Motion. (United States)

    Maloney, David P.


    Investigates several aspects of undergraduate students' rules for projectile motion including general patterns; rules for questions about time, distance, solids and liquids; and changes in rules when asked to ignore air resistance. Reports approach differences by sex and high school physics experience, and that novice rules are situation…

  13. On projectiles, missiles and history (United States)

    Strnad, J.


    The trajectories of projectiles are easily calculated and the way to the trajectories of intercontinental ballistic missiles is only a little more demanding. The first can be considered as limiting cases of the second. However, at the beginning of physics the two cases were taken as completely unrelated.

  14. Formation of the weakly bound muonic molecule (4Heμt) 01 2 + in the three-body (tμ) 1 s +4He +4He collision (United States)

    Czapliński, Wilhelm; Rybski, Michał


    Formation of the weakly bound muonic molecule (4He μt)012+ in the excited rotational-vibrational state (J , ν) = (0 , 1) due to the three-body collision (tμ)1 s +4He +4He is considered for the first time. It is assumed that the process occurs in T-4He gaseous mixture in thermal equilibrium containing thermalized muonic tritium atoms. The corresponding reaction rate is calculated in the frame of the distorted wave Born approximation (DWBA) method using the dipole approximation for the interaction of tμ +4He system with the incoming helium atom. The obtained formation rate (normalized to helium density equal to the liquid hydrogen density) increases with temperature from 7.8 ṡ106 s-1 for 1000 K to 4.8 ṡ107 s-1 for 3000 K.

  15. Wind-influenced projectile motion (United States)

    Bernardo, Reginald Christian; Perico Esguerra, Jose; Day Vallejos, Jazmine; Jerard Canda, Jeff


    We solved the wind-influenced projectile motion problem with the same initial and final heights and obtained exact analytical expressions for the shape of the trajectory, range, maximum height, time of flight, time of ascent, and time of descent with the help of the Lambert W function. It turns out that the range and maximum horizontal displacement are not always equal. When launched at a critical angle, the projectile will return to its starting position. It turns out that a launch angle of 90° maximizes the time of flight, time of ascent, time of descent, and maximum height and that the launch angle corresponding to maximum range can be obtained by solving a transcendental equation. Finally, we expressed in a parametric equation the locus of points corresponding to maximum heights for projectiles launched from the ground with the same initial speed in all directions. We used the results to estimate how much a moderate wind can modify a golf ball’s range and suggested other possible applications.

  16. Sequential injection gas guns for accelerating projectiles (United States)

    Lacy, Jeffrey M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID


    Gas guns and methods for accelerating projectiles through such gas guns are described. More particularly, gas guns having a first injection port located proximate a breech end of a barrel and a second injection port located longitudinally between the first injection port and a muzzle end of the barrel are described. Additionally, modular gas guns that include a plurality of modules are described, wherein each module may include a barrel segment having one or more longitudinally spaced injection ports. Also, methods of accelerating a projectile through a gas gun, such as injecting a first pressurized gas into a barrel through a first injection port to accelerate the projectile and propel the projectile down the barrel past a second injection port and injecting a second pressurized gas into the barrel through the second injection port after passage of the projectile and to further accelerate the projectile are described.

  17. Projectile Balloting Attributable to Gun Tube Curvature

    Directory of Open Access Journals (Sweden)

    Michael M. Chen


    Full Text Available Transverse motion of a projectile during launch is detrimental to firing accuracy, structural integrity, and/or on-board electronics performance of the projectile. One manifest contributing factor to the undesired motion is imperfect bore centerline straightness. This paper starts with the presentation of a deterministic barrel model that possesses both vertical and lateral deviations from centerline in accordance with measurement data, followed by a novel approach to simulating comprehensive barrel centerline variations for the investigation of projectile balloting^1 motions. A modern projectile was adopted for this study. In-bore projectile responses at various locations of the projectile while traveling through the simulated gun tubes were obtained. The balloting was evaluated in both time and frequency domains. Some statistical quantities and the significance were outlined.

  18. Embolism of high energy firearm projectile

    Directory of Open Access Journals (Sweden)

    Jaime Álvarez Soler


    Full Text Available The embolism of a projectile is very rare and out of the normal context, so the cor-oner in front of a wound projectile firearm must make a very judicious and careful analysis to recover the projectile and/or its fragments. This case presents evidence how modern military high-velocity weapons have a high kinetic energy which is transferred to body tissues, so including their fragments and parts of the projectile can cause serious injury and embolism, requiring a great effort scientific and in-terdisciplinary to give technical support to justice.

  19. Projectile orientation measurement during flight and just before impact

    NARCIS (Netherlands)

    Carton, E.P.; Diederen, A.M.


    The angle between the line-of-fire and the rotation axis of a projectile is called the yaw angle. For fin and spin stabilized projectiles the yaw angle changes continuously during flight. Normally the yaw of a projectile is measured by orthogonal flash imaging of the projectile. However, this method

  20. Penetration of fast projectiles into resistant media: From macroscopic to subatomic projectiles (United States)

    Gaite, José


    The penetration of a fast projectile into a resistant medium is a complex process that is suitable for simple modeling, in which basic physical principles can be profitably employed. This study connects two different domains: the fast motion of macroscopic bodies in resistant media and the interaction of charged subatomic particles with matter at high energies, which furnish the two limit cases of the problem of penetrating projectiles of different sizes. These limit cases actually have overlapping applications; for example, in space physics and technology. The intermediate or mesoscopic domain finds application in atom cluster implantation technology. Here it is shown that the penetration of fast nano-projectiles is ruled by a slightly modified Newton's inertial quadratic force, namely, F ∼v 2 - β, where β vanishes as the inverse of projectile diameter. Factors essential to penetration depth are ratio of projectile to medium density and projectile shape.

  1. Bounded Rationality

    National Research Council Canada - National Science Library

    Ballester Pla, Coralio; Hernández, Penélope


    The observation of the actual behavior by economic decision makers in the lab and in the field justifies that bounded rationality has been a generally accepted assumption in many socio-economic models...

  2. Bounding the $\

    CERN Document Server

    Gutiérrez-Rodríguez, A


    A bound on the nu /sup tau / magnetic moment is calculated through the reaction e/sup +/e/sup -/ to nu nu gamma at the Z/sub 1/-pole, and in the framework of a left-right symmetric model at LEP energies. We find that the bound is almost independent of the mixing angle phi of the model in the allowed experimental range for this parameter. (31 refs).

  3. The representational dynamics of remembered projectile locations. (United States)

    De Sá Teixeira, Nuno Alexandre; Hecht, Heiko; Oliveira, Armando Mónica


    When people are instructed to locate the vanishing location of a moving target, systematic errors forward in the direction of motion (M-displacement) and downward in the direction of gravity (O-displacement) are found. These phenomena came to be linked with the notion that physical invariants are embedded in the dynamic representations generated by the perceptual system. We explore the nature of these invariants that determine the representational mechanics of projectiles. By manipulating the retention intervals between the target's disappearance and the participant's responses, while measuring both M- and O-displacements, we were able to uncover a representational analogue of the trajectory of a projectile. The outcomes of three experiments revealed that the shape of this trajectory is discontinuous. Although the horizontal component of such trajectory can be accounted for by perceptual and oculomotor factors, its vertical component cannot. Taken together, the outcomes support an internalization of gravity in the visual representation of projectiles.

  4. Additional Crime Scenes for Projectile Motion Unit (United States)

    Fullerton, Dan; Bonner, David


    Building students' ability to transfer physics fundamentals to real-world applications establishes a deeper understanding of underlying concepts while enhancing student interest. Forensic science offers a great opportunity for students to apply physics to highly engaging, real-world contexts. Integrating these opportunities into inquiry-based problem solving in a team environment provides a terrific backdrop for fostering communication, analysis, and critical thinking skills. One such activity, inspired jointly by the museum exhibit "CSI: The Experience"2 and David Bonner's TPT article "Increasing Student Engagement and Enthusiasm: A Projectile Motion Crime Scene,"3 provides students with three different crime scenes, each requiring an analysis of projectile motion. In this lesson students socially engage in higher-order analysis of two-dimensional projectile motion problems by collecting information from 3-D scale models and collaborating with one another on its interpretation, in addition to diagramming and mathematical analysis typical to problem solving in physics.

  5. Grenade launched imaging projectile system (GLIMPS) (United States)

    Nunan, Scott C.; Coakley, Peter G.; Niederhaus, Gregory A.; Mallon, Charles E.; Vasel, Edward; Denson, Raymond; Lutjens, Steve; Wild, Norbert C.; Wondra, John


    A system has been developed for delivering and attaching a sensor payload to a target using a standard 40-mm grenade launcher. The projectile flight characteristics are similar to existing 40-mm rounds, with a useful range of up to 300 m. The projectile incorporates an attachment mechanism, a shock mitigation system, a power source, and a transmitter that allows sensor data to be transmitted to a receiver at up to 1/4 mile range. Impact g-loads have been limited to less than 10,000 g's, enabling sensor payloads to be assembled using Commercial Off-The-Shelf components. The GLIMPS projectile is intended to be a general purpose delivery system for a variety of sensor payloads under the Unattended Ground Sensors program, with Phase I proof-of- concept being demonstrated using a low-power CMOS camera.

  6. Search for weakly decaying $\\overline{\\Lambda\\mathrm{n}}$ and $\\Lambda\\Lambda $ exotic bound states in central Pb-Pb collisions at $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym


    We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible $\\overline{\\Lambda\\mathrm{n}}$ bound state. The search is performed with the ALICE detector in central (0-10%) Pb-Pb collisions at $ \\sqrt{s_{\\rm{NN}}} = 2.76$ TeV, by invariant mass analysis in the decay modes $\\overline{\\Lambda\\mathrm{n}} \\rightarrow \\overline{\\mathrm{d}} \\pi^{+} $ and H-dibaryon $\\rightarrow \\Lambda \\mathrm{p} \\pi^{-}$. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.

  7. Search for weakly decaying Λn‾ and ΛΛ exotic bound states in central Pb–Pb collisions at sNN=2.76 TeV

    Directory of Open Access Journals (Sweden)

    J. Adam


    Full Text Available We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible Λn‾ bound state. The search is performed with the ALICE detector in central (0–10% Pb–Pb collisions at sNN=2.76 TeV, by invariant mass analysis in the decay modes Λn‾→d‾π+ and H-dibaryon →Λpπ−. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.

  8. Grenade-launched imaging projectile system (GLIMPS) (United States)

    Nunan, Scott C.; Coakley, Peter G.; Niederhaus, Gregory A.; Lum, Chris


    A system has been developed for delivering and attaching a sensor payload to a target using a standard 40-mm grenade launcher. The projectile incorporates an attachment mechanism, a shock mitigation system, a power source, and a video-bandwidth transmitter. Impact and launch g-loads have been limited to less than 10,000 g's, enabling sensor payloads to be assembled using Commercial Off-The-Shelf components. The GLIMPS projectile is intended to be a general-purpose delivery system for a variety of sensor payloads under the Unattended Ground Sensors program. Test results and development issues are presented.

  9. Numerical simulations of gun-launched kinetic energy projectiles subjected to asymmetric projectile base pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rabern, D.A.


    Three-dimensional numerical simulations were performed to determine the effect of an asymmetric base pressure on kinetic energy projectiles during launch. A matrix of simulations was performed in two separate launch environments. One launch environment represented a severe lateral load environment, while the other represented a nonsevere lateral load environment based on the gun tube straightness. The orientation of the asymmetric pressure field, its duration, the projectile`s initial position, and the tube straightness were altered to determine the effects of each parameter. The pressure asymmetry translates down the launch tube to exit parameters and is washed out by tube profile. Results from the matrix of simulations are presented.

  10. High School Students' Understanding of Projectile Motion Concepts (United States)

    Dilber, Refik; Karaman, Ibrahim; Duzgun, Bahattin


    The aim of this study was to investigate the effectiveness of conceptual change-based instruction and traditionally designed physics instruction on students' understanding of projectile motion concepts. Misconceptions related to projectile motion concepts were determined by related literature on this subject. Accordingly, the Projectile Motion…

  11. A note on stability of motion of a projectile

    Indian Academy of Sciences (India)

    A projectile is stabilised using either gyroscopic or aerodynamic stability. But subcalibre projectiles with sabot have both spin and fins. Separate stability criteria are researched generally for each type of projectile. In this paper a stability criterion which can be used for all such bodies has been developed through the ...

  12. Ballistics projectile image analysis for firearm identification. (United States)

    Li, Dongguang


    This paper is based upon the observation that, when a bullet is fired, it creates characteristic markings on the cartridge case and projectile. From these markings, over 30 different features can be distinguished, which, in combination, produce a "fingerprint" for a firearm. By analyzing features within such a set of firearm fingerprints, it will be possible to identify not only the type and model of a firearm, but also each and every individual weapon just as effectively as human fingerprint identification. A new analytic system based on the fast Fourier transform for identifying projectile specimens by the line-scan imaging technique is proposed in this paper. This paper develops optical, photonic, and mechanical techniques to map the topography of the surfaces of forensic projectiles for the purpose of identification. Experiments discussed in this paper are performed on images acquired from 16 various weapons. Experimental results show that the proposed system can be used for firearm identification efficiently and precisely through digitizing and analyzing the fired projectiles specimens.

  13. Comment on "The envelope of projectile trajectories"

    CERN Document Server

    Butikov, E I


    Several simple alternative methods to obtain the equation of the envelope of the family of projectile trajectories corresponding to the same initial speed are suggested, including methods in which the boundary of the region occupied by the parabolic trajectories is found as an envelope of a set of circles. Two possible generalizations of the discussed problem are also suggested. (letters and comments)

  14. Bulldozing Your Way Through Projectile Motion. (United States)

    Lamb, William G.


    Presents two models and two demonstrations targeted at student understanding of projectile motion as the sum of two independent, perpendicular vectors. Describes materials required, construction, and procedures used. Includes a discussion of teaching points appropriate to each demonstration or model. (JM)

  15. Cambodian students’ prior knowledge of projectile motion (United States)

    Piten, S.; Rakkapao, S.; Prasitpong, S.


    Students always bring intuitive ideas about physics into classes, which can impact what they learn and how successful they are. To examine what Cambodian students think about projectile motion, we have developed seven open-ended questions and applied into grade 11 students before (N=124) and after (N=131) conventional classes. Results revealed several consistent misconceptions, for instance, many students believed that the direction of a velocity vector of a projectile follows the curved path at every position. They also thought the direction of an acceleration (or a force) follows the direction of motion. Observed by a pilot sitting on the plane, the falling object, dropped from a plane moving at a constant initial horizontal speed, would travel backward and land after the point of its release. The greater angle of the launched projectile creates the greater horizontal range. The hand force imparted with the ball leads the ball goes straight to hit the target. The acceleration direction points from the higher position to lower position. The misconceptions will be used as primary resources to develop instructional instruments to promote Cambodian students’ understanding of projectile motion in the following work.

  16. Teaching Projectile Motion to Eliminate Misconceptions (United States)

    Prescott, Anne; Mitchelmore, Michael


    Student misconceptions of projectile motion are well documented, but their effect on the teaching and learning of the mathematics of motion under gravity has not been investigated. An experimental unit was designed that was intended to confront and eliminate misconceptions in senior secondary school students. The approach was found to be…

  17. An Inexpensive Mechanical Model for Projectile Motion (United States)

    Kagan, David


    As experienced physicists, we see the beauty and simplicity of projectile motion. It is merely the superposition of uniform linear motion along the direction of the initial velocity vector and the downward motion due to the constant acceleration of gravity. We see the kinematic equations as just the mathematical machinery to perform the…

  18. Speed, Acceleration, Chameleons and Cherry Pit Projectiles (United States)

    Planinsic, Gorazd; Likar, Andrej


    The paper describes the mechanics of cherry pit projectiles and ends with showing the similarity between cherry pit launching and chameleon tongue projecting mechanisms. The whole story is written as an investigation, following steps that resemble those typically taken by scientists and can therefore serve as an illustration of scientific…

  19. Fatal lawn mower related projectile injury

    DEFF Research Database (Denmark)

    Colville-Ebeling, Bonnie; Lynnerup, Niels; Banner, Jytte


    the operator or a bystander is impacted by an object mobilized from the grass by the rotating mower blades. This type of injury often leaves only modest external trauma, which increases the risk of overlooking an entry wound. In this paper we present a case of a fatal lawn mower related projectile injury which...

  20. In-flight dynamics of volcanic ballistic projectiles (United States)

    Taddeucci, J.; Alatorre-Ibargüengoitia, M. A.; Cruz-Vázquez, O.; Del Bello, E.; Scarlato, P.; Ricci, T.


    Centimeter to meter-sized volcanic ballistic projectiles from explosive eruptions jeopardize people and properties kilometers from the volcano, but they also provide information about the past eruptions. Traditionally, projectile trajectory is modeled using simplified ballistic theory, accounting for gravity and drag forces only and assuming simply shaped projectiles free moving through air. Recently, collisions between projectiles and interactions with plumes are starting to be considered. Besides theory, experimental studies and field mapping have so far dominated volcanic projectile research, with only limited observations. High-speed, high-definition imaging now offers a new spatial and temporal scale of observation that we use to illuminate projectile dynamics. In-flight collisions commonly affect the size, shape, trajectory, and rotation of projectiles according to both projectile nature (ductile bomb versus brittle block) and the location and timing of collisions. These, in turn, are controlled by ejection pulses occurring at the vent. In-flight tearing and fragmentation characterize large bombs, which often break on landing, both factors concurring to decrease the average grain size of the resulting deposits. Complex rotation and spinning are ubiquitous features of projectiles, and the related Magnus effect may deviate projectile trajectory by tens of degrees. A new relationship is derived, linking projectile velocity and size with the size of the resulting impact crater. Finally, apparent drag coefficient values, obtained for selected projectiles, mostly range from 1 to 7, higher than expected, reflecting complex projectile dynamics. These new perspectives will impact projectile hazard mitigation and the interpretation of projectile deposits from past eruptions, both on Earth and on other planets.

  1. Initiation of Gaseous Detonation by Conical Projectiles (United States)

    Verreault, Jimmy

    Initiation and stabilization of detonation by hypersonic conical projectiles launched into combustible gas mixtures is investigated. This phenomenon must be understood for the design and optimization of specific hypersonic propulsion devices, such as the oblique detonation wave engine and the ram accelerator. The criteria for detonation initiation by a projectile is also related to fundamental aspects of detonation research, such as the requirement for direct initiation of a detonation by a blast wave. Experimental results of this problem also offer useful references for validation of numerical and theoretical modeling. Projectiles with cone half angles varying from 15° to 60° were launched into stoichiometric mixtures of hydrogen/oxygen with 70% argon dilution at initial pressures between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities up to 2.2 km/s (corresponding to 133% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via Schlieren photography. Five combustion regimes were observed about the projectile ranging from prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. Two types of transition from the prompt oblique detonation wave regime to the inert shock regime were observed. The first (the delayed oblique detonation wave regime) showed an inert shock attached to the tip of the projectile followed by a sharp kink at the onset of an oblique detonation wave; this regime occurred by decreasing the cone angle at high mixture pressures. The second (the combustion instabilities regime) exhibited large density gradients due to combustion ignition and quenching phenomena; this regime occurred by decreasing the mixture pressure at large cone angles. A number of theoretical models were considered to predict critical conditions for the initiation of oblique detonations. The Lee-Vasiljev model agreed

  2. Weak relativity

    CERN Document Server

    Selleri, Franco


    Weak Relativity is an equivalent theory to Special Relativity according to Reichenbach’s definition, where the parameter epsilon equals to 0. It formulates a Neo-Lorentzian approach by replacing the Lorentz transformations with a new set named “Inertial Transformations”, thus explaining the Sagnac effect, the twin paradox and the trip from the future to the past in an easy and elegant way. The cosmic microwave background is suggested as a possible privileged reference system. Most importantly, being a theory based on experimental proofs, rather than mutual consensus, it offers a physical description of reality independent of the human observation.

  3. Physics with loosely bound nuclei

    Indian Academy of Sciences (India)

    nuclear physics changed drastically as the new generation of accelerators started providing more and more rare isotopes, which are away from the line of stability. These weakly bound nuclei are found to exhibit new forms of nuclear matter and unprecedented exotic behaviour. The low breakup thresholds of these rare ...

  4. Electrical parameters of projectile stun guns. (United States)

    McDaniel, Wayne C; Benwell, Andrew; Kovaleski, Scott


    Projectile stun guns have been developed as less-lethal devices that law enforcement officers can use to control potentially violent subjects, as an alternative to using firearms. These devices apply high voltage, low amperage, pulsatile electric shocks to the subject, which causes involuntary skeletal muscle contraction and renders the subject unable to further resist. In field use of these devices, the electric shock is often applied to the thorax, which raises the issue of cardiac safety of these devices. An important determinant of the cardiac safety of these devices is their electrical output. Here the outputs of three commercially available projectile stun guns were evaluated with a resistive load and in a human-sized animal model (a 72 kg pig).

  5. Predicting the Accuracy of Unguided Artillery Projectiles (United States)


    would be the exact opposite if the projectile is fired into the southern hemisphere . This effect is depicted in Figure 15. Although it affects the...firing ranges. The model is able to take into account wind effects and varying levels of meteorological data staleness. The developed program is...firing table’s ballistic partials for typical firing ranges. The model is able to take into account wind effects and varying levels of meteorological data

  6. Batch Computed Tomography Analysis of Projectiles (United States)


    for public release; distribution is unlimited. 1 1. Introduction The Russian 14.5-mm heavy machine gun is a threat encountered globally. The 14.5...replaced with an inert SiO2 powder filler. As part of an armor ceramic qualification testing campaign, Chesapeake Testing imaged (210) projectiles...indicated by high-value striping, or lines spanning the entire plot, meaning there is high-dissimilarity intersection with all tiles (e.g

  7. Migration spontanee de projectile intracranien: presentation clinique ...

    African Journals Online (AJOL)

    Les traumatismes crâniens par arme à feu sont graves. Les manifestations cliniques sont variables et peuvent présenter quelques particularités. Les auteurs rapportent un cas de migration spontané de projectile intracérébral survenue après un traumatisme crânien par arme à feu au cours d'une partie de chasse. Elle a été ...

  8. Intuitive Mechanics: Inferences of Vertical Projectile Motion

    Directory of Open Access Journals (Sweden)

    Milana Damjenić


    Full Text Available Our intuitive knowledge of physics mechanics, i.e. knowledge defined through personal experience about velocity, acceleration, motion causes, etc., is often wrong. This research examined whether similar misconceptions occur systematically in the case of vertical projectiles launched upwards. The first experiment examined inferences of velocity and acceleration of the ball moving vertically upwards, while the second experiment examined whether the mass of the thrown ball and force of the throw have an impact on the inference. The results showed that more than three quarters of the participants wrongly assumed that maximum velocity and peak acceleration did not occur at the initial launch of the projectile. There was no effect of object mass or effect of the force of the throw on the inference relating to the velocity and acceleration of the ball. The results exceed the explanatory reach of the impetus theory, most commonly used to explain the naive understanding of the mechanics of object motion. This research supports that the actions on objects approach and the property transmission heuristics may more aptly explain the dissidence between perceived and actual implications in projectile motion.

  9. Regularity of Tor for weakly stable ideals

    Directory of Open Access Journals (Sweden)

    Katie Ansaldi


    Full Text Available It is proved that if I and J are weakly stable ideals in a polynomial ring R = k[x_1, . . ., x_n], with k a field, then the regularity of Tor^R_i (R/I, R/J has the expected upper bound. We also give a bound for the regularity of Ext^i_R (R/I, R for I a weakly stable ideal.

  10. Bound Exciton Complexes (United States)

    Meyer, B. K.

    In the preceding chapter, we concentrated on the properties of free excitons. These free excitons may move through the sample and hit a trap, a nonradiative or a radiative recombination center. At low temperatures, the latter case gives rise to either deep center luminescence, mentioned in Sect. 7.1 and discussed in detail in Chap. 9, or to the luminescence of bound exciton complexes (BE or BEC). The chapter continues with the most prominent of these BECs, namely A-excitons bound to neutral donors. The next aspects are the more weakly BEs at ionized donors. The Sect. 7.4 treats the binding or localization energies of BEC from a theoretical point of view, while Sect. 7.5 is dedicated to excited states of BECs, which contain either holes from deeper valence bands or an envelope function with higher quantum numbers. The last section is devoted to donor-acceptor pair transitions. There is no section devoted specifically to excitons bound to neutral acceptors, because this topic is still partly controversially discussed. Instead, information on these A0X complexes is scattered over the whole chapter, however, with some special emphasis seen in Sects. 7.1, 7.4, and 7.5.

  11. Numerical simulations of gun-launched kinetic energy projectiles subjected to asymmetric projectile base pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rabern, D.A.


    Three-dimensional numerical simulations were performed to determine the effect of an asymmetric base pressure on kinetic energy projectiles during launch. A matrix of simulations was performed in two separate launch environments. One launch environment represented a severe lateral load environment, while the other represented a nonsevere lateral load environment based on the gun tube straightness. The orientation of the asymmetric pressure field, its duration, the projectile's initial position, and the tube straightness were altered to determine the effects of each parameter. The pressure asymmetry translates down the launch tube to exit parameters and is washed out by tube profile. Results from the matrix of simulations are presented.

  12. Optimal design for projectile and blast protection during pressure testing


    Storhaug, Eirik


    The thesis identifies the main hazards in hydrostatic pressure testing as pressure wave, water jet, burst of water hose, fragment and projectile discharge as well as ejection of plug or end section. A test, where a pressurized vessel ejected a projectile, was conducted as part of the thesis. The aim of this test was to find the relationship between potential energy inside pressure vessel and kinetic energy in a discharged projectile. The results showed that the Baker formula together with...

  13. Muscle Weakness

    Directory of Open Access Journals (Sweden)

    Ali Al Kaissi MD, MSc


    Full Text Available Marked ligamentous hyperlaxity and muscle weakness/wasting associated with awkward gait are the main deficits confused with the diagnosis of myopathy. Seven children (6 boys and 1 girl with an average age of 8 years were referred to our department because of diverse forms of skeletal abnormalities. No definitive diagnosis was made, and all underwent a series of sophisticated investigations in other institutes in favor of myopathy. We applied our methodology through the clinical and radiographic phenotypes followed by targeted genotypic confirmation. Three children (2 boys and 1 girl were compatible with the diagnosis of progressive pseudorheumatoid chondrodysplasia. The genetic mutation was correlated with the WISP 3 gene actively expressed by articular chondrocytes and located on chromosome 6. Klinefelter syndrome was the diagnosis in 2 boys. Karyotyping confirmed 47,XXY (aneuploidy of Klinefelter syndrome. And 2 boys were finally diagnosed with Morquio syndrome (MPS type IV A as both showed missense mutations in the N-acetylgalactosamine-sulfate sulfatase gene. Misdiagnosis can lead to the initiation of a long list of sophisticated investigations.

  14. Dynamic analysis of a guided projectile during engraving process

    Directory of Open Access Journals (Sweden)

    Tao Xue


    Full Text Available The reliability of the electronic components inside a guided projectile is highly affected by the launch dynamics of guided projectile. The engraving process plays a crucial role on determining the ballistic performance and projectile stability. This paper analyzes the dynamic response of a guided projectile during the engraving process. By considering the projectile center of gravity moving during the engraving process, a dynamics model is established with the coupling of interior ballistic equations. The results detail the stress situation of a guided projectile band during its engraving process. Meanwhile, the axial dynamic response of projectile in the several milliseconds following the engraving process is also researched. To further explore how the different performance of the engraving band can affect the dynamics of guided projectile, this paper focuses on these two aspects: (a the effects caused by the different band geometry; and (b the effects caused by different band materials. The time domain and frequency domain responses show that the dynamics of the projectile are quite sensitive to the engraving band width. A material with a small modulus of elasticity is more stable than one with a high modulus of elasticity.

  15. Visualization of Projectile Flying at High Speed in Dusty Atmosphere (United States)

    Masaki, Chihiro; Watanabe, Yasumasa; Suzuki, Kojiro


    Considering a spacecraft that encounters particle-laden environment, such as dust particles flying up over the regolith by the jet of the landing thruster, high-speed flight of a projectile in such environment was experimentally simulated by using the ballistic range. At high-speed collision of particles on the projectile surface, they may be reflected with cracking into smaller pieces. On the other hand, the projectile surface will be damaged by the collision. To obtain the fundamental characteristics of such complicated phenomena, a projectile was launched at the velocity up to 400 m/s and the collective behaviour of particles around projectile was observed by the high-speed camera. To eliminate the effect of the gas-particle interaction and to focus on only the effect of the interaction between the particles and the projectile's surface, the test chamber pressure was evacuated down to 30 Pa. The particles about 400μm diameter were scattered and formed a sheet of particles in the test chamber by using two-dimensional funnel with a narrow slit. The projectile was launched into the particle sheet in the tangential direction, and the high-speed camera captured both projectile and particle motions. From the movie, the interaction between the projectile and particle sheet was clarified.

  16. Bounded Rationality

    Directory of Open Access Journals (Sweden)

    Ballester Pla, Coralio


    Full Text Available The observation of the actual behavior by economic decision makers in the lab and in the field justifies that bounded rationality has been a generally accepted assumption in many socio-economic models. The goal of this paper is to illustrate the difficulties involved in providing a correct definition of what a rational (or irrational agent is. In this paper we describe two frameworks that employ different approaches for analyzing bounded rationality. The first is a spatial segregation set-up that encompasses two optimization methodologies: backward induction and forward induction. The main result is that, even under the same state of knowledge, rational and non-rational agents may match their actions. The second framework elaborates on the relationship between irrationality and informational restrictions. We use the beauty contest (Nagel, 1995 as a device to explain this relationship.

    La observación del comportamiento de los agentes económicos tanto en el laboratorio como en la vida real justifica que la racionalidad acotada sea un supuesto aceptado en numerosos modelos socio-económicos. El objetivo de este artículo es ilustrar las dificultades que conlleva una correcta definición de qué es un agente racional (irracional. En este artículo se describen dos marcos que emplean diferentes metodologías para analizar la racionalidad acotada. El primero es un modelo de segregación espacial donde se contrastan dos metodologías de optimización: inducción hacia atrás y hacia adelante. El resultado principal es que, incluso con el mismo nivel de conocimiento, tanto agentes racionales como irracionales podrían coincidir en sus acciones. El segundo marco trabaja sobre la relación entre irracionalidad y restricción de información. Se utiliza el juego llamado “beauty contest” (Nagel 1995 como mecanismo para explicar dicha relación.

  17. Projectile fragmentation wall for CHICSi detector

    CERN Document Server

    Budzanowski, A; Siwek, A; Skwirczynska, I; Staszel, P


    The Forward Wall Detector (FWD) is designed to identify projectile-like fragments from heavy-ion reactions at the CELSIUS storage ring in Uppsala, Sweden. FWD covers the polar angle from 3.9 deg. to 11.7 deg. with geometrical efficiency of 81%. The single-detection module can be either of phoswich type (10 mm fast plastic+80 mm CsI(Tl)) or DELTA E-E telescope (750 mu m Si + 80 mm CsI(Tl)). It is expected to have charge identification up to Z=18 and mass resolution for H and He isotopes.

  18. Corrected Launch Speed for a Projectile Motion Laboratory (United States)

    Sanders, Justin M.; Boleman, Michael W.


    At our university, students in introductory physics classes perform a laboratory exercise to measure the range of a projectile fired at an assigned angle. A set of photogates is used to determine the initial velocity of the projectile (the launch velocity). We noticed a systematic deviation between the experimentally measured range and the range…

  19. Commissioning the A1900 projectile fragment separator

    CERN Document Server

    Morrissey, D J; Steiner, M; Stolz, A; Wiedenhöver, I


    An important part of the recent upgrade of the NSCL facility is the replacement of the A1200 fragment separator with a new high acceptance device called the A1900. The design of the A1900 device represents a third generation projectile fragment separator (relative to the early work at LBL) as it is situated immediately after the primary accelerator, has a very large acceptance, a bending power significantly larger than that of the cyclotron and is constructed from large superconducting magnets (quadrupoles with 20 and 40 cm diameter warm bores). The A1900 can accept over 90% of a large range of projectile fragmentation products produced at the NSCL, leading to large gains in the intensity of the secondary beams. The results of initial tests of the system with a restricted momentum acceptance (+-0.5%) indicate that the A1900 is performing up to specifications. Further large gains in the intensities of primary beams, typically two or three orders of magnitude, will be possible as the many facets of high current...

  20. The Experimental Projectile Impact Chamber (EPIC) at Centro de Astrobiología, Spain: Reproducibility and verification of scaling relations. (United States)

    Ormö, J.; Wünnemann, K.; Collins, G.; Melero Asensio, I.


    The Experimental Projectile Impact Chamber (EPIC) consists of a 20.5mm caliber, compressed gas gun and a 7m wide test bed. It is possible to vary the projectile size and density, the velocity up to about 5001n/"s, the impact angle. and the target composition. The EPIC is especially designed for the analysis of impacts into unconsolidated and liquid targets. i.e. allowing the use of gravity scaling. The general objective with the EPIC is to analyze the cratering and modification processes at wet-target (e.g. marinle) impacts. We have carried out 14 shots into dry sand targets with two projectile compositions (light and weak; heavy and strong), at two impact angles. at three impact velocities, and in both quarter-space and half- space geometries. We recorded the impacts with a high-speed camera and compared the results with numerical simulations using iSALE. The evaluation demonstrated that there are noticeable differences between the results from the two projectile types, but that the crater dimensions are consistent with scaling laws based on other impact experiments [1]. This proves the usefulness of the EPIC in the analysis of natural impacts.

  1. Quasi-bounded sets

    Directory of Open Access Journals (Sweden)

    Jan Kucera


    Full Text Available It is proved in [1] & [2] that a set bounded in an inductive limit E=indlim En of Fréchet spaces is also bounded in some En iff E is fast complete. In the case of arbitrary locally convex spaces En every bounded set in a fast complete indlim En is quasi-bounded in some En, though it may not be bounded or even contained in any En. Every bounded set is quasi-bounded. In a Fréchet space every quasi-bounded set is also bounded.

  2. Trajectory Control of Small Rotating Projectiles by Laser Sparks (United States)

    Starikovskiy, Andrey; Limbach, Christopher; Miles, Richard


    The possibility of controlling the trajectory of the supersonic motion of a rotating axisymmetric projectile using a remotely generated laser spark was investigated. The dynamic images of the interaction of thermal inhomogeneity created by the laser spark with the bow shock in front of the projectile were obtained. The criterion for a strong shock wave interaction with the thermal inhomogeneity at different angles of a shock wave was derived. Significant changes in the configuration of the bow shock wave and changes in the pressure distribution over the surface of the rotating projectile can appear for laser spark temperature of T' = 2500-3000 K. The experiment showed that strong interaction takes place for both plane and oblique shock waves. The measurement of the velocity of the precession of the rotating projectile axis from the initial position in time showed that the angle of attack of the projectile deviates with a typical time of perturbation propagation along the projectile's surface. Thus the laser spark can change the trajectory of the rotating projectile, moving at supersonic speed, through the creation of thermal heterogeneity in front of it.

  3. Veterinary Forensics: Firearms and Investigation of Projectile Injury. (United States)

    Bradley-Siemens, N; Brower, A I


    Projectile injury represents an estimated 14% of reported animal cruelty cases in the United States. Cases involving projectiles are complicated by gross similarities to other common types of injury, including bite wounds and motor vehicle injuries, by weapons and ammunition not commonly recognized or understood by veterinary medical professionals, and by required expertise beyond that employed in routine postmortem examination. This review describes the common types of projectile injuries encountered within the United States, as well as firearms and ammunition associated with this form of injury. The 3 stages of ballistics-internal, external, and terminal-and wounding capacity are discussed. A general understanding of firearms, ammunition, and ballistics is necessary before pursuing forensic projectile cases. The forensic necropsy is described, including gunshot wound examination, projectile trajectories, different imaging procedures, collection and storage of projectile evidence, and potential advanced techniques for gunpowder analysis. This review presents aspects of projectile injury investigation that must be considered in tandem with standard postmortem practices and procedures to ensure reliable conclusions are reached for medicolegal as well as diagnostic purposes. © The Author(s) 2016.

  4. Dynamic impact analysis of the M1 105mm projectile

    Energy Technology Data Exchange (ETDEWEB)

    Walls, J.C.; Webb, D.S.


    Evaluation of the effects of {open_quotes}rough-handling{close_quotes}-induced stresses in the nose region of a 105mm artillery projectile was performed to determine if these stresses could have contributed to the premature explosion of a projectile during a Desert Shield training mission of the 101st Army Airborne in Saudi Arabia. The rough-handling evaluations were simulated by dynamic impact analysis. It was concluded that the combined residual stress and dynamic impact-induced stress would not be of sufficient magnitude to cause cracking of the projectile in the nose region.

  5. Dynamic impact analysis of the M1 105mm projectile

    Energy Technology Data Exchange (ETDEWEB)

    Walls, J.C.; Webb, D.S.


    Evaluation of the effects of [open quotes]rough-handling[close quotes]-induced stresses in the nose region of a 105mm artillery projectile was performed to determine if these stresses could have contributed to the premature explosion of a projectile during a Desert Shield training mission of the 101st Army Airborne in Saudi Arabia. The rough-handling evaluations were simulated by dynamic impact analysis. It was concluded that the combined residual stress and dynamic impact-induced stress would not be of sufficient magnitude to cause cracking of the projectile in the nose region.

  6. Dynamics of dust-free cavities behind fast projectiles in a dusty plasma under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Caliebe, D.; Arp, O.; Piel, A. [Institut fuer Experimentelle und Angewandte Physik, Christian-Albrechts-Universitaet, Kiel (Germany)


    The penetration of a dusty plasma by fast charged projectiles is studied under microgravity conditions. The mass and charge of the projectiles are larger than those of the target particles. A projectile generates a dust-free cavity in its wake, whose shape strongly depends on the projectile velocity. The faster the projectile the more elongated becomes the cavity while its cross-section decreases. The opening time of the cavity is found independent of the projectile velocity. For supersonic projectiles, the dynamics of the cavity can be decomposed into an initial impulse and a subsequent elastic response that can be modeled by a damped harmonic oscillator.

  7. Far-Infrared Spectroscopy of Weakly Bound Hydrated Cluster Molecules

    DEFF Research Database (Denmark)

    Andersen, Jonas

    -sized molecular clusters with water by means of far-infrared and terahertz neon matrix isolation spectroscopy. The embedding of non-covalent cluster molecules in solid cryogenic neon matrices at 2.8 K ensures a high sensitivity for direct spectroscopic observations of the large-amplitude intermolecular...

  8. On weakly D-differentiable operators

    DEFF Research Database (Denmark)

    Christensen, Erik


    Let DD be a self-adjoint operator on a Hilbert space HH and aa a bounded operator on HH. We say that aa is weakly DD-differentiable, if for any pair of vectors ξ,ηξ,η from HH the function 〈eitDae−itDξ,η〉〈eitDae−itDξ,η〉 is differentiable. We give an elementary example of a bounded operator aa...

  9. Penetration analysis of projectile with inclined concrete target

    Directory of Open Access Journals (Sweden)

    Kim S.B.


    Full Text Available This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction and CONCRETE_DAMAGE (K&C concrete models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  10. Guiding supersonic projectiles using optically generated air density channels (United States)

    Johnson, Luke A.; Sprangle, Phillip


    We investigate the feasibility of using optically generated channels of reduced air density to provide trajectory correction (guiding) for a supersonic projectile. It is shown that the projectile experiences a force perpendicular to its direction of motion as one side of the projectile passes through a channel of reduced air density. A single channel of reduced air density can be generated by the energy deposited from filamentation of an intense laser pulse. We propose changing the laser pulse energy from shot-to-shot to build longer effective channels. Current femtosecond laser systems with multi-millijoule pulses could provide trajectory correction of several meters on 5 km trajectories for sub-kilogram projectiles traveling at Mach 3.

  11. Projectile Motion with Quadratic Damping in a Constant ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Projectile Motion with Quadratic Damping in a Constant Gravitational Field. Chandra Das Dhiranjan Roy. General Article Volume 19 Issue 5 May 2014 pp 446-465 ...

  12. Determination of extra trajectory parameters of projectile layout motion (United States)

    Ishchenko, A.; Burkin, V.; Faraponov, V.; Korolkov, L.; Maslov, E.; Diachkovskiy, A.; Chupashev, A.; Zykova, A.


    The paper presents a brief description of the experimental track developed and implemented on the base of the RIAMM TSU for external trajectory investigations on determining the main aeroballistic parameters of various shapes projectiles, in the wide velocity range. There is comparison between the experimentally obtained dependence of the fin-stabilized projectile mock-up aerodynamic drag coefficient on the Mach number with the 1958 aerodynamic drag law and aerodynamic tests of the same mock-up

  13. Numerical Prediction of Pitch Damping Stability Derivatives for Finned Projectiles (United States)


    Air Force modified finner. ..............38 vii Acknowledgments The authors would like to thank Dr. James DeSpirito and Dr. Paul Weinacht of...section 4.3.2. For a symmetric finned projectile without fin cants or bevels , when , and only a single coning computation at some nonzero...within the linear range is required to compute . For a finned projectile with fin cants or bevels , since , then simulations at two

  14. Active IR System for Projectile Detection and Tracking

    Directory of Open Access Journals (Sweden)



    Full Text Available Reliable detection and tracking of high-speed projectiles is crucial in providing modern battlefield protection or to be used as a forensic tool. Subsonic projectiles fired from silenced weapons are difficult to detect, whereas reliable tracking of the projectile trajectory is hard to accomplish. Contemporary radar based counter-battery systems showed to be valuable in detection of incoming artillery fire, but are unable to provide detection at close ranges. In this paper, an active IR system is proposed that aims to detect and track incoming projectiles at close ranges. Proposed system is able to reconstruct projectile’s trajectory in space, predict impact location and estimate direction of projectile origin. Active detector system is based on a pair of high-speed cameras in stereo-configuration synced with computer and IR illuminator that emits coded IR light bursts. Innovative IR light coding enables automated detection and tracking of a nearby projectile and elimination of false positive alarms caused by distant objects.

  15. Nuclear structure of weakly bound radioactive nuclei through elastic and and inelastic scattering on proton. Impacts of the couplings induced by these exotic nuclei on direct reactions; Structure de noyaux radioactifs faiblement lies par diffusions elastiques et inelastiques sur proton. Effets des couplages induits par ces noyaux exotiques sur les reactions directes

    Energy Technology Data Exchange (ETDEWEB)

    Lapoux, V


    Information on the structure, spectroscopy and target interaction potentials of exotic nuclei can be inferred by interpreting measured data from direct reactions on proton such as elastic or inelastic scattering of proton (p,p') or one-nucleon transfer reaction (p,d). A series of experimental results has been obtained at the GANIL facilities on the setting composed of the MUST telescope array used for the detection of light charged-particles and of CATS beam detectors. This setting aims at measuring reactions on light proton or deuteron targets through reverse kinematics. Particularly, results on C{sup 10}, C{sup 11} and on direct reactions with the He{sup 8} beam of Spiral are presented. The first chapter is dedicated to the description of the most important theories concerning the nucleus. The experimental tools used to probe the nucleus are reported in the second chapter. The third and fourth chapters present the framework that has allowed us to analyse results from (p,p') and (p,d) reactions on weakly bound exotic nuclei. The last chapter is dedicated to the description of future experimental programs. (A.C.)

  16. [Eye injury from a paintball projectile]. (United States)

    Karel, I; Pitrová, S; Lest'ák, J; Záhlava, J


    A fourteen-year-old adolescent suffered after a direct hit with a plastic projective (paintball) a severe injury of the anterior and posterior segment of the eye manifested by intraocular haemorrhage, cyclodialysis, detachment of the retina with two giant tears and oedema and haemorrhages of the retina. After cerclage, pars plana vitrectomy and transient four-month tamponade with silicone oil the retina reattached. Late complications, cataract, broad anterior adherence with scars of the chamber angle and ciliary body, a lamellar defect of the macula and partial atrophy of the optic disc determined the subsequent development and were an indication for cataract surgery, implantation of an artificial lens into the lenticular capsule and reconstruction of the pupil. The final result was from the cosmetic and functional aspect (visual acuity 0.3) very satisfactory. Plastic projectiles (paintballs) are a new cause of severe eye injuries. At risk are in particular participants of games who do not protect their eyes with spectacles or masks. To save the function of the eye in unnecessary injuries frequently several operations are needed and close collaboration of surgeons for the anterior and posterior segment.

  17. Isospin-dependent multifragmentation of relativistic projectiles (United States)

    Ogul, R.; Botvina, A. S.; Atav, U.; Buyukcizmeci, N.; Mishustin, I. N.; Adrich, P.; Aumann, T.; Bacri, C. O.; Barczyk, T.; Bassini, R.; Bianchin, S.; Boiano, C.; Boudard, A.; Brzychczyk, J.; Chbihi, A.; Cibor, J.; Czech, B.; de Napoli, M.; Ducret, J.-É.; Emling, H.; Frankland, J. D.; Hellström, M.; Henzlova, D.; Immè, G.; Iori, I.; Johansson, H.; Kezzar, K.; Lafriakh, A.; Le Fèvre, A.; Le Gentil, E.; Leifels, Y.; Lühning, J.; Łukasik, J.; Lynch, W. G.; Lynen, U.; Majka, Z.; Mocko, M.; Müller, W. F. J.; Mykulyak, A.; Orth, H.; Otte, A. N.; Palit, R.; Pawłowski, P.; Pullia, A.; Raciti, G.; Rapisarda, E.; Sann, H.; Schwarz, C.; Sfienti, C.; Simon, H.; Sümmerer, K.; Trautmann, W.; Tsang, M. B.; Verde, G.; Volant, C.; Wallace, M.; Weick, H.; Wiechula, J.; Wieloch, A.; Zwiegliński, B.


    The N/Z dependence of projectile fragmentation at relativistic energies has been studied with the ALADIN forward spectrometer at the GSI Schwerionen Synchrotron (SIS). Stable and radioactive Sn and La beams with an incident energy of 600 MeV per nucleon have been used in order to explore a wide range of isotopic compositions. For the interpretation of the data, calculations with the statistical multifragmentation model for a properly chosen ensemble of excited sources were performed. The parameters of the ensemble, representing the variety of excited spectator nuclei expected in a participant-spectator scenario, are determined empirically by searching for an optimum reproduction of the measured fragment-charge distributions and correlations. An overall very good agreement is obtained. The possible modification of the liquid-drop parameters of the fragment description in the hot freeze-out environment is studied, and a significant reduction of the symmetry-term coefficient is found necessary to reproduce the mean neutron-to-proton ratios /Z and the isoscaling parameters of Z⩽10 fragments. The calculations are, furthermore, used to address open questions regarding the modification of the surface-term coefficient at freeze-out, the N/Z dependence of the nuclear caloric curve, and the isotopic evolution of the spectator system between its formation during the initial cascade stage of the reaction and its subsequent breakup.

  18. N/z Dependence of Projectile Fragmentation (United States)

    Trautmann, W.; Adrich, P.; Aumann, T.; Bacri, C. O.; Barczyk, T.; Bassini, R.; Bianchin, S.; Boiano, C.; Botvina, A. S.; Boudard, A.; Brzychczyk, J.; Chbihi, A.; Cibor, J.; Czech, B.; de Napoli, M.; Ducret, J.-É.; Emling, H.; Frankland, J. D.; Hellström, M.; Henzlova, D.; Immè, G.; Iori, I.; Johansson, H.; Kezzar, K.; Lafriakh, A.; Le Fèvre, A.; Le Gentil, E.; Leifels, Y.; Lühning, J.; Łukasik, J.; Lynch, W. G.; Lynen, U.; Majka, Z.; Mocko, M.; Müller, W. F. J.; Mykulyak, A.; Orth, H.; Otte, A. N.; Palit, R.; Pawłowski, P.; Pullia, A.; Raciti, G.; Rapisarda, E.; Sann, H.; Schwarz, C.; Sfienti, C.; Simon, H.; Sümmerer, K.; Tsang, M. B.; Verde, G.; Volant, C.; Wallace, M.; Weick, H.; Wiechula, J.; Wieloch, A.; Zwiegliński, B.

    The N/Z dependence of projectile fragmentation at relativistic energies has been studied in a recent experiment at the GSI laboratory with the ALADiN forward spectrometer coupled to the LAND neutron detector. Besides a primary beam of 124Sn, also secondary beams of 124La and 107Sn delivered by the FRS fragment separator have been used in order to extend the range of isotopic compositions of the produced spectator sources. With the achieved mass resolution of ΔA/A ≈ 1.5%, lighter isotopes with atomic numbers Z ≤ 10 are individually resolved. The presently ongoing analyses of the measured isotope yields focus on isoscaling and its relation to the properties of hot fragments at freeze-out and on the derivation of chemical freeze-out temperatures which are found to be independent of the isotopic composition of the studied systems. The latter result is at variance with the predictions for limiting temperatures as obtained with finite-temperature Hartree-Fock calculations.

  19. Impact Behaviour of Soft Body Projectiles (United States)

    Kalam, Sayyad Abdul; Rayavarapu, Vijaya Kumar; Ginka, Ranga Janardhana


    Bird strike analysis is a common type of analysis done during the design and analysis of primary structures such as engine cowlings or fuselage panels. These simulations are done in order to predict whether various designs will pass the necessary certification tests. Composite materials are increasingly being used in aerospace industry and bird strike is a major threat which may lead to serious structural damage of those materials. Such phenomenon may arise from numerous impact scenarios. The focus of current study is on the finite element modeling for composite structures and simulation of high velocity impact loads from soft body projectiles with an explicit dynamics code AUTODYN. This paper investigates the methodology which can be utilized to certify an aircraft for bird strike resistance using computational technique by first demonstrating the accuracy of the method for bird impact on rigid target modeling and then applies the developed model to a more complex problem. The model developed for bird strike threat assessment incorporates parameters of bird number (bird density), bird body mass, equation of state (EOS) and bird path during impact.

  20. Severe retinal injuries from paintball projectiles. (United States)

    Baath, J; Ells, A L; Kherani, A; Williams, R G


    To determine the outcomes and circumstances of retinal injuries caused by blunt trauma from paintball pellet projectiles. Retrospective case series of all patients who presented with retinal injuries due to paintball-related trauma to 2 retina specialists in a clinical setting from 2004 to 2005. Patients were followed for a mean of 7.3 months, and retinal trauma was documented with retinal photographs and ocular coherence tomography as needed. Best corrected visual acuity (BCVA) was the main outcome measure. Three eyes of 3 patients suffered severe retinal injuries after blunt trauma from a paintball pellet. Together, the 3 eyes demonstrated extensive retinal findings, including commotio retinae, choroidal rupture, and macular hole. BCVA at last follow-up ranged from 20/80 to hand motions. Our small case series indicates that retinal trauma from paintball injuries is not uncommon and results in severe long-term visual morbidity. The sale of paintball guns and pellets should be strictly prohibited for minors, and adults should be educated about the need for appropriate ocular protection and the potentially serious consequences of the use of these guns outside of commercial settings.

  1. Impact Behaviour of Soft Body Projectiles (United States)

    Kalam, Sayyad Abdul; Rayavarapu, Vijaya Kumar; Ginka, Ranga Janardhana


    Bird strike analysis is a common type of analysis done during the design and analysis of primary structures such as engine cowlings or fuselage panels. These simulations are done in order to predict whether various designs will pass the necessary certification tests. Composite materials are increasingly being used in aerospace industry and bird strike is a major threat which may lead to serious structural damage of those materials. Such phenomenon may arise from numerous impact scenarios. The focus of current study is on the finite element modeling for composite structures and simulation of high velocity impact loads from soft body projectiles with an explicit dynamics code AUTODYN. This paper investigates the methodology which can be utilized to certify an aircraft for bird strike resistance using computational technique by first demonstrating the accuracy of the method for bird impact on rigid target modeling and then applies the developed model to a more complex problem. The model developed for bird strike threat assessment incorporates parameters of bird number (bird density), bird body mass, equation of state (EOS) and bird path during impact.

  2. Sound velocity bound and neutron stars. (United States)

    Bedaque, Paulo; Steiner, Andrew W


    It has been conjectured that the velocity of sound in any medium is smaller than the velocity of light in vacuum divided by sqrt[3]. Simple arguments support this bound in nonrelativistic and/or weakly coupled theories. The bound has been demonstrated in several classes of strongly coupled theories with gravity duals and is saturated only in conformal theories. We point out that the existence of neutron stars with masses around two solar masses combined with the knowledge of the equation of state of hadronic matter at "low" densities is in strong tension with this bound.

  3. Injury risk assessment of non-lethal projectile head impacts. (United States)

    Oukara, Amar; Nsiampa, Nestor; Robbe, Cyril; Papy, Alexandre


    Kinetic energy non-lethal projectiles are used to impart sufficient effect onto a person in order to deter uncivil or hazardous behavior with a low probability of permanent injury. Since their first use, real cases indicate that the injuries inflicted by such projectiles may be irreversible and sometimes lead to death, especially for the head impacts. Given the high velocities and the low masses involved in such impacts, the assessment approaches proposed in automotive crash tests and sports may not be appropriate. Therefore, there is a need of a specific approach to assess the lethality of these projectiles. In this framework, some recent research data referred in this article as "force wall approach" suggest the use of three lesional thresholds (unconsciousness, meningeal damages and bone damages) that depend on the intracranial pressure. Three corresponding critical impact forces are determined for a reference projectile. Based on the principle that equal rigid wall maximal impact forces will produce equal damage on the head, these limits can be determined for any other projectile. In order to validate the consistence of this innovative method, it is necessary to compare the results with other existing assessment methods. This paper proposes a comparison between the "force wall approach" and two different head models. The first one is a numerical model (Strasbourg University Finite Element Head Model-SUFEHM) from Strasbourg University; the second one is a mechanical surrogate (Ballistics Load Sensing Headform-BLSH) from Biokinetics.

  4. Bound states and the Bekenstein bound

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael


    We explore the validity of the generalized Bekenstein bound, S<= pi M a. We define the entropy S as the logarithm of the number of states which have energy eigenvalue below M and are localized to a flat space region of width alpha. If boundary conditions that localize field modes are imposed by fiat, then the bound encounters well-known difficulties with negative Casimir energy and large species number, as well as novel problems arising only in the generalized form. In realistic systems, however, finite-size effects contribute additional energy. We study two different models for estimating such contributions. Our analysis suggests that the bound is both valid and nontrivial if interactions are properly included, so that the entropy S counts the bound states of interacting fields.

  5. Properties of Water Bound in Hydrogels

    Directory of Open Access Journals (Sweden)

    Vladimir M. Gun’ko


    Full Text Available In this review, the importance of water in hydrogel (HG properties and structure is analyzed. A variety of methods such as 1H NMR (nuclear magnetic resonance, DSC (differential scanning calorimetry, XRD (X-ray powder diffraction, dielectric relaxation spectroscopy, thermally stimulated depolarization current, quasi-elastic neutron scattering, rheometry, diffusion, adsorption, infrared spectroscopy are used to study water in HG. The state of HG water is rather non-uniform. According to thermodynamic features of water in HG, some of it is non-freezing and strongly bound, another fraction is freezing and weakly bound, and the third fraction is non-bound, free water freezing at 0 °C. According to structural features of water in HG, it can be divided into two fractions with strongly associated and weakly associated waters. The properties of the water in HG depend also on the amounts and types of solutes, pH, salinity, structural features of HG functionalities.

  6. Fragmentation of Pb-Projectiles at SPS Energies

    CERN Multimedia


    % EMU17 \\\\ \\\\ We have exposed stacks consisting of solid state nuclear track detectors (CR-39 plastic and BP-1 glass) and different target materials at the SPS to beams of Pb projectiles. Our detectors record tracks of relativistic nuclei with charge numbers of Z~$\\geq$~6 for CR-39 and Z~$\\geq$75 for BP-1. After development of the tracks by etching they are detected and measured using completely automated microscope systems. Thus experiments with high statistics are possible. \\\\ \\\\BP-1 detectors were exposed to measure total charge changing cross sections and elemental production cross sections for heavy projectile fragments. These experiments were performed for different targets CH$ _{2} $, C, Al, Cu, Ag and Pb. Comparison of the results for different targets allows to investigate contributions to charge changing reactions by electromagnetic dissociation. Multifragmentation events in which several intermediate mass fragments are emitted from the heavy Pb projectile are studied using stacks containing CR-39 d...

  7. Rapid Assessment of Small Changes to Major Gun and Projectile Dynamic Parameters

    National Research Council Canada - National Science Library

    Erline, Thomas


    .... The "Little RASCAL" program was used to estimate the tipoff angles and angular rates for the Mk 64 5-in projectile, and the "PC-PRODAS" computer program was used to estimate the projectile yaw...

  8. Saturation Effect of Projectile Excitation in Ion-Atom Collisions (United States)

    Mukoyama, Takeshi; Lin, Chii-Dong

    Calculations of projectile K-shell electron excitation cross sections for He-like ions during ion-atom collisions have been performed in the distortion approximation by the use of Herman-Skillman wave functions. The calculated results are compared with the experimental data for several targets. The excitation cross sections deviate from the first-Born approximation and show the saturation effect as a function of target atomic number. This effect can be explained as the distortion of the projectile electronic states by the target nucleus.

  9. Optimization of Construction of the rocket-assisted projectile

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir


    Full Text Available New scheme of the rocket motor of rocket-assisted projectile providing the increase in distance of flight due to controlled and optimal delay time of ignition of the solid-propellant charge of the SRM and increase in reliability of initiation of the SRM by means of the autonomous system of ignition excluding the influence of high pressure gases of the propellant charge in the gun barrel has been considered. Results of the analysis of effectiveness of using of the ignition delay device on motion characteristics of the rocket-assisted projectile has been presented.

  10. Locus of the apices of projectile trajectories under constant drag (United States)

    Hernández-Saldaña, H.


    Using the hodograph method, we present an analytical solution for projectile coplanar motion under constant drag, parametrised by the velocity angle. We find the locus formed by the apices of the projectile trajectories, and discuss its implementation for the motion of a particle on an inclined plane in presence of Coulomb friction. The range and time of flight are obtained numerically, and we find that the optimal launching angle is smaller than in the drag-free case. This is a good example of a problem with constant dissipation of energy that includes curvature; it is appropriate for intermediate courses of mechanics.

  11. Dispersion Analysis of the XM881APFSDS Projectile

    Directory of Open Access Journals (Sweden)

    Thomas F. Erline


    Full Text Available This study compares the results of a dispersion test with mathematical modeling. A 10-round group of modified 25-mm XM881 Armor Piercing Fin Stabilized Discarding Sabot projectiles was fired from the M242 chain gun into a designated target. The mathematical modeling results come from BALANS, a product of Arrow Tech Associates. BALANS is a finite-element lumped parameter code that has the capability to model a flexible projectile being fired from a flexible gun. It also has the unique feature of an automated statistical evaluation of dispersion. This study represents an effort to evaluate a simulation approach with experiment.

  12. Predicting the fragmentation onset velocity for different metallic projectiles using numerical simulations

    NARCIS (Netherlands)

    Livingstone, I.H.G.; Verolme, K.; Hayhurst, C.J.


    For cubes and spheres under high velocity impact there exists for each system of projectile and target, a threshold velocity that is just sufficient to shatter the projectile. This velocity, usually above 2km/s for metallic projectiles, is known as the fragmentation onset velocity. To determine the

  13. Physical Uncertainty Bounds (PUB)

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  14. Space group constraints on weak indices in topological insulators

    NARCIS (Netherlands)

    Varjas, D.; De Juan, Fernando; Lu, Yuan Ming

    Lattice translation symmetry gives rise to a large class of "weak" topological insulators (TIs), characterized by translation-protected gapless surface states and dislocation bound states. In this work we show that space group symmetries lead to constraints on the weak topological indices that

  15. The DMM Bound

    DEFF Research Database (Denmark)

    Emiris, Ioannis Z.; Mourrain, Bernard; Tsigaridas, Elias


    In this paper we derive aggregate separation bounds, named after Davenport-Mahler-Mignotte (DMM), on the isolated roots of polynomial systems, specifically on the minimum distance between any two such roots. The bounds exploit the structure of the system and the height of the sparse (or toric) re...... bound on the number of steps that subdivision-based algorithms perform in order to isolate all real roots of a polynomial system. This leads to the first complexity bound of Milne's algorithm [22] in 2D....

  16. A note on stability of motion of a projectile

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Nielsen. & Synge1946). The motion of a nonlinear Lock–Fowler missile under the same conditon using the Routh–Hurwitz criterion has been discussed by Rath & Namboodiri (1980). The dynamical motion of an axi-symmetric projectile in the ...

  17. Projectile Motion in the "Language" of Orbital Motion (United States)

    Zurcher, Ulrich


    We consider the orbit of projectiles launched with arbitrary speeds from the Earth's surface. This is a generalization of Newton's discussion about the transition from parabolic to circular orbits, when the launch speed approaches the value [image omitted]. We find the range for arbitrary launch speeds and angles, and calculate the eccentricity of…

  18. Apparatus for Teaching Physics: A Versatile Projectile Motion Board. (United States)

    Prigo, Robert B.; Korda, Anthony


    Describes the design and use of a projectile motion apparatus to illustrate a variety of projective motion results typically discussed in an introductory course. They include independence of horizontal (constant speed) and vertical (constant acceleration) motions, parabolic path shape, and other types of motion. (JN)

  19. The Long Decay Model of One-Dimensional Projectile Motion (United States)

    Lattery, Mark Joseph


    This article introduces a research study on student model formation and development in introductory mechanics. As a point of entry, I present a detailed analysis of the Long Decay Model of one-dimensional projectile motion. This model has been articulated by Galileo ("in De Motu") and by contemporary students. Implications for instruction are…

  20. Projectile General Motion in a Vacuum and a Spreadsheet Simulation (United States)

    Benacka, Jan


    This paper gives the solution and analysis of projectile motion in a vacuum if the launch and impact heights are not equal. Formulas for the maximum horizontal range and the corresponding angle are derived. An Excel application that simulates the motion is also presented, and the result of an experiment in which 38 secondary school students…

  1. Using Statcast to lift the discussion of projectile motion (United States)

    Siegel, P. B.


    Home run data from Major League Baseball's Statcast can be described by adding a lift force to the equations of projectile motion commonly used in undergraduate computational physics courses. We discuss how the Statcast data can be implemented in the classroom.

  2. Using Tracker as a Pedagogical Tool for Understanding Projectile Motion (United States)

    Wee, Loo Kang; Chew, Charles; Goh, Giam Hwee; Tan, Samuel; Lee, Tat Leong


    This article reports on the use of Tracker as a pedagogical tool in the effective learning and teaching of projectile motion in physics. When a computer model building learning process is supported and driven by video analysis data, this free Open Source Physics tool can provide opportunities for students to engage in active enquiry-based…

  3. Horizontal and vertical projectile motion in a resistant medium under ...

    African Journals Online (AJOL)

    Horizontal and vertical projectile motion in a resistant medium under the influence of magnetic field is carried out. Solutions to the governing equations is developed using integrating factor method. The results are in reasonable agreement with the findings of [2] and [3] JONAMP Vol. 11 2007: pp. 83-86 ...

  4. Horizontal and vertical projectile motion in a resistant medium ...

    African Journals Online (AJOL)

    A study of projectile motion in a resistant medium subject to varying path angles and speed was carried out. Solutions to the governing equations of motion is developed employing double integration. Analysis of the results shows that the path of the particle in a resistant medium is affected by both increase in path angle and ...

  5. On the Trajectories of Projectiles Depicted in Early Ballistic Woodcuts (United States)

    Stewart, Sean M.


    Motivated by quaint woodcut depictions often found in many late 16th and 17th century ballistic manuals of cannonballs fired in air, a comparison of their shapes with those calculated for the classic case of a projectile moving in a linear resisting medium is made. In considering the asymmetrical nature of such trajectories, the initial launch…

  6. Evaluation of different projectiles in matched experimental eye impact simulations. (United States)

    Weaver, Ashley A; Kennedy, Eric A; Duma, Stefan M; Stitzel, Joel D


    Eye trauma results in 30,000 cases of blindness each year in the United States and is the second leading cause of monocular visual impairment. Eye injury is caused by a wide variety of projectile impacts and loading scenarios with common sources of trauma being motor vehicle crashes, military operations, and sporting impacts. For the current study, 79 experimental eye impact tests in literature were computationally modeled to analyze global and localized responses of the eye to a variety of blunt projectile impacts. Simulations were run with eight different projectiles (airsoft pellets, baseball, air gun pellets commonly known as BBs, blunt impactor, paintball, aluminum, foam, and plastic rods) to characterize effects of the projectile size, mass, geometry, material properties, and velocity on eye response. This study presents a matched comparison of experimental test results and computational model outputs including stress, energy, and pressure used to evaluate risk of eye injury. In general, the computational results agreed with the experimental results. A receiver operating characteristic curve analysis was used to establish the stress and pressure thresholds that best discriminated for globe rupture in the matched experimental tests. Globe rupture is predicted by the computational simulations when the corneoscleral stress exceeds 17.21 MPa or the vitreous pressure exceeds 1.01 MPa. Peak stresses were located at the apex of the cornea, the limbus, or the equator depending on the type of projectile impacting the eye. A multivariate correlation analysis revealed that area-normalized kinetic energy was the best single predictor of peak stress and pressure. Additional incorporation of a relative size parameter that relates the projectile area to the area of the eye reduced stress response variability and may be of importance in eye injury prediction. The modeling efforts shed light on the injury response of the eye when subjected to a variety of blunt projectile

  7. Bounded Parikh Automata

    Directory of Open Access Journals (Sweden)

    Michaël Cadilhac


    Full Text Available The Parikh finite word automaton model (PA was introduced and studied by Klaedtke and Ruess in 2003. Here, by means of related models, it is shown that the bounded languages recognized by PA are the same as those recognized by deterministic PA. Moreover, this class of languages is the class of bounded languages whose set of iterations is semilinear.

  8. Bounded Gaussian process regression

    DEFF Research Database (Denmark)

    Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan


    We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...

  9. Bounding Species Distribution Models (United States)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.


    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  10. Gossip and Distributed Kalman Filtering: Weak Consensus Under Weak Detectability (United States)

    Kar, Soummya; Moura, José M. F.


    The paper presents the gossip interactive Kalman filter (GIKF) for distributed Kalman filtering for networked systems and sensor networks, where inter-sensor communication and observations occur at the same time-scale. The communication among sensors is random; each sensor occasionally exchanges its filtering state information with a neighbor depending on the availability of the appropriate network link. We show that under a weak distributed detectability condition: 1. the GIKF error process remains stochastically bounded, irrespective of the instability properties of the random process dynamics; and 2. the network achieves \\emph{weak consensus}, i.e., the conditional estimation error covariance at a (uniformly) randomly selected sensor converges in distribution to a unique invariant measure on the space of positive semi-definite matrices (independent of the initial state.) To prove these results, we interpret the filtered states (estimates and error covariances) at each node in the GIKF as stochastic particles with local interactions. We analyze the asymptotic properties of the error process by studying as a random dynamical system the associated switched (random) Riccati equation, the switching being dictated by a non-stationary Markov chain on the network graph.

  11. Wound ballistics of injuries caused by handguns with different types of projectiles. (United States)

    von See, Constantin; Stuehmer, Alexander; Gellrich, Nils-Claudius; Blum, Katrin S; Bormann, Kai-Hendrik; Rücker, Martin


    There are considerable differences in the shape and composition of military and civilian projectiles. Five different projectiles with the same kinetic energy were fired into the heads of freshly sacrificed pigs (n=30) through the submental region in the occipital direction. Computed tomography (CT) and 3D face scans of the animal skulls were obtained before and after firing. The image data sets were fused and provided the basis for a quantitative analysis of destruction patterns. As a result of the destruction of the parietal bone at the potential exit site, there were significant volume difference between the Action 4 (6.45 +/- 3.42 ml) and the Hydra-Shok projectile (12.71 +/- 2.86 ml). The partial metal-jacketed projectile showed a minor increase in volume (4.89 +/- 1.47 ml) and a partial loss of soft projectile components. Radiology showed differences between the various projectiles in fragmentation and bone and soft-tissue destruction. Although the projectiles had the same kinetic energy, there were considerable differences in injury patterns between full metal-jacketed projectiles, which are the only projectiles permitted for military use under the Geneva Conventions, and the other investigated projectiles. These injuries present a major medical challenge to both first responders and surgeons.

  12. Multipole-bound molecular negative ions

    CERN Document Server

    Abdul-Karim, H; Desfrançois, C


    Within the framework of a simple electrostatic model, as compared to recent experimental results, we here discuss the stability of very weakly bound molecular negative ions. In contrast with the case of conventional valence anions, the excess electron is then located in a very diffuse orbital and is mainly bound by electrostatic dipolar, quadrupolar, and polarization forces, at large distances from the neutral molecular core. By fitting a single repulsion parameter of the model to the available experimental data, it is possible to make quantitative predictions of the excess-electron binding energies in these species. Critical values of the dipole moment, quadrupole moment or polarizability required for the observation of stable multipole-bound negative ions are predicted and compared to available experimental data and ab initio calculations. Refs. 26 (author)

  13. Study on miss distance based on projectile shock wave sensor (United States)

    Gu, Guohua; Cheng, Gang; Zhang, Chenjun; Zhou, Lei


    The paper establishes miss distance models based on physical characteristic of shock-wave. The aerodynamic theory shows that the shock-wave of flying super-sonic projectile is generated for the projectile compressing and expending its ambient atmosphere. It advances getting miss distance according to interval of the first sensors, which first catches shock-wave, to solve the problem such as noise filtering on severe background, and signals of amplifier vibration dynamic disposal and electromagnetism compatibility, in order to improves the precision and reliability of gathering wave N signals. For the first time, it can identify the kinds of pills and firing units automatically, measure miss distance and azimuth when pills are firing. Application shows that the tactics and technique index is advanced all of the world.

  14. Developmental changes in children's understanding of horizontal projectile motion. (United States)

    Mou, Yi; Zhu, Liqi; Chen, Zhe


    This study investigated 5- to 13-year-old children's performance in solving horizontal projectile motion problems, in which they predicted the trajectory of a carried object released from a carrier in three different contexts. The results revealed that 5- and 8-year-olds' trajectory predictions were easily distracted by salient contextual features (e.g. the relative spatial locations between objects), whereas a proportion of 11- and 13-year-olds' performance suggested the engagement of the impetus concept in trajectory prediction. The impetus concept is a typical misconception of inertial motion that assumes that motion is caused by force. Children's performance across ages suggested that their naïve knowledge of projectile motion was neither well-developed and coherent nor completely fragmented. Instead, this study presented the dynamic process in which children with age gradually overcame the influences of contextual features and consistently used the impetus concept across motion problems. © 2014 International Union of Psychological Science.

  15. Two dimensional fractional projectile motion in a resisting medium (United States)

    Rosales, Juan; Guía, Manuel; Gómez, Francisco; Aguilar, Flor; Martínez, Juan


    In this paper we propose a fractional differential equation describing the behavior of a two dimensional projectile in a resisting medium. In order to maintain the dimensionality of the physical quantities in the system, an auxiliary parameter k was introduced in the derivative operator. This parameter has a dimension of inverse of seconds (sec)-1 and characterizes the existence of fractional time components in the given system. It will be shown that the trajectories of the projectile at different values of γ and different fixed values of velocity v 0 and angle θ, in the fractional approach, are always less than the classical one, unlike the results obtained in other studies. All the results obtained in the ordinary case may be obtained from the fractional case when γ = 1.

  16. Developmental changes of misconception and misperception of projectiles. (United States)

    Kim, In-Kyeong


    This study investigated the developmental changes of perceptual and cognitive commonsense physical knowledge. Children 4 to 9 years old (N = 156; 79 boys, 77 girls) participated. Each child was asked to predict the landing positions of balls that rolled down and fell off a virtual ramp and to choose the most natural-looking motion from different projectile motions depicted. The landing position of the most natural-looking projectile was compared with the predicted landing position and also compared with the actual landing position. The results showed children predicted the ball's landing position closer to the ramp than the actual position. Children also chose the depiction in which the ball fell closer to the ramp than the accurate position, although the error in the prediction task was larger than in the perception task and decreased with age. The results indicated the developmental convergence of explicit reasoning and implicit perception, which suggest a single knowledge system with representational re-description.

  17. Perforation of aluminum plates by fragment simulating projectiles (FSP

    Directory of Open Access Journals (Sweden)

    T Fras


    Full Text Available The paper describes the ballistic impact test, in which fragment simulating projectiles (FSPs of a 20-mm-diameter have been used against 40-mmthick plates made of an aluminum alloy AA7020-T651. To perforate plates, the projectiles must have reached a velocity higher than 890 m/s. Based on the performed ballistic test, the plugging failure mode is numerically modeled using the LS-DYNA software package. Results obtained due to the calculations in the Finite Element Method (FEM are compared with the results from the Smoothed Particle Hydrodynamics (SPH. A condition of geometrical similarity between the target deformed experimentally and its numerical representation is introduced to evaluate the performed simulations.



    Bennis, Driss


    In this paper, we investigate the weak Gorenstein global dimensions. We are mainly interested in studying the problem when the left and right weak Gorenstein global dimensions coincide. We first show, for GF-closed rings, that the left and right weak Gorenstein global dimensions are equal when they are finite. Then, we prove that the same equality holds for any two-sided coherent ring. We conclude the paper with some examples and a brief discussion of the scope and limits of our results.

  19. Measuring the Effects of Lift and Drag on Projectile Motion (United States)

    Cross, Rod


    The trajectory of a projectile through the air is affected both by gravity and by aerodynamic forces. The latter forces can conveniently be ignored in many situations, even when they are comparatively large. For example, if a 145-g, 74-mm diameter baseball is pitched at 40 ms[superscript -1] (89.5 mph), it experiences a drag force of about 1.5 N.…

  20. Projectile - Mass asymmetry systematics for low energy incomplete fusion

    Directory of Open Access Journals (Sweden)

    Singh Pushpendra P.


    Full Text Available In the present work, low energy incomplete fusion (ICF in which only a part of projectile fuses with target nucleus has been investigated in terms of various entrance channel parameters. The ICF strength function has been extracted from the analysis of experimental excitation functions (EFs measured for different projectile-target combinations from near- to well above- barrier energies in 12C,16O(from 1.02Vb to 1.64Vb+169Tm systems. Experimental EFs have been analysed in the framework statistical model code PACE4 based on the idea of equilibrated compound nucleus decay. It has been found that the value of ICF fraction (FICF increases with incident projectile energy. A substantial fraction of ICF (FICF ≈ 7 % has been accounted even at energy as low as ≈ 7.5% above the barrier (at relative velocity νrel ≈0.027 in 12C+169Tm system, and FICF ≈ 10 % at νrel ≈0.014 in 16O+169Tm system. The probability of ICF is discussed in light of the Morgenstern’s mass-asymmetry systematics. The value of FICF for 16O+169Tm systems is found to be 18.3 % higher than that observed for 12C+169Tm systems. Present results together with the re-analysis of existing data for nearby systems conclusively demonstrate strong competition of ICF with CF even at slightly above barrier energies, and strong projectile dependence that seems to supplement the Morgenstern’s systematics.

  1. Learning Projectile Motion with the Computer Game ``Scorched 3D`` (United States)

    Jurcevic, John S.


    For most of our students, video games are a normal part of their lives. We should take advantage of this medium to teach physics in a manner that is engrossing for our students. In particular, modern video games incorporate accurate physics in their game engines, and they allow us to visualize the physics through flashy and captivating graphics. I recently used the game "Scorched 3D" to help my students understand projectile motion.

  2. Virial Expansion Bounds (United States)

    Tate, Stephen James


    In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.

  3. Ultrahigh-speed X-ray imaging of hypervelocity projectiles (United States)

    Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.


    High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.

  4. History of Weak Interactions (United States)

    Lee, T. D.


    While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.

  5. Satellite Splat: An Inelastic Collision with a Surface-launched Projectile (United States)


    conservation of mechanical energy and angular momentum for orbital motion . Consider the following problem: a projectile of mass m is launched...Satellite splat: an inelastic collision with a surface-launched projectile Philip R Blanco1 and Carl E Mungan2 1Department of Physics and Astronomy...revised 13 March 2015 Accepted for publication 1 April 2015 Published 23 April 2015 Abstract A projectile is launched vertically from the surface of an

  6. Study of high-speed interaction processes between fluoropolymer projectiles and aluminum-based targets

    Directory of Open Access Journals (Sweden)

    Evgeny A. Khmelnikov


    Full Text Available The experimental results and numerical modeling of penetration process of fluoropolymer projectiles in aluminum-based targets are presented. Analysis of mathematical models for interaction of elastoplastic projectile and target without taking additional energy released during interaction of fluoropolymer and aluminum into consideration is carried out. Energy fraction which is spent effectively on the increase in cavity volume is determined. The experimental and calculated results of penetration by combined and inert projectiles are compared.

  7. Non-perturbative aspects in a weakly interacting Higgs sector

    CERN Document Server

    Maas, Axel


    Just like the weakly interacting QED can support non-perturbative phenomena, like atoms, so can the weak and Higgs interactions. Especially, there are strong field-theoretical arguments that only bound states can be the (quasi-)asymptotic physical degrees of freedom of this sector. After a brief review of these arguments, the 2-point, 3-point and 4-point correlation functions of the Higgs-W system are determined using lattice gauge theory. The results support a conjectured duality between elementary states and bound states for weak Higgs self-interactions. This leads to relations between the bound states and the experimentally observed particles. Interestingly, these may yield pseudo-scalar admixtures at the Higgs energy, and possibly a faint standard-model signal in the channel where a Kaluza-Klein graviton would be expected.

  8. Validation of EMP bounds

    Energy Technology Data Exchange (ETDEWEB)

    Warne, L.K.; Merewether, K.O.; Chen, K.C.; Jorgenson, R.E.; Morris, M.E.; Solberg, J.E.; Lewis, J.G. [Sandia National Labs., Albuquerque, NM (United States); Derr, W. [Derr Enterprises, Albuquerque, NM (United States)


    Test data on canonical weapon-like fixtures are used to validate previously developed analytical bounding results. The test fixtures were constructed to simulate (but be slightly worse than) weapon ports of entry but have known geometries (and electrical points of contact). The exterior of the test fixtures exhibited exterior resonant enhancement of the incident fields at the ports of entry with magnitudes equal to those of weapon geometries. The interior consisted of loaded transmission lines adjusted to maximize received energy or voltage but incorporating practical weapon geometrical constraints. New analytical results are also presented for bounding the energies associated with multiple bolt joints and for bounding the exterior resonant enhancement of the exciting fields.

  9. Hidrodinamički model podvodnog projektila / Hidrodinamical model of an underwater projectile

    Directory of Open Access Journals (Sweden)

    Miroslav Radosavljević


    Full Text Available Radi dobijanja kvalitetnog matematičkog modela podvodnog projektila u radu su definisane ulazne i izlazne veličine, brzine i ubrzanje projektila. Uz zadate uslove mogućeg kretanja projektila definisan je model podvodnog projektila sa šest jednačina. / The paper analyzes an underwater projectile. The input and output values, the projectile speed and acceleration are defined for a quality definition of the projectile mathematical model. With the conditions of the projectile potential movement previously set out, the torpedo model is defined by six equations.

  10. Prediction of Projectile Performance, Stability, and Free-Flight Motion Using Computational Fluid Dynamics

    National Research Council Canada - National Science Library

    Weinacht, Paul


    ... that are derived solely from computational fluid dynamics (CFD). As a demonstration of the capability, this report presents results for a family of axisymmetric projectiles in supersonic flight...

  11. Weak bond screening system (United States)

    Chuang, S. Y.; Chang, F. H.; Bell, J. R.

    Consideration is given to the development of a weak bond screening system which is based on the utilization of a high power ultrasonic (HPU) technique. The instrumentation of the prototype bond strength screening system is described, and the adhesively bonded specimens used in the system developmental effort are detailed. Test results obtained from these specimens are presented in terms of bond strength and level of high power ultrasound irradiation. The following observations were made: (1) for Al/Al specimens, 2.6 sec of HPU irradiation will screen weak bond conditions due to improper preparation of bonding surfaces; (2) for composite/composite specimens, 2.0 sec of HPU irradiation will disrupt weak bonds due to under-cured conditions; (3) for Al honeycomb core with composite skin structure, 3.5 sec of HPU irradiation will disrupt weak bonds due to bad adhesive or oils contamination of bonding surfaces; and (4) for Nomex honeycomb with Al skin structure, 1.3 sec of HPU irradiation will disrupt weak bonds due to bad adhesive.

  12. Bounded Tamper Resilience

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Faust, Sebastian; Mukherjee, Pratyay


    a bounded tamper and leakage resilient CCA secure public key cryptosystem based on the DDH assumption. We first define a weaker CPA-like security notion that we can instantiate based on DDH, and then we give a general compiler that yields CCA-security with tamper and leakage resilience. This requires...... a public tamper-proof common reference string. Finally, we explain how to boost bounded tampering and leakage resilience (as in 1. and 2. above) to continuous tampering and leakage resilience, in the so-called floppy model where each user has a personal hardware token (containing leak- and tamper...

  13. Bagging Weak Predictors

    DEFF Research Database (Denmark)

    Lukas, Manuel; Hillebrand, Eric

    Relations between economic variables can often not be exploited for forecasting, suggesting that predictors are weak in the sense that estimation uncertainty is larger than bias from ignoring the relation. In this paper, we propose a novel bagging predictor designed for such weak predictor...... variables. The predictor is based on a test for finitesample predictive ability. Our predictor shrinks the OLS estimate not to zero, but towards the null of the test which equates squared bias with estimation variance. We derive the asymptotic distribution and show that the predictor can substantially lower...

  14. Weak gravity conjecture and effective field theory (United States)

    Saraswat, Prashant


    The weak gravity conjecture (WGC) is a proposed constraint on theories with gauge fields and gravity, requiring the existence of light charged particles and/or imposing an upper bound on the field theory cutoff Λ . If taken as a consistency requirement for effective field theories (EFTs), it rules out possibilities for model building including some models of inflation. I demonstrate simple models which satisfy all forms of the WGC, but which through Higgsing of the original gauge fields produce low-energy EFTs with gauge forces that badly violate the WGC. These models illustrate specific loopholes in arguments that motivate the WGC from a bottom-up perspective; for example the arguments based on magnetic monopoles are evaded when the magnetic confinement that occurs in a Higgs phase is accounted for. This indicates that the WGC should not be taken as a veto on EFTs, even if it turns out to be a robust property of UV quantum gravity theories. However, if the latter is true, then parametric violation of the WGC at low energy comes at the cost of nonminimal field content in the UV. I propose that only a very weak constraint is applicable to EFTs, Λ ≲(log 1/g )-1 /2Mpl , where g is the gauge coupling, motivated by entropy bounds. Remarkably, EFTs produced by Higgsing a theory that satisfies the WGC can saturate but not violate this bound.

  15. Bounded variation and around

    CERN Document Server

    Appell, Jürgen; Merentes Díaz, Nelson José


    This monographis a self-contained exposition of the definition and properties of functionsof bounded variation and their various generalizations; the analytical properties of nonlinear composition operators in spaces of such functions; applications to Fourier analysis, nonlinear integral equations, and boundary value problems. The book is written for non-specialists. Every chapter closes with a list of exercises and open problems.

  16. Born Level Bound States (United States)

    Hoyer, Paul


    Bound state poles in the S-matrix of perturbative QED are generated by the divergence of the expansion in α . The perturbative corrections are necessarily singular when expanding around free, {O}( α ^0 ) in and out states that have no overlap with finite-sized atomic wave functions. Nevertheless, measurables such as binding energies do have well-behaved expansions in powers of α (and log α ). It is desirable to formulate the concept of "lowest order" for gauge theory bound states such that higher order corrections vanish in the α → 0 limit. This may allow to determine a lowest order term for QCD hadrons which incorporates essential features such as confinement and chiral symmetry breaking, and thus can serve as the starting point of a useful perturbative expansion. I discuss a "Born" (no loop, lowest order in \\hbar ) approximation. Born level states are bound by gauge fields which satisfy the classical field equations. Gauss' law determines a distinct field A^0({\\varvec{x}}) for each instantaneous position of the charges. A Poincaré covariant boundary condition for the gluon field leads to a confining potential for q\\bar{q} and qqq states. In frames where the bound state is in motion the classical gauge field is obtained by a Lorentz boost of the rest frame field.

  17. Upper bounds for domination related parameters in graphs on surfaces

    Directory of Open Access Journals (Sweden)

    Vladimir Samodivkin


    Full Text Available In this paper we give tight upper bounds on the total domination number, the weakly connected domination number and the connected domination number of a graph in terms of order and Euler characteristic. We also present upper bounds for the restrained bondage number, the total restrained bondage number and the restricted edge connectivity of graphs in terms of the orientable/nonorientable genus and maximum degree.

  18. Charged weak currents

    CERN Document Server

    Turlay, René


    In this review of charged weak currents the author concentrates on inclusive high energy neutrino physics. The authors discusses the general structure of charged currents, new results on total cross- sections, the Callan-Gross relation, antiquark distributions, scaling violations and tests of QCD. A very short summary on multilepton physics is given. (44 refs).

  19. On Weak Markov's Principle

    DEFF Research Database (Denmark)

    Kohlenbach, Ulrich Wilhelm


    We show that the so-called weak Markov's principle (WMP) which states that every pseudo-positive real number is positive is underivable in E-HA + AC. Since allows one to formalize (atl eastl arge parts of) Bishop's constructive mathematics, this makes it unlikely that WMP can be proved within...

  20. Comment on ‘Wind-influenced projectile motion’ (United States)

    Winther Andersen, Poul


    We comment on the article ‘Wind-influenced projectile motion’ by Bernardo et al (2015 Eur. J. Phys. 36 025016) where they examine the trajectory of a particle that is subjected to gravity and a linear air resistance plus the influence from the wind. They find by using the Lambert W function that the particle's trajectory for a special angle, the critical angle {θ }{{C}}, between the initial velocity and the horizontal is part of a straight line. In this comment we will show that this result can be proved without using the Lambert W function which is not that well known to beginning students of physics.

  1. Stagnation pressure activated fuel release mechanism for hypersonic projectiles (United States)

    Cartland, Harry E.; Hunter, John W.


    A propulsion-assisted projectile has a body, a cowl forming a combustion section and a nozzle section. The body has a fuel reservoir within a central portion of the body, and a fuel activation system located along the central axis of the body and having a portion of the fuel activation system within the fuel reservoir. The fuel activation system has a fuel release piston with a forward sealing member where the fuel release piston is adapted to be moved when the forward sealing member is impacted with an air flow, and an air-flow channel adapted to conduct ambient air during flight to the fuel release piston.

  2. An Investigation of Oblique Perforation of Metallic Plates by Projectiles (United States)


    34LISTICS, TERMINAL DYNAMIC PLASTICITY PERFORATION PENETRATION IMPACT (OBLIQUE) N OR *0. AOSTRACT (47"fifte an orev ie It moina.. y and Idon#ItV by’ bloc...follow that to good approximation (be/h’) - (b/h) and the second stage would comence when x - (h-b)/cosa. For the second stage of the perforation proceso ...rather than along the projectile path and has a rotational velocity, but this can be shown to have a small influence on the terminal velocity of the

  3. Destructive behavior of iron oxide in projectile impact (United States)

    Shang, Wang; Xiaochen, Wang; Quan, Yang; Zhongde, Shan


    The damage strain values of Q235-A surface oxide scale were obtained by scanning electron microscopy (SEM/EDS) and universal tensile testing machine. The finite element simulation was carried out to study the destruction effects of oxidation at different impact rates. The results show that the damage value of the oxide strain is 0.08%. With the increase of the projectile velocity, the damage area of the oxide scale is increased, and the damage area is composed of the direct destruction area and the indirect failure area. The indirect damage area is caused by the stress/strain to the surrounding expansion after the impact of the steel body.

  4. Anthropological analysis of projectile trauma to the bony regions of the trunk

    Directory of Open Access Journals (Sweden)

    Humphrey Caitlin


    Full Text Available Ballistics literature often focuses on soft tissue injures and projectile trauma to the cranium. Minimal details on the bony characteristics of projectile trauma to the thorax/abdomen regions have been published. This study aims to analyse projectile trauma to the bony trunk region including the ribs, vertebrae, scapula, sternum and the hip bone to form a better understanding of the characteristics and biomechanics of skeletal trauma caused by a projectile and contribute to the existing database on skeletal trauma caused by projectiles. Fourteen cases of documented projectile trauma to the bony regions of the trunk from the Hamman-Todd Human Osteological Collection at the Cleveland Natural History Museum, Ohio were analysed. Of the 14 individuals with gunshot wounds examined, 40 wounds occurred to the bones. Twenty- four injuries to the ribs, 1 ilium, 11 vertebrae, 3 scapulae, and 1 sternum. Fracture patterns, heaving and bevelling can be used to determine the direction of travel of the projectile which can be evident on the ribs, sternum, scapula and ilium. It is critical to understand the wounding patterns associated with projectile trauma to the torso region as this is often targeted, due to being the centre of mass.

  5. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction (United States)

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.


    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  6. An Analytic Approach to Projectile Motion in a Linear Resisting Medium (United States)

    Stewart, Sean M.


    The time of flight, range and the angle which maximizes the range of a projectile in a linear resisting medium are expressed in analytic form in terms of the recently defined Lambert W function. From the closed-form solutions a number of results characteristic to the motion of the projectile in a linear resisting medium are analytically confirmed,…

  7. Projectile Motion on an Inclined Misty Surface: I. Capturing and Analysing the Trajectory (United States)

    Ho, S. Y.; Foong, S. K.; Lim, C. H.; Lim, C. C.; Lin, K.; Kuppan, L.


    Projectile motion is usually the first non-uniform two-dimensional motion that students will encounter in a pre-university physics course. In this article, we introduce a novel technique for capturing the trajectory of projectile motion on an inclined Perspex plane. This is achieved by coating the Perspex with a thin layer of fine water droplets…

  8. Solution to Projectile Motion with Quadratic Drag and Graphing the Trajectory in Spreadsheets (United States)

    Benacka, Jan


    This note gives the analytical solution to projectile motion with quadratic drag by decomposing the velocity vector to "x," "y" coordinate directions. The solution is given by definite integrals. First, the impact angle is estimated from above, then the projectile coordinates are computed, and the trajectory is graphed at various launch angles and…

  9. Spreadsheet Application Showing the Proper Elevation Angle, Points of Shot and Impact of a Projectile (United States)

    Benacka, Jan


    This paper provides the formula for the elevation angle at which a projectile has to be fired in a vacuum from a general position to hit a target at a given distance. A spreadsheet application that models the trajectory is presented, and the problem of finding the points of shot and impact of a projectile moving in a vacuum if three points of the…

  10. Real-time estimation of projectile roll angle using magnetometers: in-lab experimental validation (United States)

    Changey, S.; Pecheur, E.; Wey, P.; Sommer, E.


    The knowledge of the roll angle of a projectile is decisive to apply guidance and control law. For example, the goal of ISL's project GSP (Guided Supersonic Projectile) is to change the flight path of an airdefence projectile in order to correct the aim error due to the target manoeuvres. The originality of the concept is based on pyrotechnical actuators and onboard sensors which control the angular motion of the projectile. First of all, the control of the actuators requires the precise control of the roll angle of the projectile. To estimate the roll angle of the projectile, two magnetometers are embedded in the projectile to measure the projection of the Earth magnetic field along radial axes of the projectiles. Then, an extended Kalman filter (EKF) is used to compute the roll angle estimation. As the rolling frequency of the GSP is about 22 Hz, it was easy to test the navigation algorithm in laboratory. In a previous paper [1], the In-Lab demonstration of this concept showed that the roll angle estimation was possible with an accuracy of about 1◦ . In this paper, the demonstration is extended to high-speed roll rate, up to 1000 Hz. Thus, two magnetometers, a DSP (Digital Signal Processor) and a LED (Light Eminent Diode), are rotated using a pneumatic motor; the DSP runs an EKF and a guidance algorithm to compute the trigger times of the LED. By using a high-speed camera, the accuracy of the method can be observed and improved.

  11. New projectiles: multicharged metal clusters and biopolymers; De nouveaux projectiles, les agregats metalliques et les biopolymeres multicharges

    Energy Technology Data Exchange (ETDEWEB)

    Della-Negra, S.; Gardes, D.; Le Beyec, Y.; Waast, B.


    Metal clusters and molecules are the one mean to realize simultaneous impacts of several atoms on a reduced surface({approx}100A). The interaction characteristics is the non-linearity of energy deposition; the perturbation that the cluster produces, is above than the sum of the perturbation induced by its components, taken separately. The purpose of ORION project is to accelerate these new projectiles at ORSAY Tandem. The considered mass range is from 100 Daltons to 100 000 Daltons and energy range from MeV to GeV.

  12. Projectile charge state dependent sputtering of solid surfaces

    CERN Document Server

    Hayderer, G


    dependence on the ion kinetic energy. This new type of potential sputtering not only requires electronic excitation of the target material, but also the formation of a collision cascade within the target in order to initiate the sputtering process and has therefore been termed kinetically assisted potential sputtering. In order to study defects induced by potential sputtering on the atomic scale we performed measurements of multiply charged Ar ion irradiated HOPG (highly oriented pyrolitic graphite) samples with scanning tunneling microscopy (STM). The only surface defects found in the STM images are protrusions. The mean diameter of the defects increases with projectile charge state while the height of the protrusions stays roughly the same indicating a possible pre-equilibrium effect of the stopping of slow multiply charged projectiles in HOPG. Total sputter yields for impact of slow singly and multiply charged ions on metal- (Au), oxide- (Al2O3, MgO) and alkali-halide surfaces (LiF) have been measured as a...

  13. Target and Projectile: Material Effects on Crater Excavation and Growth (United States)

    Anderson, J. L. B.; Burleson, T.; Cintala, Mark J.


    Scaling relationships allow the initial conditions of an impact to be related to the excavation flow and final crater size and have proven useful in understanding the various processes that lead to the formation of a planetary-scale crater. In addition, they can be examined and tested through laboratory experiments in which the initial conditions of the impact are known and ejecta kinematics and final crater morphometry are measured directly. Current scaling relationships are based on a point-source assumption and treat the target material as a continuous medium; however, in planetary-scale impacts, this may not always be the case. Fragments buried in a megaregolith, for instance, could easily approach or exceed the dimensions of the impactor; rubble-pile asteroids could present similar, if not greater, structural complexity. Experiments allow exploration into the effects of target material properties and projectile deformation style on crater excavation and dimensions. This contribution examines two of these properties: (1) the deformation style of the projectile, ductile (aluminum) or brittle (soda-lime glass) and (2) the grain size of the target material, 0.5-1 mm vs. 1-3 mm sand.

  14. Weak lensing with GEST (United States)

    Rhodes, J. D.; Bennett, D. P.; Kaiser, N.


    Weak lensing by large-scale structure (cosmic shear) provides an opportunity to directly observe the dark matter in the universe. Current ground-based and space-based surveys have demonstrated the efficacy of this technique in determining the mass distribution and thus placing constraints on cosmological parameters such as Ω m, σ 8, and the bias parameter b. Current surveys have been hampered by the comparatively low resolution of ground-based telescopes and the small field of view of HST. To make significant progress in this field, wide field space-based surveys are needed. The Galactic Exoplanet Survey Telescope (GEST) will be able to provide 500- 1000 sqare degrees with a resolution of better than 0.2 arcseconds in multiple filters. This will make it an ideal instrument for a weak lensing survey.

  15. Composite weak bosons

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, M.


    Dynamical mechanism of composite W and Z is studied in a 1/N field theory model with four-fermion interactions in which global weak SU(2) symmetry is broken explicitly by electromagnetic interaction. Issues involved in such a model are discussed in detail. Deviation from gauge coupling due to compositeness and higher order loop corrections are examined to show that this class of models are consistent not only theoretically but also experimentally.

  16. Identifying flight modes of Aerial Planting Projectile using Hilbert-Huang transformation (United States)

    Goodarzi, H.; Sabzehparvar, M.


    A novel method based on Hilbert Huang Transform (HHT) for analyzing the non-linear and non-stationary of Aerial Planting Projectile (APP) flight data signal is presented. Also an image processing method is used for acquire attitude signals of projectile. Experimental test setup includes an electrical fan, high speed digital camera and projectile that the images of projectile falling down against of fan flow is captured. The frequency components of the projectile attitude signal along separation phase and free falling are complicated. Empirical Mode Decomposition (EMD) can decompose the signal into Intrinsic Mode Functions (IMFs). After a Hilbert transform, the instantaneous frequency and damping ratio of each IMF is obtained to get the physical meaning of each IMF. Analysis results indicate that the flight modes of APP are identified with high accuracy.

  17. On the Resistance of the Air at High Speeds and on the Automatic Rotation of Projectiles (United States)

    Riabouchinski, D


    Here, the laws governing the flow of a compressible fluid through an opening in a thin wall are applied to the resistance of the air at high speeds, especially as applied to the automatic rotation of projectiles. The instability which we observe in projectiles shot into the air without being given a moment of rotation about their axis of symmetry, or without stabilizing planes, is a phenomenon of automatic rotation. It is noted that we can prevent this phenomenon of automatic rotation by bringing the center of gravity sufficiently near one end, or by fitting the projectile with stabilizing planes or a tail. The automatic rotation of projectiles is due to the suction produced by the systematic formation of vortices behind the extremity of the projectile moving with the wind.

  18. Instantaneous charge state of Uranium projectiles in fully ionized plasmas from energy loss experiments

    CERN Document Server

    Morales, Roberto; Casas, David


    The instantaneous charge state of uranium ions traveling through a fully ionized hydrogen plasma has been theoretically studied and compared with one of the first energy loss experiments in plasmas, carried out at GSI-Darmstadt by Hoffmann \\textit{et al.} in the 90's. For this purpose, two different methods to estimate the instantaneous charge state of the projectile have been employed: (1) rate equations using ionization and recombination cross sections, and (2) equilibrium charge state formulas for plasmas. Also, the equilibrium charge state has been obtained using these ionization and recombination cross sections, and compared with the former equilibrium formulas. The equilibrium charge state of projectiles in plasmas is not always reached, it depends mainly on the projectile velocity and the plasma density. Therefore, a non-equilibrium or an instantaneous description of the projectile charge is necessary. The charge state of projectile ions cannot be measured, except after exiting the target, and experime...

  19. Asymptotic theory of weakly dependent random processes

    CERN Document Server

    Rio, Emmanuel


    Presenting tools to aid understanding of asymptotic theory and weakly dependent processes, this book is devoted to inequalities and limit theorems for sequences of random variables that are strongly mixing in the sense of Rosenblatt, or absolutely regular. The first chapter introduces covariance inequalities under strong mixing or absolute regularity. These covariance inequalities are applied in Chapters 2, 3 and 4 to moment inequalities, rates of convergence in the strong law, and central limit theorems. Chapter 5 concerns coupling. In Chapter 6 new deviation inequalities and new moment inequalities for partial sums via the coupling lemmas of Chapter 5 are derived and applied to the bounded law of the iterated logarithm. Chapters 7 and 8 deal with the theory of empirical processes under weak dependence. Lastly, Chapter 9 describes links between ergodicity, return times and rates of mixing in the case of irreducible Markov chains. Each chapter ends with a set of exercises. The book is an updated and extended ...

  20. Effect of the cluster angular momentum J and the projectile orbital momentum L on capture probability and postcollision dynamics. (United States)

    Mella, Massimo


    In this work, collisions between rotating atomic clusters composed of Lennard-Jones (LJ(n)) particles and an identical projectile have been investigated by means of trajectory simulations as a function of the cluster angular momentum J and internal energy E, and for different values of the projectile impact parameter b and relative velocity v(p). As expected, the collision (P(c)(b)) and capture [or sticking P(s)(b)] probabilities are found to decay below unity for values of b larger than the average surface radius of the cluster, with dP/db being strongly dependent on v(p). Both P(c)(b) and P(s)(b), however, appear to be largely insensitive to the modulus of the cluster angular momentum |J| and only weakly dependent on E for collisions involving target clusters with a lifetime tau>100 ps. The latter findings are interpreted as indicating the absence of strong changes in the structure of the target as a function of |J| and E. The comparison between the dissociation lifetime (tau(dyn)) of the postcapture complexes (LJ(n+1)(*)) obtained continuing trajectories after monomer capture and the one computed from the fragmentation of statistically prepared clusters (tau(stat)) supports the validity of a two-step capture-dissociation model; similarly, the comparison between the average amount of energy exchanged during trajectories (DeltaE(dyn)) in the process LJ(n)+LJ-->LJ(n+1)(*)-->LJ(n)+LJ and the one predicted by statistical simulations (DeltaE(stat)) suggests a fast statistical energy redistribution in the collisional complex even for very short tau(dyn) (e.g., 40 ps). In the case of projectiles aimed at the edge of the cluster [(grazing collisions, P(c)(b)trajectories indicate the presence of ballistic dynamics and of a weak energy exchange (DeltaE(coll)

  1. On the bound state of the antiproton-deuterium-tritium ion

    CERN Document Server

    Frolov, Alexei M


    It is shown that the ground state in the Coulomb three-body $\\bar{p}dt$ ion is bound. This ion consists of the positevely charged deuterium $d$ and tritum $t$ nuclei and one negatively charged antirpoton $\\bar{p}$. The $\\bar{p}dt$ ion has only one bound $S(L = 0)-$state which is weakly-bound. The properties of this weakly-bound state are investigated with the use of the results of recent highly accurate computations. Very likely, the actual proparties of the $\\bar{p}dt$ ion will be different from the results of our predictions due to additional contributions from strong interactions between particles.

  2. The Weak Haagerup Property II

    DEFF Research Database (Denmark)

    Haagerup, Uffe; Knudby, Søren


    The weak Haagerup property for locally compact groups and the weak Haagerup constant were recently introduced by the second author [27]. The weak Haagerup property is weaker than both weak amenability introduced by Cowling and the first author [9] and the Haagerup property introduced by Connes [6......] and Choda [5]. In this paper, it is shown that a connected simple Lie group G has the weak Haagerup property if and only if the real rank of G is zero or one. Hence for connected simple Lie groups the weak Haagerup property coincides with weak amenability. Moreover, it turns out that for connected simple...... Lie groups the weak Haagerup constant coincides with the weak amenability constant, although this is not true for locally compact groups in general. It is also shown that the semidirect product R2 × SL(2,R) does not have the weak Haagerup property....

  3. Dromions bound states

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, Attilio


    The asymptotic perturbation (AP) method is applied to the study of the nonlinear Klein-Gordon equation in 3+1 dimensions with harmonic potential and external periodic excitation supposed to be in primary resonance with the frequency of a generic mode. The AP method uses two different procedures for the solutions: introducing an asymptotic temporal rescaling and balancing of the harmonic terms with a simple iteration. Standard quantum mechanics can be used to derive the lowest order approximate solution and amplitude and phase modulation equations are obtained. External force-response and frequency-response curves are found and the existence of dromions trapped in bound states is demonstrated.

  4. Measurement of weak radioactivity

    CERN Document Server

    Theodorsson , P


    This book is intended for scientists engaged in the measurement of weak alpha, beta, and gamma active samples; in health physics, environmental control, nuclear geophysics, tracer work, radiocarbon dating etc. It describes the underlying principles of radiation measurement and the detectors used. It also covers the sources of background, analyzes their effect on the detector and discusses economic ways to reduce the background. The most important types of low-level counting systems and the measurement of some of the more important radioisotopes are described here. In cases where more than one type can be used, the selection of the most suitable system is shown.

  5. ICU-Acquired Weakness. (United States)

    Jolley, Sarah E; Bunnell, Aaron E; Hough, Catherine L


    Survivorship after critical illness is an increasingly important health-care concern as ICU use continues to increase while ICU mortality is decreasing. Survivors of critical illness experience marked disability and impairments in physical and cognitive function that persist for years after their initial ICU stay. Newfound impairment is associated with increased health-care costs and use, reductions in health-related quality of life, and prolonged unemployment. Weakness, critical illness neuropathy and/or myopathy, and muscle atrophy are common in patients who are critically ill, with up to 80% of patients admitted to the ICU developing some form of neuromuscular dysfunction. ICU-acquired weakness (ICUAW) is associated with longer durations of mechanical ventilation and hospitalization, along with greater functional impairment for survivors. Although there is increasing recognition of ICUAW as a clinical entity, significant knowledge gaps exist concerning identifying patients at high risk for its development and understanding its role in long-term outcomes after critical illness. This review addresses the epidemiologic and pathophysiologic aspects of ICUAW; highlights the diagnostic challenges associated with its diagnosis in patients who are critically ill; and proposes, to our knowledge, a novel strategy for identifying ICUAW. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  6. Asteroid surface impact sampling: dependence of the cavity morphology and collected mass on projectile shape. (United States)

    Cheng, Bin; Yu, Yang; Baoyin, Hexi


    In-situ exploration and remote thermal infrared observation revealed that a large fraction of Solar System small bodies should be covered with granular regolith. The complex and varied geology of the regolith layer may preserve the historical records of the surface modification and topographic evolution experienced by asteroids, especially cratering processes, in which the projectile shape plays a crucial role. Regarding the impact sampling scheme, the projectile-shape dependence of both the cavity morphology and the collected mass remains to be explored. This paper studies the process of the low-speed impact sampling on granular regolith using projectiles of different shapes. The results demonstrate that the projectile shape significantly influences the excavation stage, forming cavities with different morphologies, i.e., cone-shaped, bowl-shaped and U-shaped. We further indicate that the different velocity distributions of the ejecta curtains due to the various projectile shapes result in various amounts of collected mass in sampler canister, regarding which the 60° conical projectile exhibits preferable performance for impact sampling scheme. The results presented in this article are expected to reveal the dependence of the excavation process on projectile shape under micro gravity and provide further information on the optimal designs of impact sampling devices for future sample-return space missions.

  7. Fairly direct hit! Advances in imaging of shotgun projectiles in MRI. (United States)

    Eggert, Sebastian; Kubik-Huch, Rahel A; Klarhöfer, Markus; Peters, Alexander; Bolliger, Stephan A; Thali, Michael J; Anderson, Suzanne; Froehlich, Johannes M


    To investigate the magnetic properties of different types of projectiles and qualify the metal artefact reduction technique for diagnostic and/or forensic MRI. Ten different projectiles embedded in ordnance gelatine blocks underwent an in vitro 1.5-T MR study with seven sequences including a recently developed metal artefact reduction sequence (Advanced WARP) combining VAT (view-angle-tilting) and SEMAC (slice-encoding metal-artefact-correction). Resulting image quality (five-point scale: 1=best; 5=worst) was scored. Quantifiable magnetic characteristics were correlated with qualitative rating of the MR sequences and torque dislodgment. Metal artefact reduction sequence (median: 2.5) significantly (p magnetic attracted ones (median: 5). Correlation (0.623) between deflection angle measurement (ferromagnetic mean 84.2°; paramagnetic 62°; diamagnetic mean 0°) and median qualitative image quality was highly significant (p = 0.027). Torque dislodgement was distinct for elongated magnetic attracted projectiles. Significant improvement of MR imaging of projectiles using metal artefact reduction techniques has important implications for diagnostic/forensic work-up. The correlations between magnetic attraction force, deflection-angle results and image properties demonstrate that the MR safety of projectiles can be estimated with one of these methods. • Metal artefact reduction sequence improves overall image quality of bullets (p Classification of projectiles' magnetic properties based on artefacts' characteristics is possible. • Classifying of bullets has important implications in diagnostic and forensic imaging. • Identification of projectiles' magnetic attributes improves estimation of patients' injury risk.

  8. 3D finite element simulations of high velocity projectile impact

    Directory of Open Access Journals (Sweden)

    Ožbolt Joško


    Full Text Available An explicit three-dimensional (3D finite element (FE code is developed for the simulation of high velocity impact and fragmentation events. The rate sensitive microplane material model, which accounts for large deformations and rate effects, is used as a constitutive law. In the code large deformation frictional contact is treated by forward incremental Lagrange multiplier method. To handle highly distorted and damaged elements the approach based on the element deletion is employed. The code is then used in 3D FE simulations of high velocity projectile impact. The results of the numerical simulations are evaluated and compared with experimental results. It is shown that it realistically predicts failure mode and exit velocities for different geometries of plain concrete slab. Moreover, the importance of some relevant parameters, such as contact friction, rate sensitivity, bulk viscosity and deletion criteria are addressed.

  9. Selected Screen for Engaging Students in Projectile Motion (United States)

    Dramae, A.; Toedtanya, K.; Wuttiprom, S.


    Connecting physics concepts to activities that are interesting to students or what they encounter in everyday life will help students build a strong foundation. When there is an interesting activity for the student, it will result in the student responding, engaging, and enthusiasm in learning. Learning activities that are based on what students are interested in and regularly experience will enable students to understand the long and memorable experience. Both of these will enhance the student’s learning experience. One of the activities that can be described in this research used the learning activity through movies, which is the application of the basic motion projectile for students to understand the characteristics of such movement. It also aims to further develop critical thinking skills of learners.

  10. Aerodynamic Jump: A Short Range View for Long Rod Projectiles

    Directory of Open Access Journals (Sweden)

    Mark Bundy


    Full Text Available It is shown that aerodynamic jump for a nonspinning kinetic energy penetrator is not – as conventional definitions may infer – a discontinuous change in the direction of motion at the origin of free flight, nor is it the converse, a cumulative redirection over a domain of infinite extent. Rather, with the aid of an alternative kinematical definition, it is shown that aerodynamic jump for such a projectile is a localized redirection of the center-of-gravity motion, caused by the force of lift due to yaw over the relatively short region from entry into free flight until the yaw reaches its first maximum. A rigorous proof of this statement is provided, but the primary objective of this paper is to provide answers to the questions: what is aerodynamic jump, what does it mean, and what aspects of the flight trajectory does it refer to, or account for.

  11. Adolescents' cognition of projectile motion: a pilot study. (United States)

    Zhao, Jun-Yan; Yu, Guoliang


    Previous work on the development of intuitive knowledge about projectile motion has shown a dissociation between action knowledge expressed on an action task and conceptual knowledge expressed on a judgment task for young children. The research investigated the generality of dissociation for adolescents. On the action task, participants were asked to swing Ball A of a bifilar pendulum to some height then release it to collide with Ball B, which was projected to hit a target. On the judgment task, participants indicated orally the desired swing angle at which Ball A should be released so that Ball B would strike a target. Unlike previous findings with adults, the adolescents showed conceptual difficulties on the judgment task and well-developed action knowledge on the action task, which suggests dissociation between the two knowledge systems is also present among adolescents. The result further supports the hypothesis that the two knowledge systems follow different developmental trajectories and at different speeds.

  12. Reaction of Projectiles with Targets during Hypervelocity Impact (United States)

    Russell, Rod; Bless, Stephan; Persad, Chadee; Manthiram, Karthish


    Hollow tungsten projectiles were filled with bismuth oxide or copper and shot into aluminum blocks at 2200 m/s. The blocks were cut open, and the contents and morphology of the penetration channels were examined. In the case of copper fill, the channel was found to be filled with a black foam containing closed-cell bubbles. X-ray diffraction revealed the presence of CuAl2, indicating reaction with the aluminum target. In the case of bismuth oxide, there was little foam, but the penetration channel walls had many craters, which contained nodules of bismuth metal, again indicating reaction with the target. There were variations in crater diameter apparently corresponding to the onset and termination of the reactions. The exothermic nature of the reactions produced cracks in the target blocks.

  13. Numerical Simulation of Projectile Oblique Impact on Microspacecraft Structure

    Directory of Open Access Journals (Sweden)

    Zhiyuan Zhang


    Full Text Available In the present study, the microspacecraft bulkhead was reduced to the double honeycomb panel, and the projectile oblique hypervelocity impact on the double honeycomb panel was simulated. The distribution of the debris cloud and the damage of a honeycomb sandwich panel were investigated when the incident angles were set to be 60°, 45°, and 30°. The results showed that as incident angle decreased, the distribution of debris cloud was increased gradually, while the maximum perforation size of the rear face sheet was firstly increased with the decrease of the incident angle and then decreased. On the other hand, the damage area and the damage degree of the front face sheet of the second honeycomb panel layer were increased with the decrease of the incident angle. Finally, the critical angle of front and rear face sheets of the honeycomb sandwich panel was obtained under oblique hypervelocity impact.

  14. Breakup conditions of projectile spectators from dynamical observables (United States)

    Begemann-Blaich, M.; Lindenstruth, V.; Pochodzalla, J.; Adloff, J. C.; Bouissou, P.; Hubele, J.; Imme, G.; Iori, I.; Kreutz, P.; Kunde, G. J.; Leray, S.; Liu, Z.; Lynen, U.; Meijer, R. J.; Milkau, U.; Moroni, A.; Müller, W. F.; Ngô, C.; Ogilvie, C. A.; Raciti, G.; Rudolf, G.; Sann, H.; Schnittker, M.; Schüttauf, A.; Seidel, W.; Stuttge, L.; Trautmann, W.; Tucholski, A.


    Momenta and masses of heavy projectile fragments (Z>=8), produced in collisions of 197Au with C, Al, Cu, and Pb targets at E/A=600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. Using this information, an analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS model. For a quantitative investigation, the data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. With classical trajectory calculations, where the charges and masses of the fragments are taken from a Monte Carlo sampling of the experimental events, the dynamical observables can be reproduced. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75ħ/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data.

  15. Breakup conditions of projectile spectators from dynamical observables

    Energy Technology Data Exchange (ETDEWEB)

    Begemann-Blaich, M.; Lindenstruth, V.; Pochodzalla, J. [and others


    Momenta and masses of heavy projectile fragments (Z {>=} 8), produced in collisions of {sup 197}Au with C, Al, Cu and Pb targets at E/A=600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. Using these informations, an analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. For a quantitative investigation, the data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. With classical trajectory calculations, where the charges and masses of the fragments are taken from a Monte Carlo sampling of the experimental events, the dynamical observables can be reproduced. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75 {Dirac_h}/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. (orig.)

  16. Observer-based adaptive sliding mode backstepping output-feedback DSC for spin-stabilized canard-controlled projectiles

    Directory of Open Access Journals (Sweden)

    Yuanchuan SHEN


    Full Text Available This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles. Uniformly ultimate boundedness and tracking are achieved, exploiting a heavily coupled, bounded uncertain and highly nonlinear model of longitudinal and lateral dynamics. In order to estimate unmeasurable states, an observer is proposed for an augmented multiple-input-multiple-output (MIMO nonlinear system with an adaptive sliding mode term against the disturbances. Under the frame of a backstepping design, an adaptive sliding mode output-feedback dynamic surface control (DSC approach is derived recursively by virtue of the estimated states. The DSC technique is adopted to overcome the problem of “explosion of complexity” and relieve the stress of the guidance loop. It is proven that all signals of the MIMO closed-loop system, including the observer and controller, are uniformly ultimately bounded, and the tracking errors converge to an arbitrarily small neighborhood of the origin. Simulation results for the observer and controller are provided to illustrate the feasibility and effectiveness of the proposed approach.

  17. Comment on "The motion of an arbitrarily rotating spherical projectile and its application to ball games"

    DEFF Research Database (Denmark)

    Jensen, Jens Højgaard


    In a recent paper (Robinson G and Robinson I 2013 Phys. Scr. 88 018101) the authors developed the differential equations which govern the motion of a spherical projectile rotating about an arbitrary axis in the presence of an arbitrary wind, assuming that both the drag force and the lift force...... are independent of the Reynolds number and proportional to the square of the projectile's velocity. In this paper, by dimensional analysis, the latter assumption is shown to be incorrect for forces dependent on the angular velocity of the projectile, e.g. the lift force....

  18. A Preliminary Investigation of the Effect of Bumpers as a Means of Reducing Projectile Penetration (United States)

    Funkhouser, John O.


    The results of an investigation to determine the effect of bumpers on projectile penetration indicate that for impact velocities up to 12,500 feet per second, the penetration of 0.062-inch-diameter copper projectiles in to aluminum targets can be definitely reduced by using a properly selected bumper spaced a short distance in front of the main target surface. Bumpers and main targets were made of 2024-T4 aluminum alloy, and spherical projectiles made of 0.062-inch-diameter copper were used in all tests.

  19. Projectile motion in real-life situation: Kinematics of basketball shooting (United States)

    Changjan, A.; Mueanploy, W.


    Basketball shooting is a basic practice for players. The path of the ball from the players to the hoop is projectile motion. For undergraduate introductory physics courses student must be taught about projectile motion. Basketball shooting can be used as a case study for learning projectile motion from real-life situation. In this research, we discuss the relationship between optimal angle, minimum initial velocity and the height of the ball before the player shoots the ball for basketball shooting problem analytically. We found that the value of optimal angle and minimum initial velocity decreases with increasing the height of the ball before the player shoots the ball.

  20. Refining Multivariate Value Set Bounds (United States)

    Smith, Luke Alexander

    Over finite fields, if the image of a polynomial map is not the entire field, then its cardinality can be bounded above by a significantly smaller value. Earlier results bound the cardinality of the value set using the degree of the polynomial, but more recent results make use of the powers of all monomials. In this paper, we explore the geometric properties of the Newton polytope and show how they allow for tighter upper bounds on the cardinality of the multivariate value set. We then explore a method which allows for even stronger upper bounds, regardless of whether one uses the multivariate degree or the Newton polytope to bound the value set. Effectively, this provides an alternate proof of Kosters' degree bound, an improved Newton polytope-based bound, and an improvement of a degree matrix-based result given by Zan and Cao.

  1. Weak Quantum Ergodicity

    CERN Document Server

    Kaplan, L


    We examine the consequences of classical ergodicity for the localization properties of individual quantum eigenstates in the classical limit. We note that the well known Schnirelman result is a weaker form of quantum ergodicity than the one implied by random matrix theory. This suggests the possibility of systems with non-gaussian random eigenstates which are nonetheless ergodic in the sense of Schnirelman and lead to ergodic transport in the classical limit. These we call "weakly quantum ergodic.'' Indeed for a class of "slow ergodic" classical systems, it is found that each eigenstate becomes localized to an ever decreasing fraction of the available state space, in the semiclassical limit. Nevertheless, each eigenstate in this limit covers phase space evenly on any classical scale, and long-time transport properties betwen individual quantum states remain ergodic due to the diffractive effects which dominate quantum phase space exploration.

  2. Anomalously Weak Solar Convection (United States)

    Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.


    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.


    Directory of Open Access Journals (Sweden)

    Aniruddha Banerjee


    Full Text Available Reason of death of a dog was analysed by radiographic findings of thoracic cavity during post mortem examination and the specific cause of death was diagnosed as due to projectile injury.

  4. High resolution imaging of a subsonic projectile using automated mirrors with large aperture (United States)

    Tateno, Y.; Ishii, M.; Oku, H.


    Visual tracking of high-speed projectiles is required for studying the aerodynamics around the objects. One solution to this problem is a tracking method based on the so-called 1 ms Auto Pan-Tilt (1ms-APT) system that we proposed in previous work, which consists of rotational mirrors and a high-speed image processing system. However, the images obtained with that system did not have high enough resolution to realize detailed measurement of the projectiles because of the size of the mirrors. In this study, we propose a new system consisting of enlarged mirrors for tracking a high-speed projectiles so as to achieve higher-resolution imaging, and we confirmed the effectiveness of the system via an experiment in which a projectile flying at subsonic speed tracked.

  5. A Web-Based Video Digitizing System for the Study of Projectile Motion. (United States)

    Chow, John W.; Carlton, Les G.; Ekkekakis, Panteleimon; Hay, James G.


    Discusses advantages of a video-based, digitized image system for the study and analysis of projectile motion in the physics laboratory. Describes the implementation of a web-based digitized video system. (WRM)

  6. Time of flight and range of the motion of a projectile in a constant gravitational field

    Directory of Open Access Journals (Sweden)

    P. A. Karkantzakos


    Full Text Available In this paper we study the classical problem of the motion of a projectile in a constant gravitational field under the influenceof a retarding force proportional to the velocity. Specifically, we express the time of flight, the time of fall and the range ofthe motion as a function of the constant of resistance per unit mass of the projectile. We also prove that the time of fall isgreater than the time of rise with the exception of the case of zero constant of resistance where we have equality. Finally weprove a formula from which we can compute the constant of resistance per unit mass of the projectile from time of flight andrange of the motion when the acceleration due to gravity and the initial velocity of the projectile are known.

  7. 'The Monkey and the Hunter' and Other Projectile Motion Experiments with Logo. (United States)

    Kolodiy, George Oleh


    Presents the LOGO computer language as a source to experience and investigate scientific laws. Discusses aspects and uses of LOGO. Lists two LOGO programs, one to simulate a gravitational field and the other projectile motion. (MVL)

  8. Simulation of changes in temperature and pressure fields during high speed projectiles forming by explosion

    National Research Council Canada - National Science Library

    Marković Miloš D; Milinović Momčilo P; Jeremić Olivera M; Jaramaz Slobodan S


    The Research in this paper considered the temperatures fields as the consequently influenced effects appeared by plastic deformation, in the explosively forming process aimed to design Explosively Formed Projectiles (henceforth EFP...

  9. Computational Simulation of High-Speed Projectiles in Air, Water, and Sand

    National Research Council Canada - National Science Library

    Edwards, Jack R


    ... for efficient time integration at all flow speeds. A solids-stress model based on Mohr-Coulomb critical-state theory is used to account for compaction and deformation of sand during projectile penetration...

  10. Behavior of Reinforced Concrete Panels Subject to Impact by Non-deformable Projectiles


    Alkloub, Amer Abdel Karim


    In impact resistance of reinforced concrete (RC) panels against projectiles the contribution of the orthogonal mesh reinforcement has been ignored. In this study the contribution of mesh reinforcement to impact resistance and itseffect on the nature of local damage caused by impact of non-deformable projectiles are investigated. The investigation included a combination of 53 experiments and series of finite-element based numerical simulations. Three levels of local damage modes were investega...

  11. [A sign of the rotational impact of the gunshot projectile on the flat bone]. (United States)

    Leonov, S V


    The objective of the present work was to study the mechanisms of formation of the gunshot fracture of the flat bones with special reference to the translational and rotational motion of the projectile. A total of 120 real and experimental injuries of this type were available for the investigation with the use of simulation by the finite-elemental analysis. A set of morphological features has been identified that make it possible to determine the direction of rotation of the gunshot projectile.

  12. The Effects of High Velocity Variable Mass Projectiles on the Maxillofacial Complex, (United States)


    injuring missile, but it may be only one of many contributors to the morphology of the wound. High velocity projectiles, striking bone and/or teeth ...This is especially true of hits shattering the hard enamel of teeth . These findings tend to re-emphasize the work of Mcleod who stated that...through controlled studies to determine the morphology of wounds caused by such projectiles and to establish and disseminate treatment data which

  13. Numeric Computation of the Radar Cross Section of In-flight Projectiles (United States)


    ABSTRACT In this report, we evaluate the radar cross section (RCS) of in-flight ballistic projectiles (rockets, artillery rounds, and mortars ) by...examples. We consider 2 types of projectiles: a 155-mm artillery round and a 120-mm mortar , as well as 4 radar frequency bands: L, S, C, and X. Using...10 2.4 Propagation and Antenna Effects and the Radar Received Power 15 3. Simulation of Ballistics Trajectories 18 3.1 The Modified Point Mass

  14. Bounding approaches to system identification

    CERN Document Server

    Norton, John; Piet-Lahanier, Hélène; Walter, Éric


    In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.

  15. with Bounded Failure Intensity

    Directory of Open Access Journals (Sweden)

    Preeti Wanti Srivastava


    Full Text Available This paper deals with the Bayes prediction of the future failures of a deteriorating repairable mechanical system subject to minimal repairs and periodic overhauls. To model the effect of overhauls on the reliability of the system a proportional age reduction model is assumed and the 2-parameter Engelhardt-Bain process (2-EBP is used to model the failure process between two successive overhauls. 2-EBP has an advantage over Power Law Process (PLP models. It is found that the failure intensity of deteriorating repairable systems attains a finite bound when repeated minimal repair actions are combined with some overhauls. If such a data is analyzed through models with unbounded increasing failure intensity, such as the PLP, then pessimistic estimates of the system reliability will arise and incorrect preventive maintenance policy may be defined. On the basis of the observed data and of a number of suitable prior densities reflecting varied degrees of belief on the failure/repair process and effectiveness of overhauls, the prediction of the future failure times and the number of failures in a future time interval is found. Finally, a numerical application is used to illustrate the advantages from overhauls and sensitivity analysis of the improvement parameter carried out.

  16. Characteristics study of projectile's lightest fragment for 84Kr36-emulsion interaction at around 1 A GeV (United States)

    Marimuthu, N.; Singh, V.; Inbanathan, S. S. R.


    In this article, we present the results of our investigations on the projectile's lightest fragment (proton) multiplicity and probability distributions with 84Kr36 emulsion collision at around 1 A GeV. The multiplicity and normalized multiplicity of projectile's lightest fragment (proton) are correlated with the compound particles, shower particles, black particles, grey particles; alpha (helium nucleus) fragments and heavily ionizing charged particles. It is found that projectile's lightest fragment (proton) is strongly correlated with compound particles and shower particles rather than other particles and the average multiplicity of projectile's lightest fragment (proton) increases with increasing compound, shower and heavily ionizing charge particles. Normalized projectile's lightest fragment (proton) is strongly correlated with compound particles, shower particles and heavily ionizing charge particles. The multiplicity distribution of the projectile's lightest fragment (proton) emitted in the 84Kr36 + emulsion interaction at around 1 A GeV with different target has been well explained by KNO scaling. The mean multiplicity of projectile's lightest fragments (proton) depends on the mass number of the projectile and does not significantly dependent of the projectile energy. The mean multiplicity of projectile's lightest fragment (proton) increases with increasing the target mass number.

  17. Design and Analysis of A Spin-Stabilized Projectile Experimental Apparatus (United States)

    Siegel, Noah; Rodebaugh, Gregory; Elkins, Christopher; van Poppel, Bret; Benson, Michael; Cremins, Michael; Lachance, Austin; Ortega, Raymond; Vanderyacht, Douglas


    Spinning objects experience an effect termed `The Magnus Moment' due to an uneven pressure distribution based on rotation within a crossflow. Unlike the Magnus force, which is often small for spin-stabilized projectiles, the Magnus moment can have a strong detrimental effect on aerodynamic flight stability. Simulations often fail to accurately predict the Magnus moment in the subsonic flight regime. In an effort to characterize the conditions that cause the Magnus moment, researchers in this work employed Magnetic Resonance Velocimetry (MRV) techniques to measure three dimensional, three component, sub-millimeter resolution fluid velocity fields around a scaled model of a spinning projectile in flight. The team designed, built, and tested using a novel water channel apparatus that was fully MRI-compliant - water-tight and non-ferrous - and capable of spinning a projectile at a constant rotational speed. A supporting numerical simulation effort informed the design process of the scaled projectile to thicken the hydrodynamic boundary layer near the outer surface of the projectile. Preliminary testing produced two-dimensional and three-dimensional velocity data and revealed an asymmetric boundary layer around the projectile, which is indicative of the Magnus effect.

  18. Fairly direct hit. Advances in imaging of shotgun projectiles in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Eggert, Sebastian [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); University of Zurich, Institute of Forensic Medicine, Zurich (Switzerland); Kubik-Huch, Rahel A.; Peters, Alexander [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); Klarhoefer, Markus [Siemens Healthcare, Zurich (Switzerland); Bolliger, Stephan A.; Thali, Michael J. [University of Zurich, Institute of Forensic Medicine, Zurich (Switzerland); Anderson, Suzanne [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); University of Notre Dame Australia, Radiology, Sydney School of Medicine, Sydney, NSW (Australia); Froehlich, Johannes M. [Federal Institute of Technology, Pharmaceutical Sciences, Zurich (Switzerland)


    To investigate the magnetic properties of different types of projectiles and qualify the metal artefact reduction technique for diagnostic and/or forensic MRI. Ten different projectiles embedded in ordnance gelatine blocks underwent an in vitro 1.5-T MR study with seven sequences including a recently developed metal artefact reduction sequence (Advanced WARP) combining VAT (view-angle-tilting) and SEMAC (slice-encoding metal-artefact-correction). Resulting image quality (five-point scale: 1=best; 5=worst) was scored. Quantifiable magnetic characteristics were correlated with qualitative rating of the MR sequences and torque dislodgment. Metal artefact reduction sequence (median: 2.5) significantly (p < 0.001) improves depiction of projectiles in comparison to all other MR pulse sequences (median: 4.75). Images from diamagnetic composed bullets (median: 2) are much less disturbed compared to magnetic attracted ones (median: 5). Correlation (0.623) between deflection angle measurement (ferromagnetic mean 84.2 ; paramagnetic 62 ; diamagnetic mean 0 ) and median qualitative image quality was highly significant (p = 0.027). Torque dislodgement was distinct for elongated magnetic attracted projectiles. Significant improvement of MR imaging of projectiles using metal artefact reduction techniques has important implications for diagnostic/forensic work-up. The correlations between magnetic attraction force, deflection-angle results and image properties demonstrate that the MR safety of projectiles can be estimated with one of these methods. (orig.)

  19. Pepper spray projectile/disperser for countering hostage and barricade situations (United States)

    Kelly, Roy


    An improved less-than-lethal projectile for use in hostage, barricade and tactical assault situations has been developed. The projectile is launched from a standoff position and disperse the incapacitating agent oleoresin capsicum in the form of atomized droplets. A literature search followed by an experimental study were conducted of the mechanism of barrier defeat for various shaped projectiles against the targets of interest in this work: window glass, plasterboard and plywood. Some of the trade- offs between velocity, standoff, projectile shape and size, penetration, and residual energy were quantified. Analysis of the ballistic trajectory and recoil, together with calculations of he amount of pepper spray needed to incapacitate the occupants of a typical barricaded structure, indicated the suitability of using a fin stabilized projectile fired from a conventional 37 mm riot control gas gun. Two projectile designs were considered, manufactured and tested. The results of static tests to simulate target impact, together with live firing trials against a variety of targets, showed that rear ejection of the atomized spray was more reproducible and effective than nose ejection. The performance characteristics of the finalized design were investigated in trials using the standard barrier for testing barrier penetrating tear gas agents as defined by the National Institute of Justice.

  20. Space group constraints on weak indices in topological insulators (United States)

    Varjas, Dániel; de Juan, Fernando; Lu, Yuan-Ming


    Lattice translation symmetry gives rise to a large class of "weak" topological insulators (TIs), characterized by translation-protected gapless surface states and dislocation bound states. In this work we show that space group symmetries lead to constraints on the weak topological indices that define these phases. In particular, we show that screw rotation symmetry enforces the Hall conductivity in planes perpendicular to the screw axis to be quantized in multiples of the screw rank, which generally applies to interacting systems. We further show that certain 3D weak indices associated with quantum spin Hall effects (class AII) are forbidden by the Bravais lattice and by glide or even-fold screw symmetries. These results put strong constraints on weak TI candidates in the experimental and numerical search for topological materials, based on the crystal structure alone.

  1. ExtremeBounds: Extreme Bounds Analysis in R

    Directory of Open Access Journals (Sweden)

    Marek Hlavac


    Full Text Available This article introduces the R package ExtremeBounds to perform extreme bounds analysis (EBA, a sensitivity test that examines how robustly the dependent variable of a regression model is related to a variety of possible determinants. ExtremeBounds supports Leamer's EBA that focuses on the upper and lower extreme bounds of regression coefficients, as well as Sala-i-Martin's EBA which considers their entire distribution. In contrast to existing alternatives, it can estimate models of a variety of user-defined sizes, use regression models other than ordinary least squares, incorporate non-linearities in the model specification, and apply custom weights and standard errors. To alleviate concerns about the multicollinearity and conceptual overlap of examined variables, ExtremeBounds allows users to specify sets of mutually exclusive variables, and can restrict the analysis to coefficients from regression models that yield a variance inflation factor within a prespecified limit.

  2. Projectile fragmentation studies using F, Ne, and Na isotopes (United States)

    Mazza, Maria; MoNA Collaboration


    Projectile fragmentation is one of the techniques used at nuclear science facilities around the world for the production and study of rare isotopes. In the inverse kinematics reaction, a heavy high energy primary beam impinges on a reaction target producing an excited pre-fragment that soon decays - in a time range between 10-9 and 10-21 s - by emission of neutrons and gamma rays. The result is a secondary beam of radioactive nuclei suited for each experiment's needs, but the short lifetime of the pre-fragments prevents direct observation. However, an indirect analysis can be conducted from the reaction products. Neutron multiplicities and the excitation energies of the final fragments are in fact related to the pre-fragments produced in the target and this relationship is expected to be enhanced for final fragments with mass number closest to the reacting beam. The experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL), where a 32Mg beam at 86 MeV/u was impinged on a 9Be reaction target. The MoNA Collaboration measured neutron multiplicities and kinetic energy spectra for neutrons in coincidence with sodium, neon, and fluorine final fragments in order to study the reaction mechanisms in the production of specific pre-fragments.

  3. Multiple pulsed hypersonic liquid diesel fuel jetsdriven by projectile impact (United States)

    Pianthong, K.; Takayama, K.; Milton, B. E.; Behnia, M.


    Further studies on high-speed liquid diesel fuel jets injected into ambient air conditions have been carried out. Projectile impact has been used as the driving mechanism. A vertical two-stage light gas gun was used as a launcher to provide the high-speed impact. This paper describes the experimental technique and visualization methods that provided a rapid series of jet images in the one shot. A high-speed video camera (106 fps) and shadowgraph optical system were used to obtain visualization. Very interesting and unique phenomena have been discovered and confirmed in this study. These are that multiple high frequency jet pulses are generated within the duration of a single shot impact. The associated multiple jet shock waves have been clearly captured. This characteristic consistently occurs with the smaller conical angle, straight cone nozzles but not with those with a very wide cone angle or curved nozzle profile. An instantaneous jet tip velocity of 2680 m/s (Mach number of 7.86) was the maximum obtained with the 40^circ nozzle. However, this jet tip velocity can only be sustained for a few microseconds as attenuation is very rapid.

  4. Bounds for Asian basket options (United States)

    Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle


    In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.

  5. Weak-Values Metrological Techniques for Parameter Estimation (United States)

    Martinez-Rincon, Julian Rodrigo

    Precision measurements are bounded by the Standard Quantum Limit, and preparing non-classical states is often used to circumvent such a limit. In all cases, it is common to improve the precision in a parameter estimation procedure by averaging measurements of a large ensemble of identically prepared systems. However, such a task cannot be performed indefinitely due to sources of technical noise setting an experimental bound. Weak-Value Amplification (WVA) allows one to overcome some of these issues by amplifying a signal of interest above the technical-noise floor. This built-in robustness to external sources of noise relies on a weak coupling to a meter and postselection. In this document we evaluate, theoretically and experimentally, under what circumstances the technique is superior to non-postselected standard techniques. We also present a novel protocol where a WVA-like response is induced in an optical homodyne-type detection technique. We dub this technique Almost-Balanced Weak Values (ABWV) and present three experimental measurements of different physical velocities to evaluate the practical advantages over the well-known technique of WVA. In addition, we point out the existence of a third postselected-weak-measurements technique for metrology, Inverse Weak Value (IWV), that has been ignored by the scientific community. We use this protocol to measure ultra small tilts of a mirror in a Sagnac interferometer. We report all three techniques as complementary to each other, and show their robustness for low-frequency signals.

  6. Weak Measurement and Quantum Correlation

    Indian Academy of Sciences (India)

    Arun Kumar Pati

    The concept of the weak measurements, for the first time, was introduced by Aharonov et al.1. Quantum state is preselected in |ψi〉 and allowed to interact weakly with apparatus. Measurement strength can be tuned and for “small g(t)” it is called 'weak measurement'. With postselection in |ψf 〉, apparatus state is shifted by an ...

  7. A Weak Comparison Principle for Reaction-Diffusion Systems

    Directory of Open Access Journals (Sweden)

    José Valero


    Full Text Available We prove a weak comparison principle for a reaction-diffusion system without uniqueness of solutions. We apply the abstract results to the Lotka-Volterra system with diffusion, a generalized logistic equation, and to a model of fractional-order chemical autocatalysis with decay. Moreover, in the case of the Lotka-Volterra system a weak maximum principle is given, and a suitable estimate in the space of essentially bounded functions L∞ is proved for at least one solution of the problem.

  8. Hadron-nucleus bound states

    CERN Document Server

    Yamazaki, T


    A new type of nuclear spectroscopy to study hadron-nucleus bound states is described. The first successful experiment was to search for deeply bound pi sup - states in heavy nuclei using the sup 2 sup 0 sup 8 Pb(d, sup 3 He) reaction at GSI, in which a narrow peak arising from the 2p pi sup - orbital coupled with the neutron-hole states was observed at 135 MeV excitation energy. An improved experiment has just been carried out to separately identify the 1s and 2p pi sup - states. These experiments provide important information on the local potential strength, from which the effective mass of pi sup - is deduced to be 20 MeV. This method will be extended to search for eta and omega bound states as well as for K sup - bound states. The advantage of the bound-state spectroscopy versus invariant mass spectroscopy is emphasized.

  9. Market Access through Bound Tariffs

    DEFF Research Database (Denmark)

    Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal

    on the risk that exporters face in destination markets. The present paper formalizes the underlying interaction of risk, fixed export costs and firms' market entry decisions based on techniques known from the real options literature; doing so we highlight the important role of bound tariffs at the extensive......WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings...... margin of trade. We find that bound tariffs are more effective with higher risk destination markets, that a large binding overhang may still command substantial market access, and that reductions in bound tariffs generate effective market access even when bound rates are above current and long...

  10. Market access through bound tariffs

    DEFF Research Database (Denmark)

    Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal


    on the risk that exporters face in destination markets. The present paper formalizes the underlying interaction of risk, fixed export costs and firms' market entry decisions based on techniques known from the real options literature; doing so we highlight the important role of bound tariffs at the extensive......WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings...... margin of trade. We find that bound tariffs are more effective with higher risk destination markets, that a large binding overhang may still command substantial market access, and that reductions in bound tariffs generate effective market access even when bound rates are above current and longterm...

  11. Flight Behaviors of a Complex Projectile Using a Coupled Computational Fluid Dynamics (CFD)-based Simulation Technique: Free Motion (United States)


    Projectile Using a Coupled Computational Fluid Dynamics (CFD)-based Simulation Technique: Free Motion 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...38 vi Preface The paper “Flight Behaviors of a Complex Projectile using a Coupled CFD-based Simulation Technique: Free Motion ” was...involves coupling of CFD and rigid body dynamics (RBD) codes for the simulation of projectile free flight motion in a time-accurate manner. This

  12. Weak-value Metrology and Shot-Noise Limited Measurements (United States)

    Viza, Gerardo Ivan

    This thesis contains a subset of the research in which I have participated in during my studies at the University of Rochester. It contains three projects and one overarching theme of weak-value metrology. We start with chapter 1 where we cover the historical background leading up to quantum optics, which we use for precision metrology. We also introduce the weak-value formulation and give examples of metrological implementations for parameter estimation. Chapter 2 introduces two experiments to measure a longitudinal velocity and a transverse momentum kick. We show that weak-value based techniques are shot-noise limited because we saturate the Cramer-Rao bound for the estimator used, and efficient because we experimentally demonstrate there is virtually no loss of Fisher information of the parameter of interest from the discarded events. In Chapter 3 we present a comparison of two experiments that measure a beam deflection. One experiment is a weak-value based technique, while the other is the standard focusing technique. We set up the two experiments in the presence of simulated technical noise sources and show how the weak-value based technique out performs the standard technique in both visibility and in deviation of the transverse momentum kick. Chapter 4 contains work of the exploration of concatenated postselection for weak-value amplification. We demonstrate an optimization and conditions where postselecting on two degrees of freedom can be beneficial to enhance the weak-value amplification.

  13. The influence of aerodynamic coefficients on the elements of classic projectile paths

    Directory of Open Access Journals (Sweden)

    Damir D. Jerković


    Full Text Available The article deals with the results of the research on the influence of aerodynamic coefficient values on the trajectory elements and the stability parameters of classic axisymmetric projectiles. It presents the characteristic functions of aerodynamic coefficients with regard to aerodynamic parameters and the projectile body shape. The trajectory elements of the model of classic axisymmetric projectiles and the analyses of their changes were presented with respect to the aerodynamic coefficient values. Introduction Classic axisymmetric projectiles fly through atmosphere using muzzle velocity as initial energy resource, so the aerodynamic force and moment have the most significant influence on the motion of projectiles. The aerodynamic force and moment components represented as aerodynamic coefficients depend on motion velocity i. e. flow velocity, the flow features produced by projectile shape and position in the flow, and angular velocity (rate of the body. The functional dependence of aerodynamic coefficients on certain influential parameters, such as angle of attack and angular velocity components is expressed by the derivative of aerodynamic coefficients. The determination of aerodynamic coefficients and derivatives enables complete definition of the aerodynamic force and moment acting on the classic projectile. The projectile motion problem is considered in relation to defining the projectile stability parameters and the conditions under which the stability occurs. The comparative analyses of aerodynamic coefficient values obtained by numerical methods, semi empirical calculations and experimental research give preliminary evaluation of the quality of the determined values. The flight simulation of the motion of a classic axisymetric projectile, which has the shape defined by the aerodynamic coefficient values, enables the comparative analyses of the trajectory elements and stability characteristics. The model of the classic projectile

  14. Direct mass measurements of neutron-rich $^{86}$Kr projectile fragments and the persistence of neutron magic number $N$ = 32 in Sc isotopes

    CERN Document Server

    Xu, Xing; Zhang, Yu-hu; Xu, Hu-shan; Shuai, Peng; Tu, Xiao-lin; Litvinov, Yuri A; Zhou, Xiao-hong; Sun, Bao-hua; Yuan, You-jin; Xia, Jia-wen; Yang, Jian-cheng; Blaum, KLaus; Chen, Rui-jiu; Chen, Xiang-cheng; Fu, Chao-yi; Ge, Zhuang; Hu, Zheng-guo; Huang, Wen-jia; Liu, Da-wei; Lam, Yi-hua; Ma, Xin-wen; Mao, Rui-shi; Uesaka, T; Xiao, Guo-ging; Xing, Yuan-ming; Yamaguchi, T; Yamaguchi, Y; Zeng, Qi; Yan, Xin-liang; Zhao, Hong-wei; Zhao, Tie-cheneg; Zhang, Wei; Zhan, Wen-long


    In this paper, we present direct mass measurements of neutron-rich $^{86}$Kr projectile fragments conducted at the HIRFL-CSR facility in Lanzhou by employing the Isochronous Mass Spectrometry (IMS) method. The new mass excesses of $^{52-54}$Sc nuclides are determined to be -40492(82), -38928(114), -34654(540) keV, which show a significant increase of binding energy compared to the reported ones in the Atomic Mass Evaluation 2012 (AME12). In particular, $^{53}$Sc and $^{54}$Sc are more bound by 0.8 MeV and 1.0 MeV, respectively. The behavior of the two neutron separation energy with neutron numbers indicates a strong sub-shell closure at neutron number $N$ = 32 in Sc isotopes.

  15. Direct mass measurements of neutron-rich 86Kr projectile fragments and the persistence of neutron magic number N=32 in Sc isotopes (United States)

    Xu, Xing; Wang, Meng; Zhang, Yu-Hu; Xu, Hu-Shan; Shuai, Peng; Tu, Xiao-Lin; Yuri, A. Litvinov; Zhou, Xiao-Hong; Sun, Bao-Hua; Yuan, You-Jin; Xia, Jia-Wen; Yang, Jian-Cheng; Klaus, Blaum; Chen, Rui-Jiu; Chen, Xiang-Cheng; Fu, Chao-Yi; Ge, Zhuang; Hu, Zheng-Guo; Huang, Wen-Jia; Liu, Da-Wei; Lam, Yi-Hua; Ma, Xin-Wen; Mao, Rui-Shi; Uesaka, T.; Xiao, Guo-Qing; Xing, Yuan-Ming; Yamaguchi, T.; Yamaguchi, Y.; Zeng, Qi; Yan, Xin-Liang; Zhao, Hong-Wei; Zhao, Tie-Cheng; Zhang, Wei; Zhan, Wen-Long


    In this paper, we present direct mass measurements of neutron-rich 86Kr projectile fragments conducted at the HIRFL-CSR facility in Lanzhou by employing the Isochronous Mass Spectrometry (IMS) method. The new mass excesses of 52-54Sc nuclides are determined to be -40492(82), -38928(114), -34654(540) keV, which show a significant increase of binding energy compared to the reported ones in the Atomic Mass Evaluation 2012 (AME12). In particular, 53Sc and 54Sc are more bound by 0.8 MeV and 1.0 MeV, respectively. The behavior of the two neutron separation energy with neutron numbers indicates a strong sub-shell closure at neutron number N=32 in Sc isotopes. Supported by 973 Program of China (2013CB834401), the NSFC (U1232208, U1432125, 11205205, 11035007) and the Helmholtz-CAS Joint Research Group (HCJRG-108)

  16. Hybrid Projectile Body Angle Estimation for Selectable Range Increase (United States)

    Gioia, Christopher J.

    A Hybrid Projectile (HP) is a tube launched munition that transforms into a gliding UAV, and is currently being researched at West Virginia University. A simple launch timer was first envisioned to control the transformation point in order to achieve maximum distance. However, this timer would need to be reprogrammed for any distance less than maximum range due to the nominal time to deployment varying with launch angle. A method was sought for automatic wing deployment that would not require reprogramming the round. A body angle estimation system was used to estimate the pitch of the HP relative to the Earth to determine when the HP is properly oriented for the designed glide slope angle. It was also necessary to filter out noise from a simulated inertial measurement unit (IMU), GPS receiver, and magnetometer. An Extended Kalman Filter (EKF) was chosen to estimate the Euler angles, position and velocity of the HP while an algorithm determined when to deploy the wings. A parametric study was done to verify the optimum deployment condition using a Simulink aerodynamic model. Because range is directly related to launch angle, various launch angles were simulated in the model. By fixing the glide slope angle to -10° as a deployment condition for all launch angles, the range differed only by a maximum of 6.1% from the maximum possible range. Based on these findings, the body angle deployment condition provides the most flexible option to maintain maximum distance without the need of reprogramming. Position and velocity estimates were also determined from the EKF using the GPS measurements. Simulations showed that the EKF estimates exhibited low root mean squared error values, corresponding to less than 3% of the total position values. Because the HP was in flight for less than a minute in this experiment, the drift encountered was acceptable.

  17. Combining Alphas via Bounded Regression

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze


    Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.

  18. Modeling and Experiments on Ballistic Impact into UHMWPE Yarns Using Flat and Saddle-Nosed Projectiles

    Directory of Open Access Journals (Sweden)

    Stuart Leigh Phoenix


    Full Text Available Yarn shooting experiments were conducted to determine the ballistically-relevant, Young’s modulus and tensile strength of ultra-high molecular weight polyethylene (UHMWPE fiber. Target specimens were Dyneema® SK76 yarns (1760 dtex, twisted to 40 turns/m, and initially tensioned to stresses ranging from 29 to 2200 MPa. Yarns were impacted, transversely, by two types of cylindrical steel projectiles at velocities ranging from 150 to 555 m/s: (i a reverse-fired, fragment simulating projectile (FSP where the flat rear face impacted the yarn rather than the beveled nose; and (ii a ‘saddle-nosed projectile’ having a specially contoured nose imparting circular curvature in the region of impact, but opposite curvature transversely to prevent yarn slippage off the nose. Experimental data consisted of sequential photographic images of the progress of the triangular transverse wave, as well as tensile wave speed measured using spaced, piezo-electric sensors. Yarn Young’s modulus, calculated from the tensile wave-speed, varied from 133 GPa at minimal initial tension to 208 GPa at the highest initial tensions. However, varying projectile impact velocity, and thus, the strain jump on impact, had negligible effect on the modulus. Contrary to predictions from the classical Cole-Smith model for 1D yarn impact, the critical velocity for yarn failure differed significantly for the two projectile types, being 18% lower for the flat-faced, reversed FSP projectile compared to the saddle-nosed projectile, which converts to an apparent 25% difference in yarn strength. To explain this difference, a wave-propagation model was developed that incorporates tension wave collision under blunt impact by a flat-faced projectile, in contrast to outward wave propagation in the classical model. Agreement between experiment and model predictions was outstanding across a wide range of initial yarn tensions. However, plots of calculated failure stress versus yarn pre

  19. Accuracy Improvement Capability of Advanced Projectile Based on Course Correction Fuze Concept

    Directory of Open Access Journals (Sweden)

    Ahmed Elsaadany


    Full Text Available Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake and the second is devoted to drift correction (canard based-correction fuze. The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.

  20. Accuracy improvement capability of advanced projectile based on course correction fuze concept. (United States)

    Elsaadany, Ahmed; Wen-jun, Yi


    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.

  1. Fragmentation of armor piercing steel projectiles upon oblique perforation of steel plates

    Directory of Open Access Journals (Sweden)

    Aizik F.


    Full Text Available In this study, a constitutive strength and failure model for a steel core of a14.5 mm API projectile was developed. Dynamic response of a projectile steel core was described by the Johnson-Cook constitutive model combined with principal tensile stress spall model. In order to obtain the parameters required for numerical description of projectile core material behavior, a series of planar impact experiments was done. The parameters of the Johnson-Cook constitutive model were extracted by matching simulated and experimental velocity profiles of planar impact. A series of oblique ballistic experiments with x-ray monitoring was carried out to study the effect of obliquity angle and armor steel plate thickness on shattering behavior of the 14.5 mm API projectile. According to analysis of x-ray images the fragmentation level increases with both steel plate thickness and angle of inclination. The numerical modeling of the ballistic experiments was done using commercial finite element code, LS-DYNA. Dynamic response of high hardness (HH armor steel was described using a modified Johnson-Cook strength and failure model. A series of simulations with various values of maximal principal tensile stress was run in order to capture the overall fracture behavior of the projectile’s core. Reasonable agreement between simulated and x-ray failure pattern of projectile core has been observed.

  2. Computational Lower Bounds Using Diagonalization

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 7. Computational Lower Bounds Using Diagonalization - Languages, Turing Machines and Complexity Classes. M V Panduranga Rao. General Article Volume 14 Issue 7 July 2009 pp 682-690 ...

  3. Test of weak and strong factorization in nucleus-nucleuscollisions atseveral hundred MeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    La Tessa, Chiara; Sihver, Lembit; Zeitlin, Cary; Miller, Jack; Guetersloh, Stephen; Heilbronn, Lawrence; Mancusi, Davide; Iwata,Yoshiuki; Murakami, Takeshi


    Total and partial charge-changing cross sections have been measured for argon projectiles at 400 MeV/nucleon in carbon, aluminum, copper, tin and lead targets; cross sections for hydrogen were also obtained, using a polyethylene target. The validity of weak and strong factorization properties has been investigated for partial charge-changing cross sections; preliminary cross section values obtained for carbon, neon and silicon at 290 and 400 MeV/nucleon and iron at 400 MeV/nucleon, in carbon, aluminum, copper, tin and lead targets have been also used for testing these properties. Two different analysis methods were applied and both indicated that these properties are valid, without any significant difference between weak and strong factorization. The factorization parameters have then been calculated and analyzed in order to find some systematic behavior useful for modeling purposes.

  4. Bounded Rationality in Transposition Processes

    DEFF Research Database (Denmark)

    Vollaard, Hans; Martinsen, Dorte Sindbjerg


    perspective may affect the commonly employed explanatory factors of administrative capacities, misfit and the heterogeneity of preferences among veto players. To prevent retrospective rationalisation of the transposition process, this paper traces this process as it unfolded in Denmark and the Netherlands....... As bounded rationality is apparent in the transposition processes in these relatively well-organised countries, future transposition studies should devote greater consideration to the bounded rationality perspective....

  5. Bounds on dark matter interactions with electroweak gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Cotta, R. C.; Hewett, J. L.; Le, M. -P.; Rizzo, T. G.


    We investigate scenarios in which dark matter interacts with the Standard Model primarily through electroweak gauge bosons. We employ an effective field theory framework wherein the Standard Model and the dark matter particle are the only light states in order to derive model-independent bounds. Bounds on such interactions are derived from dark matter production by weak boson fusion at the LHC, indirect detection searches for the products of dark matter annihilation and from the measured invisible width of the Z 0 . We find that limits on the UV scale, Λ , reach weak scale values for most operators and values of the dark matter mass, thus probing the most natural scenarios in the weakly interacting massive particle dark matter paradigm. Our bounds suggest that light dark matter ( m χ ≲ m Z / 2 or m χ ≲ 100 – 200 GeV , depending on the operator) cannot interact only with the electroweak gauge bosons of the Standard Model, but rather requires additional operator contributions or dark sector structure to avoid overclosing the Universe.

  6. Resisting Weakness of the Will. (United States)

    Levy, Neil


    I develop an account of weakness of the will that is driven by experimental evidence from cognitive and social psychology. I will argue that this account demonstrates that there is no such thing as weakness of the will: no psychological kind corresponds to it. Instead, weakness of the will ought to be understood as depletion of System II resources. Neither the explanatory purposes of psychology nor our practical purposes as agents are well-served by retaining the concept. I therefore suggest that we ought to jettison it, in favour of the vocabulary and concepts of cognitive psychology.

  7. Limits on the electromagnetic and weak dipole moments of the tau-lepton in a 331 model

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez-Rodríguez, A. [Facultad de Física, Universidad Autónoma de Zacatecas Apartado, Postal C-580, 98060 Zacatecas, México (Mexico); Hernández-Ruíz, M.A. [Facultad de Ciencias Químicas, Universidad Autónoma de Zacatecas Apartado, Postal 585, 98060 Zacatecas, México (Mexico); Castañeda-Almanza, C.P.; Espinoza-Garrido, A.; Chubykalo, A. [Facultad de Física, Universidad Autónoma de Zacatecas Apartado, Postal C-580, 98060 Zacatecas, México (Mexico)


    Using as an input the data obtained by the L3 and OPAL Collaborations for the reaction e{sup +}e{sup −}→τ{sup +}τ{sup −}γ at the Z{sub 1}-pole, we obtained bounds on the electromagnetic and weak dipole moments of the tau-lepton in the context of a 331 model. Our bounds on the electromagnetic moments are consistent with the bounds obtained by the L3 and OPAL Collaborations for the reaction e{sup +}e{sup −}→τ{sup +}τ{sup −}γ. We also obtained bounds on the tau weak dipole moments which are consistent with the bounds obtained recently by the DELPHI, ALEPH and BELLE Collaborations from the reaction e{sup +}e{sup −}→τ{sup +}τ{sup −}. Our work complements other studies on the electromagnetic and weak dipole moments of the tau-lepton.

  8. Limits on the electromagnetic and weak dipole moments of the tau-lepton in a 331 model (United States)

    Gutiérrez-Rodríguez, A.; Hernández-Ruíz, M. A.; Castañeda-Almanza, C. P.; Espinoza-Garrido, A.; Chubykalo, A.


    Using as an input the data obtained by the L3 and OPAL Collaborations for the reaction e+e- →τ+τ- γ at the Z1-pole, we obtained bounds on the electromagnetic and weak dipole moments of the tau-lepton in the context of a 331 model. Our bounds on the electromagnetic moments are consistent with the bounds obtained by the L3 and OPAL Collaborations for the reaction e+e- →τ+τ- γ. We also obtained bounds on the tau weak dipole moments which are consistent with the bounds obtained recently by the DELPHI, ALEPH and BELLE Collaborations from the reaction e+e- →τ+τ-. Our work complements other studies on the electromagnetic and weak dipole moments of the tau-lepton.

  9. Special features of high-speed projectile interaction with barriers protected by a water layer (United States)

    Afanas'eva, S. A.; Belov, N. N.; Burkin, V. V.; D'yachkovskii, A. S.; Evtyushkin, E. V.; Zykov, E. N.; Ishchenko, A. N.; Monakhov, R. Yu.; Rodionov, A. A.; Khabibullin, M. V.; Yugov, N. T.


    The stress-strain state (SSS) of projectiles is investigated when a high-speed projectile enters water and interacts with barriers protected by a water layer. Experimental investigations are carried out using a high-speed ballistic setup. Calculations are performed within the framework of mechanics of continuous media for an elastic plastic model of a solid with allowance for fracture and hydrodynamic water model. Depending on the projectile speed, different SSS regimes are observed: from small deformed at a speed of ≈1 km/s to fractured at a speed of ≈2 km/s. Calculation technique allows distances in water to be determined at which the metal barrier can be punched for the inertial model.

  10. Projectile motion of a once rotating object: physical quantities at the point of return (United States)

    Arabasi, Sameer


    Vertical circular motion is a widely used example to explain non-uniform circular motion in most undergraduate general physics textbooks. However, most of these textbooks do not elaborate on the case when this motion turns into projectile motion under certain conditions. In this paper, we describe thoroughly when a mass attached to a cord, moving in a vertical circular motion, turns into a projectile and its location and velocity when it rejoins the circular orbit. This paper provides an intuitive understanding, supported by basic kinematic equations, to give an interesting elegant connection between circular motion and projectile motion—something lacking in most physics textbooks—and will be very useful to present to an undergraduate class to deepen their understanding of both models of motion.

  11. Research on Ground Motion Metal Target Based on Rocket Projectile by Using Millimeter Wave Radiometer Technology

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang


    Full Text Available How to detect the ground motion metal target effectively is an important guarantee for precision strike in the process of Rocket Projectile flight. Accordingly and in view of the millimeter- wave radiation characteristic of the ground motion metal target, a mathematical model was established based on Rocket Projectile about millimeter-wave detection to the ground motion metal target. Through changing various parameters in the process of Rocket Projectile flight, the detection model was studied by simulation. The parameters variation and effective range of millimeter wave radiometer were obtained in the process of rotation and horizontal flight. So a certain theoretical basis was formed for the precision strike to the ground motion metal target.

  12. On the non-equilibrium dynamics of cavitation around the underwater projectile in variable motion (United States)

    Chen, Y.; Lu, C. J.; Li, J.; Chen, X.; Gong, Z. X.


    In this work, the dynamic behavior of the non-equilibrium cavitation occurring around the underwater projectiles navigating with variable speed was numerically and theoretically investigated. The cavity collapse induced by the decelerating motion of the projectiles can be classified into two types: periodic oscillation and damped oscillation. In each type the evolution of the total mass of vapor in cavity are found to have strict correlation with the pressure oscillation in far field. By defining the equivalent radius of cavity, we introduce the specific kinetic energy of collapse and demonstrate that its change-rate is in good agreement with the pressure disturbance. We numerically investigated the influence of angle of attack on the collapse effect. The result shows that when the projectile decelerates, an asymmetric-focusing effect of the pressure induced by collapse occurs on its pressure side. We analytically explained such asymmetric-focusing effect.

  13. Weak Coupling Phases future directions

    CERN Document Server

    Rosner, Jonathan L.


    Recent results obtained from B decays on the phases of weak couplings described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix are discussed, with particular emphasis on $\\alpha$ and $\\gamma = \\pi - \\beta - \\alpha$.

  14. Weakly compact operators and interpolation


    Maligranda, Lech


    The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. In this survey, we have collected and ordered some of this (partly very new) knowledge. We have also included some comments, remarks and examples. The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. I...

  15. Weak interactions of elementary particles

    CERN Document Server

    Okun, Lev Borisovich


    International Series of Monographs in Natural Philosophy, Volume 5: Weak Interaction of Elementary Particles focuses on the composition, properties, and reactions of elementary particles and high energies. The book first discusses elementary particles. Concerns include isotopic invariance in the Sakata model; conservation of fundamental particles; scheme of isomultiplets in the Sakata model; universal, unitary-symmetric strong interaction; and universal weak interaction. The text also focuses on spinors, amplitudes, and currents. Wave function, calculation of traces, five bilinear covariants,

  16. Physics Learning Achievement Study: Projectile, Using Mathematica Program of Faculty of Science and Technology Phetchabun Rajabhat University Students (United States)

    Hutem, Artit; Kerdmee, Supoj


    The propose of this study is to study Physics Learning Achievement, projectile motion, using the Mathematica program of Faculty of Science and Technology Phetchabun Rajabhat University students, comparing with Faculty of Science and Technology Phetchabun Rajabhat University students who study the projectile motion experiment set. The samples are…

  17. Acute muscular weakness in children

    Directory of Open Access Journals (Sweden)

    Ricardo Pablo Javier Erazo Torricelli

    Full Text Available ABSTRACT Acute muscle weakness in children is a pediatric emergency. During the diagnostic approach, it is crucial to obtain a detailed case history, including: onset of weakness, history of associated febrile states, ingestion of toxic substances/toxins, immunizations, and family history. Neurological examination must be meticulous as well. In this review, we describe the most common diseases related to acute muscle weakness, grouped into the site of origin (from the upper motor neuron to the motor unit. Early detection of hyperCKemia may lead to a myositis diagnosis, and hypokalemia points to the diagnosis of periodic paralysis. Ophthalmoparesis, ptosis and bulbar signs are suggestive of myasthenia gravis or botulism. Distal weakness and hyporeflexia are clinical features of Guillain-Barré syndrome, the most frequent cause of acute muscle weakness. If all studies are normal, a psychogenic cause should be considered. Finding the etiology of acute muscle weakness is essential to execute treatment in a timely manner, improving the prognosis of affected children.

  18. Precision metrology using weak measurements. (United States)

    Zhang, Lijian; Datta, Animesh; Walmsley, Ian A


    Weak values and measurements have been proposed as a means to achieve dramatic enhancements in metrology based on the greatly increased range of possible measurement outcomes. Unfortunately, the very large values of measurement outcomes occur with highly suppressed probabilities. This raises three vital questions in weak-measurement-based metrology. Namely, (Q1) Does postselection enhance the measurement precision? (Q2) Does weak measurement offer better precision than strong measurement? (Q3) Is it possible to beat the standard quantum limit or to achieve the Heisenberg limit with weak measurement using only classical resources? We analyze these questions for two prototypical, and generic, measurement protocols and show that while the answers to the first two questions are negative for both protocols, the answer to the last is affirmative for measurements with phase-space interactions, and negative for configuration space interactions. Our results, particularly the ability of weak measurements to perform at par with strong measurements in some cases, are instructive for the design of weak-measurement-based protocols for quantum metrology.

  19. Distorted wave theories for dressed-ion-atom collisions with GSZ projectile potentials

    Energy Technology Data Exchange (ETDEWEB)

    Monti, J M; Rivarola, R D [Instituto de Fisica Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, IngenierIa y Agrimensura, Universidad Nacional de Rosario, Avenida Pellegrini 250, 2000 Rosario (Argentina); Fainstein, P D, E-mail: [Comision Nacional de EnergIa Atomica, Centro Atomico Bariloche, 8400 San Carlos de Bariloche (Argentina)


    The continuum distorted wave and the continuum distorted wave-eikonal initial state approximations for electron emission in ion-atom collisions are generalized to the case of dressed projectiles. The interaction between the dressed projectile and the active electron is represented by the analytic Green-Sellin-Zachor (GSZ) potential. Doubly differential cross sections as a function of the emitted electron energy and angle are computed. The region of the binary encounter peak is analysed in detail. Interference structures appear in agreement with the experimental data and are interpreted as arising from the coherent interference between short- and long-range scattering amplitudes.

  20. Optimal design of the aerodynamic parameters for a supersonic two-dimensional guided artillery projectile

    Directory of Open Access Journals (Sweden)

    Ke Liang


    Full Text Available An optimization method is introduced to design the aerodynamic parameters of a dual-spin two-dimensional guided projectile with the canards for trajectory correction. The nose guidance component contains two pairs of canards which can provide lift and despin with the projectile for stability. The optimal design algorithm is developed to decide the profiles both of the steering and spinning canards, and their deflection angles are also simulated to meet the needs of trajectory correction capabilities. Finally, the aerodynamic efficiency of the specific canards is discussed according to the CFD simulations. Results that obtained here can be further applied to the exterior ballistics design.

  1. Estimating 3D positions and velocities of projectiles from monocular views. (United States)

    Ribnick, Evan; Atev, Stefan; Papanikolopoulos, Nikolaos P


    In this paper, we consider the problem of localizing a projectile in 3D based on its apparent motion in a stationary monocular view. A thorough theoretical analysis is developed, from which we establish the minimum conditions for the existence of a unique solution. The theoretical results obtained have important implications for applications involving projectile motion. A robust, nonlinear optimization-based formulation is proposed, and the use of a local optimization method is justified by detailed examination of the local convexity structure of the cost function. The potential of this approach is validated by experimental results.

  2. Tissue preservation and projectile context in a Spanish Civil War victim. (United States)

    Ferllini, Roxana


    Exhumations of mass graves containing the remains of those executed during the Spanish Civil War and the subsequent Franco regime are currently being conducted at the request of surviving relatives. This individual case report illustrates how soft tissue preservation, through copper ion contact in one particular victim aided in preserving the projectile in an anatomical context, thereby permitting the correct interpretation of the projectile's path and angle, which otherwise would not have been possible as no bone tissue was affected. The information obtained has important relevance for human rights investigations and the work of the forensic anthropologist. Copyright 2010 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  3. Reliability of double-wall containment against the impact of hard projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Nadeem A., E-mail:; Khateeb, Baha M.A.; Almusallam, Tarek H.; Abbas, Husain


    Highlights: • The reliability of double-wall containment against impact of projectiles was studied. • Probabilistic procedure based on Monte Carlo simulation technique was used. • Sensitivity studies were carried out to obtain the results of practical interest. • Reliability is correlated with the ballistic limit of the outer RC wall. - Abstract: Effectiveness of single or double-wall containment structures against a possible strike of projectiles, missiles or airplanes is well researched. However, how the uncertainties involved in the various design parameters influence the reliability of the containment is not very well known. In a double-wall containment structure, as name implies, there are two walls – an outer thick reinforced concrete (RC) wall and an inner thin steel shell/wall. In the present study, a simple probabilistic procedure based on Monte Carlo simulation technique is presented to study the reliability of double-wall containment structures against the impact of external hard projectiles on outer RC wall for varying impact velocities. In order to illustrate the proposed methodology, an idealized double-wall containment structure and a hard projectile were chosen. The probability of failure and the reliability indices of the selected double-wall containment structure were obtained for different striking velocities of the projectile and safety of the containment was correlated with the ballistic limit of the outer RC wall. The results of the study show that the double-wall containment is “safe enough” against the impact of the selected projectile if the projectile nominal velocity is less than 65% of the containment outer wall's nominal ballistic limit (V{sub BL}). Results also show that under the given uncertainties, if the nominal impact velocity is less than 65% of the nominal ballistic limit of the outer RC wall (i.e. 0.65V{sub BL}), failure probability of the containment is almost zero. However, when impact velocity is more than

  4. Effectiveness of projectile screening in single and multiple ionization of Ne by B{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, W.; Luna, H.; Santos, A. C. F.; Montenegro, E. C. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, 21945-970 RJ (Brazil); DuBois, R. D. [Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States); Montanari, C. C.; Miraglia, J. E. [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, C1428EGA, Buenos Aires (Argentina)


    Pure multiple ionization cross sections of Ne by B{sup 2+} projectiles have been measured in the energy range of 0.75 to 4.0 MeV and calculated using the continuum distorted wave-eikonal initial state approximation. The experiment and calculations show that the ionization cross sections by B{sup 2+}, principally for the production of highly charged recoils, is strongly enhanced when compared to the bare projectile with the same charge state, He{sup 2+}, at the same velocities.

  5. The African Origin of Complex Projectile Technology: An Analysis Using Tip Cross-Sectional Area and Perimeter

    Directory of Open Access Journals (Sweden)

    Matthew L. Sisk


    Full Text Available Despite a body of literature focusing on the functionality of modern and stylistically distinct projectile points, comparatively little attention has been paid to quantifying the functionality of the early stages of projectile use. Previous work identified a simple ballistics measure, the Tip Cross-Sectional Area, as a way of determining if a given class of stone points could have served as effective projectile armatures. Here we use this in combination with an alternate measure, the Tip Cross-Sectional Perimeter, a more accurate proxy of the force needed to penetrate a target to a lethal depth. The current study discusses this measure and uses it to analyze a collection of measurements from African Middle Stone Age pointed stone artifacts. Several point types that were rejected in previous studies are statistically indistinguishable from ethnographic projectile points using this new measure. The ramifications of this finding for a Middle Stone Age origin of complex projectile technology is discussed.

  6. Refractive effects in the scattering of loosely bound nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Carstoiu, F.; Trache, L.; Tribble, R.E.; Gagliardi, C.A. [Texas A and M Univ., College Station, TX (United States). Cyclotron Inst; Carstoiu, F. [Laboratoire de Physique Corpusculaire, IN2P3-CNRS, ISMRA, Universite de Caen, 14 - Caen (France); Carstoiu, F. [National Institute for Physics and Nuclear Engineering, Horia Hulubei, Bucharest-Magurele (Romania)


    A study of the interaction of the loosely bound nuclei {sup 6,7}Li at 9 and 19 MeV/nucleon with light targets has been undertaken. With the determination of unambiguous optical potentials in mind, elastic data for four projectile-target combinations and one neutron transfer reaction {sup 13}C({sup 7}Li,{sup 8}Li){sup 12}C have been measured over a large angular range. The kinematical regime encompasses a region where the mean field (optical potential) has a marked variation with mass and energy, but turns out to be sufficiently surface transparent to allow strong refractive effects to be manifested in elastic scattering data at intermediate angles. The identified exotic feature, a 'plateau' in the angular distributions at intermediate angles, is fully confirmed in four reaction channels and is interpreted as a pre-rainbow oscillation resulting from the interference of the barrier and internal barrier far-side scattering sub-amplitudes. (authors)

  7. Bounding the space of holographic CFTs with chaos

    Energy Technology Data Exchange (ETDEWEB)

    Perlmutter, Eric [Department of Physics, Princeton University,Jadwin Hall, Princeton, NJ 08544 (United States)


    Thermal states of quantum systems with many degrees of freedom are subject to a bound on the rate of onset of chaos, including a bound on the Lyapunov exponent, λ{sub L}≤2π/β. We harness this bound to constrain the space of putative holographic CFTs and their would-be dual theories of AdS gravity. First, by studying out-of-time-order four-point functions, we discuss how λ{sub L}=2π/β in ordinary two-dimensional holographic CFTs is related to properties of the OPE at strong coupling. We then rule out the existence of unitary, sparse two-dimensional CFTs with large central charge and a set of higher spin currents of bounded spin; this implies the inconsistency of weakly coupled AdS{sub 3} higher spin gravities without infinite towers of gauge fields, such as the SL(N) theories. This fits naturally with the structure of higher-dimensional gravity, where finite towers of higher spin fields lead to acausality. On the other hand, unitary CFTs with classical W{sub ∞}[λ] symmetry, dual to 3D Vasiliev or hs[λ] higher spin gravities, do not violate the chaos bound, instead exhibiting no chaos: λ{sub L}=0. Independently, we show that such theories violate unitarity for |λ|>2. These results encourage a tensionless string theory interpretation of the 3D Vasiliev theory.

  8. Development of odd-Z-projectile reactions for transactinide element synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Folden, III, Charles Marvin [Univ. of California, Berkeley, CA (United States)


    The development of new odd-Z-projectile reactions leading to the production of transactinide elements is described. The cross section of the even-Z-projectile 208Pb(64Ni, n)271Ds reaction was measured at two new energies using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. In total, seven decay chains attributable to 271Ds were observed. These data, combined with previous results, establish an excitation function for the production of 271Ds. The maximum cross section was 20 +15 -11 pb at a center-of-target energy of 311.5 MeV in the laboratory frame.The data from the 271Ds experiments were used to estimate the optimum beam energy for the new odd-Z-projectile 208Pb(65Cu, n)272-111 reaction using the Fusion by Diffusion theory proposed by Swiatecki, Siwek-Wilczynska, and Wilczynski. A cross section for this reaction was measured for the first time, at a center-of-target energy of 321.1 MeV in the laboratory frame. The excitation energy f or compound nuclei formed at the target center was 13.2 MeV. One decay chain was observed, resulting in a measured cross section of 1.7 +3.9 -1.4 pb. This decay chain is in good agreement with previously published data on the decay of 272-111.The new odd-Z-projectile 208Pb(55Mn, n)262Bh reaction was studied at three different projectile energies, and 33 decay chains of 262Bh were observed. The existence of a previously reported alpha-decaying isomeric state in this nuclide was confirmed. Production of the ground state was preferred at all three beam energies. The maximum cross section was 540 +180 -150 pb at a projectile center-of-target energy of 264.0 MeV. This cross section is much larger than that previously reported for the even-Z-projectile 209Bi(54Cr, n)262Bh reaction, which may be because the 54Cr projectile

  9. Space-bounded communication complexity

    DEFF Research Database (Denmark)

    Brody, Joshua Eric; Chen, Shiteng; Papakonstantinou, Periklis A.


    -obliviousness shows up. For this model we also introduce new techniques through which certain limitations of space-bounded computation are revealed. One of the main motivations of this work is in understanding the difference in the use of space when computing the following functions: Equality (EQ), Inner Product (IP......In the past thirty years, Communication Complexity has emerged as a foundational tool to proving lower bounds in many areas of computer science. Its power comes from its generality, but this generality comes at a price---no superlinear communication lower bound is possible, since a player may...... communicate his entire input. However, what if the players are limited in their ability to recall parts of their interaction? We introduce memory models for 2-party communication complexity. Our general model is as follows: two computationally unrestricted players, Alice and Bob, each have s(n) bits of memory...

  10. Quantum discord with weak measurements

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Uttam, E-mail:; Pati, Arun Kumar, E-mail:


    Weak measurements cause small change to quantum states, thereby opening up the possibility of new ways of manipulating and controlling quantum systems. We ask, can weak measurements reveal more quantum correlation in a composite quantum state? We prove that the weak measurement induced quantum discord, called as the “super quantum discord”, is always larger than the quantum discord captured by the strong measurement. Moreover, we prove the monotonicity of the super quantum discord as a function of the measurement strength and in the limit of strong projective measurement the super quantum discord becomes the normal quantum discord. We find that unlike the normal discord, for pure entangled states, the super quantum discord can exceed the quantum entanglement. Our results provide new insights on the nature of quantum correlation and suggest that the notion of quantum correlation is not only observer dependent but also depends on how weakly one perturbs the composite system. We illustrate the key results for pure as well as mixed entangled states. -- Highlights: •Introduced the role of weak measurements in quantifying quantum correlation. •We have introduced the notion of the super quantum discord (SQD). •For pure entangled state, we show that the SQD exceeds the entanglement entropy. •This shows that quantum correlation depends not only on observer but also on measurement strength.

  11. Weak-type (1,1 bounds for a class of operators with discrete kernel

    Directory of Open Access Journals (Sweden)

    Duván Cardona


    Full Text Available En este trabajo se investigará el tipo débil (1,1 de una cier ta clase de operadores con núcleo definido sobre Z × Z . Se estudiará la continuidad débil de operadores que son análogos discretos de los ahora c onocidos, oper- adores singulares integrales de Calderón-Zygmund. Los ope radores considera- dos surgen desde el estudio de operadores pseudo diferencia les de tipo discreto y versiones discretas de integrales singulares.

  12. Suppression of the weakly-bound excited Υ states in HI collisions

    CERN Multimedia


      CMS was able to observe for the first time this phenomenon by comparing last year’s HI collisions at 2.76 TeV/nucleon with the pp collisions that took place at the same energy earlier this year. For more, visit:  

  13. Weakly bound few-cluster structures with many-body correlations

    DEFF Research Database (Denmark)

    Hove, Dennis


    in nature, the focus of the method is on applications within nuclear physics. As such this method is applied to $^{26}$O, $^{72}$Ca, and $^{70}$Kr, all of which are topical, nuclear systems, each demonstrating particular applications of the method. The application to $^{26}\\text{O}$ demonstrates the ability...

  14. Shape Effect Analysis of Aluminum Projectile Impact on Whipple Shields (United States)

    Carrasquilla, Maria J.; Miller, Joshua E.


    respect to their mass, size, and material composition needs to be summarized in a form that can be used in MMOD analysis. The mechanism that brings these fragment traits into MMOD analysis is through ballistic limit equations (BLE) that have been developed largely for a few types of materials1. As a BLE provides the failure threshold for a shield or spacecraft component based on parameters such as the projectile impact velocity and size, and the target's materials, thickness, and configuration, it is used to design protective shields for spacecraft such as Whipple shields (WS) to an acceptable risk level. The majority of experiments and simulations to test shields and validate BLEs have, heretofore, largely used spheres as the impactor, not properly reflecting the irregular shapes of MMOD. This shortfall has motivated a numerical impact analysis study of HVI involving non-spherical geometries to identify key parameters that environment models should provide.

  15. Warping the Weak Gravity Conjecture

    Directory of Open Access Journals (Sweden)

    Karta Kooner


    Full Text Available The Weak Gravity Conjecture, if valid, rules out simple models of Natural Inflation by restricting their axion decay constant to be sub-Planckian. We revisit stringy attempts to realise Natural Inflation, with a single open string axionic inflaton from a probe D-brane in a warped throat. We show that warped geometries can allow the requisite super-Planckian axion decay constant to be achieved, within the supergravity approximation and consistently with the Weak Gravity Conjecture. Preliminary estimates of the brane backreaction suggest that the probe approximation may be under control. However, there is a tension between large axion decay constant and high string scale, where the requisite high string scale is difficult to achieve in all attempts to realise large field inflation using perturbative string theory. We comment on the Generalized Weak Gravity Conjecture in the light of our results.

  16. Living in a physical world II. The bio-ballistics of small projectiles

    Indian Academy of Sciences (India)


    Feb 21, 2005 ... Home; Journals; Journal of Biosciences; Volume 30; Issue 2. Living in a physical world II. The bio-ballistics of small projectiles. Steven Vogel. Series Volume 30 Issue 2 March 2005 pp 167-175. Fulltext. Click here to view fulltext PDF. Permanent link: ...

  17. Interaction of 3d transition metal atoms with charged ion projectiles from Electron Nuclear Dynamics computation (United States)

    Hagelberg, Frank


    Computational results on atomic scattering between charged projectiles and transition metal target atoms are presented. This work aims at obtaining detailed information about charge, spin and energy transfer processes that occur between the interacting particles. An in-depth understanding of these phenomena is expected to provide a theoretical basis for the interpretation of various types of ion beam experiments, ranging from gas phase chromatography to spectroscopic observations of fast ions in ferromagnetic media. This contribution focuses on the scattering of light projectiles ranging from He to O, that are prepared in various initial charge states, by 3d transition metal atoms. The presented computations are performed in the framework of Electron Nuclear Dynamics (END)^1 theory which incorporates the coupling between electronic and nuclear degrees of freedom without reliance on the computationally cumbersome and frequently intractable determination of potential energy surfaces. In the present application of END theory to ion - transition metal atom scattering, a supermolecule approach is utilized in conjunction with a spin-unrestricted single determinantal wave function describing the electronic system. Integral scattering, charge and spin exchange cross sections are discussed as functions of the elementary parameters of the problem, such as projectile and target atomic numbers as well as projectile charge and initial kinetic energy. ^1 E.Deumens, A.Diz, R.Longo, Y.Oehrn, Rev.Mod.Phys. 66, 917 (1994)

  18. K-vacancy production by secondaries due to charged projectiles in thick targets

    Energy Technology Data Exchange (ETDEWEB)

    Onegin, M.S. [St. Petersburg Inst. of Nuclear Physics, Gatchina (Russian Federation); Pashuk, V.V. [St. Petersburg Inst. of Nuclear Physics, Gatchina (Russian Federation); Tverskoy, M.G. [St. Petersburg Inst. of Nuclear Physics, Gatchina (Russian Federation); Vodopyanov, I.B. [St. Petersburg Inst. of Nuclear Physics, Gatchina (Russian Federation)


    K-vacancy production due to ionization of atoms by charged projectiles in thick targets is investigated. Secondary particles contribution is taken into account. The calculations were performed for Pb and U targets irradiated by 1 GeV protons. The results are compared with the experimental data. (orig.).

  19. The scaling and dynamics of a projectile obliquely impacting a granular medium. (United States)

    Wang, Dengming; Ye, Xiaoyan; Zheng, Xiaojing


    In this paper, the dynamics of a spherical projectile obliquely impacting into a two-dimensional granular bed is numerically investigated using the discrete element method. The influences of projectile's initial velocities and impacting angles are mainly considered. Numerical results show that the relationship between the final penetration depth and the initial impact velocity is very similar to that in the vertical-impact case. However, the dependence of the stopping time on the impact velocity of the projectile exhibits critical characteristics at different impact angles: the stopping time approximately increases linearly with the impact velocity for small impact angles but decreases in an exponential form for larger impact angles, which demonstrates the existence of two different regimes at low and high impact angles. When the impact angle is regarded as a parametric variable, a phenomenological force model at large impact angles is eventually proposed based on the simulation results, which can accurately describe the nature of the resistance force exerted on the projectile by the granular medium at different impact angels during the whole oblique-impact process. The degenerate model agrees well with the existing experimental results in the vertical-impact cases.

  20. Projectile atomic-number effect on ion-induced fragmentation and ionization of fullerenes

    NARCIS (Netherlands)

    Hadjar, O; Hoekstra, R; Morgenstern, R; Schlatholter, T

    The delocalized pi electrons of a C-60 cluster can be well described as an electron gas. Electronic friction experienced by a multicharged ion colliding with a fullerene might then be modeled in terms of the electronic stopping power. We investigated such collisions for projectile atomic numbers Z

  1. Energy distribution of the particles obtained after irradiation of carbon nanotubes with carbon projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Denton, Cristian D. [Departament de Física Aplicada, Universitat d’Alacant, Apartat 99, E-03690 Alacant (Spain); Moreno-Marín, Juan Carlos; Heredia-Avalos, Santiago [Departament de Física, Enginyeria de Sistemes i Teoria de la Senyal, Universitat d’Alacant, Apartat 99, E-03690 Alacant (Spain)


    The idea of using carbon nanotubes (CNTs) as masks against irradiation has recently emerged, because of the region of a given material covered by a CNT can be protected from the effects of irradiation, creating nanowires. In this case, it is interesting to know in detail the number of generated recoils and their energy. In order to obtain these data, we simulate the irradiation of CNTs with carbon ions using a molecular dynamics code. To describe the interaction between carbon ions we use the Brenner potential joined smoothly to the Universal ZBL potential at short distances. We have analyzed the energy distributions of the carbon atoms emerging from the CNT for single projectile irradiation with incident energies from 30 eV to 5 keV. Our results show that the number and the energy of the recoil carbon atoms emerging from the CNT increases with the projectile incident energy. In average, each projectile with incident energy of 1 keV produces ∼3.6 recoils, which have a mean energy of 150 eV, while projectiles with 5 keV produce ∼7 recoils with a mean energy of 400 eV.

  2. Studying the influence of target and projectile properties on low-velocity collisions (United States)

    Murdoch, N.; Nguyen, G.; Calandry, A.; Cherrier, O.; Gourinat, Y.


    To improve our understanding of landing on small bodies and of asteroid evolution, we have performed new experiments of low-velocity impacts into granular material in both normal and reduced-gravity. We study the influence of the target material, the projectile shape and orientation, and the gravitational acceleration.

  3. Amazing Physics: Learning about Work, Energy and Projectile Motion in a Historical Context (United States)

    Tural, Guner


    Teaching physics through a historical context provides effective learning and increases students' motivation for and interest in physics. For example, trebuchets and mangonels may be interesting historical contexts for learning about energy, work, and projectile motion. In this study, the implementation of physics lessons related to these subjects…

  4. Projectile Motion with a Drag Force: Were the Medievals Right After All? (United States)

    La Rocca, Paola; Riggi, Francesco


    An educational and historical study of the projectile motion with drag forces dependent on speed shows, by simple results, that trajectories quite similar to those depicted before the Galilean era may be obtained with a realistic choice of quantities involved. Numerical simulations of the trajectory in space and velocity coordinates help us to…

  5. Projectile Impact Point Prediction Based on Self-Propelled Artillery Dynamics and Doppler Radar Measurements

    Directory of Open Access Journals (Sweden)

    Mostafa Khalil


    Full Text Available Any trajectory calculation method has three primary sources of errors, which are model error, parameter error, and initial state error. In this paper, based on initial projectile flight trajectory data measured using Doppler radar system; a new iterative method is developed to estimate the projectile attitude and the corresponding impact point to improve the second shot hit probability. In order to estimate the projectile initial state, the launch dynamics model of practical 155 mm self-propelled artillery is defined, and hence, the vibration characteristics of the self-propelled artillery is obtained using the transfer matrix method of linear multibody system MSTMM. A discrete time transfer matrix DTTM-4DOF is developed using the modified point mass equations of motion to compute the projectile trajectory and set a direct algebraic relation between any two successive radar data. During iterations, adjustments to the repose angle are made until an agreement with acceptable tolerance occurs between the Doppler radar measurements and the estimated values. Simulated Doppler radar measurements are generated using the nonlinear six-degree-of-freedom trajectory model using the resulted initial disturbance. Results demonstrate that the data estimated using the proposed algorithm agrees well with the simulated Doppler radar data obtained numerically using the nonlinear six-degree-of-freedom model.

  6. Preservice Elementary School Teachers' Conceptual Change about Projectile Motion: Refutation Text, Demonstration, Affective Factors, and Relevance. (United States)

    Hynd, Cynthia; And Others


    Investigates changes in preservice teachers' conceptions about projectile motion brought about by a combination of reading and demonstration and appeal to usefulness. Results indicate the effectiveness of a combined Demo-Text condition on immediate posttests and effectiveness of text in producing long-term change. Analysis also indicates an…

  7. The Effect of Cooperative Learning on Grade 12 Learners' Performance in Projectile Motions, South Africa (United States)

    Kibirige, Israel; Lehong, Moyahabo Jeridah


    The study explored the effect of cooperative learning on Grade 12 learners' performance in projectile motions. A quasi-experimental research design with non-equivalent control group was used. Two schools were purposively selected from Maleboho Central circuit in South Africa based on their performance in Physical Sciences Grade 12 results of 2011.…

  8. On the Locus Formed by the Maximum Heights of Projectile Motion with Air Resistance (United States)

    Hernandez-Saldana, H.


    We present an analysis on the locus formed by the set of maxima of the trajectories of a projectile launched in a medium with linear drag. Such a place, the locus of apexes, is written in terms of the Lambert "W" function in polar coordinates, confirming the special role played by this function in the problem. To characterize the locus, a study of…

  9. Approximate Formula for the Vertical Asymptote of Projectile Motion in Midair (United States)

    Chudinov, Peter Sergey


    The classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon is reviewed. The air drag force is taken into account with the drag factor assumed to be constant. An analytical approach is used for the investigation. An approximate formula is obtained for one of the characteristics of the motion--the vertical…

  10. Modeling Fragment Simulating Projectile Penetration into Steel Plates Using Finite Elements and Meshfree Particles

    Directory of Open Access Journals (Sweden)

    James O’Daniel


    Full Text Available Simulating fragment penetration into steel involves complicated modeling of severe behavior of the materials through multiple phases of response. Penetration of a fragment-like projectile was simulated using finite element (FE and meshfree particle formulations. Extreme deformation and failure of the material during the penetration event were modeled with several approaches to evaluate each as to how well it represents the actual physics of the material and structural response. A steel Fragment Simulating Projectile (FSP – designed to simulate a fragment of metal from a weapon casing – was simulated for normal impact into a flat square plate. A range of impact velocities was used to examine levels of exit velocity ranging from relatively small to one on the same level as the impact velocity. The numerical code EPIC, used for all the simulations presented herein, contains the element and particle formulations, as well as the explicit methodology and constitutive models needed to perform these simulations. These simulations were compared against experimental data, evaluating the damage caused to the projectile and the target plates, as well as comparing the residual velocity when the projectile perforated the target.

  11. Design and Analysis of Kinetic Energy Projectiles Using Finite Element Optimization (United States)


    1991; DeSalvo and Gorman 1987; PRISM/DDM User Manuals 1990; Hallquist 1983). Using 4inite element techniques, simplified models of the projectile can...Handbook: Interior Ballistics of Guns. AMC Pamphlet 706-150, Washington, DC, February 1965. DeSalvo , G. J., and R. W. Gorman. ANSYS Engineering

  12. Tissue simulant response at projectile impact on flexible fabric armour systems

    NARCIS (Netherlands)

    Bree, J.L.M.J. van; Volker, A.; Heiden, N. van der


    Behind Armour Blunt Trauma is a phenomenon which has been studied extensively for rigid personal protective armour systems. These systems used in e.g. bullet proof vests manage to defeat high velocity small arms projectiles. Tissue simulants are used to study behind armour effects. At high velocity

  13. Comment on 'The envelope of projectile trajectories'

    Energy Technology Data Exchange (ETDEWEB)

    Butikov, Eugene I [St Petersburg State University, St Petersburg (Russian Federation)


    Several simple alternative methods to obtain the equation of the envelope of the family of projectile trajectories corresponding to the same initial speed are suggested, including methods in which the boundary of the region occupied by the parabolic trajectories is found as an envelope of a set of circles. Two possible generalizations of the discussed problem are also suggested. (letters and comments)

  14. Projectile Penetration into Sandy Soil Confined by a Honeycomb-Like Structure

    Directory of Open Access Journals (Sweden)

    Weiming Luo


    Full Text Available HPS (Honeycomb-like Protective Structure is a newly proposed protective structure filled with sandy soil. In order to investigate the penetration resistance of the structure, numerical simulations based on SPH method had been carried out by using LS-DYNA, which are corresponding to the experiments. The calibrated model leads to reasonable predictions of the dynamic responses and damage modes of the HPS. More situations were carried out taking factors influencing the penetration into consideration, including point of impact, angle of impact, and projectile caliber. Penetration mode was established by analyzing the energy dissipation and investigating the mechanism from the phenomenological viewpoint. Simulation results show that the resisting forces and the torque that act on the long rod projectile would be greater than those acting on the short one when instability occurred. Besides, approximate 45° angle of impact was formed in the case of off-axis, which has a certain influence on the ballistic stability, resulting in more kinetic energy of projectile dissipating in HPS and less depth of penetration. The kinetic energy of projectile dissipated in sandy soil largely and the strip slightly, and the former was greater than the sum of the latter.

  15. Transient Response of a Projectile in Gun Launch Simulation Using Lagrangian and Ale Methods

    Directory of Open Access Journals (Sweden)

    A Tabiei


    Full Text Available This paper describes the usefulness of Lagrangian and arbitrary Lagrangian/Eulerian (ALE methods in simulating the gun launch dynamics of a generic artillery component subjected to launch simulation in an air gun test. Lagrangian and ALE methods are used to simulate the impact mitigation environment in which the kinetic energy of a projectile is absorbed by the crushing of aluminum honeycomb mitigator. In order to solve the problem due to high impact penetration, a new fluid structure coupling algorithm is developed and implemented in LS-DYNA, a three dimensional FEM code. The fluid structure coupling algorithm used in this paper combined with ALE formulation for the aluminum honeycomb mitigator allows to solve problems for which the contact algorithm in the Lagrangian calculation fails due to high mesh distortion. The numerical method used for the fluid and fluid structure coupling is discussed. A new coupling method is used in order to prevent mesh distortion. Issues related to the effectiveness of these methods in simulating a high degree of distortion of Aluminum honeycomb mitigator with the commonly used material models (metallic honeycomb and crushable foam are discussed. Both computational methods lead to the same prediction for the deceleration of the test projectile and are able to simulate the behavior of the projectile. Good agreement between the test results and the predicted projectile response is achieved via the presented models and the methods employed.

  16. [An unusual embolization of a projectile in the superficial femoral artery]. (United States)

    Roubal, P; Korger, J; Ondrůsková, O; Kratochvíl, D; Holý, M


    The authors present an account on a gunshot wound which penetrated into the lateral side of the distal chest on the right. They describe acute treatment of severe haemorrhagic shock by suture of a lacerated with liver segment and resection of the upper pole of the right kidney. The projectile was not searched for because of the patients general serious condition. After 30 days the patient was discharged in a good condition. Shortly after discharge, i.e. cca one month after the injury, the patient developed signs of chronic ischaemia of the left lower extremity-finally claudications after 150 meters. Based on peripheral arteriography, which revealed the projectile in the area of the beginning of the superficial femoral artery and an ample collateral circulation, surgery was initiated. The bullet was extracted from the lumen of the superficial femoral artery from longitudinal arteriotomy. The artery was then treated by thrombectomy and a venous patch. Peroperative arteriography indicates satisfactory passage into the periphery. The authors try to reconstruct the pathway of the shot and in particular how the projectile penetrated into the artery. They emphasize the necessity to look for the projectice at the site of the shot wound. The objective of the paper is to make readers familiar with a case of uncommon embolization of a projectile into the superficial femoral artery and mistakes which may occur during treatment of a gunshot wound. The result is that the patient is quite free from complaints, as was confirmed by repeated out-patient check-ups.

  17. Cq+-induced excitation and fragmentation of uracil : effects of the projectile electronic structure

    NARCIS (Netherlands)

    de Vries, J.; Hoekstra, R.A.; Morgenstern, R.W.H.; Schlathölter, T.A.


    Ionization and fragmentation of the RNA base uracil (C4H4N2O2) by means of Cq+ ions (q = 1-6) has been studied for ion kinetic energies ranging from ;2 to 120 keV. Whereas for Cq+ (q = 1, 3, 4, 5, 6) very similar fragmentation yields are observed which increase with the projectile velocity v, C2+

  18. Cosmology and the weak interaction

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Fermi National Accelerator Lab., Batavia, IL (USA)):(Chicago Univ., IL (USA))


    The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.

  19. Nonlinear waves and weak turbulence

    CERN Document Server

    Zakharov, V E


    This book is a collection of papers on dynamical and statistical theory of nonlinear wave propagation in dispersive conservative media. Emphasis is on waves on the surface of an ideal fluid and on Rossby waves in the atmosphere. Although the book deals mainly with weakly nonlinear waves, it is more than simply a description of standard perturbation techniques. The goal is to show that the theory of weakly interacting waves is naturally related to such areas of mathematics as Diophantine equations, differential geometry of waves, Poincaré normal forms, and the inverse scattering method.

  20. Bounded Densities and Their Derivatives

    DEFF Research Database (Denmark)

    Kozine, Igor; Krymsky, V.


    This paper describes how one can compute interval-valued statistical measures given limited information about the underlying distribution. The particular focus is on a bounded derivative of a probability density function and its combination with other available statistical evidence for computing ...

  1. Distance bounds on quantum dynamics (United States)

    Lidar, Daniel A.; Zanardi, Paolo; Khodjasteh, Kaveh


    We derive rigorous upper bounds on the distance between quantum states in an open-system setting in terms of the operator norm between Hamiltonians describing their evolution. We illustrate our results with an example taken from protection against decoherence using dynamical decoupling.

  2. Moderate deviations for bounded subsequences

    Directory of Open Access Journals (Sweden)

    George Stoica


    Full Text Available We study Davis' series of moderate deviations probabilities for Lp-bounded sequences of random variables (p>2. A certain subseries therein is convergent for the same range of parameters as in the case of martingale difference or i.i.d. sequences.

  3. Submanifolds weakly associated with graphs

    Indian Academy of Sciences (India)

    Sci. (Math. Sci.) Vol. 119, No. 3, June 2009, pp. 297–318. © Printed in India. Submanifolds weakly associated with graphs. A CARRIAZO, L M FERN ´ANDEZ and A RODRÍGUEZ-HIDALGO. Department of Geometry and Topology, Faculty of Mathematics, University of Sevilla,. Apartado de Correos 1160, 41080-Sevilla, Spain.

  4. Beam splitting on weak illumination. (United States)

    Snyder, A W; Buryak, A V; Mitchell, D J


    We demonstrate, in both two and three dimensions, how a self-guided beam in a non-Kerr medium is split into two beams on weak illumination. We also provide an elegant physical explanation that predicts the universal character of the observed phenomenon. Possible applications of our findings to guiding light with light are also discussed.

  5. On Weak-BCC-Algebras (United States)

    Thomys, Janus; Zhang, Xiaohong


    We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983

  6. Voltage Weak DC Distribution Grids

    NARCIS (Netherlands)

    Hailu, T.G.; Mackay, L.J.; Ramirez Elizondo, L.M.; Ferreira, J.A.


    This paper describes the behavior of voltage weak DC distribution systems. These systems have relatively small system capacitance. The size of system capacitance, which stores energy, has a considerable effect on the value of fault currents, control complexity, and system reliability. A number of

  7. Weak solutions for nonlocal evolution variational inequalities involving gradient constraints and variable exponent

    Directory of Open Access Journals (Sweden)

    Mingqi Xiang


    Full Text Available In this article, we study a class of nonlocal quasilinear parabolic variational inequality involving $p(x$-Laplacian operator and gradient constraint on a bounded domain. Choosing a special penalty functional according to the gradient constraint, we transform the variational inequality to a parabolic equation. By means of Galerkin's approximation method, we obtain the existence of weak solutions for this equation, and then through a priori estimates, we obtain the weak solutions of variational inequality.

  8. Competing weak localization and weak antilocalization in ultrathin topological insulators. (United States)

    Lang, Murong; He, Liang; Kou, Xufeng; Upadhyaya, Pramey; Fan, Yabin; Chu, Hao; Jiang, Ying; Bardarson, Jens H; Jiang, Wanjun; Choi, Eun Sang; Wang, Yong; Yeh, Nai-Chang; Moore, Joel; Wang, Kang L


    We demonstrate evidence of a surface gap opening in topological insulator (TI) thin films of (Bi(0.57)Sb(0.43))(2)Te(3) below six quintuple layers through transport and scanning tunneling spectroscopy measurements. By effective tuning the Fermi level via gate-voltage control, we unveil a striking competition between weak localization and weak antilocalization at low magnetic fields in nonmagnetic ultrathin films, possibly owing to the change of the net Berry phase. Furthermore, when the Fermi level is swept into the surface gap of ultrathin samples, the overall unitary behaviors are revealed at higher magnetic fields, which are in contrast to the pure WAL signals obtained in thicker films. Our findings show an exotic phenomenon characterizing the gapped TI surface states and point to the future realization of quantum spin Hall effect and dissipationless TI-based applications.

  9. The Dependency of Penetration on the Momentum Per Unit Area of the Impacting Projectile and the Resistance of Materials to Penetration (United States)

    Collins, Rufus D., Jr.; Kinard, William H.


    The results of this investigation indicate that the penetration of projectiles into quasi-infinite targets can be correlated as a function of the maximum momentum per unit area possessed by the projectiles. The penetration of projectiles into aluminum, copper, and steel targets was found to be a linear function while the penetration into lead targets was a nonlinear function of the momentum per unit area of the impacting projectiles. Penetration varied inversely as the projectile density and the elastic modulus of the target material for a given projectile momentum per unit area. Crater volumes were found to be a linear function of the kinetic energy of the projectile, the greater volumes being obtained in the target materials which had the lowest yield strength and the lowest speed of sound.

  10. Eötvös bounds on couplings of fundamental parameters to gravity. (United States)

    Dent, Thomas


    The possible dependence of fundamental couplings and mass ratios on the gravitational potential has been bounded by comparing atomic clock frequencies over Earth's elliptical orbit. Here we evaluate bounds on such a dependence from Eötvös-type experiments that test the weak equivalence principle, including previously neglected contributions from nuclear binding energy. We find that variations of fundamental parameters correlated with the gravitational potential are limited at 10(-8)-10(-9), an improvement of 2-3 orders of magnitude over atomic clock bounds.

  11. Bounding solutions for cerebral aneurysms

    NARCIS (Netherlands)

    Mikhal, Julia Olegivna; Geurts, Bernardus J.


    Cerebral aneurysms are weak spots in the vessel structure of the brain, which present a serious problem to the patient. Julia Mikhal and Bernard Geurts present the application of an Immersed Boundary (IB) method to the simulation of blood flow through such aneurysms. The goal is to understand the

  12. Lower bounds in differential privacy


    De, Anindya


    This is a paper about private data analysis, in which a trusted curator holding a confidential database responds to real vector-valued queries. A common approach to ensuring privacy for the database elements is to add appropriately generated random noise to the answers, releasing only these {\\em noisy} responses. In this paper, we investigate various lower bounds on the noise required to maintain different kind of privacy guarantees.

  13. Geometry of Homogeneous Bounded Domains

    CERN Document Server

    Vesentini, E


    This title includes: S.G. Gindikin, I.I. Pjateckii-Sapiro, E.B. Vinberg: Homogeneous Kahler manifolds; S.G. Greenfield: Extendibility properties of real submanifolds of Cn; W. Kaup: Holomorphische Abbildungen in Hyperbolische Raume; A. Koranyi: Holomorphic and harmonic functions on bounded symmetric domains; J.L. Koszul: Formes harmoniques vectorielles sur les espaces localement symetriques; S. Murakami: Plongements holomorphes de domaines symetriques; and E.M. Stein: The analogues of Fatous' theorem and estimates for maximal functions.

  14. Wronskian method for bound states

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Francisco M, E-mail: [INIFTA (UNLP, CONICET), Division Quimica Teorica, Boulevard 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)


    We propose a simple and straightforward method based on Wronskians for the calculation of bound-state energies and wavefunctions of one-dimensional quantum-mechanical problems. We explicitly discuss the asymptotic behaviour of the wavefunction and show that the allowed energies make the divergent part vanish. As illustrative examples we consider an exactly solvable model, the Gaussian potential well, and a two-well potential proposed earlier for the interpretation of the infrared spectrum of ammonia.

  15. Neutron bound beta-decay: BOB (United States)

    McAndrew, Josephine; Paul, Stephan; Emmerich, Ralf; Engels, Ralf; Fierlinger, Peter; Gabriel, Mirko; Gutsmiedl, Erwin; Mellenthin, Johannes; Schön, Johannes; Schott, Wolfgang; Ulrich, Andreas; Grüenauer, Florian; Röhrmoser, Anton


    An experiment to observe the bound beta-decay (BOB) of the free neutron into a hydrogen atom and an electron anti-neutrino is described. The hyperfine spin state population of the monoenergetic hydrogen atom yields the neutrino left-handedness or possible right-handed admixture as well as possible small scalar and tensor contributions to the weak force. The BOB H(2s) hyperfine states can be separated with a Lamb-Shift Spin Filter. These monoenergetic H(2s) atoms are ionised into H- by charge exchanging within an argon cell. These ions are then separated using an adaptation of a MAC-E Filter. A first experiment is proposed at the FRMII high thermal-neutron flux beam reactor SR6 through-going beam tube, where we will seek to observe this rare neutron decay-mode for the first time and determine the branching ratio. After successful completion, the hyperfine spin state population will be determined, possibly at the ILL high-flux beam reactor through-going beam tube H6-H7, where the thermal neutron flux is a factor of four larger.

  16. Cyclotron transitions of bound ions (United States)

    Bezchastnov, Victor G.; Pavlov, George G.


    A charged particle in a magnetic field possesses discrete energy levels associated with particle rotation around the field lines. The radiative transitions between these levels are the well-known cyclotron transitions. We show that a bound complex of particles with a nonzero net charge displays analogous transitions between the states of confined motion of the entire complex in the field. The latter bound-ion cyclotron transitions are affected by a coupling between the collective and internal motions of the complex and, as a result, differ from the transitions of a "reference" bare ion with the same mass and charge. We analyze the cyclotron transitions for complex ions by including the coupling within a rigorous quantum approach. Particular attention is paid to comparison of the transition energies and oscillator strengths to those of the bare ion. Selection rules based on integrals of collective motion are derived for the bound-ion cyclotron transitions analytically, and the perturbation and coupled-channel approaches are developed to study the transitions quantitatively. Representative examples are considered and discussed for positive and negative atomic and cluster ions.

  17. Bounds on collapse models from cold-atom experiments (United States)

    Bilardello, Marco; Donadi, Sandro; Vinante, Andrea; Bassi, Angelo


    The spontaneous localization mechanism of collapse models induces a Brownian motion in all physical systems. This effect is very weak, but experimental progress in creating ultracold atomic systems can be used to detect it. In this paper, we considered a recent experiment (Kovachy et al., 2015), where an atomic ensemble was cooled down to picokelvins. Any Brownian motion induces an extra increase of the position variance of the gas. We study this effect by solving the dynamical equations for the Continuous Spontaneous Localizations (CSL) model, as well as for its non-Markovian and dissipative extensions. The resulting bounds, with a 95 % of confidence level, are beaten only by measurements of spontaneous X-ray emission and by experiments with cantilever (in the latter case, only for rC ≥ 10-7 m, where rC is one of the two collapse parameters of the CSL model). We show that, contrary to the bounds given by X-ray measurements, non-Markovian effects do not change the bounds, for any reasonable choice of a frequency cutoff in the spectrum of the collapse noise. Therefore the bounds here considered are more robust. We also show that dissipative effects are unimportant for a large spectrum of temperatures of the noise, while for low temperatures the excluded region in the parameter space is the more reduced, the lower the temperature.

  18. Optimal Weak Lensing Skewness Measurements


    Zhang, Tong-Jie; Pen, Ue-Li; Zhang, Pengjie; Dubinski, John


    Weak lensing measurements are entering a precision era to statistically map the distribution of matter in the universe. The most common measurement has been of the variance of the projected surface density of matter, which corresponds to the induced correlation in alignments of background galaxies. This measurement of the fluctuations is insensitive to the total mass content, like using waves on the ocean to measure its depths. But when the depth is shallow as happens near a beach, waves beco...

  19. Weak neutral-current interactions

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, R.M.


    The roles of each type of experiment in establishing uniquely the values of the the neutral-current couplings of u and d quarks are analyzed together with their implications for gauge models of the weak and electromagnetic interactions. An analysis of the neutral-current couplings of electrons and of the data based on the assumption that only one Z/sup 0/ boson exists is given. Also a model-independent analysis of parity violation experiments is discussed. 85 references. (JFP)

  20. Energy-dependent expansion of .177 caliber hollow-point air gun projectiles. (United States)

    Werner, Ronald; Schultz, Benno; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias


    Amongst hundreds of different projectiles for air guns available on the market, hollow-point air gun pellets are of special interest. These pellets are characterized by a tip or a hollowed-out shape in their tip which, when fired, makes the projectiles expand to an increased diameter upon entering the target medium. This results in an increase in release of energy which, in turn, has the potential to cause more serious injuries than non-hollow-point projectiles. To the best of the authors' knowledge, reliable data on the terminal ballistic features of hollow-point air gun projectiles compared to standard diabolo pellets have not yet been published in the forensic literature. The terminal ballistic performance (energy-dependent expansion and penetration) of four different types of .177 caliber hollow-point pellets discharged at kinetic energy levels from approximately 3 J up to 30 J into water, ordnance gelatin, and ordnance gelatin covered with natural chamois as a skin simulant was the subject of this investigation. Energy-dependent expansion of the tested hollow-point pellets was observed after being shot into all investigated target media. While some hollow-point pellets require a minimum kinetic energy of approximately 10 J for sufficient expansion, there are also hollow-point pellets which expand at kinetic energy levels of less than 5 J. The ratio of expansion (RE, calculated by the cross-sectional area (A) after impact divided by the cross-sectional area (A 0) of the undeformed pellet) of hollow-point air gun pellets reached values up of to 2.2. The extent of expansion relates to the kinetic energy of the projectile with a peak for pellet expansion at the 15 to 20 J range. To conclude, this work demonstrates that the hollow-point principle, i.e., the design-related enlargement of the projectiles' frontal area upon impact into a medium, does work in air guns as claimed by the manufacturers.

  1. Rare weak decays of η'→K π (United States)

    Gao, Dao-Neng


    Rare weak decays of η'→K π have been investigated in the framework of the U (3 ) chiral perturbation theory at the leading order. Our study shows that the branching ratio B (η'→K π ) is of the order of 10-11, which is far below the present experimental upper bound given by the BESIII Collaboration. By further analysis of η'→K+π- and η'→K0π0, the ratio of isospin amplitudes is found, |A1 /2/A3 /2|≃35 , which supports that the Δ I =1 /2 transition enhancement, namely, the Δ I =1 /2 rule, could be functional in η' weak decays.

  2. Some Properties of Solutions to Weakly Hypoelliptic Equations

    Directory of Open Access Journals (Sweden)

    Christian Bär


    Full Text Available A linear different operator L is called weakly hypoelliptic if any local solution u of Lu=0 is smooth. We allow for systems, that is, the coefficients may be matrices, not necessarily of square size. This is a huge class of important operators which coverall elliptic, overdetermined elliptic, subelliptic, and parabolic equations. We extend several classical theorems from complex analysis to solutions of any weakly hypoelliptic equation: the Montel theorem providing convergent subsequences, the Vitali theorem ensuring convergence of a given sequence, and Riemann's first removable singularity theorem. In the case of constant coefficients, we show that Liouville's theorem holds, any bounded solution must be constant, and any Lp-solution must vanish.

  3. A weakly constrained $W'$ at the early LHC

    CERN Document Server

    Grojean, Christophe; Torre, Riccardo


    We study, within an effective approach, the phenomenology of a charged W' vector which transforms as an isosinglet under the Standard Model gauge group. We discuss bounds from present data, finding that these are quite weak for suitable choices of the right-handed quark mixing matrix. Then we study the resonant production at the early LHC of such a weakly constrained W'. We start discussing the reach in the dijet final state, which is one of the channels where the first W' signal would most likely appear, and then we analyse prospects for the more challenging discovery of W' decays into W{\\gamma} and WZ. We show in particular that the former can be used to gain insight on the possibly composite nature of the resonance.

  4. [Muscle weakness in cerebral palsy]. (United States)

    Givon, Uri


    Over the last two decades, muscle weakness has been shown to be a major component of cerebral palsy (CP) pathology. Caused by multiple etiologies including variations in the muscle fiber type, pathologic motor unit function, co-contraction of agonists and antagonists, and muscle size and rigidity, weakness interferes with function and leads to limited function and participation. Muscle strength was found to be associated with walking ability and with functional scales. Children with CP were found to be weaker than typically developing children, and differences were found with respect to muscle groups in children with CP. Muscle weakness should be evaluated as objectively as possible to improve the quality of diagnosis and treatment. Manual muscle testing is not sufficient for evaluation, and instrumented muscle testing is validated in CP. Muscle strengthening is an important part of treatment of CP. Several methods of strengthening have been described. Muscle lengthening and other spasticity-modifying therapies have been shown to have a positive effect on muscle strength. Children who participated in muscle strengthening programs had a better quality of life and improved function.

  5. Completely continuous and weakly completely continuous abstract ...

    Indian Academy of Sciences (India)

    if the operator ρa of right multiplication by a is compact (weakly compact, respectively). An algebra A is called right completely continuous (right weakly completely continuous) if any element a ∈ A is right completely continuous (right weakly completely con- tinuous, respectively). Left completely continuous (left weakly ...

  6. Multiple laser-based high-speed digital shadowgraphy system for small caliber projectile-target interaction studies (United States)

    Kalonia, Ramesh C.; Chhachhia, Dharam P.; Bajpai, Phun Phun; Singh, Manjit; Biswas, Ipsita; Yadav, Mohinder S.


    High-speed optical shadowgraphy plays an important role in study of various phenomena including projectile-target interaction for small caliber projectile. Present work reports design, development, and implementation of a multiple laser-based high-speed digital shadowgraphy system to study the behavior of a small caliber projectile in flight as well as the projectile-target interaction. System is based on Cranz-Schardin technique. Low power digitally modulated laser diodes along with low-resolution CMOS cameras in global shuttering mode are used to record good quality digital shadowgraphs. The system can record 11 shadowgraphs at a maximum frame rate of 1 million/s and is able to capture even minute details of fragments in the form of shockwaves. Operation of the system, image recording and analysis are fully computer controlled. The design and system description inclusive ultra-short pulse generator and opto-electronic triggering unit are presented and experimental results are discussed.

  7. Analysis of projectile motion with quadratic air resistance from a nonzero height using the Lambert W function

    National Research Council Canada - National Science Library

    Belgacem, Chokri Hadj

    Using the Lambert W function, the quadratic resisted projectile motion with an approximation of low-angle trajectory has been studied where the launching point is assumed to be higher than the landing point...

  8. Chromium isotope anomaly in an impactite sample from the El'gygytgyn structure, Russia: Evidence for a ureilite projectile?

    National Research Council Canada - National Science Library

    Foriel, Julien; Moynier, Frederic; Schulz, Toni; Koeberl, Christian


    ... that an achondritic projectile was involved. We studied the major and trace element composition in samples from the new ICDP drill core obtained near the center of the structure, as well as the chromium isotopic composition of an impact glass...

  9. Tunneling Time and Weak Measurement in Strong Field Ionization (United States)

    Zimmermann, Tomáš; Mishra, Siddhartha; Doran, Brent R.; Gordon, Daniel F.; Landsman, Alexandra S.


    Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process.

  10. Weak convergence of Jacobian determinants under asymmetric assumptions

    Directory of Open Access Journals (Sweden)

    Teresa Alberico


    Full Text Available Let $\\Om$ be a bounded open set in $\\R^2$ sufficiently smooth and $f_k=(u_k,v_k$ and $f=(u,v$ mappings belong to the Sobolev space $W^{1,2}(\\Om,\\R^2$. We prove that if the sequence of Jacobians $J_{f_k}$ converges to a measure $\\mu$ in sense of measures andif one allows different assumptions on the two components of $f_k$ and $f$, e.g.$$u_k \\rightharpoonup u \\;\\;\\mbox{weakly in} \\;\\; W^{1,2}(\\Om \\qquad \\, v_k \\rightharpoonup v \\;\\;\\mbox{weakly in} \\;\\; W^{1,q}(\\Om$$for some $q\\in(1,2$, then\\begin{equation}\\label{0}d\\mu=J_f\\,dz.\\end{equation}Moreover, we show that this result is optimal in the sense that conclusion fails for $q=1$.On the other hand, we prove that \\eqref{0} remains valid also if one considers the case $q=1$, but it is necessary to require that $u_k$ weakly converges to $u$ in a Zygmund-Sobolev space with a slightly higher degree of regularity than $W^{1,2}(\\Om$ and precisely$$ u_k \\rightharpoonup u \\;\\;\\mbox{weakly in} \\;\\; W^{1,L^2 \\log^\\alpha L}(\\Om$$for some $\\alpha >1$.    

  11. On the Weak Computability of Continuous Real Functions

    Directory of Open Access Journals (Sweden)

    Matthew S. Bauer


    Full Text Available In computable analysis, sequences of rational numbers which effectively converge to a real number x are used as the (rho- names of x. A real number x is computable if it has a computable name, and a real function f is computable if there is a Turing machine M which computes f in the sense that, M accepts any rho-name of x as input and outputs a rho-name of f(x for any x in the domain of f. By weakening the effectiveness requirement of the convergence and classifying the converging speeds of rational sequences, several interesting classes of real numbers of weak computability have been introduced in literature, e.g., in addition to the class of computable real numbers (EC, we have the classes of semi-computable (SC, weakly computable (WC, divergence bounded computable (DBC and computably approximable real numbers (CA. In this paper, we are interested in the weak computability of continuous real functions and try to introduce an analogous classification of weakly computable real functions. We present definitions of these functions by Turing machines as well as by sequences of rational polygons and prove these two definitions are not equivalent. Furthermore, we explore the properties of these functions, and among others, show their closure properties under arithmetic operations and composition.

  12. Lower bounds for randomized Exclusive Write PRAMs

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, P.D.


    In this paper we study the question: How useful is randomization in speeding up Exclusive Write PRAM computations? Our results give further evidence that randomization is of limited use in these types of computations. First we examine a compaction problem on both the CREW and EREW PRAM models, and we present randomized lower bounds which match the best deterministic lower bounds known. (For the CREW PRAM model, the lower bound is asymptotically optimal.) These are the first non-trivial randomized lower bounds known for the compaction problem on these models. We show that our lower bounds also apply to the problem of approximate compaction. Next we examine the problem of computing boolean functions on the CREW PRAM model, and we present a randomized lower bound, which improves on the previous best randomized lower bound for many boolean functions, including the OR function. (The previous lower bounds for these functions were asymptotically optimal, but we improve the constant multiplicative factor.) We also give an alternate proof for the randomized lower bound on PARITY, which was already optimal to within a constant additive factor. Lastly, we give a randomized lower bound for integer merging on an EREW PRAM which matches the best deterministic lower bound known. In all our proofs, we use the Random Adversary method, which has previously only been used for proving lower bounds on models with Concurrent Write capabilities. Thus this paper also serves to illustrate the power and generality of this method for proving parallel randomized lower bounds.

  13. Protecting weak measurements against systematic errors


    Pang, Shengshi; Alonso, Jose Raul Gonzalez; Brun, Todd A.; Jordan, Andrew N.


    In this work, we consider the systematic error of quantum metrology by weak measurements under decoherence. We derive the systematic error of maximum likelihood estimation in general to the first-order approximation of a small deviation in the probability distribution, and study the robustness of standard weak measurement and postselected weak measurements against systematic errors. We show that, with a large weak value, the systematic error of a postselected weak measurement when the probe u...

  14. On the Horizontal Deviation of a Spinning Projectile Penetrating into Granular Systems

    Directory of Open Access Journals (Sweden)

    Waseem Ghazi Alshanti


    Full Text Available The absence of a general theory that describes the dynamical behavior of the particulate materials makes the numerical simulations the most current powerful tool that can grasp many mechanical problems relevant to the granular materials. In this paper, based on a two-dimensional soft particle discrete element method (DEM, a numerical approach is developed to investigate the consequence of the orthogonal impact into various granular beds of projectile rotating in both clockwise (CW and counterclockwise (CCW directions. Our results reveal that, depending on the rotation direction, there is a significant deviation of the x-coordinate of the final stopping point of a spinning projectile from that of its original impact point. For CW rotations, a deviation to the right occurs while a left deviation has been recorded for CCW rotation case.

  15. Onset of cavity deformation upon subsonic motion of a projectile in a fluid complex plasma. (United States)

    Zhukhovitskii, D I; Ivlev, A V; Fortov, V E; Morfill, G E


    We study the deformation of a cavity around a large projectile moving with subsonic velocity in the cloud of small dust particles. To solve this problem, we employ the Navier-Stokes equation for a compressible fluid with due regard for friction between dust particles and atoms of neutral gas. The solution shows that due to friction, the pressure of a dust cloud at the surface of a cavity around the projectile can become negative, which entails the emergence of a considerable asymmetry of the cavity, i.e., the cavity deformation. Corresponding threshold velocity is calculated, which is found to decrease with increasing cavity size. Measurement of such velocity makes it possible to estimate the static pressure inside the dust cloud.

  16. Convergent close-coupling approach to light and heavy projectile scattering on atomic and molecular hydrogen (United States)

    Bray, I.; Abdurakhmanov, I. B.; Bailey, J. J.; Bray, A. W.; Fursa, D. V.; Kadyrov, A. S.; Rawlins, C. M.; Savage, J. S.; Stelbovics, A. T.; Zammit, M. C.


    The atomic hydrogen target has played a pivotal role in the development of quantum collision theory. The key complexities of computationally managing the countably infinite discrete states and the uncountably infinite continuum were solved by using atomic hydrogen as the prototype atomic target. In the case of positron or proton scattering the extra complexity of charge exchange was also solved using the atomic hydrogen target. Most recently, molecular hydrogen has been used successfully as a prototype molecule for developing the corresponding scattering theory. We concentrate on the convergent close-coupling computational approach to light projectiles, such as electrons and positrons, and heavy projectiles, such as protons and antiprotons, scattering on atomic and molecular hydrogen.

  17. In medium fragment break-up of projectile in 58Ar+36Ni central collisions (United States)

    Francalanza, L.


    Latest results concerning the study of central collisions in 36Ar+58Ni reactions, carried out by using the INDRA 4π detector at the GANIL are presented. Reaction mechanisms involved in very central collisions for such asymmetric system and their evolution as function of incident energy are studied, from 32 to 95 AMeV, suggesting an in-medium “break-up” process of the projectile where the presence of nuclear transparency plays an important role. Such a process, leading to forward emission of fragments and lights particles in the laboratory frame, is found to be more and more relevant at high energies, when the contribution from quasi-fusion processes vanishes. Evidences of emissions from an excited quasi-target (QT*), moving along the beam direction with velocity rising with incident energy under the dragging effect of the in-medium “crumbling” of the projectile are highlighted.

  18. Energy requirements for the penetration of heads of domestic stock and the development of a multiple projectile. (United States)

    Blackmore, D K


    The forces and kinetic energy required to penetrate the isolated heads of calves, adult beef cattle, sheep and red deer with a metal probe the same diameter as the bore of an experimental pistol were determined. Approximately 16 and 127 Joules were required to penetrate the heads of adult sheep and cattle, respectively. Using these data a 10 g projectile, consisting of 49 lead pellets and a lead disc in a polyethylene sleeve, was constructed. This projectile, when fired by a charge sufficient to produce a muzzle velocity of 165 m/second, had sufficient kinetic energy to penetrate the heads and brains of cattle, sheep, horses and deer. The projectile was fired from a new design of humane killer with a spring loaded barrel and fitted with a silencer. After penetration of the frontal bones the projectile fragmented and the kinetic energy of its individual particles were insufficient for them to penetrate the opposite side of the head of any of the animals, including one-week-old calves. Fragmentation also caused more brain damage and inhibition of spinal reflexes than a solid free bullet or captive bolt. It is suggested that the use of such a projectile for the emergency slaughter of animals is less hazardous than a solid free bullet and is easier to use and more effective than either a solid free bullet or captive bolt. The projectile was not suitable for killing adult pigs because of problems associated with the frontal sinus.

  19. A Computer Program to Reduce Digitized Yaw-Card Data from Finned Kinetic-Energy Projectiles (United States)


    Witness panels, commonly referred to as yaw cards, are used in ballistic testing to de- termine the pitch (a) and yaw (/3) of a projectile as a function...r(2)).gt..OO1))gotos return 5 xOxO+r(l) yOyO +r (2) goto 6 end 14 *This subroutine solves a system of equations. SUBROUTINE SIMUL(C ,R,N) DOUBLE

  20. Computational Fluid Dynamics (CFD) Simulations of a Finned Projectile with Microflaps for Flow Control (United States)


    Sciences Meeting; 2003 Jan 6– 9; Reno, NV. AIAA Paper No.: 2003-1352. 2. DeSpirito J. Transient lateral jet interaction effects on a generic fin- stabilized ...Microflaps for Flow Control by Jubaraj Sahu Approved for public release; distribution is unlimited. NOTICES...Computational Fluid Dynamics (CFD) Simulations of a Finned Projectile with Microflaps for Flow Control by Jubaraj Sahu Weapons and Materials Research

  1. Terra-Drill program: progress report and program plan. [Prefracturing using 50 caliber steel projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, M.M.; Alvis, R.L.; Dardick, D.


    This report presents the status of the Terra-Drill development program as of May 31, 1976. The Terra-Drill system uses high velocity projectiles to prefracture the rock in front of a conventional rotary bit. The significant progress is reviewed and a long-range program plan is developed to indicate the level of effort required to bring this system to commercial production.

  2. Range and flight time of quadratic resisted projectile motion using the Lambert W function (United States)

    Belgacem, Chokri Hadj


    We study projectile motion with air resistance quadratic in speed. An approximation of a low-angle trajectory is considered where the horizontal velocity, v x , is assumed to be much larger than the vertical velocity, v y . The explicit solutions for the range and flight time are expressed in terms of the secondary branch of the Lambert function, {{W}_{-1}}. In addition to their theoretical importance, the results obtained will be of interest to teachers involved in undergraduate physics courses.

  3. Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm (United States)


    Physics and Industrial Engineering ; 2012; Beijing, China . ICAPIE 1875-3892. 26. Lipowski A, Lipowska D. Roulette-wheel selection via stochastic...Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street Concord, NH 03301 under contract W911SR...Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street

  4. Position Estimation for Projectiles Using Low-cost Sensors and Flight Dynamics (United States)


    339. 16. Habibi, S.; Cooper, S. J.; Stauffer, J. M. Gun Hard Inertial Measurement Unit Based on MEMS Capacitive Accelerometer and Rate Sensor. For example, accelerometers and gyroscopes located off the center of gravity of the rigid body can be compensated for in order to obtain...environment using low-cost measurement devices and projectile flight dynamics. An extended Kalman filter (EKF) was developed to blend accelerometer

  5. Primer Output and Initial Projectile Motion for 5.56- and 7.62-mm Ammunition (United States)


    10 The impulse from the primer firing was calculated from the integration of the first primer pressure pulse over the time for which it is...ARL-TR-7479 ● SEP 2015 US Army Research Laboratory Primer Output and Initial Projectile Motion for 5.56- and 7.62-mm when it is no longer needed. Do not return it to the originator. ARL-TR-7479 ● SEP 2015 US Army Research Laboratory Primer

  6. The Influence of Muzzle Gasdynamics upon the Trajectory of Fin- Stabilized Projectiles (United States)


    extend behind the sabot. Sufficient extension eliminates aerodynamic interference be- tween the fins and sabot, permitting direct exposure of these... loss of generality that the projectile is launched with an initial angle of attack but zero sideslip. The initial transverse linear and angular...t tt’jC.^/O , (Defined in Figures 16 and 17) (C5) C =.£Si fk - 2 c + C 1 L 2Fr tKa S DJ P P The normal force coefficient, C

  7. Optimization of aerodynamic form of projectile for solving the problem of shooting range increasing (United States)

    Lipanov, Alexey M.; Korolev, Stanislav A.; Rusyak, Ivan G.


    The article is devoted to the development of methods for solving the problem of external ballistics using a more complete system of motion equation taken into account the rotation and oscillation about the mass center and using aerodynamic coefficients of forces and moments which are calculated on the basis of modeling the hydrodynamics of flow around the projectile. Developed methods allows to study the basic ways of increasing the shooting range or artillery.

  8. Dynamic Analysis of the XM650E4 8-Inch Projectile (United States)


    corresponding frequency results from restraining an axial node, the center of gravity , which is necessary in the NONSAP eigenvalue routine. The profile...acceleration forces. Due to these high forces the overall effect is reflected in a shortening of the projectile around the center of gravity as the...Univer- sity Computing Center Library No. G60001, Bethlehem , Pennsylvania, July 1970. 7. Goudreau, G. L., "Evaluation of Discrete Methods for the

  9. Off-shell gluon production in interaction of a projectile with 2 or 3 targets

    Energy Technology Data Exchange (ETDEWEB)

    Braun, M.A.; Salykin, M.Yu. [Saint-Petersburg State University, Department of High Energy physics, Saint Petersburg (Russian Federation)


    Within the effective QCD action for the Regge kinematics, the amplitudes for virtual gluon emission are studied in collision of a projectile with two and three targets. It is demonstrated that all non-Feynman singularities cancel between induced vertices and rescattering contributions. Formulas simplify considerably in a special gauge, which is a straightforward generalization of the light-cone gauge for emission of real gluons. (orig.)

  10. Demonstration of UXO-PenDepth for the Estimation of Projectile Penetration Depth (United States)


    inner filler material shape and distribution, weights of the projectile and fill, case material type, and nose shape. From this information, the...munitions using a physics-based algorithm within the software UXO-PenDepth. The physical dimensions and weight of the munitions, and type of filler Montana. Site # Recovered Depth to CG (cm) Limestone Hills 105mm 1 12 155mm Illumination M118 2 18, 24 Chevallier Ranch 105mm HE 1

  11. Wound Ballistics Modeling for Blast Loading Blunt Force Impact and Projectile Penetration.

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)


    Light body armor development for the warfighter is based on trial-and-error testing of prototype designs against ballistic projectiles. Torso armor testing against blast is nonexistent but necessary to protect the heart and lungs. In tests against ballistic projectiles, protective apparel is placed over ballistic clay and the projectiles are fired into the armor/clay target. The clay represents the human torso and its behind-armor, permanent deflection is the principal metric used to assess armor protection. Although this approach provides relative merit assessment of protection, it does not examine the behind-armor blunt trauma to crucial torso organs. We propose a modeling and simulation (M&S) capability for wound injury scenarios to the head, neck, and torso of the warfighter. We will use this toolset to investigate the consequences of, and mitigation against, blast exposure, blunt force impact, and ballistic projectile penetration leading to damage of critical organs comprising the central nervous, cardiovascular, and respiratory systems. We will leverage Sandia codes and our M&S expertise on traumatic brain injury to develop virtual anatomical models of the head, neck, and torso and the simulation methodology to capture the physics of wound mechanics. Specifically, we will investigate virtual wound injuries to the head, neck, and torso without and with protective armor to demonstrate the advantages of performing injury simulations for the development of body armor. The proposed toolset constitutes a significant advance over current methods by providing a virtual simulation capability to investigate wound injury and optimize armor design without the need for extensive field testing.

  12. Cardiac changes after simulated behind armor blunt trauma or impact of nonlethal kinetic projectile ammunition. (United States)

    Kunz, Sebastian N; Arborelius, Ulf P; Gryth, Dan; Sonden, Anders; Gustavsson, Jenny; Wangyal, Tashi; Svensson, Leif; Rocksén, David


    Cardiac-related injuries caused by blunt chest trauma remain a severe problem. The aim of this study was to investigate pathophysiological changes in the heart that might arise after behind armor blunt trauma or impacts of nonlethal projectiles. Sixteen pigs were shot directly at the sternum with "Sponge Round eXact I Mpact" (nonlethal ammunition; diameter 40 mm and weight 28 g) or hard-plastic ammunition (diameter 65 mm and weight 58 g) to simulate behind armor blunt trauma. To evaluate the influence of the shot location, seven additional pigs where exposed to an oblique heart shot. Physiologic parameters, electrocardiography, echocardiogram, the biochemical marker troponin I (TnI), and myocardial injuries were analyzed. Nonlethal kinetic projectiles (101-108 m/s; 143-163 J) did not cause significant pathophysiological changes. Five of 18 pigs shot with 65-mm plastic projectiles (99-133 m/s; 284-513 J) to the front or side of the thorax died directly after the shot. No major physiologic changes could be observed in surviving animals. Animals shot with an oblique heart shot (99-106 m/s; 284-326 J) demonstrated a small, but significant decrease in saturation. Energy levels over 300 J caused increased TnI and myocardial damages in most of the pigs. This study indicates that nonlethal kinetic projectiles "eXact iMpact" does not cause heart-related damage under the examined conditions. On impact, sudden heart arrest may occur independently from the cardiac's electrical cycle. The cardiac enzyme, TnI, can be used as a reliable diagnostic marker to detect heart tissue damages after blunt chest trauma.

  13. Towards Automatic Resource Bound Analysis for OCaml


    Hoffmann, Jan; Das, Ankush; Weng, Shu-Chun


    This article presents a resource analysis system for OCaml programs. This system automatically derives worst-case resource bounds for higher-order polymorphic programs with user-defined inductive types. The technique is parametric in the resource and can derive bounds for time, memory allocations and energy usage. The derived bounds are multivariate resource polynomials which are functions of different size parameters that depend on the standard OCaml types. Bound inference is fully automatic...

  14. Distance hijacking attacks on distance bounding protocols


    Cremers, Cas; Rasmussen, Kasper Bonne; Čapkun, Srdjan


    Distance bounding protocols are typically analyzed with respect to three types of attacks: Distance Fraud, Mafia Fraud, and Terrorist Fraud. We define and analyze a fourth main type of attack on distance bounding protocols, called Distance Hijacking. We show that many proposed distance bounding protocols are vulnerable to this type of attack, and we propose solutions to make these protocols resilient to Distance Hijacking. We further show that verifying distance bounding protocols using exist...

  15. Purity- and Gaussianity-bounded uncertainty relations (United States)

    Mandilara, A.; Karpov, E.; Cerf, N. J.


    Bounded uncertainty relations provide the minimum value of the uncertainty assuming some additional information on the state. We derive analytically an uncertainty relation bounded by a pair of constraints, those of purity and Gaussianity. In a limiting case this uncertainty relation reproduces the purity-bounded derived by Man’ko and Dodonov and the Gaussianity-bounded one (Mandilara and Cerf 2012 Phys. Rev. A 86 030102R).

  16. Weak polyelectrolytes in Confined Geometries (United States)

    Whitmer, Jonathan K.; Rathee, Vikramjit S.; Sikora, Benjamin

    Crucial to the behavior of recently designed charge-rejection and mosaic membranes are the conformations of polyelectrolyte brushes and oligomeric grafts used to control the membranes' surface charge. The use of pH-tunable weak polyelectrolytes with associative interactions enables fine tuning of material transport properties. Here, we apply constant-pH molecular dynamics along with free energy sampling algorithms to understand the subtle tug-of-war between pH, salt concentrations, and solvation forces in confined systems, and determine how each of these effects alters transport within the system. We further discuss the implications of our findings for the design of electrolyte separation membranes.

  17. The effect of parents' schooling on child's schooling: a nonparametric bounds analysis

    NARCIS (Netherlands)

    de Haan, M.


    A positive relation between parents’ schooling and child’s schooling does not necessarily reflect a causal relation. This article uses a new approach to identify intergenerational schooling effects: a nonparametric bounds analysis. By relying on relatively weak and in part testable assumptions, this

  18. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing (United States)

    Lyons, Frankel


    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  19. Fin gaps and body slots of guided projectiles: Effects, data correlation and modeling (United States)

    Mikhail, Ameer G.


    Prior work concerned with the effect of streamwise fin-body gaps unporting effect and body slots on the fin loads of projectiles and missiles in the transonic speed regime of 0.8 less than or = M less than or = 1.2, was reviewed. Experimental data for the gap effects have been analyzed. A correlation established to predict fin normal force losses due to gaps for any fin shape, size, aspect ratio, fitted very well with the data which span a large variation in Reynolds number, body diameter and boundary layer thickness. Although the Mach range for the present model was intended to be 0.8 less than or = M less than or = 1.2, available data indicated its validity in the wider range of 0.7 less than or = M less than or = 1.6. Fifteen cases were used to validate the present gap model. Application of these two corrections to the Copperhead guided projectile was made and a reduction as large as 38% was predicted for the normal force, which was then validated by the experimental data. The present results can be used for estimating fin load losses for the fin design of guided projectiles and missiles, with 5% accuracy, over the intended Mach number range 0.8 less than or = M less than or = 1.2.

  20. Evaluating simulant materials for understanding cranial backspatter from a ballistic projectile. (United States)

    Das, Raj; Collins, Alistair; Verma, Anurag; Fernandez, Justin; Taylor, Michael


    In cranial wounds resulting from a gunshot, the study of backspatter patterns can provide information about the actual incidents by linking material to surrounding objects. This study investigates the physics of backspatter from a high-speed projectile impact and evaluates a range of simulant materials using impact tests. Next, we evaluate a mesh-free method called smoothed particle hydrodynamics (SPH) to model the splashing mechanism during backspatter. The study has shown that a projectile impact causes fragmentation at the impact site, while transferring momentum to fragmented particles. The particles travel along the path of least resistance, leading to partial material movement in the reverse direction of the projectile motion causing backspatter. Medium-density fiberboard is a better simulant for a human skull than polycarbonate, and lorica leather is a better simulant for a human skin than natural rubber. SPH is an effective numerical method for modeling the high-speed impact fracture and fragmentations. © 2015 American Academy of Forensic Sciences.

  1. Swerving Orientation of Spin-Stabilized Projectile for Fixed-Cant Canard Control Input

    Directory of Open Access Journals (Sweden)

    Xu-dong Liu


    Full Text Available Due to the large launch overload and high spin rate of spin-stabilized projectile, no attitude sensor is adopted in square crossing fixed-cant canard concept, which causes the lack of existing projectile linear theory for the close form solution of swerving motion. This work focuses on swerving orientation prediction with the restricted conditions. By importing the mathematical models of canard force and moment into the projectile angular motion equations, trim angle induced by canard control force is extracted as the analytical solution of angle of attack increment (AOAI. On this basis, analytical orientations of trajectory angular rate increment and swerving increment are obtained via the frozen coefficient method. A series of simulations under different conditions were implemented to validate the expressions in this effort. Results state that increment orientation of swerving motion can be predicted with available trajectory parameters. The analytical orientations indicate trim value of numerical orientations. Deviations between analytical and numerical orientations relate to initial launch angles and control start time, both lower initial launch angle, and the start time which is closer to the end of flight decreases the deviation convergence time.

  2. Highly accurate analytic formulae for projectile motion subjected to quadratic drag (United States)

    Turkyilmazoglu, Mustafa


    The classical phenomenon of motion of a projectile fired (thrown) into the horizon through resistive air charging a quadratic drag onto the object is revisited in this paper. No exact solution is known that describes the full physical event under such an exerted resistance force. Finding elegant analytical approximations for the most interesting engineering features of dynamical behavior of the projectile is the principal target. Within this purpose, some analytical explicit expressions are derived that accurately predict the maximum height, its arrival time as well as the flight range of the projectile at the highest ascent. The most significant property of the proposed formulas is that they are not restricted to the initial speed and firing angle of the object, nor to the drag coefficient of the medium. In combination with the available approximations in the literature, it is possible to gain information about the flight and complete the picture of a trajectory with high precision, without having to numerically simulate the full governing equations of motion.

  3. Scaling invariance of spherical projectile fragmentation upon high-velocity impact on a thin continuous shield

    Energy Technology Data Exchange (ETDEWEB)

    Myagkov, N. N., E-mail: [Russian Academy of Sciences, Institute of Applied Mechanics (Russian Federation)


    The problem of aluminum projectile fragmentation upon high-velocity impact on a thin aluminum shield is considered. A distinctive feature of this description is that the fragmentation has been numerically simulated using the complete system of equations of deformed solid mechanics by a method of smoothed particle hydrodynamics in three-dimensional setting. The transition from damage to fragmentation is analyzed and scaling relations are derived in terms of the impact velocity (V), ratio of shield thickness to projectile diameter (h/D), and ultimate strength (σ{sub p}) in the criterion of projectile and shield fracture. Analysis shows that the critical impact velocity V{sub c} (separating the damage and fragmentation regions) is a power function of σ{sub p} and h/D. In the supercritical region (V > V{sub c}), the weight-average fragment mass asymptotically tends to a power function of the impact velocity with exponent independent of h/D and σ{sub p}. Mean cumulative fragment mass distributions at the critical point are scale-invariant with respect to parameters h/D and σ{sub p}. Average masses of the largest fragments are also scale-invariant at V > V{sub c}, but only with respect to variable parameter σ{sub p}.

  4. Penetration of a Small Caliber Projectile into Single and Multi-layered Targets

    Directory of Open Access Journals (Sweden)

    Riad A.M.


    Full Text Available The normal penetration of armor-piercing projectiles into single and multi-layered steel plates has been investigated. An experimental program has been conducted to study the effect of spaced and in-contact layered targets on their ballistic resistance. Armor piercing projectiles with caliber of 7.62 mm were fired against a series of single and multi-layered steel targets. The projectile impact velocities were ranged from 300-600 m/s, whereas the total thicknesses of the tested single, spaced and in-contact layered steel targets were 3 mm. The penetration process of different tested target configurations has been simulated using Autodayn-2D hydrocode. The experimental measurements of the present work were used to discuss the effect of impact velocity, target configurations and number of layers of different spaced and in-contact layered steel targets on their ballistic resistance. In addition, the post-firing examination of the tested targets over the used impact velocity range showed that the single and each layer of spaced and in-contact laminated steel targets were failed by petalling. Finally, the obtained experimental measurements were compared with the corresponding numerical results of Autodyn-2D hydrocode, good agreement was generally obtained.

  5. Effect of CFRP strengthening on the response of RC slabs to hard projectile impact

    Energy Technology Data Exchange (ETDEWEB)

    Almusallam, Tarek; Al-Salloum, Yousef; Alsayed, Saleh; Iqbal, Rizwan; Abbas, Husain, E-mail:


    Highlights: • Studied response of CFRP-strengthened RC slabs under the impact load. • Slabs were tested under the strike of hemispherical steel projectiles at varying impact. • The slabs were analyzed numerically using LS-DYNA. • Strengthening increased the ballistic limit velocity by 18% and perforation energy by 56.7%. • CFRP sheet reduced the crater damage and contained the flying concrete fragments. - Abstract: In this paper impact response of CFRP-strengthened RC panels under the impact of non-deformable projectiles has been presented. The control and CFRP-strengthened RC slab panels were tested under the strike of hemispherical nosed steel projectiles at varying impact velocities. The response of these panels was investigated experimentally as well as numerically. The damage of the slab panels was measured in terms of the penetration depth, formation of cracks, spalling and scabbing areas and fracture of CFRP sheet. This study presents a practical and efficient numerical method for analyzing the impact response of CFRP-strengthened RC structures using LS-DYNA. The CFRP strengthening was found to increase the ballistic limit velocity by 18%, perforation energy of RC slabs by 56.7%, reduce the front crater damage and contains the flying of concrete fragments from the rear face. The maximum impact force occurs at almost same penetration depth for the control and CFRP-strengthened slabs but the restraint provided by CFRP increased the penetration depth by about 1/19.3 of the thickness of slab.

  6. Electromagnetic dissociation of target nuclei by $^{16}$O and $^{32}$S projectiles

    CERN Multimedia


    We have measured the inclusive cross sections for electromagnetic dissociation (ED) of $^{197}$Au targets by 60 and 200 GeV/nucleon $^{16}$O and $^{32}$S projectiles. This is an extension of similar measurements carried out earlier at 2 GeV/nucleon. ED is a purely electromagnetic process occuring when a virtual photon is exchanged between projectile and target. The experiment emphasized precise measurement of total one-neutron-out cross sections. A secondary goal was to test the applicability of the concepts of factorization and limiting fragmentation at ultrarelativistic energies.\\\\ \\\\ Each individual target will be irradiated upstream and parasitic to experiment NA38 on the dimuon spectrometer. Cross sections for reactions of interest will be determined by off-line counting of the appropriate residual $\\gamma$ ray activities in Ames, Iowa, USA. Preliminary results indicate an ED one-neutron removal cross section for 200 GeV/nucleon $^{16}$O projectiles on $^{197}$Au of approximately 0.45~barns. The result i...

  7. Fragmentation of Millimeter-Size Hypervelocity Projectiles on Combined Mesh-Plate Bumpers

    Directory of Open Access Journals (Sweden)

    Aleksandr Cherniaev


    Full Text Available This numerical study evaluates the concept of a combined mesh-plate bumper as a shielding system protecting unmanned spacecraft from small (1 mm orbital debris impacts. Two-component bumpers consisting of an external layer of woven mesh (aluminum or steel directly applied to a surface of the aluminum plate are considered. Results of numerical modeling with a projectile velocity of 7 km/s indicate that, in comparison to the steel mesh-combined bumper, the combination of aluminum mesh and aluminum plate provides better fragmentation of small hypervelocity projectiles. At the same time, none of the combined mesh/plate bumpers provide a significant increase of ballistic properties as compared to an aluminum plate bumper. This indicates that the positive results reported in the literature for bumpers with metallic meshes and large projectiles are not scalable down to millimeter-sized particles. Based on this investigation’s results, a possible modification of the combined mesh/plate bumper is proposed for the future study.

  8. Influence of impact conditions on plasma generation during hypervelocity impact by aluminum projectile (United States)

    Song, Weidong; Lv, Yangtao; Li, Jianqiao; Wang, Cheng; Ning, Jianguo


    For describing hypervelocity impact (relative low-speed as related to space debris and much lower than travelling speed of meteoroids) phenomenon associated with plasma generation, a self-developed 3D code was advanced to numerically simulate projectiles impacting on a rigid wall. The numerical results were combined with a new ionization model which was developed in an early study to calculate the ionized materials during the impact. The calculated results of ionization were compared with the empirical formulas concluded by experiments in references and a good agreement was obtained. Then based on the reliable 3D numerical code, a series of impacts with different projectile configurations were simulated to investigate the influence of impact conditions on hypervelocity impact generated plasma. It was found that the form of empirical formula needed to be modified. A new empirical formula with a critical impact velocity was advanced to describe the velocity dependence of plasma generation and the parameters of the modified formula were ensured by the comparison between the numerical predictions and the empirical formulas. For different projectile configurations, the changes of plasma charges with time are different but the integrals of charges on time almost stayed in the same level.

  9. New measurements of the properties of neutron-rich projectile fragments (United States)

    Morrissey, D. J.; Meierbachtol, K.; Mosby, M.; Thoennessen, M. R.; MoNa Collaboration


    Two new experiments were carried out at the NSCL to explore the details of the linear moment and excitation energy distributions of projectile fragmentation production. In the first experiment the full linear momentum distributions of fragments from the reaction of a 76 Ge beam with beryllium and gold targets were measured in the S800 spectrometer. The results indicate a strong contribution of "far side" or attractive scattering to the near-projectile products with the gold target. In the second experiment the excitation energy of primary projectile fragments from peripheral nuclear reactions at intermediate energies was carried out at the NSCL. Sodium, neon and fluorine isotopes produced by the fragmentation of a neutron-rich 32Mg beam by a beryllium target were observed in a magnetic spectrometer in coincidence with fast neutrons detected using the Modular Neutron Array (MoNA). A new technique based on an analysis of the observed neutron multiplicity distributions was used to estimate the excitation energy and mass of the precursor intermediate products for the first time. A strong correlation between the neutron multiplicity and the total mass loss was observed indicating that large excitation energies were created in the prefragments by the initial collision. These findings are generally consistent with the internuclear cascade model of the collision dynamics but not with macroscopic abrasion-ablation models.

  10. CFD Simulations of a Finned Projectile with Microflaps for Flow Control

    Directory of Open Access Journals (Sweden)

    Jubaraj Sahu


    Full Text Available This research describes a computational study undertaken to determine the effect of a flow control mechanism and its associated aerodynamics for a finned projectile. The flow control system consists of small microflaps located between the rear fins of the projectile. These small microflaps alter the flow field in the aft finned region of the projectile, create asymmetric pressure distributions, and thus produce aerodynamic control forces and moments. A number of different geometric parameters, microflap locations, and the number of microflaps were varied in an attempt to maximize the control authority generated by the flaps. Steady-state Navier-Stokes computations were performed to obtain the control aerodynamic forces and moments associated with the microflaps. These results were used to optimize the control authority at a supersonic speed, M=2.5. Computed results showed not only the microflaps to be effective at this speed, but also configurations with 6 and 8 microflaps were found to generate 25%–50% more control force than a baseline 4-flap configuration. These results led to a new optimized 8-flap configuration that was further investigated for a range of Mach numbers from M=0.8 to 5.0 and was found to be a viable configuration effective in providing control at all of these speeds.

  11. Fragmentation of the Pb projectile at 158 GeV/nucleon an Pb-Pb interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, M.L.; Deines-Jones, P. [Louisiana State University, Baton Rouge (United States); Dabrowska, A. [Institute of Nuclear Physics, Cracow (Poland)] [and others; KLM Collaboration


    We have investigated the process of fragmentation of the Pb nucleus at 158 GeV/nucleon in Pb-Pb interactions recorded in lead-emulsion chambers of the EMU13 CERN experiment. The number of Pb-Pb interactions found was larger than that expected from the nuclear charge changing cross section which indicates an important role of electromagnetic dissociation processes in Pb-Pb interactions at this high energy. The emission angles of multiply charged projectile fragments as well as of spectator protons were measured using the semiautomated device with the CCD camera mounted on a microscope. Taking the advantage of the unconventional design of the emulsion chambers the charges of all multiply charged projectile fragments were measured. On the basis of these measurements, different modes of the Pb projectile break-up are discussed. The rates and properties of the fragmentation processes such as fission, multifragmentation and disintegration only into singly charged fragments are presented. (author) 21 refs, 15 figs, 1 tab

  12. Bounded rationality and heterogeneous expectations in macroeconomics

    NARCIS (Netherlands)

    Massaro, D.


    This thesis studies the effect of individual bounded rationality on aggregate macroeconomic dynamics. Boundedly rational agents are specified as using simple heuristics in their decision making. An important aspect of the type of bounded rationality described in this thesis is that the population of

  13. Labeling schemes for bounded degree graphs

    DEFF Research Database (Denmark)

    Adjiashvili, David; Rotbart, Noy Galil


    graphs. Our results complement a similar bound recently obtained for bounded depth trees [Fraigniaud and Korman, SODA 2010], and may provide new insights for closing the long standing gap for adjacency in trees [Alstrup and Rauhe, FOCS 2002]. We also provide improved labeling schemes for bounded degree...

  14. Upper bound on quantum stabilizer codes (United States)

    Li, Zhuo; Xing, Li-Juan


    By studying sets of operators having constant weight, we present an analytical upper bound on the pure quantum stabilizer codes whose underlying quantum system can be of arbitrary dimension, which outperforms the well-known quantum Hamming bound, the optimal analytical upper bound so far for small code length.

  15. Classical simulations of heavy-ion fusion reactions and weakly ...

    Indian Academy of Sciences (India)


    -ion reactions with spherical and deformed nuclei are simulated in a classical rigid-body dynamics (CRBD) model which takes into account the reorientation of the deformed projectile. It is found that the barrier parameters ...

  16. Planckian axions and the Weak Gravity Conjecture

    Energy Technology Data Exchange (ETDEWEB)

    Bachlechner, Thomas C.; Long, Cody; McAllister, Liam [Department of Physics, Cornell University,Ithaca, NY 14853 (United States)


    Several recent works,, have claimed that the Weak Gravity Conjecture (WGC) excludes super-Planckian displacements of axion fields, and hence large-field axion inflation, in the absence of monodromy. We argue that in theories with N≫1 axions, super-Planckian axion diameters D are readily allowed by the WGC. We clarify the nontrivial relationship between the kinetic matrix K — unambiguously defined by its form in a Minkowski-reduced basis — and the diameter of the axion fundamental domain, emphasizing that in general the diameter is not solely determined by the eigenvalues f{sub 1}{sup 2}≤…≤f{sub N}{sup 2} of K: the orientations of the eigenvectors with respect to the identifications imposed by instantons must be incorporated. In particular, even if one were to impose the condition f{sub N}bounded from below by S≥SM{sub pl}/f{sub N}, with S a fixed constant, but in the universal limit S≳S√NM{sub pl}/f{sub N}. Thus, having f{sub N}>M{sub pl} does not immediately imply the existence of unsuppressed higher harmonic contributions to the potential. Finally, we argue that in effective axion-gravity theories, the zero-form version of the WGC can be satisfied by gravitational instantons that make negligible contributions to the potential.

  17. Weak lensing and cosmological investigation

    CERN Document Server

    Acquaviva, V


    In the last few years the scientific community has been dealing with the challenging issue of identifying the dark energy component. We regard weak gravitational lensing as a brand new, and extremely important, tool for cosmological investigation in this field. In fact, the features imprinted on the cosmic microwave background radiation by the lensing from the intervening distribution of matter represent a pretty unbiased estimator, and can thus be used for putting constraints on different dark energy models. This is true in particular for the magnetic-type B-modes of CMB polarization, whose unlensed spectrum at large multipoles (l approximately=1000) is very small even in presence of an amount of gravitational waves as large as currently allowed by the experiments: therefore, on these scales the lensing phenomenon is the only responsible for the observed power, and this signal turns out to be a faithful tracer of the dark energy dynamics. We first recall the formal apparatus of the weak lensing in extended t...

  18. Time—periodic weak solutions

    Directory of Open Access Journals (Sweden)

    Eliana Henriques de Brito


    Full Text Available In continuing from previous papers, where we studied the existence and uniqueness of the global solution and its asymptotic behavior as time t goes to infinity, we now search for a time-periodic weak solution u(t for the equation whose weak formulation in a Hilbert space H isddt(u′,v+δ(u′,v+αb(u,v+βa(u,v+(G(u,v=(h,vwhere: ′=d/dt; (′ is the inner product in H; b(u,v, a(u,v are given forms on subspaces U⊂W, respectively, of H; δ>0, α≥0, β≥0 are constants and α+β>0; G is the Gateaux derivative of a convex functional J:V⊂H→[0,∞ for V=U, when α>0 and V=W when α=0, hence β>0; v is a test function in V; h is a given function of t with values in H.

  19. Political corruption and weak state

    Directory of Open Access Journals (Sweden)

    Stojiljković Zoran


    Full Text Available The author starts from the hypothesis that it is essential for the countries of the region to critically assess the synergy established between systemic, political corruption and a selectively weak, “devious” nature of the state. Moreover, the key dilemma is whether the expanded practice of political rent seeking supports the conclusion that the root of all corruption is in the very existence of the state - particularly in excessive, selective and deforming state interventions and benefits that create a fertile ground for corruption? The author argues that the destructive combination of weak government and rampant political corruption is based on scattered state intervention, while also rule the parties cartel in the executive branch subordinate to parliament, the judiciary and the police. Corrupt exchange takes place with the absence of strong institutional framework and the precise rules of the political and electoral games, control of public finances and effective political and anti-monopoly legislation and practice included. Exit from the current situation can be seen in the realization of effective anti­corruption strategy that integrates preventive and repressive measures and activities and lead to the establishment of principles of good governance. [Projekat Ministarstva nauke Republike Srbije, br. 179076: Politički identitet Srbije u regionalnom i globalnom kontekstu

  20. Competing bounds on the present-day time variation of fundamental constants (United States)

    Dent, Thomas; Stern, Steffen; Wetterich, Christof


    We compare the sensitivity of a recent bound on time variation of the fine structure constant from optical clocks with bounds on time-varying fundamental constants from atomic clocks sensitive to the electron-to-proton mass ratio, from radioactive decay rates in meteorites, and from the Oklo natural reactor. Tests of the weak equivalence principle also lead to comparable bounds on present variations of constants. The “winner in sensitivity” depends on what relations exist between the variations of different couplings in the standard model of particle physics, which may arise from the unification of gauge interactions. Weak equivalence principle tests are currently the most sensitive within unified scenarios. A detection of time variation in atomic clocks would favor dynamical dark energy and put strong constraints on the dynamics of a cosmological scalar field.

  1. First results of the CERN Resonant Weakly Interacting sub-eV Particle Search (CROWS)

    CERN Document Server

    Betz, M; Gasior, M; Thumm, M; Rieger, S W


    The CERN Resonant Weakly Interacting sub-eV Particle Search probes the existence of weakly interacting sub-eV particles like axions or hidden sector photons. It is based on the principle of an optical light shining through the wall experiment, adapted to microwaves. Critical aspects of the experiment are electromagnetic shielding, design and operation of low loss cavity resonators, and the detection of weak sinusoidal microwave signals. Lower bounds are set on the coupling constant g=4.5 x 10$^{-8}$ GeV$^{-1}$ for axionlike particles with a mass of m$_a$=7.2 $\\mu$eV. For hidden sector photons, lower bounds are set for the coupling constant $\\chi$=4.1 x 10$^{^-9}$ at a mass of m$\\gamma$=10.8 $\\mu$eV. For the latter we are probing a previously unexplored region in the parameter space.

  2. Research of the In-process Artillery Shot in Terms of Projectile Band-engraving

    Directory of Open Access Journals (Sweden)

    A. K. Efremov


    Full Text Available The paper considers, in the classical treatment of an artillery shot, a pyrostatic (preliminary shot period during which a projectile is assumed to be motionless until the pressure of the powder gases becomes equal to the conditional shot-start pressure. The latter is determined by the maximum force of resistance to the driving band completely engraved by rifling, with resistance related to the projectile cross-section area. In actual practice, the engraving is a gradual process (in this case the shot period is called a forcing one. A level of the axial inertial forces may even be sufficient for fuse arming of inertial safety devices.The fact that there is a need to have a sufficiently large set of the appropriate design and physical parameters, which are, usually, incompletely known, hinders the use of a rigorous calculation technique.To simplify the inter ballistics calculation, an analytical approximation of the engraving curve is proposed.  For its description it is necessary to know the maximum force of resistance (or the shot-start pressure, the width of the driving band and the total travel of a projectile when engraving. Thus, it is assumed that after complete engraving of the driving band the resistance super-quickly drops to zero, and an appropriate jump in the acceleration (setback curve of the projectile occurs.For the first time, it is proposed to include the number of inter ballistic parameters into the work of powder gases, thus ensuring an automatic integration of the system of equations regardless of the specific description of the engraving curve (in some cases, analytical integration needed for calculation may be impossible.The example of calculation for the 122-mm D-30 howitzer illustrates a practical application of the proposed technique. Comparison of calculation results using the traditional and proposed techniques is made to show that the integral characteristics of the shot are close. It is found that a progress of the

  3. Capacity Bounds for Parallel Optical Wireless Channels

    KAUST Repository

    Chaaban, Anas


    A system consisting of parallel optical wireless channels with a total average intensity constraint is studied. Capacity upper and lower bounds for this system are derived. Under perfect channel-state information at the transmitter (CSIT), the bounds have to be optimized with respect to the power allocation over the parallel channels. The optimization of the lower bound is non-convex, however, the KKT conditions can be used to find a list of possible solutions one of which is optimal. The optimal solution can then be found by an exhaustive search algorithm, which is computationally expensive. To overcome this, we propose low-complexity power allocation algorithms which are nearly optimal. The optimized capacity lower bound nearly coincides with the capacity at high SNR. Without CSIT, our capacity bounds lead to upper and lower bounds on the outage probability. The outage probability bounds meet at high SNR. The system with average and peak intensity constraints is also discussed.

  4. Performance Bounds of Quaternion Estimators. (United States)

    Xia, Yili; Jahanchahi, Cyrus; Nitta, Tohru; Mandic, Danilo P


    The quaternion widely linear (WL) estimator has been recently introduced for optimal second-order modeling of the generality of quaternion data, both second-order circular (proper) and second-order noncircular (improper). Experimental evidence exists of its performance advantage over the conventional strictly linear (SL) as well as the semi-WL (SWL) estimators for improper data. However, rigorous theoretical and practical performance bounds are still missing in the literature, yet this is crucial for the development of quaternion valued learning systems for 3-D and 4-D data. To this end, based on the orthogonality principle, we introduce a rigorous closed-form solution to quantify the degree of performance benefits, in terms of the mean square error, obtained when using the WL models. The cases when the optimal WL estimation can simplify into the SWL or the SL estimation are also discussed.

  5. Spectral computations for bounded operators

    CERN Document Server

    Ahues, Mario; Limaye, Balmohan


    Exact eigenvalues, eigenvectors, and principal vectors of operators with infinite dimensional ranges can rarely be found. Therefore, one must approximate such operators by finite rank operators, then solve the original eigenvalue problem approximately. Serving as both an outstanding text for graduate students and as a source of current results for research scientists, Spectral Computations for Bounded Operators addresses the issue of solving eigenvalue problems for operators on infinite dimensional spaces. From a review of classical spectral theory through concrete approximation techniques to finite dimensional situations that can be implemented on a computer, this volume illustrates the marriage of pure and applied mathematics. It contains a variety of recent developments, including a new type of approximation that encompasses a variety of approximation methods but is simple to verify in practice. It also suggests a new stopping criterion for the QR Method and outlines advances in both the iterative refineme...

  6. Weak transitions in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Maturana, G.


    Some techniques to calculate the effects of the strong interactions on the matrix elements of weak processes are described. The lattice formulation of Quantum Chromodynamics is used to account for the low energy gluons, and the corresponding numerical methods are explained. The high energy contributions are included in effective lagrangians and the problem of matching the different scales related to the renormalization of the operators and wavefunctions is also discussed. The = 1/2 enhancement rule and the K/sup 0/-anti-K/sup 0/ are used to illustrate these techniques and the results of a numerical calculation is reported. The values obtained are very encouraging and they certainly show good qualitative agreement with the experimental values. The emphasis is on general techniques, and in particular, several improvements to this particular calculation are proposed.

  7. Strengths, weaknesses, opportunities and threats

    DEFF Research Database (Denmark)

    Bull, Joseph William; Jobstvogt, N.; Böhnke-Henrichs, A.


    The ecosystem services concept (ES) is becoming a cornerstone of contemporary sustainability thought. Challenges with this concept and its applications are well documented, but have not yet been systematically assessed alongside strengths and external factors that influence uptake. Such an assess......The ecosystem services concept (ES) is becoming a cornerstone of contemporary sustainability thought. Challenges with this concept and its applications are well documented, but have not yet been systematically assessed alongside strengths and external factors that influence uptake....... Such an assessment could form the basis for improving ES thinking, further embedding it into environmental decisions and management.The Young Ecosystem Services Specialists (YESS) completed a Strengths-Weaknesses-Opportunities-Threats (SWOT) analysis of ES through YESS member surveys. Strengths include the approach...

  8. On order bounded subsets of locally solid Riesz spaces | Hong ...

    African Journals Online (AJOL)

    In a topological Riesz space there are two types of bounded subsets: order bounded subsets and topologically bounded subsets. It is natural to ask (1) whether an order bounded subset is topologically bounded and (2) whether a topologically bounded subset is order bounded. A classical result gives a partial answer to (1) ...

  9. Techniques for Surface-Temperature Measurements and Transition Detection on Projectiles at Hypersonic Velocities--Status Report No. 2 (United States)

    Bogdanoff, D. W.; Wilder, M. C.


    The latest developments in a research effort to advance techniques for measuring surface temperatures and heat fluxes and determining transition locations on projectiles in hypersonic free flight in a ballistic range are described. Spherical and hemispherical titanium projectiles were launched at muzzle velocities of 4.6-5.8 km/sec into air and nitrogen at pressures of 95-380 Torr. Hemisphere models with diameters of 2.22 cm had maximum pitch and yaw angles of 5.5-8 degrees and 4.7-7 degrees, depending on whether they were launched using an evacuated launch tube or not. Hemisphere models with diameters of 2.86 cm had maximum pitch and yaw angles of 2.0-2.5 degrees. Three intensified-charge-coupled-device (ICCD) cameras with wavelength sensitivity ranges of 480-870 nm (as well as one infrared camera with a wavelength sensitivity range of 3 to 5 microns), were used to obtain images of the projectiles in flight. Helium plumes were used to remove the radiating gas cap around the projectiles at the locations where ICCD camera images were taken. ICCD and infrared (IR) camera images of titanium hemisphere projectiles at velocities of 4.0-4.4 km/sec are presented as well as preliminary temperature data for these projectiles. Comparisons were made of normalized temperature data for shots at approx.190 Torr in air and nitrogen and with and without the launch tube evacuated. Shots into nitrogen had temperatures 6% lower than those into air. Evacuation of the launch tube was also found to lower the projectile temperatures by approx.6%.

  10. Fault zone fabric and fault weakness

    NARCIS (Netherlands)

    Collettini, C.; Niemeijer, A.; Viti, C.; Marone, C.


    Geological and geophysical evidence suggests that some crustal faults are weak1–6 compared to laboratory measurements of frictional strength7. Explanations for fault weakness include the presence of weak minerals4, high fluid pressures within the fault core8,9 and dynamic processes such as

  11. Weakly distributive modules. Applications to supplement submodules

    Indian Academy of Sciences (India)

    Abstract. In this paper, we define and study weakly distributive modules as a proper generalization of distributive modules. We prove that, weakly distributive supplemented modules are amply supplemented. In a weakly distributive supplemented module every submodule has a unique coclosure. This generalizes a result of ...

  12. Using tolerance bounds in scientific investigations

    Energy Technology Data Exchange (ETDEWEB)

    Wendelberger, J.R.


    Assessment of the variability in population values plays an important role in the analysis of scientific data. Analysis of scientific data often involves developing a bound on a proportion of a population. Sometimes simple probability bounds are obtained using formulas involving known mean and variance parameters and replacing the parameters by sample estimates. The resulting bounds are only approximate and fail to account for the variability in the estimated parameters. Tolerance bounds provide bounds on population proportions which account for the variation resulting from the estimated mean and variance parameters. A beta content, gamma confidence tolerance interval is constructed so that a proportion beta of the population lies within the region bounded by the interval with confidence gamma. An application involving corrosion measurements is used to illustrate the use of tolerance bounds for different situations. Extensions of standard tolerance intervals are applied to generate regression tolerance bounds, tolerance bounds for more general models of measurements collected over time, and tolerance intervals for varying precision data. Tolerance bounds also provide useful information for designing the collection of future data.

  13. Search for anomalous weak dipole moments of the $\\tau$ lepton

    CERN Document Server

    Heister, A; Barate, R; De Bonis, I; Décamp, D; Goy, C; Lees, J P; Merle, E; Minard, M N; Pietrzyk, B; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Martínez, M; Pacheco, A; Ruiz, H; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Azzurri, P; Buchmüller, O L; Cattaneo, M; Cerutti, F; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Gianotti, F; Hansen, J B; Harvey, J; Hutchcroft, D E; Janot, P; Jost, B; Kado, M; Mato, P; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schneider, O; Sguazzoni, G; Tejessy, W; Teubert, F; Valassi, Andrea; Videau, I; Ward, J; Badaud, F; Falvard, A; Gay, P; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Verderi, M; Videau, H L; Ciulli, V; Focardi, E; Parrini, G; Antonelli, A; Antonelli, M; Bencivenni, G; Bossi, F; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Thompson, A S; Wasserbaech, S R; Cavanaugh, R J; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Stenzel, H; Tittel, K; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, P J; Girone, M; Marinelli, N; Sedgbeer, J K; Thompson, J C; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Pearson, M R; Robertson, N A; Jakobs, K; Kleinknecht, K; Renk, B; Sander, H G; Wachsmuth, H W; Zeitnitz, C; Bonissent, A; Coyle, P; Leroy, O; Payre, P; Rousseau, D; Talby, M; Ragusa, F; David, A; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Männer, W; Moser, H G; Settles, Ronald; Wolf, G; Boucrot, J; Callot, O; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Lefrançois, J; Veillet, J J; Yuan, C; Bagliesi, G; Boccali, T; Foà, L; Giammanco, A; Giassi, A; Ligabue, F; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Tenchini, Roberto; Venturi, A; Verdini, P G; Blair, G A; Cowan, G; Green, M G; Medcalf, T; Misiejuk, A; Strong, J A; Teixeira-Dias, P; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Bloch-Devaux, B; Colas, P; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Schuller, J P; Vallage, B; Konstantinidis, N P; Litke, A M; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Lehto, M H; Thompson, L F; Böhrer, A; Brandt, S; Grupen, Claus; Ngac, A; Prange, G; Giannini, G; Rothberg, J E; Armstrong, S R; Berkelman, K; Cranmer, K; Ferguson, D P S; Gao, Y; Gonzáles, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Pan, Y B; Von Wimmersperg-Töller, J H; Wiedenmann, W; Wu, J; Wu Sau Lan; Wu, X; Zobernig, G; Dissertori, G


    The anomalous weak dipole moments of the $\\tau$ lepton are measured in a data sample collected by ALEPH from 1990 to 1995 corresponding to an integrated luminosity of 155~pb$^{-1}$. Tau leptons produced in the reaction $e^+ e^- \\rightarrow \\tau^+ \\tau^-$ at energies close to the ${\\rm Z}$ mass are studied using their semileptonic decays to $\\pi$, $\\rho$, $a_1 \\rightarrow \\pi 2\\pi^0$ or $a_1 \\rightarrow 3 \\pi$. The real and imaginary components of both the anomalous weak magnetic dipole moment and the CP-violating anomalous weak electric dipole moment, $ {\\rm Re}\\,\\mu_{\\tau}$, ${\\rm Im}\\,\\mu_{\\tau}$, ${\\rm Re}\\,d_{\\tau}$ and ${\\rm Im}\\,d_{\\tau}$, are measured simultaneously by means of a likelihood fit built from the full differential cross section. No evidence of new physics is found. The following bounds are obtained (95\\% CL): $|{\\rm Re}\\, \\mu_{\\tau} | < 1.14 \\times 10^{-3}$, $|{\\rm Im}\\, \\mu_{\\tau} | < 2.65 \\times 10^{-3}$, $|{\\rm Re}\\, d_{\\tau} | < 0.91 \\times 10^{-3}$, and $|{\\rm Im}\\, d_{\\tau} ...

  14. When Amplification with Weak Values Fails to Suppress Technical Noise

    Directory of Open Access Journals (Sweden)

    George C. Knee


    Full Text Available The application of postselection to a weak quantum measurement leads to the phenomenon of weak values. Expressed in units of the measurement strength, the displacement of a quantum coherent measuring device is ordinarily bounded by the eigenspectrum of the measured observable. Postselection can enable an interference effect that moves the average displacement far outside this range, bringing practical benefits in certain situations. Employing the Fisher-information metric, we argue that the amplified displacement offers no fundamental metrological advantage, due to the necessarily reduced probability of success. Our understanding of metrological advantage is the possibility of a lower uncertainty in the estimate of an unknown parameter with a large number of trials. We analyze a situation in which the detector is pixelated with a finite resolution and in which the detector is afflicted by random displacements: imperfections that degrade the fundamental limits of parameter estimation. Surprisingly, weak-value amplification is no more robust to them than a technique making no use of the amplification effect brought about by a final, postselected measurement.

  15. Bound anionic states of adenine

    Energy Technology Data Exchange (ETDEWEB)

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H


    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  16. The lower bound on complexity of parallel branch-and-bound algorithm for subset sum problem (United States)

    Kolpakov, Roman; Posypkin, Mikhail


    The subset sum problem is a particular case of the Boolean knapsack problem where each item has the price equal to its weight. This problem can be informally stated as searching for most dense packing of a set of items into a box with limited capacity. Recently, coarse-grain parallelization approaches to Branch-and-Bound (B&B) method attracted some attention due to the growing popularity of weakly-connected distributed computing platforms. In this paper we consider one of such approaches for solving the subset sum problem. One of the processors (manager) performs some number of B&B steps on the first stage with generating some subproblems. On the second stage, the generated subproblems are sent to other processors, one subproblem per processor. The processors solve completely the received subproblems, the manager collects all the obtained solutions and chooses the optimal one. For this algorithm we formally define the parallel execution model (frontal scheme of parallelization) and the notion of the frontal scheme complexity. We study the frontal scheme complexity for a series of subset sum problems.

  17. Instanton bound states in ABJM theory

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics


    The partition function of the ABJM theory receives non-perturbative corrections due to instanton effects. We study these non-perturbative corrections, including bound states of worldsheet instantons and membrane instantons, in the Fermi-gas approach. We require that the total non-perturbative correction should be always finite for arbitrary Chern-Simons level. This finiteness is realized quite non-trivially because each bound state contribution naively diverges at some levels. The poles of each contribution should be canceled out in total. We use this pole cancellation mechanism to find unknown bound state corrections from known ones. We conjecture a general expression of the bound state contribution. Summing up all the bound state contributions, we find that the effect of bound states is simply incorporated into the worldsheet instanton correction by a redefinition of the chemical potential in the Fermi-gas system. Analytic expressions of the 3- and 4-membrane instanton corrections are also proposed.

  18. Secondary electron emission of thin carbon foils under the impact of hydrogen atoms, ions and molecular ions, under energies within the MeV range; Multiplicite des electrons secondaires emis par des cibles minces de carbone sous l'impact de projectiles H0, H2+, H3+ d'energie de l'ordre du MeV

    Energy Technology Data Exchange (ETDEWEB)

    Vidovic, Z


    This work focuses on the study of the emission statistics of secondary electrons from thin carbon foils bombarded with H{sup 0}, H{sub 2}{sup +} and H{sub 3}{sup +} projectiles in the 0.25-2.2 MeV energy range. The phenomenon of secondary electron emission from solids under the impact of swift ions is mainly due to inelastic interactions with target electrons. The phenomenological and theoretical descriptions, as well as a summary of the main theoretical models are the subject of the first chapter. The experimental set-up used to measure event by event the electron emission of the two faces of a thin carbon foil traversed by an energetic projectile is described in the chapter two. In this chapter are also presented the method and algorithms used to process experimental spectra in order to obtain the statistical distribution of the emitted electrons. Chapter three presents the measurements of secondary electron emission induced by H atoms passing through thin carbon foils. The secondary electron yields are studied in correlation with the emergent projectile charge state. We show the peculiar role of the projectile electron, whether it remains or not bound to the incident proton. The fourth chapter is dedicated to the secondary electron emission induced by H{sub 2}{sup +} and H{sub 3}{sup +} polyatomic ions. The results are interpreted in terms of collective effects in the interactions of these ions with solids. The role of the proximity of the protons, molecular ion fragments, upon the amplitude of these collective effects is evidenced from the study of the statistics of forward emission. These experiences allowed us to shed light on various aspects of atom and polyatomic ion inter-actions with solid surfaces. (author)

  19. Impact cratering as a major process in planet formation: Projectile identification of meteorite craters (United States)

    Schmidt, G.; Kratz, K.


    Ancient surfaces of solid planets show that impact cratering is a major process in planet formation. Understanding origin and influence of impactors on the chemical composition of planets (core, mantle and crust) it is important to know the relative abundances of highly siderophile elements (Os, Ir, Ru, Pt, Rh, Pd) in the silicate mantle and crust of planets and meteorites. Refractory highly siderophile elements, such as Os and Ir, are abundant in most meteorites but depleted in crustal rocks (low target/meteorite ratios) and thus the most reliable elements for projectile identification. However, target/meteorite ratios are high if target rocks consist of mantle rocks. In such cases elements are enriched in impactites due to relatively high abundances (ng/g level) in target rocks to make the identification of projectile types difficult (e.g., Gardnos impact structure in Norway). The Ru/Ir ratio is the most reliable key ratio that rules out Earth primitive upper mantle (PUM) derived refractory highly siderophile element components in impactites. The well established Ru/Ir ratio of the Earth mantle of 2.0 ± 0.1 (e.g. Schmidt and Kratz 2004) is significantly above the chondritic ratios varying from 1.4 to 1.6. On Earth Rh/Ir, Ru/Ir, Pd/Ir, and Pt/Os derived from PUM match the ratios of group IV irons with fractionated trace element patterns. The question raise if HSE in mantle rocks are added to the accreting Earth by a late bombardment of pre-differentiated objects or the cores of these objects (magmatic iron meteorites as remnants of the first planetesimals, e.g. Kleine et al. 2009) or some unsampled inner solar system materials from the Mercury-Venus formation region, not sampled through meteorite collections (Schmidt 2009). The PGE and Ni systematics of the upper continental crust (UCC) closely resembles group IIIAB iron meteorites with highly fractionated refractory trace element patterns, pallasites, and the evolved suite of Martian meteorites (representing

  20. Weak matrix elements of kaons

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. (California Univ., Santa Barbara, CA (USA). Inst. for Theoretical Physics); Soni, A. (Brookhaven National Lab., Upton, NY (USA))


    We present results from the Wilson fermion part of the Grand Challenge'' weak matrix element project. A new procedure for correcting the chiral behavior of {Beta}{sub LL}{sup sd}, the K{sup 0}-{bar K}{sup 0} {Beta} parameter,'' is proposed and applied. On our largest lattice (24{sup 3} {times} 40 at {beta} = 6.0), we get {Beta}{sub LL}{sup sd} = .86 {plus minus} .11 {plus minus} .05, where the first error is statistical and the second is a measure of the systematic errors due to the procedure and to related finite-size effects. Results for the direct K{sup +} {yields} {pi}{sup +}{pi}{sup 0} amplitude are also presented. There is some evidence for higher order chiral effects which may make these results compatible both with experiment and with the {Beta}{sub LL}{sup sd} computation. The status of the direct K{sub s}{sup 0} {yields} {pi} {sup +} {pi}{sup {minus}} {Delta}I = 1/2 amplitude is then discussed. 11 refs., 6 figs., 1 tab.

  1. A Universe without Weak Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Harnik, Roni; Kribs, Graham D.; Perez, Gilad


    A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical ''Weakless Universe'' is matched to our Universe by simultaneously adjusting Standard Model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the Weakless Universe suggests that the anthropic principle does not determine the scale of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multi-parameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe.

  2. Protecting weak measurements against systematic errors (United States)

    Pang, Shengshi; Alonso, Jose Raul Gonzalez; Brun, Todd A.; Jordan, Andrew N.


    In this work, we consider the systematic error of quantum metrology by weak measurements under decoherence. We derive the systematic error of maximum likelihood estimation in general to the first-order approximation of a small deviation in the probability distribution and study the robustness of standard weak measurement and postselected weak measurements against systematic errors. We show that, with a large weak value, the systematic error of a postselected weak measurement when the probe undergoes decoherence can be significantly lower than that of a standard weak measurement. This indicates another advantage of weak-value amplification in improving the performance of parameter estimation. We illustrate the results by an exact numerical simulation of decoherence arising from a bosonic mode and compare it to the first-order analytical result we obtain.

  3. Wigner's quantum phase-space current in weakly-anharmonic weakly-excited two-state systems (United States)

    Kakofengitis, Dimitris; Steuernagel, Ole


    There are no phase-space trajectories for anharmonic quantum systems, but Wigner's phase-space representation of quantum mechanics features Wigner current J . This current reveals fine details of quantum dynamics —finer than is ordinarily thought accessible according to quantum folklore invoking Heisenberg's uncertainty principle. Here, we focus on the simplest, most intuitive, and analytically accessible aspects of J. We investigate features of J for bound states of time-reversible, weakly-anharmonic one-dimensional quantum-mechanical systems which are weakly-excited. We establish that weakly-anharmonic potentials can be grouped into three distinct classes: hard, soft, and odd potentials. We stress connections between each other and the harmonic case. We show that their Wigner current fieldline patterns can be characterised by J's discrete stagnation points, how these arise and how a quantum system's dynamics is constrained by the stagnation points' topological charge conservation. We additionally show that quantum dynamics in phase space, in the case of vanishing Planck constant ℏ or vanishing anharmonicity, does not pointwise converge to classical dynamics.

  4. Distance hijacking attacks on distance bounding protocols


    Cremers, Cas; Rasmussen, Kasper Bonne; Čapkun, Srdjan


    Distance bounding protocols are typically analyzed with respect to three types of attacks: Distance Fraud, Mafia Fraud, and Terrorist Fraud. We define a fourth main type of attacks on distance bounding protocols, called Distance Hijacking attacks. We show that many proposed distance bounding protocols are vulnerable to these attacks, and we propose solutions to make these protocols resilient to Distance Hijacking. Additionally, we generalize Distance Hijacking to Location Hijacking, to which ...

  5. Boundedly UC spaces: characterisations and preservation | Jain ...

    African Journals Online (AJOL)

    A metric space (X, d) is called a boundedly UC space if every closed and bounded subset of X is a UC space. A metric space (X, d) is called a UC space if each real-valued continuous function on (X, d) is uniformly continuous. In this paper, we study twenty-two equivalent conditions for a metric space to be a boundedly UC ...

  6. Bounded cohomology of discrete groups

    CERN Document Server

    Frigerio, Roberto


    The author manages a near perfect equilibrium between necessary technicalities (always well motivated) and geometric intuition, leading the readers from the first simple definition to the most striking applications of the theory in 13 very pleasant chapters. This book can serve as an ideal textbook for a graduate topics course on the subject and become the much-needed standard reference on Gromov's beautiful theory. -Michelle Bucher The theory of bounded cohomology, introduced by Gromov in the late 1980s, has had powerful applications in geometric group theory and the geometry and topology of manifolds, and has been the topic of active research continuing to this day. This monograph provides a unified, self-contained introduction to the theory and its applications, making it accessible to a student who has completed a first course in algebraic topology and manifold theory. The book can be used as a source for research projects for master's students, as a thorough introduction to the field for graduate student...

  7. Performance of primary repair on colon injuries sustained from low-versus high-energy projectiles (United States)

    Lazovic, Ranko; Radojevic, Nemanja; Curovic, Ivana


    Among various reasons, colon injuries may be caused by low- or high-energy firearm bullets, with the latter producing a temporary cavitation phenomenon. The available treatment options include primary repair and two-stage management, but recent studies have shown that primary repair can be widely used with a high success rate. This paper investigates the differences in performance of primary repair on these two types of colon injuries. Two groups of patients who sustained colon injuries due to single gunshot wounds, were retrospectively categorized based on the type of bullet. Primary colon repair was performed in all patients selected based on the inclusion and exclusion criteria (Stone and Fabian's criteria). An almost absolute homogeneity was attained among the groups in terms of age, latent time before surgery, and four trauma indexes. Only one patient from the low-energy firearm projectile group (4%) developed a postsurgical complication versus nine patients (25.8%) from the high-energy group, showing statistically significant difference (p = 0.03). These nine patients experienced the following postsurgical complications: pneumonia, abscess, fistula, suture leakage, and one multiorgan failure with sepsis. Previous studies concluded that one-stage primary repair is the best treatment option for colon injuries. However, terminal ballistics testing determined the projectile's path through the body and revealed that low-energy projectiles caused considerably lesser damage than their high-energy counterparts. Primary colon repair must be performed definitely for low-energy short firearm injuries but very carefully for high-energy injuries. Given these findings, we suggest that the treatment option should be determined based not only on the bullet type alone but also on other clinical findings. PMID:26874437

  8. Death, injury and disability from kinetic impact projectiles in crowd-control settings: a systematic review (United States)

    Haar, Rohini J; Iacopino, Vincent; Ranadive, Nikhil; Dandu, Madhavi; Weiser, Sheri D


    Objective We conducted a systematic review of the available literature on deaths, injuries and permanent disability from rubber and plastic bullets, as well as from bean bag rounds, shot pellets and other projectiles used in arrests, protests and other contexts from 1 January 1990 until 1 June 2017. Data sources PubMed, Scopus, JSTOR and grey literature. Data synthesis We report on descriptive statistics as well as data on injury severity, permanent disability and death. We analysed potential risk factors for injury severity, including the site of impact, firing distance and access to medical care. Results Of 3228 identified articles, 26 articles met inclusion criteria. These articles included injury data on 1984 people, 53 of whom died as a result of their injuries. 300 people suffered permanent disability. Deaths and permanent disability often resulted from strikes to the head and neck (49.1% of deaths and 82.6% of permanent disabilities). Of the 2135 injuries in those who survived their injuries, 71% were severe, injuries to the skin and to the extremities were most frequent. Anatomical site of impact, firing distance and timely access to medical care were correlated with injury severity and risk of disability. Conclusions Kinetic impact projectiles (KIPs), often called rubber or plastic bullets, are used commonly in crowd-control settings. We find that these projectiles have caused significant morbidity and mortality during the past 27 years, much of it from penetrative injuries and head, neck and torso trauma. Given their inherent inaccuracy, potential for misuse and associated health consequences of severe injury, disability and death, KIPs do not appear to be appropriate weapons for use in crowd-control settings. There is an urgent need to establish international guidelines on the use of crowd-control weapons to prevent unnecessary injuries and deaths. PMID:29255079

  9. Death, injury and disability from kinetic impact projectiles in crowd-control settings: a systematic review. (United States)

    Haar, Rohini J; Iacopino, Vincent; Ranadive, Nikhil; Dandu, Madhavi; Weiser, Sheri D


    We conducted a systematic review of the available literature on deaths, injuries and permanent disability from rubber and plastic bullets, as well as from bean bag rounds, shot pellets and other projectiles used in arrests, protests and other contexts from 1 January 1990 until 1 June 2017. PubMed, Scopus, JSTOR and grey literature. We report on descriptive statistics as well as data on injury severity, permanent disability and death. We analysed potential risk factors for injury severity, including the site of impact, firing distance and access to medical care. Of 3228 identified articles, 26 articles met inclusion criteria. These articles included injury data on 1984 people, 53 of whom died as a result of their injuries. 300 people suffered permanent disability. Deaths and permanent disability often resulted from strikes to the head and neck (49.1% of deaths and 82.6% of permanent disabilities). Of the 2135 injuries in those who survived their injuries, 71% were severe, injuries to the skin and to the extremities were most frequent. Anatomical site of impact, firing distance and timely access to medical care were correlated with injury severity and risk of disability. Kinetic impact projectiles (KIPs), often called rubber or plastic bullets, are used commonly in crowd-control settings. We find that these projectiles have caused significant morbidity and mortality during the past 27 years, much of it from penetrative injuries and head, neck and torso trauma. Given their inherent inaccuracy, potential for misuse and associated health consequences of severe injury, disability and death, KIPs do not appear to be appropriate weapons for use in crowd-control settings. There is an urgent need to establish international guidelines on the use of crowd-control weapons to prevent unnecessary injuries and deaths. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless

  10. Systematic investigation of projectile fragmentation using beams of unstable B and C isotopes (United States)

    Thies, R.; Heinz, A.; Adachi, T.; Aksyutina, Y.; Alcantara-Núñes, J.; Altstadt, S.; Alvarez-Pol, H.; Ashwood, N.; Aumann, T.; Avdeichikov, V.; Barr, M.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Burgunder, G.; Camaño, M.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkäll, J.; Chakraborty, S.; Chartier, M.; Chulkov, L. V.; Cortina-Gil, D.; Crespo, R.; Datta, U.; Díaz Fernández, P.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estradé, A.; Farinon, F.; Fraile, L. M.; Freer, M.; Freudenberger, M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Gernhäuser, R.; Göbel, K.; Golubev, P.; Gonzalez Diaz, D.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Henriques, A.; Holl, M.; Ickert, G.; Ignatov, A.; Jakobsson, B.; Johansson, H. T.; Jonson, B.; Kalantar-Nayestanaki, N.; Kanungo, R.; Knöbel, R.; Kröll, T.; Krücken, R.; Kurcewicz, J.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lepyoshkina, O.; Lindberg, S.; Machado, J.; Marganiec, J.; Maroussov, V.; Mostazo, M.; Movsesyan, A.; Najafi, A.; Nilsson, T.; Nociforo, C.; Panin, V.; Paschalis, S.; Perea, A.; Petri, M.; Pietri, S.; Plag, R.; Prochazka, A.; Rahaman, A.; Rastrepina, G.; Reifarth, R.; Ribeiro, G.; Ricciardi, M. V.; Rigollet, C.; Riisager, K.; Röder, M.; Rossi, D.; Sanchez del Rio, J.; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Stoica, V.; Streicher, B.; Taylor, J. T.; Tengblad, O.; Terashima, S.; Togano, Y.; Uberseder, E.; Van de Walle, J.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Weigand, M.; Wheldon, C.; Wilson, G.; Wimmer, C.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M. V.; Zilges, A.; Zuber, K.; R3B Collaboration


    Background: Models describing nuclear fragmentation and fragmentation fission deliver important input for planning nuclear physics experiments and future radioactive ion beam facilities. These models are usually benchmarked against data from stable beam experiments. In the future, two-step fragmentation reactions with exotic nuclei as stepping stones are a promising tool for reaching the most neutron-rich nuclei, creating a need for models to describe also these reactions. Purpose: We want to extend the presently available data on fragmentation reactions towards the light exotic region on the nuclear chart. Furthermore, we want to improve the understanding of projectile fragmentation especially for unstable isotopes. Method: We have measured projectile fragments from 10,12 -18C and B-1510 isotopes colliding with a carbon target. These measurements were all performed within one experiment, which gives rise to a very consistent data set. We compare our data to model calculations. Results: One-proton removal cross sections with different final neutron numbers (1 p x n ) for relativistic 10,12 -18C and B-1510 isotopes impinging on a carbon target. Comparing model calculations to the data, we find that the epax code is not able to describe the data satisfactorily. Using abrabla07 on the other hand, we find that the average excitation energy per abraded nucleon needs to be decreased from 27 MeV to 8.1 MeV. With that decrease abrabla07 describes the data surprisingly well. Conclusions: Extending the available data towards light unstable nuclei with a consistent set of new data has allowed a systematic investigation of the role of the excitation energy induced in projectile fragmentation. Most striking is the apparent mass dependence of the average excitation energy per abraded nucleon. Nevertheless, this parameter, which has been related to final-state interactions, requires further study.

  11. Bounded sets in fast complete inductive limits

    Directory of Open Access Journals (Sweden)

    Jan Kucera


    Full Text Available Let E1⊂E2⊂… be a sequence of locally convex spaces with all identity maps: En→En+1 continuous and E=indlim En fast complete. Then each set bounded in E is also bounded in some En iff for any Banach disk B bounded in E and n∈N, the closure of B⋂En in B is bounded in some Em. This holds, in particular, if all spaces En are webbed.

  12. Valuation models and Simon's bounded rationality

    National Research Council Canada - National Science Library

    Alexandra Strommer de Farias Godoi


    This paper aims at reconciling the evidence that sophisticated valuation models are increasingly used by companies in their investment appraisal with the literature of bounded rationality, according...

  13. Some Improved Nonperturbative Bounds for Fermionic Expansions

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Martin, E-mail: [Universita di Roma Tre, Dipartimento di Matematica (Italy)


    We reconsider the Gram-Hadamard bound as it is used in constructive quantum field theory and many body physics to prove convergence of Fermionic perturbative expansions. Our approach uses a recursion for the amplitudes of the expansion, discovered in a model problem by Djokic (2013). It explains the standard way to bound the expansion from a new point of view, and for some of the amplitudes provides new bounds, which avoid the use of Fourier transform, and are therefore superior to the standard bounds for models like the cold interacting Fermi gas.

  14. A strongly quasiconvex PAC-Bayesian bound

    DEFF Research Database (Denmark)

    Thiemann, Niklas; Igel, Christian; Wintenberger, Olivier

    We propose a new PAC-Bayesian bound and a way of constructing a hypothesis space, so that the bound is convex in the posterior distribution and also convex in a trade-off parameter between empirical performance of the posterior distribution and its complexity. The complexity is measured by the Ku......We propose a new PAC-Bayesian bound and a way of constructing a hypothesis space, so that the bound is convex in the posterior distribution and also convex in a trade-off parameter between empirical performance of the posterior distribution and its complexity. The complexity is measured...

  15. Effect of system size on the traditional signatures of critical behavior in projectile multifragmentation (United States)

    Bhattacharjee, B.; Talukdar, R.


    The effect of the system size on a number of traditionally accepted signatures of cluster approximation technique of critical behavior have been examined for projectile multifragmenting systems like Mg at 4.5 AGeV and Kr at 0.95 AGeV. The results obtained from analyzing our experimental data on the fluctuation of size of the largest fragments, reduced variance and the mean value of the second moments of charge distribution provide clear evidences of size effect in terms of the height and position of the peaks of the studied parameters.

  16. Influence of projectile neutron number on cross section in cold fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dragojevic, Irena; Dragojevic, I.; Gregorich, K.E.; Dullmann, Ch.E.; Folden III, C.M.; Garcia, M.A.; Gates, J.M.; Nelson, S.L.; Sudowe, R.; Nitsche, H.


    Elements 107-112 [1,2] have been discovered in reactions between {sup 208}Pb or {sup 209}Bi targets and projectiles ranging from {sup 54}Cr through {sup 70}Zn. In such reactions, the compound nucleus can be formed at excitation energies as low as {approx}12 MeV, thus this type of reaction has been referred to as 'cold fusion'. The study of cold fusion reactions is an indispensable approach to gaining a better understanding of heavy element formation and decay. A theoretical model that successfully predicts not only the magnitudes of cold fusion cross sections, but also the shapes of excitation functions and the cross section ratios between various reaction pairs was recently developed by Swiatecki, Siwek-Wilczynska, and Wilczynski [3,4]. This theoretical model, also referred to as Fusion by Diffusion, has been the guide in all of our cold fusion studies. One particularly interesting aspect of this model is the large predicted difference in cross sections between projectiles differing by two neutrons. The projectile pair where this difference is predicted to be largest is {sup 48}Ti and {sup 50}Ti. To test and extend this model, {sup 208}Pb({sup 48}Ti,n){sup 255}Rf and {sup 208}Pb({sup 50}Ti,n){sup 257}Rf excitation functions were recently measured at the Lawrence Berkeley National Laboratory's (LBNL) 88-Inch Cyclotron utilizing the Berkeley Gas-filled Separator (BGS). The {sup 50}Ti reaction was carried out with thin lead targets ({approx}100 {micro}g/cm{sup 2}), and the {sup 48}Ti reaction with both thin and thick targets ({approx}470 {micro}g/cm{sup 2}). In addition to this reaction pair, reactions with projectile pairs {sup 52}Cr and {sup 54}Cr [5], {sup 56}Fe and {sup 58}Fe [6], and {sup 62}Ni [7] and {sup 64}Ni [8] will be discussed and compared to the Fusion by Diffusion predictions. The model predictions show a very good agreement with the data.

  17. Anomalies in the Flow over Projectile with Wrap-around Fins


    Ravi Krishna; Rhishabh Surit; Abhijit Kushari; Ghosh, A K


    This paper presents the results of a numerical study to understand the flow field over a projectile with wraparoundfins. This investigation is performed in order to determine aerodynamic coefficients for the missile model for varying Mach number from 1.2 to 2.5. The roll moment coefficients were computed from the flow field solution and compared with other computational models and experimental works. The results show a reversal of the rolling moment in a Mach number from 1.2 to 1.4. While gen...

  18. Projectile motion on an inclined misty surface: II. Scoring a goal (United States)

    Foong, S. K.; Lim, C. C.; Kuppan, L.


    Feedback on part I of this series (Ho et al 2009 Phys. Educ. 44 253) motivated us to make hitting the target more interesting with a simple innovation: changing the target to a ring shaped hoop or goalpost and shooting for it in the 'air', as if playing basketball on the inclined plane. We discuss in detail the demarcation of the boundary (safety parabola) between the accessible region and the inaccessible region for a projectile on the surface of the inclined plane, and derive the angle of projection for scoring a goal. We also consider the orientation of the rings for maximizing the chance of scoring.

  19. Multiple-projectile penetrating neck injury from a modified nail-containing gas pistol. (United States)

    Pazardzhikliev, Dimitar Dimitrov


    Penetrating neck injuries result from missiles and stab wounds. A gas pistol is a non-lethal weapon for self-defence. We present a case where the use of a modified gun led to multiple injuries in a single shot. Four projectiles were embedded in the neck, one in the larynx and three in the cervical spine. The first was removed via a combined external and endoscopic approach, while the rest were put on follow-up. The reported case shows that damage from modified gas pistols, although rarely life threatening, may cause long term discomfort and diminished quality of life.

  20. Clovis age Western stemmed projectile points and human coprolites at the Paisley Caves

    DEFF Research Database (Denmark)

    Jenkins, Dennis L.; Davis, Loren G.; Stafford jr., Thomas


    The Paisley Caves in Oregon record the oldest directly dated human remains (DNA) in the Western Hemisphere. More than 100 high-precision radiocarbon dates show that deposits containing artifacts and coprolites ranging in age from 12,450 to 2295 C years ago are well stratified. Western Stemmed...... projectile points were recovered in deposits dated to 11,070 to 11,340 C years ago, a time contemporaneous with or preceding the Clovis technology. There is no evidence of diagnostic Clovis technology at the site. These two distinct technologies were parallel developments, not the product of a unilinear...

  1. Fragmentation of Millimeter-Size Hypervelocity Projectiles on Combined Mesh-Plate Bumpers


    Cherniaev, Aleksandr; Telichev, Igor


    This numerical study evaluates the concept of a combined mesh-plate bumper as a shielding system protecting unmanned spacecraft from small (1 mm) orbital debris impacts. Two-component bumpers consisting of an external layer of woven mesh (aluminum or steel) directly applied to a surface of the aluminum plate are considered. Results of numerical modeling with a projectile velocity of 7 km/s indicate that, in comparison to the steel mesh-combined bumper, the combination of aluminum mesh and alu...

  2. Methyl Centralite Coated M10 Propellant for the 25-mm Bushmaster Gun Projectiles (United States)


    USrO FOR GOVERNMENT PURPOSES ONLY L’ would bo marginal with the lower, projectile weights for SP KC coated propellant (RAD-PE-485-Bl) or NP KC coated...EXPLOSIVE (SOLID) CLASS B 25umm GUN HE LOT RAD-PE-559- 6 0.024" WEB SP GRAIN 150 LBS NET 101 LBS GROSS 4.2 CU FT PACKD * *Insert as applicable. TO...IA,14n Avne_ . 5 MANUFATURE O PROPELLANTSC 35 5 62-IP _Weter n 1 11 7& 76 Coating Cycle -58 1 67 Post Coating

  3. Hockey, iPads, and Projectile Motion in a Physics Classroom (United States)

    Hechter, Richard P.


    With the increased availability of modern technology and handheld probeware for classrooms, the iPad1 and the Video Physics2 application developed by Vernier are used to capture and analyze the motion of an ice hockey puck within secondary-level physics education. Students collect, analyze, and generate digital modes of representation of physics phenomena using modern technologies to complement theoretical plots. This activity acknowledges hockey players' implicit understanding of the launch angle and initial velocity of a saucer pass as basic projectile motion while engaging students in authentic physics-based problem solving.

  4. Multifragmentation of the Pb projectile at 158 GeV/nucleon in Pb-Pb interactions

    Energy Technology Data Exchange (ETDEWEB)

    Holynski, R.; Dabrowska, A.; Olszewski, A.; Szarska, M.; Trzupek, A.; Wilczynska, B.; Wilczynski, H.; Wolter, W.; Wosiek, B.; Wozniak, K. [Institute of Nuclear Physics, Cracow (Poland); Cherry, M.L.; Deines-Jones, P.; Nilsen, B.S.; Waddington, C.J.; Wefel, J.P.


    We have investigated the process of fragmentation of the Pb nucleus at 158 GeV/nucleon in Pb-Pb interactions recorded in the lead-emulsion chambers of the EMU13 CERN experiment. The number of Pb-Pb interactions found was larger than expected from the nuclear charge changing cross section, which indicates an important role of electromagnetic dissociation processes in Pb-Pb interactions at this energy. Different modes of the Pb projectile break-up, including the multifragmentation process, are discussed. The rates and properties of fragmentation processes such as fission, multifragmentation and disintegration into singly charged fragments are presented. (orig.) 7 refs.

  5. Effect of a Bore Evacuator on Projectile In-Bore Dynamics (United States)


    VEL QCýITY 534 m/s •0 200 5500 2ൈ,• i • / / 50 20 __ ACCE RATION 240 40 220 40"O 4 i000 40 41000 3:00 100 ( ISO < 00o.t °300 140.... 120 2000 2 0 0...Figure 6 Projectile velocity, travel, and acceleration versus time - TRN 82 5 Acceleration (G’s) Travel 28500 t(in.) 2550 TRAVEL 6 255 i C EL R TIi500 260

  6. New lower bound for the Capacitated Arc Routing Problem

    DEFF Research Database (Denmark)

    Wøhlk, Sanne


    We present a new lower bound, the Multiple Cuts Node Duplication Lower Bound, for the undirected Capacitated Arc Routing Problem.We prove that this new bound dominates the existing bounds for the problem. Computational results are also provided.......We present a new lower bound, the Multiple Cuts Node Duplication Lower Bound, for the undirected Capacitated Arc Routing Problem.We prove that this new bound dominates the existing bounds for the problem. Computational results are also provided....

  7. Atmospheric inverse modeling with known physical bounds: an example from trace gas emissions

    Directory of Open Access Journals (Sweden)

    S. M. Miller


    the relative merits of each. This paper investigates the applicability of several approaches to bounded inverse problems. A common method of data transformations is found to unrealistically skew estimates for the examined example application. The method of Lagrange multipliers and two Markov chain Monte Carlo (MCMC methods yield more realistic and accurate results. In general, the examined MCMC approaches produce the most realistic result but can require substantial computational time. Lagrange multipliers offer an appealing option for large, computationally intensive problems when exact uncertainty bounds are less central to the analysis. A synthetic data inversion of US anthropogenic methane emissions illustrates the strengths and weaknesses of each approach.

  8. Bounded rationality and learning in complex markets

    NARCIS (Netherlands)

    Hommes, C.H.; Barkely Rosser Jr, J.


    This chapter reviews some work on bounded rationality, expectation formation and learning in complex markets, using the familiar demand-supply cobweb model. We emphasize two stories of bounded rationality, one story of adaptive learning and another story of evolutionary selection. According to the

  9. Bounded rationality and learning in complex markets

    NARCIS (Netherlands)

    Hommes, C.H.


    This chapter reviews some work on bounded rationality, expectation formation and learning in complex markets, using the familiar demand-supply cobweb model. We emphasize two stories of bounded rationality, one story of adaptive learning and another story of evolutionary selection. According to the

  10. Spatial coagulation with bounded coagulation rate


    Bailleul, Ismael


    We prove that the spatial coagulation equation with bounded coagulation rate is well-posed for all times in a given class of kernels if the convection term of the underlying particle dynamics has divergence bounded below by a positive constant. Multiple coagulations, fragmentation and scattering are also considered.

  11. Schroedinger upper bounds to semirelativistic eigenvalues

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Richard L [Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec, H3G 1M8 (Canada); Lucha, Wolfgang [Institut fuer Hochenergiephysik, Oesterreichische Akademie der Wissenschaften, Nikolsdorfergasse 18, A-1050 Vienna (Austria)


    Problems posed by semirelativistic Hamiltonians of the form H = {radical}(m{sup 2} + p{sup 2}) + V(r) are studied. It is shown that energy upper bounds can be constructed in terms of certain related Schroedinger operators; these bounds include free parameters which can be chosen optimally.

  12. No-arbitrage bounds for financial scenarios

    DEFF Research Database (Denmark)

    Geyer, Alois; Hanke, Michael; Weissensteiner, Alex


    We derive no-arbitrage bounds for expected excess returns to generate scenarios used in financial applications. The bounds allow to distinguish three regions: one where arbitrage opportunities will never exist, a second where arbitrage may be present, and a third, where arbitrage opportunities...

  13. Nonatomic dual bakery algorithm with bounded tokens

    NARCIS (Netherlands)

    Aravind, Alex A.; Hesselink, Wim H.

    A simple mutual exclusion algorithm is presented that only uses nonatomic shared variables of bounded size, and that satisfies bounded overtaking. When the shared variables behave atomically, it has the first-come-first-served property (FCFS). Nonatomic access makes information vulnerable. The

  14. Polynomially Bounded Sequences and Polynomial Sequences

    Directory of Open Access Journals (Sweden)

    Okazaki Hiroyuki


    Full Text Available In this article, we formalize polynomially bounded sequences that plays an important role in computational complexity theory. Class P is a fundamental computational complexity class that contains all polynomial-time decision problems [11], [12]. It takes polynomially bounded amount of computation time to solve polynomial-time decision problems by the deterministic Turing machine. Moreover we formalize polynomial sequences [5].

  15. Upper Bounds on Numerical Approximation Errors

    DEFF Research Database (Denmark)

    Raahauge, Peter


    This paper suggests a method for determining rigorous upper bounds on approximationerrors of numerical solutions to infinite horizon dynamic programming models.Bounds are provided for approximations of the value function and the policyfunction as well as the derivatives of the value function...

  16. On the range of completely bounded maps

    Directory of Open Access Journals (Sweden)

    Richard I. Loebl


    Full Text Available It is shown that if every bounded linear map from a C*-algebra α to a von Neumann algebra β is completely bounded, then either α is finite-dimensional or β⫅⊗Mn, where is a commutative von Neumann algebra and Mn is the algebra of n×n complex matrices.

  17. A polynomial lower bound for testing monotonicity

    NARCIS (Netherlands)

    A. Belovs (Aleksandr); Blais, E. (Eric)


    textabstractWe show that every algorithm for testing n-variate Boolean functions for monotonicity has query complexity Ω(n1/4). All previous lower bounds for this problem were designed for nonadaptive algorithms and, as a result, the best previous lower bound for general (possibly adaptive)

  18. New approach to the nuclear in beam {gamma} spectroscopy of neutron rich nuclei at N=20 using projectile fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Jimenez, M.J.; Saint-Laurent, M.G.; Achouri, L.; Daugas, J.M. [Grand Accelerateur National d`Ions Lourds, 14 - Caen (France); Belleguic, M.; Azaiez, F.; Bourgeois, C. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Stanoiu, M.; Borcea, C. [Institute of Atomic Physics, Bucharest (Romania); Angelique, J.C. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire] [and others


    The structure of nuclei far from stability around {sup 32}Mg have been recently investigated by means of a novel method. In-beam {gamma}-decay spectroscopy of a large number of exotic neutron-rich nuclei produced by projectile fragmentation of a {sup 36}S projectile has been performed, using coincidences between the recoil fragments collected at the focal plane of SPEG spectrometer and {gamma}-rays emitted at the target location. Preliminary results on both the population mechanism and the decay of excited states in nuclei around {sup 32}Mg are presented. (author) 24 refs.

  19. Computational design of graphene sheets for withstanding the impact of ultrafast projectiles. (United States)

    Sadeghzadeh, Sadegh


    A multi-scale method is employed in this paper to conduct a virtual study of the high-strain behavior of single- and multi-layer graphene sheets and to investigate the design of related graphene-based devices. By bridging the length and time scales by combining the Molecular Dynamics and Finite Element methods together, a comprehensive multiscale model is developed to study the fascinating capabilities of single- and multi-layer graphene sheets in withstanding the impact of ultrafast projectiles. In order to contribute to future developments and innovations in this field, several quantitative and qualitative comparisons are also performed. By employing the validated model, the effects of several parameters on the impact resistance efficiency of the examined sheets are evaluated. The specific penetration energy of multilayer graphene sheets is several times greater than that of metal sheets. It is demonstrated that the number of layers, aspect ratio, sheet size, interlayer distance, delamination, and projectile shape significantly influence the impact resistance of graphene sheets. The specific critical rupture velocity decreases asymptotically with the increase in the number of layers. A large-scale array of fewer graphene layers can withstand bullets of much higher velocities than a multilayer graphene sheet with equivalent weight. Finally, the coefficient of restitution for the oblique collision of gold and steel nanoparticles with multilayer graphene sheets is calculated at different impact velocities. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Effect of projectile structure on evaporation residue yields in incomplete fusion reactions

    CERN Document Server

    Babu, K S; Sudarshan, K; Shrivastava, B D; Goswami, A; Tomar, B S


    The excitation functions of heavy residues, representing complete and incomplete fusion products, produced in the reaction of sup 1 sup 2 C and sup 1 sup 3 C on sup 1 sup 8 sup 1 Ta have been measured over the projectile energy range of 5 to 6.5 MeV/nucleon by the recoil catcher method and off-line gamma-ray spectrometry. Comparison of the measured excitation functions with those calculated using the PACE2 code based on the statistical model revealed the occurrence of incomplete fusion reactions in the formation of alpha emission products. The fraction of incomplete fusion cross sections in the sup 1 sup 2 C + sup 1 sup 8 sup 1 Ta reaction was found to be higher, by a factor of approx 2, than that in the sup 1 sup 3 C + sup 1 sup 8 sup 1 Ta reaction. The results have been discussed in terms of the effect of alpha cluster structure of the projectile on incomplete fusion reactions.

  1. Assessment of two fast codes used for preliminary aerodynamic design of guided projectiles (United States)

    Mikhail, Ameer G.


    Two missile aerodynamic prediction fast codes, namely NSWCAP and Missile-DATCOM, have been applied to the geometry of the guided, gun-launched Copperhead projectile. Assessment of the two codes was made in comparison with wind tunnel and free-flight range test data. Two configurations were considered for computation: the launch configuration (body-tail) in the Mach range of 0.5 to 1.8 and the maneuvering configuration (body-wing-tail) in the Mach range of 0.3 to 0.95. Results show reasonable agreement for the drag coefficient, C sub D, and show very large disagreements for both C sub N sub alpha and C sub M sub alpha. The incapability of both codes to include body slots and fin gap effects seems to have contributed largely to these differences. The dynamic derivatives C sub l sub p and (C sub M sub q + C sub M sub alpha) are not adequately estimated by the NSWCAP code, and are not calculated in the DATCOM code. For the coefficients actually computed, the DATCOM code results were slightly more accurate than those of the NSWCAP code. Both codes lack the determination of the explicit effects of control surface deflection angles on the aerodynamic coefficients. Development is needed for the determination if both codes are to be used for predictions for guided projectiles. Several areas of improvements in both codes are identified.

  2. Simulation of changes in temperature and pressure fields during high speed projectiles forming by explosion

    Directory of Open Access Journals (Sweden)

    Marković Miloš D.


    Full Text Available The Research in this paper considered the temperatures fields as the consequently influenced effects appeared by plastic deformation, in the explosively forming process aimed to design Explosively Formed Projectiles (henceforth EFP. As the special payloads of the missiles, used projectiles are packaged as the metal liners, joined with explosive charges, to design explosive propulsion effect. Their final form and velocity during shaping depend on distributed temperatures in explosively driven plastic deformation process. Developed simulation model consider forming process without metal cover of explosive charge, in aim to discover liner’s dynamical correlations of effective plastic strains and temperatures in the unconstrained detonation environment made by payload construction. The temperature fields of the liner’s copper material are considered in time, as the consequence of strain/stress displacements driven by explosion environmental thermodynamically fields of pressures and temperatures. Achieved final velocities and mass loses as the expected EFP performances are estimated regarding their dynamical shaping and thermal gradients behavior vs. effective plastic strains. Performances and parameters are presented vs. process time, numerically simulated by the Autodyne software package. [Projekat Ministarstva nauke Republike Srbije, br. III-47029

  3. Bringing Javanesse Traditional Dance into Basic Physics Class: Exemplifying Projectile Motion through Video Analysis (United States)

    Handayani, Langlang; Prasetya Aji, Mahardika; Susilo; Marwoto, Putut


    An alternative approach of an arts-based instruction for Basic Physics class has been developed through the implementation of video analysis of a Javanesse traditional dance: Bambangan Cakil. A particular movement of the dance -weapon throwing- was analyzed by employing the LoggerPro software package to exemplify projectile motion. The results of analysis indicated that the movement of the thrown weapon in Bambangan Cakil dance provides some helping explanations of several physics concepts of projectile motion: object's path, velocity, and acceleration, in a form of picture, graph and also table. Such kind of weapon path and velocity can be shown via a picture or graph, while such concepts of decreasing velocity in y direction (weapon moving downward and upward) due to acceleration g can be represented through the use of a table. It was concluded that in a Javanesse traditional dance there are many physics concepts which can be explored. The study recommends to bring the traditional dance into a science class which will enable students to get more understanding of both physics concepts and Indonesia cultural heritage.

  4. Effects of the projectile electronic structure on Bethe-Bloch stopping parameters for Ag

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, D., E-mail: [USTHB, Faculte de Physique, B.P. 32, 16111 Bab-Ezzouar, Algiers (Algeria); Damache, S. [Division de Physique, CRNA, 02 Bd. Frantz Fanon, B.P. 399 Alger-gare, Algiers (Algeria); Ouichaoui, S., E-mail: [USTHB, Faculte de Physique, B.P. 32, 16111 Bab-Ezzouar, Algiers (Algeria)


    Energy losses of protons and alpha particles in silver have been accurately measured under the same experimental conditions over the velocity range E{sub lab}=(0.192-2.595) MeV/amu using the transmission method. Deduced S(E) stopping powers are compared to most accurate ones from the literature, to values generated by the SRIM-2008 computer code and to ICRU-49 compilation. They were analyzed in the framework of modified Bethe-Bloch theory for extracting Ag target mean excitation and ionization potential, I, and Barkas effect parameter, b. Values of (466{+-}5) eV and 1.20{+-}0.01 for these two parameters were inferred from the proton S(E) data while the alpha particle data yielded values of (438{+-}4) eV and 1.38{+-}0.01, respectively. The (I, b) stopping parameters thus exhibit opposite variations as the projectile charge increases, similarly as we have found previously for nickel . This can be ascribed only to an effect of the projectile electronic structure at low velocities. The obtained results are discussed in comparison to previous ones reported in the literature.

  5. Evaluation of the performance of three elastomers for non-lethal projectile applications

    Directory of Open Access Journals (Sweden)

    Thota N.


    Full Text Available Less lethal kinetic ammunitions with soft noses such as eXact iMpact 1006, National Sports Spartan and B&T have been commonly used by military and law enforcement officers in the situations where lethal force is not warranted. In order to explore new materials to be used as nose in such ammunitions, a scholastic study using finite element simulations has been carried out to evaluate the effectiveness of two rubber like elastomers and a polyolefinic foam (low density, highly compressible, stiff and closed cell type of thermos plastic elastomer. State-of-the art thorax surrogate MTHOTA has been employed for the evaluation of blunt thoracic trauma. Force-rigid wall method was employed for the evaluation of head damage curves for each material. XM 1006 has been used as the benchmark projectile for the purpose of comparison. Both blunt thoracic trauma and head damage criterion point of view, both rubbers (R1 and R2 have yielded high values of VCmax and peak impact force. Polyolefinic foam (F1 considered in the study has yielded very promising VCmax values and very less peak impact force when compared with those of bench mark projectile XM 1006.

  6. A New Mechanism of Sediment Attachment to Oil in Turbulent Flows: Projectile Particles. (United States)

    Zhao, Lin; Boufadel, Michel C; Katz, Joseph; Haspel, Gal; Lee, Kenneth; King, Thomas; Robinson, Brian


    The interaction of oil and sediment in the environment determines, to a large extent, the trajectory and fate of oil. Using confocal microscope imaging techniques to obtain detailed 3D structures of oil-particle aggregates (OPAs) formed in turbulent flows, we elucidated a new mechanism of particle attachment, whereby the particles behave as projectiles penetrating the oil droplets to depths varying from ∼2 to 10 μm due to the hydrodynamic forces in the water. This mechanism results in a higher attachment of particles on oil in comparison with adsorption, as commonly assumed. The projectile hypothesis also explains the fragmentation of oil droplets with time, which occurred after long hours of mixing, leading to the formation of massive OPA clusters. Various lines of inquiry strongly suggested that protruding particles get torn from oil droplets and carry oil with them, causing the torn particles to be amphiphillic so that they contribute to the formation of massive OPAs of smaller oil droplets (<∼5-10 μm). Low particle concentration resulted in large, irregularly shaped oil blobs over time, the deformation of which without fragmentation could be due to partial coverage of the oil droplet surface by particles. The findings herein revealed a new pathway for the fate of oil in environments containing non-negligible sediment concentrations.

  7. Prospects for the discovery of the next new element: Influence of projectiles with Z > 20

    CERN Document Server

    Folden, Charles M; Werke, Tyler A; Alfonso, Marisa C; Bennett, Megan E; DeVanzo, Michael J


    The possibility of forming new superheavy elements with projectiles having Z > 20 is discussed. Current research has focused on the fusion of 48Ca with actinides targets, but these reactions cannot be used for new element discoveries in the future due to a lack of available target material. The influence on reaction cross sections of projectiles with Z > 20 have been studied in so-called analog reactions, which utilize lanthanide targets carefully chosen to create compound nuclei with energetics similar to those found in superheavy element production. The reactions 48Ca, 45Sc, 50Ti, 54Cr + 159Tb, 162Dy have been studied at the Cyclotron Institute at Texas A&M University using the Momentum Achromat Recoil Spectrometer. The results of these experimental studies are discussed in terms of the influence of collective enhancements to level density for compound nuclei near closed shells, and the implications for the production of superheavy elements. We have observed no evidence to contradict theoretical predict...

  8. Wound Ballistics Modeling for Blast Loading Blunt Force Impact and Projectile Penetration

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cooper, Candice Frances [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Light body armor development for the warfighter is based on trial-and-error testing of prototype designs against ballistic projectiles. Torso armor testing against blast is virtually nonexistent but necessary to ensure adequate protection against injury to the heart and lungs. In this report, we discuss the development of a high-fidelity human torso model, it's merging with the existing Sandia Human Head-Neck Model, and development of the modeling & simulation (M&S) capabilities necessary to simulate wound injury scenarios. Using the new Sandia Human Torso Model, we demonstrate the advantage of virtual simulation in the investigation of wound injury as it relates to the warfighter experience. We present the results of virtual simulations of blast loading and ballistic projectile impact to the tors o with and without notional protective armor. In this manner, we demonstrate the ad vantages of applying a modeling and simulation approach to the investigation of wound injury and relative merit assessments of protective body armor without the need for trial-and-error testing.

  9. Evaluation of the performance of three elastomers for non-lethal projectile applications (United States)

    Thota, N.; Epaarachchi, J.; Lau, K. T.


    Less lethal kinetic ammunitions with soft noses such as eXact iMpact 1006, National Sports Spartan and B&T have been commonly used by military and law enforcement officers in the situations where lethal force is not warranted. In order to explore new materials to be used as nose in such ammunitions, a scholastic study using finite element simulations has been carried out to evaluate the effectiveness of two rubber like elastomers and a polyolefinic foam (low density, highly compressible, stiff and closed cell type of thermos plastic elastomer). State-of-the art thorax surrogate MTHOTA has been employed for the evaluation of blunt thoracic trauma. Force-rigid wall method was employed for the evaluation of head damage curves for each material. XM 1006 has been used as the benchmark projectile for the purpose of comparison. Both blunt thoracic trauma and head damage criterion point of view, both rubbers (R1 and R2) have yielded high values of VCmax and peak impact force. Polyolefinic foam (F1) considered in the study has yielded very promising VCmax values and very less peak impact force when compared with those of bench mark projectile XM 1006.


    Directory of Open Access Journals (Sweden)



    Full Text Available An investigation has been made to predict the effects of forebody and afterbody shapes on the aerodynamic characteristics of several projectile bodies at supersonic speeds using analytical methods combined with semi-empirical design curves. The considered projectile bodies had a length-to-diameter ratio of 6.67 and included three variations of forebody shape and three variations of afterbody shape. The results, which are verified by comparison with available experimental data, indicated that the lowest drag was achieved with a cone-cylinder at the considered Mach number range. It is also shown that the drag can be reduced by boattailing the afterbody. The centre-of-pressure assumed a slightly rearward location for the ogive-cylinder configuration when compared to the configuration with boattailed afterbody where it was the most forward. With the exception of the boattailed afterbody, all the bodies indicated inherent static stability above Mach number 2 for a centre-of-gravity location at about 40% from the body nose.

  11. Spin effects in the weak interaction

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, S.J. (Argonne National Lab., IL (USA) Chicago Univ., IL (USA). Dept. of Physics Chicago Univ., IL (USA). Enrico Fermi Inst.)


    Modern experiments investigating the beta decay of the neutron and light nuclei are still providing important constraints on the theory of the weak interaction. Beta decay experiments are yielding more precise values for allowed and induced weak coupling constants and putting constraints on possible extensions to the standard electroweak model. Here we emphasize the implications of recent experiments to pin down the strengths of the weak vector and axial vector couplings of the nucleon.

  12. Weak isometries of the Boolean cube


    Winter, S De; Korb, M


    Consider the metric space $\\mathcal{C}$ consisting of the $n$-dimensional Boolean cube equipped with the Hamming distance. A weak isometry of $\\mathcal{C}$ is a permutation of $\\mathcal{C}$ preserving a given subset of Hamming distances. In \\cite{Krasin} Krasin showed that in most cases preserving a single Hamming distance forces a weak isometry to be an isometry. In this article we study those weak isometries that are not automatically an isometry, providing a complete classification of weak...

  13. Pseudo-Weak-R0 Algebras

    Directory of Open Access Journals (Sweden)

    Yong Lin Liu


    Full Text Available A positive answer to the open problem of Iorgulescu on extending weak-R0 algebras and R0-algebras to the noncommutative forms is given. We show that pseudo-weak-R0 algebras are categorically isomorphic to pseudo-IMTL algebras and that pseudo-R0 algebras are categorically isomorphic to pseudo-NM algebras. Some properties, the noncommutative forms of the properties in weak-R0 algebras and R0-algebras, are investigated. The simplified axiom systems of pseudo-weak-R0 algebras and pseudo-R0 algebras are obtained.

  14. Continuity Results and Error Bounds on Pseudomonotone Vector Variational Inequalities via Scalarization

    Directory of Open Access Journals (Sweden)

    Xin Zuo


    Full Text Available Continuity (both lower and upper semicontinuities results of the Pareto/efficient solution mapping for a parametric vector variational inequality with a polyhedral constraint set are established via scalarization approaches, within the framework of strict pseudomonotonicity assumptions. As a direct application, the continuity of the solution mapping to a parametric weak Minty vector variational inequality is also discussed. Furthermore, error bounds for the weak vector variational inequality in terms of two known regularized gap functions are also obtained, under strong pseudomonotonicity assumptions.

  15. Wedge-Local Fields in Integrable Models with Bound States II: Diagonal S-Matrix (United States)

    Cadamuro, Daniela; Tanimoto, Yoh


    We construct candidates for observables in wedge-shaped regions for a class of 1+1-dimensional integrable quantum field theories with bound states whose S-matrix is diagonal, by extending our previous methods for scalar S-matrices. Examples include the Z(N)-Ising models, the A_N-affine Toda field theories and some S-matrices with CDD factors. We show that these candidate operators which are associated with elementary particles commute weakly on a dense domain. For the models with two species of particles, we can take a larger domain of weak commutativity and give an argument for the Reeh-Schlieder property.

  16. Appearance of three dimensionality in wall-bounded MHD flows. (United States)

    Klein, R; Pothérat, A


    We characterize experimentally how three dimensionality appears in wall-bounded magnetohydrodynamic flows. Our analysis of the breakdown of a square array of vortices in a cubic container singles out two mechanisms: first, a form of three dimensionality we call weak appears through differential rotation in individual 2D vortices. Second, strong three dimensionality characterized by vortex disruption leads on the one hand to a remarkable vortex array that is both steady and 3D, and, on the other hand, to scale-selective breakdown of two dimensionality in chaotic flows. Most importantly, these phenomena are entirely driven by inertia, so they are relevant to other flows with a tendency to two dimensionality, such as rotating, or stratified flows in geophysics and astrophysics.

  17. Positive blowup solutions for some fractional systems in bounded domains

    Directory of Open Access Journals (Sweden)

    Ramzi Alsaedi


    Full Text Available Using some potential theory tools and the Schauder fixed point theorem, we prove the existence of a positive continuous weak solution for the fractional system $$ ( -Delta ^{alpha/2}u+ p(xu^{sigma }v^{r}=0,quad (-Delta^{alpha/2}v+q(xu^{s}v^{eta }=0 $$ in a bounded $ C^{1,1}$-domain D in $mathbb{R}^{n}$ $(ngeq 3$, subject to Dirichlet conditions, where $0

  18. Weak Gravitational Lensing by Galaxies - Implications for Dark Matter Halos (United States)

    Brainerd, T. G.; Blandford, R. D.; Smail, I.


    A detection of weak, tangential distortion of the images of cosmologically distant, faint galaxies caused by gravitational lensing by foreground galaxies is reported. The imaging data consist of a 24 ksec integration in Gunn-r of a single blank field obtained with the COSMIC imaging spectrograph on the Hale 5-m telescope. The orientations of faint (23 right > = 0.011 +/- 0.006 (95% confidence bounds) is found for the faint galaxies. The variation of right > with both differential lens-source separation and the maximum radius of the annulus is investigated. From Monte Carlo simulations of galaxy-galaxy lensing that incorporate measured properties of local galaxies and modest extrapolations of the observed redshift distribution of faint galaxies, formal best-fit parameters for the dark matter halos associated with the lens galaxies are obtained. For L(*) galaxies a characteristic circular velocity of V(*) ~ 220+/- 80 km/s and outer scale radius of s(*) >= 100h(-1) kpc is found. These parameters imply a typical mass for the lens galaxies within 100 h(-1) kpc of order 1.0(+1.2}_{-0.5) x 10(12) h(-1) M_sun (90% confidence bounds), in good agreement with recent dynamical estimates of the masses of local spiral galaxies

  19. Match-bounded String Rewriting Systems (United States)

    Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes


    We introduce a new class of automated proof methods for the termination of rewriting systems on strings. The basis of all these methods is to show that rewriting preserves regular languages. To this end, letters are annotated with natural numbers, called match heights. If the minimal height of all positions in a redex is h+1 then every position in the reduct will get height h+1. In a match-bounded system, match heights are globally bounded. Using recent results on deleting systems, we prove that rewriting by a match-bounded system preserves regular languages. Hence it is decidable whether a given rewriting system has a given match bound. We also provide a sufficient criterion for the abence of a match-bound. The problem of existence of a match-bound is still open. Match-boundedness for all strings can be used as an automated criterion for termination, for match-bounded systems are terminating. This criterion can be strengthened by requiring match-boundedness only for a restricted set of strings, for instance the set of right hand sides of forward closures.

  20. Weak solutions to the 3D steady flow of a compressible reactive mixture (United States)

    Guo, Boling; Xie, Binqiang; Xi, Xiaoyu


    The existence of weak solutions to the steady compressible, multicomponent, chemically reacting gas is established without any restriction on the size of the data in the bounded 3D domain with slip boundary conditions. We extend the result in Zatorska (2011 Nonlinearity 24 3267–78) for the adiabatic ratio γ>\\frac{7}{3} to γ>2 . Our proof relies upon the weighted estimates of pressure and kinetic energy.

  1. A classification of weakly acyclic games

    NARCIS (Netherlands)

    Apt, K.R.; Simon, S.


    Weakly acyclic games form a natural generalization of the class of games that have the finite improvement property (FIP). In such games one stipulates that from any initial joint strategy some finite improvement path exists. We classify weakly acyclic games using the concept of a scheduler recently

  2. Revisiting Weak Simulation for Substochastic Markov Chains

    DEFF Research Database (Denmark)

    Jansen, David N.; Song, Lei; Zhang, Lijun


    The spectrum of branching-time relations for probabilistic systems has been investigated thoroughly by Baier, Hermanns, Katoen and Wolf (2003, 2005), including weak simulation for systems involving substochastic distributions. Weak simulation was proven to be sound w.r.t. the liveness fragment...

  3. A note on Weak Stability Boundaries


    García González, Fernando; Gómez Muntané, Gerard


    This paper is devoted to clarify the algorithmic definition of the weak stability boundary in the framework of the planar Restricted Three Body Problem. The role of the invariant hyperbolic manifolds associated to the central manifolds of the libration points L1 and L2, as boundary of the weak stability region, is shown Peer Reviewed

  4. CP Violation, Neutral Currents, and Weak Equivalence (United States)

    Fitch, V. L.


    Within the past few months two excellent summaries of the state of our knowledge of the weak interactions have been presented. Correspondingly, we will not attempt a comprehensive review but instead concentrate this discussion on the status of CP violation, the question of the neutral currents, and the weak equivalence principle.

  5. Towards a classification of weak hand holds

    NARCIS (Netherlands)

    Kimmelman, V.; Sáfár, A.; Crasborn, O.


    The two symmetrical manual articulators (the hands) in signed languages are a striking modalityspecific phonetic property. The weak hand can maintain the end position of an articulation while the other articulator continues to produce additional signs. This weak hand spreading (hold) has been

  6. Spin Seebeck effect in a weak ferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Arboleda, Juan David, E-mail:; Arnache Olmos, Oscar [Instituto de Física, Universidad de Antioquia, A.A. 1226, Medellín (Colombia); Aguirre, Myriam Haydee; Ibarra, Manuel Ricardo [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Ramos, Rafael [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); Anadon, Alberto [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)


    We report the observation of room temperature spin Seebeck effect (SSE) in a weak ferromagnetic normal spinel Zinc Ferrite (ZFO). Despite the weak ferromagnetic behavior, the measurements of the SSE in ZFO show a thermoelectric voltage response comparable with the reported values for other ferromagnetic materials. Our results suggest that SSE might possibly originate from the surface magnetization of the ZFO.

  7. On modeling weak sinks in MODPATH (United States)

    Abrams, Daniel B.; Haitjema, Henk; Kauffman, Leon J.


    Regional groundwater flow systems often contain both strong sinks and weak sinks. A strong sink extracts water from the entire aquifer depth, while a weak sink lets some water pass underneath or over the actual sink. The numerical groundwater flow model MODFLOW may allow a sink cell to act as a strong or weak sink, hence extracting all water that enters the cell or allowing some of that water to pass. A physical strong sink can be modeled by either a strong sink cell or a weak sink cell, with the latter generally occurring in low resolution models. Likewise, a physical weak sink may also be represented by either type of sink cell. The representation of weak sinks in the particle tracing code MODPATH is more equivocal than in MODFLOW. With the appropriate parameterization of MODPATH, particle traces and their associated travel times to weak sink streams can be modeled with adequate accuracy, even in single layer models. Weak sink well cells, on the other hand, require special measures as proposed in the literature to generate correct particle traces and individual travel times and hence capture zones. We found that the transit time distributions for well water generally do not require special measures provided aquifer properties are locally homogeneous and the well draws water from the entire aquifer depth, an important observation for determining the response of a well to non-point contaminant inputs.

  8. Intensive care unit-acquired weakness

    NARCIS (Netherlands)

    Horn, J.; Hermans, G.


    When critically ill, a severe weakness of the limbs and respiratory muscles often develops with a prolonged stay in the intensive care unit (ICU), a condition vaguely termed intensive care unit-acquired weakness (ICUAW). Many of these patients have serious nerve and muscle injury. This syndrome is

  9. Lability of copper bound to humic acid


    Mao, Lingchen; Young, Scott D.; Bailey, Liz


    Geochemical speciation models generally include the assumption that all metal bound to humic acid and fulvic acid (HA, FA) is labile. However, in the current study, we determined the presence of a soluble ‘non-labile’ Cu fraction bound to HA extracted from grassland and peat soils. This was quantified by determining isotopically-exchangeable Cu (E-value) and EDTA-extraction of HA-bound Cu, separated by size-exclusion chromatography (SEC) and assayed by coupled ICP-MS. Evidence of time-depend...

  10. Positivity bounds on double parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus; Kasemets, Tomas


    Double hard scattering in proton-proton collisions is described in terms of double parton distributions. We derive bounds on these distributions that follow from their interpretation as probability densities, taking into account all possible spin correlations between two partons in an unpolarized proton. These bounds constrain the size of the polarized distributions and can for instance be used to set upper limits on the effects of spin correlations in double hard scattering. We show that the bounds are stable under leading-order DGLAP evolution to higher scales.

  11. Lower bound for the nuclear kinetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Dehesa, J.S. (Granada Univ. (Spain). Dept. de Fisica Nuclear); Galvez, F.J. (Granada Univ. (Spain). Dept. de Fisica Teorica)


    We argue that the kinetic energy of a many-fermion system is bounded from below by Kqsup(-2/3)A sup(5/3) / , with K = 0.565 where q is the number of spin states available to each particle and sup(1/2) is the root mean square radius of the single-particle density. A simple lower bound for the nuclear kinetic energy is found. Numerical values of the bound for several nuclei are shown, and a comparison with some self-consistent calculations and some pseudo-empirical values is made.

  12. Continuous bounded cohomology of locally compact groups

    CERN Document Server


    Recent research has repeatedly led to connections between important rigidity questions and bounded cohomology. However, the latter has remained by and large intractable. This monograph introduces the functorial study of the continuous bounded cohomology for topological groups, with coefficients in Banach modules. The powerful techniques of this more general theory have successfully solved a number of the original problems in bounded cohomology. As applications, one obtains, in particular, rigidity results for actions on the circle, for representations on complex hyperbolic spaces and on Teichmüller spaces. A special effort has been made to provide detailed proofs or references in quite some generality.

  13. Factorization of weakly compact operators between Banach spaces and Fréchet or (LB)-spaces


    Bonet Solves, José Antonio; Wright, J. D. Maitland


    In this note we show that weakly compact operators from a Banach space X into a complete (LB)-space E need not factorize through a reflexive Banach space. If E is a Fréchet space, then weakly compact operators from a Banach space X into E factorize through a reflexive Banach space. The factorization of operators from a Fréchet or a complete (LB)-space into a Banach space mapping bounded sets into relatively weakly compact sets is also investigated. MEC and FEDER Project MTM2010-15200 ...

  14. Persisting weakness after withdrawal of a statin. (United States)

    Mygland, Åse; Ljøstad, Unn; Krossnes, Bård Kronen


    An 81-year-old woman treated with simvastatin for several years followed by atorvastatin for about 1 year presented with fatigue, weakness and unsteady gait. The finding of elevated creatine kinase (CK) and symmetric muscle weakness around shoulders and hips led to suspicion of a toxic statin-associated myopathy. Atorvastatin was withdrawn, but her weakness persisted. Owing to persisting weakness, an autoimmune myopathy (myositis) was suspected, but initially disregarded since a muscle biopsy showed necrotic muscle fibres without inflammatory cell infiltrates and myositis-specific autoantibodies were absent. After 18 months with slowly progressive weakness and increasing CK values, awareness of new knowledge about autoimmunity as a cause of necrotic myopathy, led to a successful treatment trial with intravenous immunoglobulines, followed by steroids and metothrexate. Antibodies to the target enzyme of statins (HMGCR (3-hydroksy-3-methylglutaryl-coenzyme A reductase)) were detected in her serum, and she was diagnosed with autoimmune necrotic myositis probably triggered by atorvastatin.

  15. The WRAIR projectile concussive impact model of mild traumatic brain injury: re-design, testing and preclinical validation. (United States)

    Leung, Lai Yee; Larimore, Zachary; Holmes, Larry; Cartagena, Casandra; Mountney, Andrea; Deng-Bryant, Ying; Schmid, Kara; Shear, Deborah; Tortella, Frank


    The WRAIR projectile concussive impact (PCI) model was developed for preclinical study of concussion. It represents a truly non-invasive closed-head injury caused by a blunt impact. The original design, however, has several drawbacks that limit the manipulation of injury parameters. The present study describes engineering advancements made to the PCI injury model including helmet material testing, projectile impact energy/head kinematics and impact location. Material testing indicated that among the tested materials, 'fiber-glass/carbon' had the lowest elastic modulus and yield stress for providing an relative high percentage of load transfer from the projectile impact, resulting in significant hippocampal astrocyte activation. Impact energy testing of small projectiles, ranging in shape and size, showed the steel sphere produced the highest impact energy and the most consistent impact characteristics. Additional tests confirmed the steel sphere produced linear and rotational motions on the rat's head while remaining within a range that meets the criteria for mTBI. Finally, impact location testing results showed that PCI targeted at the temporoparietal surface of the rat head produced the most prominent gait abnormalities. Using the parameters defined above, pilot studies were conducted to provide initial validation of the PCI model demonstrating quantifiable and significant increases in righting reflex recovery time, axonal damage and astrocyte activation following single and multiple concussions.

  16. A new analytical model for the low-velocity perforation of thin steel plates by hemispherical-nosed projectiles

    Directory of Open Access Journals (Sweden)

    Chang-hai Chen


    Full Text Available Ballistic experiments were conducted on thin steel plates that are normally impacted by hemispherical-nosed projectiles at velocities higher than their ballistic limits. The deformation and failure modes of the thin steel plates were analyzed. A new method was proposed according to the experimental results and the perforation phenomenon of the thin steel plates to determine the radius of the bulging region. In establishing this new method, a dynamic method combined with the plastic wave propagation concept based on the rigid plastic assumption was adopted. The whole perforation process was divided into four consecutive stages, namely, bulging deformation, dishing deformation, ductile hole enlargement, and projectile exit. On the basis of the energy conservation principle, a new model was developed to predict the residual velocities of hemispherical-nosed projectiles that perforate thin steel plates at low velocities. The results obtained from the theoretical calculations by the present model were compared with the experimental results. Theoretical predictions were in good agreement with the experimental results in terms of both the radius of the bulging region and the residual velocity of the projectile when the strain rate effects of the target material during each stage were considered.

  17. The FRS Ion Catcher : A facility for high-precision experiments with stopped projectile and fission fragments

    NARCIS (Netherlands)

    Plass, W. R.; Dickel, T.; Purushothaman, S.; Dendooven, P.; Geissel, H.; Ebert, J.; Haettner, E.; Jesch, C.; Ranjan, M.; Reiter, M. P.; Weick, H.; Amjad, F.; Ayet, S.; Diwisch, M.; Estrade, A.; Farinon, F.; Greiner, F.; Kalantar-Nayestanaki, N.; Knoebel, R.; Kurcewicz, J.; Lang, J.; Moore, I.; Mukha, I.; Nociforo, C.; Petrick, M.; Pfuetzner, M.; Pietri, S.; Prochazka, A.; Rink, A. -K.; Rinta-Antila, S.; Schaefer, D.; Scheidenberger, C.; Takechi, M.; Tanaka, Y. K.; Winfield, J. S.; Yavor, M. I.


    At the FRS Ion Catcher at GSI, projectile and fission fragments are produced at relativistic energies, separated in-flight, range-focused, slowed down and thermalized in a cryogenic stopping cell. A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) is used to perform direct mass

  18. Use of monoatomic and polyatomic projectiles for the characterisation of polylactic acid by static secondary ion mass spectrometry. (United States)

    Boschmans, Bart; Van Royen, Pieter; Van Vaeck, Luc


    The application of polyatomic primary ions is a strongly developing branch of static secondary ion mass spectrometry (S-SIMS), since these projectiles allow a significant increase in the secondary ion yields to be achieved. However, the different limitations and possibilities of certain polyatomic primary ions for use on specific functional classes of samples are still not completely known. This paper compares the use of monoatomic and polyatomic primary ions in S-SIMS for thin layers of polylactic acid (PLA), obtained by spin-coating solutions on silicon wafers. Bombardment with Ga+, Xe+ and SF5+ primary ions allowed the contribution of the projectile mass and number of atoms in the gain in ion yield and molecular specificity (relative importance of high m/z and low m/z signals) to be assessed. Samples obtained by spin-coating solutions with increasing concentration showed that optimal layer thickness depended on the primary ion used. In comparison with the use of Ga+ projectiles, the yield of structural ions increased by a factor of about 1.5 to 2 and by about 7 to 12 when Xe+ and SF5+ primary ion bombardment were applied, respectively. A detailed fragmentation pattern was elaborated to interpret ion signal intensity changes for different projectiles in terms of energy deposition and collective processes in the subsurface, and the internal energy of radical and even-electron precursor ions. Copyright (c) 2005 John Wiley & Sons, Ltd.

  19. Suggested Courseware for the Non-Calculus Physics Student: Projectile Motion, Circular Motion, Rotational Dynamics, and Statics. (United States)

    Mahoney, Joyce; And Others


    Evaluates 10 courseware packages covering topics for introductory physics. Discusses the price; sub-topics; program type; interaction; possible hardware; time; calculus required; graphics; and comments on each program. Recommends two packages in projectile and circular motion, and three packages in statics and rotational dynamics. (YP)

  20. Reassessing the Aurignacian of Slovenia: techno-economic behaviour and direct dating of osseous projectile points. (United States)

    Moreau, Luc; Odar, Boštjan; Higham, Tom; Horvat, Aleksander; Pirkmajer, Darja; Turk, Peter


    The Palaeolithic of southern Central Europe has a long history of archaeological research. Particularly, the presence of numerous osseous projectile points in many early Upper Palaeolithic (EUP) assemblages in this region has attracted the attention of the international research community. However, the scarcity of properly identified and well-dated Aurignacian contexts represents an obstacle for investigation of the nature and timing of the Middle to Upper Palaeolithic transition. In this context, the question of whether Neandertals made Aurignacian osseous projectile points, either on their own or as a consequence of cultural interaction with anatomically modern humans (AMH), still remains an open issue. Here we reassess the EUP record of Slovenia by evaluating the Aurignacian character of the assemblages from Potočka zijalka, Mokriška jama and Divje babe I in the light of their suggested roots in the local Mousterian. We provide a comprehensive description of the lithic industry from Potočka zijalka, which represents one of the rare EUP assemblages of southern Central Europe with a representative number of lithic artefacts to be analysed from the perspective of lithic technology and raw material economy. Our re-analysis of the Slovenian assemblages is backed by a series of 11 new ultrafiltered collagen 14C dates obtained directly on associated osseous projectile points from the studied assemblages. The Aurignacian of Potočka zijalka underlines the remarkable consistency of the Early Aurignacian with low typo-technological variability across Europe, resulting from a marked dependence on transported toolkits and raw material conservation. The new radiocarbon determinations for the Aurignacian of Slovenia appear to post-date the 34-32 ka BP (thousands of years before present) threshold for the last Neandertals in the region. Although not falsified, the hypothesis of Aurignacian bone tools in southern Central Europe as a product of late Neandertals is not