Sample records for weakly anisotropic molecular

  1. Inflationary Weak Anisotropic Model with General Dissipation Coefficient

    CERN Document Server

    Sharif, M


    This paper explores the dynamics of warm intermediate and logamediate inflationary models during weak dissipative regime with a general form of dissipative coefficient. We analyze these models within the framework of locally rotationally symmetric Bianchi type I universe. In both cases, we evaluate solution of inflaton, effective scalar potential, dissipative coefficient, slow-roll parameters, scalar and tensor power spectra, scalar spectral index and tensor to scalar ratio under slow-roll approximation. We constrain the model parameters using recent data and conclude that anisotropic inflationary universe model with generalized dissipation coefficient remains compatible with WMAP9, Planck and BICEP2 data.

  2. Azimuthal Seismic Amplitude Variation with Offset and Azimuth Inversion in Weakly Anisotropic Media with Orthorhombic Symmetry (United States)

    Pan, Xinpeng; Zhang, Guangzhi; Yin, Xingyao


    Seismic amplitude variation with offset and azimuth (AVOaz) inversion is well known as a popular and pragmatic tool utilized to estimate fracture parameters. A single set of vertical fractures aligned along a preferred horizontal direction embedded in a horizontally layered medium can be considered as an effective long-wavelength orthorhombic medium. Estimation of Thomsen's weak-anisotropy (WA) parameters and fracture weaknesses plays an important role in characterizing the orthorhombic anisotropy in a weakly anisotropic medium. Our goal is to demonstrate an orthorhombic anisotropic AVOaz inversion approach to describe the orthorhombic anisotropy utilizing the observable wide-azimuth seismic reflection data in a fractured reservoir with the assumption of orthorhombic symmetry. Combining Thomsen's WA theory and linear-slip model, we first derive a perturbation in stiffness matrix of a weakly anisotropic medium with orthorhombic symmetry under the assumption of small WA parameters and fracture weaknesses. Using the perturbation matrix and scattering function, we then derive an expression for linearized PP-wave reflection coefficient in terms of P- and S-wave moduli, density, Thomsen's WA parameters, and fracture weaknesses in such an orthorhombic medium, which avoids the complicated nonlinear relationship between the orthorhombic anisotropy and azimuthal seismic reflection data. Incorporating azimuthal seismic data and Bayesian inversion theory, the maximum a posteriori solutions of Thomsen's WA parameters and fracture weaknesses in a weakly anisotropic medium with orthorhombic symmetry are reasonably estimated with the constraints of Cauchy a priori probability distribution and smooth initial models of model parameters to enhance the inversion resolution and the nonlinear iteratively reweighted least squares strategy. The synthetic examples containing a moderate noise demonstrate the feasibility of the derived orthorhombic anisotropic AVOaz inversion method, and the

  3. Azimuthal Seismic Amplitude Variation with Offset and Azimuth Inversion in Weakly Anisotropic Media with Orthorhombic Symmetry (United States)

    Pan, Xinpeng; Zhang, Guangzhi; Yin, Xingyao


    Seismic amplitude variation with offset and azimuth (AVOaz) inversion is well known as a popular and pragmatic tool utilized to estimate fracture parameters. A single set of vertical fractures aligned along a preferred horizontal direction embedded in a horizontally layered medium can be considered as an effective long-wavelength orthorhombic medium. Estimation of Thomsen's weak-anisotropy (WA) parameters and fracture weaknesses plays an important role in characterizing the orthorhombic anisotropy in a weakly anisotropic medium. Our goal is to demonstrate an orthorhombic anisotropic AVOaz inversion approach to describe the orthorhombic anisotropy utilizing the observable wide-azimuth seismic reflection data in a fractured reservoir with the assumption of orthorhombic symmetry. Combining Thomsen's WA theory and linear-slip model, we first derive a perturbation in stiffness matrix of a weakly anisotropic medium with orthorhombic symmetry under the assumption of small WA parameters and fracture weaknesses. Using the perturbation matrix and scattering function, we then derive an expression for linearized PP-wave reflection coefficient in terms of P- and S-wave moduli, density, Thomsen's WA parameters, and fracture weaknesses in such an orthorhombic medium, which avoids the complicated nonlinear relationship between the orthorhombic anisotropy and azimuthal seismic reflection data. Incorporating azimuthal seismic data and Bayesian inversion theory, the maximum a posteriori solutions of Thomsen's WA parameters and fracture weaknesses in a weakly anisotropic medium with orthorhombic symmetry are reasonably estimated with the constraints of Cauchy a priori probability distribution and smooth initial models of model parameters to enhance the inversion resolution and the nonlinear iteratively reweighted least squares strategy. The synthetic examples containing a moderate noise demonstrate the feasibility of the derived orthorhombic anisotropic AVOaz inversion method, and the

  4. Singular polarimetry: evolution of polarization singularities in electromagnetic waves propagating in a weakly anisotropic medium. (United States)

    Bliokh, Konstantin Yu; Niv, Avi; Kleiner, Vladimir; Hasman, Erez


    We describe the evolution of a paraxial electromagnetic wave characterizing by a non-uniform polarization distribution with singularities and propagating in a weakly anisotropic medium. Our approach is based on the Stokes vector evolution equation applied to a non-uniform initial polarization field. In the case of a homogeneous medium, this equation is integrated analytically. This yields a 3-dimensional distribution of the polarization parameters containing singularities, i.e. C-lines of circular polarization and L-surfaces of linear polarization. The general theory is applied to specific examples of the unfolding of a vectorial vortex in birefringent and dichroic media.

  5. Infrared spectroscopy of weakly bound molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lisa I-Ching


    The infrared spectra of a series of hydrated hydronium cluster ions and of protonated ethane ion are presented. A tandem mass spectrometer is ideally suited to obtaining the spectra of such weakly bound molecular ions. Traditional absorption spectroscopy is not feasible in these situations, so the techniques described in this thesis make use of some consequence of photon absorption with higher sensitivity than simply attenuation of laser power. That consequence is dissociation. By first mass selecting the parent ion under study and then mass selecting the fragment ion formed from dissociation, the near unit detection efficiency of ion counting methods has been used to full advantage.

  6. Molecular Dynamics Simulations for Anisotropic Thermal Conductivity of Borophene


    Jia, Yue; Li, Chun; Jiang, Jin-Wu; Wei, Ning; Chen, Yang; Zhang, Yongjie Jessica


    The present work carries out molecular dynamics simulations to compute the thermal conductivity of the borophene nanoribbon and the borophene nanotube using the Muller-Plathe approach. We investigate the thermal conductivity of the armchair and zigzag borophenes, and show the strong anisotropic thermal conductivity property of borophene. We compare the results of the borophene nanoribbon and the borophene nanotube, and find the thermal conductivity of the borophene is structure dependent.

  7. Unequivocal determination of complex molecular structures using anisotropic NMR measurements. (United States)

    Liu, Yizhou; Saurí, Josep; Mevers, Emily; Peczuh, Mark W; Hiemstra, Henk; Clardy, Jon; Martin, Gary E; Williamson, R Thomas


    Assignment of complex molecular structures from nuclear magnetic resonance (NMR) data can be prone to interpretational mistakes. Residual dipolar couplings and residual chemical shift anisotropy provide a spatial view of the relative orientations between bonds and chemical shielding tensors, respectively, regardless of separation. Consequently, these data constitute a reliable reporter of global structural validity. Anisotropic NMR parameters can be used to evaluate investigators' structure proposals or structures generated by computer-assisted structure elucidation. Application of the method to several complex structure assignment problems shows promising results that signal a potential paradigm shift from conventional NMR data interpretation, which may be of particular utility for compounds not amenable to x-ray crystallography. Copyright © 2017, American Association for the Advancement of Science.

  8. Scattering of thermal He beams by crossed atomic and molecular beams. III. Anisotropic intermolecular potentials for He + N/sub 2/, O/sub 2/, CO, and NO

    Energy Technology Data Exchange (ETDEWEB)

    Keil, M.; Slankas, J.T.; Kuppermann, A.


    Differential scattering cross sections are measured for He + N/sub 2/, O/sub 2/, CO, and NO, using the crossed molecular beams technique. These data, which are sensitive to the van der Waals attractive minima and adjacent regions of the intermolecular potentials, are analyzed in terms of both central-field and anisotropic models. Little evidence is found for quenching of the observed diffraction oscillations, and anisotropic contributions are determined to be small:The spherical averages of these anisotropic potentials are indistinguishable, within experimental error, from the potentials obtained by a central-field analysis. This study thus provides a quantitative, empirical validation of the central-field assumption for molecular scattering in weakly anisotropic systems.

  9. Electrostatics in Chemistry-Electrostatic Models for Weak Molecular ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 12. Electrostatics in Chemistry - Electrostatic Models for Weak Molecular Complexation. Shridhar R Gadre Pravin K Babu. Series Article Volume 4 Issue 12 December 1999 pp 11-20 ...

  10. Small amplitude ion acoustic solitons in a weakly magnetized plasma with anisotropic ion pressure and kappa distributed electrons (United States)

    Adnan, Muhammad; Mahmood, S.; Qamar, Anisa


    The Zakharov-Kuznetzov (ZK) equation is derived for nonlinear electrostatic waves in a weakly magnetized plasma in the presence of anisotropic ion pressure and superthermal electrons. The anisotropic ion pressure is defined using Chew-Goldberger-Low (CGL) while a generalized Lorentzian (kappa) distribution is assumed for the non-thermal electrons. The standard reductive perturbation method (RPM) is employed to derive the two dimensional ZK equation for the dynamics of obliquely propagating low frequency ion acoustic wave. The influence of spectral index (kappa) of non-thermal electron on the soliton is discussed in the presence of anisotropic ion pressure in plasmas. It is found that ion pressure anisotropy and superthermality of electrons affect both the width and amplitude of the solitary waves. On the other hand the magnetic field is found to alter the dispersive property of the plasma only, and hence the width of the solitons is affected while the amplitude of the solitary waves is independent of external magnetic field. The numerical results are also presented for illustrations.

  11. Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces. (United States)

    Verre, R; Maccaferri, N; Fleischer, K; Svedendahl, M; Odebo Länk, N; Dmitriev, A; Vavassori, P; Shvets, I V; Käll, M


    Anisotropic media induce changes in the polarization state of transmitted and reflected light. Here we combine this effect with the refractive index sensitivity typical of plasmonic nanoparticles to experimentally demonstrate self-referenced single wavelength refractometric sensing based on polarization conversion. We fabricated anisotropic plasmonic metasurfaces composed of gold dimers and, as a proof of principle, measured the changes in the rotation of light polarization induced by biomolecular adsorption with a surface sensitivity of 0.2 ng cm(-2). We demonstrate the possibility of miniaturized sensing and we show that experimental results can be reproduced by analytical theory. Various ways to increase the sensitivity and applicability of the sensing scheme are discussed.

  12. Molecular imprinting sensor based on quantum weak measurement. (United States)

    Li, Dongmei; He, Qinghua; He, Yonghong; Xin, Meiguo; Zhang, Yilong; Shen, Zhiyuan


    A new type of sensing protocol, based on a high precision metrology of quantum weak measurement, was first proposed for molecularly imprinted polymers (MIP) sensor. The feasibility, sensitivity and selectivity of weak measurement based MIP (WMMIP) sensor were experimentally demonstrated with bovine serum albumin (BSA). Weak measurement system exhibits high sensitivity to the optical phase shift corresponding to the refractive index change, which is induced by the specific capture of target protein molecules with its recognition sites. The recognition process can be finally characterized by the central wavelength shift of output spectra through weak value amplification. In our experiment, we prepared BSA@MIP with modified reversed-phase microemulsion method, and coated it on the internal surface of measuring channels assembled into the Mach-Zehnder (MZ) interferometer based optical weak measurement system. The design of this home-built optical system makes it possible to detect analyte in real time. The dynamic process of the specific adsorption and concentration response to BSA from 5×10-4 to 5×10-1μg/L was achieved with a limit of detection (LOD) of 8.01×10-12g/L. This WMMIP shows superiority in accuracy, fast response and low cost. Furthermore, real-time monitoring system can creatively promote the performance of MIP in molecular analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Weak Molecular Interactions in Clathrin-Mediated Endocytosis (United States)

    Smith, Sarah M.; Baker, Michael; Halebian, Mary; Smith, Corinne J.


    Clathrin-mediated endocytosis is a process by which specific molecules are internalized from the cell periphery for delivery to early endosomes. The key stages in this step-wise process, from the starting point of cargo recognition, to the later stage of assembly of the clathrin coat, are dependent on weak interactions between a large network of proteins. This review discusses the structural and functional data that have improved our knowledge and understanding of the main weak molecular interactions implicated in clathrin-mediated endocytosis, with a particular focus on the two key proteins: AP2 and clathrin.

  14. Anisotropic Rotational Diffusion Studied by Nuclear Spin Relaxation and Molecular Dynamics Simulation: An Undergraduate Physical Chemistry Laboratory (United States)

    Fuson, Michael M.


    Laboratories studying the anisotropic rotational diffusion of bromobenzene using nuclear spin relaxation and molecular dynamics simulations are described. For many undergraduates, visualizing molecular motion is challenging. Undergraduates rarely encounter laboratories that directly assess molecular motion, and so the concept remains an…

  15. Two-frequency mutual coherence function for Gaussian-beam pulses propagating along a horizontal path in weak anisotropic atmospheric turbulence. (United States)

    Chen, Chunyi; Yang, Huamin; Tong, Shoufeng; Lou, Yan


    A theoretical formulation of the spherical-wave two-frequency mutual coherence function (MCF) for a propagation path characterized by a complex ABCD matrix with anisotropic atmospheric turbulence existing somewhere is developed. A specialization of this formulation leads to an expression for the two-frequency MCF of an equivalent pulsed Gaussian beam propagating in weak anisotropic atmospheric turbulence along a horizontal line-of-sight path; relevant closed-form analytical solutions under both near- and far-field conditions are obtained. The small- and large-scale solutions for both the plane- and spherical-wave spatial-coherence radii in either horizontal or vertical direction are derived. Analysis shows that the formula for the on-axis two-frequency MCF of a pulsed Gaussian beam under the weak-turbulence condition in both the near- and far-field regions is distinguished from that applicable in the strong-turbulence limit only by whether the turbulence-induced beam broadening can be thought of as negligible. Under both the near- and far-field conditions, the turbulence-induced increment of the mean-square temporal-pulse half-width is proportional to the effective anisotropy factor of turbulence. The MCF becomes statistically anisotropic due to the anisotropy of turbulence. For the spatial coherence radius of either a plane or spherical wave propagating along a horizontal line-of-sight path in anisotropic atmospheric turbulence, the corresponding small-scale solution is proportional to that for the plane-wave spatial-coherence radius in the isotropic-turbulence case with a proportionality coefficient depending only on the effective anisotropy factor of turbulence. The corresponding large-scale solution is proportional to that for the plane-wave spatial-coherence radius in the isotropic-turbulence case with a proportionality coefficient that depends on both the effective anisotropy factor and spectral index of turbulence.

  16. Molecular decompostition of anisotropic homogeneous mixed-norm spaces with applications to the boundedness of operators

    DEFF Research Database (Denmark)

    Cleanthous, Galatia; Georgiadis, Athanasios; Nielsen, Morten


    Anisotropic homogeneous mixed-norm Besov and Triebel–Lizorkin spaces are introduced and their properties are explored. A discrete adapted ϕ-transform decomposition is obtained. An associated class of almost diagonal operators is introduced and a boundedness result for such operators is obtained....... Molecular decompositions for all the considered spaces are derived with the help of the algebra of almost diagonal operators. As an application, we obtain boundedness results on the considered spaces for Fourier multipliers and for pseudodifferential operators with suitable adapted homogeneous symbols using...

  17. Inhibited, Explosive and Anisotropic Relaxation in a Gas of Molecular Super-Rotors

    CERN Document Server

    Khodorkovsky, Yuri; Hartmann, Jean-Michel; Averbukh, Ilya Sh


    Recently, several femtosecond laser techniques have been developed that are capable of bringing gas molecules to extremely fast rotation in a very short time, while keeping their translational motion intact and relatively slow. We investigate collisional equilibration dynamics of this new state of molecular gases, and find that it follows a remarkable generic scenario. The route to equilibrium starts with a durable metastable 'gyroscopic stage', in the course of which the molecules maintain their fast rotation and orientation of the angular momentum through many collisions. The inhibited rotational-translational relaxation is characterized by a persistent anisotropy in the molecular angular distribution, and is manifested in the long-lasting optical birefringence, and anisotropic diffusion in the gas. After a certain induction time, the 'gyroscopic stage' is abruptly terminated by a self-accelerating explosive rotational-translational energy exchange leading the gas towards the final thermal equilibrium. We i...

  18. Molecular Based Temperature and Strain Rate Dependent Yield Criterion for Anisotropic Elastomeric Thin Films (United States)

    Bosi, F.; Pellegrino, S.


    A molecular formulation of the onset of plasticity is proposed to assess temperature and strain rate effects in anisotropic semi-crystalline rubbery films. The presented plane stress criterion is based on the strain rate-temperature superposition principle and the cooperative theory of yielding, where some parameters are assumed to be material constants, while others are considered to depend on specific modes of deformation. An orthotropic yield function is developed for a linear low density polyethylene thin film. Uniaxial and biaxial inflation experiments were carried out to determine the yield stress of the membrane via a strain recovery method. It is shown that the 3% offset method predicts the uniaxial elastoplastic transition with good accuracy. Both the tensile yield points along the two principal directions of the film and the biaxial yield stresses are found to obey the superposition principle. The proposed yield criterion is compared against experimental measurements, showing excellent agreement over a wide range of deformation rates and temperatures.

  19. Multiscale simulations of anisotropic particles combining molecular dynamics and Green's function reaction dynamics. (United States)

    Vijaykumar, Adithya; Ouldridge, Thomas E; Ten Wolde, Pieter Rein; Bolhuis, Peter G


    The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.

  20. Multiscale simulations of anisotropic particles combining molecular dynamics and Green's function reaction dynamics (United States)

    Vijaykumar, Adithya; Ouldridge, Thomas E.; ten Wolde, Pieter Rein; Bolhuis, Peter G.


    The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.

  1. Decay of isotropic flow and anisotropic flow with rotation or magnetic field or both in a weakly nonlinear regime

    CERN Document Server

    Wei, Xing


    We investigate numerically the decay of isotropic, rotating, magnetohydrodynamic (MHD), and rotating MHD flows in a periodic box. The Reynolds number $Re$ defined with the box size and the initial velocity is $100$ at which the flows are in a weakly nonlinear regime, i.e. not laminar but far away from the fully turbulent state. The decay of isotropic flow has two stages, the first stage for the development of small scales and the second stage for the viscous dissipation. In the rapidly rotating flow, fast rotation induces the inertial wave and causes the large-scale structure to inhibit the development of the first stage and retard the flow decay. In the MHD flow, the imposed field also causes the large-scale structure but facilitates the flow decay in the first stage because of the energy conversion from flow to magnetic field. Magnetic Reynolds number $Rm$ is important for the dynamics of the MHD flow, namely a high $Rm$ induces the Alfv\\'en wave but a low $Rm$ cannot. In the rotating MHD flow, slower rotat...

  2. Weak links between fast mobility and local structure in molecular and atomic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Bernini, S. [Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Puosi, F. [Laboratoire de Physique de l’École Normale Supérieure de Lyon, UMR CNRS 5672, 46 allée d’Italie, 69007 Lyon (France); Leporini, D., E-mail: [Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); IPCF-CNR, UOS Pisa, Pisa (Italy)


    We investigate by molecular-dynamics simulations, the fast mobility—the rattling amplitude of the particles temporarily trapped by the cage of the neighbors—in mildly supercooled states of dense molecular (linear trimers) and atomic (binary mixtures) liquids. The mixture particles interact by the Lennard-Jones potential. The non-bonded particles of the molecular system are coupled by the more general Mie potential with variable repulsive and attractive exponents in a range which is a characteristic of small n-alkanes and n-alcohols. Possible links between the fast mobility and the geometry of the cage (size and shape) are searched. The correlations on a per-particle basis are rather weak. Instead, if one groups either the particles in fast-mobility subsets or the cages in geometric subsets, the increase of the fast mobility with both the size and the asphericity of the cage is revealed. The observed correlations are weak and differ in states with equal relaxation time. Local forces between a tagged particle and the first-neighbour shell do not correlate with the fast mobility in the molecular liquid. It is concluded that the cage geometry alone is unable to provide a microscopic interpretation of the known, universal link between the fast mobility and the slow structural relaxation. We suggest that the particle fast dynamics is affected by regions beyond the first neighbours, thus supporting the presence of collective, extended fast modes.

  3. Anisotropic dielectric relaxation of the water confined in nanotubes for terahertz spectroscopy studied by molecular dynamics simulations. (United States)

    Qi, Wenpeng; Chen, Jige; Yang, Junwei; Lei, Xiaoling; Song, Bo; Fang, Haiping


    The dynamics and structure of the hydrogen-bond network in confined water are of importance in understanding biological and chemical processes. Recently, terahertz (THz) time domain spectroscopy was widely applied for studying the kinetics of molecules and the hydrogen-bond network in water. However, the characteristics of the THz spectroscopy varying with respect to the confinement and the mechanism underlying the variation are still unclear. Here, on the basis of molecular dynamics simulations, the relationship between the anisotropic dielectric relaxation and the structure of the water confined in a carbon nanotube (CNT) was investigated. The results show that there are two preferred hydrogen-bond orientations of the confined water in the nanotube: (1) parallel to the CNT axis and (2) perpendicular to the CNT axis, which are clearly different. Moreover, the response of the orientations to the increment of the CNT diameters is opposite, leading to the opposite variations of the dielectric relaxation times along the two directions. The anisotropy in the relaxation time can be presented by the anisotropic dielectric permittivity which is able to be observed through THz spectroscopy. The anormal behaviors above are attributed to the special structure of the water close to the nanotube wall due to the confinement and hydrophobicity of CNT. These studies contribute an important step in understanding the THz experiments of water in nanoscales, and designing a chamber for specific chemical and biological reactions by controlling the diameters and materials of the nanotube.

  4. A Grand Canonical Monte Carlo Molecular Study of a Weak Polyampholyte

    KAUST Repository

    Jimenez, Arturo Martinez


    Over the last few decades, there has been an increasing interest in the study of charged polymers for applications such as desalination of water, flocculation, sewage treatment, and enhanced oil recovery. Polyelectrolyte chains containing both positively and negatively charged units (polyampholytes) have been recently studied as viscosity-control agents in enhanced oil recovery, and as entrapping macromolecules for protection and delayed release of enzymes in hydraulic fracturing. In this study we performed Monte Carlo molecular simulations in a grand canonical ensemble to study the behavior of a weak polyampholyte in a dilute regime. Weak polyampholytes have the ability to dissociate in a limited pH, which makes them interesting for applications that require a pH-triggerable response. The titration behaviors of diblock and random polyampholytes are simulated as a function of solvent quality, electrostatic strength, and salt concentration. For diblock polyampholyte chains in hydrophobic solvents, transition between tadpole-like and globule conformation occurs with variations in the solution pH. Random polyampholytes present extended, globule, and pearl-necklace conformations at different solvent conditions and pH values. At high ionic strength, electrostatic interactions in the polyampholytes become screened and the chains are mostly in globule state.

  5. A memory diffusion model for molecular anisotropic diffusion in siliceous β-zeolite. (United States)

    Ji, Xiangfei; An, Zhuanzhuan; Yang, Xiaofeng


    A memory diffusion model of molecules on β-zeolite is proposed. In the model, molecular diffusion in β-zeolites is treated as jumping from one adsorption site to its neighbors and the jumping probability is a compound probability which includes that provided by the transitional state theory as well as that derived from the information about which direction the target molecule comes from. The proposed approach reveals that the diffusivities along two crystal axes on β-zeolite are correlated. The model is tested by molecular dynamics simulations on diffusion of benzene and other simple molecules in β-zeolites. The results show that the molecules with larger diameters fit the prediction much better and that the "memory effects" are important in all cases.

  6. Hydromagnetic waves in weakly-ionized media - I. Basic theory, and application to interstellar molecular clouds (United States)

    Mouschovias, Telemachos Ch.; Ciolek, Glenn E.; Morton, Scott A.


    We present a comprehensive study of magnetohydrodynamic (MHD) waves and instabilities in a weakly-ionized system, such as an interstellar molecular cloud. We determine all the critical wavelengths of perturbations across which the sustainable wave modes can change radically (and so can their decay rates), and various instabilities are present or absent. Hence, these critical wavelengths are essential for understanding the effects of MHD waves (or turbulence) on the structure and evolution of molecular clouds. Depending on the angle of propagation relative to the zeroth-order magnetic field and the physical parameters of a model cloud, there are wavelength ranges in which no wave can be sustained as such. Yet, for other directions of propagation or different properties of a model cloud, there may always exist some wave mode(s) at all wavelengths (smaller than the size of the model cloud). For a typical model cloud, magnetically-driven ambipolar diffusion leads to removal of any support against gravity that most short-wavelength waves (or turbulence) may have had, and gravitationally-driven ambipolar diffusion sets in and leads to cloud fragmentation into stellar-size masses, as first suggested by Mouschovias more than three decades ago - a single-stage fragmentation theory of star formation, distinct from the then prevailing hierarchical fragmentation picture. The phase velocities, decay times and eigenvectors (e.g. the densities and velocities of neutral particles and the plasma, and the three components of the magnetic field) are determined as functions of the wavelength of the disturbances in a mathematically transparent way and are explained physically. Comparison of the results with those of nonlinear analytical or numerical calculations is also presented where appropriate, excellent agreement is found, and confidence in the analytical, linear approach is gained to explore phenomena difficult to study through numerical simulations. Mode splitting (or

  7. GPU-Accelerated Molecular Dynamics Simulation to Study Liquid Crystal Phase Transition Using Coarse-Grained Gay-Berne Anisotropic Potential. (United States)

    Chen, Wenduo; Zhu, Youliang; Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi


    Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures.

  8. GPU-Accelerated Molecular Dynamics Simulation to Study Liquid Crystal Phase Transition Using Coarse-Grained Gay-Berne Anisotropic Potential.

    Directory of Open Access Journals (Sweden)

    Wenduo Chen

    Full Text Available Gay-Berne (GB potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures.

  9. Molecular dynamics simulation with weak coupling to heat and material baths. (United States)

    Eslami, Hossein; Mojahedi, Fatemeh; Moghadasi, Jalil


    A method for performing molecular dynamics simulation in the grand canonical ensemble is developed. The molecular dynamics, with coupling to an external bath, simulation method of [Berendsen et al., J. Chem. Phys. 81, 3684 (1984)] is extended for this purpose. Here the physical system of interest consists of real indistinguishable particles plus one fractional particle, whose potential energy of interaction with the rest of particles is scaled by a coupling parameter, ranging dynamically between zero and one. This coupling changes the number of particles in the system gradually and dynamically, depending on the target values of the excess chemical potential, temperature, and volume. A nonlinear scaling scheme has been adopted to scale the potential energy of interaction of the fractional particle with the rest of the system. The method has been employed to predict the density of compressed Lennard-Jones fluid, compatible with the target values of temperature and the excess chemical potential, over a wide range of temperatures and densities. The method has further been applied to do molecular dynamics simulation in the grand canonical ensemble for water and to predict its vapor-liquid phase coexistence point. The results obtained using this method are in complete agreement with previously reported results in the literature.

  10. Anisotropic branes (United States)

    Banerjee, Souvik; Bhowmick, Samrat; Mukherji, Sudipta


    We present a class of anisotropic brane configurations which shows BKL oscillations near their cosmological singularities. Near horizon limits of these solutions represent Kasner space embedded in AdS background. Dynamical probe branes in these geometries inherit anisotropies from the background. Amusingly, for a probe M5 brane, we find that there exists a parameter region where three of its world-volume directions expand while the rest contract.

  11. Anisotropic hydrodynamics: Motivation and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael


    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.

  12. Optical transition energies of isolated molecular monomers and weakly interacting two-dimensional aggregates (United States)

    Forker, Roman; Dienel, Thomas; Krause, Andreas; Gruenewald, Marco; Meissner, Matthias; Kirchhuebel, Tino; Gröning, Oliver; Fritz, Torsten


    The optical excitation energies of organic dye molecules are often said to depend sensitively on the polarizability of the utilized substrate. To this end, we employ differential reflectance spectroscopy (DRS) to analyze the S0→S1 fundamental transition energies observed for 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) as a function of coverage on various surfaces, such as sp2-bonded insulating layers [graphene and hexagonal boron nitride (h-BN)], and noble metals pre-covered by a molecular wetting layer which prevents hybridization of the second-layer molecules with the metal states. We elucidate the optical absorbance behavior of PTCDA layers grown on h-BN/Rh(111) and on h-BN/Pt(111) and characterize their structures by means of scanning tunneling microscopy. Surprisingly, although the dielectric properties of the employed substrates differ substantially, only two main transition energies are observed: (i) PTCDAHE essentially mimics the behavior of isolated monomers on surfaces (particularly at submonolayer coverage), while (ii) PTCDALE, red-shifted by ≈70 meV (≈560 cm-1 ), is attributed to two-dimensional densely packed aggregates. This red-shift is in remarkable accordance with previous investigations for PTCDA on NaCl(100) and, therefore, likely arises from the same physical effects, namely the formation of two-dimensional excitonic bands and the polarizability of neighboring molecules within the monolayer. In distinction from earlier studies, we conclude that the polarizabilities of the employed substrates do not constitute the dominant contribution to the molecular S0→S1 transition energies observed here.

  13. Anisotropic structure and dynamics of the solvation shell of a benzene solute in liquid water from ab initio molecular dynamics simulations. (United States)

    Choudhary, Ashu; Chandra, Amalendu


    The anisotropic structure and dynamics of the hydration shell of a benzene solute in liquid water have been investigated by means of ab initio molecular dynamics simulations using the BLYP (Becke-Lee-Yang-Parr) and dispersion corrected BLYP-D functionals. The main focus has been to look at the influence of π-hydrogen-bonding and hydrophobic interactions on the distance and angle resolved various structural and dynamic properties of solvation shell. The structure of hydration shell water molecules around benzene is found to be highly anisotropic as revealed by the radial distribution functions of different conical regions and joint radial/angular distribution functions. The benzene-water dimer potential energy curves are calculated for a variety of orientations of water along the axial and equatorial directions for both BLYP and BLYP-D functionals. The simulation results of the hydration shell structure of benzene, particularly the axial and equatorial benzene-water RDFs are discussed based on the differences in the benzene-water potential energies for different orientations and functionals. The inter-particle distance/angle correlations show an enhanced water structure in the solvation shell of benzene compared to that between the solvation shell and bulk and also between the bulk molecules. On average, a single πH-bond is found to be formed between water and benzene in the 45° axial conical region of the solvation shell. The πH-bonded water molecules are found to have faster translational dynamics and also found to follow a fast jump mechanism of reorientation to change their hydrogen bonded partners. The presence of π-hydrogen-bonded water makes the overall dynamics of the axial region faster than that of the equatorial region where the water molecules are hydrophobically solvated and hydrogen bonded to other water molecules.

  14. The Born-Oppenheimer molecular simulations of infrared spectra of crystalline poly-(R)-3-hydroxybutyrate with analysis of weak Csbnd H⋯Odbnd C hydrogen bonds (United States)

    Brela, Mateusz Z.; Boczar, Marek; Wójcik, Marek J.; Sato, Harumi; Nakajima, Takahito; Ozaki, Yukihiro


    In this letter we present results of study of weak Csbnd H⋯Odbnd C hydrogen bonds of crystalline poly-(R)-3-hydroxybutyrate (PHB) by using Born-Oppenheimer molecular dynamics. The polymeric structure and IR spectra of PHB result from the presence of the weak hydrogen bonds. We applied the post-molecular dynamics analysis to consider a Cdbnd O motion as indirectly involved in the hydrogen bonds. Quantization of the nuclear motion of the oxygens was done to perform detailed analysis of the strength and properties of the Cdbnd O bands involved in the weak hydrogen bonds. We have also shown the dynamic character of the weak hydrogen bond interactions.

  15. Novel high-viscosity polyacrylamidated chitosan for neural tissue engineering: fabrication of anisotropic neurodurable scaffold via molecular disposition of persulfate-mediated polymer slicing and complexation. (United States)

    Kumar, Pradeep; Choonara, Yahya E; du Toit, Lisa C; Modi, Girish; Naidoo, Dinesh; Pillay, Viness


    Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS) mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%), grafting ratio (GR = 263%), intrinsic viscosity (IV = 5.231 dL/g) and viscometric average molecular mass (MW = 1.63 × 106 Da) compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers-"polymer slicing"-thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT)-"polymer complexation". Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness, superior hydrophilicity as well as

  16. Novel High-Viscosity Polyacrylamidated Chitosan for Neural Tissue Engineering: Fabrication of Anisotropic Neurodurable Scaffold via Molecular Disposition of Persulfate-Mediated Polymer Slicing and Complexation

    Directory of Open Access Journals (Sweden)

    Viness Pillay


    Full Text Available Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%, grafting ratio (GR = 263%, intrinsic viscosity (IV = 5.231 dL/g and viscometric average molecular mass (MW = 1.63 × 106 Da compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness

  17. Inhomogeneous anisotropic cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Kleban, Matthew [Center for Cosmology and Particle Physics, New York University,4 Washington Place, New York, NY 10003 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025 (United States)


    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  18. Highly Anisotropic Conductors. (United States)

    Wan, Jiayu; Song, Jianwei; Yang, Zhi; Kirsch, Dylan; Jia, Chao; Xu, Rui; Dai, Jiaqi; Zhu, Mingwei; Xu, Lisha; Chen, Chaoji; Wang, Yanbin; Wang, Yilin; Hitz, Emily; Lacey, Steven D; Li, Yongfeng; Yang, Bao; Hu, Liangbing


    Composite materials with ordered microstructures often lead to enhanced functionalities that a single material can hardly achieve. Many biomaterials with unusual microstructures can be found in nature; among them, many possess anisotropic and even directional physical and chemical properties. With inspiration from nature, artificial composite materials can be rationally designed to achieve this anisotropic behavior with desired properties. Here, a metallic wood with metal continuously filling the wood vessels is developed, which demonstrates excellent anisotropic electrical, thermal, and mechanical properties. The well-aligned metal rods are confined and separated by the wood vessels, which deliver directional electron transport parallel to the alignment direction. Thus, the novel metallic wood composite boasts an extraordinary anisotropic electrical conductivity (σ|| /σ⊥ ) in the order of 1011 , and anisotropic thermal conductivity (κ|| /κ⊥ ) of 18. These values exceed the highest reported values in existing anisotropic composite materials. The anisotropic functionality of the metallic wood enables it to be used for thermal management applications, such as thermal insulation and thermal dissipation. The highly anisotropic metallic wood serves as an example for further anisotropic materials design; other composite materials with different biotemplates/hosts and fillers can achieve even higher anisotropic ratios, allowing them to be implemented in a variety of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The anisotropic effect of functional groups in 1H NMR spectra is the molecular response property of spatial nucleus independent chemical shifts (NICS)--conformational equilibria of exo/endo tetrahydrodicyclopentadiene derivatives. (United States)

    Kleinpeter, Erich; Lämmermann, Anica; Kühn, Heiner


    The inversion of the flexible five-membered ring in tetrahydrodicyclopentadiene (TH-DCPD) derivatives remains fast on the NMR timescale even at 103 K. Since the intramolecular exchange process could not be sufficiently slowed for spectroscopic evaluation, the conformational equilibrium is thus inaccessible by dynamic NMR. Fortunately, the spatial magnetic properties of the aryl and carbonyl groups attached to the DCPD skeleton can be employed in order to evaluate the conformational state of the system. In this context, the anisotropic effects of the functional groups in the (1)H NMR spectra prove to be the molecular response property of spatial nucleus independent chemical shifts (NICS).

  20. Molecular Orbital Rule for Quantum Interference in Weakly Coupled Dimers: Low-Energy Giant Conductivity Switching Induced by Orbital Level Crossing. (United States)

    Nozaki, Daijiro; Lücke, Andreas; Schmidt, Wolf Gero


    Destructive quantum interference (QI) in molecular junctions has attracted much attention in recent years. It can tune the conductance of molecular devices dramatically, which implies numerous potential applications in thermoelectric and switching applications. There are several schemes that address and rationalize QI in single molecular devices. Dimers play a particular role in this respect because the QI signal may disappear, depending on the dislocation of monomers. We derive a simple rule that governs the occurrence of QI in weakly coupled dimer stacks of both alternant and nonalternant polyaromatic hydrocarbons (PAHs) and extends the Tada-Yoshizawa scheme. Starting from the Green's function formalism combined with the molecular orbital expansion approach, it is shown that QI-induced antiresonances and their energies can be predicted from the amplitudes of the respective monomer terminal molecular orbitals. The condition is illustrated for a toy model consisting of two hydrogen molecules and applied within density functional calculations to alternant dimers of oligo(phenylene-ethynylene) and nonalternant PAHs. Minimal dimer structure modifications that require only a few millielectronvolts and lead to an energy crossing of the essentially preserved monomer orbitals are shown to result in giant conductance switching ratios.

  1. Investigation of mono/competitive adsorption of environmentally relevant ionized weak acids on graphite: impact of molecular properties and thermodynamics. (United States)

    Moustafa, Ahmed M A; McPhedran, Kerry N; Moreira, Jesús; Gamal El-Din, Mohamed


    The thermodynamics of adsorption and competitive interactions of five weak acids on a graphite surface was assessed in alkaline solutions. Adsorption of the acids in mono- and multicompound solutions followed their Freundlich isotherms which suggest a diversity of graphite adsorption sites as confirmed by the presence of carboxylic and phenolic groups observed on graphite surfaces. Thermodynamic calculations assigned the formation of the negatively charged assisted hydrogen bond (-CAHB) between ionized solutes and adsorbent surface groups as the possible adsorption mechanism. However, the similar pKa values of current acids resulted in comparable free energies for -CAHB formation (ΔG(-CAHB)) being less than solvation free energies (ΔGSolv). Thus, additional ΔG is supplemented by increased hydrophobicity due to proton exchange of ionized acids with water (ΔΔG Hydrophobicity). Adsorption capacities and competition coefficients indicated that ΔΔG Hydrophobicity values depend on the neutral and ionized acid Kow. Competitive adsorption implies that multilayer adsorption may occur via hydrophobic bonding with the CH3 ends of the self-assembled layer which affects the acid adsorption capacities in mixtures as compared to monocompound solutions. The determination of adsorption mechanisms will assist in understanding of the fate and bioavailability of emerging and classical weak acids released into natural waters.

  2. Fast Anisotropic Gauss Filtering

    NARCIS (Netherlands)

    Geusebroek, J.M.; Smeulders, A.W.M.; van de Weijer, J.; Heyden, A.; Sparr, G.; Nielsen, M.; Johansen, P.


    We derive the decomposition of the anisotropic Gaussian in a one dimensional Gauss filter in the x-direction followed by a one dimensional filter in a non-orthogonal direction phi. So also the anisotropic Gaussian can be decomposed by dimension. This appears to be extremely efficient from a

  3. Fast Anisotropic Gauss Filters

    NARCIS (Netherlands)

    Geusebroek, J.M.; Smeulders, A.W.M.; van de Weijer, J.


    We derive the decomposition of the anisotropic Gaussian in a one dimensional Gauss filter in the x-direction phi. So also the anisotropic Gaussian can be decomposed by dimension. This appears to be extremely efficient from a computing perspective. An implementation scheme for normal covolution and

  4. Anisotropic Charge Distribution and Anisotropic van der Waals Radius Leading to Intriguing Anisotropic Noncovalent Interactions (United States)

    Kim, Hahn; Van Dung Doan; Cho, Woo Jong; Madhav, Miriyala Vijay; Kim, Kwang S.


    Although group (IV–VII) nonmetallic elements do not favor interacting with anionic species, there are counterexamples including the halogen bond. Such binding is known to be related to the charge deficiency because of the adjacent atom's electron withdrawing effect, which creates σ/π-holes at the bond-ends. However, a completely opposite behavior is exhibited by N2 and O2, which have electrostatically positive/negative character around cylindrical-bond-surface/bond-ends. Inspired by this, here we elucidate the unusual features and origin of the anisotropic noncovalent interactions in the ground and excited states of the 2nd and 3rd row elements belonging to groups IV–VII. The anisotropy in charge distributions and van der Waals radii of atoms in such molecular systems are scrutinized. This provides an understanding of their unusual molecular configuration, binding and recognition modes involved in new types of molecular assembling and engineering. This work would lead to the design of intriguing molecular systems exploiting anisotropic noncovalent interactions. PMID:25059645

  5. Significance of weak interactions in imidazolium picrate ionic liquids: spectroscopic and theoretical studies for molecular level understanding. (United States)

    Panja, Sumit Kumar; Dwivedi, Nidhi; Noothalapati, Hemanth; Shigeto, Shinsuke; Sikder, A K; Saha, Abhijit; Sunkari, Sailaja S; Saha, Satyen


    The effects of interionic hydrogen bonding and π-π stacking interactions on the physical properties of a new series of picrate anion based ionic liquids (ILs) have been investigated experimentally and theoretically. The existence of aromatic (C2-HO) and aliphatic (C7-HO-N22 and C6-HO-N20) hydrogen bonding and π-π stacking interactions in these ILs has been observed using various spectroscopic techniques. The aromatic and aliphatic C-HO hydrogen bonding interactions are found to have a crucial role in binding the imidazolium cation and picrate anion together. However, the π-π stacking interactions between two successive layers are found to play a decisive role in tight packing in ILs leading to differences in physical properties. The drastic difference in the melting points of the methyl and propyl derivatives (mmimPic and pmimPic respectively) have been found to be primarily due to the difference in the strength and varieties of π-π stacking interactions. While in mmimPic, several different types of π-π stacking interactions between the aromatic rings (such as picrate-picrate, picrate-imidazole and imidazolium-imidazolium cation rings) are observed, only one type of π-π stacking interaction (picrate-picrate rings) is found to exist in the pmimPic IL. NMR spectroscopic studies reveal that the interaction of these ILs with solvent molecules is different and depends on the dielectric constant of the solvent. While an ion solvation model explains the solvation in high dielectric solvents, an ion-pair solvation model is found to be more appropriate for low dielectric constant solvents. The enhanced stability of these investigated picrate ILs compared with that of inorganic picrate salts under high doses of γ radiation clearly indicates the importance of weak interionic interactions in ILs, and also opens up the possibility of the application of picrate ILs as prospective diluents in nuclear separation for advanced fuel cycling process.

  6. Accelerating ab initio Molecular Dynamics and Probing the Weak Dispersive Forces in Dense Liquid Hydrogen. (United States)

    Mazzola, Guglielmo; Sorella, Sandro


    We propose an ab initio molecular dynamics method, capable of dramatically reducing the autocorrelation time required for the simulation of classical and quantum particles at finite temperatures. The method is based on an efficient implementation of a first order Langevin dynamics modified by means of a suitable, position dependent acceleration matrix S. Here, we apply this technique to both Lennard-Jones models, to demonstrate the accuracy and speeding-up of the sampling, and within a quantum Monte Carlo based wave function approach, for determining the phase diagram of high-pressure hydrogen with simulations much longer than the autocorrelation time. With the proposed method, we are able to equilibrate in a few hundred steps even close to the liquid-liquid phase transition (LLT). Within our approach, we find that the LLT transition is consistent with recent density functionals predicting a much larger transition pressure when the long range dispersive forces are taken into account.

  7. Weak Hydrogen Bonds from Aliphatic and Fluorinated Alocohols to Molecular Nitrogen Detected by Supersonic Jet FTIR Spectroscopy (United States)

    Oswald, Soenke; Suhm, Martin A.


    Complexes of organic molecules with the main component of earth's atmosphere are of interest, also for a stepwise understanding of the phenomenon of matrix isolation. Via its large quadrupole moment, nitrogen binds strongly to polarized OH groups in hydrogen-bonded dimers. Further complexation leads to a smooth spectral transition from free to embedded molecules which we probe in supersonic jets. Results for 1,1,1,3,3,3-hexafluoro-2-propanol, methanol, t-butyl alcohol, and the conformationally more complex ethanol are presented and assigned with the help of quantum chemical calculations. Kuma, S., Slipchenko, M. N., Kuyanov, K. E., Momose, T., Vilesov, A. F., Infrared Spectra and Intensities of the H_2O and N_2 Complexes in the Range of the ν_1- and ν_3-Bands of Water, J. Phys. Chem. A, 2006, 110, 10046-10052. Coussan, S., Bouteiller, Y., Perchard, J. P., Zheng, W. Q., Rotational Isomerism of Ethanol and Matrix Isolation Infrared Spectroscopy, J. Phys. Chem. A, 1998, 102, 5789-5793. Suhm, M. A., Kollipost, F., Femtisecond single-mole infrared spectroscopy of molecular clusters, Phys. Chem. Chem. Phys., 2013, 15, 10702-10721. Larsen, R. W., Zielke, P., Suhm, M. A., Hydrogen bonded OH stretching modes of methanol clusters: a combined IR and Raman isotopomer study, J. Chem. Phys., 2007, 126, 194307. Zimmermann, D., Häber, T., Schaal, H., Suhm, M. A., Hydrogen bonded rings, chains and lassos: The case of t-butyl alcohol clusters, Mol. Phys., 2001, 99, 413-425. Wassermann, T. N., Suhm, M. A., Ethanol Monomers and Dimers Revisited: A Raman Study of Conformational Preferences and Argon Nanocoating Effects, J. Phys. Chem. A, 2010, 114, 8223-8233.

  8. Speckle reducing anisotropic diffusion. (United States)

    Yu, Yongjian; Acton, Scott T


    This paper provides the derivation of speckle reducing anisotropic diffusion (SRAD), a diffusion method tailored to ultrasonic and radar imaging applications. SRAD is the edge-sensitive diffusion for speckled images, in the same way that conventional anisotropic diffusion is the edge-sensitive diffusion for images corrupted with additive noise. We first show that the Lee and Frost filters can be cast as partial differential equations, and then we derive SRAD by allowing edge-sensitive anisotropic diffusion within this context. Just as the Lee and Frost filters utilize the coefficient of variation in adaptive filtering, SRAD exploits the instantaneous coefficient of variation, which is shown to be a function of the local gradient magnitude and Laplacian operators. We validate the new algorithm using both synthetic and real linear scan ultrasonic imagery of the carotid artery. We also demonstrate the algorithm performance with real SAR data. The performance measures obtained by means of computer simulation of carotid artery images are compared with three existing speckle reduction schemes. In the presence of speckle noise, speckle reducing anisotropic diffusion excels over the traditional speckle removal filters and over the conventional anisotropic diffusion method in terms of mean preservation, variance reduction, and edge localization.

  9. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin


    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  10. Anisotropic contrast optical microscope. (United States)

    Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M


    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  11. Anisotropic Weyl invariance

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Nadal, Guillem [Universidad de Buenos Aires, Buenos Aires (Argentina)


    We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates ''scaling like time'' is generically greater than one. We propose the Cartesian product of two curved spaces, the metric of each space being parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry. (orig.)

  12. Weak relativity

    CERN Document Server

    Selleri, Franco


    Weak Relativity is an equivalent theory to Special Relativity according to Reichenbach’s definition, where the parameter epsilon equals to 0. It formulates a Neo-Lorentzian approach by replacing the Lorentz transformations with a new set named “Inertial Transformations”, thus explaining the Sagnac effect, the twin paradox and the trip from the future to the past in an easy and elegant way. The cosmic microwave background is suggested as a possible privileged reference system. Most importantly, being a theory based on experimental proofs, rather than mutual consensus, it offers a physical description of reality independent of the human observation.

  13. Exchange interaction of strongly anisotropic tripodal erbium single-ion magnets with metallic surfaces

    DEFF Research Database (Denmark)

    Dreiser, Jan; Wäckerlin, Christian; Ali, Md. Ehesan


    on a Ni thin film on Cu(100) single-crystalline surfaces. X-ray magnetic circular dichroism (XMCD) measurements performed on Au(111) samples covered with molecular monolayers held at temperatures down to 4 K suggest that the easy axes of the strongly anisotropic molecules are randomly oriented......We present a comprehensive study of Er(trensal) single-ion magnets deposited in ultrahigh vacuum onto metallic surfaces. X-ray photoelectron spectroscopy reveals that the molecular structure is preserved after sublimation, and that the molecules are physisorbed on Au(111) while they are chemisorbed....... Furthermore XMCD indicates a weak antiferromagnetic exchange coupling between the single-ion magnets and the ferromagnetic Ni/Cu(100) substrate. For the latter case, spin-Hamiltonian fits to the XMCD M(H) suggest a significant structural distortion of the molecules. Scanning tunneling microscopy reveals...

  14. Anisotropic Lyra cosmology

    Indian Academy of Sciences (India)

    Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.

  15. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao


    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  16. Muscle Weakness

    Directory of Open Access Journals (Sweden)

    Ali Al Kaissi MD, MSc


    Full Text Available Marked ligamentous hyperlaxity and muscle weakness/wasting associated with awkward gait are the main deficits confused with the diagnosis of myopathy. Seven children (6 boys and 1 girl with an average age of 8 years were referred to our department because of diverse forms of skeletal abnormalities. No definitive diagnosis was made, and all underwent a series of sophisticated investigations in other institutes in favor of myopathy. We applied our methodology through the clinical and radiographic phenotypes followed by targeted genotypic confirmation. Three children (2 boys and 1 girl were compatible with the diagnosis of progressive pseudorheumatoid chondrodysplasia. The genetic mutation was correlated with the WISP 3 gene actively expressed by articular chondrocytes and located on chromosome 6. Klinefelter syndrome was the diagnosis in 2 boys. Karyotyping confirmed 47,XXY (aneuploidy of Klinefelter syndrome. And 2 boys were finally diagnosed with Morquio syndrome (MPS type IV A as both showed missense mutations in the N-acetylgalactosamine-sulfate sulfatase gene. Misdiagnosis can lead to the initiation of a long list of sophisticated investigations.

  17. Discovery of 2D Anisotropic Dirac Cones. (United States)

    Feng, Baojie; Zhang, Jin; Ito, Suguru; Arita, Masashi; Cheng, Cai; Chen, Lan; Wu, Kehui; Komori, Fumio; Sugino, Osamu; Miyamoto, Koji; Okuda, Taichi; Meng, Sheng; Matsuda, Iwao


    2D anisotropic Dirac cones are observed in χ3 borophene, a monolayer boron sheet, using high-resolution angle-resolved photoemission spectroscopy. The Dirac cones are centered at the X and X' points. The data also reveal that the hybridization between borophene and Ag(111) is very weak, which explains the preservation of the Dirac cones. As χ3 borophene has been predicated to be a superconductor, the results may stimulate further research interest in the novel physics of borophene, such as the interplay between Cooper pairs and the massless Dirac fermions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Parallel Anisotropic Tetrahedral Adaptation (United States)

    Park, Michael A.; Darmofal, David L.


    An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.

  19. Anisotropic vector Preisach particle

    CERN Document Server

    Fuezi, J


    The static 2D vector magnetic behaviour of an anisotropic silicon iron sheet is modelled by a particle which depicts its space-averaged behaviour. The magnitude of magnetization is governed by a classical Preisach operator with the projection of field strength on the magnetization direction as input. Its orientation is determined by the equilibrium between the field strength orientation and the anisotropy of the sheet.

  20. Generalized anisotropic turbulence spectra and applications in the optical waves' propagation through anisotropic turbulence. (United States)

    Cui, Linyan; Xue, Bindang; Zhou, Fugen


    Theoretical and experimental investigations have shown that the atmospheric turbulence exhibits both anisotropic and non-Kolmogorov properties. In this work, two theoretical atmosphere refractive-index fluctuations spectral models are derived for optical waves propagating through anisotropic non-Kolmogorov atmospheric turbulence. They consider simultaneously the finite turbulence inner and outer scales and the asymmetric property of turbulence eddies in the orthogonal xy-plane throughout the path. Two anisotropy factors which parameterize the asymmetry of turbulence eddies in both horizontal and vertical directions are introduced in the orthogonal xy-plane, so that the circular symmetry assumption of turbulence eddies in the xy-plane is no longer required. Deviations from the classic 11/3 power law behavior in the spectrum model are also allowed by assuming power law value variations between 3 and 4. Based on the derived anisotropic spectral model and the Rytov approximation theory, expressions for the variance of angle of arrival (AOA) fluctuations are derived for optical plane and spherical waves propagating through weak anisotropic non-Kolmogorov turbulence. Calculations are performed to analyze the derived spectral models and the variance of AOA fluctuations.

  1. The stability of weakly collisional plasmas with thermal and composition gradients

    DEFF Research Database (Denmark)

    Pessah, M.E.; Chakraborty, S.


    temperature and composition. This allows us to discuss for the first time the dynamics of weakly collisional environments where heat conduction, momentum transport, and ion-diffusion are anisotropic with respect to the direction of the magnetic field. We show that depending on the relative signs...... the magnetic field configurations that arise as a natural consequence of the HBI, which would be MTI stable in a homogeneous medium, could be alleviated if the mean molecular weight gradient is steep enough, i.e., (¿µ)/µ > (¿T)/T. This study constitutes a first step toward understanding the interaction between...... approximation if heavy elements are able to sediment in the inner region of the galaxy cluster. Motivated by the need to obtain a more complete picture of the dynamical properties of the ICM, we analyze the stability of a weakly collisional, magnetized plane-parallel atmosphere which is stratified in both...

  2. S wave propagation in acoustic anisotropic media (United States)

    Stovas, Alexey


    The acoustic anisotropic medium can be defined in two ways. The first one is known as a pseudo-acoustic approximation (Alkhalifah, 1998) that is based on the fact that in TI media, P wave propagation is weakly dependent on parameter known as "vertical S-wave velocity" (Thomsen, 1986). The standard way to define the pseudo-acoustic approximation is to set this parameter to zero. However, as it was shown later (Grechka et al., 2004), there is "S wave artifact" in such a medium. Another way is to define the stack of horizontal solid-fluid layers and perform an upscaling based on the Backus (1962) averaging. The stiffness coefficient that responds to "vertical S wave velocity" turns to zero if any of layers has zero vertical S wave velocity. In this abstract, I analyze the S wave propagation is acoustic anisotropic medium and define important kinematic properties such as the group velocity surface and Dix-type equations. The kinematic properties can easily be defined from the slowness surface. In elastic transversely isotropic medium, the equations for P and SV wave slowness surfaces are coupled. Setting "vertical S wave velocity" to zero, results in decoupling of equations. I show that the S wave group velocity surface is given by quasi-astroidal form with the reference astroid defined by vertical and horizontal projections of group velocity. I show that there are cusps attached to both vertical and horizontal symmetry axes. The new S wave parameters include vertical, horizontal and normal moveout velocities. With the help of new parameterization, suitable for S wave, I also derived the Dix-type of equations to define the effective kinematical properties of S waves in multi-layered acoustic anisotropic medium. I have shown that effective media defined from P and S waves have different parameters. I also show that there are certain symmetries between P and S waves parameters and equations. The proposed method can be used for analysis of S waves in acoustic anisotropic

  3. Hydrodynamic cavitation in Stokes flow of anisotropic fluids (United States)

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam


    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids. PMID:28555615

  4. Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles. (United States)

    Narth, Christophe; Lagardère, Louis; Polack, Étienne; Gresh, Nohad; Wang, Qiantao; Bell, David R; Rackers, Joshua A; Ponder, Jay W; Ren, Pengyu Y; Piquemal, Jean-Philip


    We propose a general coupling of the Smooth Particle Mesh Ewald SPME approach for distributed multipoles to a short-range charge penetration correction modifying the charge-charge, charge-dipole and charge-quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry-Adapted Perturbation Theory reference data. Various neutral molecular dimers have been tested and results on the complexes of mono- and divalent cations with a water ligand are also provided. Transferability of the correction is adressed in the context of the implementation of the AMOEBA and SIBFA polarizable force fields in the TINKER-HP software. As the choices of the multipolar distribution are discussed, conclusions are drawn for the future penetration-corrected polarizable force fields highlighting the mandatory need of non-spurious procedures for the obtention of well balanced and physically meaningful distributed moments. Finally, scalability and parallelism of the short-range corrected SPME approach are addressed, demonstrating that the damping function is computationally affordable and accurate for molecular dynamics simulations of complex bio- or bioinorganic systems in periodic boundary conditions. Copyright © 2016 Wiley Periodicals, Inc.

  5. On the Relativistic anisotropic configurations

    CERN Document Server

    Shojai, F; Stepanian, A


    In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov (TOV) equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behaviour of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed.

  6. Relaxation of Anisotropic Glasses

    DEFF Research Database (Denmark)

    Deubener, Joachim; Martin, Birgit; Wondraczek, Lothar


    Anisotropic glasses are obtained from uniaxial compressing and pulling of glass forming liquids above the transition temperature range. To freeze-in, at least partly the structural state of the flowing melt, cylindrical samples were subjected to a controlled cooling process under constant load...... differential scanning calorimetry (DSC) and dilatometry. The energy release and expansion-shrinkage behaviour of the glasses are investigated as a function of the applied deformation stress. Structural origins of the frozen-in birefringence induced by viscous flow are discussed and correlation between...

  7. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao


    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...... correlation to the curing time. The experiments show no correlation between the anisotropy and the curing time and a small strength difference between the two drilling directions. The literature shows variations on which drilling direction that is strongest. Based on a Monto Carlo simulation of the expected...

  8. Brazilian Tensile Strength of Anisotropic Rocks: Review and New Insights

    Directory of Open Access Journals (Sweden)

    Tianshou Ma


    Full Text Available Strength anisotropy is one of the most distinct features of anisotropic rocks, and it also normally reveals strong anisotropy in Brazilian test Strength (“BtS”. Theoretical research on the “BtS” of anisotropic rocks is seldom performed, and in particular some significant factors, such as the anisotropic tensile strength of anisotropic rocks, the initial Brazilian disc fracture points, and the stress distribution on the Brazilian disc, are often ignored. The aim of the present paper is to review the state of the art in the experimental studies on the “BtS” of anisotropic rocks since the pioneering work was introduced in 1964, and to propose a novel theoretical method to underpin the failure mechanisms and predict the “BtS” of anisotropic rocks under Brazilian test conditions. The experimental data of Longmaxi Shale-I and Jixi Coal were utilized to verify the proposed method. The results show the predicted “BtS” results show strong agreement with experimental data, the maximum error is only ~6.55% for Longmaxi Shale-I and ~7.50% for Jixi Coal, and the simulated failure patterns of the Longmaxi Shale-I are also consistent with the test results. For the Longmaxi Shale-I, the Brazilian disc experiences tensile failure of the intact rock when 0° ≤ βw ≤ 24°, shear failure along the weakness planes when 24° ≤ βw ≤ 76°, and tensile failure along the weakness planes when 76° ≤ βw ≤ 90°. For the Jixi Coal, the Brazilian disc experiences tensile failure when 0° ≤ βw ≤ 23° or 76° ≤ βw ≤ 90°, shear failure along the butt cleats when 23° ≤ βw ≤ 32°, and shear failure along the face cleats when 32° ≤ βw ≤ 76°. The proposed method can not only be used to predict the “BtS” and underpin the failure mechanisms of anisotropic rocks containing a single group of weakness planes, but can also be generalized for fractured rocks containing multi-groups of weakness planes.

  9. 2D seismic reflection tomography in strongly anisotropic media (United States)

    Huang, Guangnan; Zhou, Bing; Li, Hongxi; Zhang, Hua; Li, Zelin


    Seismic traveltime tomography is an effective method to reconstruct underground anisotropic parameters. Currently, most anisotropic tomographic methods were developed under the assumption of weak anisotropy. The tomographic method proposed here can be implemented for imaging subsurface targets in strongly anisotropic media with a known tilted symmetry axis, since the adopted ray tracing method is suitable for anisotropic media with arbitrary degree. There are three kinds of reflection waves (qP, qSV and qSH waves) that were separately used to invert the blocky abnormal body model. The reflection traveltime tomographiy is developed here because a surface observation system is the most economical and practical way compared with crosswell and VSP. The numerical examples show that the traveltimes of qP reflection wave have inverted parameters {{c}11},{{c}13},{{c}33} \\text{and} {{c}44} successfully. Traveltimes of qSV reflection wave have inverted parameters {{c}11},{{c}33} \\text{and} {{c}44} successfully, with the exception of the {{c}13}, since it is less sensitive than other parameters. Traveltimes of qSH reflection wave also have inverted parameters {{c}44} \\text{and} {{c}66} successfully. In addition, we find that the velocity sensitivity functions (derivatives of phase velocity with respect to elastic moduli parameters) and raypath illuminating angles have a great influence on the qualities of tomograms according to the inversion of theoretical models. Finally, the numerical examples confirm that the reflection traveltime tomography can be applied to invert strongly anisotropic models.

  10. Thermodynamics of anisotropic branes

    Energy Technology Data Exchange (ETDEWEB)

    Ávila, Daniel [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Fernández, Daniel [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Patiño, Leonardo [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Trancanelli, Diego [Institute of Physics, University of São Paulo,05314-970 São Paulo (Brazil)


    We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a ‘Minkowski embedding’, in which they lie outside of the horizon, and a ‘black hole embedding’, in which they fall into the horizon. This transition depends on the black hole temperature, its degree of anisotropy, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.

  11. Anisotropic Rabi model

    Directory of Open Access Journals (Sweden)

    Qiong-Tao Xie


    Full Text Available We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii mesoscopic physics, Josephson-junction flux-qubit quantum circuits.

  12. Anisotropic thermal conductivity of graphene wrinkles. (United States)

    Wang, C; Liu, Y; Li, L; Tan, H


    In this paper, the anisotropic thermal conductivity characteristics of graphene wrinkles are observed for the first time using a non-equilibrium molecular dynamics method. Our results reveal that the wrinkling level has little effect on the thermal conductivity along the wrinkling direction. However, the wrinkling level plays an important role in the reduction of thermal conductivity along the texture direction, which results from the contributions of increased bond length, von Mises stress, broadening of phonon modes and G-band redshift. These results indicate that graphene wrinkles can be a promising candidate to modulate thermal conductivity properties in nanoscale thermal managements and thermoelectric devices.

  13. Anisotropic Etching Using Reactive Cluster Beams (United States)

    Koike, Kunihiko; Yoshino, Yu; Senoo, Takehiko; Seki, Toshio; Ninomiya, Satoshi; Aoki, Takaaki; Matsuo, Jiro


    The characteristics of Si etching using nonionic cluster beams with highly reactive chlorine-trifluoride (ClF3) gas were examined. An etching rate of 40 µm/min or higher was obtained even at room temperature when a ClF3 molecular cluster was formed and irradiated on a single-crystal Si substrate in high vacuum. The etching selectivity of Si with respect to a photoresist and SiO2 was at least 1:1000. We also succeeded in highly anisotropic etching with an aspect ratio of 10 or higher. Moreover, this etching method has a great advantage of low damage, compared with the conventional plasma process.

  14. Photon states in anisotropic media

    Indian Academy of Sciences (India)

    Abstract. Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.

  15. Viscosity for anisotropic Reissner-Nordström black branes (United States)

    Chakraborty, Soumangsu; Samanta, Rickmoy


    We investigate the behavior of shear viscosity in the presence of small anisotropy and a finite chemical potential. First, we construct an anisotropic Reissner Nordström black brane in five dimensions in a simple Einstein-Maxwell theory with a small linear dilaton. This solution is characterized by three mass scales: anisotropy ρ , temperature T , and chemical potential μ . We find this solution up to second order in the dilaton anisotropy parameter ρ . This black brane solution corresponds to an anisotropic phase where the anisotropy is small compared to the temperature and chemical potential. We find that in this anisotropic phase, some components of the anisotropic shear viscosity tensor, which are spin one with respect to the residual symmetry after breaking rotational invariance, violates the KSS bound (η/s ≥1/4 π ) proposed by Kovtun, Son, and Starinets. We identify the regions of the parameter space where these violations are significant. We carry out a similar analysis in four dimensions and find a similar violation of the KSS bound for the spin one components to demonstrate the generality of the result. Our results are particularly relevant in the context of strongly coupled systems found in nature. We also provide an intuitive understanding of the results using dimensional reduction and a Boltzmann calculation in a weakly coupled version of a similar system. The Boltzmann analysis performed in a system of weakly interacting particles in a linear potential also shows that components of the viscosity tensor may be reduced. It is intriguing that the Boltzmann analysis also predicts the corrections to be negative and that too in a manner similar to the anisotropic strongly coupled theories with smooth gravity duals.

  16. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali


    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  17. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C


    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  18. Fluctuation relations for anisotropic systems (United States)

    Villavicencio-Sanchez, R.; Harris, R. J.; Touchette, H.


    Currents of particles or energy in driven non-equilibrium steady states are known to satisfy certain symmetries, referred to as fluctuation relations, determining the ratio of the probabilities of positive fluctuations to negative ones. A generalization of these fluctuation relations has been proposed recently for extended non-equilibrium systems of dimension greater than one, assuming, crucially, that they are isotropic (Hurtado P. I., Pérez-Espigares C., del Pozo J. J. and Garrido P. L., Proc. Natl. Acad. Sci. U.S.A., 108 (2011) 7704). Here we relax this assumption and derive a fluctuation relation for d-dimensional systems having anisotropic bulk driving rates. We test the validity of this anisotropic fluctuation relation by calculating the particle current fluctuations in the 2d anisotropic zero-range process, using both exact and fluctuating hydrodynamic approaches.

  19. Dynamics of anisotropic power-law f(R) cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M. F., E-mail: [National University of Computer and Emerging Sciences, Lahore Campus, Department of Sciences and Humanities (Pakistan)


    Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.

  20. An anisotropic diffusion approximation to thermal radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Seth R.; Larsen, Edward W., E-mail:, E-mail: [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)


    This paper describes an anisotropic diffusion (AD) method that uses transport-calculated AD coefficients to efficiently and accurately solve the thermal radiative transfer (TRT) equations. By assuming weak gradients and angular moments in the radiation intensity, we derive an expression for the radiation energy density that depends on a non-local function of the opacity. This nonlocal function is the solution of a transport equation that can be solved with a single steady-state transport sweep once per time step, and the function's second angular moment is the anisotropic diffusion tensor. To demonstrate the AD method's efficacy, we model radiation flow down a channel in 'flatland' geometry. (author)

  1. Anisotropic magnetoresistance and piezoelectric effect in GaAs Hall samples (United States)

    Ciftja, Orion


    Application of a strong magnetic field perpendicular to a two-dimensional electron system leads to a variety of quantum phases ranging from incompressible quantum Hall liquid to Wigner solid, charge density wave, and exotic non-Abelian states. A few quantum phases seen in past experiments on GaAs Hall samples of electrons show pronounced anisotropic magnetoresistance values at certain weak magnetic fields. We argue that this might be due to the piezoelectric effect that is inherent in a semiconductor host such as GaAs. Such an effect has the potential to create a sufficient in-plane internal strain that will be felt by electrons and will determine the direction of high and low resistance. When Wigner solid, charge density wave, and isotropic liquid phases are very close in energy, the overall stability of the system is very sensitive to local order and, thus, can be strongly influenced even by a weak perturbation such as the piezoelectric-induced effective electron-electron interaction, which is anisotropic. In this work, we argue that an anisotropic interaction potential may stabilize anisotropic liquid phases of electrons even in a strong magnetic field regime where normally one expects to see only isotropic quantum Hall or isotropic Fermi liquid states. We use this approach to support a theoretical framework that envisions the possibility of an anisotropic liquid crystalline state of electrons in the lowest Landau level. In particular, we argue that an anisotropic liquid state of electrons may stabilize in the lowest Landau level close to the liquid-solid transition region at filling factor ν =1 /6 for a given anisotropic Coulomb interaction potential. Quantum Monte Carlo simulations for a liquid crystalline state with broken rotational symmetry indicate stability of liquid crystalline order consistent with the existence of an anisotropic liquid state of electrons stabilized by anisotropy at filling factor ν =1 /6 of the lowest Landau level.

  2. Failure in imperfect anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang


    The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending on...

  3. Magnetic relaxation in anisotropic magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker


    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse...

  4. Adiabatic theory for anisotropic cold molecule collisions

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, Mariusz [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń (Poland); Shagam, Yuval; Narevicius, Edvardas [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Moiseyev, Nimrod [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Physics, Technion–Israel Institute of Technology, Haifa 32000 (Israel)


    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.

  5. A Proposal for measuring Anisotropic Shear Viscosity in Unitary Fermi Gases

    CERN Document Server

    Samanta, Rickmoy; Trivedi, Sandip P


    We present a proposal to measure anisotropic shear viscosity in a strongly interacting, ultra-cold, unitary Fermi gas confined in a harmonic trap. We introduce anisotropy in this setup by strongly confining the gas in one of the directions with relatively weak confinement in the remaining directions. This system has a close resemblance to anisotropic strongly coupled field theories studied recently in the context of gauge-gravity duality. Computations in such theories (which have gravity duals) revealed that some of the viscosity components of the anisotropic shear viscosity tensor can be made much smaller than the entropy density, thus parametrically violating the bound proposed by Kovtun, Son and Starinets (KSS): $\\frac {\\eta} {s} \\geq \\frac{1}{4 \\pi}$. A Boltzmann analysis performed in a system of weakly interacting particles in a linear potential also shows that components of the viscosity tensor can be reduced. Motivated by these exciting results, we propose two hydrodynamic modes in the unitary Fermi ga...

  6. A crossover in anisotropic nanomechanochemistry of van der Waals crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shimamura, Kohei [Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Graduate School of System Informatics, Kobe University, Kobe 657-8501 (Japan); Misawa, Masaaki [Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Li, Ying [Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Shimojo, Fuyuki [Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan)


    In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10{sup −13} s from the passage of shock front, lateral collision produces NO{sub 2} via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10{sup −12} s, shock normal to multilayers becomes more reactive, producing H{sub 2}O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.

  7. Effect of nonmagnetic and magnetic impurities on the specific heat jump in anisotropic superconductors

    NARCIS (Netherlands)

    Openov, LA

    The specific-heat jump DeltaC at a critical temperature T-c in an anisotropic superconductor containing both potential and spin-flip scatterers is calculated within a weak-coupling mean-field approximation. It is shown that the presence of even a small amount of spin-flip scatterers in the sample

  8. Boundary conditions for gas flow problems from anisotropic scattering kernels (United States)

    To, Quy-Dong; Vu, Van-Huyen; Lauriat, Guy; Léonard, Céline


    The paper presents an interface model for gas flowing through a channel constituted of anisotropic wall surfaces. Using anisotropic scattering kernels and Chapman Enskog phase density, the boundary conditions (BCs) for velocity, temperature, and discontinuities including velocity slip and temperature jump at the wall are obtained. Two scattering kernels, Dadzie and Méolans (DM) kernel, and generalized anisotropic Cercignani-Lampis (ACL) are examined in the present paper, yielding simple BCs at the wall fluid interface. With these two kernels, we rigorously recover the analytical expression for orientation dependent slip shown in our previous works [Pham et al., Phys. Rev. E 86, 051201 (2012) and To et al., J. Heat Transfer 137, 091002 (2015)] which is in good agreement with molecular dynamics simulation results. More important, our models include both thermal transpiration effect and new equations for the temperature jump. While the same expression depending on the two tangential accommodation coefficients is obtained for slip velocity, the DM and ACL temperature equations are significantly different. The derived BC equations associated with these two kernels are of interest for the gas simulations since they are able to capture the direction dependent slip behavior of anisotropic interfaces.

  9. On the turbulent energy cascade in anisotropic magnetohydrodynamic turbulence

    CERN Document Server

    Carbone, V; Marino, R


    The problem of the occurrence of an energy cascade for Alfv\\'enic turbulence in solar wind plasmas was hystorically addressed by using phenomenological arguments based to the weakness of nonlinear interactions and the anisotropy of the cascade in wave vectors space. Here, this paradox is reviewed through the formal derivation of a Yaglom relation from anisotropic Magnetohydrodynamic equation. The Yaglom relation involves a third-order moment calculated from velocity and magnetic fields and involving both Els\\"asser vector fields, and is particularly useful to be used as far as spacecraft observations of turbulence are concerned.

  10. Anisotropic models for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K.; Dayanandan, Baiju [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)


    In the present paper we obtain an anisotropic analog of the Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) perfect fluid solution. The methodology consists of contraction of the anisotropic factor Δ with the help of both metric potentials e{sup ν} and e{sup λ}. Here we consider e{sup λ} the same as Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) did, whereas e{sup ν} is as given by Lake (Phys Rev D 67:104015, 2003). The field equations are solved by the change of dependent variable method. The solutions set mathematically thus obtained are compared with the physical properties of some of the compact stars, strange star as well as white dwarf. It is observed that all the expected physical features are available related to the stellar fluid distribution, which clearly indicates the validity of the model. (orig.)

  11. Cracking of anisotropic cylindrical polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)


    We study the appearance of cracking in charged anisotropic cylindrical polytropes with generalized polytropic equation. We investigate the existence of cracking in two different kinds of polytropes existing in the literature through two different assumptions: (a) local density perturbation with conformally flat condition, and (b) perturbing polytropic index, charge and anisotropy parameters. We conclude that cracking appears in both kinds of polytropes for a specific range of density and model parameters. (orig.)

  12. Propagation in Diagonal Anisotropic Chirowaveguides

    Directory of Open Access Journals (Sweden)

    S. Aib


    Full Text Available A theoretical study of electromagnetic wave propagation in parallel plate chirowaveguide is presented. The waveguide is filled with a chiral material having diagonal anisotropic constitutive parameters. The propagation characterization in this medium is based on algebraic formulation of Maxwell’s equations combined with the constitutive relations. Three propagation regions are identified: the fast-fast-wave region, the fast-slow-wave region, and the slow-slow-wave region. This paper focuses completely on the propagation in the first region, where the dispersion modal equations are obtained and solved. The cut-off frequencies calculation leads to three cases of the plane wave propagation in anisotropic chiral medium. The particularity of these results is the possibility of controlling the appropriate cut-off frequencies by choosing the adequate physical parameters values. The specificity of this study lies in the bifurcation modes confirmation and the possible contribution to the design of optical devices such as high-pass filters, as well as positive and negative propagation constants. This negative constant is an important feature of metamaterials which shows the phenomena of backward waves. Original results of the biaxial anisotropic chiral metamaterial are obtained and discussed.

  13. Anisotropic parameter estimation using velocity variation with offset analysis

    Energy Technology Data Exchange (ETDEWEB)

    Herawati, I.; Saladin, M.; Pranowo, W.; Winardhie, S.; Priyono, A. [Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, 40132 (Indonesia)


    Seismic anisotropy is defined as velocity dependent upon angle or offset. Knowledge about anisotropy effect on seismic data is important in amplitude analysis, stacking process and time to depth conversion. Due to this anisotropic effect, reflector can not be flattened using single velocity based on hyperbolic moveout equation. Therefore, after normal moveout correction, there will still be residual moveout that relates to velocity information. This research aims to obtain anisotropic parameters, ε and δ, using two proposed methods. The first method is called velocity variation with offset (VVO) which is based on simplification of weak anisotropy equation. In VVO method, velocity at each offset is calculated and plotted to obtain vertical velocity and parameter δ. The second method is inversion method using linear approach where vertical velocity, δ, and ε is estimated simultaneously. Both methods are tested on synthetic models using ray-tracing forward modelling. Results show that δ value can be estimated appropriately using both methods. Meanwhile, inversion based method give better estimation for obtaining ε value. This study shows that estimation on anisotropic parameters rely on the accuracy of normal moveout velocity, residual moveout and offset to angle transformation.

  14. Highly anisotropic conductivity in organosiloxane liquid crystals (United States)

    Gardiner, D. J.; Coles, H. J.


    In this paper, we present the conductivity and dielectric characterization of three homologous series of smectic A siloxane containing liquid crystals. The materials studied include one monomesogenic series, which consists of a 4-(ω-alkyloxy)-4'-cyanobiphenyl unit terminated by pentamethyldisiloxane, and two bimesogenic series, which consist of twin 4-(ω-alkyloxy)-4'-cyanobiphenyls joined via tetramethyldisiloxane or decamethylpentasiloxane. All of the compounds exhibit wide temperature range enantiotropic smectic A phases; the effect of the siloxane moiety is to suppress nematic morphology even in the short chain homologs. We find that these compounds exhibit a highly anisotropic conductivity: the value perpendicular to the director is to up to 200 times that parallel to the director. For the nonsiloxane analog 4-(ω-octyl)-4'-cyanobiphenyl (8CB), this value is approximately 2. It is also found that the dielectric anisotropy is reduced significantly; a typical value is ˜1 compared to 8.4 for 8CB. We propose that the origin of these unusual properties is in the smectic structure; the microphase separation of the bulky, globular siloxane moieties into liquidlike regions severely inhibits the mobility parallel to the director and across the smectic layers. Further, the inclusion of this unit acts to increase the antiparallel correlations of molecular dipoles in the aromatic and alkyloxy sublayers, reducing the dielectric anisotropy significantly compared to nonsiloxane analogs. The highly anisotropic conductivity suggests that these materials are particularly suitable for application in electro-optic effects which exploit this property, e.g., the bistable electro-optic effect in smectic A liquid crystals.

  15. Weak polyelectrolytes in Confined Geometries (United States)

    Whitmer, Jonathan K.; Rathee, Vikramjit S.; Sikora, Benjamin

    Crucial to the behavior of recently designed charge-rejection and mosaic membranes are the conformations of polyelectrolyte brushes and oligomeric grafts used to control the membranes' surface charge. The use of pH-tunable weak polyelectrolytes with associative interactions enables fine tuning of material transport properties. Here, we apply constant-pH molecular dynamics along with free energy sampling algorithms to understand the subtle tug-of-war between pH, salt concentrations, and solvation forces in confined systems, and determine how each of these effects alters transport within the system. We further discuss the implications of our findings for the design of electrolyte separation membranes.



    Bennis, Driss


    In this paper, we investigate the weak Gorenstein global dimensions. We are mainly interested in studying the problem when the left and right weak Gorenstein global dimensions coincide. We first show, for GF-closed rings, that the left and right weak Gorenstein global dimensions are equal when they are finite. Then, we prove that the same equality holds for any two-sided coherent ring. We conclude the paper with some examples and a brief discussion of the scope and limits of our results.

  17. History of Weak Interactions (United States)

    Lee, T. D.


    While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.

  18. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG


    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  19. Spin precession in anisotropic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Kamenshchik, A.Yu. [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); L. D. Landau Institute for Theoretical Physics, Moscow (Russian Federation); INFN, Bologna (Italy); Teryaev, O.V. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Lomonosov Moscow State University, Moscow (Russian Federation)


    We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This effect is present already in the Bianchi-I universe. We discuss in some detail the geodesics and the spin precession for both the Kasner and the Heckmann-Schucking solutions. In the Bianchi-IX universe the spin precession acquires the chaotic character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related helicity flip of fermions in the very early universe may produce the sterile particles contributing to dark matter. (orig.)

  20. Structural insight into the role of Gln293Met mutation on the Peloruside A/Laulimalide association with αβ-tubulin from molecular dynamics simulations, binding free energy calculations and weak interactions analysis (United States)

    Zúñiga, Matías A.; Alderete, Joel B.; Jaña, Gonzalo A.; Jiménez, Verónica A.


    Peloruside A (PLA) and Laulimalide (LAU) are novel microtubule-stabilizing agents with promising properties against different cancer types. These ligands share a non-taxoid binding site at the outer surface of β-tubulin and promote microtubule stabilization by bridging two adjacent αβ-tubulin dimers from parallel protofilaments. Recent site-directed mutagenesis experiments confirmed the existence of a unique β-tubulin site mutation (Gln293Met) that specifically increased the activity of PLA and caused resistance to LAU, without affecting the stability of microtubules in the absence of the ligands. In this work, fully atomistic molecular dynamics simulations were carried out to examine the PLA and LAU association with native and mutated αβ-tubulin in the search for structural and energetic evidence to explain the role of Gln293Met mutation on determining the activity of these ligands. Our results revealed that Gln293Met mutation induced the loss of relevant LAU-tubulin contacts but exerted negligible changes in the interaction networks responsible for PLA-tubulin association. Binding free energy calculations (MM/GBSA and MM/PBSA), and weak interaction analysis (aNCI) predicted an increased affinity for PLA, and a weakened association for LAU after mutation, thus suggesting that Gln293Met mutation exerts its action by a modulation of drug-tubulin interactions. These results are valuable to increase understanding about PLA and LAU activity and to assist the future design of novel agents targeting the PLA/LAU binding pocket.

  1. Adaptation of generalized Hill inequalities to anisotropic elastic ...

    African Journals Online (AJOL)

    Hill inequalities. From different type of anisotropic elastic symmetries, numerical examples are given. Constructing bounds on effective eigenvalues provides a deeper understanding about mechanical behavior of anisotropic materials. Generalized Hill inequalities are adapted to all anisotropic elastic symmetries.

  2. Cryogenic microwave anisotropic artificial materials (United States)

    Trang, Frank

    This thesis addresses analysis and design of a cryogenic microwave anisotropic wave guiding structure that isolates an antenna from external incident fields from specific directions. The focus of this research is to design and optimize the radome's constituent material parameters for maximizing the isolation between an interior receiver antenna and an exterior transmitter without significantly disturbing the transmitter antenna far field characteristics. The design, characterization, and optimization of high-temperature superconducting metamaterials constitutive parameters are developed in this work at X-band frequencies. A calibrated characterization method for testing arrays of split-ring resonators at cryogenic temperature inside a TE10 waveguide was developed and used to back-out anisotropic equivalent material parameters. The artificial material elements (YBCO split-ring resonators on MgO substrate) are optimized to improve the narrowband performance of the metamaterial radome with respect to maximizing isolation and minimizing shadowing, defined as a reduction of the transmitted power external to the radome. The optimized radome is fabricated and characterized in a parallel plate waveguide in a cryogenic environment to demonstrate the degree of isolation and shadowing resulting from its presence. At 11.12 GHz, measurements show that the HTS metamaterial radome achieved an isolation of 10.5 dB and the external power at 100 mm behind the radome is reduced by 1.9 dB. This work demonstrates the feasibility of fabricating a structure that provides good isolation between two antennas and low disturbance of the transmitter's fields.

  3. Anisotropic magnetoelectric characteristics in five-layer magnetization-graded multiferroic composites

    Directory of Open Access Journals (Sweden)

    Lei Chen


    Full Text Available We investigate the anisotropic magnetoelectric(ME characteristics for the five-layer magnetization-graded multiferroic composites(MGMC. The magnetic anisotropy and corresponding anisotropic magnetomechanical effect, demagnetization effect and magneto-mechanical damping’s dependence on magnetic field direction result in an obvious anisotropic ME coupling effect. The experimental results show that ME voltage coefficient in H33 mode is remarkably larger than the other ones (H11, H31 and H13 over the whole Hdc range. Correspondingly, ∂VME/∂Hdc arrives about 420mV/Oe at an optimum bias magnetic field of 46Oe, which is approximately 40 times larger than that of the previous reported composite. Furthermore, it also demonstrates an obvious angular dependence on dc magnetic field. Taking advantage of these specifications, the MGMC can be used to detect weak dc magnetic field and its spatial orientation.

  4. Modeling Chemical Interaction Profiles: II. Molecular Docking, Spectral Data-Activity Relationship, and Structure-Activity Relationship Models for Potent and Weak Inhibitors of Cytochrome P450 CYP3A4 Isozyme

    Directory of Open Access Journals (Sweden)

    Eugene Demchuk


    Full Text Available Polypharmacy increasingly has become a topic of public health concern, particularly as the U.S. population ages. Drug labels often contain insufficient information to enable the clinician to safely use multiple drugs. Because many of the drugs are bio-transformed by cytochrome P450 (CYP enzymes, inhibition of CYP activity has long been associated with potentially adverse health effects. In an attempt to reduce the uncertainty pertaining to CYP-mediated drug-drug/chemical interactions, an interagency collaborative group developed a consensus approach to prioritizing information concerning CYP inhibition. The consensus involved computational molecular docking, spectral data-activity relationship (SDAR, and structure-activity relationship (SAR models that addressed the clinical potency of CYP inhibition. The models were built upon chemicals that were categorized as either potent or weak inhibitors of the CYP3A4 isozyme. The categorization was carried out using information from clinical trials because currently available in vitro high-throughput screening data were not fully representative of the in vivo potency of inhibition. During categorization it was found that compounds, which break the Lipinski rule of five by molecular weight, were about twice more likely to be inhibitors of CYP3A4 compared to those, which obey the rule. Similarly, among inhibitors that break the rule, potent inhibitors were 2–3 times more frequent. The molecular docking classification relied on logistic regression, by which the docking scores from different docking algorithms, CYP3A4 three-dimensional structures, and binding sites on them were combined in a unified probabilistic model. The SDAR models employed a multiple linear regression approach applied to binned 1D 13C-NMR and 1D 15N-NMR spectral descriptors. Structure-based and physical-chemical descriptors were used as the basis for developing SAR models by the decision forest method. Thirty-three potent inhibitors

  5. Weak bond screening system (United States)

    Chuang, S. Y.; Chang, F. H.; Bell, J. R.

    Consideration is given to the development of a weak bond screening system which is based on the utilization of a high power ultrasonic (HPU) technique. The instrumentation of the prototype bond strength screening system is described, and the adhesively bonded specimens used in the system developmental effort are detailed. Test results obtained from these specimens are presented in terms of bond strength and level of high power ultrasound irradiation. The following observations were made: (1) for Al/Al specimens, 2.6 sec of HPU irradiation will screen weak bond conditions due to improper preparation of bonding surfaces; (2) for composite/composite specimens, 2.0 sec of HPU irradiation will disrupt weak bonds due to under-cured conditions; (3) for Al honeycomb core with composite skin structure, 3.5 sec of HPU irradiation will disrupt weak bonds due to bad adhesive or oils contamination of bonding surfaces; and (4) for Nomex honeycomb with Al skin structure, 1.3 sec of HPU irradiation will disrupt weak bonds due to bad adhesive.

  6. Nonconformal Fluctuations in Radiation Dominated Anisotropic ...

    Indian Academy of Sciences (India)


    the non-conformal quantum fluctuations (of expansion and shear) and axisymmetric singularity case in radiation dominated anisotropic cosmology. We show that near the classical singularity the quantum fluctuations tend to diverge. Key words. Quantum Cosmology—Anisotropic universes. 1. Introduction. It has been ...

  7. Anisotropic flow from RHIC to the LHC

    NARCIS (Netherlands)

    Snellings, R.J.M.


    Anisotropic flow is recognized as one of the main observables providing information on the early stage of a heavy-ion collision. At RHIC the large observed anisotropic flow and its successful description by ideal hydrodynamics is considered evidence for an early onset of thermalization and almost

  8. Anisotropic mixed-norm Hardy spaces

    DEFF Research Database (Denmark)

    Cleanthous, G.; Georgiadis, Athanasios; Nielsen, Morten


    We introduce and explore Hardy spaces defined by mixed Lebesgue norms and anisotropic dilations. We prove that the definitions of these spaces in terms of smooth, non-tangential, auxiliary, grand, and Poisson maximal operators coincide. We also study the relation between anisotropic mixed...

  9. Dyadic Green's functions for layered anisotropic medium (United States)

    Lee, J. K.; Kong, J. A.


    The dyadic Green's functions (DGF) for unbounded and layered anisotropic media have been obtained. The anisotropic medium is assumed to be tilted uniaxial. With the availability of the DGF's, many problems involving radiation and scattering of electromagnetic waves can readily be solved.

  10. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq


    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  11. Bagging Weak Predictors

    DEFF Research Database (Denmark)

    Lukas, Manuel; Hillebrand, Eric

    Relations between economic variables can often not be exploited for forecasting, suggesting that predictors are weak in the sense that estimation uncertainty is larger than bias from ignoring the relation. In this paper, we propose a novel bagging predictor designed for such weak predictor...... variables. The predictor is based on a test for finitesample predictive ability. Our predictor shrinks the OLS estimate not to zero, but towards the null of the test which equates squared bias with estimation variance. We derive the asymptotic distribution and show that the predictor can substantially lower...

  12. Biodirected synthesis and nanostructural characterization of anisotropic gold nanoparticles. (United States)

    Plascencia-Villa, Germán; Torrente, Daniel; Marucho, Marcelo; José-Yacamán, Miguel


    Gold nanoparticles with anisotropic structures have tunable absorption properties and diverse bioapplications as image contrast agents, plasmonics, and therapeutic-diagnostic materials. Amino acids with electrostatically charged side chains possess inner affinity for metal ions. Lysine (Lys) efficiently controlled the growing into star-shape nanoparticles with controlled narrow sizes (30-100 nm) and produced in high yields (85-95%). Anisotropic nanostructures showed tunable absorbance from UV to NIR range, with extraordinary colloidal stability (-26 to -42 mV) and surface-enhanced Raman scattering properties. Advanced electron microscopy characterization through ultra-high-resolution SEM, STEM, and HR-TEM confirmed the size, nanostructure, crystalline structure, and chemical composition. Molecular dynamics simulations revealed that Lys interacted preferentially with Au(I) through the -COOH group instead of their positive side chains with a binding free energy (BFE) of 3.4 kcal mol(-1). These highly monodisperse and colloidal stable anisotropic particles prepared with biocompatible compounds may be employed in biomedical applications.

  13. Anisotropic noble metal nanoparticles: Synthesis, surface functionalization and applications in biosensing, bioimaging, drug delivery and theranostics. (United States)

    Paramasivam, Gokul; Kayambu, Namitharan; Rabel, Arul Maximus; Sundramoorthy, Ashok K; Sundaramurthy, Anandhakumar


    Anisotropic nanoparticles have fascinated scientists and engineering communities for over a century because of their unique physical and chemical properties. In recent years, continuous advances in design and fabrication of anisotropic nanoparticles have opened new avenues for application in various areas of biology, chemistry and physics. Anisotropic nanoparticles have the plasmon absorption in the visible as well as near-infrared (NIR) region, which enables them to be used for crucial applications such as biological imaging, medical diagnostics and therapy ("theranostics"). Here, we describe the progress in anisotropic nanoparticles achieved since the millennium in the area of preparation including various shapes and modification of the particle surface, and in areas of application by providing examples of applications in biosensing, bio-imaging, drug delivery and theranostics. Furthermore, we also explain various mechanisms involved in cellular uptake of anisotropic nanoparticles, and conclude with our opinion on various obstacles that limit their applications in biomedical field. Anisotropy at the molecular level has always fascinated scientists and engineering communities for over a century, however, the research on novel methods through which shape and size of nanoparticles can be precisely controlled has opened new avenues for anisotropic nanoparticles in various areas of biology, chemistry and physics. In this manuscript, we describe progress achieved since the millennium in the areas of preparation of various shapes of anisotropic nanoparticles, investigate various methods involved in modifying the surface of these NPs, and provide examples of applications in biosensing and bio-imaging, drug delivery and theranostics. We also present mechanisms involved in cellular uptake of nanoparticles, describe different methods of preparation of anisotropic nanoparticles including biomimetic and photochemical synthesis, and conclude with our opinion on various

  14. Charged weak currents

    CERN Document Server

    Turlay, René


    In this review of charged weak currents the author concentrates on inclusive high energy neutrino physics. The authors discusses the general structure of charged currents, new results on total cross- sections, the Callan-Gross relation, antiquark distributions, scaling violations and tests of QCD. A very short summary on multilepton physics is given. (44 refs).

  15. On Weak Markov's Principle

    DEFF Research Database (Denmark)

    Kohlenbach, Ulrich Wilhelm


    We show that the so-called weak Markov's principle (WMP) which states that every pseudo-positive real number is positive is underivable in E-HA + AC. Since allows one to formalize (atl eastl arge parts of) Bishop's constructive mathematics, this makes it unlikely that WMP can be proved within...

  16. Stability of anisotropic stellar filaments (United States)

    Bhatti, M. Zaeem-ul-Haq; Yousaf, Z.


    The study of perturbation of self-gravitating celestial cylindrical object have been carried out in this paper. We have designed a framework to construct the collapse equation by formulating the modified field equations with the background of f(R , T) theory as well as dynamical equations from the contracted form of Bianchi identities with anisotropic matter configuration. We have encapsulated the radial perturbations on metric and material variables of the geometry with some known static profile at Newtonian and post-Newtonian regimes. We examined a strong dependence of unstable regions on stiffness parameter which measures the rigidity of the fluid. Also, the static profile and matter variables with f(R , T) dark source terms control the instability of compact cylindrical system.

  17. Anisotropic charged core envelope star (United States)

    Mafa Takisa, P.; Maharaj, S. D.


    We study a charged compact object with anisotropic pressures in a core envelope setting. The equation of state is quadratic in the core and linear in the envelope. There is smooth matching between the three regions: the core, envelope and the Reissner-Nordström exterior. We show that the presence of the electric field affects the masses, radii and compactification factors of stellar objects with values which are in agreement with previous studies. We investigate in particular the effect of electric field on the physical features of the pulsar PSR J1614-2230 in the core envelope model. The gravitational potentials and the matter variables are well behaved within the stellar object. We demonstrate that the radius of the core and the envelope can vary by changing the parameters in the speed of sound.

  18. Theoretical Probing of Weak Anion-Cation Interactions in Certain Pyridinium based Ionic Liquid Ion-Pairs and the Application of Molecular Electrostatic Potential in their Ionic Crystal Density Determination : A Comparative Study Using Density Functional Approach. (United States)

    Joseph, Aswathy; Thomas, Vibin Ipe; Żyła, Gaweł; Alapat, Padmanabhan Sridharan; Mathew, Suresh


    A comprehensive study on the structure, nature of interaction and properties of six ionic pairs of 1-butylpyridinium and 1-butyl-4-methylpyridinium cations in combination with tetrafluoroborate (BF4-), chloride (Cl-) and bromide (Br-) anions have been carried out using Density Functional Theory (DFT). The anion-cation interaction energy (ΔEint), theoretical band gap, molecular orbital energy-order, DFT-based chemical activity descriptors: chemical potential (μ), chemical hardness (η) and electrophilicity index (ω) and distribution of density of states (DOS) of these ion-pairs were investigated. The ascendancy of -CH3 substituent at the 4th position of the 1-butylpyridinium cation ring on the values of ΔEint, theoretical band gap and chemical activity descriptors was evaluated. The ΔEint values were negative for all the six ion-pairs and were highest for Cl- containing ion-pairs. The theoretical band-gap value after -CH3 substitution increased from 3.78 to 3.96 eV (for Cl-) and from 2.74 to 2.88 eV (for Br-) and decreased from 4.9 to 4.89 eV (for BF4-). Ion-pairs of BF4- were more susceptible to charge transfer processes as inferred from their significantly high η values and comparatively small difference in ω value after -CH3 substitution. The change in η and μ values due to the -CH3 substituent is negligibly small in all cases except for the ion-pairs of Cl-. The entropy change (ΔS) was negative for all the ion-pairs. Critical point (CP) analysis were carried out to investigate the AIM topological parameters at the inter-ionic bond critical points (BCPs). The RDG isosurface analysis indicated that anion-cation interaction was dominated by strong Hcat….Xani and Ccat….Xani interactions in ion-pairs of Cl- and Br- whereas weak van der Waal's effect dominated in ion-pairs of BF4-. The molecular electrostatic potential (MESP) based parameter ΔΔVmin measuring the anion-cation interaction strength showed a good linear correlation with ΔEint for all 1

  19. Finite-volume scheme for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)


    In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.

  20. Anisotropic inflation in Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Lahiri, Sayantani [ZARM, University of Bremen,Am Falltrum, 28359 Bremen (Germany)


    We study anisotropic inflation with Gauss-Bonnet correction in presence of a massless vector field. In this scenario, exact anisotropic power-law inflation is realized when the inflaton potential, gauge coupling function and the Gauss-Bonnet coupling are exponential functions. We show that anisotropy becomes proportional to two slow-roll parameters of the theory and hence gets enhanced in presence of quadratic curvature corrections. The stability analysis reveals that anisotropic power-law solutions remain stable over a substantially large parameter region.

  1. Weak lensing with GEST (United States)

    Rhodes, J. D.; Bennett, D. P.; Kaiser, N.


    Weak lensing by large-scale structure (cosmic shear) provides an opportunity to directly observe the dark matter in the universe. Current ground-based and space-based surveys have demonstrated the efficacy of this technique in determining the mass distribution and thus placing constraints on cosmological parameters such as Ω m, σ 8, and the bias parameter b. Current surveys have been hampered by the comparatively low resolution of ground-based telescopes and the small field of view of HST. To make significant progress in this field, wide field space-based surveys are needed. The Galactic Exoplanet Survey Telescope (GEST) will be able to provide 500- 1000 sqare degrees with a resolution of better than 0.2 arcseconds in multiple filters. This will make it an ideal instrument for a weak lensing survey.

  2. Composite weak bosons

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, M.


    Dynamical mechanism of composite W and Z is studied in a 1/N field theory model with four-fermion interactions in which global weak SU(2) symmetry is broken explicitly by electromagnetic interaction. Issues involved in such a model are discussed in detail. Deviation from gauge coupling due to compositeness and higher order loop corrections are examined to show that this class of models are consistent not only theoretically but also experimentally.

  3. Quarkonium states in an anisotropic quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yun


    In this work we study the properties of quarkonium states in a quark-gluon plasma which, due to expansion and non-zero viscosity, exhibits a local anisotropy in momentum space. We determine the hard-loop resummed gluon propagator in an anisotropic QCD plasma in general linear gauges and define a potential between heavy quarks from the Fourier transform of its static limit. This potential which arises due to one-gluon exchange describes the force between a quark and anti-quark at short distances. It is closer to the vacuum potential as compared to the isotropic Debye screened potential which indicates the reduced screening in an anisotropic QCD plasma. In addition, angular dependence appears in the potential; we find that there is stronger attraction on distance scales on the order of the inverse Debye mass for quark pairs aligned along the direction of anisotropy than for transverse alignment. The potential at long distances, however, is non-perturbative and modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is non-zero and inversely proportional to the temperature. With a phenomenological potential model which incorporates the different behaviors at short and long distances, we solve the three-dimensional Schroedinger equation. Our numerical results show that quarkonium binding is stronger at non-vanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states. Furthermore, we determine viscosity corrections to the imaginary part of the heavy-quark potential in the weak-coupling hard-loop approximation. The imaginary part is found to be smaller (in magnitude) than at vanishing viscosity. This implies a smaller decay width of quarkonium bound states in an anisotropic plasma. (orig.)

  4. The Weak Haagerup Property II

    DEFF Research Database (Denmark)

    Haagerup, Uffe; Knudby, Søren


    The weak Haagerup property for locally compact groups and the weak Haagerup constant were recently introduced by the second author [27]. The weak Haagerup property is weaker than both weak amenability introduced by Cowling and the first author [9] and the Haagerup property introduced by Connes [6......] and Choda [5]. In this paper, it is shown that a connected simple Lie group G has the weak Haagerup property if and only if the real rank of G is zero or one. Hence for connected simple Lie groups the weak Haagerup property coincides with weak amenability. Moreover, it turns out that for connected simple...... Lie groups the weak Haagerup constant coincides with the weak amenability constant, although this is not true for locally compact groups in general. It is also shown that the semidirect product R2 × SL(2,R) does not have the weak Haagerup property....

  5. The reciprocity theorem for porous anisotropic media

    Directory of Open Access Journals (Sweden)



    Full Text Available In this paper we give a reciprocity theorem for anisotropic
    porous media in the quasi-stationary case. The distribution of the
    pores is assumed statistically homogeneous.

  6. Particle Creation in Anisotropically Expanding Universe


    Suresh, P. K.


    Using squeezed vacuum state formalism of quantum optics, an approximate solution to the semiclassical Einstein equation is obtained in Bianchi type-I universe. The phenomena of nonclassical particle creation is also examined in the anisotropic background cosmology.

  7. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand


    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  8. Penetration effect in uniaxial anisotropic metamaterials (United States)

    Vytovtov, K.; Barabanova, E.; Zouhdi, S.


    Plane harmonic wave propagation along an interface between vacuum and a semi-infinite anisotropic metamaterial is considered. Possibility of penetration effect in the considered case is studied. It is shown that there is a bulk wave within the anisotropic metamaterial with an arbitrary orientation of the anisotropy axis. It is also proved that a reflected wave must propagate perpendicularly to the interface in the case of the extraordinary wave. Moreover, no wave is reflected in the case of ordinary wave propagation.

  9. An anisotropic elastoplasticity model implemented in FLAG

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Miles Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Canfield, Thomas R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the material will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.

  10. Anomalously large bend elastic constant and faster electro-optic response in anisotropic gels formed by a dipeptide (United States)

    Bhargavi, R.; Nair, Geetha G.; Prasad, S. Krishna; Prabhu, Rashmi; Yelamaggad, C. V.


    We report rheological, static, and dynamic Freedericksz transformation measurements on an anisotropic thermoreversible gel formed by gelation of a nematic liquid crystal (NLC) with a monodisperse dipeptide. The storage and loss modulii obtained from a low strain oscillatory shear experiment display that the material forms a weak anisotropic gel, and undergoes a sharp thermal transition to an anisotropic sol state. Freedericksz transformation studies employing an electric field for the reorientation of the molecules present a surprising result: the gel possesses a very large Frank bend elastic constant value, which is orders of magnitude higher than that for the high temperature sol state as well as that for the neat NLC used. On the other hand, the splay elastic constant shows relatively a small increase. Further, these elastic constants show systematic but nonlinear variation with the concentration of the gelator. Attractive features of the electro-optic switching when the sol transforms to the gel state are the vanishing of the undesirable backflow effect, and nearly an order of magnitude decrease in the switching speed. In both the gel and sol states the extracted rotational viscosities are comparable to the values of the neat NLC at corresponding temperatures. In contrast, the bulk dynamic viscosity is more than three orders of magnitude higher in the gel. The studies also demonstrate that the anisotropic gel to anisotropic sol transition seen in this weak gel can be tracked by simply monitoring the static or the dynamic Freedericksz transformation.

  11. Measurement of weak radioactivity

    CERN Document Server

    Theodorsson , P


    This book is intended for scientists engaged in the measurement of weak alpha, beta, and gamma active samples; in health physics, environmental control, nuclear geophysics, tracer work, radiocarbon dating etc. It describes the underlying principles of radiation measurement and the detectors used. It also covers the sources of background, analyzes their effect on the detector and discusses economic ways to reduce the background. The most important types of low-level counting systems and the measurement of some of the more important radioisotopes are described here. In cases where more than one type can be used, the selection of the most suitable system is shown.

  12. Ultrasonic Modeling of Bounded Beam Reflection from Anisotropic Media (United States)

    Schmitt, D. R.; Malehmir, R.; Kazemi, N.


    In this contribution, we try to physically model and understand the physics behind directional dependency of reflectivity from an anisotropic medium as a test of existing theory. One aspect of this is to motivate researchers to look beyond the simplifying assumptions that have been widely employed in the analysis of azimuthally varying seismic reflectivity. To do this, we are making laboratory measurements of the acoustic reflectivity from an orthorhombic medium cut at a variety of orientations in order to expose surfaces with differing anisotropy. The laboratory experiments employ a large aperture transmitter and a small, near-point-source, receiver placed within a goniometer that allows for rotation of the transducers and of the sample, this system was developed in earlier studies of reflectivity from porous media. This enables us to measure reflectivity from any azimuth and over a large range of incidence angles. We used Aluminum with known elastic properties for calibration and comparing the reflectivity results with Zoepprtiz solution. The successful correlation with reflectivity data enables us to go one step ahead and replace the sample with any anisotropic sample. The samples are machined from a `phenolic' material created with fibre cloth layers embedded within an epoxy resin, this material is known to be weakly orthorhombic. Blocks fo this material are cut such that the reflecting surfaces lie at a variety of angles with respect to the layering. These results suggest that some care should be employed in azimuthal seismic studies as it may be difficult to detect the differences in the reflectivity before the P-wave critical angle. However, this critical angle displays substantial change with azimuth and may provide important information for seismic investigations.The reflectivity variations are being modelled using a code called ARTc (Anisotropic Reflection and Transmission code) that provides the plane-wave reflectivity and transmissivity for the general

  13. ICU-Acquired Weakness. (United States)

    Jolley, Sarah E; Bunnell, Aaron E; Hough, Catherine L


    Survivorship after critical illness is an increasingly important health-care concern as ICU use continues to increase while ICU mortality is decreasing. Survivors of critical illness experience marked disability and impairments in physical and cognitive function that persist for years after their initial ICU stay. Newfound impairment is associated with increased health-care costs and use, reductions in health-related quality of life, and prolonged unemployment. Weakness, critical illness neuropathy and/or myopathy, and muscle atrophy are common in patients who are critically ill, with up to 80% of patients admitted to the ICU developing some form of neuromuscular dysfunction. ICU-acquired weakness (ICUAW) is associated with longer durations of mechanical ventilation and hospitalization, along with greater functional impairment for survivors. Although there is increasing recognition of ICUAW as a clinical entity, significant knowledge gaps exist concerning identifying patients at high risk for its development and understanding its role in long-term outcomes after critical illness. This review addresses the epidemiologic and pathophysiologic aspects of ICUAW; highlights the diagnostic challenges associated with its diagnosis in patients who are critically ill; and proposes, to our knowledge, a novel strategy for identifying ICUAW. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  14. Channeling through Two Stacked Guanine Quartets of One and Two Alkali Cations in the Li(+), Na(+), K(+), and Rb(+) Series. Assessment of the Accuracy of the SIBFA Anisotropic Polarizable Molecular Mechanics Potential. (United States)

    Gresh, Nohad; Naseem-Khan, Sehr; Lagardère, Louis; Piquemal, Jean-Philip; Sponer, Judit E; Sponer, Jiri


    Stacking of guanine quartets (GQs) can trigger the formation of DNA or RNA quadruple helices, which play numerous biochemical roles. The GQs are stabilized by alkali cations, mainly K(+) and Na(+), which can reside in, or channel through, the central axis of the GQ stems. Further, ion conduction through GQ wires can be leveraged for nanochemistry applications. G-quadruplex systems have been extensively studied by classical molecular dynamics (MD) simulations using pair-additive force fields or by quantum-chemical (QC) calculations. However, the non-polarizable force fields are very approximate, while QC calculations lack the necessary sampling. Thus, ultimate description of GQ systems would require long-enough simulations using advanced polarizable molecular mechanics (MM). However, to perform such calculations, it is first mandatory to evaluate the method's accuracy using benchmark QC. We report such an evaluation for SIBFA polarizable MM, bearing on the channeling (movement) of an alkali cation (Li(+), Na(+), K(+), or Rb(+)) along the axis of two stacked G quartets interacting with either one or two ions. The QC energy profiles display markedly different features depending upon the cation but can be retrieved in the majority of cases by the SIBFA profiles. An appropriate balance of first-order (electrostatic and short-range repulsion) and second-order (polarization, charge-transfer, and dispersion) contributions within ΔE is mandatory. With two cations in the channel, the relative weights of the second-order contributions increase steadily upon increasing the ion size. In the G8 complexes with two K(+) or two Rb(+) cations, the sum of polarization and charge-transfer exceeds the first order terms for all ion positions.

  15. Weak Quantum Ergodicity

    CERN Document Server

    Kaplan, L


    We examine the consequences of classical ergodicity for the localization properties of individual quantum eigenstates in the classical limit. We note that the well known Schnirelman result is a weaker form of quantum ergodicity than the one implied by random matrix theory. This suggests the possibility of systems with non-gaussian random eigenstates which are nonetheless ergodic in the sense of Schnirelman and lead to ergodic transport in the classical limit. These we call "weakly quantum ergodic.'' Indeed for a class of "slow ergodic" classical systems, it is found that each eigenstate becomes localized to an ever decreasing fraction of the available state space, in the semiclassical limit. Nevertheless, each eigenstate in this limit covers phase space evenly on any classical scale, and long-time transport properties betwen individual quantum states remain ergodic due to the diffractive effects which dominate quantum phase space exploration.

  16. Anisotropic nanomaterials: structure, growth, assembly, and functions (United States)

    Sajanlal, Panikkanvalappil R.; Sreeprasad, Theruvakkattil S.; Samal, Akshaya K.; Pradeep, Thalappil


    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications. PMID:22110867

  17. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan


    Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.

  18. Tunneling anisotropic magnetoresistance in C60-based organic spintronic systems

    NARCIS (Netherlands)

    Wang, Kai; Sanderink, Johannes G.M.; Bolhuis, Thijs; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter


    C 60 fullerenes are interesting molecular semiconductors for spintronics since they exhibit weak spin-orbit and hyperfine interactions, which is a prerequisite for long spin lifetimes. We report spin-polarized transport in spin-valve-like structures containing ultrathin (<10 nm) C 60 layers,

  19. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng


    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  20. Generalized Fractional Derivative Anisotropic Viscoelastic Characterization

    Directory of Open Access Journals (Sweden)

    Harry H. Hilton


    Full Text Available Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.

  1. Gravitational stresses in anisotropic rock masses (United States)

    Amadei, B.; Savage, W.Z.; Swolfs, H.S.


    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.

  2. Modeling Geodynamic Mobility of Anisotropic Lithosphere (United States)

    Perry-Houts, J.; Karlstrom, L.


    The lithosphere is often idealized as a linear, or plastic layer overlying a Newtonian half-space. This approach has led to many insights into lithospheric foundering that include Rayligh-Taylor drips, slab-style delaminations, and small scale convection in the asthenosphere. More recent work has begun to quantify the effect of anisotropic lithosphere viscosity on these same phenomena. Anisotropic viscosity may come about due to stratigraphic deposition in the upper crust, dike/sill emplacement in the mid crust, or volcanic underplating at the Moho related to arcs or plumes. Anisotropic viscosity is also observed in the mantle, due to preferential orientation of olivine grains during flow. Here we extend the work of Lev & Hager (2008) on modeling anisotropic lithospheric foundering to investigate the effects of anisotropic regions which vary in size, magnitude, and orientation. We have extended Aspect, a modern geodynamic finite element code with a large developer and user base, to model exotic constitutive laws with an arbitrary fourth order tensor in place of the viscosity term. We further implement a material model to represent a transverse isotropic medium, such as is expected in a layered, or fractured lithosphere. We have validated our implementation against previous results, and analytic solutions, reproducing the result that horizontally oriented anisotropy tends to inhibit drips, and produce longer-wavelength instabilities. We expect that increased lateral extent of anisotropic regions will exaggerate this effect, to a limit at which the effect will plateau. Varying lithosphere thickness, and mantle anisotropy anisotropy may produce similar behavior. The implications of this effect are significant to lithospheric foundering beneath arcs and hotspots, possibly influencing the recycling of eclogite, production of silicic magmas, and dynamic topography.

  3. Anisotropic Intermittency of Magnetohydrodynamic Turbulence

    CERN Document Server

    Osman, K T; Chapman, S C; Hnat, B


    A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Els\\"asser field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multi-exponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. As such, these results present strong observational constraints on the statistical nature of intermittency in turbulent plasmas.


    Energy Technology Data Exchange (ETDEWEB)

    Osman, K. T.; Kiyani, K. H.; Chapman, S. C.; Hnat, B., E-mail: [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom)


    A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsässer field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multiexponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. As such, these results present strong observational constraints on the statistical nature of intermittency in turbulent plasmas.

  5. Anisotropic Intermittency of Magnetohydrodynamic Turbulence (United States)

    Osman, K.; Kiyani, K. H.; Chapman, S. C.; Hnat, B.


    A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsässer field fluctuations is that of a non-Gaussian globally scale invariant process. This is distinct from the classic multifractal scaling observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. As such, these results present strong observational contraints on the statistical nature of intermittency in turbulent plasmas.

  6. Modelling of CMUTs with Anisotropic Plates

    DEFF Research Database (Denmark)

    la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt


    Traditionally, CMUTs are modelled using the isotropic plate equation and this leads to deviations between analytical calculations and FEM simulations. In this paper, the deflection profile and material parameters are calculated using the anisotropic plate equation. It is shown that the anisotropic...... calculations match perfectly with FEM while an isotropic approach causes up to 10% deviations in deflection profile. Furthermore, we show how commonly used analytic modelling methods such as static calculations of the pull-in voltage and dynamic modelling through an equivalent circuit representation can...

  7. Anisotropic nanomaterials preparation, properties, and applications

    CERN Document Server

    Li, Quan


    In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosi

  8. Anisotropic yielding of rocks at high temperatures and pressures; Annual Progress Report, 1988-1989

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, A.K.; Russell, J.E.; Carter, N.L.


    The experimental results we have obtained on Four-Mile gneiss have demonstrated that the yield behavior of quartzo-feldspathic rocks containing only a small percentage (10%) of mica can be markedly anisotropic, provided the mica minerals exhibit a strong crystallographic preferred orientation. Samples of gneiss oriented such that resolved shear stresses on the foliation plane are large are considerably weaker than granites of similar grain size and composition, and this weakness is attributed to enhanced nucleation of microcracks in quartz and feldspar adjacent to mica grains that are suitably oriented for slip. We expect the yield behavior of rocks containing a higher proportion of phyllosilicates to be influenced by the strongly anisotropic nature of these minerals as well, although the strengths, temperature and pressure dependencies, and flow-controlling mechanisms in such rocks may be significantly different.

  9. Adiabatically reduced magnetohydrodynamic equations for a cylindrical plasma with an anisotropic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Nebogatov, V. A.; Pastukhov, V. P., E-mail: [National Research Centre Kurchatov Institute (Russian Federation)


    A closed set of reduced equations describing low-frequency nonlinear flute magnetohydrodynamic (MHD) convection and the resulting nondiffusive processes of particle and energy transport in a weakly collisional cylindrical plasma with an anisotropic pressure is derived. The Chew-Goldberger-Low anisotropic magnetohydrodynamics is used as the basic dynamic model, because this model is applicable to describing flute convection in a cylindrical plasma column even in the low-frequency limit. The reduced set of equations was derived using the method of adiabatic separation of fast and slow motions. It is shown that the structure of the adiabatic transformation and the corresponding velocity field are identical to those obtained earlier in the isotropic MHD model. However, the derived heat transfer equations differ drastically from the isotropic pressure model. In particular, they indicate a tendency toward maintaining different radial profiles of the longitudinal and transverse pressures.

  10. Earth's Inner Core as a Conglomerate of Anisotropic Domains (United States)

    Tkalcic, H.


    The days when the Earth’s inner core (IC) was viewed as a homogenous solid body with a cylindrical anisotropy having a fast axis nearly parallel to the Earth’s rotation axis are now behind us. A number of concepts for the IC structure and dynamics have been proposed to explain different types of seismological observations, but due to a lack of an experimentally controlled environment in the seismology of the deep Earth, it is difficult to scrutinize competitive hypotheses. In Earth sciences, we often come closer to the truth through negative instances rather than the verification of existing hypotheses. A conglomerate of anisotropic domains in the IC combined with the inhomogeneous structure of the mantle is a likely concept or a working hypothesis that, inter alia, reconciles observed complexities in differential PKP travel times while preserving a net IC anisotropy that is required to explain the anomalous splitting of Earth's free oscillations. The conglomerate model is compatible with the observations of laterally- and radially-varying anisotropy and negates the concept of a strong uniform cylindrical anisotropy in the inner core. Varying and small PKP travel-time residuals from polar paths suggest weak average anisotropy, and means that the fast axis of anisotropy cannot be preserved over the entire volume of the IC. Columnar convection and convective heat flux in the outer core result in heat transfer variations, which is one of the mechanisms that influence IC growth and crystal alignment, and this has been suggested through the observation of variations in crystal alignment, texture, and modeling of randomly oriented anisotropic patches. With the current configuration of receivers and earthquakes worldwide, it is difficult to achieve a satisfactory sampling of the inner core, except for the paths nearly parallel to the equatorial plane. An exception is a dataset associated with the ray-paths from the South Atlantic earthquakes recorded at the

  11. Pressure-induced topological phase transitions and strongly anisotropic magnetoresistance in bulk black phosphorus (United States)

    Li, Chun-Hong; Long, Yu-Jia; Zhao, Ling-Xiao; Shan, Lei; Ren, Zhi-An; Zhao, Jian-Zhou; Weng, Hong-Ming; Dai, Xi; Fang, Zhong; Ren, Cong; Chen, Gen-Fu


    We report the anisotropic magnetotransport measurement on a noncompound band semiconductor black phosphorus (BP) with magnetic field B up to 16 Tesla applied in both perpendicular and parallel to electric current I under hydrostatic pressures. The BP undergoes a topological Lifshitz transition from band semiconductor to a zero-gap Dirac semimetal state at a critical pressure Pc, characterized by a weak localization-weak antilocalization transition at low magnetic fields and the emergence of a nontrivial Berry phase of π detected by SdH magneto-oscillations in magnetoresistance curves. In the transition region, we observe a pressure-dependent negative MR only in the B ∥I configuration. This negative longitudinal MR is attributed to the Adler-Bell-Jackiw anomaly (topological E .B term) in the presence of weak antilocalization corrections.

  12. Hypersurface-homogeneous cosmological models with anisotropic ...

    Indian Academy of Sciences (India)

    The present study deals with hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez–Ballester theory of gravitation. Exact solutions of field equations are obtained by applying a special law of variation of Hubble's parameter that yields a constant negative value of the deceleration parameter.

  13. Minimally coupled scalar field cosmology in anisotropic ...

    Indian Academy of Sciences (India)

    We study a spatially homogeneous and anisotropic cosmological model in the Einstein gravitational theory with a minimally coupled scalar field. We consider a non-interacting combination of scalar field and perfect fluid as the source of matter components which are separately conserved. The dynamics of cosmic scalar ...

  14. A new algorithm for anisotropic solutions

    Indian Academy of Sciences (India)

    Abstract. We establish a new algorithm that generates a new solution to the Einstein field equations, with an anisotropic matter distribution, from a seed isotropic solution. The new solution is expressed in terms of integrals of an isotropic gravitational potential; and the integration can be completed exactly for particular ...

  15. Adaptive slices for acquisition of anisotropic BRDF

    Czech Academy of Sciences Publication Activity Database

    Vávra, Radomír; Filip, Jiří

    (2018) ISSN 2096-0433 R&D Projects: GA ČR GA17-18407S Institutional support: RVO:67985556 Keywords : anisotropic BRDF * slice * sampling Subject RIV: BD - Theory of Information http:// library

  16. Casimir interactions for anisotropic magnetodielectric metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Da Rosa, Felipe S [Los Alamos National Laboratory; Dalvit, Diego A [Los Alamos National Laboratory; Milonni, Peter W [Los Alamos National Laboratory


    We extend our previous work on the generalization of the Casimir-Lifshitz theory to treat anisotropic magnetodielectric media, focusing on the forces between metals and magnetodielectric metamaterials and on the possibility of inferring magnetic effects by measurements of these forces.

  17. Anisotropic Interactions between Cold Rydberg Atoms (United States)


    AFRL-AFOSR-CL-TR-2015-0002 Anisotropic interactions between cold Rydberg atoms Luis Marcassa INSTITUTO DE FISICA DE SAO CARLOS Final Report 09/28...problem with the report +551633739806 Organization / Institution name Instituto de Fisica de Sao Carlos Grant/Contract Title The full title of the

  18. Theory of anisotropic diamagnetism, local moment magnetization ...

    Indian Academy of Sciences (India)


    Nov 27, 2015 ... We present theoretical analyses of anisotropic lattice diamagnetism, magnetization due to magnetic ions and carrier spin-polarization in the diluted magnetic semiconductor, Pb1-EuTe. The lattice diamagnetism results from orbital susceptibility due to inter band effects and spin-orbit contributions.

  19. Modelling anisotropic water transport in polymer composite ...

    Indian Academy of Sciences (India)

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...

  20. Spin Wave Theory of Strongly Anisotropic Magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker


    A strong anisotropy gives rise to a non-spherical precession of the spins with different amplitudes in the x and y directions. The highly anharmonic exchange interaction thereby becomes effectively anisotropic. The possibility of detecting a genuine two-ion anisotropy is discussed, and comments a...

  1. Anisotropic behaviour of semiconducting tin monosulphoselenide ...

    Indian Academy of Sciences (India)


    The anisotropic behaviour and the effect of change in stoichiometric proportion of S and. Se content on the electrical properties of single crystals of the series, SnSxSe1–x (where x = 0, 0⋅25, 0⋅50, 0⋅75 and 1), is presented systematically. Keywords. Crystal growth; layered structure; resistivity; anisotropy; stacking disorder.

  2. On characterization of anisotropic plant protein structures

    NARCIS (Netherlands)

    Krintiras, G.A.; Göbel, J.; Bouwman, W.G.; Goot, van der A.J.; Stefanidis, G.D.


    In this paper, a set of complementary techniques was used to characterize surface and bulk structures of an anisotropic Soy Protein Isolate (SPI)–vital wheat gluten blend after it was subjected to heat and simple shear flow in a Couette Cell. The structured biopolymer blend can form a basis for a

  3. Magnetized anisotropic dark energy models with constant ...

    Indian Academy of Sciences (India)


    Nov 3, 2016 ... and galaxy clustering statistics [15] are −1.67 <ω<. −0.62 and −1.33 <ω< −0.79, respectively. LRS Bianchi type-I cosmological models are inves- tigated by Akarsu and Kilinic [16] in the presence of dynamically anisotropic dark energy and perfect fluid. Precise solutions of Einstein's field equations.

  4. Acoustic reflection from the boundary of anisotropic ...

    Indian Academy of Sciences (India)

    Reflection and refraction of plane harmonic acoustic waves are studied at a plane boundary between anisotropic thermoviscoelastic solid and a non-viscous fluid. At this fluid-solid interface, an incident acoustic wave through the fluid reflects back as an attenuated acoustic wave and refracts as four attenuating waves into ...

  5. Modelling anisotropic water transport in polymer composite ...

    Indian Academy of Sciences (India)

    Abstract. This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation ...

  6. Acoustic reflection from the boundary of anisotropic ...

    Indian Academy of Sciences (India)

    MS received 10 December 2008; revised 4 May 2009. Abstract. Vertical slownesses of waves at a boundary of an anisotropic thermoviscoelastic medium are calculated as roots of a polynomial equation of degree eight. Out of the corresponding eight waves, the four, which travel towards the boundary are identified as ...

  7. Theory of anisotropic diamagnetism, local moment magnetization ...

    Indian Academy of Sciences (India)

    Abstract. We present theoretical analyses of anisotropic lattice diamagnetism, magnetization due to magnetic ions and carrier spin-polarization in the diluted magnetic semiconductor, Pb1 xEuxTe. The lattice diamagnetism results from orbital susceptibility due to inter band effects and spin-orbit contributions. The spin-orbit ...

  8. Weak Measurement and Quantum Correlation

    Indian Academy of Sciences (India)

    Arun Kumar Pati

    The concept of the weak measurements, for the first time, was introduced by Aharonov et al.1. Quantum state is preselected in |ψi〉 and allowed to interact weakly with apparatus. Measurement strength can be tuned and for “small g(t)” it is called 'weak measurement'. With postselection in |ψf 〉, apparatus state is shifted by an ...

  9. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Minoru, E-mail: [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Katagiri, Mitsuhiko; Shironita, Sayoko [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nagayama, Norio [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Ricoh Company, Ltd., Nishisawada, Numazu, Shizuoka 410-0007 (Japan)


    Highlights: • A hole transport molecule was investigated based on its electrochemical redox characteristics. • The solubility and supersolubility curves of the molecule were measured in order to prepare a large crystal. • The polarization micrograph and XRD results revealed that a single crystal was obtained. • An anisotropic surface conduction, in which the long-axis direction exceeds that of the amorphous layer, was observed. • The anisotropic surface conduction was well explained by the molecular stacked structure. - Abstract: This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor’s technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.

  10. Active Colloids in Isotropic and Anisotropic Electrolytes (United States)

    Peng, Chenhui

    Electrically driven flows of fluids with respect to solid surfaces (electro-osmosis) and transport of particles in fluids (electrophoresis), collectively called electrokinetics, is a technologically important area of modern science. In this thesis, we study the electrokinetic phenomena in both isotropic and anisotropic fluids. A necessary condition of electrokinetics is separation of electric charges in space. In classic linear electrokinetics, with an isotropic electrolyte such as water, the charges are separated through dissociation of ionic groups at the solid-fluid interface; presence of the electric field is not required. In the nonlinear electrokinetics, the charges are separated with the assistance of the electric field. In the so-called induced-charge electro-osmosis (ICEO) the electric field separates charges near strongly polarizable surfaces such as metals. We establish the patterns of electro-osmotic velocities caused by nonlinear ICEO around an immobilized metallic and Janus (metallic-dielectric) spheres placed in water. In the case of the Janus particles, the flows are asymmetric, which results in pumping of water around the particle if it is immobilized, or in electrophoresis is the particle is free. When the isotropic electrolyte such as water is replaced with a LC electrolyte, the mechanism of the field-assisted charge separation becomes very different. Namely, the charges are separated at the director gradients, thanks to the anisotropy of electric conductivity and dielectric permittivity of the LC. These distortions can be created by the colloidal particles placed in the LC. We demonstrate the occurrence of nonlinear LC-enabled electro-osmosis (LCEO) by studying the flow patterns around colloidal spheres with different surface anchoring. LCEO velocities grow with the square of the electric field, which allows one to use an AC field to drive steady flows and to avoid electrode damage. Director distortions needed to trigger the LCEO can also be

  11. Molecular Organization Induced Anisotropic Properties of Perylene - Silica Hybrid Nanoparticles. (United States)

    Sriramulu, Deepa; Turaga, Shuvan Prashant; Bettiol, Andrew Anthony; Valiyaveettil, Suresh


    Optically active silica nanoparticles are interesting owing to high stability and easy accessibility. Unlike previous reports on dye loaded silica particles, here we address an important question on how optical properties are dependent on the aggregation-induced segregation of perylene molecules inside and outside the silica nanoparticles. Three differentially functionalized fluorescent perylene - silica hybrid nanoparticles are prepared from appropriate ratios of perylene derivatives and tetraethyl orthosilicate (TEOS) and investigated the structure property correlation (P-ST, P-NP and P-SF). The particles differ from each other on the distribution, organization and intermolecular interaction of perylene inside or outside the silica matrix. Structure and morphology of all hybrid nanoparticles were characterized using a range of techniques such as electron microscope, optical spectroscopic measurements and thermal analysis. The organizations of perylene in three different silica nanoparticles were explored using steady-state fluorescence, fluorescence anisotropy, lifetime measurements and solid state polarized spectroscopic studies. The interactions and changes in optical properties of the silica nanoparticles in presence of different amines were tested and quantified both in solution and in vapor phase using fluorescence quenching studies. The synthesized materials can be regenerated after washing with water and reused for sensing of amines.

  12. Surface instabilities during straining of anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Richelsen, Ann Bettina


    The development of instabilities in traction-free surfaces is investigated numerically using a unit cell model. Full finite strain analyses are conducted using isotropic as well as anisotropic yield criteria and both plane strain tension and compression are considered. In the load range of tension...... of principal overall strain. For other orientations surface instabilities are seen when non-associated plastic flow is taken into account. Compared to tension, smaller compressive deformations are needed in order to initiate a surface instability....... investigated, it is found that isotropic plasticity can only predict surface instabilities if non-associated plastic flow is accounted for. However, for anisotropic plasticity a surface instability is observed for associated plastic flow if the principal axes of anisotropy coincide with the directions...

  13. Anisotropic permeability in deterministic lateral displacement arrays

    CERN Document Server

    Vernekar, Rohan; Loutherback, Kevin; Morton, Keith; Inglis, David


    We investigate anisotropic permeability of microfluidic deterministic lateral displacement (DLD) arrays. A DLD array can achieve high-resolution bimodal size-based separation of micro-particles, including bioparticles such as cells. Correct operation requires that the fluid flow remains at a fixed angle with respect to the periodic obstacle array. We show via experiments and lattice-Boltzmann simulations that subtle array design features cause anisotropic permeability. The anisotropy, which indicates the array's intrinsic tendency to induce an undesired lateral pressure gradient, can lead to off-axis flows and therefore local changes in the critical separation size. Thus, particle trajectories can become unpredictable and the device useless for the desired separation duty. We show that for circular posts the rotated-square layout, unlike the parallelogram layout, does not suffer from anisotropy and is the preferred geometry. Furthermore, anisotropy becomes severe for arrays with unequal axial and lateral gaps...

  14. Equilibrium-Based Nonhomogeneous Anisotropic Beam Element

    DEFF Research Database (Denmark)

    Krenk, Steen; Couturier, Philippe


    The stiffness matrix and the nodal forces associated with distributed loads are obtained for a nonhomogeneous anisotropic elastic beam element by the use of complementary energy. The element flexibility matrix is obtained by integrating the complementary-energy density corresponding to six beam...... equilibrium states, and then inverted and expanded to provide the element-stiffness matrix. Distributed element loads are represented via corresponding internal-force distributions in local equilibrium with the loads. The element formulation does not depend on assumed shape functions and can, in principle......, include any variation of cross-sectional properties and load variation, provided that these are integrated with sufficient accuracy in the process. The ability to represent variable cross-sectional properties, coupling from anisotropic materials, and distributed element loads is illustrated by numerical...

  15. The shear viscosity in anisotropic phases

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Sachin [Department of Physics, Cornell University,Ithaca, New York 14853 (United States); Samanta, Rickmoy; Trivedi, Sandip P. [Department of Theoretical Physics, Tata Institute of Fundamental Research,Colaba, Mumbai 400005 (India)


    We construct anisotropic black brane solutions and analyse the behaviour of some of their metric perturbations. These solutions correspond to field theory duals in which rotational symmetry is broken due an externally applied, spatially constant, force. We find, in several examples, that when the anisotropy is sufficiently big compared to the temperature, some components of the viscosity tensor can become very small in units of the entropy density, parametrically violating the KSS bound. We obtain an expression relating these components of the viscosity, in units of the entropy density, to a ratio of metric components at the horizon of the black brane. This relation is generally valid, as long as the forcing function is translationally invariant, and it directly connects the parametric violation of the bound to the anisotropy in the metric at the horizon. Our results suggest the possibility that such small components of the viscosity tensor might also arise in anisotropic strongly coupled fluids found in nature.

  16. Modeling anisotropic magnetoresistance in layered antiferromagnets (United States)

    Santos, D. L. R.; Pinheiro, F. A.; Velev, J.; Chshiev, M.; Castro, J. d.'Albuquerque e.; Lacroix, C.


    We have investigated the electronic transport and the anisotropic magnetoresistance in systems consisting of pairs of antiferromagnetically aligned layers separated by a non-magnetic layer, across which an antiferromagnetic coupling between the double layers is established. Calculations have been performed within the framework of the tight-binding model, taking into account the exchange coupling within the ferromagnetic layers and the Rashba spin-orbit interaction. Conductivities have been evaluated in the ballistic regime, based on Kubo formula. We have systematically studied the dependence of the conductivity and of the anisotropic magnetoresistance on several material and structural parameters, such as the orientation of the magnetic moments relative to the crystalline axis, band filling, out-of-plane hopping and spin-orbit parameter.

  17. Silicon as an anisotropic mechanical material

    DEFF Research Database (Denmark)

    Thomsen, Erik Vilain; Reck, Kasper; Skands, Gustav Erik


    While silicon is an anisotropic material it is often in literature treated as an isotropic material when it comes to plate calculations. This leads to considerable errors in the calculated deflection. To overcome this problem, we present an in-depth analysis of the bending behavior of thin...... both exact analytical expressions and approximate expressions calculated by the Galerkin method. The results are applied to plates made on silicon (0 0 1), (0 1 1) and (1 1 1) substrates, respectively, and analytical equations for the deflection, strain energy and resonance frequency of such plates...... are presented. These expressions are in excellent agreement with anisotropic finite element calculations. The calculated deflection differs less than 0.1%, for both circular and rectangular plates, compared to finite element calculations. The results are presented as ready-to-use facilitating accurate...

  18. Anisotropic hydrodynamic function of dense confined colloids (United States)

    Nygârd, Kim; Buitenhuis, Johan; Kagias, Matias; Jefimovs, Konstantins; Zontone, Federico; Chushkin, Yuriy


    Dense colloidal dispersions exhibit complex wave-vector-dependent diffusion, which is controlled by both direct particle interactions and indirect nonadditive hydrodynamic interactions mediated by the solvent. In bulk the hydrodynamic interactions are probed routinely, but in confined geometries their studies have been hitherto hindered by additional complications due to confining walls. Here we solve this issue by combining high-energy x-ray photon correlation spectroscopy and small-angle x-ray-scattering experiments on colloid-filled microfluidic channels to yield the confined fluid's hydrodynamic function in the short-time limit. Most importantly, we find the confined fluid to exhibit a strongly anisotropic hydrodynamic function, similar to its anisotropic structure factor. This observation is important in order to guide future theoretical research.

  19. Birefringent light propagation on anisotropic cosmological backgrounds (United States)

    Asenjo, Felipe A.; Hojman, Sergio A.


    Exact electromagnetic wave solutions to Maxwell equations on anisotropic Bianchi I cosmological spacetime backgrounds are studied. The waves evolving on Bianchi I spacetimes exhibit birefringence (associated with linear polarization) and dispersion. The particular case of a vacuum-dominated anisotropic Universe, which reproduces a Friedmann-Robertson-Walker Universe (for late times)—while, for earlier times, it matches a Kasner Universe—is studied. The electromagnetic waves do not, in general, follow null geodesics. This produces a modification of the cosmological redshift, which is then dependent on light polarization, its dispersion, and its non-null geodesic behavior. New results presented here may help to tackle some issues related to the "horizon" problem.

  20. Rainbow metric from quantum gravity: Anisotropic cosmology (United States)

    Assanioussi, Mehdi; Dapor, Andrea


    In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformation parameter β in the modified dispersion relation of the modes, hence, inducing an isotropic deformation despite the general starting considerations. We then ensure the recovery of the dispersion relation realized in the isotropic case, studied in [M. Assanioussi, A. Dapor, and J. Lewandowski, Phys. Lett. B 751, 302 (2015), 10.1016/j.physletb.2015.10.043], when some proper symmetry constraints are imposed, and we estimate the value of the deformation parameter for this case in loop quantum cosmology context.

  1. Anisotropic instability of a stretching film (United States)

    Xu, Bingrui; Li, Minhao; Deng, Daosheng


    Instability of a thin liquid film, such as dewetting arising from Van der Waals force, has been well studied, and is typically characterized by formation of many droplets. Interestingly, a thin liquid film subjected to an applied stretching during a process of thermal drawing is evolved into an array of filaments, i.e., continuity is preserved along the direction of stretching while breakup occurs exclusively in the plane of cross section. Here, to understand this anisotropic instability, we build a physical model by considering both Van der Waals force and the effect of stretching. By using the linear instability analysis method and then performing a numerical calculation, we find that the growth rate of perturbations at the cross section is larger than that along the direction of stretching, resulting in the anisotropic instability of the stretching film. These results may provide theoretical guidance to achieve more diverse structures for nanotechnology.

  2. Wireless energy transfer between anisotropic metamaterials shells

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José, E-mail:


    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  3. Anisotropic stellar models admitting conformal motion (United States)

    Banerjee, Ayan; Banerjee, Sumita; Hansraj, Sudan; Ovgun, Ali


    We address the problem of finding static and spherically symmetric anisotropic compact stars in general relativity that admit conformal motions. The study is framed in the language of f( R) gravity theory in order to expose opportunity for further study in the more general theory. Exact solutions of compact stars are found under the assumption that spherically symmetric spacetimes admit conformal motion with anisotropic matter distribution in nature. In this work, two cases have been studied for the existence of such solutions: first, we consider the model given by f(R)=R and then f(R)=aR+b . Finally, specific characteristics and physical properties have been explored analytically along with graphical representations for conformally symmetric compact stars in f( R) gravity.

  4. Resisting Weakness of the Will. (United States)

    Levy, Neil


    I develop an account of weakness of the will that is driven by experimental evidence from cognitive and social psychology. I will argue that this account demonstrates that there is no such thing as weakness of the will: no psychological kind corresponds to it. Instead, weakness of the will ought to be understood as depletion of System II resources. Neither the explanatory purposes of psychology nor our practical purposes as agents are well-served by retaining the concept. I therefore suggest that we ought to jettison it, in favour of the vocabulary and concepts of cognitive psychology.

  5. Effect of inflation on anisotropic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, L.G.; Stein-Schabes, J.A.


    The effects of anisotropic cosmologies on inflation are studied. By properly formulating the field equations it is possible to show that any model that undergoes sufficient inflation will become isotropic on scales greater than the horizon today. Furthermore, we shall show that it takes a very long time for anisotropies to become visible in the observable part of the Universe. It is interesting to note that the time scale will be independent of the Bianchi Model and of the initial anisotropy. 6 refs.

  6. Optical Propagation in Anisotropic Metamaterials (Postprint) (United States)


    OPTICAL PROPAGATION ANALYSIS USING BERREMAN MATRIX METHOD Figure 2 shows a TM polarized plane wave propagating in the − plane from free space...respectively, inside the anisotropic metamaterial. TM represents the component of the wave vector in the metamaterial for TM polarization and...or alternatively, refractive index and characteristic impedance. These properties depend not only on the wavelength and polarization but also the

  7. Acoustical vector solitons in anisotropic media (United States)

    Adamashvili, G. T.; Peikrishvili, M. D.; Koplatadze, R. R.


    A theory of acoustical vector solitons of self-induced transparency in anisotropic media is developed. It is shown that, in these systems, a two-component vector soliton oscillating with the difference and sum of the frequencies in the vicinity of the frequency of a carrying acoustic wave may arise. Explicit analytical expressions for the form and parameters of a nonlinear wave depending on the direction of pulse propagation are given.

  8. Review of Anisotropic Terahertz Material Response


    ARIKAWA, T.; Zhang, Q.; Ren, L; Belyanin, A. A.; Kono, J.


    Anisotropy is ubiquitous in solids and enhanced in low-dimensional materials. In response to an electromagnetic wave, anisotropic absorptive and refractive properties result in dichroic and birefringent optical phenomena both in the linear and nonlinear optics regimes. Such material properties have led to a diverse array of useful polarization components in the visible and near-infrared, but mature technology is non-existent in the terahertz (THz). Here, we review several novel types of aniso...

  9. Anisotropic conducting films for electromagnetic radiation applications (United States)

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard


    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  10. Anisotropic Spinodal Decomposition under Shear Flow (United States)

    Imaeda, T.; Onuki, A.; Kawasaki, K.


    When a critical fluid is brought into the unstable region in the presence of shear flow, growing fluctuations are greatly elongated in the flow direction, giving rise to strongly anisotropic light scattering. In the strong shear case the linear growth theory becomes applicable in a sizable time region 0 Bar-on and Miller, it is found to increase as t(a') with a' =~ 0.2, whereas the characteristic size in the flow direction continues to increase roughly as t.

  11. On anisotropic black branes with Lifshitz scaling

    Directory of Open Access Journals (Sweden)

    Dibakar Roychowdhury


    Full Text Available In this paper, based on the method of scalar perturbations, we construct the anisotropic charged Lifshitz background perturbatively up to leading order in the anisotropy. We perform our analysis both in the extremal as well as in the non-extremal limit. Finally, we probe the so called superfluid phase of the boundary theory and explore the effects of anisotropy on the superconducting condensate.

  12. Slotted Antenna with Anisotropic Magnetic Loading (United States)


    10 SLOTTED ANTENNA WITH ANISOTROPIC MAGNETIC LOADING STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured...therefor. CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention ...of the VSWR curve, and modest bandwidth in each passband. SUMMARY OF THE INVENTION [0006] It is a first object of the present invention to provide

  13. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali


    Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.

  14. ARTc: Anisotropic reflectivity and transmissivity calculator (United States)

    Malehmir, Reza; Schmitt, Douglas R.


    While seismic anisotropy is known to exist within the Earth's crust and even deeper, isotropic or even highly symmetric elastic anisotropic assumptions for seismic imaging is an over-simplification which may create artifacts in the image, target mis-positioning and hence flawed interpretation. In this paper, we have developed the ARTc algorithm to solve reflectivity, transmissivity as well as velocity and particle polarization in the most general case of elastic anisotropy. This algorithm is able to provide reflectivity solution from the boundary between two anisotropic slabs with arbitrary symmetry and orientation up to triclinic. To achieve this, the algorithm solves full elastic wave equation to find polarization, slowness and amplitude of all six wave-modes generated from the incident plane-wave and welded interface. In the first step to calculate the reflectivity, the algorithm solves properties of the incident wave such as particle polarization and slowness. After calculation of the direction of generated waves, the algorithm solves their respective slowness and particle polarization. With this information, the algorithm then solves a system of equations incorporating the imposed boundary conditions to arrive at the scattered wave amplitudes, and thus reflectivity and transmissivity. Reflectivity results as well as slowness and polarization are then tested in complex computational anisotropic models to ensure their accuracy and reliability. ARTc is coded in MATLAB ® and bundled with an interactive GUI and bash script to run on single or multi-processor computers.

  15. Waveguide structures in anisotropic nonlinear crystals (United States)

    Li, Da; Hong, Pengda; Meissner, Helmuth E.


    We report on the design and manufacturing parameters of waveguiding structures of anisotropic nonlinear crystals that are employed for harmonic conversions, using Adhesive-Free Bonding (AFB®). This technology enables a full range of predetermined refractive index differences that are essential for the design of single mode or low-mode propagation with high efficiency in anisotropic nonlinear crystals which in turn results in compact frequency conversion systems. Examples of nonlinear optical waveguides include periodically bonded walk-off corrected nonlinear optical waveguides and periodically poled waveguide components, such as lithium triborate (LBO), beta barium borate (β-BBO), lithium niobate (LN), potassium titanyl phosphate (KTP), zinc germanium phosphide (ZGP) and silver selenogallate (AGSE). Simulation of planar LN waveguide shows that when the electric field vector E lies in the k-c plane, the power flow is directed precisely along the propagation direction, demonstrating waveguiding effect in the planar waveguide. Employment of anisotropic nonlinear optical waveguides, for example in combination with AFB® crystalline fiber waveguides (CFW), provides access to the design of a number of novel high power and high efficiency light sources spanning the range of wavelengths from deep ultraviolet (as short as 200 nm) to mid-infrared (as long as about 18 μm). To our knowledge, the technique is the only generally applicable one because most often there are no compatible cladding crystals available to nonlinear optical cores, especially not with an engineer-able refractive index difference and large mode area.

  16. Local anisotropic features method and its application (United States)

    Gibin, Igor S.; Popov, Pavel G.


    The local anisotropic features method is based on the analysis of anisotropy direction of energy Fourier spectrum of image points local neighborhood. Numbers of discrete anisotropic directions are chosen as features. In the features space the measure of images nearness is set. Thanks to its properties local anisotropic features (LAF) are invariant to a wide class of input images bright transformations. This allows to identify images got by different observing channels, in different spectral ranges, within different external observation conditions. LAF method allows to perform multifunctional images processing: recognition, tracking, compression of data. LAF method may be adapted practically to any image receiver and used for multichannel information processing: channels complexing and scene integral image synthesis. The advantage of LAF method is that all kinds of processing may be realized in one computing device. Another advantage of this method is its high obstacles stability. Using the dynamic nearness measure as a constituent and integral part of the method allows to select dynamic objects and to mark them out against the underlying background. It is convenient to use LAF method in hierarchical and neuro-like structures, this makes it winning to use this method in automatic recognition system. The report considers apparatus realization and gives experimental results of images processing in multichannel optoelectronic systems in real time.

  17. Anisotropic impedance surfaces for enhanced antenna isolation (United States)

    Miragliotta, Joseph A.; Shrekenhamer, David; Sievenpiper, Daniel F.


    Anisotropic impedance surfaces, which include metasurfaces and high impedance surfaces (HIS), can be designed to control the amplitude and propagation direction of surface electromagnetic waves and are an effective means to enhance the isolation between antennas that share a common ground plane. To date, the majority of metastructures that have been designed for antenna isolation have relied on an isotropic distribution of unit cells that possess a stop band that inhibits the propagation of surface waves between neighboring antennas. A less common approach to isolation has been through the design of a metasurface that enables the re-direction of surface waves away from the location of the antenna structure, which effectively limits the coupling. In this paper, we discuss results from our computational investigation associated with improving antenna isolation through the use of an anisotropic metastructure. Simulated results associated with the isolation performance of two simple, but similar, anisotropic structures are compared to the corresponding results from a broadband magnetic radar absorbing materials (magRAM).

  18. Anisotropic Optical Properties of Layered Germanium Sulfide

    CERN Document Server

    Tan, Dezhi; Wang, Feijiu; Mohamed, Nur Baizura; Mouri, Shinichiro; Sandhaya, Koirala; Zhang, Wenjing; Miyauchi, Yuhei; Ohfuchi, Mari; Matsuda, Kazunari


    Two-dimensional (2D) layered materials, transition metal dichalcogenides and black phosphorus, have attracted much interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to their remarkable optical properties and prospects for new devices. Here, we report the anisotropic optical properties of layered 2D monochalcogenide of germanium sulfide (GeS). Three Raman scattering peaks corresponding to the B3g, A1g, and A2g modes with strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at around 1.66 eV that originates from the direct optical transition in GeS at room temperature. Moreover, determination of the polarization dependent characteristics of the PL and absorption reveals...


    Directory of Open Access Journals (Sweden)

    Ponomaryov Andrey Budimirovicn


    Full Text Available In the paper, the results of deformability study of agrillite claystones are used for determination of the Jointed rock model parameters. The number of stamp, pressuremeter and compressive tests allowed to research anisotropic deformability of argillite claystone in vertical and horizontal direction. The following problems were solved during the study: 1 the in-place and laboratory experiments to calculate the anisotropy coefficient were done for anisotropic agrillite claystones with both natural moisture and total water saturation; 2 the deformation parameters were determined and the numerical simulation of the stress-strain state of claystone in field tests was carried out with the use of Plaxis 2D software application; 3 the comparative analysis was done for calculated claystone deformation and the values obtained during the in-place tests. The authors proved that agrillite claystones shows two times less deformation under loading in the horizontal direction than vertically. The ratio is obtained to determine the parameters for numerical simulation of the Jointed Rock model used as a practical tool for analysis of stress-strain behavior of anisotropic soils. The authors provided a recommended practice for consideration of specific properties of argillite claystones when carrying out foundation works.

  20. Anisotropic hydrodynamics for conformal Gubser flow

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael; Nopoush, Mohammad [Kent State University, Kent OH 44242 (United States); Ryblewski, Radoslaw [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland)


    In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3){sub q} symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.

  1. Longitudinal fluctuations and decorrelation of anisotropic flow

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Long-Gang [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Qin, Guang-You [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Roy, Victor [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Wang, Xin-Nian [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division MS70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)


    We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.

  2. Weak Coupling Phases future directions

    CERN Document Server

    Rosner, Jonathan L.


    Recent results obtained from B decays on the phases of weak couplings described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix are discussed, with particular emphasis on $\\alpha$ and $\\gamma = \\pi - \\beta - \\alpha$.

  3. On the Schrodinger equations with isotropic and anisotropic fourth-order dispersion

    Directory of Open Access Journals (Sweden)

    Elder J. Villamizar-Roa


    Full Text Available This article concerns the Cauchy problem associated with the nonlinear fourth-order Schrodinger equation with isotropic and anisotropic mixed dispersion. This model is given by the equation $$ i\\partial_tu+\\epsilon \\Delta u+\\delta A u+\\lambda|u|^\\alpha u=0,\\quad x\\in\\mathbb{R}^{n},\\; t\\in \\mathbb{R}, $$ where A is either the operator $\\Delta^2$ (isotropic dispersion or $\\sum_{i=1}^d\\partial_{x_ix_ix_ix_i}$, $1\\leq danisotropic dispersion, and $\\alpha, \\epsilon, \\lambda$ are real parameters. We obtain local and global well-posedness results in spaces of initial data with low regularity, based on weak-$L^p$ spaces. Our analysis also includes the biharmonic and anisotropic biharmonic equation $(\\epsilon=0$; in this case, we obtain the existence of self-similar solutions because of their scaling invariance property. In a second part, we analyze the convergence of solutions for the nonlinear fourth-order Schrodinger equation $$ i\\partial_tu+\\epsilon \\Delta u+\\delta \\Delta^2 u+\\lambda|u|^\\alpha u=0, \\quad x\\in\\mathbb{R}^{n},\\; t\\in \\mathbb{R}, $$ as $\\epsilon$ approaches zero, in the $H^2$-norm, to the solutions of the corresponding biharmonic equation $i\\partial_tu+\\delta \\Delta^2 u+\\lambda|u|^\\alpha u=0$.

  4. SDH detection of CFRP without pre-knowledge of anisotropic group velocity (United States)

    Shao, Yongsheng; Lin, Jing; Zeng, Liang; Cao, Xuwei


    Ultrasonic phased array has been widely used for the nondestructive detection of carbon fiber-reinforced plastic (CFRP). The accurate anisotropic group velocity must be obtained beforehand for the detection imaging. It's a great challenge because of the anisotropy of CFRP. In this paper, a novel method is presented for the Side-Drilled Hole (SDH) detection in CFRP, in which the pre-knowledge of anisotropic group velocity is not needed. To begin with, the detection signal of CFRP with SDH was gained by the mode of FMC (full matrix capture). Then a limited angle range of the anisotropic group velocity is obtained by the back-wall reflection method (BRM). The angle range of velocity is extended by matching the delay time of back-wall and SDH reflection and analyzing the relation between the reflection of back-wall and SDH. Although the acquired angle range can't cover all the directions, it's still sufficient to image SDH. Finally, the total focusing method (TFM) is used to image CFRP. Furthermore, the weak defect located between SDH and back-wall may also be detected. An experiment was conducted on a sample of CFRP with SDH. The SDH can be seen clearly in the image.

  5. Influence of asymmetry turbulence cells on the angle of arrival fluctuations of optical waves in anisotropic non-Kolmogorov turbulence. (United States)

    Cui, Linyan; Xue, Bindang


    Theoretical and experimental investigations have shown that the atmospheric turbulence exhibits both anisotropic and non-Kolmogorov properties. Very recent analyses of angle of arrival (AOA) fluctuations of an optical wave in anisotropic non-Kolmogorov turbulence have adopted the assumption that the propagation path was in the z-direction with circular symmetry of turbulence cells maintained in the orthogonal xy-plane throughout the path, and one single anisotropy factor was adopted in the orthogonal xy-plane to parameterize the asymmetry of turbulence cells or eddies in both horizontal and vertical directions. In this work, the circular symmetry assumption of turbulence cells or eddies in the orthogonal xy-plane is no longer required, and two anisotropy parameters are introduced in the orthogonal xy-plane to investigate the AOA fluctuations. In addition, deviations from the classic 11/3 spectral power law behavior for Kolmogorov turbulence are allowed by assuming spectral power law value variations between 3 and 4. With the Rytov approximation theory, new theoretical models for the variance of AOA fluctuations are developed for optical plane and spherical waves propagating through weak anisotropic non-Kolmogorov atmospheric turbulence. When the two anisotropic parameters are equal to each other, they reduce correctly to the recently published results (the circular symmetry assumption of turbulence cells or eddies in the orthogonal xy-plane was adopted). Furthermore, when these two anisotropic parameters equal one, they reduce correctly to the previously published analytic expressions for the cases of optical wave propagation through weak isotropic non-Kolmogorov turbulence.

  6. Weakly compact operators and interpolation


    Maligranda, Lech


    The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. In this survey, we have collected and ordered some of this (partly very new) knowledge. We have also included some comments, remarks and examples. The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. I...

  7. Weak interactions of elementary particles

    CERN Document Server

    Okun, Lev Borisovich


    International Series of Monographs in Natural Philosophy, Volume 5: Weak Interaction of Elementary Particles focuses on the composition, properties, and reactions of elementary particles and high energies. The book first discusses elementary particles. Concerns include isotopic invariance in the Sakata model; conservation of fundamental particles; scheme of isomultiplets in the Sakata model; universal, unitary-symmetric strong interaction; and universal weak interaction. The text also focuses on spinors, amplitudes, and currents. Wave function, calculation of traces, five bilinear covariants,

  8. Atomistically enabled nonsingular anisotropic elastic representation of near-core dislocation stress fields in α -iron (United States)

    Seif, Dariush; Po, Giacomo; Mrovec, Matous; Lazar, Markus; Elsässer, Christian; Gumbsch, Peter


    The stress fields of dislocations predicted by classical elasticity are known to be unrealistically large approaching the dislocation core, due to the singular nature of the theory. While in many cases this is remedied with the approximation of an effective core radius, inside which ad hoc regularizations are implemented, such approximations lead to a compromise in the accuracy of the calculations. In this work an anisotropic nonsingular elastic representation of dislocation fields is developed to accurately represent the near-core stresses of dislocations in α -iron. The regularized stress field is enabled through the use of a nonsingular Green's tensor function of Helmholtz-type gradient anisotropic elasticity, which requires only a single characteristic length parameter in addition to the material's elastic constants. Using a magnetic bond-order potential to model atomic interactions in iron, molecular statics calculations are performed, and an optimization procedure is developed to extract the required length parameter. Results show the method can accurately replicate the magnitude and decay of the near-core dislocation stresses even for atoms belonging to the core itself. Comparisons with the singular isotropic and anisotropic theories show the nonsingular anisotropic theory leads to a substantially more accurate representation of the stresses of both screw and edge dislocations near the core, in some cases showing improvements in accuracy of up to an order of magnitude. The spatial extent of the region in which the singular and nonsingular stress differ substantially is also discussed. The general procedure we describe may in principle be applied to accurately model the near-core dislocation stresses of any arbitrarily shaped dislocation in anisotropic cubic media.

  9. Anisotropic solid-liquid interface kinetics in silicon: an atomistically informed phase-field model (United States)

    Bergmann, S.; Albe, K.; Flegel, E.; Barragan-Yani, D. A.; Wagner, B.


    We present an atomistically informed parametrization of a phase-field model for describing the anisotropic mobility of liquid-solid interfaces in silicon. The model is derived from a consistent set of atomistic data and thus allows to directly link molecular dynamics and phase field simulations. Expressions for the free energy density, the interfacial energy and the temperature and orientation dependent interface mobility are systematically fitted to data from molecular dynamics simulations based on the Stillinger-Weber interatomic potential. The temperature-dependent interface velocity follows a Vogel-Fulcher type behavior and allows to properly account for the dynamics in the undercooled melt.

  10. Acute muscular weakness in children

    Directory of Open Access Journals (Sweden)

    Ricardo Pablo Javier Erazo Torricelli

    Full Text Available ABSTRACT Acute muscle weakness in children is a pediatric emergency. During the diagnostic approach, it is crucial to obtain a detailed case history, including: onset of weakness, history of associated febrile states, ingestion of toxic substances/toxins, immunizations, and family history. Neurological examination must be meticulous as well. In this review, we describe the most common diseases related to acute muscle weakness, grouped into the site of origin (from the upper motor neuron to the motor unit. Early detection of hyperCKemia may lead to a myositis diagnosis, and hypokalemia points to the diagnosis of periodic paralysis. Ophthalmoparesis, ptosis and bulbar signs are suggestive of myasthenia gravis or botulism. Distal weakness and hyporeflexia are clinical features of Guillain-Barré syndrome, the most frequent cause of acute muscle weakness. If all studies are normal, a psychogenic cause should be considered. Finding the etiology of acute muscle weakness is essential to execute treatment in a timely manner, improving the prognosis of affected children.

  11. Precision metrology using weak measurements. (United States)

    Zhang, Lijian; Datta, Animesh; Walmsley, Ian A


    Weak values and measurements have been proposed as a means to achieve dramatic enhancements in metrology based on the greatly increased range of possible measurement outcomes. Unfortunately, the very large values of measurement outcomes occur with highly suppressed probabilities. This raises three vital questions in weak-measurement-based metrology. Namely, (Q1) Does postselection enhance the measurement precision? (Q2) Does weak measurement offer better precision than strong measurement? (Q3) Is it possible to beat the standard quantum limit or to achieve the Heisenberg limit with weak measurement using only classical resources? We analyze these questions for two prototypical, and generic, measurement protocols and show that while the answers to the first two questions are negative for both protocols, the answer to the last is affirmative for measurements with phase-space interactions, and negative for configuration space interactions. Our results, particularly the ability of weak measurements to perform at par with strong measurements in some cases, are instructive for the design of weak-measurement-based protocols for quantum metrology.

  12. A recipe for practical full waveform inversion in anisotropic media

    KAUST Repository

    Alkhalifah, Tariq Ali


    In representing the most common (first-order influence, and gravity induced) acoustic anisotropy, transversely isotropic with a vertical symmetry direction (VTI) medium, with the P-wave normal moveout velocity, delta, and eta, we obtain a perturbation radiation pattern that has limited tradeoff between the parameters. Since delta is weakly resolvable from the kinematics of wave propagation, we can use it to play the role that density plays in improving the data fit for an imperfect physical model that ignores the elastic nature of the Earth. An FWI scheme that starts from diving waves would benefit from representing the acoustic VTI model with the P-wave horizontal velocity, eta, and epsilon. In this representation, the diving waves will help us first resolve the horizontal velocity, and then reflections, if the nonlinearity is properly handled, could help us resolve eta, while epsilon comes at the end to improve the amplitude fit (instead of the density). The model update wavelength for acoustic anisotropic FWI is very much similar to that experienced for the isotropic case. Copyright © 2014 by the European Association of Geoscientists & Engineers. All rights reserved.

  13. Simulating large, anisotropic density fluctuations in colloidal gels under shear (United States)

    Swan, James; Varga, Zsigmond

    The steady shear of weak colloidal gels results in vorticity aligned density fluctuations. These have been measured in neutron scattering and flow dichroism experiments and observed with microscopy coupled to rheometer tools of varying geometry. The origins of this instability remain a mystery, and discrete element simulations of colloidal gels have to date, failed to reproduce the phenomena. We use new Brownian Dynamics simulations to show that this instability is fluid mechanical in origin, and results from long-ranged hydrodynamic interactions among particles in the gel. Squeeze flows between vorticity aligned flocs prevent mutual collisions and realignment, thus promoting stability of large-scale anisotropic density fluctuations. The nonlinear rheology in sheared colloidal gels and measures of their structural anisotropy determined from simulations agree well with a wide variety of experiments. Finally, we demonstrate collapse of this data across different shear rates, strengths of interaction, and volume fractions using a single force scale, the most probable rupture force for the inter-colloid bonds.

  14. Anisotropic compact star models in Karmarkar space time continuum (United States)

    Fuloria, Pratibha


    In the present article, we have explored some new anisotropic compact star models by using embedded class one space time metric. We proceed our calculations by assuming a particular form of g_{rr} metric potential and solved for the other metric g_{tt} using Karmarkar condition. The matter density, radial pressure, tangential pressure, mass function, surface red-shift, anisotropy are all well behaved inside the fluid sphere. The solution satisfies all energy conditions i.e. strong energy condition, null energy condition, dominant energy condition and weak energy condition. The solution also satisfies the causality condition and can represent stable stellar fluid system as the adiabatic index Γ > 4/3 and the stability factor -1≤ vt2-vr2≤ 0 holds good inside the fluid sphere. We have framed our solution for two compact stars PSR J1614-2230 and SAX J1808.4-3658, which are well-behaved in all respects. The mass and radius of the compact stars PSR J1614-2230 and SAXJ1808.4-3658, obtained from the models are very close to the observational data proposed by Gangopadhyay et al. (Mon. Not. R. Astron. Soc. 431:3216, 2013) and Bhattacharya (2001) respectively.

  15. Influence of anisotropic strain relaxation on the magnetoresistance properties of epitaxial Fe3O4 (110) films (United States)

    Sofin, R. G. S.; Wu, Han-Chun; Ramos, R.; Arora, S. K.; Shvets, I. V.


    We studied Fe3O4 (110) films grown epitaxially on MgO (110) substrates using oxygen plasma assisted molecular beam epitaxy. The films with thickness of 30-200 nm showed anisotropic in-plane partial strain relaxation. Magneto resistance (MR) measurements with current and magnetic field along ⟨001⟩ direction showed higher MR compared to ⟨1 ¯ 10 ⟩ direction. Maximum value of MR was measured at Verwey transition temperature for both directions. We explain the observed anisotropy in the MR on the basis of the effects of anisotropic misfit strain, and the difference between the density of antiferromagnetically coupled antiphase boundaries formed along ⟨001⟩ and ⟨1 ¯ 10 ⟩ crystallographic directions, suggesting the dependence of spin polarisation on the anisotropic strain relaxation along the said crystallographic directions.

  16. Pulse splitting in nonlinear media with anisotropic dispersion properties

    DEFF Research Database (Denmark)

    Bergé, L.; Juul Rasmussen, J.; Schmidt, M.R.


    The nonlinear self-focusing of beams in media with anisotropic (mix-signed) dispersion is investigated. Theoretical predictions employing virial-type arguments and self-similar techniques suggest that a pulse propagating in a nonlinear medium with anisotropic dispersion will not collapse to a sin......The nonlinear self-focusing of beams in media with anisotropic (mix-signed) dispersion is investigated. Theoretical predictions employing virial-type arguments and self-similar techniques suggest that a pulse propagating in a nonlinear medium with anisotropic dispersion will not collapse...... equation. The interaction of two wave beams is also investigated....

  17. Quantum discord with weak measurements

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Uttam, E-mail:; Pati, Arun Kumar, E-mail:


    Weak measurements cause small change to quantum states, thereby opening up the possibility of new ways of manipulating and controlling quantum systems. We ask, can weak measurements reveal more quantum correlation in a composite quantum state? We prove that the weak measurement induced quantum discord, called as the “super quantum discord”, is always larger than the quantum discord captured by the strong measurement. Moreover, we prove the monotonicity of the super quantum discord as a function of the measurement strength and in the limit of strong projective measurement the super quantum discord becomes the normal quantum discord. We find that unlike the normal discord, for pure entangled states, the super quantum discord can exceed the quantum entanglement. Our results provide new insights on the nature of quantum correlation and suggest that the notion of quantum correlation is not only observer dependent but also depends on how weakly one perturbs the composite system. We illustrate the key results for pure as well as mixed entangled states. -- Highlights: •Introduced the role of weak measurements in quantifying quantum correlation. •We have introduced the notion of the super quantum discord (SQD). •For pure entangled state, we show that the SQD exceeds the entanglement entropy. •This shows that quantum correlation depends not only on observer but also on measurement strength.

  18. Crossover between weak antilocalization and weak localization of bulk states in ultrathin Bi₂Se₃ films. (United States)

    Wang, Huichao; Liu, Haiwen; Chang, Cui-Zu; Zuo, Huakun; Zhao, Yanfei; Sun, Yi; Xia, Zhengcai; He, Ke; Ma, Xucun; Xie, X C; Xue, Qi-Kun; Wang, Jian


    We report transport studies on the 5 nm thick Bi₂Se₃ topological insulator films which are grown via molecular beam epitaxy technique. The angle-resolved photoemission spectroscopy data show that the Fermi level of the system lies in the bulk conduction band above the Dirac point, suggesting important contribution of bulk states to the transport results. In particular, the crossover from weak antilocalization to weak localization in the bulk states is observed in the parallel magnetic field measurements up to 50 Tesla. The measured magneto-resistance exhibits interesting anisotropy with respect to the orientation of parallel magnetic field B// and the current I, signifying intrinsic spin-orbit coupling in the Bi₂Se₃ films. Our work directly shows the crossover of quantum interference effect in the bulk states from weak antilocalization to weak localization. It presents an important step toward a better understanding of the existing three-dimensional topological insulators and the potential applications of nano-scale topological insulator devices.

  19. Warping the Weak Gravity Conjecture

    Directory of Open Access Journals (Sweden)

    Karta Kooner


    Full Text Available The Weak Gravity Conjecture, if valid, rules out simple models of Natural Inflation by restricting their axion decay constant to be sub-Planckian. We revisit stringy attempts to realise Natural Inflation, with a single open string axionic inflaton from a probe D-brane in a warped throat. We show that warped geometries can allow the requisite super-Planckian axion decay constant to be achieved, within the supergravity approximation and consistently with the Weak Gravity Conjecture. Preliminary estimates of the brane backreaction suggest that the probe approximation may be under control. However, there is a tension between large axion decay constant and high string scale, where the requisite high string scale is difficult to achieve in all attempts to realise large field inflation using perturbative string theory. We comment on the Generalized Weak Gravity Conjecture in the light of our results.

  20. Dynamical 3-Space: Anisotropic Brownian Motion Experiment

    Directory of Open Access Journals (Sweden)

    Cahill R. T.


    Full Text Available In 2014 Jiapei Dai reported evidence of anisotropic Brownian motion of a toluidine blue colloid solution in water. In 2015 Felix Scholkmann analysed the Dai data and detected a sidereal time dependence, indicative of a process driving the preferred Brownian mo- tion diffusion direction to a star-based preferred direction. Here we further analyse the Dai data and extract the RA and Dec of that preferred direction, and relate the data to previous determinations from NASA Spacecraft Earth-flyby Doppler shift data, and other determinations.

  1. Multichannel image regularization using anisotropic geodesic filtering

    Energy Technology Data Exchange (ETDEWEB)

    Grazzini, Jacopo A [Los Alamos National Laboratory


    This paper extends a recent image-dependent regularization approach introduced in aiming at edge-preserving smoothing. For that purpose, geodesic distances equipped with a Riemannian metric need to be estimated in local neighbourhoods. By deriving an appropriate metric from the gradient structure tensor, the associated geodesic paths are constrained to follow salient features in images. Following, we design a generalized anisotropic geodesic filter; incorporating not only a measure of the edge strength, like in the original method, but also further directional information about the image structures. The proposed filter is particularly efficient at smoothing heterogeneous areas while preserving relevant structures in multichannel images.

  2. On Anisotropic Hardy Inequalities and Their Applications (United States)

    Guseĭnov, R. V.


    Certain generalizations of the Hardy inequality are obtained for functions in anisotropic Sobolev spaces on Rn and on certain unbounded domains satisfying a horn condition. On the basis of these inequalities the uniqueness of solution for the Neumann problem in an unbounded domain of "layer" type is proved and the general form of this solution for a class of quasielliptic equations is established. In addition, a theorem on the absence of negative spectrum is proved for a certain class of such equations, considered in Rn.

  3. Selective edge enhancement using anisotropic vortex filter. (United States)

    Sharma, Manoj Kumar; Joseph, Joby; Senthilkumaran, Paramasivam


    In optical image processing, selective edge enhancement is important when it is preferable to emphasize some edges of an object more than others. We propose a new method for selective edge enhancement of amplitude objects using the anisotropic vortex phase mask by introducing anisotropy in a conventional vortex mask with the help of the sine function. The anisotropy is capable of edge enhancement in the selective region and in the required direction by changing the power and offset angle, respectively, of the sine function.

  4. Generalised model for anisotropic compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Deb, Debabrata [Indian Institute of Engineering Science and Technology, Shibpur, Department of Physics, Howrah, West Bengal (India)


    In the present investigation an exact generalised model for anisotropic compact stars of embedding class 1 is sought with a general relativistic background. The generic solutions are verified by exploring different physical aspects, viz. energy conditions, mass-radius relation, stability of the models, in connection to their validity. It is observed that the model presented here for compact stars is compatible with all these physical tests and thus physically acceptable as far as the compact star candidates RXJ 1856-37, SAX J 1808.4-3658 (SS1) and SAX J 1808.4-3658 (SS2) are concerned. (orig.)

  5. Anisotropic resonant scattering from polymer photonic crystals. (United States)

    Haines, Andrew I; Finlayson, Chris E; Snoswell, David R E; Spahn, Peter; Hellmann, G Peter; Baumberg, Jeremy J


    Hyperspectral goniometry reveals anisotropic scattering which dominates the visual appearance of self-assembled polymer opals. The technique allows reconstruction of the reciprocal-space of nanostructures, and indicates that chain defects formed during shear-ordering are responsible for the anisotropy in these samples. Enhanced scattering with improving order is shown to arise from increased effective refractive index contrast, while broadband background scatter is suppressed by absorptive dopants. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Holographic Photon Production and Anisotropic Flow (United States)

    Iatrakis, Ioannis; Kiritsis, Elias; Shen, Chun; Yang, Di-Lun


    The thermal-photon emission from strongly coupled gauge theories at finite temperature via the bottom-up models in holographic QCD in the deconfined phase is studied. The models are constructed to approximately reproduce the electric conductivity obtained from lattice simulations for the quark gluon plasma (QGP). The emission rates are then embedded in hydrodynamic simulations combined with prompt photons and hadronic contributions to analyze the spectra and anisotropic flow of direct photons in RHIC and LHC. In general, the holographic models enhance the yield and improve the agreement in spectra, while they reduce the flow in low pT and increase it in high pT.

  7. Effective Medium Theory for Anisotropic Metamaterials

    KAUST Repository

    Zhang, Xiujuan


    This dissertation includes the study of effective medium theories (EMTs) and their applications in describing wave propagation in anisotropic metamaterials, which can guide the design of metamaterials. An EMT based on field averaging is proposed to describe a peculiar anisotropic dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. This dispersion relation is associated with the topological transition of the iso-frequency contours (IFCs), suggesting interesting wave propagation behaviors from beam shaping to beam splitting. In the framework of coherent potential approximation, an analytical EMT is further developed, with the ability to build a direct connection between the microscopic structure and the macroscopic material properties, which overcomes the requirement of prior knowledge of the field distributions. The derived EMT is valid beyond the long-wavelength limit. Using the EMT, an anisotropic zero-index metamaterial is designed. Moreover, the derived EMT imposes a condition that no scattered wave is generated in the ambient medium, which suggests the input signal cannot detect any object that might exist, making it invisible. Such correspondence between the EMT and the invisibilityinspires us to explore the wave cloaking in the same framework of coherent potential approximation. To further broaden the application realm of EMT, an EMT using the parameter retrieval method is studied in the regimes where the previously-developed EMTs are no longer accurate. Based on this study, in conjunction with the EMT mentioned above, a general scheme to realize coherent perfect absorption (CPA) in anisotropic metamaterials is proposed. As an exciting area in metamaterials, the field of metasurfaces has drawn great attention recently. As an easily attainable device, a grating may be the simplest version of metasurfaces. Here, an analytical EMT for gratings made of cylinders is developed by using the multiple scattering

  8. Enabling Droplet Functionality on Anisotropic Ratchet Conveyors

    Directory of Open Access Journals (Sweden)

    Hal R. Holmes


    Full Text Available Anisotropic ratchet conveyors (ARCs are a recently developed microfluidic platform that transports liquid droplets through a passive, microfabricated surface pattern and applied orthogonal vibrations. In this work, three new functionalities are presented for controlling droplet transport on the ARC system. These devices can pause droplet transport (ARC gate, decide between two pathways of droplet transport (ARC switch, and pass droplets between transport tracks (ARC delivery junction. All devices function solely through the modification of pinning forces acting on the transported droplet and are the first reported devices that can selectively control droplet timing and directionality without active (e.g., thermal, electrical, or magnetic surface components.

  9. Cosmology and the weak interaction

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Fermi National Accelerator Lab., Batavia, IL (USA)):(Chicago Univ., IL (USA))


    The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.

  10. Nonlinear waves and weak turbulence

    CERN Document Server

    Zakharov, V E


    This book is a collection of papers on dynamical and statistical theory of nonlinear wave propagation in dispersive conservative media. Emphasis is on waves on the surface of an ideal fluid and on Rossby waves in the atmosphere. Although the book deals mainly with weakly nonlinear waves, it is more than simply a description of standard perturbation techniques. The goal is to show that the theory of weakly interacting waves is naturally related to such areas of mathematics as Diophantine equations, differential geometry of waves, Poincaré normal forms, and the inverse scattering method.

  11. Ultrasmall polarization rotation measurements via weak value amplification

    Energy Technology Data Exchange (ETDEWEB)

    Lima Bernardo, Bertúlio de, E-mail:; Azevedo, Sérgio; Rosas, Alexandre


    Highlights: • We present a class of weak measurements where the measurer is an angular variable of the system. • Photon-energy qubits are required, which seems to be the first application of this kind of light. • Both weak optical activity and reflection-induced polarization rotation can be amplified. • This protocol can amplify the optical activity signal in nanostructures and biological tissues. - Abstract: We propose a framework to analyze weak measurements based on an angular version of the von Neumann measurement scheme, where the coupling between the system and the meter causes rotation of the measuring variable. We also discuss an experimental application of this theory in which measurements of weak optical activity and reflection-induced polarization rotation could be amplified in nearly two orders of magnitude. It can shed a new light on a great variety of physical chemistry, molecular biology and nanotechnology studies.

  12. Submanifolds weakly associated with graphs

    Indian Academy of Sciences (India)

    Sci. (Math. Sci.) Vol. 119, No. 3, June 2009, pp. 297–318. © Printed in India. Submanifolds weakly associated with graphs. A CARRIAZO, L M FERN ´ANDEZ and A RODRÍGUEZ-HIDALGO. Department of Geometry and Topology, Faculty of Mathematics, University of Sevilla,. Apartado de Correos 1160, 41080-Sevilla, Spain.

  13. Beam splitting on weak illumination. (United States)

    Snyder, A W; Buryak, A V; Mitchell, D J


    We demonstrate, in both two and three dimensions, how a self-guided beam in a non-Kerr medium is split into two beams on weak illumination. We also provide an elegant physical explanation that predicts the universal character of the observed phenomenon. Possible applications of our findings to guiding light with light are also discussed.

  14. On Weak-BCC-Algebras (United States)

    Thomys, Janus; Zhang, Xiaohong


    We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983

  15. Voltage Weak DC Distribution Grids

    NARCIS (Netherlands)

    Hailu, T.G.; Mackay, L.J.; Ramirez Elizondo, L.M.; Ferreira, J.A.


    This paper describes the behavior of voltage weak DC distribution systems. These systems have relatively small system capacitance. The size of system capacitance, which stores energy, has a considerable effect on the value of fault currents, control complexity, and system reliability. A number of

  16. Quantum electrodynamics of inhomogeneous anisotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Adrian E.R.; Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, Buenos Aires (Argentina); IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)


    In this work we calculate the closed time path generating functional for the electromagnetic (EM) field interacting with inhomogeneous anisotropic matter. For this purpose, we first find a general expression for the electromagnetic field's influence action from the interaction of the field with a composite environment consisting in the quantum polarization degrees of freedom in each point of space, at arbitrary temperatures, connected to thermal baths. Then we evaluate the generating functional for the gauge field, in the temporal gauge, by implementing the Faddeev-Popov procedure. Finally, through the point-splitting technique, we calculate closed expressions for the energy, the Poynting vector, and the Maxwell tensor in terms of the Hadamard propagator. We show that all the quantities have contributions from the field's initial conditions and also from the matter degrees of freedom. Throughout the whole work we discuss how the gauge invariance must be treated in the formalism when the EM-field is interacting with inhomogeneous anisotropic matter. We study the electrodynamics in the temporal gauge, obtaining the EM-field's equation and a residual condition. Finally we analyze the case of the EM-field in bulk material and also discuss several general implications of our results in relation with the Casimir physics in a non-equilibrium scenario. (orig.)

  17. On Backus average for generally anisotropic layers

    CERN Document Server

    Bos, Len; Slawinski, Michael A; Stanoev, Theodore


    In this paper, following the Backus (1962) approach, we examine expressions for elasticity parameters of a homogeneous generally anisotropic medium that is long-wave-equivalent to a stack of thin generally anisotropic layers. These expressions reduce to the results of Backus (1962) for the case of isotropic and transversely isotropic layers. In over half-a-century since the publications of Backus (1962) there have been numerous publications applying and extending that formulation. However, neither George Backus nor the authors of the present paper are aware of further examinations of mathematical underpinnings of the original formulation; hence, this paper. We prove that---within the long-wave approximation---if the thin layers obey stability conditions then so does the equivalent medium. We examine---within the Backus-average context---the approximation of the average of a product as the product of averages, and express it as a proposition in terms of an upper bound. In the presented examination we use the e...

  18. Anisotropic diffusion phantoms based on microcapillaries (United States)

    Vellmer, Sebastian; Edelhoff, Daniel; Suter, Dieter; Maximov, Ivan I.


    Diffusion MRI is an efficient and widely used technique for the investigation of tissue structure and organisation in vivo. Multiple phenomenological and biophysical diffusion models are intensively exploited for the analysis of the diffusion experiments. However, the verification of the applied diffusion models remains challenging. In order to provide a ;gold standard; and to assess the accuracy of the derived parameters and the limitations of the diffusion models, anisotropic diffusion phantoms with well known architecture are demanded. In the present work we built four anisotropic diffusion phantoms consisting of hollow microcapillaries with very small inner diameters of 5, 10 and 20 μ m and outer diameters of 90 and 150 μ m. For testing the suitability of these phantoms, we performed diffusion measurements on all of them and evaluated the resulting data with a set of popular diffusion models, such as diffusion tensor and diffusion kurtosis imaging, a two compartment model with intra- and extra-capillary water spaces using bi-exponential fitting, and time-dependent diffusion coefficients in Mitra's limit. The perspectives and limitations of these diffusion phantoms are presented and discussed.

  19. Relativistic model for anisotropic strange stars (United States)

    Deb, Debabrata; Chowdhury, Sourav Roy; Ray, Saibal; Rahaman, Farook; Guha, B. K.


    In this article, we attempt to find a singularity free solution of Einstein's field equations for compact stellar objects, precisely strange (quark) stars, considering Schwarzschild metric as the exterior spacetime. To this end, we consider that the stellar object is spherically symmetric, static and anisotropic in nature and follows the density profile given by Mak and Harko (2002) , which satisfies all the physical conditions. To investigate different properties of the ultra-dense strange stars we have employed the MIT bag model for the quark matter. Our investigation displays an interesting feature that the anisotropy of compact stars increases with the radial coordinate and attains its maximum value at the surface which seems an inherent property for the singularity free anisotropic compact stellar objects. In this connection we also perform several tests for physical features of the proposed model and show that these are reasonably acceptable within certain range. Further, we find that the model is consistent with the energy conditions and the compact stellar structure is stable with the validity of the TOV equation and Herrera cracking concept. For the masses below the maximum mass point in mass vs radius curve the typical behavior achieved within the framework of general relativity. We have calculated the maximum mass and radius of the strange stars for the three finite values of bag constant Bg.

  20. Finite-difference schemes for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: [Centrum Wiskunde and Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands)


    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  1. Electrically Anisotropic Layered Perovskite Single Crystal

    KAUST Repository

    Li, Ting-You


    Organic-inorganic hybrid perovskites (OIHPs), which are promising materials for electronic and optoelectronic applications (1-10), have made into layered organic-inorganic hybrid perovskites (LOIHPs). These LOIHPs have been applied to thin-film transistors, solar cells and tunable wavelength phosphors (11-18). It is known that devices fabricated with single crystal exhibit the superior performance, which makes the growth of large-sized single crystals critical for future device applications (19-23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating the potentials in mass production. After that, we reveal anisotropic electrical and optoelectronic properties which proved the carrier propagating along inorganic framework. The carrier mobility of in-inorganic-plane (in-plane) devices shows the average value of 45 cm2 V–1 s–1 which is about 100 times greater than the record of LOIHP devices (15), showing the importance of single crystal in device application. Moreover, the LOIHP single crystals show its ultra-short carrier lifetime of 42.7 ps and photoluminescence quantum efficiency (PLQE) of 25.4 %. We expect this report to be a start of LOIHPs for advanced applications in which the anisotropic properties are needed (24-25), and meets the demand of high-speed applications and fast-response applications.

  2. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ingo Dierking


    Full Text Available Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii novel functionalities can be added to the liquid crystal; and (iii the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.

  3. Anisotropic Thermoplasticty and Strain Localization in Shale (United States)

    Semnani, S. J.; White, J. A.; Borja, R. I.


    Sedimentary rocks such as shale are inherently anisotropic due to their layered structure, and sensitive to temperature changes caused by various engineering applications e.g. carbon sequestration, waste disposal, wellbore drilling, as well as geothermal and heat storage applications. These materials are also prone to strain localization in the form of a shear band when subjected to critical loads. Strain localization is generally considered as a manifestation of material instability, which has been linked traditionally to failure of materials. While isotropic material models simplify the modeling process, they fail to accurately describe the mechanical behavior and onset of instability in anisotropic rocks. We present a thermo-plastic framework for modeling the coupled thermo-mechanical response and for predicting the inception of a shear band in shale using the general framework of critical state plasticity and the specific framework of modified Cam-Clay model. Under the assumption of infinitesimal deformation, the formulation incorporates anisotropy in both elastic and plastic responses. The model is first calibrated using experimental data from triaxial tests to demonstrate its capability in capturing anisotropy in the mechanical response. Subsequently, stress-point simulations of strain localization are carried out under two different conditions, namely, isothermal localization and adiabatic localization. The adiabatic formulation investigates the effect of temperature on localization via thermo-mechanical coupling. Numerical simulations are presented to demonstrate the effect of anisotropy, hardening, and thermal softening on strain localization.

  4. Kinematics of the quasi-p wave in anisotropic media. Application to tomography; Cinematique de l'onde quasi p en milieux anisotropes. Application a la tomographie

    Energy Technology Data Exchange (ETDEWEB)

    Mensch, Th.


    The seismic anisotropy causes in the Earth are known. The anisotropy characterization can provide valuable informations on the structure, lithology or eventual deformation processes in geological media. The orthorhombic symmetry allows a more complete description and representation of the anisotropy than the transversely isotropy symmetry usually assumed. Moreover this symmetry is potentially common in sedimentary basins, and particularly in fractured reservoir. In anisotropic media of arbitrary symmetry (triclinic), there is no simple analytic expressions on the phase slowness surface. The weak anisotropy assumption, often reasonable in geological media, makes perturbation techniques relevant. An approximate first order analytical expression of the qP-wave slowness surface is obtained. Using an adequate parameterization, the forward problem is solved by the ray theory. The Hamiltonian formulation introduces by a simple way ray equations in anisotropic media. The rays, travel time and its Fruchet derivatives expressions, valid to first order, are given for orthorhombic inhomogeneous media. Perturbation method applied to the ray theory allows the development of fast ray tracing in these media. Synthetic examples illustrate the accuracy and efficiency of the proposed approach. A tomographic method is developed. The travel time are inverted by minimizing, in term of least-square, the misfit between the observed and calculated travel times. The solution is approached iteratively by using a singular value decomposition algorithm. The inversion stability is assured by introducing a priori constraints. Synthetics examples show the need of an acquisition geometry well conceived to take account of anisotropy. (author)

  5. A mathematical analysis of the theory of interplanetary scintillation in the weak scattering approximation (United States)

    Mitchell, D. G.; Roelof, E. C.


    A simplified analytical technique is presented for modeling the interplanetary scintillation of radio sources of finite angular size with a power-law electron-density-fluctuation power spectrum. The simplification results from the representation of the scintillation spectrum in confluent hypergeometric functions. The approximations presented allow fast numerical evaluation of a spectrum for a weakly scattering but extended medium with less than 10% error over the entire spectrum. Parameters describing anisotropic electron irregularities as well as anisotropic source structure are included, and the dependence of the spectrum normalization on the scales of the medium is derived explicitly. The parametric description of the domains of convergence of the approximate expansions also provides a simple conceptualization of the relative contributions of the scattered radiation along the line of sight to the observed spectrum. This is particularly useful for sources of finite angular size. This technique is applied to previously published observations.

  6. Finite-Difference Methods for Extremely Anisotropic Diffusion

    NARCIS (Netherlands)

    B. van Es (Bram); B. Koren (Barry); H.J. de Blank


    htmlabstractAnisotropic diffusion is a common physical phenomenon and describes processes where the diffusion of some scalar quantity is directionally dependent. Anisotropic diffusive processes are for instance Darcy’s flow for porous media, large scale turbulence where turbulence scales are

  7. Wave propagation in a general anisotropic poroelastic medium ...

    Indian Academy of Sciences (India)

    The medium considered is a general anisotropic poroelastic (APE) solid with a viscous fluid saturating its pores of anisotropic permeability. The wave propagation phenomenon in a saturated porous medium is explained through two relations. One defines modified Christoffel equations for the propagation of plane harmonic ...

  8. Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics (United States)


    Clayton JD. An alternative three-term decomposition for single crystal deformation motivated by non-linear elastic dislocation solutions. Quarterly...ARL-TR-7231 ● MAR 2015 US Army Research Laboratory Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact...of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics by JD Clayton Weapons and Materials Research Directorate, ARL

  9. Existence of longitudinal waves in pre-stressed anisotropic elastic ...

    Indian Academy of Sciences (India)

    In a pre-stressed anisotropic elastic medium, three types of quasi-waves propagate along an arbitrary direction. In general, none of the waves is truly longitudinal. The present study finds the specific directions in a pre-stressed anisotropic elastic medium along which longitudinal waves may propagate. This paper ...

  10. Orthonormal bases for anisotropic α-modulation spaces

    DEFF Research Database (Denmark)

    Rasmussen, Kenneth Niemann


    In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we s...

  11. Orthonormal bases for anisotropic α-modulation spaces

    DEFF Research Database (Denmark)

    Rasmussen, Kenneth Niemann

    In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we s...

  12. Anisotropic microporous supports impregnated with polymeric ion-exchange materials (United States)

    Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark


    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.

  13. Anisotropic Flow Measurements in ALICE at the Large Hadron Collider

    NARCIS (Netherlands)

    Bilandzic, A.


    Anisotropic flow is one of the observables which is sensitive to the properties of the created hot and dense system in heavy-ion collisions. In noncentral heavy-ion collisions the initial volume of the interacting system is anisotropic in coordinate space. Due to multiple interactions this anisotropy

  14. Competing weak localization and weak antilocalization in ultrathin topological insulators. (United States)

    Lang, Murong; He, Liang; Kou, Xufeng; Upadhyaya, Pramey; Fan, Yabin; Chu, Hao; Jiang, Ying; Bardarson, Jens H; Jiang, Wanjun; Choi, Eun Sang; Wang, Yong; Yeh, Nai-Chang; Moore, Joel; Wang, Kang L


    We demonstrate evidence of a surface gap opening in topological insulator (TI) thin films of (Bi(0.57)Sb(0.43))(2)Te(3) below six quintuple layers through transport and scanning tunneling spectroscopy measurements. By effective tuning the Fermi level via gate-voltage control, we unveil a striking competition between weak localization and weak antilocalization at low magnetic fields in nonmagnetic ultrathin films, possibly owing to the change of the net Berry phase. Furthermore, when the Fermi level is swept into the surface gap of ultrathin samples, the overall unitary behaviors are revealed at higher magnetic fields, which are in contrast to the pure WAL signals obtained in thicker films. Our findings show an exotic phenomenon characterizing the gapped TI surface states and point to the future realization of quantum spin Hall effect and dissipationless TI-based applications.

  15. Determination of anisotropic velocity model by reflection tomography of compression and shear modes; Determination de modele de vitesse anisotrope par tomographie de reflexion des modes de compression et de cisaillement

    Energy Technology Data Exchange (ETDEWEB)

    Stopin, A.


    As the jump from 2D to 3D, seismic exploration lives a new revolution with the use of converted PS waves. Indeed PS converted waves are proving their potential as a tool for imaging through gas; lithology discrimination; structural confirmation; and more. Nevertheless, processing converted shear data and in particular determining accurate P and S velocity models for depth imaging of these data is still a challenging problem, especially when the subsurface is anisotropic. To solve this velocity model determination problem we propose to use reflection travel time tomography. In a first step, we derive a new approximation of the exact phase velocity equation of the SV wave in anisotropic (TI) media. This new approximation is valid for non-weak anisotropy and is mathematically simpler to handle than the exact equation. Then, starting from an isotropic reflection tomography tool developed at Lt-'P, we extend the isotropic bending ray tracing method to the anisotropic case and we implement the quantities necessary for the determination of the anisotropy parameters from the travel time data. Using synthetic data we then study the influence of the different anisotropy parameters on the travel times. From this analysis we propose a methodology to determine a complete anisotropic subsurface model (P and S layer velocities, interface geometries, anisotropy parameters). Finally, on a real data set from the Gulf of Mexico we demonstrate that this new anisotropic reflection tomography tool allows us to obtain a reliable subsurface model yielding kinematically correct and mutually coherent PP and PS images in depth; such a result could not be obtained with an isotropic velocity model. Similar results are obtained on a North Sea data set. (author)

  16. Transition from weak to strong cascade in MHD turbulence. (United States)

    Verdini, Andrea; Grappin, Roland


    The transition from weak to strong turbulence when passing from large to small scales in magnetohydrodynamic (MHD) turbulence with guide field is a cornerstone of anisotropic turbulence theory. We present the first check of this transition, using the Shell-RMHD, which combines a shell model of perpendicular nonlinear coupling and linear propagation along the guide field. This model allows us to reach Reynolds numbers around 10(6). We obtain surprisingly good agreement with the theoretical predictions, with a reduced perpendicular energy spectrum scaling as k(⊥)(-2) at large scales and as k(⊥)(-5/3) at small scales, where critical balance between nonlinear and propagation time is reached. However, even in the strong regime, a high level of excitation is found in the weak coupling region of Fourier space, which is due to the rich frequency spectrum of large eddies. A corollary is that the reduced parallel spectral slope is not a definite test of the spectral anisotropy, contrary to standard belief.

  17. Engineering interlocking DNA rings with weak physical interactions (United States)

    Wu, Zai-Sheng; Shen, Zhifa; Tram, Kha; Li, Yingfu


    Catenanes are intriguing molecular assemblies for engineering unique molecular devices. The resident rings of a catenane are expected to execute unhindered rotation around each other, and to do so, they must have weak physical interactions with each other. Due to sequence programmability, DNA has become a popular material for nanoscale object engineering. However, current DNA catenanes, particularly in the single-stranded (ss) form, are synthesized through the formation of a linking duplex, which makes them less ideal as mobile elements for molecular machines. Herein we adopt a random library approach to engineer ssDNA [2] catenanes (two interlocked DNA rings) without a linking duplex. Results from DNA hybridization, double-stranded catenane synthesis and rolling circle amplification experiments signify that representative catenanes have weak physical interactions and are capable of operating as independent units. Our findings lay the foundation for exploring free-functioning interlocked DNA rings for the design of elaborate nanoscale machines based on DNA.

  18. Anisotropic Self-Assembly of Organic–Inorganic Hybrid Microtoroids

    KAUST Repository

    Al-Rehili, Safa’a


    Toroidal structures based on self-assembly of predesigned building blocks are well-established in the literature, but spontaneous self-organization to prepare such structures has not been reported to date. Here, organic–inorganic hybrid microtoroids synthesized by simultaneous coordination-driven assembly of amphiphilic molecules and hydrophilic polymers are reported. Mixing amphiphilic molecules with iron(III) chloride and hydrophilic polymers in water leads, within minutes, to the formation of starlike nanostructures. A spontaneous self-organization of these nanostructures is then triggered to form stable hybrid microtoroids. Interestingly, the toroids exhibit anisotropic hierarchical growth, giving rise to a layered toroidal framework. These microstructures are mechanically robust and can act as templates to host metallic nanoparticles such as gold and silver. Understanding the nature of spontaneous assembly driven by coordination multiple non-covalent interactions can help explain the well-ordered complexity of many biological organisms in addition to expanding the available tools to mimic such structures at a molecular level.

  19. Anisotropic diffusion of water molecules in hydroxyapatite nanopores (United States)

    Prakash, Muthuramalingam; Lemaire, Thibault; Caruel, Matthieu; Lewerenz, Marius; de Leeuw, Nora H.; Di Tommaso, Devis; Naili, Salah


    New insights into the dynamical properties of water in hydroxyapatite (HAP) nanopores, a model system for the fluid flow within nanosize spaces inside the collagen-apatite structure of bone, were obtained from molecular dynamics simulations of liquid water confined between two parallel HAP surfaces of different sizes (20 Å ≤ H ≤ 240 Å). Calculations were conducted using a core-shell interatomic potential for HAP together with the extended simple point charge model for water. This force field gives an activation energy for water diffusion within HAP nanopores that is in excellent agreement with available experimental data. The dynamical properties of water within the HAP nanopores were quantified in terms of the second-order water diffusion tensor. Results indicate that water diffuses anisotropically within the HAP nanopores, with the solvent molecules moving parallel to the surface twice as fast as the perpendicular direction. This unusual dynamic behaviour is linked to the strong polarizing effect of calcium ions, and the synergic interactions between the water molecules in the first hydration layer of HAP with the calcium, hydroxyl, and phosphate ions, which facilitates the flow of water molecules in the directions parallel to the HAP surface.

  20. Optimal Weak Lensing Skewness Measurements


    Zhang, Tong-Jie; Pen, Ue-Li; Zhang, Pengjie; Dubinski, John


    Weak lensing measurements are entering a precision era to statistically map the distribution of matter in the universe. The most common measurement has been of the variance of the projected surface density of matter, which corresponds to the induced correlation in alignments of background galaxies. This measurement of the fluctuations is insensitive to the total mass content, like using waves on the ocean to measure its depths. But when the depth is shallow as happens near a beach, waves beco...

  1. Weak neutral-current interactions

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, R.M.


    The roles of each type of experiment in establishing uniquely the values of the the neutral-current couplings of u and d quarks are analyzed together with their implications for gauge models of the weak and electromagnetic interactions. An analysis of the neutral-current couplings of electrons and of the data based on the assumption that only one Z/sup 0/ boson exists is given. Also a model-independent analysis of parity violation experiments is discussed. 85 references. (JFP)

  2. [Muscle weakness in cerebral palsy]. (United States)

    Givon, Uri


    Over the last two decades, muscle weakness has been shown to be a major component of cerebral palsy (CP) pathology. Caused by multiple etiologies including variations in the muscle fiber type, pathologic motor unit function, co-contraction of agonists and antagonists, and muscle size and rigidity, weakness interferes with function and leads to limited function and participation. Muscle strength was found to be associated with walking ability and with functional scales. Children with CP were found to be weaker than typically developing children, and differences were found with respect to muscle groups in children with CP. Muscle weakness should be evaluated as objectively as possible to improve the quality of diagnosis and treatment. Manual muscle testing is not sufficient for evaluation, and instrumented muscle testing is validated in CP. Muscle strengthening is an important part of treatment of CP. Several methods of strengthening have been described. Muscle lengthening and other spasticity-modifying therapies have been shown to have a positive effect on muscle strength. Children who participated in muscle strengthening programs had a better quality of life and improved function.

  3. Experimental evidence for anisotropic double exchange interaction driven anisotropic transport in manganite heterostructures

    NARCIS (Netherlands)

    Liao, Zhaoliang; Koster, Gertjan; Huijben, Mark; Rijnders, A.J.H.M.


    An anisotropic double exchange interaction driven giant transport anisotropy is demonstrated in a canonic double exchange system of La2/3Sr1/3MnO3 ultrathin films epitaxially grown on NdGaO3 (110) substrates. The oxygen octahedral coupling at the La2/3Sr1/3MnO3/NdGaO3 interface induces a planar

  4. Completely continuous and weakly completely continuous abstract ...

    Indian Academy of Sciences (India)

    if the operator ρa of right multiplication by a is compact (weakly compact, respectively). An algebra A is called right completely continuous (right weakly completely continuous) if any element a ∈ A is right completely continuous (right weakly completely con- tinuous, respectively). Left completely continuous (left weakly ...

  5. Final fate of charged anisotropic fluid collapse (United States)

    Khan, Suhail; Shah, Hassan; Ahmad, Zahid; Ramzan, Muhammad


    This paper studies the effects of charge on spherically symmetric collapse of anisotropic fluid with a positive cosmological constant. It is observed that electromagnetic field places restriction on the bounds of cosmological constant, which acts as repulsive force against the contraction of matter content and hence the rate of destruction is faster in the presence of electromagnetic field. We have also noted that the presence of charge affects the time interval between the formation of cosmological horizon (CH) and black hole horizon (BHH). When the electric field strength E(t, r) vanishes, our investigations are in full agreement with the results obtained by Ahmad and Malik [Int. J. Theor. Phys. 55, 600 (2016)].

  6. Recent developments in anisotropic heterogeneous shell theory

    CERN Document Server

    Grigorenko, Alexander Ya; Grigorenko, Yaroslav M; Vlaikov, Georgii G


    This volume focuses on the relevant general theory and presents some first applications, namely those based on classical shell theory. After a brief introduction, during which the history and state-of-the-art are discussed, the first chapter presents the mechanics of anisotropic heterogeneous shells, covering all relevant assumptions and the basic relations of 3D elasticity, classical and refined shell models. The second chapter examines the numerical techniques that are used, namely discrete orthogonalization, spline-collocation and Fourier series, while the third highlights applications based on classical theory, in particular, the stress-strain state of shallow shells, non-circular shells, shells of revolution, and free vibrations of conical shells. The book concludes with a summary and an outlook bridging the gap to the second volume.

  7. Analytical study of anisotropic compact star models (United States)

    Ivanov, B. V.


    A simple classification is given of the anisotropic relativistic star models, resembling the one of charged isotropic solutions. On the ground of this database, and taking into account the conditions for physically realistic star models, a method is proposed for generating all such solutions. It is based on the energy density and the radial pressure as seeding functions. Numerous relations between the realistic conditions are found and the need for a graphic proof is reduced just to one pair of inequalities. This general formalism is illustrated with an example of a class of solutions with linear equation of state and simple energy density. It is found that the solutions depend on three free constants and concrete examples are given. Some other popular models are studied with the same method.

  8. Impact location estimation in anisotropic structures (United States)

    Zhou, Jingru; Mathews, V. John; Adams, Daniel O.


    Impacts are major causes of in-service damage in aerospace structures. Therefore, impact location estimation techniques are necessary components of Structural Health Monitoring (SHM). In this paper, we consider impact location estimation in anisotropic composite structures using acoustic emission signals arriving at a passive sensor array attached to the structure. Unlike many published location estimation algorithms, the algorithm presented in this paper does not require the waveform velocity profile for the structure. Rather, the method employs time-of-arrival information to jointly estimate the impact location and the average signal transmission velocities from the impact to each sensor on the structure. The impact location and velocities are estimated as the solution of a nonlinear optimization problem with multiple quadratic constraints. The optimization problem is solved by using first-order optimality conditions. Numerical simulations as well as experimental results demonstrate the ability of the algorithm to accurately estimate the impact location using acoustic emission signals.

  9. Long-range interaction of anisotropic systems

    KAUST Repository

    Zhang, Junyi


    The first-order electrostatic interaction energy between two far-apart anisotropic atoms depends not only on the distance between them but also on their relative orientation, according to Rayleigh-Schrödinger perturbation theory. Using the first-order interaction energy and the continuum model, we study the long-range interaction between a pair of parallel pristine graphene sheets at zero temperature. The asymptotic form of the obtained potential density, &epsi:(D) &prop: ?D ?3 ?O(D?4), is consistent with the random phase approximation and Lifshitz theory. Accordingly, neglectance of the anisotropy, especially the nonzero first-order interaction energy, is the reason why the widely used Lennard-Jones potential approach and dispersion corrections in density functional theory give a wrong asymptotic form ε(D) &prop: ?D?4. © EPLA, 2015.

  10. Transient motion of thick anisotropic plates (United States)

    Nayfeh, Adnan H.; Taylor, Timothy W.


    Analyses are developed for the response of anisotropic plate strips to a transient load. The load is taken in the form of a line load of normal stress on the surface or within the body of the strip. The characteristic free vibrational modes of the strip are derived and used to derive the secular equation for this case in closed form and to isolate the mathematical conditions for symmetric and antisymmetric wave mode propagation in completely separate terms. The applied loads are expanded in terms of these normal modes and the response of the plate is obtained by superposition of the appropriate components. Material systems of higher symmetry are contained implicitly in the analysis.

  11. Crack Path Prediction in Anisotropic Brittle Materials (United States)

    Hakim, Vincent; Karma, Alain


    A force balance condition to predict quasistatic crack paths in anisotropic brittle materials is derived from an analysis of diffuse interface continuum models that describe both short-scale failure and macroscopic linear elasticity. The path is uniquely determined by the directional anisotropy of the fracture energy, independent of details of the failure process. The derivation exploits the gradient dynamics and translation symmetry properties of this class of models to define a generalized energy-momentum tensor whose integral around an arbitrary closed path enclosing the crack tip yields all forces acting on this tip, including Eshelby’s configurational forces, cohesive forces, and dissipative forces. Numerical simulations are in very good agreement with analytic predictions.

  12. Anisotropic thermal expansion in flexible materials (United States)

    Romao, Carl P.


    A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αi i) to one element of the elastic compliance tensor, which corresponds to the Young's modulus in that direction (Yi i). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally complex systems. The direct dependence of αi i on Yi i suggests that materials which are flexible along their principal axes but rigid in other directions will generally display both positive and negative thermal expansion.

  13. Spectral functions from anisotropic lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Aarts, G.; Allton, C. [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Amato, A. [Helsinki Institute of Physics and University of Helsinki, Helsinki (Finland); Evans, W. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics Universitat Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Giudice, P. [Institut für Theoretische Physik, Universität Münster, D–48149 Münster (Germany); Harris, T. [School of Mathematics, Trinity College, Dublin 2 (Ireland); Kelly, A. [Department of Mathematical Physics, Maynooth University, Maynooth, Co Kildare (Ireland); Kim, S.Y. [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of); Lombardo, M.P. [INFN–Laboratori Nazionali di Frascati, I–00044 Frascati (RM) (Italy); Praki, K. [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Ryan, S.M. [School of Mathematics, Trinity College, Dublin 2 (Ireland); Skullerud, J.-I. [Department of Mathematical Physics, Maynooth University, Maynooth, Co Kildare (Ireland)


    The FASTSUM collaboration has been carrying out lattice simulations of QCD for temperatures ranging from one third to twice the crossover temperature, investigating the transition region, as well as the properties of the Quark Gluon Plasma. In this contribution we concentrate on quarkonium correlators and spectral functions. We work in a fixed scale scheme and use anisotropic lattices which help achieving the desirable fine resolution in the temporal direction, thus facilitating the (ill posed) integral transform from imaginary time to frequency space. We contrast and compare results for the correlators obtained with different methods, and different temporal spacings. We observe robust features of the results, confirming the sequential dissociation scenario, but also quantitative differences indicating that the methods' systematic errors are not yet under full control. We briefly outline future steps towards accurate results for the spectral functions and their associated statistical and systematic errors.

  14. Turbulent Output-Based Anisotropic Adaptation (United States)

    Park, Michael A.; Carlson, Jan-Renee


    Controlling discretization error is a remaining challenge for computational fluid dynamics simulation. Grid adaptation is applied to reduce estimated discretization error in drag or pressure integral output functions. To enable application to high O(10(exp 7)) Reynolds number turbulent flows, a hybrid approach is utilized that freezes the near-wall boundary layer grids and adapts the grid away from the no slip boundaries. The hybrid approach is not applicable to problems with under resolved initial boundary layer grids, but is a powerful technique for problems with important off-body anisotropic features. Supersonic nozzle plume, turbulent flat plate, and shock-boundary layer interaction examples are presented with comparisons to experimental measurements of pressure and velocity. Adapted grids are produced that resolve off-body features in locations that are not known a priori.

  15. Anisotropic Particle Acceleration in Relativistic Shear Layers (United States)

    Boettcher, Markus; Liang, Edison P.; Fu, Wen


    We present results of Particle in Cell (PIC) simulations of relativistic shear layers as relevant to the relativistic jets of acive galactic nuclei and gamma-ray bursts. We study the self-generation of electro-magnetic fields and particle acceleration for various different plasma compositions (electron-ion vs. electron-positron pair vs. hybrid). Special emphasis is placed on the angular distribution of accelerated particles. We find that electron-ion shear layers lead to highly anisotropic particle distributions in the frame of the fast-moving inner spine. The beaming pattern of the highest-energy particles is much narrower than the characteristic beaming angle of 1/Gamma resulting from relativistic aberration of a co-moving isotropic distribution. This may pose a possible solution to the Lorentz-Factor crisis in blazars and explain very hard X-ray / soft gamma-ray spectra of some gamma-ray bursts.

  16. Highly Anisotropic Dirac Fermions in Square Graphynes. (United States)

    Zhang, L Z; Wang, Z F; Wang, Zhiming M; Du, S X; Gao, H-J; Liu, Feng


    We predict a family of 2D carbon (C) allotropes, square graphynes (S-graphynes) that exhibit highly anisotropic Dirac fermions, using first-principle calculations within density functional theory. They have a square unit-cell containing two sizes of square C rings. The equal-energy contour of their 3D band structure shows a crescent shape, and the Dirac crescent has varying Fermi velocities from 0.6 × 10(5) to 7.2 × 10(5) m/s along different k directions. Near the Fermi level, the Dirac crescent can be nicely expressed by an extended 2D Dirac model Hamiltonian. Furthermore, tight-binding band fitting reveals that the Dirac crescent originates from the next-nearest-neighbor interactions between C atoms. S-graphynes may be used to build new 2D electronic devices taking advantages of their highly directional charge transport.

  17. Anisotropic diffusion tensor applied to temporal mammograms

    DEFF Research Database (Denmark)

    Karemore, Gopal; Brandt, Sami; Sporring, Jon


     Breast density is considered a structural property of  a  mammogram  that  can  change  in  various  ways  explaining different effects of medicinal treatments. The aim of the present work  is  to  provide  a  framework  for  obtaining  more  accurate and sensitive measurements of breast density...... changes related to  specific  effects  like  Hormonal  Replacement  Therapy  (HRT) and aging. Given effect-grouped patient data, we demonstrated how  anisotropic  diffusion  tensor  and  its  coherence  features computed in an anatomically oriented breast coordinate system followed by statistical learning...

  18. Theory of Random Anisotropic Magnetic Alloys

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker


    A mean-field-crystal-field theory is developed for random, multicomponent, anisotropic magnetic alloys. It is specially applicable to rare-earth alloys. A discussion is given of multicritical points and phase transitions between various states characterized by order parameters with different...... spatial directions or different ordering wave vectors. Theoretical predictions based on known parameters for the phase diagrams and magnetic moments for the binary rare-earth alloys of Tb, Dy, Ho, and Er, Tb-Tm, Nd-Pr, and pure double-hcp Nd agree qualitatively with the experimental observations....... Quantitative agreement can be obtained by increasing the interaction between different alloy elements, in particular for alloys with very different axial anisotropy, e.g., Tb-Tm. A model system consisting of a singlet-singlet and singlet-doublet alloy is discussed in detail. A simple procedure to include...

  19. Anisotropic dynamic mass density for fluidsolid composites

    KAUST Repository

    Wu, Ying


    By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle-dependent dipole solution, to the leading-order of solid concentration. The angular dependence vanishes for the square lattice, but at high solid concentrations there is a structure-dependent factor that contributes to the leading-order solution. In all cases, Woods formula is found to be accurately valid for the effective bulk modulus, independent of the structures. Numerical evaluations from the solutions are shown to be in excellent agreement with finite-element simulations. © 2012 Elsevier B.V.

  20. Pure-Connection Gravity and Anisotropic Singularities (United States)

    Krasnov, Kirill; Shtanov, Yuri


    In four space-time dimensions, there exists a special infinite-parameter family of chiral modified gravity theories. They are most properly described by a connection field, with space-time metric being a secondary and derived concept. All these theories have the same number of degrees of freedom as general relativity, which is the only parity-invariant member of this family. Modifications of general relativity can be arranged so as to become important in regions with large curvature. In this paper we review how a certain simple modification of this sort can resolve the Schwarzschild black-hole and Kasner anisotropic singularities of general relativity. In the corresponding solutions, the fundamental connection field is regular in space-time.

  1. Anisotropic plasmas from axion and dilaton deformations

    Energy Technology Data Exchange (ETDEWEB)

    Donos, Aristomenis [Centre for Particle Theory and Department of Mathematical Sciences, Durham University,South Rd., Durham (United Kingdom); Gauntlett, Jerome P. [Blackett Laboratory, Imperial College,Prince Consort Rd., London (United Kingdom); Sosa-Rodriguez, Omar [Centre for Particle Theory and Department of Mathematical Sciences, Durham University,South Rd., Durham (United Kingdom)


    We construct black hole solutions of type IIB supergravity that are holographically dual to anisotropic plasmas arising from deformations of an infinite class of four-dimensional CFTs. The CFTs are dual to AdS{sub 5}×X{sub 5}, where X{sub 5} is an Einstein manifold, and the deformations involve the type IIB axion and dilaton, with non-trivial periodic dependence on one of the spatial directions of the CFT. At low temperatures the solutions approach smooth domain wall solutions with the same AdS{sub 5}×X{sub 5} solution appearing in the far IR. For sufficiently large deformations an intermediate scaling regime appears which is governed by a Lifshitz-like scaling solution. We calculate the DC thermal conductivity and some components of the shear viscosity tensor.

  2. Effective orthorhombic anisotropic models for wavefield extrapolation

    KAUST Repository

    Ibanez-Jacome, W.


    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the firstarrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.

  3. Protecting weak measurements against systematic errors


    Pang, Shengshi; Alonso, Jose Raul Gonzalez; Brun, Todd A.; Jordan, Andrew N.


    In this work, we consider the systematic error of quantum metrology by weak measurements under decoherence. We derive the systematic error of maximum likelihood estimation in general to the first-order approximation of a small deviation in the probability distribution, and study the robustness of standard weak measurement and postselected weak measurements against systematic errors. We show that, with a large weak value, the systematic error of a postselected weak measurement when the probe u...

  4. Gossip and Distributed Kalman Filtering: Weak Consensus Under Weak Detectability (United States)

    Kar, Soummya; Moura, José M. F.


    The paper presents the gossip interactive Kalman filter (GIKF) for distributed Kalman filtering for networked systems and sensor networks, where inter-sensor communication and observations occur at the same time-scale. The communication among sensors is random; each sensor occasionally exchanges its filtering state information with a neighbor depending on the availability of the appropriate network link. We show that under a weak distributed detectability condition: 1. the GIKF error process remains stochastically bounded, irrespective of the instability properties of the random process dynamics; and 2. the network achieves \\emph{weak consensus}, i.e., the conditional estimation error covariance at a (uniformly) randomly selected sensor converges in distribution to a unique invariant measure on the space of positive semi-definite matrices (independent of the initial state.) To prove these results, we interpret the filtered states (estimates and error covariances) at each node in the GIKF as stochastic particles with local interactions. We analyze the asymptotic properties of the error process by studying as a random dynamical system the associated switched (random) Riccati equation, the switching being dictated by a non-stationary Markov chain on the network graph.

  5. Ultrasound finite element simulation sensitivity to anisotropic titanium microstructures (United States)

    Freed, Shaun; Blackshire, James L.; Na, Jeong K.


    Analytical wave models are inadequate to describe complex metallic microstructure interactions especially for near field anisotropic property effects and through geometric features smaller than the wavelength. In contrast, finite element ultrasound simulations inherently capture microstructure influences due to their reliance on material definitions rather than wave descriptions. To better understand and quantify heterogeneous crystal orientation effects to ultrasonic wave propagation, a finite element modeling case study has been performed with anisotropic titanium grain structures. A parameterized model has been developed utilizing anisotropic spheres within a bulk material. The resulting wave parameters are analyzed as functions of both wavelength and sphere to bulk crystal mismatch angle.

  6. Development of laser ablation plasma by anisotropic self-radiation

    Directory of Open Access Journals (Sweden)

    Ohnishi Naofumi


    Full Text Available We have proposed a method for reproducing an accurate solution of low-density ablation plasma by properly treating anisotropic radiation. Monte-Carlo method is employed for estimating Eddington tensor with limited number of photon samples in each fluid time step. Radiation field from ablation plasma is significantly affected by the anisotropic Eddington tensor. Electron temperature around the ablation surface changes with the radiation field and is responsible for the observed emission. An accurate prediction of the light emission from the laser ablation plasma requires a careful estimation of the anisotropic radiation field.

  7. Two-point paraxial traveltime formula for inhomogeneous isotropic and anisotropic media: Tests of accuracy

    KAUST Repository

    Waheed, Umair bin


    On several simple models of isotropic and anisotropic media, we have studied the accuracy of the two-point paraxial traveltime formula designed for the approximate calculation of the traveltime between points S\\' and R\\' located in the vicinity of points S and R on a reference ray. The reference ray may be situated in a 3D inhomogeneous isotropic or anisotropic medium with or without smooth curved interfaces. The twopoint paraxial traveltime formula has the form of the Taylor expansion of the two-point traveltime with respect to spatial Cartesian coordinates up to quadratic terms at points S and R on the reference ray. The constant term and the coefficients of the linear and quadratic terms are determined from quantities obtained from ray tracing and linear dynamic ray tracing along the reference ray. The use of linear dynamic ray tracing allows the evaluation of the quadratic terms in arbitrarily inhomogeneous media and, as shown by examples, it extends the region of accurate results around the reference ray between S and R (and even outside this interval) obtained with the linear terms only. Although the formula may be used for very general 3D models, we concentrated on simple 2D models of smoothly inhomogeneous isotropic and anisotropic (~8% and ~20% anisotropy) media only. On tests, in which we estimated twopoint traveltimes between a shifted source and a system of shifted receivers, we found that the formula may yield more accurate results than the numerical solution of an eikonal-based differential equation. The tests also indicated that the accuracy of the formula depends primarily on the length and the curvature of the reference ray and only weakly depends on anisotropy. The greater is the curvature of the reference ray, the narrower its vicinity, in which the formula yields accurate results.

  8. Weak lensing and cosmological investigation

    CERN Document Server

    Acquaviva, V


    In the last few years the scientific community has been dealing with the challenging issue of identifying the dark energy component. We regard weak gravitational lensing as a brand new, and extremely important, tool for cosmological investigation in this field. In fact, the features imprinted on the cosmic microwave background radiation by the lensing from the intervening distribution of matter represent a pretty unbiased estimator, and can thus be used for putting constraints on different dark energy models. This is true in particular for the magnetic-type B-modes of CMB polarization, whose unlensed spectrum at large multipoles (l approximately=1000) is very small even in presence of an amount of gravitational waves as large as currently allowed by the experiments: therefore, on these scales the lensing phenomenon is the only responsible for the observed power, and this signal turns out to be a faithful tracer of the dark energy dynamics. We first recall the formal apparatus of the weak lensing in extended t...

  9. Time—periodic weak solutions

    Directory of Open Access Journals (Sweden)

    Eliana Henriques de Brito


    Full Text Available In continuing from previous papers, where we studied the existence and uniqueness of the global solution and its asymptotic behavior as time t goes to infinity, we now search for a time-periodic weak solution u(t for the equation whose weak formulation in a Hilbert space H isddt(u′,v+δ(u′,v+αb(u,v+βa(u,v+(G(u,v=(h,vwhere: ′=d/dt; (′ is the inner product in H; b(u,v, a(u,v are given forms on subspaces U⊂W, respectively, of H; δ>0, α≥0, β≥0 are constants and α+β>0; G is the Gateaux derivative of a convex functional J:V⊂H→[0,∞ for V=U, when α>0 and V=W when α=0, hence β>0; v is a test function in V; h is a given function of t with values in H.

  10. Political corruption and weak state

    Directory of Open Access Journals (Sweden)

    Stojiljković Zoran


    Full Text Available The author starts from the hypothesis that it is essential for the countries of the region to critically assess the synergy established between systemic, political corruption and a selectively weak, “devious” nature of the state. Moreover, the key dilemma is whether the expanded practice of political rent seeking supports the conclusion that the root of all corruption is in the very existence of the state - particularly in excessive, selective and deforming state interventions and benefits that create a fertile ground for corruption? The author argues that the destructive combination of weak government and rampant political corruption is based on scattered state intervention, while also rule the parties cartel in the executive branch subordinate to parliament, the judiciary and the police. Corrupt exchange takes place with the absence of strong institutional framework and the precise rules of the political and electoral games, control of public finances and effective political and anti-monopoly legislation and practice included. Exit from the current situation can be seen in the realization of effective anti­corruption strategy that integrates preventive and repressive measures and activities and lead to the establishment of principles of good governance. [Projekat Ministarstva nauke Republike Srbije, br. 179076: Politički identitet Srbije u regionalnom i globalnom kontekstu

  11. Reinterpreting aircraft measurements in anisotropic scaling turbulence

    Directory of Open Access Journals (Sweden)

    S. J. Hovde


    Full Text Available Due to both systematic and turbulent induced vertical fluctuations, the interpretation of atmospheric aircraft measurements requires a theory of turbulence. Until now virtually all the relevant theories have been isotropic or "quasi isotropic" in the sense that their exponents are the same in all directions. However almost all the available data on the vertical structure shows that it is scaling but with exponents different from the horizontal: the turbulence is scaling but anisotropic. In this paper, we show how such turbulence can lead to spurious breaks in the scaling and to the spurious appearance of the vertical scaling exponent at large horizontal lags.

    We demonstrate this using 16 legs of Gulfstream 4 aircraft near the top of the troposphere following isobars each between 500 and 3200 km in length. First we show that over wide ranges of scale, the horizontal spectra of the aircraft altitude are nearly k-5/3. In addition, we show that the altitude and pressure fluctuations along these fractal trajectories have a high degree of coherence with the measured wind (especially with its longitudinal component. There is also a strong phase relation between the altitude, pressure and wind fluctuations; for scales less than ≈40 km (on average the wind fluctuations lead the pressure and altitude, whereas for larger scales, the pressure fluctuations leads the wind. At the same transition scale, there is a break in the wind spectrum which we argue is caused by the aircraft starting to accurately follow isobars at the larger scales. In comparison, the temperature and humidity have low coherencies and phases and there are no apparent scale breaks, reinforcing the hypothesis that it is the aircraft trajectory that is causally linked to the scale breaks in the wind measurements.

    Using spectra and structure functions for the wind, we then estimate their exponents (β, H at small (5/3, 1/3 and large scales (2

  12. Anisotropic contraction of hydrogel reinforced by aligned fibers (United States)

    Olvera de La Cruz, Monica; Liu, Shuangping

    Hydrogel reinforced by aligned fibers can have strong anisotropic contraction or swelling behavior triggered by external stimuli, which has been largely employed in realizing soft actuators for artificial muscles as well as many biological systems. In this work, we investigate how this anisotropic behavior is controlled by the dimension of the embedded fibers and their reinforcement to the surrounding hydrogel. We describe the anisotropic contraction of hydrogels with rigid fibers using the Flory-Rehner thermodynamic model under periodic boundary conditions. It is found that a hydrogel reinforced by aligned fibers exhibits larger anisotropy when it is pre-stretched before contraction. Using finite element method, we further observe that the anisotropic contraction is dampened by reducing the fiber-fiber distance due to the finite size of the fibers.

  13. Modelling of anisotropic compact stars of embedding class one

    Energy Technology Data Exchange (ETDEWEB)

    Bhar, Piyali [Government General Degree College, Department of Mathematics, Singur, Hooghly, West Bengal (India); Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, U.P. (India); Manna, Tuhina [St. Xavier' s College, Department of Commerce (Evening), Kolkata, West Bengal (India)


    In the present article, we have constructed static anisotropic compact star models of Einstein field equations for the spherical symmetric metric of embedding class one. By assuming the particular form of the metric function ν, we have solved the Einstein field equations for anisotropic matter distribution. The anisotropic models represent the realistic compact objects such as SAX J 1808.4-3658 (SS1), Her X-1, Vela X-12, PSR J1614-2230 and Cen X-3. We have reported our results in details for the compact star Her X-1 on the ground of physical properties such as pressure, density, velocity of sound, energy conditions, TOV equation and red-shift etc. Along with these, we have also discussed about the stability of the compact star models. Finally we made a comparison between our anisotropic stars with the realistic objects on the key aspects as central density, central pressure, compactness and surface red-shift. (orig.)

  14. Modeling and Measurements of CMUTs with Square Anisotropic Plates

    DEFF Research Database (Denmark)

    la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Dahl-Petersen, Christian


    The conventional method of modeling CMUTs use the isotropic plate equation to calculate the deflection, leading to deviations from FEM simulations including anisotropic effects of around 10% in center deflection. In this paper, the deflection is found for square plates using the full anisotropic...... plate equation and the Galerkin method. Utilizing the symmetry of the silicon crystal, a compact and accurate expression for the deflection can be obtained. The deviation from FEM in center deflection is deflection was measured on fabricated CMUTs using a white light interferometer. Fitting...... the anisotropic calculated deflection to the measurement a deviation of 0.5-1.5% is seen for the fitted values. Finally it was also measured how the device behaved under increasing bias voltage and it is observed that the model including anisotropic effects is within the uncertainty interval of the measurements....

  15. Liquid Crystal Elastomer Actuators from Anisotropic Porous Polymer Template. (United States)

    Wang, Qian; Yu, Li; Yu, Meina; Zhao, Dongyu; Song, Ping; Chi, Hun; Guo, Lin; Yang, Huai


    Controlling self-assembly behaviors of liquid crystals is a fundamental issue for designing them as intelligent actuators. Here, anisotropic porous polyvinylidene fluoride film is utilized as a template to induce homogeneous alignment of liquid crystals. The mechanism of liquid crystal alignment induced by anisotropic porous polyvinylidene fluoride film is illustrated based on the relationship between the alignment behavior of liquid crystals and surface microstructure of anisotropic polyvinylidene fluoride film. Liquid crystal elastomer actuators with fast responsiveness, large strain change, and reversible actuation behaviors are achieved by the photopolymerization of liquid crystal monomer in liquid crystal cells coated with anisotropic porous films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Acoustic frequency filter based on anisotropic topological phononic crystals

    KAUST Repository

    Chen, Zeguo


    We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.

  17. Influence of ordered morphology on the anisotropic actuation in uniaxially oriented electroactive polymer systems. (United States)

    Park, Jong Keun; Moore, Robert B


    Ionic polymer-metal composites (IPMCs) are electroactive materials that undergo bending motions with the stimulus of a relatively weak electric field. To understand the fundamental role of the nanoscale morphology of the ionomer membrane matrix in affecting the actuation behavior of IPMC systems, we evaluated the actuation performance of IPMC materials subjected to uniaxial orientation. The perfluorinated ionomer nanostructure altered by uniaxial orientation mimicks the fibrillar structure of biological muscle tissue and yields a new anisotropic actuation response. It is evident that IPMCs cut from films oriented perpendicular to the draw direction yield tip-displacement values that are significantly greater than those of unoriented IPMCs. In contrast, IPMCs cut from films oriented parallel to the draw direction appear to resist bending and yield tip-displacement values that are much less than those of unoriented IPMCs. This anisotropic actuation behavior is attributed, in part, to the contribution of the fibrillar morphology to the bulk bending modulus. As an additional contribution, electrically stimulated water swelling perpendicular to the rodlike aggregate axis facilitates bending in the perpendicular direction.

  18. Influence of Ordered Morphology on the Anisotropic Actuation in Uniaxially Oriented Electroactive Polymer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Keun; Moore, Robert B.; (VPI-SU)


    Ionic polymer-metal composites (IPMCs) are electroactive materials that undergo bending motions with the stimulus of a relatively weak electric field. To understand the fundamental role of the nanoscale morphology of the ionomer membrane matrix in affecting the actuation behavior of IPMC systems, we evaluated the actuation performance of IPMC materials subjected to uniaxial orientation. The perfluorinated ionomer nanostructure altered by uniaxial orientation mimicks the fibrillar structure of biological muscle tissue and yields a new anisotropic actuation response. It is evident that IPMCs cut from films oriented perpendicular to the draw direction yield tip-displacement values that are significantly greater than those of unoriented IPMCs. In contrast, IPMCs cut from films oriented parallel to the draw direction appear to resist bending and yield tip-displacement values that are much less than those of unoriented IPMCs. This anisotropic actuation behavior is attributed, in part, to the contribution of the fibrillar morphology to the bulk bending modulus. As an additional contribution, electrically stimulated water swelling perpendicular to the rodlike aggregate axis facilitates bending in the perpendicular direction.

  19. Anisotropic Pauli Spin Blockade of Holes in a GaAs Double Quantum Dot (United States)

    Wang, Qingwen; Klochan, Oleh; Hung, Jo-Tzu; Culcer, Dimitrie; Farrer, Ian; Ritchie, David; Hamilton, Alex

    Electrically defined semiconductor quantum dots are appealing systems for spin manipulation and quantum information processing. Thanks to the weak hyperfine interaction and the strong spin-orbit interaction, heavy-holes in GaAs are promising candidates for all-electrical spin manipulation. However, making stable quantum dots in GaAs has only become possible recently, mainly because of difficulties in device fabrication and device stability. Here we present electrical transport measurements of heavy-holes in a lateral double quantum dot based on a GaAs /AlxGa1 - x As heterostructure. We observe clear Pauli spin blockade and show that the lifting of the spin blockade by an external magnetic field is extremely anisotropic. Numerical calculations of heavy-hole transport through a double quantum dot in the presence of strong spin-orbit interaction demonstrate quantitative agreement with experimental results, which indicates that the observed anisotropy can be explained by the anisotropic hole g-factor and the surface Dresselhaus spin-orbit coupling.

  20. Fabrication of anisotropic multifunctional colloidal carriers (United States)

    Jerri, Huda A.

    The field of colloidal assembly has grown tremendously in recent years, although the direct or template-assisted methods used to fabricate complex colloidal constructions from monodisperse micro- and nanoparticles have been generally demonstrated on model materials. In this work, novel core particle syntheses, particle functionalizations and bottom-up assembly techniques are presented to create functional colloidal devices. Using particle lithography, high-information colloidal vectors have been developed and modified with imaging and targeting agents. Localized nanoscale patches have been reliably positioned on microparticles to serve as foundations for further chemical or physical modifications. Site-specific placement of RGD targeting ligands has been achieved in these lithographed patches. Preferential uptake of these targeted vectors by RGD-specific 3T3 fibroblasts was verified using confocal laser scanning microscopy. A transition was made from the functionalization of model imaging core particles to the lithography of colloidal cartridges, in an effort to construct colloidal syringes with specialized, programmable release profiles. A variety of functional, pH-sensitive fluorescent cores were engineered to respond to solution conditions. When triggered, the diverse composite core microparticles and reservoir microcapsules released embedded fluorescent moieties such as dye molecules, and fluorophore-conjugated nanoparticles. The microcapsules, created using layer-by-layer polyelectrolyte deposition on sacrificial templates, were selectively modified with a robust coating. The pH-responsive anisotropic reservoir microcapsules were extremely stable in solution, and exhibited a "Lazarus" functionality of rehydrating to their original state following desiccation. A snapshot of focused-release of core constituents through the lone opening in colloidal monotremes has been obtained by anisotropically-functionalizing degradable cores with barrier shells. Additionally

  1. Borehole Deformation and Failure in Anisotropic Media (United States)

    Gaede, Oliver; Regenauer-Lieb, Klaus; Lumley, David


    Borehole breakouts develop due to compressive shear failure along the borehole wall and subsequent spalling of near wellbore rock. These compressive shear failures can occur during drilling and lead to a borehole enlargement in the direction of the minimum horizontal stress. In order to investigate the initiation of borehole breakouts in anisotropic media a numerical analysis of the borehole deformation has been performed. The numerical model is based on an extensive geophysical and geomechanical dataset, provided by BHP Billiton Petroleum. This dataset was established during the development and production phase of an oil reservoir on the North West Shelf, Western Australia. The aim of this study is to estimate the severity of the influence of anisotropy on the breakout process. It is proposed that there is a hierarchy among the possible influences on the breakout process: 1. The regional stress field has a first order effect on the borehole breakout direction. 2. This is followed by a preferential fracture direction or anisotropic failure criterion of the medium. 3. And finally the elastic anisotropy of the medium affecting the local stress field around the borehole. A clear separation of these influences through methods of observation is not always trivial. Firstly, the preferential fracture direction and the elastic anisotropy, at least to some degree, are functions of the regional stress field. Secondly, most of the knowledge we have about the regional stress field in relatively aseismic regions is inferred from borehole breakout data. Therefore a numerical simulation is chosen as a method of study. Material properties like elastic anisotropy or failure criterion and even their dependency on the stress field can easily be manipulated. This geophysical and geomechanical data is used to populate the numerical model. The regional stress field is implemented as a boundary condition. The commercial Finite Element package ABAQUS is used to obtain the stress / strain

  2. Two theorems about electromagnetic force in activate anisotropic regions


    Spałek, Dariusz; Spałek, Dariusz


    ICEM 2010, Roma ICEM 2010, Roma The paper has dealt with two problems of calculation of electromagnetic force/torque. The first one is for magnetically anisotropic and conductive region. It has been presented sufficient condition for surface-integral representation of electromagnetic force/torque in conductive and anisotropic region. The second approach deals with the problem of independence of force/torque calculated value from shape of integral-surface. The second theorem gives the su...



    Yshii, Lucas Nobumichi; Santana, Rafael Christovão; Monteiro, Francisco Alex Correia; Neto, Eliseu Lucena


    The Ritz method is used in the buckling analysis of anisotropic plates under several combinations of in-plane loads and boundary conditions. Ritz bases are generated from modi…ed Legendre polynomials, and the plate rigidities are carefully chosen to provide thermodynamically admissible materials. The accuracy of the proposed approach is assessed by means of several examples solved by …nite element models.Keywords: Ritz method, Anisotropic plates, Buckling analysis

  4. Hybrid localized waves supported by resonant anisotropic metasurfaces

    DEFF Research Database (Denmark)

    Bogdanov, A. A.; Yermakov, O. Y.; Ovcharenko, A. I.


    We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime.......We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime....

  5. Hybrid anisotropic materials for wind power turbine blades

    CERN Document Server

    Golfman, Yosif


    Based on rapid technological developments in wind power, governments and energy corporations are aggressively investing in this natural resource. Illustrating some of the crucial new breakthroughs in structural design and application of wind energy generation machinery, Hybrid Anisotropic Materials for Wind Power Turbine Blades explores new automated, repeatable production techniques that expand the use of robotics and process controls. These practices are intended to ensure cheaper fabrication of less-defective anisotropic material composites used to manufacture power turbine blades. This boo

  6. Anisotropic wave-equation traveltime and waveform inversion

    KAUST Repository

    Feng, Shihang


    The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially performed using the wave-equation traveltime inversion (WT) method. The WT tomograms are then used as starting background models for VTI full waveform inversion. Preliminary numerical tests on synthetic data demonstrate the feasibility of this method for multi-parameter inversion.

  7. Anisotropic ghost dark energy cosmological model with hybrid expansion law (United States)

    Mahanta, Chandra Rekha; Sarma, Nitin


    In this paper, we study the anisotropic Bianchi type-VI0 metric filled with dark matter and anisotropic ghost dark energy. We have solved the Einstein's field equations by considering hybrid expansion law (HEL) for the average scale factor. It is found that at later times the universe becomes spatially homogeneous, isotropic and flat. From a state finder diagnosis, it is found that our model is having similar behavior like ɅCDM model at late phase of cosmic time.

  8. On the interpretation of time-resolved anisotropic diffraction patterns

    DEFF Research Database (Denmark)

    Lorenz, Ulf; Møller, Klaus Braagaard; Henriksen, Niels Engholm


    In this paper, we review existing systematic treatments for the interpretation of anisotropic diffraction patterns from partially aligned symmetric top molecules. Such patterns arise in the context of time-resolved diffraction experiments. We calculate diffraction patterns for ground-state NaI ex......I excited with an ultraviolet laser. The results are interpreted with the help of a qualitative analytic model, and general recommendations on the analysis and interpretation of anisotropic diffraction patterns are given....

  9. Kinetic model of GMSW in an anisotropic plasma

    CERN Document Server

    Ignatyev, Yu G


    A kinetic model of gravimagnetic shock waves (GMSW) in a locally anisotropic plasma is investigated. The equations of a drift approximation are written, and the moments of the distribution function are calculated. Solutions of the drift equations for a highly anisotropic ultrarelativistic plasma are found. It is shown that in this case the GMSW essentially affect the angular characteristics and the intensity of the magneto - bremsstrahlung of the magnetoactive plasma.

  10. Influence of Molecular Shape on the Thermal Stability and Molecular Orientation of Vapor-Deposited Organic Semiconductors. (United States)

    Walters, Diane M; Antony, Lucas; de Pablo, Juan J; Ediger, M D


    High thermal stability and anisotropic molecular orientation enhance the performance of vapor-deposited organic semiconductors, but controlling these properties is a challenge in amorphous materials. To understand the influence of molecular shape on these properties, vapor-deposited glasses of three disk-shaped molecules were prepared. For all three systems, enhanced thermal stability is observed for glasses prepared over a wide range of substrate temperatures and anisotropic molecular orientation is observed at lower substrate temperatures. For two of the disk-shaped molecules, atomistic simulations of thin films were also performed and anisotropic molecular orientation was observed at the equilibrium liquid surface. We find that the structure and thermal stability of these vapor-deposited glasses results from high surface mobility and partial equilibration toward the structure of the equilibrium liquid surface during the deposition process. For the three molecules studied, molecular shape is a dominant factor in determining the anisotropy of vapor-deposited glasses.

  11. Anisotropic reinforcement of acute anteroapical infarcts improves pump function. (United States)

    Fomovsky, Gregory M; Clark, Samantha A; Parker, Katherine M; Ailawadi, Gorav; Holmes, Jeffrey W


    We hypothesize that a therapy that improves left ventricular (LV) pump function early after infarction should decrease the need for compensation through sympathetic activation and dilation, thereby reducing the risk of developing heart failure. The mechanical properties of healing myocardial infarcts are an important determinant of LV function, yet improving function by altering infarct properties has proven unexpectedly difficult. Using a computational model, we recently predicted that stiffening a large anterior infarct anisotropically (in only one direction) would improve LV function, whereas isotropic stiffening, the focus of previous studies and therapies, would not. The goal of this study was to test the novel strategy of anisotropic infarct reinforcement. We tested the effects of anisotropic infarct reinforcement in 10 open-chest dogs with large anteroapical infarcts that depressed LV pump function. We measured regional mechanics, LV volumes, and cardiac output at a range of preloads at baseline, 45 minutes after coronary ligation (ischemia), and 30 minutes later, after surgical reinforcement in the longitudinal direction (anisotropic). Ischemia shifted the end-systolic pressure-volume relationship and cardiac output curves rightward, decreasing cardiac output at matched end-diastolic pressure by 44%. Anisotropic reinforcement significantly improved systolic function without impairing diastolic function, recovering half the deficit in overall LV function. We conclude that anisotropic reinforcement is a promising new approach to improving LV function after a large myocardial infarction.

  12. Weak transitions in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Maturana, G.


    Some techniques to calculate the effects of the strong interactions on the matrix elements of weak processes are described. The lattice formulation of Quantum Chromodynamics is used to account for the low energy gluons, and the corresponding numerical methods are explained. The high energy contributions are included in effective lagrangians and the problem of matching the different scales related to the renormalization of the operators and wavefunctions is also discussed. The = 1/2 enhancement rule and the K/sup 0/-anti-K/sup 0/ are used to illustrate these techniques and the results of a numerical calculation is reported. The values obtained are very encouraging and they certainly show good qualitative agreement with the experimental values. The emphasis is on general techniques, and in particular, several improvements to this particular calculation are proposed.

  13. Strengths, weaknesses, opportunities and threats

    DEFF Research Database (Denmark)

    Bull, Joseph William; Jobstvogt, N.; Böhnke-Henrichs, A.


    The ecosystem services concept (ES) is becoming a cornerstone of contemporary sustainability thought. Challenges with this concept and its applications are well documented, but have not yet been systematically assessed alongside strengths and external factors that influence uptake. Such an assess......The ecosystem services concept (ES) is becoming a cornerstone of contemporary sustainability thought. Challenges with this concept and its applications are well documented, but have not yet been systematically assessed alongside strengths and external factors that influence uptake....... Such an assessment could form the basis for improving ES thinking, further embedding it into environmental decisions and management.The Young Ecosystem Services Specialists (YESS) completed a Strengths-Weaknesses-Opportunities-Threats (SWOT) analysis of ES through YESS member surveys. Strengths include the approach...

  14. Strongly anisotropic magnetoresistance due to snake states in open tubular nanostructures (United States)

    Chang, Ching Hao; Ortix, Carmine; Cntqc Team

    When a charge carrier moves along an interface switching the chirality of trajectory, it curves back and forth to form snake orbits moving along the interface. Snake orbits have first been realized in semiconducting two-dimensional electron gases (2DEGs) with an interface inverting the magnetic field direction, and have been recently manufactured in graphene using a p-n junction. Snake orbits, however, can also form in tubular nanostructures subject to weak homogeneous magnetic fields. In this talk, I will discuss how in open tubes both the location and the number of snake orbits can be controlled by rotating the field direction, which eventually leads to a large anisotropic magnetoresistance (AMR) up to 80 % in the diffusive transport regime. These results offer a promising route for engineering AMR effects in the absence of both magnetism and spin-orbit coupling effect.

  15. Disorder effect on the anisotropic resistivity of phosphorene determined by a tight-binding model (United States)

    Paez, Carlos; Delello, Kursti; Le, Duy; Pereira, Ana; Mucciolo, Eduardo

    In this work we develop a compact multi-orbital tight-binding model for phosphorene that accurately describes states near the main band gap. The model parameters are adjusted using as reference the band structure obtained by a density-functional theory calculation with the hybrid HSE06 functional. We use the optimized tight-binding model to study the effects of disorder on the anisotropic transport properties of phosphorene. In particular, we evaluate how the longitudinal resistivity depends on the lattice orientation for two typical disorder models: dilute scatterers with high potential fluctuation amplitudes, mimicking screened charges in the substrate, and dense scatterers with lower amplitudes, simulating weakly bounded adsorbates. We show that the intrinsic anisotropy associated to the band structure of this material, although sensitive to the type and intensity of the disorder, is robust.

  16. Mechanics of finite cracks in dissimilar anisotropic elastic media considering interfacial elasticity (United States)

    Juan, Pierre-Alexandre; Dingreville, Rémi


    Interfacial crack fields and singularities in bimaterial interfaces (i.e., grain boundaries or dissimilar materials interfaces) are considered through a general formulation for two-dimensional (2-D) anisotropic elasticity while accounting for the interfacial structure by means of an interfacial elasticity paradigm. The interfacial elasticity formulation introduces boundary conditions that are effectively equivalent to those for a weakly bounded interface. This formalism considers the 2-D crack-tip elastic fields using complex variable techniques. While the consideration of the interfacial elasticity does not affect the order of the singularity, it modifies the oscillatory effects associated with problems involving interface cracks. Constructive or destructive "interferences" are directly affected by the interface structure and its elastic response. This general formulation provides an insight on the physical significance and the obvious coupling between the interface structure and the associated mechanical fields in the vicinity of the crack tip.

  17. Stiff, Thermally Stable and Highly Anisotropic Wood-Derived Carbon Composite Monoliths for Electromagnetic Interference Shielding. (United States)

    Yuan, Ye; Sun, Xianxian; Yang, Minglong; Xu, Fan; Lin, Zaishan; Zhao, Xu; Ding, Yujie; Li, Jianjun; Yin, Weilong; Peng, Qingyu; He, Xiaodong; Li, Yibin


    Electromagnetic interference (EMI) shielding materials for electronic devices in aviation and aerospace not only need lightweight and high shielding effectiveness, but also should withstand harsh environments. Traditional EMI shielding materials often show heavy weight, poor thermal stability, short lifetime, poor tolerance to chemicals, and are hard-to-manufacture. Searching for high-efficiency EMI shielding materials overcoming the above weaknesses is still a great challenge. Herein, inspired by the unique structure of natural wood, lightweight and highly anisotropic wood-derived carbon composite EMI shielding materials have been prepared which possess not only high EMI shielding performance and mechanical stable characteristics, but also possess thermally stable properties, outperforming those metals, conductive polymers, and their composites. The newly developed low-cost materials are promising for specific applications in aerospace electronic devices, especially regarding extreme temperatures.

  18. General relativistic polytropes in anisotropic stars (United States)

    Isayev, A. A.


    Spherically symmetric relativistic stars with a polytropic equation of state (EoS), which possess local pressure anisotropy, are considered within the framework of general relativity. The generalized Lane-Emden equations are derived for the arbitrary anisotropy parameter Δ =pt-pr (pt and pr being the transverse and radial pressure, respectively). They are then applied to some special ansatz for the anisotropy parameter in the form of a differential relation between the anisotropy parameter Δ and the metric function ν . The analytical solutions of the obtained equations are found for incompressible fluid stars and then used for getting their mass-radius relation, gravitational energy, and binding energy. Also, following the Chandrasekhar variational approach, the dynamical stability of incompressible anisotropic fluid stars with a polytropic EoS against radial oscillations is studied. It is shown that the local pressure anisotropy with pt>pr can make the incompressible fluid stars unstable with respect to radial oscillations, in contrast to incompressible isotropic fluid stars with a polytropic EoS which are dynamically stable.

  19. Anisotropic Charged Fluid Sphere in Isotropic Coordinates

    Directory of Open Access Journals (Sweden)

    Neeraj Pant


    Full Text Available We have presented a class of charged superdense star models, starting with a static spherically symmetric metric in isotropic coordinates for anisotropic fluid by considering Hajj-Boutros-(1986 type metric potential and a specific choice of electrical intensity E and anisotropy factor Δ which involve charge parameter K and anisotropy parameter α. The solution is well behaved for all the values of Schwarzschild compactness parameter u lying in the range 0

  20. Numerical calculation of spatially variant anisotropic metamaterials (United States)

    Gulib, Asad Ullah Hil

    3D printing, or additive manufacturing, is rapidly evolving into a mainstream manufacturing technology that is creating new opportunities for electromagnetics and circuits. 3D printing permits circuits to fully utilize the third dimension allowing more functions in the same amount of space and allows the devices to have arbitrary form factors. 3D printing is letting us discover new physics that is not possible in standard 2D circuits and devices. However, evolving electromagnetics and circuits into three dimensions introduces some serious problems like thermal management, interference, and mutual coupling between the components which degrades performance and hurts signal integrity. Metamaterials are engineered composites that exhibit extreme electromagnetic properties and allow extraordinary control over electromagnetic fields. The EM Lab is developing spatially-variant anisotropic metamaterials (SVAMs) as a solution to mitigate mutual coupling between components. The concept of SVAMs is to electrically stretch the space between components to reduce mutual coupling. To do this, alternating layers of different dielectric must bisect adjacent components. However, the overall dielectric fill must also conform around dozens of electrical components and be smooth, continuous, and defect free. The research described here is the first prototype of an algorithm which generates a SVAM infill between all of the electrical components of a circuit in order to reduce the mutual coupling.

  1. Dynamic wetting on anisotropic patterned surfaces (United States)

    Do-Quang, Minh; Wang, Jiayu; Nita, Satoshi; Shiomi, Junichiro; Amberg, Gustav; Physiochemical fluid mechanics Team; Maruyama-Chiashi Laboratory Team


    Dynamic wetting, as occurs when a droplet of a wetting liquid is brought in contact with a dry solid, is important in various engineering processes, such as printing, coating, and lubrication. Our overall aim is to investigate if and how the detailed properties of the solid surface influence the dynamics of wetting. We have recently quantified the hindering effect of fairly isotropic micron-sized patterns on the substrate. Here we will study highly anisotropic surfaces, such as parallel grooves, either perpendicular or parallel to an advancing contact line. This is done by detailed phase field simulations and experiments on structured silicon surfaces. The dynamic wetting behavior of drops on the grooved surfaces is governed by the combined interplay of the wetting line friction and the internal viscous dissipation. Influence of roughness is quantified in terms of the energy dissipation rate at the contact line using the experiment-simulation combined analysis. The energy dissipation of the contact line at the different part of the groove will be discussed. The performance of the model is assessed by comparing its predictions with the experimental data. This work was financially supported in part by, the Japan Society for the Promotion of Science (J.W., S.N., and J.S) and Swedish Governmental Agency for Innovation Systems (M.D.-Q. and G.A).

  2. P wave anisotropic tomography of the Alps (United States)

    Hua, Yuanyuan; Zhao, Dapeng; Xu, Yixian


    The first tomographic images of P wave azimuthal and radial anisotropies in the crust and upper mantle beneath the Alps are determined by joint inversions of arrival time data of local earthquakes and teleseismic events. Our results show the south dipping European plate with a high-velocity (high-V) anomaly beneath the western central Alps and the north dipping Adriatic plate with a high-V anomaly beneath the Eastern Alps, indicating that the subduction polarity changes along the strike of the Alps. The P wave azimuthal anisotropy is characterized by mountain chain-parallel fast-velocity directions (FVDs) in the western central Alps and NE-SW FVDs in the Eastern Alps, which may be caused by mantle flow induced by the slab subductions. Our results reveal a negative radial anisotropy (i.e., Vph Vph > Vpv) in the low-velocity mantle wedge, which may reflect the subvertical plate subduction and its induced mantle flow. The results of anisotropic tomography provide important new information on the complex mantle structure and dynamics of the Alps and adjacent regions.

  3. Slow relaxation dynamics of a mononuclear Er(iii) complex surrounded by a ligand environment with anisotropic charge density. (United States)

    Lim, Kwang Soo; Kang, Dong Won; Song, Jeong Hwa; Lee, Han Geul; Yang, Mino; Hong, Chang Seop


    Two sets of isostructural mononuclear compounds, [Ln(LOMe)2(H2O)2](PF6) [1, Ln = Er; 3, Ln = Gd; LOMe = CpCo{P(O)(O(CH3))2}3] and Ln(LOMe)2(NO3) (2, Ln = Er and 4, Ln = Gd), are synthesized by self-assembly of the respective lanthanide ions and tripodal chelate ligands. The Ln ions are encircled by two LOMe ligands, and two water molecules or one nitrate anion. Each octacoordinated Ln center adopts a distorted square antiprism geometry. The Er complex (2) chelated by a nitrate anion shows slow dynamics in magnetic relaxation, diagnostic of a single-ion magnet. Quantum tunneling in 2 is effectively blocked by application of an external field. Weak intermolecular magnetic interactions occur in 2, and are supported by the magnetic behavior of 4. Chemical dilution of Er with the diamagnetic Y ion can nullify magnetic interactions and suppress quantum tunneling. Generation of slow relaxation dynamics in the Er system is related to the anisotropic charge distribution supplied by the coordination of ligands with different charge densities, as observed in the Dy analogue. This suggests that magnetic anisotropy arises in a coordination system when an anisotropic lanthanide ion (Dy and Er) is surrounded by a ligand environment with anisotropic charge density, resulting in slow magnetic relaxation.

  4. Fault zone fabric and fault weakness

    NARCIS (Netherlands)

    Collettini, C.; Niemeijer, A.; Viti, C.; Marone, C.


    Geological and geophysical evidence suggests that some crustal faults are weak1–6 compared to laboratory measurements of frictional strength7. Explanations for fault weakness include the presence of weak minerals4, high fluid pressures within the fault core8,9 and dynamic processes such as

  5. Weakly distributive modules. Applications to supplement submodules

    Indian Academy of Sciences (India)

    Abstract. In this paper, we define and study weakly distributive modules as a proper generalization of distributive modules. We prove that, weakly distributive supplemented modules are amply supplemented. In a weakly distributive supplemented module every submodule has a unique coclosure. This generalizes a result of ...

  6. Time Delay in Molecular Photoionization

    CERN Document Server

    Hockett, P; Villeneuve, D M; Corkum, P B


    Time-delays in the photoionization of molecules are investigated. As compared to atomic ionization, the time-delays expected from molecular ionization present a much richer phenomenon, with a strong spatial dependence due to the anisotropic nature of the molecular scattering potential. We investigate this from a scattering theory perspective, and make use of molecular photoionization calculations to examine this effect in representative homonuclear and hetronuclear diatomic molecules, nitrogen and carbon monoxide. We present energy and angle-resolved maps of the Wigner delay time for single-photon valence ionization, and discuss the possibilities for experimental measurements.

  7. Discrete Energies of a Weakly Outcoupled Atom Laser Beam Outside the Bose–Einstein Condensate Region

    Directory of Open Access Journals (Sweden)

    Teguh Budi Prayitno


    Full Text Available We consider the possibility of a discrete set of energies of a weakly outcoupled atom laser beam to the homogeneous Schrödinger equation with anisotropic harmonic trap in Cartesian coordinates outside the Bose–Einstein condensate region. This treatment is used because working in the cylindrical coordinates is not really possible, even though we implement the cigar-shaped trap case. The Schrödinger equation appears to replace a set of two-coupled Gross– Pitaevskii equations by enabling the weak-coupling assumption. This atom laser can be produced in a simple way that only involves extracting the atoms in a condensate from by using the radio frequency field. We initially present the relation between condensates as sources and atom laser as an output by exploring the previous work of Riou et al. in the case of theoretical work for the propagation of atom laser beams. We also show that even though the discrete energies are obtained by means of an approaching harmonic oscillator, degeneracy is only available in two states because of the anisotropic external potential

  8. Homotopy Method in Applied Problems of the Anisotropic Control Theory

    Directory of Open Access Journals (Sweden)

    A. V. Yurchenkov


    Full Text Available The work describes a numerical method of solving the specific systems of matrix equations emerging in the tasks of the modern theory of control. Since the standard tasks of the control theory demand making a number of assumptions about input effect, at the slightest non-compliance the synthesized laws of control become either extremely inefficient or too much power consumable. As opposed to these assumptions, while setting the problem of anisotropic theory of control, it is necessary to know only the average anisotropy level of the input sequence. Consequently, anisotropic regulators are always found to be no worse than standard ones. In synthesis of anisotropic regulator a rather complex algorithm of its construction is the only difficulty. When considering a problem of ensuring robust quality of the control object in case of the structured uncertainty there is a need to solve a system of four connected Riccati equations, equation of a special form, and Lyapunov equation. To solve it by standard methods of convex optimization is impossible. The work shows how the standard mean square Gaussian regulator allows us to obtain as anisotropic regulator to meet requirements of robust quality when there is an imperfect knowledge of mathematical model of object of control, a lack of exact stochastic characteristics of the input control, parametrical uncertainty, etc. The article offers an algorithm based on the homotopy method with the Newtonian iterations to solve a problem of anisotropic optimization. It presents a computing procedure to reach the objective. Using a task of searching the anisotropic regulator to minimize the maximum value of anisotropic norm of transfer function of the control object, the article describes required matrix derivatives of stabilizing solutions of Riccati equations, equation of a special form, and Lyapunov equation. Properties of Kronecker product and matrix differentiation with respect to matrix are given.

  9. PIV anisotropic denoising using uncertainty quantification (United States)

    Wieneke, B.


    Recently, progress has been made to reliably compute uncertainty estimates for each velocity vector in planar flow fields measured with 2D-or stereo-PIV. This information can be used for a post-processing denoising scheme to reduce errors by a spatial averaging scheme preserving true flow fluctuations. Starting with a 5 × 5 vector kernel, a second-order 2D-polynomial function is fitted to the flow field. Vectors just outside will be included in the filter kernel if they lie within the uncertainty band around the fitted function. Repeating this procedure, vectors are added in all directions until the true flow field can no longer be approximated by the second-order polynomial function. The center vector is then replaced by the value of the fitted function. The final shape and size of the filter kernel automatically adjusts to local flow gradients in an optimal way preserving true velocity fluctuations above the noise level. This anisotropic denoising scheme is validated first on synthetic vector fields varying spatial wavelengths of the flow field and noise levels relative to the fluctuation amplitude. For wavelengths larger than 5-7 times the spatial resolution, a noise reduction factor of 2-4 is achieved significantly increasing the velocity dynamic range. For large noise levels above 50% of the flow fluctuation, the denoising scheme can no longer distinguish between true flow fluctuations and noise. Finally, it is shown that the procedure performs well for typical experimental PIV vector fields. It provides an effective alternative to more complicated adaptive PIV algorithms optimizing interrogation window sizes and shapes based on seeding density, local flow gradients, and other criteria.

  10. Anisotropic magnetothermoelectric power of ferromagnetic thin films (United States)

    Anwar, M. S.; Lacoste, B.; Aarts, J.


    In this article, we report the measurements of the magnetothermoelectric power (MTEP) in metallic ferromagnetic thin films of Ni80 Fe20 (Permalloy; Py), Co and CrO2 at temperatures in the range of 100 K to 400 K. In 25 nm thick Py films and 50 nm thick Co films both the anisotropic magnetoresistance (AMR) and MTEP show a relative change in resistance and thermoelectric power (TEP) of the order of 0.2% when the magnetic field is reversed, and in both cases there is no significant change in AMR or MTEP after the saturation field has been reached. Surprisingly, both Py and Co films have opposite MTEP behaviour although both have the same sign for AMR and TEP. The data on half metallic ferromagnet CrO2 films show a different picture. Films of thickness of 100 nm were grown on TiO2 and on sapphire. The MTEP behavior at low fields shows peaks similar to the AMR in these films, with variations up to 1 % . With increasing field both the MR and the MTEP variations keep growing, with MTEP showing relative changes of 1.5% with the thermal gradient along the b -axis and even 20% with the gradient along the c -axis, with an intermediate value of 3% for the film on sapphire. It appears that the low-field effects are due to the magnetic domain state, and the high-field effects are intrinsic to the electronic structure of CrO2 and intergarian tunnelling magnetoresistance that contributes to MTEP as tunnelling-MTEP. Our results will stimulate the research work in the field of spin dependent thermal transport in ferromagnetic materials to further develop spin-Caloritronics.


    Directory of Open Access Journals (Sweden)

    Alexander V. Chebykin


    Full Text Available The paper deals with theoretical demonstration of Purcell effect in extremely anisotropic metamaterials with elliptical isofrequency surface. This effect is free from association with divergence in density of states unlike the case of hyperbolic metamaterials. It is shown that a large Purcell factor can be observed without excitation of modes with large wave vectors in one direction, and the component of the wave vector normal to the layers is less than k0. For these materials the possibility is given for increasing of the power radiated in the medium, as well as the power radiated from material into free space across the medium border situated transversely to the layers. We have investigated isofrequency contours and the dependence of Purcell factor from the frequency for infinite layered metamaterial structure. In the visible light range strong spatial dispersion gives no possibility to obtain enhancement of spontaneous emission in metamaterial with unit cell which consists of two layers. This effect can be achieved in periodic metal-dielectric layered nanostructures with a unit cell containing two different metallic layers and two dielectric ones. Analysis of the dependences for Purcell factor from the frequency shows that the spontaneous emission is enhanced by a factor of ten or more only for dipole orientation along metamaterial layers, but in the case of the transverse orientation radiation can be enhanced only 2-3 times at most. The results can be used to create a new type of metamaterials with elliptical isofrequency contours, providing a more efficient light emission in the far field.

  12. Weak matrix elements of kaons

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. (California Univ., Santa Barbara, CA (USA). Inst. for Theoretical Physics); Soni, A. (Brookhaven National Lab., Upton, NY (USA))


    We present results from the Wilson fermion part of the Grand Challenge'' weak matrix element project. A new procedure for correcting the chiral behavior of {Beta}{sub LL}{sup sd}, the K{sup 0}-{bar K}{sup 0} {Beta} parameter,'' is proposed and applied. On our largest lattice (24{sup 3} {times} 40 at {beta} = 6.0), we get {Beta}{sub LL}{sup sd} = .86 {plus minus} .11 {plus minus} .05, where the first error is statistical and the second is a measure of the systematic errors due to the procedure and to related finite-size effects. Results for the direct K{sup +} {yields} {pi}{sup +}{pi}{sup 0} amplitude are also presented. There is some evidence for higher order chiral effects which may make these results compatible both with experiment and with the {Beta}{sub LL}{sup sd} computation. The status of the direct K{sub s}{sup 0} {yields} {pi} {sup +} {pi}{sup {minus}} {Delta}I = 1/2 amplitude is then discussed. 11 refs., 6 figs., 1 tab.

  13. A Universe without Weak Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Harnik, Roni; Kribs, Graham D.; Perez, Gilad


    A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical ''Weakless Universe'' is matched to our Universe by simultaneously adjusting Standard Model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the Weakless Universe suggests that the anthropic principle does not determine the scale of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multi-parameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe.

  14. Protecting weak measurements against systematic errors (United States)

    Pang, Shengshi; Alonso, Jose Raul Gonzalez; Brun, Todd A.; Jordan, Andrew N.


    In this work, we consider the systematic error of quantum metrology by weak measurements under decoherence. We derive the systematic error of maximum likelihood estimation in general to the first-order approximation of a small deviation in the probability distribution and study the robustness of standard weak measurement and postselected weak measurements against systematic errors. We show that, with a large weak value, the systematic error of a postselected weak measurement when the probe undergoes decoherence can be significantly lower than that of a standard weak measurement. This indicates another advantage of weak-value amplification in improving the performance of parameter estimation. We illustrate the results by an exact numerical simulation of decoherence arising from a bosonic mode and compare it to the first-order analytical result we obtain.

  15. Effect of anisotropic scattering in neutronics analysis of BWR assembly

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Toshikazu [Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0571 (Japan)]. E-mail:; Okamoto, Toshiki [Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0571 (Japan); Inoue, Akira [Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0571 (Japan); Kosaka, Shinya [TEPCO Systems Corporation, 2-37-28 Eitai, Koutou-ku, Tokyo 135-0034 (Japan); Ikeda, Hideaki [TEPCO Systems Corporation, 2-37-28 Eitai, Koutou-ku, Tokyo 135-0034 (Japan)


    The anisotropic scattering effect to keff is studied for UO{sub 2} and MOX fueled BWR assemblies. The anisotropic scattering effect increases the assembly k {sub {infinity}} by 0.44% {delta}k for the UO{sub 2} assembly with 0% void fraction, and by 0.21% {delta}k for the MOX assembly with 0% void fraction. This is because the anisotropic scattering effect flattens the intra-assembly thermal flux, and the absorption rate in the surrounding water gap is decreased, but the absorption rates in the MOX fuel rods are increased compared to the UO{sub 2} rods. Therefore, the total decrease in absorption rates in the UO{sub 2} assembly is relatively large, and the k {sub {infinity}} is increased in the UO{sub 2} assembly. The dependence of the anisotropic scattering effect on the void fraction is investigated, and the significant difference of 0.62% {delta}k/k is found for the 0% and the 80% void fractions. The BWR assemblies with Gd rods are also considered. Furthermore, the usefulness of the transport cross section is investigated, and it is found that the transport cross section gives reasonable anisotropic scattering effect, though not satisfactory.

  16. Anisotropic diffusion in mesh-free numerical magnetohydrodynamics (United States)

    Hopkins, Philip F.


    We extend recently developed mesh-free Lagrangian methods for numerical magnetohydrodynamics (MHD) to arbitrary anisotropic diffusion equations, including: passive scalar diffusion, Spitzer-Braginskii conduction and viscosity, cosmic ray diffusion/streaming, anisotropic radiation transport, non-ideal MHD (Ohmic resistivity, ambipolar diffusion, the Hall effect) and turbulent 'eddy diffusion'. We study these as implemented in the code GIZMO for both new meshless finite-volume Godunov schemes (MFM/MFV). We show that the MFM/MFV methods are accurate and stable even with noisy fields and irregular particle arrangements, and recover the correct behaviour even in arbitrarily anisotropic cases. They are competitive with state-of-the-art AMR/moving-mesh methods, and can correctly treat anisotropic diffusion-driven instabilities (e.g. the MTI and HBI, Hall MRI). We also develop a new scheme for stabilizing anisotropic tensor-valued fluxes with high-order gradient estimators and non-linear flux limiters, which is trivially generalized to AMR/moving-mesh codes. We also present applications of some of these improvements for SPH, in the form of a new integral-Godunov SPH formulation that adopts a moving-least squares gradient estimator and introduces a flux-limited Riemann problem between particles.

  17. Molecular structure and motion in zero field magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Jarvie, T.P.


    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  18. Anisotropic spreading of liquid metal on a rough intermetallic surface

    Directory of Open Access Journals (Sweden)

    Liu Wen


    Full Text Available An anisotropic wicking of molten Sn-Pb solder over an intermetallic rough surface has been studied. The phenomenon features preferential spreading and forming of an elliptical spread domain. A theoretically formulated model was established to predict the ratio of the wicking distance along the long axis (rx to that along the short axis (ry of the final wicking pattern. The phenomenon was simultaneously experimentally observed and recorded with a hotstage microscopy technique. The anisotropic wicking is established to be caused by a non-uniform topography of surface micro structures as opposed to an isotropic wicking on an intermetallic surface with uniformly distributed surface micro features. The relative deviation between the theoretically predicted rx/ry ratio and the corresponding average experimental value is 5%. Hence, the small margin of error confirms the validity of the proposed theoretical model of anisotropic wicking.

  19. Crystal growth: an anisotropic mass transfer process at the interface. (United States)

    Sun, Congting; Xue, Dongfeng


    Crystal growth is a dynamic physicochemical process, which depends on the multi-parameter synergetic control and directly determines the crystal features such as geometry and size. In this study, both thermodynamic and kinetic factors that determine inorganic single crystal growth are integrated by focusing on the mass transfer process at an interface. For the specific growth system, the integrated parameter is then classified to extract the critical control factors in anisotropic growth. The driving force of mass transfer essentially depends on the anisotropic chemical bonding architectures, leading to different concentration gradients along various [uvw] directions. Exquisitely controlling the chemical bonding architecture can therefore be used to regulate the mass transfer process of a compound in a straightforward manner, encompassing the origin of anisotropic growth as well as a variety of geometries in the formation of a multicomponent crystal.

  20. Innovative anisotropic phantoms for calibration of diffusion tensor imaging sequences. (United States)

    Kłodowski, Krzysztof; Krzyżak, Artur Tadeusz


    The paper describes a novel type of anisotropic phantoms designed for b-matrix spatial distribution diffusion tensor imaging (BSD-DTI). Cubic plate anisotropic phantom, cylinder capillary phantom and water reference phantom are described as a complete set necessary for calibration, validation and normalization of BSD-DTI. An innovative design of the phantoms basing on enclosing the anisotropic cores in glass balls filled with liquid made for the first time possible BSD calibration with usage of echo planar imaging (EPI) sequence. Susceptibility artifacts prone to occur in EPI sequences were visibly reduced in the central region of the phantoms. The phantoms were designed for usage in a clinical scanner's head coil, but can be scaled for other coil or scanner types. The phantoms can be also used for a pre-calibration of imaging of other types of phantoms having more specific applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Investigating Anisotropic Quantum Hall States with Bimetric Geometry (United States)

    Gromov, Andrey; Geraedts, Scott D.; Bradlyn, Barry


    We construct a low energy effective theory of anisotropic fractional quantum Hall (FQH) states. We develop a formalism similar to that used in the bimetric approach to massive gravity, and apply it to describe Abelian anisotropic FQH states in the presence of external electromagnetic and geometric backgrounds. We derive a relationship between the shift, the Hall viscosity, and a new quantized coupling to anisotropy, which we term anisospin. We verify this relationship by numerically computing the Hall viscosity for a variety of anisotropic quantum Hall states using the density matrix renormalization group. Finally, we apply these techniques to the problem of nematic order and clarify certain disagreements that exist in the literature about the meaning of the coefficient of the Berry phase term in the nematic effective action.

  2. Anisotropic large magnetoresistance in TaTe4 single crystals (United States)

    Gao, Yuxia; Xu, Longmeng; Qiu, Yang; Tian, Zhaoming; Yuan, Songliu; Wang, Junfeng


    Strong anisotropic magnetotransport is reported in high-quality TaTe4 single crystals synthesized by flux methods. Large positive magnetoresistance (MR) and field-induced metal-semiconductor-like transition are observed at low temperatures with B perpendicular to c axis. The MR value reaches 3200% in 9 T at 2 K with B parallel to a axis, contrast to 79% for B along c axis. Angle dependent magnetoresistance with B rotated within ab plane displays eightfold symmetry and pronounced Shubnikov-de Haas (SdH) oscillations at low temperatures. The analysis of angle dependent resistivity, Hall effect and observed SdH oscillations suggest the high mobile electron and anisotropic Fermi surface responsible for the large anisotropic MR in TaTe4.

  3. Anisotropic viscoelastic models in large deformation for architectured membranes (United States)

    Rebouah, Marie; Chagnon, Gregory; Heuillet, Patrick


    Due to the industrial elaboration process, membranes can have an in-plane anisotropic mechanical behaviour. In this paper, anisotropic membranes elaborated with two different materials were developed either by calendering or by inducing a force in one direction during the process. Experimental tests are developed to measure the differences of mechanical behaviour for both materials in different in-plane properties: stiffness, viscoelasticity and stress-softening. A uniaxial formulation is developed, and a homogenisation by means of a sphere unit approach is used to propose a three-dimensional formulation to represent the materials behaviour. An evolution of the mechanical parameters, depending on the direction, is imposed to reproduce the anisotropic behaviour of the materials. Comparison with experimental data highlights very promising results.

  4. Anisotropic metamaterial as an analogue of a black hole

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Núñez, Isabel; Bulashenko, Oleg, E-mail:


    Propagation of light in a metamaterial medium which mimics curved spacetime and acts like a black hole is studied. We show that for a particular type of spacetimes and wave polarization, the time dilation appears as dielectric permittivity, while the spatial curvature manifests as magnetic permeability. The optical analogue to the relativistic Hamiltonian which determines the ray paths (null geodesics) in the anisotropic metamaterial is obtained. By applying the formalism to the Schwarzschild metric, we compare the ray paths with full-wave simulations in the equivalent optical medium. - Highlights: • Optical analogue to the static anisotropic spacetime metric obeying rotational symmetries is studied. • Explicit expressions for the permittivity and permeability tensors are obtained. • Explicit expression for the optical Hamiltonian is found. • Ray paths are compared with full-wave simulations for the Schwarzschild metric in anisotropic and isotropic cases.

  5. Shear-free anisotropic cosmological models in {f (R)} gravity (United States)

    Abebe, Amare; Momeni, Davood; Myrzakulov, Ratbay


    We study a class of shear-free, homogeneous but anisotropic cosmological models with imperfect matter sources in the context of f( R) gravity. We show that the anisotropic stresses are related to the electric part of the Weyl tensor in such a way that they balance each other. We also show that within the class of orthogonal f( R) models, small perturbations of shear are damped, and that the electric part of the Weyl tensor and the anisotropic stress tensor decay with the expansion as well as the heat flux of the curvature fluid. Specializing in locally rotationally symmetric spacetimes in orthonormal frames, we examine the late-time behaviour of the de Sitter universe in f( R) gravity. For the Starobinsky model of f( R), we study the evolutionary behavior of the Universe by numerically integrating the Friedmann equation, where the initial conditions for the expansion, acceleration and jerk parameters are taken from observational data.

  6. Debonding Analyses in Anisotropic Materials with Strain-Gradient Effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang


    . A conventional cohesive law is extended such that both the average as well as the jump in plastic strain across the fiber-matrix interface are accounted for. Results are shown for both conventional isotropic and anisotropic materials as well as for higher order isotropic and anisotropic materials......A unit cell approach is adopted to numerically analyze the effect of plastic anisotropy on damage evolution in a microreinforced composite. The matrix material exhibit size effects and a visco-plastic anisotropic strain gradient plasticity model accounting for such size effects is adopted...... with and without debonding. Generally, the strain gradient enhanced material exhibits higher load carry capacity compared to the corresponding conventional material. A sudden stress drop occurs in the macroscopic stress-strain response curve due to fiber-matrix debonding and the results show that a change in yield...

  7. Debonding analyses in anisotropic materials with strain- gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang


    . A conventional cohesive law is extended such that both the average as well as the jump in plastic strain across the fiber-matrix interface are accounted for. Results are shown for both conventional isotropic and anisotropic materials as well as for higher order isotropic and anisotropic materials......A unit cell approach is adopted to numerically analyze the effect of plastic anisotropy on damage evolution in a micro-reinforced composite. The matrix material exhibit size effects and a visco-plastic anisotropic strain gradient plasticity model accounting for such size effects is adopted...... with and without debonding. Generally, the strain gradient enhanced material exhibits higher load carry capacity compared to the corresponding conventional material. A sudden stress drop occurs in the macroscopic stress-strain response curve due to fiber-matrix debonding and the results show that a change in yield...

  8. Modeling anisotropic Maxwell–Jüttner distributions: derivation and properties

    Directory of Open Access Journals (Sweden)

    G. Livadiotis


    Full Text Available In this paper we develop a model for the anisotropic Maxwell–Jüttner distribution and examine its properties. First, we provide the characteristic conditions that the modeling of consistent and well-defined anisotropic Maxwell–Jüttner distributions needs to fulfill. Then, we examine several models, showing their possible advantages and/or failures in accordance to these conditions. We derive a consistent model, and examine its properties and its connection with thermodynamics. We show that the temperature equals the average of the directional temperature-like components, as it holds for the classical, anisotropic Maxwell distribution. We also derive the internal energy and Boltzmann–Gibbs entropy, where we show that both are maximized for zero anisotropy, that is, the isotropic Maxwell–Jüttner distribution.

  9. Self-force on dislocation segments in anisotropic crystals. (United States)

    Fitzgerald, S P; Aubry, S


    A dislocation segment in a crystal experiences a 'self-force', by virtue of the orientation dependence of its elastic energy. If the crystal is elastically isotropic, this force is manifested as a couple acting to rotate the segment toward the lower energy of the pure screw orientation (i.e. acting to align the dislocation line with its Burgers vector). If the crystal is anisotropic, there are additional contributions to the couple, arising from the more complex energy landscape of the lattice itself. These effects can strongly influence the dynamic evolution of dislocation networks, and via their governing role in dislocation multiplication phenomena, control plastic flow in metals. In this paper we develop a model for dislocation self-forces in a general anisotropic crystal, and briefly consider the technologically important example of α-iron, which becomes increasingly anisotropic as the temperature approaches that of the α-γ phase transition at 912 °C.

  10. Analytical solutions of transport problems in anisotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Lapenta, G.; Ravetto, P.; Rostagno, M.M.


    Recently, the problem of neutron transport in anisotropic media has received new attention in connection with safety studies of water reactors and design of gas-cooled systems. In situations presenting large voided regions, as the axial streaming is dominating with respect to the transverse one, the average properties of the homogenized material should physically account for such macroscopic anisotropy. Hence, it is suggested that cell calculations produce anisotropic average cross sections, e.g., axial ({sigma}{sub A}) and transverse ({sigma}{sub T}) values. Since material anisotropy is due to leakage, as a first-step approximation, the medium can be considered isotropic with respect to scattering phenomena. Transport codes are currently being adapted to include anisotropic cross sections. An important aspect of code development is the validation of algorithms by analytical benchmarks. For that purpose, the present work is devoted to the fully analytical solution of transport problems in slab geometry.

  11. 3-D waveform tomography sensitivity kernels for anisotropic media

    KAUST Repository

    Djebbi, Ramzi


    The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.

  12. Modeling of charged anisotropic compact stars in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Dayanandan, Baiju; Maurya, S.K.; T, Smitha T. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman)


    A charged compact star model has been determined for anisotropic fluid distribution. We have solved the Einstein-Maxwell field equations to construct the charged compact star model by using the radial pressure, the metric function e{sup λ} and the electric charge function. The generic charged anisotropic solution is verified by exploring different physical conditions like causality condition, mass-radius relation and stability of the solution (via the adiabatic index, TOV equations and the Herrera cracking concept). It is observed that the present charged anisotropic compact star model is compatible with the star PSR 1937+21. Moreover, we also presented the EOS ρ = f(p) for the present charged compact star model. (orig.)

  13. Anisotropic Smoothing Improves DT-MRI-Based Muscle Fiber Tractography.

    Directory of Open Access Journals (Sweden)

    Amanda K W Buck

    Full Text Available To assess the effect of anisotropic smoothing on fiber tracking measures, including pennation angle, fiber tract length, and fiber tract number in the medial gastrocnemius (MG muscle in healthy subjects using diffusion-weighted magnetic resonance imaging (DW-MRI.3T DW-MRI data were used for muscle fiber tractography in the MG of healthy subjects. Anisotropic smoothing was applied at three levels (5%, 10%, 15%, and pennation angle, tract length, fiber tract number, fractional anisotropy, and principal eigenvector orientation were quantified for each smoothing level.Fiber tract length increased with pre-fiber tracking smoothing, and local heterogeneities in fiber direction were reduced. However, pennation angle was not affected by smoothing.Modest anisotropic smoothing (10% improved fiber-tracking results, while preserving structural features.

  14. Anomalously large anisotropic magnetoresistance in a perovskite manganite (United States)

    Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X. Z.; Matsui, Y.; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E. Ward; Zhang, Jiandi


    The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La0.69Ca0.31MnO3, leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a “colossal” AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings. PMID:19706504

  15. Adaptive anisotropic meshing for steady convection-dominated problems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Hoa; Gunzburger, Max; Ju, Lili; Burkardt, John


    Obtaining accurate solutions for convection–diffusion equations is challenging due to the presence of layers when convection dominates the diffusion. To solve this problem, we design an adaptive meshing algorithm which optimizes the alignment of anisotropic meshes with the numerical solution. Three main ingredients are used. First, the streamline upwind Petrov–Galerkin method is used to produce a stabilized solution. Second, an adapted metric tensor is computed from the approximate solution. Third, optimized anisotropic meshes are generated from the computed metric tensor by an anisotropic centroidal Voronoi tessellation algorithm. Our algorithm is tested on a variety of two-dimensional examples and the results shows that the algorithm is robust in detecting layers and efficient in avoiding non-physical oscillations in the numerical approximation.

  16. Spin effects in the weak interaction

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, S.J. (Argonne National Lab., IL (USA) Chicago Univ., IL (USA). Dept. of Physics Chicago Univ., IL (USA). Enrico Fermi Inst.)


    Modern experiments investigating the beta decay of the neutron and light nuclei are still providing important constraints on the theory of the weak interaction. Beta decay experiments are yielding more precise values for allowed and induced weak coupling constants and putting constraints on possible extensions to the standard electroweak model. Here we emphasize the implications of recent experiments to pin down the strengths of the weak vector and axial vector couplings of the nucleon.

  17. Weak isometries of the Boolean cube


    Winter, S De; Korb, M


    Consider the metric space $\\mathcal{C}$ consisting of the $n$-dimensional Boolean cube equipped with the Hamming distance. A weak isometry of $\\mathcal{C}$ is a permutation of $\\mathcal{C}$ preserving a given subset of Hamming distances. In \\cite{Krasin} Krasin showed that in most cases preserving a single Hamming distance forces a weak isometry to be an isometry. In this article we study those weak isometries that are not automatically an isometry, providing a complete classification of weak...

  18. Pseudo-Weak-R0 Algebras

    Directory of Open Access Journals (Sweden)

    Yong Lin Liu


    Full Text Available A positive answer to the open problem of Iorgulescu on extending weak-R0 algebras and R0-algebras to the noncommutative forms is given. We show that pseudo-weak-R0 algebras are categorically isomorphic to pseudo-IMTL algebras and that pseudo-R0 algebras are categorically isomorphic to pseudo-NM algebras. Some properties, the noncommutative forms of the properties in weak-R0 algebras and R0-algebras, are investigated. The simplified axiom systems of pseudo-weak-R0 algebras and pseudo-R0 algebras are obtained.

  19. Propagation of electromagnetic soliton in a spin polarized current driven weak ferromagnetic nanowire (United States)

    Senthil Kumar, V.; Kavitha, L.; Gopi, D.


    We investigate the nonlinear spin dynamics of a spin polarized current driven anisotropic ferromagnetic nanowire with Dzyaloshinskii-Moriya interaction (DMI) under the influence of electromagnetic wave (EMW) propagating along the axis of the nanowire. The magnetization dynamics and electromagnetic wave propagation in the ferromagnetic nanowire with weak anti-symmetric interaction is governed by a coupled vector Landau-Lifshitz-Gilbert and Maxwell's equations. These coupled nonlinear vector equations are recasted into the extended derivative nonlinear Schrödinger (EDNLS) equation in the framework of reductive perturbation method. As it is well known, the modulational instability is a precursor for the emergence of localized envelope structures of various kinds, we compute the instability criteria for the weak ferromagnetic nanowire through linear stability analysis. Further, we invoke the homogeneous balance method to construct kink and anti-solitonic like electromagnetic (EM) soliton profiles for the EDNLS equation. We also explore the appreciable effect of the anti-symmetric weak interaction on the magnetization components of the propagating EM soliton. We find that the combination of spin-polarized current and the anti-symmetric DMI have a profound effect on the propagating EMW in a weak ferromagnetic nanowire. Thus, the anti-symmetric DMI in a spin polarized current driven ferromagnetic nanowire supports the lossless propagation of EM solitons, which may have potential applications in magnetic data storage devices.

  20. Anisotropic thermal transport property of defect-free GaN

    Directory of Open Access Journals (Sweden)

    Wenjing Ju


    Full Text Available Non-equilibrium molecular dynamics (MD simulation is performed to calculate the thermal conductivity of defect-free GaN along three high-symmetry directions. It is found that the thermal conductivity along [001] direction is about 25% higher than that along [100] or [120] direction. The calculated phonon dispersion relation and iso-energy surface from lattice dynamics show that the difference of the sound speeds among the three high-symmetry directions is quite small for the same mode. However, the variation of phonon irradiation with direction is qualitatively consistent with that of the calculated thermal conductivity. Our results indicate that the anisotropic thermal conductivity may partly result from the phonons in the low-symmetry region of the first Brillouin zone due to phonon focus effects, even though the elastic properties along the three high-symmetry directions are nearly isotropic. Thus, the phonon irradiation is able to better describe the property of thermal conductivity as compared to the commonly used phonon dispersion relation. The present investigations uncover the physical origin of the anisotropic thermal conductivity in defect-free GaN, which would provide an important guide for optimizing the thermal management of GaN-based device.

  1. Analytical solution for the anisotropic Rabi model: effects of counter-rotating terms. (United States)

    Zhang, Guofeng; Zhu, Hanjie


    The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the numerical calculations in a wide range of the parameters including the ultrastrong coupling regime. In the weak counter-rotating coupling limit we find out that the counter-rotating terms can be considered as the shifts to the parameters of the Jaynes-Cummings model. This modification shows the validness of the rotating-wave approximation on the assumption of near-resonance and relatively weak coupling. Moreover, the analytical expressions of several physics quantities are also derived, and the results show the break-down of the U(1)-symmetry and the deviation from the Jaynes-Cummings model.

  2. Anisotropic Intermittency Scaling of Magnetohydrodynamic Turbulence (United States)

    Hnat, B.; Osman, K.; Kiyani, K. H.; Chapman, S. C.


    A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when the local magnetic field direction is parallel to the flow, the full statistical signature of both the magnetic and Elsasser field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multi-exponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a magnetic field-parallel turbulent energy cascade, as is consistent with several theoretical models. As such, these results present strong observational constraints on the statistical nature of intermittency in turbulent plasmas.

  3. Anisotropic Liquid Microcapsules from Biomimetic Self-Folding Polymer Films. (United States)

    Zakharchenko, Svetlana; Ionov, Leonid


    We demonstrated a novel approach for the fabrication of anisotropic capsules with liquid content using biomimetic self-folding thermoresponsive polymer films. The behavior of self-folding films is very similar to actuation in plants, where nonhomogenous swelling results in complex movements such as twisting, bending, or folding. This approach allows the design of anisotropic liquid capsules with rodlike and dumbbell-like morphologies. We found that these capsules are able to assemble into different complex structures, such as nematic-like one and 3D network depending on their morphology.

  4. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, A. J.; Zhou, X. -F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P.


    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  5. Anisotropic extension of Finch and Skea stellar model (United States)

    Sharma, Ranjan; Das, Shyam; Thirukkanesh, S.


    In this paper, the spacetime geometry of Finch and Skea [Class. Quantum Gravity 6:467, 1989] has been utilized to obtain closed-form solutions for a spherically symmetric anisotropic matter distribution. By examining its physical admissibility, we have shown that the class of solutions can be used as viable models for observed pulsars. In particular, a specific class of solutions can be used as an `anisotropic switch' to examine the impact of anisotropy on the gross physical properties of a stellar configuration. Accordingly, the mass-radius relationship has been analyzed.

  6. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles (United States)

    Laramy, Christine R.; Fong, Lam-Kiu; Jones, Matthew R.; O'Brien, Matthew N.; Schatz, George C.; Mirkin, Chad A.


    Several seed-mediated syntheses of low symmetry anisotropic nanoparticles yield broad product distributions with multiple defect structures. This observation challenges the role of the nanoparticle precursor as a seed for certain syntheses and suggests the possibility of alternate nucleation pathways. Herein, we report a method to probe the role of the nanoparticle precursor in anisotropic nanoparticle nucleation with compositional and structural 'labels' to track their fate. We use the synthesis of gold triangular nanoprisms (Au TPs) as a model system. We propose a mechanism in which, rather than acting as a template, the nanoparticle precursor catalyzes homogenous nucleation of Au TPs.

  7. The traces of anisotropic dark energy in light of Planck

    Energy Technology Data Exchange (ETDEWEB)

    Cardona, Wilmar; Kunz, Martin [Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, 24 Quai Ernest Ansermet, 1211 Genève 4 (Switzerland); Hollenstein, Lukas, E-mail:, E-mail:, E-mail: [IAS Institute of Applied Simulation, ZHAW Zurich University of Applied Sciences, Grüental, PO Box, 8820 Wädenswil (Switzerland)


    We study a dark energy model with non-zero anisotropic stress, either linked to the dark energy density or to the dark matter density. We compute approximate solutions that allow to characterise the behaviour of the dark energy model and to assess the stability of the perturbations. We also determine the current limits on such an anisotropic stress from the cosmic microwave background data by the Planck satellite, and derive the corresponding constraints on the modified growth parameters like the growth index, the effective Newton's constant and the gravitational slip.

  8. All spherically symmetric charged anisotropic solutions for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, UP (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)


    In the present paper we develop an algorithm for all spherically symmetric anisotropic charged fluid distributions. Considering a new source function ν(r) we find a set of solutions which is physically well behaved and represents compact stellar models. A detailed study specifically shows that the models actually correspond to strange stars in terms of their mass and radius. In this connection we investigate several physical properties like energy conditions, stability, mass-radius ratio, electric charge content, anisotropic nature and surface redshift through graphical plots and mathematical calculations. All the features from these studies are in excellent agreement with the already available evidence in theory as well as observations. (orig.)

  9. Anisotropic thermoelement in emf and current generation mode

    Directory of Open Access Journals (Sweden)

    Anatychuk L. I.


    Full Text Available Computer methods for the description of the anisotropic thermoelement (AT properties with regard to all necessary model approximations have been elaborated. Configurations of eddy thermoelectric currents in the anisotropic thermoele-ment caused by current contacts have been found. The pro-perties of the AT with regard to temperature dependences of material properties, contact resistances and current contacts have been determined for concrete cases. Optimal dimensions of current contacts have been found. The optimization of AT construction allowed to increase its efficiency by 15%.

  10. Anisotropic-Scale Junction Detection and Matching for Indoor Images. (United States)

    Xue, Nan; Xia, Gui-Song; Bai, Xiang; Zhang, Liangpei; Shen, Weiming

    Junctions play an important role in characterizing local geometrical structures of images, and the detection of which is a longstanding but challenging task. Existing junction detectors usually focus on identifying the location and orientations of junction branches while ignoring their scales, which, however, contain rich geometries of images. This paper presents a novel approach for junction detection and characterization, which especially exploits the locally anisotropic geometries of a junction and estimates its scales by relying on an a-contrario model. The output junctions are with anisotropic scales, saying that a scale parameter is associated with each branch of a junction and are thus named as anisotropic-scale junctions (ASJs). We then apply the new detected ASJs for matching indoor images, where there are dramatic changes of viewpoints and the detected local visual features, e.g., key-points, are usually insufficient and lack distinctive ability. We propose to use the anisotropic geometries of our junctions to improve the matching precision of indoor images. The matching results on sets of indoor images demonstrate that our approach achieves the state-of-the-art performance on indoor image matching.Junctions play an important role in characterizing local geometrical structures of images, and the detection of which is a longstanding but challenging task. Existing junction detectors usually focus on identifying the location and orientations of junction branches while ignoring their scales, which, however, contain rich geometries of images. This paper presents a novel approach for junction detection and characterization, which especially exploits the locally anisotropic geometries of a junction and estimates its scales by relying on an a-contrario model. The output junctions are with anisotropic scales, saying that a scale parameter is associated with each branch of a junction and are thus named as anisotropic-scale junctions (ASJs). We then apply the new

  11. Tunable waveguide bends with graphene-based anisotropic metamaterials

    KAUST Repository

    Chen, Zhao-xian


    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  12. Laser ceramics with rare-earth-doped anisotropic materials. (United States)

    Akiyama, Jun; Sato, Yoichi; Taira, Takunori


    The fabrication of laser-grade anisotropic ceramics by a conventional sintering process is not possible owing to optical scattering at randomly oriented grain boundaries. In this Letter, we report the first (to our knowledge) realization of transparent anisotropic ceramics by using a new crystal orientation process based on large magnetic anisotropy induced by 4f electrons. By slip casting in a 1.4 T magnetic field and subsequent heat treatments, we could successfully fabricate laser-grade calcium fluorapatite ceramics with a loss coefficient of 1.5 cm(-1).

  13. Phase field approach with anisotropic interface energy and interface stresses: Large strain formulation (United States)

    Levitas, Valery I.; Warren, James A.


    A thermodynamically consistent, large-strain, multi-phase field approach (with consequent interface stresses) is generalized for the case with anisotropic interface (gradient) energy (e.g. an energy density that depends both on the magnitude and direction of the gradients in the phase fields). Such a generalization, if done in the "usual" manner, yields a theory that can be shown to be manifestly unphysical. These theories consider the gradient energy as anisotropic in the deformed configuration, and, due to this supposition, several fundamental contradictions arise. First, the Cauchy stress tensor is non-symmetric and, consequently, violates the moment of momentum principle, in essence the Herring (thermodynamic) torque is imparting an unphysical angular momentum to the system. In addition, this non-symmetric stress implies a violation of the principle of material objectivity. These problems in the formulation can be resolved by insisting that the gradient energy is an isotropic function of the gradient of the order parameters in the deformed configuration, but depends on the direction of the gradient of the order parameters (is anisotropic) in the undeformed configuration. We find that for a propagating nonequilibrium interface, the structural part of the interfacial Cauchy stress is symmetric and reduces to a biaxial tension with the magnitude equal to the temperature- and orientation-dependent interface energy. Ginzburg-Landau equations for the evolution of the order parameters and temperature evolution equation, as well as the boundary conditions for the order parameters are derived. Small strain simplifications are presented. Remarkably, this anisotropy yields a first order correction in the Ginzburg-Landau equation for small strains, which has been neglected in prior works. The next strain-related term is third order. For concreteness, specific orientation dependencies of the gradient energy coefficients are examined, using published molecular dynamics

  14. A Morphing framework to couple non-local and local anisotropic continua

    KAUST Repository

    Azdoud, Yan


    In this article, we develop a method to couple anisotropic local continua with anisotropic non-local continua with central long-range forces. First, we describe anisotropic non-local models based on spherical harmonic descriptions. We then derive compatible classic continuum models. Finally, we apply the morphing method to these anisotropic non-local models and present three-dimensional numerical examples to validate the efficiency of the technique. © 2013 Elsevier Ltd. All rights reserved.

  15. Orientation-dependent proton double-quantum NMR build-up function for soft materials with anisotropic mobility. (United States)

    Naumova, Anna; Tschierske, Carsten; Saalwächter, Kay

    In recent years, the analysis of proton double-quantum NMR build-up curves has become an important tool to quantify anisotropic mobility in different kinds of soft materials such as polymer networks or liquid crystals. In the former case, such data provides a measure of orientation-dependent residual (time-averaged) dipolar couplings arising from anisotropic segmental motions, informing about the length and the state of local stretching of the network chains. Previous studies of macroscopically ordered, i.e. stretched, networks were subject to the limitation that a detailed build-up curve analysis on the basis of a universal "Abragam-like" (A-l) build-up function valid for a proton multi-spin system was only possible for an isotropic orientation-averaged response. This situation is here remedied by introducing a generic orientation-dependent build-up function for an anisotropically mobile protonated molecular segment. We discuss an application to the modeling of data for a stretched network measured at different orientations with respect to the magnetic field, and present a validation by fitting data of different liquid-crystal molecules oriented in the magnetic field. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A classification of weakly acyclic games

    NARCIS (Netherlands)

    Apt, K.R.; Simon, S.


    Weakly acyclic games form a natural generalization of the class of games that have the finite improvement property (FIP). In such games one stipulates that from any initial joint strategy some finite improvement path exists. We classify weakly acyclic games using the concept of a scheduler recently

  17. Revisiting Weak Simulation for Substochastic Markov Chains

    DEFF Research Database (Denmark)

    Jansen, David N.; Song, Lei; Zhang, Lijun


    The spectrum of branching-time relations for probabilistic systems has been investigated thoroughly by Baier, Hermanns, Katoen and Wolf (2003, 2005), including weak simulation for systems involving substochastic distributions. Weak simulation was proven to be sound w.r.t. the liveness fragment...

  18. A note on Weak Stability Boundaries


    García González, Fernando; Gómez Muntané, Gerard


    This paper is devoted to clarify the algorithmic definition of the weak stability boundary in the framework of the planar Restricted Three Body Problem. The role of the invariant hyperbolic manifolds associated to the central manifolds of the libration points L1 and L2, as boundary of the weak stability region, is shown Peer Reviewed

  19. CP Violation, Neutral Currents, and Weak Equivalence (United States)

    Fitch, V. L.


    Within the past few months two excellent summaries of the state of our knowledge of the weak interactions have been presented. Correspondingly, we will not attempt a comprehensive review but instead concentrate this discussion on the status of CP violation, the question of the neutral currents, and the weak equivalence principle.

  20. Towards a classification of weak hand holds

    NARCIS (Netherlands)

    Kimmelman, V.; Sáfár, A.; Crasborn, O.


    The two symmetrical manual articulators (the hands) in signed languages are a striking modalityspecific phonetic property. The weak hand can maintain the end position of an articulation while the other articulator continues to produce additional signs. This weak hand spreading (hold) has been

  1. Spin Seebeck effect in a weak ferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Arboleda, Juan David, E-mail:; Arnache Olmos, Oscar [Instituto de Física, Universidad de Antioquia, A.A. 1226, Medellín (Colombia); Aguirre, Myriam Haydee; Ibarra, Manuel Ricardo [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Ramos, Rafael [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); Anadon, Alberto [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)


    We report the observation of room temperature spin Seebeck effect (SSE) in a weak ferromagnetic normal spinel Zinc Ferrite (ZFO). Despite the weak ferromagnetic behavior, the measurements of the SSE in ZFO show a thermoelectric voltage response comparable with the reported values for other ferromagnetic materials. Our results suggest that SSE might possibly originate from the surface magnetization of the ZFO.

  2. On modeling weak sinks in MODPATH (United States)

    Abrams, Daniel B.; Haitjema, Henk; Kauffman, Leon J.


    Regional groundwater flow systems often contain both strong sinks and weak sinks. A strong sink extracts water from the entire aquifer depth, while a weak sink lets some water pass underneath or over the actual sink. The numerical groundwater flow model MODFLOW may allow a sink cell to act as a strong or weak sink, hence extracting all water that enters the cell or allowing some of that water to pass. A physical strong sink can be modeled by either a strong sink cell or a weak sink cell, with the latter generally occurring in low resolution models. Likewise, a physical weak sink may also be represented by either type of sink cell. The representation of weak sinks in the particle tracing code MODPATH is more equivocal than in MODFLOW. With the appropriate parameterization of MODPATH, particle traces and their associated travel times to weak sink streams can be modeled with adequate accuracy, even in single layer models. Weak sink well cells, on the other hand, require special measures as proposed in the literature to generate correct particle traces and individual travel times and hence capture zones. We found that the transit time distributions for well water generally do not require special measures provided aquifer properties are locally homogeneous and the well draws water from the entire aquifer depth, an important observation for determining the response of a well to non-point contaminant inputs.

  3. Intensive care unit-acquired weakness

    NARCIS (Netherlands)

    Horn, J.; Hermans, G.


    When critically ill, a severe weakness of the limbs and respiratory muscles often develops with a prolonged stay in the intensive care unit (ICU), a condition vaguely termed intensive care unit-acquired weakness (ICUAW). Many of these patients have serious nerve and muscle injury. This syndrome is

  4. Berreman Approach to Optical Propagation through Anisotropic Metamaterials: Application to Metallo Dielectric Stacks (Preprint) (United States)


    with EM radiation to achieve exotic material properties such as negative permittivity, negative permeability, negative refractive index, etc. leading...anisotropic medium using effective medium theory [1]. These anisotropic metamaterials are believed to display interesting properties, including negative ...of the metallo-dielectric structure as a bulk anisotropic material using effective medium theory. 2. Electromagnetic analysis with Berreman matrix

  5. Persisting weakness after withdrawal of a statin. (United States)

    Mygland, Åse; Ljøstad, Unn; Krossnes, Bård Kronen


    An 81-year-old woman treated with simvastatin for several years followed by atorvastatin for about 1 year presented with fatigue, weakness and unsteady gait. The finding of elevated creatine kinase (CK) and symmetric muscle weakness around shoulders and hips led to suspicion of a toxic statin-associated myopathy. Atorvastatin was withdrawn, but her weakness persisted. Owing to persisting weakness, an autoimmune myopathy (myositis) was suspected, but initially disregarded since a muscle biopsy showed necrotic muscle fibres without inflammatory cell infiltrates and myositis-specific autoantibodies were absent. After 18 months with slowly progressive weakness and increasing CK values, awareness of new knowledge about autoimmunity as a cause of necrotic myopathy, led to a successful treatment trial with intravenous immunoglobulines, followed by steroids and metothrexate. Antibodies to the target enzyme of statins (HMGCR (3-hydroksy-3-methylglutaryl-coenzyme A reductase)) were detected in her serum, and she was diagnosed with autoimmune necrotic myositis probably triggered by atorvastatin.

  6. Anisotropic ordering in a two-temperature lattice gas

    DEFF Research Database (Denmark)

    Szolnoki, Attila; Szabó, György; Mouritsen, Ole G.


    We consider a two-dimensional lattice gas model with repulsive nearest- and next-nearest-neighbor interactions that evolves in time according to anisotropic Kawasaki dynamics. The hopping of particles along the principal directions is governed by two heat baths at different temperatures T-x and T...

  7. Exact anisotropic sphere with polytropic equation of state

    Indian Academy of Sciences (India)

    Abstract. We study static spherically symmetric spacetime to describe compact objects with anisotropic matter ... equations as a new system of differential equations using a coordinate transformation, and then write the system in another ... reported with non-linear equation of state by Varela et al [27] and Feroze and Siddiqui.

  8. Angle-domain common-image gathers from anisotropic Gaussian ...

    Indian Academy of Sciences (India)

    An approach for extracting angle-domain common-image gathers (ADCIGs) from anisotropic Gaussian beam prestack depth migration (GB-PSDM) is presented in this paper. The propagation angle is calculated in the process of migration using the real-value traveltime information of Gaussian beam. Based on the above, ...

  9. Angle-domain common-image gathers from anisotropic Gaussian ...

    Indian Academy of Sciences (India)

    An approach for extracting angle-domain common-image gathers (ADCIGs) from anisotropic Gaussian beam prestack depth migration (GB-PSDM) is presented in this paper. The propagation angle is calcu- lated in the process of migration using the real-value traveltime information of Gaussian beam. Based on the above ...

  10. Quark–gluon plasma phenomenology from anisotropic lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Skullerud, Jon-Ivar; Kelly, Aoife [Department of Mathematical Physics, Maynooth University, Maynooth, Co Kildare (Ireland); Aarts, Gert; Allton, Chris; Amato, Alessandro; Evans, P. Wynne M.; Hands, Simon [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Burnier, Yannis [Institut de Théorie des Phénomènes Physiques, Ecole Polytechnique Fédérale de Lausanne, CH–1015 Lausanne (Switzerland); Giudice, Pietro [Institut für Theoretische Physik, Universität Münster, D–48149 Münster (Germany); Harris, Tim; Ryan, Sinéad M. [School of Mathematics, Trinity College, Dublin 2 (Ireland); Kim, Seyong [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of); Lombardo, Maria Paola [INFN–Laboratori Nazionali di Frascati, I–00044 Frascati (RM) (Italy); Oktay, Mehmet B. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Rothkopf, Alexander [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D–69120 Heidelberg (Germany)


    The FASTSUM collaboration has been carrying out simulations of N{sub f} = 2 + 1 QCD at nonzero temperature in the fixed-scale approach using anisotropic lattices. Here we present the status of these studies, including recent results for electrical conductivity and charge diffusion, and heavy quarkonium (charm and beauty) physics.

  11. Magnetic nanoparticles-induced anisotropic shrinkage of polymer emulsion droplets

    NARCIS (Netherlands)

    Liu, B; de Folter, J.W.J.; Möhwald, H.


    We here report magnetic nanoparticles (NPs)-induced buckling instability and anisotropic shrinkage behavior of polymer emulsion droplets. The oil-in-water emulsion is stabilized by the surfactant, and NPs are dispersed into the oil phase. The surface ligands (oleic acid and oleylamine) number of the

  12. Anisotropic cosmological models and generalized scalar tensor theory

    Indian Academy of Sciences (India)

    Abstract. In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–. Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been stud- ied and some assumptions ...

  13. Anisotropic Bianchi-I universe with phantom field and cosmological ...

    Indian Academy of Sciences (India)

    We study an anisotropic Bianchi-I universe in the presence of a phantom field and a cosmological constant. Cosmological solutions are obtained when the kinetic energy of the phantom field is of the order of anisotropy and dominates over the potential energy of the field. The anisotropy of the universe decreases and the ...

  14. Anisotropic Bianchi-I universe with phantom field and cosmological ...

    Indian Academy of Sciences (India)

    of the cosmological solutions. Keywords. Anisotropic cosmology; phantom field; accelerating universe. PACS Nos 04.20.Jb; 98.80.Cq. 1. Introduction. Recent astrophysical data obtained from high redshift surveys of Supernovae,. COBE to WMAP predict that the present universe is passing through an accel- erating phase of ...

  15. Growth of anisotropic gold nanostructures on conducting glass ...

    Indian Academy of Sciences (India)


    Growth of anisotropic gold nanostructures on conducting glass surfaces. P R SAJANLAL and T PRADEEP*. DST Unit on Nanoscience (DST UNS), Department of Chemistry and Sophisticated. Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai 600 036 e-mail: Abstract.

  16. Effect of anisotropic plasticity on mixed mode interface crack growth

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Legarth, Brian Nyvang


    different anisotropic yield criteria to account for the plastic anisotropy. Conditions of small-scale yielding are assumed, and due to the mismatch of elastic properties across the interface the corresponding oscillating stress singularity field is applied as boundary conditions on the outer edge...

  17. Tungsten based anisotropic metamaterial as an ultra-broadband absorber

    DEFF Research Database (Denmark)

    Lin, Yinyue; Cui, Yanxia; Ding, Fei


    : We show theoretically that an array of tungsten/germanium anisotropic nano-cones placed on top of a reflective substrate can absorb light at the wavelength range from 0.3 μm to 9 μm with an average absorption efficiency approaching 98%. It is found that the excitation of multiple orders of slow...

  18. Switch isotropic/anisotropic wettability via dual-scale rods

    Directory of Open Access Journals (Sweden)

    Yang He


    Full Text Available It is the first time to demonstrate the comparison of isotropic/anisotropic wettability between dual-scale micro-nano-rods and single-scale micro-rods. Inspired by the natural structures of rice leaf, a series of micro-nano-rods and micro-rods with different geometric parameters were fabricated using micro-fabrication technology. Experimental measured apparent contact angles and advancing and receding contact angles from orthogonal orientations were characterized. The difference of contact angles from orthogonal orientation on dual-scale rods was much smaller than those on single-scale rods in both static and dynamic situation. It indicated that the dual-scale micro-nano-rods showed isotropic wettability, while single-scale micro-rods showed anisotropic wettability. The switch of isotropic/anisotropic wettability could be illustrated by different wetting state and contact line moving. It offers a facial way to switch isotropic/anisotropic wettability of the surface via dual-scale or single-scale structure.

  19. Charged anisotropic star on paraboloidal space-time

    Indian Academy of Sciences (India)

    The charged anisotropic star on paraboloidal space-time is reported by choosing a particular form of radial pressure and electric field intensity. The non-singular solution of Einstein–Maxwell system of equation has been derived and it is shown that the model satisfies all the physical plausibility conditions. It is observed that ...

  20. Propagation of waves in a gravitating and rotating anisotropic heat ...

    African Journals Online (AJOL)

    An inviscid, unbounded, collisionless, gravitating, rotating and heat conducting anisotropic plasma medium which is drifting is considered. The medium is assumed to be embedded in a strong magnetic field. A general dispersion relation is derived using normal mode analysis and its various limiting cases are discussed, ...

  1. Anisotropic hydrogen etching of chemical vapor deposited graphene. (United States)

    Zhang, Yi; Li, Zhen; Kim, Pyojae; Zhang, Luyao; Zhou, Chongwu


    We report a simple, clean, and highly anisotropic hydrogen etching method for chemical vapor deposited (CVD) graphene catalyzed by the copper substrate. By exposing CVD graphene on copper foil to hydrogen flow around 800 °C, we observed that the initially continuous graphene can be etched to have many hexagonal openings. In addition, we found that the etching is temperature dependent. Compared to other temperatures (700, 900, and 1000 °C), etching of graphene at 800 °C is most efficient and anisotropic. Of the angles of graphene edges after etching, 80% are 120°, indicating the etching is highly anisotropic. No increase of the D band along the etched edges indicates that the crystallographic orientation of etching is in the zigzag direction. Furthermore, we observed that copper played an important role in catalyzing the etching reaction, as no etching was observed for graphene transferred to Si/SiO(2) under similar conditions. This highly anisotropic hydrogen etching technology may work as a simple and convenient way to determine graphene crystal orientation and grain size and may enable the etching of graphene into nanoribbons for electronic applications. © 2011 American Chemical Society

  2. Fourth-order discrete anisotropic boundary-value problems

    Directory of Open Access Journals (Sweden)

    Maciej Leszczynski


    Full Text Available In this article we consider the fourth-order discrete anisotropic boundary value problem with both advance and retardation. We apply the direct method of the calculus of variations and the mountain pass technique to prove the existence of at least one and at least two solutions. Non-existence of non-trivial solutions is also undertaken.

  3. A new model for spherically symmetric anisotropic compact star

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K.; Dayanandan, Baiju [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, UP (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)


    In this article we obtain a new anisotropic solution for Einstein's field equations of embedding class one metric. The solution represents realistic objects such as Her X-1 and RXJ 1856-37. We perform a detailed investigation of both objects by solving numerically the Einstein field equations with anisotropic pressure. The physical features of the parameters depend on the anisotropic factor i.e. if the anisotropy is zero everywhere inside the star then the density and pressures will become zero and the metric turns out to be flat. We report our results and compare with the above mentioned two compact objects as regards a number of key aspects: the central density, the surface density onset and the critical scaling behaviour, the effective mass and radius ratio, the anisotropization with isotropic initial conditions, adiabatic index and red shift. Along with this we have also made a comparison between the classical limit and theoretical model treatment of the compact objects. Finally we discuss the implications of our findings for the stability condition in a relativistic compact star. (orig.)

  4. Completely bounded Paley projections on anisotropic Sobolev spaces on tori


    Qiu, Yanqi


    We study the existence of certain completely bounded Paley projection on the anisotropic Sobolev spaces on tori. Our result should be viewed as a generalization of a similar result obtained by Pe{\\l}czy{\\'n}ski and Wojciechowski. By a transference method, we obtain similar results on the Sobolev spaces on quantum tori.

  5. Ray-optics analysis of inhomogeneous optically anisotropic media

    NARCIS (Netherlands)

    Sluijter, M.


    When the optical behavior of light in a medium depends on the direction in which light is traveling, the medium is called optically anisotropic. Light is an electromagnetic wave and in this thesis, we discuss the electromagnetic theory on optical anisotropy. We do this with the assumption that the

  6. Wave velocities in a pre-stressed anisotropic elastic medium

    Indian Academy of Sciences (India)

    Modified Christoffel equations are derived for three-dimensional wave propagation in a general anisotropic medium under initial stress.The three roots of a cubic equation define the phase velocities of three quasi-waves in the medium.Analytical expressions are used to calculate the directional derivatives of phase ...

  7. Hysteresis behavior of the anisotropic quantum Heisenberg model


    Akıncı, Ümit


    The effect of the anisotropy in the exchange interaction on the hysteresis loops within the anisotropic quantum Heisenberg model has been investigated with the effective field theory for two spin cluster. Particular attention has been devoted on the behavior of the hysteresis loop area, coercive field and remanent magnetization with the anisotropy in the exchange interaction for both ferromagnetic and paramagnetic phases.

  8. On the origins of the anisotropic mechanical behaviour of extruded ...

    Indian Academy of Sciences (India)

    This paper presents some experimental investigations about the origins of the anisotropic behaviour in cyclic loadings of AA2017 aluminium alloy. In the first step, fatigue damage evolutions were quantified for controlled proportional cyclic loadings in axial and shear directions. In this stage, the aim was to confirm the ...

  9. New exact models for anisotropic matter with electric field

    Indian Academy of Sciences (India)


    Sep 5, 2017 ... We generate two newexact models for the Einstein–Maxwell field equations. In our models, we consider the stellar object that is anisotropic and charged with linear equation of state consistent with quark stars. We have a new choice of measure of anisotropy that is physically reasonable. It is interesting that ...

  10. Theory of Spin Waves in Strongly Anisotropic Magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Cooke, J. F.


    A new infinite-order perturbation approach to the theory of spin waves in strongly anisotropic magnets is introduced. The system is transformed into one with effective two-ion anisotropy and considerably reduced ground-state corrections. A general expression for the spin-wave energy, valid to any...

  11. Adaptation of generalized Hill inequalities to anisotropic elastic ...

    African Journals Online (AJOL)


    Science Reports of the Research Institutes Tohoku University A- Physics Chemistry and. Metallurgy, Vol.19, pp.172. Mehrabadi, M.M., Cowin, S.C., 1995. Anisotropic symmetries of linear elasticity. Appl. Mech. Rev., Vol.48, pp.247-285. Pace, N.G. and Saunders G.A.,1971. Elastic wave propagation in group-VB semimetals.

  12. Anisotropic static solutions in modelling highly compact bodies

    Indian Academy of Sciences (India)

    shifts for anisotropic Newtonian and relativistic stars. Anisotropy cannot be neglected in stellar clusters and galaxies, as well as in individual stars, as pointed out by Binney and Tremaine [9], Cuddeford [10], and Michie [11]. Anisotropy may be an ...

  13. Surface waves in fibre-reinforced anisotropic elastic media

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    MS received 1 March 2002. Abstract. In the paper under discussion, the problem of surface waves in fibre- reinforced anisotropic elastic media has been studied. The authors express the plane strain displacement components in terms of two scalar potentials to decouple the plane motion into P and SV waves. In the present ...

  14. Wave propagation in a general anisotropic poroelastic medium ...

    Indian Academy of Sciences (India)

    Anisotropic wave propagation is studied in a fluid-saturated porous medium, using two differ- ent approaches. One is the dynamic approach of Biot's theories. The other approach known as homogenisation theory, is based on the averaging process to derive macroscopic equations from the microscopic equations of motion.

  15. Existence of longitudinal waves in pre-stressed anisotropic elastic ...

    Indian Academy of Sciences (India)

    existence and propagation of longitudinal waves in pre-stressed anisotropic elastic medium. These expressions involve not only the direction and elastic stiffness of the medium, but also the pre- stresses present in the medium. Changes in conditions for the existence of longitudinal waves in orthotropic, monoclinic and ...

  16. Two-dimensional static deformation of an anisotropic medium

    Indian Academy of Sciences (India)

    To examine the effect of anisotropy, variations of dimension- less displacements for an orthotropic, transversely isotropic and isotropic elastic medium have been compared numerically and it is found that anisotropy affects the deformation significantly. Keywords. Static deformation; anisotropic; orthotropic; monoclinic elastic.

  17. Prestack exploding reflector modelling and migration for anisotropic media

    KAUST Repository

    Alkhalifah, Tariq Ali


    The double-square-root equation is commonly used to image data by downward continuation using one-way depth extrapolation methods. A two-way time extrapolation of the double-square-root-derived phase operator allows for up and downgoing wavefields but suffers from an essential singularity for horizontally travelling waves. This singularity is also associated with an anisotropic version of the double-square-root extrapolator. Perturbation theory allows us to separate the isotropic contribution, as well as the singularity, from the anisotropic contribution to the operator. As a result, the anisotropic residual operator is free from such singularities and can be applied as a stand alone operator to correct for anisotropy. We can apply the residual anisotropy operator even if the original prestack wavefield was obtained using, for example, reverse-time migration. The residual correction is also useful for anisotropic parameter estimation. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach. It also proves useful in approximately imaging the Vertical Transverse Isotropic Marmousi model.

  18. Adaptation of generalized Hill inequalities to anisotropic elastic ...

    African Journals Online (AJOL)


    Keywords: Generalized Hill Inequalities, Elastic Constants, Anisotropic Elastic Symmetries, ... In literature, Dinçkal and Akgöz (2010) decomposed elastic constant tensor into ...... Science Reports of the Research Institutes Tohoku University A- Physics Chemistry and ... Wright, A., Faraday, C.S.N., White, E.F.T., et al., 1971.

  19. Polarized Raman anisotropic response of collagen in tendon: towards 3D orientation mapping of collagen in tissues.

    Directory of Open Access Journals (Sweden)

    Leonardo Galvis

    Full Text Available In this study, polarized Raman spectroscopy (PRS was used to characterize the anisotropic response of the amide I band of collagen as a basis for evaluating three-dimensional collagen fibril orientation in tissues. Firstly, the response was investigated theoretically by applying classical Raman theory to collagen-like peptide crystal structures. The theoretical methodology was then tested experimentally, by measuring amide I intensity anisotropy in rat tail as a function of the orientation of the incident laser polarization. For the theoretical study, several collagen-like triple-helical peptide crystal structures obtained from the Protein Data Bank were rotated "in plane" and "out of plane" to evaluate the role of molecular orientation on the intensity of the amide I band. Collagen-like peptides exhibit a sinusoidal anisotropic response when rotated "in plane" with respect to the polarized incident laser. Maximal intensity was obtained when the polarization of the incident light is perpendicular to the molecule and minimal when parallel. In the case of "out of plane" rotation of the molecular structure a decreased anisotropic response was observed, becoming completely isotropic when the structure was perpendicular to the plane of observation. The theoretical Raman response of collagen was compared to that of alpha helical protein fragments. In contrast to collagen, alpha helices have a maximal signal when incident light is parallel to the molecule and minimal when perpendicular. For out-of-plane molecular orientations alpha-helix structures display a decreased average intensity. Results obtained from experiments on rat tail tendon are in excellent agreement with the theoretical predictions, thus demonstrating the high potential of PRS for experimental evaluation of the three-dimensional orientation of collagen fibers in biological tissues.

  20. Growth and anisotropic transport properties of self-assembled InAs nanostructures in InP

    Energy Technology Data Exchange (ETDEWEB)

    Bierwagen, O.


    Self-assembled InAs nanostructures in InP, comprising quantum wells, quantum wires, and quantum dots, are studied in terms of their formation and properties. In particular, the structural, optical, and anisotropic transport properties of the nanostructures are investigated. The focus is a comprehending exploration of the anisotropic in-plane transport in large ensembles of laterally coupled InAs nanostructures. The self-assembled Stranski-Krastanov growth of InAs nanostructures is studied by gas-source molecular beam epitaxy on both nominally oriented and vicinal InP(001). Optical polarization of the interband transitions arising from the nanostructure type is demonstrated by photoluminescence and transmission spectroscopy. The experimentally convenient four-contact van der Pauw Hall measurement of rectangularly shaped semiconductors, usually applied to isotropic systems, is extended to yield the anisotropic transport properties. Temperature dependent transport measurements are performed in large ensembles of laterally closely spaced nanostructures. The transport of quantum wire-, quantum dash- and quantum dot containing samples is highly anisotropic with the principal axes of conductivity aligned to the <110> directions. The direction of higher mobility is [ anti 110], which is parallel to the direction of the quantum wires. In extreme cases, the anisotropies exceed 30 for electrons, and 100 for holes. The extreme anisotropy for holes is due to diffusive transport through extended states in the [ anti 110], and hopping transport through laterally localized states in the [110] direction, within the same sample. A novel 5-terminal electronic switching device based on gate-controlled transport anisotropy is proposed. The gate-control of the transport anisotropy in modulation-doped, self-organized InAs quantum wires embedded in InP is demonstrated. (orig.)

  1. Consensus formation times in anisotropic societies (United States)

    Neirotti, Juan


    We developed a statistical mechanics model to study the emergence of a consensus in societies of adapting, interacting agents constrained by a social rule B . In the mean-field approximation, we find that if the agents' interaction H0 is weak, all agents adapt to the social rule B , with which they form a consensus; however, if the interaction is sufficiently strong, a consensus is built against the established status quo. We observed that, after a transient time αt, agents asymptotically approach complete consensus by following a path whereby they neglect their neighbors' opinions on socially neutral issues (i.e., issues for which the society as a whole has no opinion). αt is found to be finite for most values of the interagent interaction H0 and temperature T , with the exception of the values H0=1 , T →∞ , and the region determined by the inequalities β <2 and 2 β H0<1 +β -√{1 +2 β -β2 } , for which consensus, with respect to B , is never reached.

  2. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge (United States)

    Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.


    An optical centrifuge is used to generate an ensemble of CO2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.

  3. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage

    KAUST Repository

    Choi, Joshua J.


    The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order. © 2011 American Chemical Society.

  4. The in-plane anisotropic magnetic damping of ultrathin epitaxial Co2FeAl film

    Directory of Open Access Journals (Sweden)

    Shuang Qiao


    Full Text Available The in-plane orientation-dependent effective damping of ultrathin Co2FeAl film epitaxially grown on GaAs(001 substrate by molecular beam epitaxy (MBE has been investigated by employing the time-resolved magneto-optical Kerr effect (TR-MOKE measurements. It is found that the interface-induced uniaxial anisotropy is favorable for precession response and the anisotropy of precession frequency is mainly determined by this uniaxial anisotropy, while the magnetic relaxation time and damping factor exhibit the fourfold anisotropy at high-field regime. The field-independent anisotropic damping factor obtained at high fields indicates that the effective damping shows an intrinsic fourfold anisotropy for the epitaxial Co2FeAl thin films.

  5. Multiscale simulations of anisotropic particles combining Brownian Dynamics and Green's Function Reaction Dynamics

    CERN Document Server

    Vijaykumar, Adithya; Wolde, Pieter Rein ten; Bolhuis, Peter G


    The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic Molecular Dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P.G. Bolhuis and P.R. ten Wolde, J. Chem. Phys. {\\bf 43}, 21: 214102 (2015)]. Here we extend this multiscale BD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm we discuss its performance. The rotational BD-GFRD multiscale method will open up the possibility for large scale simulations of e.g. protein signalling networks.

  6. Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers. (United States)

    Song, Jianwei; Chen, Chaoji; Yang, Zhi; Kuang, Yudi; Li, Tian; Li, Yiju; Huang, Hao; Kierzewski, Iain; Liu, Boyang; He, Shuaiming; Gao, Tingting; Yuruker, Sevket U; Gong, Amy; Yang, Bao; Hu, Liangbing


    Aerogels can be used in a broad range of applications such as bioscaffolds, energy storage devices, sensors, pollutant treatment, and thermal insulating materials due to their excellent properties including large surface area, low density, low thermal conductivity, and high porosity. Here we report a facile and effective top-down approach to fabricate an anisotropic wood aerogel directly from natural wood by a simple chemical treatment. The wood aerogel has a layered structure with anisotropic structural properties due to the destruction of cell walls by the removal of lignin and hemicellulose. The layered structure results in the anisotropic wood aerogel having good mechanical compressibility and fragility resistance, demonstrated by a high reversible compression of 60% and stress retention of ∼90% after 10 000 compression cycles. Moreover, the anisotropic structure of the wood aerogel with curved layers stacking layer-by-layer and aligned cellulose nanofibers inside each individual layer enables the wood aerogel to have an anisotropic thermal conductivity with an anisotropy factor of ∼4.3. An extremely low thermal conductivity of 0.028 W/m·K perpendicular to the cellulose alignment direction and a thermal conductivity of 0.12 W/m·K along the cellulose alignment direction can be achieved. The thermal conductivity is not only much lower than that of the natural wood material (by ∼3.6 times) but also lower than most of the commercial thermal insulation materials. The top-down approach is low-cost, scalable, simple, yet effective, representing a promising direction for the fabrication of high-quality aerogel materials.

  7. Shear viscosity in an anisotropic unitary Fermi gas (United States)

    Samanta, Rickmoy; Sharma, Rishi; Trivedi, Sandip P.


    We consider a system consisting of a strongly interacting, ultracold unitary Fermi gas under harmonic confinement. Our analysis suggests the possibility of experimentally studying, in this system, an anisotropic shear viscosity tensor driven by the anisotropy in the trapping potential. In particular, we suggest that this experimental setup could mimic some features of anisotropic geometries that have recently been studied for strongly coupled field theories which have a dual gravitational description. Results using the AdS/CFT (anti-de Sitter/conformal field theory correspondence) in these theories show that in systems with a background linear potential, certain viscosity components can be made much smaller than the entropy density, parametrically violating the bound proposed by Kovtun, Son, and Starinets (KSS). This intuition, along with results from a Boltzmann analysis that we perform, suggests that a violation of the KSS bound can perhaps occur in the unitary Fermi gas system when it is subjected to a suitable anisotropic trapping potential which may be approximated to be linear in a suitable range of parameters. We give a concrete proposal for an experimental setup where an anisotropic shear viscosity tensor may arise. In such situations, it may also be possible to observe a reduction in the spin-1 component of the shear viscosity from its lowest value observed so far in ultracold Fermi gases. In extreme anisotropic situations, the reduction may be enough to reduce the shear viscosity to entropy ratio below the proposed KSS bound, although this regime is difficult to analyze in a theoretically controlled manner.

  8. Influence of copper foil polycrystalline structure on graphene anisotropic etching

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Kamal P. [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Mahyavanshi, Rakesh D. [Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kalita, Golap, E-mail: [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)


    Graphical abstract: Hexagonal hole formation with anisotropic etching independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. - Highlights: • Reveal the influence of copper polycrystalline structure on anisotropic etching of graphene. • Hexagonal hole formation with etching is observed to be independent of stripes and wrinkles in graphene. • Variation in etched pattern of graphene depending on the base Cu grain is confirmed. • This finding will help to understand the nature of microscopic etched pattern in graphene. - Abstract: Anisotropic etching of graphene and other two dimensional materials is an important tool to understand the growth process as well as enabling fabrication of various well-defined structures. Here, we reveal the influence of copper foil polycrystalline structure on anisotropic etching process of as-synthesized graphene. Graphene crystals were synthesized on the polycrystalline Cu foil by a low-pressure chemical vapor deposition (LPCVD) system. Microscopic analysis shows difference in shape, size and stripes alignment of graphene crystals with dissimilar nucleation within closure vicinity of neighboring Cu grains. Post-growth etching of such graphene crystals also significantly affected by the crystallographic nature of Cu grains as observed by the field emission scanning electron microscope (FE-SEM) and electron back scattered diffraction (EBSD) analysis. Hexagonal hole formation with anisotropic etching is observed to be independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. The findings can facilitate to understand the nature of microscopic etched pattern depending on metal

  9. Resistivity inversion in 2-D anisotropic media: numerical experiments (United States)

    Wiese, Timothy; Greenhalgh, Stewart; Zhou, Bing; Greenhalgh, Mark; Marescot, Laurent


    Many rocks and layered/fractured sequences have a clearly expressed electrical anisotropy although it is rare in practice to incorporate anisotropy into resistivity inversion. In this contribution, we present a series of 2.5-D synthetic inversion experiments for various electrode configurations and 2-D anisotropic models. We examine and compare the image reconstructions obtained using the correct anisotropic inversion code with those obtained using the false but widely used isotropic assumption. Superior reconstruction in terms of reduced data misfit, true anomaly shape and position, and anisotropic background parameters were obtained when the correct anisotropic assumption was employed for medium to high coefficients of anisotropy. However, for low coefficient values the isotropic assumption produced better-quality results. When an erroneous isotropic inversion is performed on medium to high level anisotropic data, the images are dominated by patterns of banded artefacts and high data misfits. Various pole-pole, pole-dipole and dipole-dipole data sets were investigated and evaluated for the accuracy of the inversion result. The eigenvalue spectra of the pseudo-Hessian matrix and the formal resolution matrix were also computed to determine the information content and goodness of the results. We also present a data selection strategy based on high sensitivity measurements which drastically reduces the number of data to be inverted but still produces comparable results to that of the comprehensive data set. Inversion was carried out using transversely isotropic model parameters described in two different co-ordinate frames for the conductivity tensor, namely Cartesian versus natural or eigenframe. The Cartesian frame provided a more stable inversion product. This can be simply explained from inspection of the eigenspectra of the pseudo-Hessian matrix for the two model descriptions.

  10. Weak Solution and Weakly Uniformly Bounded Solution of Impulsive Heat Equations Containing “Maximum” Temperature


    Oyelami, Benjamin Oyediran


    In this paper, criteria for the existence of weak solutions and uniformly weak bounded solution of impulsive heat equation containing maximum temperature are investigated and results obtained. An example is given for heat flow system with impulsive temperature using maximum temperature simulator and criteria for the uniformly weak bounded of solutions of the system are obtained.

  11. Weak Solution and Weakly Uniformly Bounded Solution of Impulsive Heat Equations Containing “Maximum” Temperature

    Directory of Open Access Journals (Sweden)

    Oyelami, Benjamin Oyediran


    Full Text Available In this paper, criteria for the existence of weak solutions and uniformly weak bounded solution of impulsive heat equation containing maximum temperature are investigated and results obtained. An example is given for heat flow system with impulsive temperature using maximum temperature simulator and criteria for the uniformly weak bounded of solutions of the system are obtained.

  12. Quadriceps weakness and osteoarthritis of the knee. (United States)

    Slemenda, C; Brandt, K D; Heilman, D K; Mazzuca, S; Braunstein, E M; Katz, B P; Wolinsky, F D


    The quadriceps weakness commonly associated with osteoarthritis of the knee is widely believed to result from disuse atrophy secondary to pain in the involved joint. However, quadriceps weakness may be an etiologic factor in the development of osteoarthritis. To explore the relation between lower-extremity weakness and osteoarthritis of the knee. Cross-sectional prevalence study. Population-based, with recruitment by random-digit dialing. 462 volunteers 65 years of age or older. Radiographs of the knee were graded for the presence of osteoarthritis. Knee pain and function were assessed with the Western Ontario and McMaster Universities Arthritis Index, the strength of leg flexors and extensors was assessed with isokinetic dynamometry, and lower-extremity lean tissue mass was assessed with dual-energy x-ray absorptiometry. Among participants with osteoarthritis, quadriceps weakness, but not hamstring weakness, was common. The ratio of extensor strength to body weight was approximately 20% lower in those with than in those without radiographic osteoarthritis. Notably, among women with tibiofemoral osteoarthritis, extensor weakness was present in the absence of knee pain and was seen in participants with normal lower-extremity lean mass (extensor strength, 30.1 lb-ft for those with osteoarthritis and 34.8 lb-ft for those without osteoarthritis; P osteoarthritis of the knee (odds ratio for prevalence of osteoarthritis per 10 lb-ft loss of strength, 0.8 [95% CI, 0.71 to 0.90] for radiographic osteoarthritis and 0.71 [CI, 0.51 to 0.87] for symptomatic osteoarthritis). Quadriceps weakness may be present in patients who have osteoarthritis but do not have knee pain or muscle atrophy; this suggests that the weakness may be due to muscle dysfunction. The data are consistent with the possibility that quadriceps weakness is a primary risk factor for knee pain, disability, and progression of joint damage in persons with osteoarthritis of the knee.

  13. Strong versus Weak Ties in Migration


    Giulietti, Corrado; Wahba, Jackline; Zenou, Yves


    This paper studies the role of strong versus weak ties in the rural-to-urban migration decision in China. We first develop a network model that puts forward the different roles of weak and strong ties in helping workers to migrate to the city. We then use a unique longitudinal data that allows us to test our model by focusing on first-time migration. Strong ties are measured by the closest family contact (excluding household members) while weak ties are determined by the fraction of migrants ...

  14. Quantum correlation cost of the weak measurement

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun; Wu, Shao-xiong; Yu, Chang-shui, E-mail:


    Quantum correlation cost (QCC) characterizing how much quantum correlation is used in a weak-measurement process is presented based on the trace norm. It is shown that the QCC is related to the trace-norm-based quantum discord (TQD) by only a factor that is determined by the strength of the weak measurement, so it only catches partial quantumness of a quantum system compared with the TQD. We also find that the residual quantumness can be ‘extracted’ not only by the further von Neumann measurement, but also by a sequence of infinitesimal weak measurements. As an example, we demonstrate our outcomes by the Bell-diagonal state.


    Directory of Open Access Journals (Sweden)

    Parsaoran Siahaan


    Full Text Available Intermolecular interactions and molecular translational and rotational mobility are key factors in molecular material sciences, e.g. liquid crystals. One of the important substructures is given by phenylacetylene, Ph-CºCH. Its rotational behavior in its pure form and in high dilution in hexamethylphosphoric triamide OP[N(CH32]3 (HMPA has been studied by means 13C NMR T1 relaxation times at ambient temperature as measured by the inversion recovery method. HMPA is an exceptional solvent in that is has a quite large dipole moment but comparatively low relative dielectricity constant. From the molecular shape Ph-CºCH is expected to exhibit anisotropic rotational diffusion which in fact can be deduced from the measured set of T1 values of the ortho, meta and para carbon nuclei in the neat liquid as well as in the HMPA solution. This expected result rules the dominance of a linearly molecules pair Ph-CºCH...HMPA along their dipole moment axes as anticipated in view of the large HMPA dipole moment. In order to conform with the T1 data, a linear arrangement of Ph-CºCH via the interaction between its weakly acidic H-atom with negatively charge O-atom of HMPA molecules seems to lead to such an anisotropic rotational motion. This hypothesis is supported by ab initio QM calculations which come out with higher interaction energy for linear orientation than other geometries. These ab initio calculations were performed with the basis set of RHF/6-31G(d for the single molecules of Ph-CºCH and HMPA as well as for their various geometries of the molecules pair. Molecular dynamics simulations need to be performed for further confirmation.   Keywords: Relaxation Times, HMPA, pheylacetylene, ab initio, intermolecular interaction, rotational diffusion

  16. Van der Waals interaction torque and force between dielectrically anisotropic layered media

    CERN Document Server

    Lu, Bing-Sui


    We analyse the van der Waals interaction for a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic medium. We investigate the van der Waals torque and force for the following cases: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optical axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optical axes of the oppositely facing anisotropic layers of the two interacting slabs generally have an angular mismatch, and within each multilayered slab the optical axes may either be the same, or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be "tuned" by adjusting the layer th...

  17. Current problems in the weak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Pais, A


    Some reasons are discussed showing why the recent SU(2) x U(1) gauge theory of weak and electromagnetic interactions is not a complete theory of these interactions, Lepton theory, charm, and the CP problem are considered. 60 references. (JFP)

  18. Weak nanoscale chaos and anomalous relaxation in DNA (United States)

    Mazur, Alexey K.


    Anomalous nonexponential relaxation in hydrated biomolecules is commonly attributed to the complexity of the free-energy landscapes, similarly to polymers and glasses. It was found recently that the hydrogen-bond breathing of terminal DNA base pairs exhibits a slow power-law relaxation attributable to weak Hamiltonian chaos, with parameters similar to experimental data. Here, the relationship is studied between this motion and spectroscopic signals measured in DNA with a small molecular photoprobe inserted into the base-pair stack. To this end, the earlier computational approach in combination with an analytical theory is applied to the experimental DNA fragment. It is found that the intensity of breathing dynamics is strongly increased in the internal base pairs that flank the photoprobe, with anomalous relaxation quantitatively close to that in terminal base pairs. A physical mechanism is proposed to explain the coupling between the relaxation of base-pair breathing and the experimental response signal. It is concluded that the algebraic relaxation observed experimentally is very likely a manifestation of weakly chaotic dynamics of hydrogen-bond breathing in the base pairs stacked to the photoprobe and that the weak nanoscale chaos can represent an ubiquitous hidden source of nonexponential relaxation in ultrafast spectroscopy.

  19. Regularity of Tor for weakly stable ideals

    Directory of Open Access Journals (Sweden)

    Katie Ansaldi


    Full Text Available It is proved that if I and J are weakly stable ideals in a polynomial ring R = k[x_1, . . ., x_n], with k a field, then the regularity of Tor^R_i (R/I, R/J has the expected upper bound. We also give a bound for the regularity of Ext^i_R (R/I, R for I a weakly stable ideal.

  20. The regularization of Old English weak verbs


    Marta Tío Sáenz


    [EN] This article deals with the regularization of non-standard spellings of the verbal forms extracted from a corpus. It addresses the question of what the limits of regularization are when lemmatizing Old English weak verbs. The purpose of such regularization, also known as normalization, is to carry out lexicological analysis or lexicographical work. The analysis concentrates on weak verbs from the second class and draws on the lexical database of Old English Nerthus, which has incorporate...

  1. Drift waves in a weakly ionized plasma

    DEFF Research Database (Denmark)

    Popovic, M.; Melchior, H.


    A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated.......A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated....

  2. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. (United States)

    Murphy, Catherine J; Sau, Tapan K; Gole, Anand M; Orendorff, Christopher J; Gao, Jinxin; Gou, Linfeng; Hunyadi, Simona E; Li, Tan


    This feature article highlights work from the authors' laboratories on the synthesis, assembly, reactivity, and optical applications of metallic nanoparticles of nonspherical shape, especially nanorods. The synthesis is a seed-mediated growth procedure, in which metal salts are reduced initially with a strong reducing agent, in water, to produce approximately 4 nm seed particles. Subsequent reduction of more metal salt with a weak reducing agent, in the presence of structure-directing additives, leads to the controlled formation of nanorods of specified aspect ratio and can also yield other shapes of nanoparticles (stars, tetrapods, blocks, cubes, etc.). Variations in reaction conditions and crystallographic analysis of gold nanorods have led to insight into the growth mechanism of these materials. Assembly of nanorods can be driven by simple evaporation from solution or by rational design with molecular-scale connectors. Short nanorods appear to be more chemically reactive than long nanorods. Finally, optical applications in sensing and imaging, which take advantage of the visible light absorption and scattering properties of the nanorods, are discussed.

  3. Muscle weakness causes joint degeneration in rabbits. (United States)

    Rehan Youssef, A; Longino, D; Seerattan, R; Leonard, T; Herzog, W


    The objective of this study was to investigate the effects of botulinum toxin type-A (BTX-A) induced quadriceps weakness on micro-structural changes in knee cartilage of New Zealand White (NZW) rabbits. Fifteen rabbits were divided randomly into an experimental and a sham control group. Each group received a unilateral single quadriceps muscle injection either with saline (sham control; n=4) or BTX-A (experimental; n=11). BTX-A injection produced significant quadriceps muscle weakness (Pmuscle mass (Pknee cartilage, assessed with the Mankin grading system, were the same for the injected and non-injected hind limbs of the experimental group animals. Sham injection had no effect on joint degeneration but all control animals showed some degenerative changes in the knee. Degenerative changes of the retro-patellar cartilage were more severe in the experimental compared to sham control group rabbits (P0.05). Quadriceps muscle weakness caused increased degeneration in the retro-patellar cartilage of NZW rabbits, providing evidence that muscle weakness might be a risk factor for the onset and progression of osteoarthritis (OA). Future work needs to delineate whether muscle weakness directly affects joint degeneration, or if changes in function and movement execution associated with muscle weakness are responsible for the increased rate of OA onset and progression observed here.

  4. Anisotropic elliptical dichroism and influence of imperfection of circular polarization upon anisotropic circular dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayashi, Masamitsu [Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501 (Japan); RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yokojima, Satoshi, E-mail: [Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachiouji-shi, Tokyo 192-0392 (Japan); RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Fukaminato, Tuyoshi [Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020 (Japan); PRESTO, Japan Science and Technology Agency (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Ohtani, Hiroyuki [Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501 (Japan); Nakamura, Shinichiro, E-mail: [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)


    In spite of the importance of anisotropic circular dichroism, in practice, it is difficult to get rid of the artifacts that arise from the imperfection of the circular polarization. Undesirable linear dichroism, interference of two orthogonal polarization states, and linear birefringence prevent us from making accurate measurements. We propose a theoretical method for evaluating the contributions of the first two, which are thought to be the main artifacts when specimens are not thick enough. Using the time-dependent perturbation theory and taking into account the direction of light propagation toward an orientationally fixed molecule, we formulated the transition probability of systems perturbed by arbitrarily polarized light and the absorption difference associated with two kinds of polarized light. We also formulated, as an extension of the dissymmetry factor of circular dichroism, a newly defined dissymmetry factor associated with two arbitrary polarization states. Furthermore, we considered a mixed-state of photon ensemble in which polarization states distribute at a certain width around a certain average. Although the purity of polarization and ellipticity does not correspond immediately, by considering the mixed state it is possible to treat them consistently. We used quantum statistical mechanics to describe the absorption difference for two kinds of photon ensembles and applied the consequent formula to examine the reported experimental results of single-molecule chiroptical responses under discussion in the recent past. The artifacts are theoretically suggested to be sensitive to the incident direction of elliptically polarized light and to the oriented systems, the ellipticity, and the orientation of ellipse. The mixed state has little, if any, effect when the polarization state distribution is narrow.

  5. Anisotropic elliptical dichroism and influence of imperfection of circular polarization upon anisotropic circular dichroism. (United States)

    Wakabayashi, Masamitsu; Yokojima, Satoshi; Fukaminato, Tuyoshi; Ohtani, Hiroyuki; Nakamura, Shinichiro


    In spite of the importance of anisotropic circular dichroism, in practice, it is difficult to get rid of the artifacts that arise from the imperfection of the circular polarization. Undesirable linear dichroism, interference of two orthogonal polarization states, and linear birefringence prevent us from making accurate measurements. We propose a theoretical method for evaluating the contributions of the first two, which are thought to be the main artifacts when specimens are not thick enough. Using the time-dependent perturbation theory and taking into account the direction of light propagation toward an orientationally fixed molecule, we formulated the transition probability of systems perturbed by arbitrarily polarized light and the absorption difference associated with two kinds of polarized light. We also formulated, as an extension of the dissymmetry factor of circular dichroism, a newly defined dissymmetry factor associated with two arbitrary polarization states. Furthermore, we considered a mixed-state of photon ensemble in which polarization states distribute at a certain width around a certain average. Although the purity of polarization and ellipticity does not correspond immediately, by considering the mixed state it is possible to treat them consistently. We used quantum statistical mechanics to describe the absorption difference for two kinds of photon ensembles and applied the consequent formula to examine the reported experimental results of single-molecule chiroptical responses under discussion in the recent past. The artifacts are theoretically suggested to be sensitive to the incident direction of elliptically polarized light and to the oriented systems, the ellipticity, and the orientation of ellipse. The mixed state has little, if any, effect when the polarization state distribution is narrow.

  6. Anisotropic elliptical dichroism and influence of imperfection of circular polarization upon anisotropic circular dichroism (United States)

    Wakabayashi, Masamitsu; Yokojima, Satoshi; Fukaminato, Tuyoshi; Ohtani, Hiroyuki; Nakamura, Shinichiro


    In spite of the importance of anisotropic circular dichroism, in practice, it is difficult to get rid of the artifacts that arise from the imperfection of the circular polarization. Undesirable linear dichroism, interference of two orthogonal polarization states, and linear birefringence prevent us from making accurate measurements. We propose a theoretical method for evaluating the contributions of the first two, which are thought to be the main artifacts when specimens are not thick enough. Using the time-dependent perturbation theory and taking into account the direction of light propagation toward an orientationally fixed molecule, we formulated the transition probability of systems perturbed by arbitrarily polarized light and the absorption difference associated with two kinds of polarized light. We also formulated, as an extension of the dissymmetry factor of circular dichroism, a newly defined dissymmetry factor associated with two arbitrary polarization states. Furthermore, we considered a mixed-state of photon ensemble in which polarization states distribute at a certain width around a certain average. Although the purity of polarization and ellipticity does not correspond immediately, by considering the mixed state it is possible to treat them consistently. We used quantum statistical mechanics to describe the absorption difference for two kinds of photon ensembles and applied the consequent formula to examine the reported experimental results of single-molecule chiroptical responses under discussion in the recent past. The artifacts are theoretically suggested to be sensitive to the incident direction of elliptically polarized light and to the oriented systems, the ellipticity, and the orientation of ellipse. The mixed state has little, if any, effect when the polarization state distribution is narrow.

  7. Quantitative multi-waves migration in elastic anisotropic media; Migration quantitative multi-ondes en milieu elastique anisotrope

    Energy Technology Data Exchange (ETDEWEB)

    Borgne, H.


    Seismic imaging is an important tool for ail exploration. From the filtered seismic traces and a subsurface velocity model, migration allows to localize the reflectors and to estimate physical properties of these interfaces. The subsurface is split up into a reference medium, corresponding to the low spatial frequencies (a smooth medium), and a perturbation medium, corresponding to the high spatial frequencies. The propagation of elastic waves in the medium of reference is modelled by the ray theory. The association of this theory with a principle of diffraction or reflection allows to take into account the high spatial frequencies: the Kirchhoff approach represents so the medium of perturbations with continuous surfaces, characterized by reflection coefficients. The target of the quantitative migration is to reconstruct this reflection coefficient, notably its behaviour according to the incidence angle. These information will open the way to seismic characterization of the reservoir domain, with. a stratigraphic inversion for instance. In order to improve the qualitative and quantitative migration results, one of the current challenges is to take into account the anisotropy of the subsurface. Taking into account rocks anisotropy in the imaging process of seismic data requires two improvements from the isotropic case. The first one roughly concerns the modelling aspect: an anisotropic propagator should be used to avoid a mis-positioning or bad focusing of the imaged reflectors. The second correction concerns the migration aspect: as anisotropy affects the reflectivity of subsurface, a specific anisotropic imaging formula should be applied in the migration kernel, in order to recover the correct A V A behavior of the subsurface reflectors, If the first correction is DOW made in most so-called anisotropic imaging algorithms, the second one is currently ignored. The first part of my work concerns theoretical aspects. 1 study first the preservation of amplitudes in the

  8. On existence of optimal controls in coecients for ill-posed nonlinear elliptic Dirichlet boundary value problems with anisotropic p-Laplacian

    Directory of Open Access Journals (Sweden)

    O. P. Kupenko


    Full Text Available We study a Dirichlet optimal control problem for a nonlinear elliptic anisotropic p-Laplace equation with control and state constraints. The matrix-valued coecients we take as controls and in the linear part of dierential operator we consider coecients to be unbounded skew-symmetric matrix. We show that, in spite of unboundedness of the non-linear dierential operator, the considered Dirichlet problem admits at least one weak solution and the corresponding OCP is well-possed and solvable.

  9. Aeroelastic modal dynamics of wind turbines including anisotropic effects

    DEFF Research Database (Denmark)

    Skjoldan, Peter Fisker

    Several methods for aeroelastic modal analysis of a rotating wind turbine are developed and used to analyse the modal dynamics of two simplified models and a complex model in isotropic and anisotropic conditions. The Coleman transformation is used to enable extraction of the modal frequencies...... frequency is thus identified as the dominant frequency in the response of a pure excitation of the mode observed in the inertial frame. A modal analysis tool based directly on the complex aeroelastic wind turbine code BHawC is presented. It uses the Coleman approach in isotropic conditions...... and the computationally efficient implicit Floquet analysis in anisotropic conditions. The tool is validated against system identifications with the partial Floquet method on the nonlinear BHawC model of a 2.3 MW wind turbine. System identification results show that nonlinear effects on the 2.3 MW turbine in most cases...

  10. Timoshenko beam element with anisotropic cross-sectional properties

    DEFF Research Database (Denmark)

    Stäblein, Alexander; Hansen, Morten Hartvig


    Beam models are used for the aeroelastic time and frequency domain analysis of wind turbines due to their computational efficiency. Many current aeroelastic tools for the analysis of wind turbines rely on Timoshenko beam elements with classical crosssectional properties (EA, EI, etc.). Those cross......-sectional properties do not reflect the various couplings arising from the anisotropic behaviour of the blade material. A twonoded, three-dimensional Timoshenko beam element was therefore extended to allow for anisotropic cross-sectional properties. For an uncoupled beam, the resulting shape functions are identical...... to the original formulation. The new element was implemented into a co-rotational formulation and validated against natural frequencies and several static load cases of previous works....

  11. Fourth order discretization of anisotropic heat conduction operator (United States)

    Krasheninnikova, Natalia; Chacon, Luis


    In magnetized plasmas, heat conduction plays an important role in such processes as energy confinement, turbulence, and a number of instabilities. As a consequence of the presence of a magnetic field, heat transport is strongly anisotropic, with energy flowing preferentially along the magnetic field direction. This in turn results in parallel and perpendicular heat conduction coefficients being separated by orders of magnitude. The computational difficulties in treating such heat conduction anisotropies are significant, as perpendicular dynamics numerically is polluted by the parallel one. In this work, we report on progress of the implementation of a fourth order, conservative finite volume discretization scheme for the anisotropic heat conduction operator into the extended MHD code PIXIE3D [1]. We will demonstrate its spatial discretization accuracy and its effectiveness with two physical applications of interest, both of which feature a strong sensitivity to the heat conduction anisotropy: the thermal instability and the neoclassical tearing mode. [1] L. Chacon Phys. Plasmas 15, 056103 (2008)

  12. Driven Anisotropic Diffusion at Boundaries: Noise Rectification and Particle Sorting (United States)

    Bo, Stefano; Eichhorn, Ralf


    We study the diffusive dynamics of a Brownian particle in the proximity of a flat surface under nonequilibrium conditions, which are created by an anisotropic thermal environment with different temperatures being active along distinct spatial directions. By presenting the exact time-dependent solution of the Fokker-Planck equation for this problem, we demonstrate that the interplay between anisotropic diffusion and hard-core interaction with the plain wall rectifies the thermal fluctuations and induces directed particle transport parallel to the surface, without any deterministic forces being applied in that direction. Based on current micromanipulation technologies, we suggest a concrete experimental setup to observe this novel noise-induced transport mechanism. We furthermore show that it is sensitive to particle characteristics, such that this setup can be used for sorting particles of different sizes.

  13. Existence of Nonsteady Planar Ideal Flows in Anisotropic Plasticity (United States)

    Alexandrov, S.; Pirumov, A.; Date, P. P.


    Ideal plastic flows are those for which all material elements follow minimum work paths. The general equations for steady and nonsteady planar ideal flows in Tresca solids have been given elsewhere. The present paper focuses on nonsteady planar ideal flows in anisotropic plasticity. In particular, the existence of such flows is proven under a certain assumption concerning the orientation of principal stress trajectories at the initial instant. It is also shown that the system of kinematic equations is hyperbolic. This system can be treated separately from the stress equations. The original ideal flow theory is widely used as the basis for inverse methods for the preliminary design of metal forming processes driven by minimum plastic work. The new theory extends this area of application to anisotropic materials.

  14. Anisotropic charged physical models with generalized polytropic equation of state (United States)

    Nasim, A.; Azam, M.


    In this paper, we found the exact solutions of Einstein-Maxwell equations with generalized polytropic equation of state (GPEoS). For this, we consider spherically symmetric object with charged anisotropic matter distribution. We rewrite the field equations into simple form through transformation introduced by Durgapal (Phys Rev D 27:328, 1983) and solve these equations analytically. For the physically acceptability of these solutions, we plot physical quantities like energy density, anisotropy, speed of sound, tangential and radial pressure. We found that all solutions fulfill the required physical conditions. It is concluded that all our results are reduced to the case of anisotropic charged matter distribution with linear, quadratic as well as polytropic equation of state.

  15. Anisotropic plasmons, excitons, and electron energy loss spectroscopy of phosphorene (United States)

    Ghosh, Barun; Kumar, Piyush; Thakur, Anmol; Chauhan, Yogesh Singh; Bhowmick, Somnath; Agarwal, Amit


    In this article, we explore the anisotropic electron energy loss spectrum (EELS) in monolayer phosphorene based on ab initio time-dependent density-functional-theory calculations. Similarly to black phosphorus, the EELS of undoped monolayer phosphorene is characterized by anisotropic excitonic peaks for energies in the vicinity of the band gap and by interband plasmon peaks for higher energies. On doping, an additional intraband plasmon peak also appears for energies within the band gap. Similarly to other two-dimensional systems, the intraband plasmon peak disperses as ωpl∝√{q } in both the zigzag and armchair directions in the long-wavelength limit and deviates for larger wave vectors. The anisotropy of the long-wavelength plasmon intraband dispersion is found to be inversely proportional to the square root of the ratio of the effective masses: ωpl(q y ̂) /ωpl(q x ̂) =√{mx/my } .

  16. Anisotropic 3D texture synthesis with application to volume rendering

    DEFF Research Database (Denmark)

    Laursen, Lasse Farnung; Ersbøll, Bjarne Kjær; Bærentzen, Jakob Andreas


    We present a novel approach to improving volume rendering by using synthesized textures in combination with a custom transfer function. First, we use existing knowledge to synthesize anisotropic solid textures to fit our volumetric data. As input to the synthesis method, we acquire high quality...... images using a 12.1 megapixel camera. Next, we extend the volume rendering pipeline by creating a transfer function which yields not only color and opacity from the input intensity, but also texture coordinates for our synthesized 3D texture. Thus, we add texture to the volume rendered images....... This method is applied to a high quality visualization of a pig carcass, where samples of meat, bone, and fat have been used to produce the anisotropic 3D textures....

  17. More on thermal probes of a strongly coupled anisotropic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jahnke, Viktor [Instituto de Física, Universidade de São Paulo,05314-970 São Paulo (Brazil); Luna, Andrés; Patiño, Leonardo [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México,A.P. 50-542, México D.F. 04510 (Mexico); Trancanelli, Diego [Instituto de Física, Universidade de São Paulo,05314-970 São Paulo (Brazil)


    We extend the analysis of arXiv:1211.2199, where the photon production rate of an anisotropic strongly coupled plasma with N{sub f}≪N{sub c} massless quarks was considered. We allow here for non-vanishing quark masses and study how these affect the spectral densities and conductivities. We also compute another important probe of the plasma, the dilepton production rate. We consider generic angles between the anisotropic direction and the photon and dilepton wave vectors, as well as arbitrary quark masses and arbitrary values of the anisotropy parameter. Generically, the anisotropy increases the production rate of both photons and dileptons, compared with an isotropic plasma at the same temperature.

  18. Anisotropic models are unitary: A rejuvenation of standard quantum cosmology (United States)

    Pal, Sridip; Banerjee, Narayan


    The present work proves that the folklore of the pathology of non-conservation of probability in quantum anisotropic models is wrong. It is shown in full generality that all operator ordering can lead to a Hamiltonian with a self-adjoint extension as long as it is constructed as a symmetric operator. It is indicated that the self-adjoint extension, however, is not unique and this non-uniqueness is suspected not to be a feature of anisotropic models only, in the sense that there exists operator orderings such that Hamiltonian for an isotropic homogeneous cosmological model does not have unique self-adjoint extension. For isotropic model, there is a special unique extension associated with quadratic form of Hamiltonian, i.e., a Friedrich's extension. Details of calculations are carried out for a Bianchi III model as an example.

  19. Coupled polaritonic band gaps in the anisotropic piezoelectric superlattices (United States)

    Tang, Zheng-Hua; Jiang, Zheng-Sheng; Chen, Tao; Jiang, Chun-Zhi; Lei, Da-Jun; Huang, Jian-Quan; Qiu, Feng; Yao, Min; Huang, Xiao-Yi


    Anisotropic piezoelectric superlattices (APSs) with the periodic arrangement of polarized anisotropic piezoelectric domains in a certain direction are presented, in which the coupled polaritonic band gaps (CPBGs) can be obtained in the whole Brillouin Zone and the maximum relative bandwidth (band-gap sizes divided by their midgap frequencies) of 5.1% can be achieved. The general characteristics of the APSs are similar to those of the phononic crystals composed of two types of materials, with the main difference being the formation mechanism of the CPBGs, which originate from the couplings between lattice vibrations along two different directions and electromagnetic waves rather than from the periodical modulation of density and elastic constants. In addition, there are no lattice mismatches because the APSs are made of the same material. Thus, the APSs can also be extended to the construction of novel acousto-optic devices.

  20. Random noise attenuation using an improved anisotropic total variation regularization (United States)

    Gemechu, Diriba; Yuan, Huan; Ma, Jianwei


    In seismic data processing, attenuation of random noise from the observed data is the basic step which improves the signal-to-noise ratio (SNR) of seismic data. In this paper, we proposed an anisotropic total bounded variation regularization approach to attenuate noise. An improved constraint convex optimization model is formulated for this approach and then the split Bregman algorithm is used to solve the optimization model. Generalized cross validation (GCV) technique is used to estimate the regularization parameter. Synthetic and real seismic data are considered to show the out performance of the proposed method in terms of event-preserving denoising, in comparison with FX deconvolution, shearlet hard thresholding, and anisotropic total variation methods. The numerical results indicate that the proposed method effectively attenuates random noise by preserving the structure and important features of seismic data.

  1. Cloaking by shells with radially inhomogeneous anisotropic permittivity. (United States)

    Reshetnyak, V Yu; Pinkevych, I P; Sluckin, T J; Evans, D R


    We model electromagnetic cloaking of a spherical or cylindrical nanoparticle enclosed by an optically anisotropic and optically inhomogeneous symmetric shell, by examining its electric response in a quasi-static uniform electric field. When the components of the shell permittivity are radially anisotropic and power-law dependent (ε~r(m)) whereris distance to the shell center, and m a positive or negative exponent which can be varied), the problem is analytically tractable. Formulas are calculated for the degree of cloaking in the general case, allowing the determination of a dielectric condition for the shells to be used as an invisibility cloak. Ideal cloaking is known to require that homogeneous shells exhibit an infinite ratio of tangential and radial components of the shell permittivity, but for radially inhomogeneous shells ideal cloaking can occur even for finite values of this ratio.

  2. Modeling of plates with multiple anisotropic layers and residual stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Pedersen, Thomas; Thomsen, Erik Vilain


    Usually the analytical approach for modeling of plates uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. Based on the stress–strain relation of each layer and balancing stress resultants and bending moments, a general...... multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular clamped plate of anisotropic materials with residual bi-axial stress.From the deflection shape the critical stress for buckling is calculated...... and by using the Rayleigh–Ritzmethod the natural frequency is estimated. Using the Galerkin method, an approximate deflection shape is calculated for a rectangular plate, and for a square plate the expression can be simplified drastically. To support the results, the model has been compared to a FEM model...

  3. Equivalent medium theory of layered sphere particle with anisotropic shells (United States)

    Li, Xingcai; Wang, Minzhong; Zhang, Beidou


    Researches on the optical properties of small particle have been widely concerned in the atmospheric science, astronomy, astrophysics, biology and medical science. This paper provides an equivalent dielectric theory for the functional graded particle with anisotropic shells, in which inhomogeneous and anisotropic particle was equivalently transformed into a new kind of homogeneous, continuous and isotropic sphere with same size but different permittivity, and then greatly simplify the calculation process of particle's optical property. Meanwhile, the paper also discusses whether the charge on the particle can change the expression of its equivalent permittivity or not. These results proposed in this paper can be used to simulate the electrical, optical properties of layered sphere, it also meet the research requirement in the design of functional graded particles in different subjects.

  4. Modeling of CMUTs with Multiple Anisotropic Layers and Residual Stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Thomsen, Erik Vilain


    Usually the analytical approach for modeling CMUTs uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. A highly accurate model is developed for analytical characterization of CMUTs taking an arbitrary number of layers...... and residual stress into account. Based on the stress-strain relation of each layer and balancing stress resultants and bending moments, a general multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular...... clamped plate of anisotropic materials with residual bi-axial stress. From the deflection shape the critical stress for buckling is calculated and by using the Rayleigh-Ritz method the natural frequency is estimated....

  5. Dirac directional emission in anisotropic zero refractive index photonic crystals (United States)

    He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen


    A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal. PMID:26271208

  6. Anisotropic to Isotropic Phase Transitions in the Early Universe

    Directory of Open Access Journals (Sweden)

    Ajaib M. A.


    Full Text Available We attempt to develop a minimal formalism to describe an anisotropic to isotropic tran- sition in the early Universe. Assuming an underlying theory that violates Lorentz in- variance, we start with a Dirac like equation, involving four massless fields, and which does not exhibit Lorentz invariance. We then perform transformations that restore it to its covariant form along with a mass term for the fermion field. It is proposed that these transformations can be visualized as waves traveling in an anisotropic media. The trans- formation it = ℏ ! is then utilized to transit to a statistical thermodynamics system and the partition function then gives a better insight into the character of this transition. The statistical system hence realized is a two level system with each state doubly degenerate. We propose that modeling the transition this way can help explain the matter antimatter asymmetry of the Universe.

  7. Local deposition of anisotropic nanoparticles using scanning electrochemical microscopy (SECM). (United States)

    Fedorov, Roman G; Mandler, Daniel


    We demonstrate localized electrodeposition of anisotropic metal nanoobjects, namely Au nanorods (GNR), on indium tin oxide (ITO) using scanning electrochemical microscopy (SECM). A gold microelectrode was the source of the gold ions whereby double pulse chronoamperometry was employed to generate initially Au seeds which were further grown under controlled conditions. The distance between the microelectrode and the ITO surface as well as the different experimental parameters (electrodeposition regime, solution composition and temperature) were optimized to produce faceted gold seeds with the required characteristics (size and distribution). Colloidal chemical synthesis was successfully exploited for better understanding the role of the surfactant and different additives in breaking the crystallographic symmetry and anisotropic growth of GNR. Experiments performed in a conventional three-electrode cell revealed the most appropriate electrochemical conditions allowing high yield synthesis of nanorods with well-defined shape as well as nanocubes and bipyramids.

  8. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. (United States)

    Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P


    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.

  9. Spatial nonlinearity in anisotropic metamaterial plasmonic slot waveguides

    CERN Document Server

    Elsawy, Mahmoud M R


    We study the main nonlinear solutions of plasmonic slot waveguides made from an anisotropic metamaterial core with a positive Kerr-type nonlinearity surrounded by two semi-infinite metal regions. First, we demonstrate that for a highly anisotropic diagonal elliptical core, the bifurcation threshold of the asymmetric mode is reduced from GW/m threshold for the isotropic case to 50 MW/m one indicating a strong enhancement of the spatial nonlinear effects, and that the slope of the dispersion curve of the asymmetric mode stays positive, at least near the bifurcation, suggesting a stable mode. Second, we show that for the hyperbolic case there is no physically meaningful asymmetric mode, and that the sign of the effective nonlinearity can become negative.

  10. Deep Tunnel in Transversely Anisotropic Rock with Groundwater Flow (United States)

    Bobet, Antonio


    Closed-form solutions for the stresses and deformations induced in the ground and tunnel liner are provided for a deep tunnel in a transversely anisotropic elastic rock, with anisotropic permeability, when subjected to groundwater seepage. Complex variable theory and conformal mapping are used to obtain the solutions; additional complex functions, necessary to prevent multiple solutions of the displacements, are included. The analytical solutions are verified by comparing their results from those of a finite element method. Simplified formulations are presented for tunnels with a perfectly flexible and completely incompressible liner. A spreadsheet is included that can be used to obtain stresses and displacements of the liner due to groundwater flow and far-field geostatic stresses.

  11. Effect of bulk Lorentz violation on anisotropic brane cosmologies (United States)

    Heydari-Fard, Malihe


    The effect of Lorentz invariance violation in cosmology has attracted a considerable amount of attention. By using a dynamical vector field assumed to point in the bulk direction, with Lorentz invariance holding on the brane, we extend the notation of Lorentz violation in four dimensions Jacobson to a five-dimensional brane-world. We obtain the general solution of the field equations in an exact parametric form for Bianchi type I space-time, with perfect fluid as a matter source. We show that the brane universe evolves from an isotropic/anisotropic state to an isotropic de Sitter inflationary phase at late time. The early time behavior of anisotropic brane universe is largely dependent on the Lorentz violating parameters βi,i = 1,2,3 and the equation of state of the matter, while its late time behavior is independent of these parameters.

  12. Lifting mean-field degeneracies in anisotropic classical spin systems (United States)

    Sizyuk, Yuriy; Perkins, Natalia B.; Wölfle, Peter


    In this work, we propose a method for calculating the free energy of anisotropic classical spin systems. We use a Hubbard-Stratonovich transformation to express the partition function of a generic bilinear superexchange Hamiltonian in terms of a functional integral over classical time-independent fields. As an example, we consider an anisotropic spin-exchange Hamiltonian on the cubic lattice as is found for compounds with strongly correlated electrons in multiorbital bands and subject to strong spin-orbit interaction. We calculate the contribution of Gaussian spin fluctuations to the free energy. While the mean-field solution of ordered states for such systems usually has full rotational symmetry, we show here that the fluctuations lead to a pinning of the spontaneous magnetization along some preferred direction of the lattice.

  13. Anisotropic deformations of spatially open cosmology in massive gravity theory (United States)

    Mazuet, Charles; Mukohyama, Shinji; Volkov, Mikhail S.


    We combine analytical and numerical methods to study anisotropic deformations of the spatially open homogeneous and isotropic cosmology in the ghost free massive gravity theory with flat reference metric. We find that if the initial perturbations are not too strong then the physical metric relaxes back to the isotropic de Sitter state. However, the dumping of the anisotropies is achieved at the expense of exciting the Stueckelberg fields in such a way that the reference metric changes and does not share anymore with the physical metric the same rotational and translational symmetries. As a result, the universe evolves towards a fixed point which does not coincide with the original solution, but for which the physical metric is still de Sitter. If the initial perturbation is strong, then its evolution generically leads to a singular anisotropic state or, for some parameter values, to a decay into flat spacetime. We also present an infinite dimensional family of new homogeneous and isotropic cosmologies in the theory.


    Directory of Open Access Journals (Sweden)

    V. D. Petrenko


    Full Text Available Purpose. This article provides: the question of the sustainability of the subgrade on a weak base is considered in the paper. It is proposed to use the method of jet grouting. Investigation of the possibility of a weak base has an effect on the overall deformation of the subgrade; the identification and optimization of the parameters of subgrade based on studies using numerical simulation. Methodology. The theoretical studies of the stress-strain state of the base and subgrade embankment by modeling in the software package LIRA have been conducted to achieve this goal. Findings. After making the necessary calculations perform building fields of a subsidence, borders cramped thickness, bed’s coefficients of Pasternak and Winkler. The diagrams construction of vertical stress performs at any point of load application. Also, using the software system may perform peer review subsidence, rolls railroad tracks in natural and consolidated basis. Originality. For weak soils is the most appropriate nonlinear model of the base with the existing areas of both elastic and limit equilibrium, mixed problem of the theory of elasticity and plasticity. Practical value. By increasing the load on the weak base as a result of the second track construction, adds embankment or increasing axial load when changing the rolling stock process of sedimentation and consolidation may continue again. Therefore, one of the feasible and promising options for the design and reconstruction of embankments on weak bases is to strengthen the bases with the help of jet grouting. With the expansion of the railway infrastructure, increasing speed and weight of the rolling stock is necessary to ensure the stability of the subgrade on weak bases. LIRA software package allows you to perform all the necessary calculations for the selection of a proper way of strengthening weak bases.

  15. Multigrid method for elliptic equations with anisotropic discontinuous coefficients (United States)

    Zhukov, V. T.; Novikova, N. D.; Feodoritova, O. B.


    For difference elliptic equations, an algorithm based on Fedorenko's multigrid method is constructed. The algorithm is intended for solving three-dimensional boundary value problems for equations with anisotropic discontinuous coefficients on parallel computers. Numerical results confirming the performance and parallel efficiency of the multigrid algorithm are presented. These qualities are ensured by using, as a multigrid triad, the standard Chebyshev iteration for coarsest grid equations, Chebyshev-type smoothing explicit iterative procedures, and intergrid transfer operators in problem-dependent form.

  16. The second critical density and anisotropic generalised condensation

    Directory of Open Access Journals (Sweden)

    M. Beau


    Full Text Available In this letter we discuss the relevance of the 3D Perfect Bose gas (PBG condensation in extremely elongated vessels for the study of anisotropic condensate coherence and the "quasi-condensate". To this end we analyze the case of exponentially anisotropic (van den Berg boxes, when there are two critical densities ρc<ρm for a generalised Bose-Einstein Condensation (BEC. Here ρc is the standard critical density for the PBG. We consider three examples of anisotropic geometry: slabs, squared beams and "cigars" to demonstrate that the "quasi-condensate" which exists in domain ρc<ρ<ρm is in fact the van den Berg-Lewis-Pulé generalised condensation (vdBLP-GC of the type III with no macroscopic occupation of any mode. We show that for the slab geometry the second critical density ρm is a threshold between quasi-two-dimensional (quasi-2D condensate and the three dimensional (3D regime when there is a coexistence of the "quasi-condensate" with the standard one-mode BEC. On the other hand, in the case of squared beams and "cigars" geometries, critical density ρm separates quasi-1D and 3D regimes. We calculate the value of the difference between ρc, ρm (and between corresponding critical temperatures Tm, Tc to show that the observed space anisotropy of the condensate coherence can be described by a critical exponent γ(T related to the anisotropic ODLRO. We compare our calculations with physical results for extremely elongated traps that manifest "quasi-condensate".

  17. Multimodal location algorithm for Lamb waves propagating through anisotropic materials (United States)

    Paget, Christophe A.; Rehman, M. Abdul


    Composite material use in aerospace structures has grown over the last two decades and more recently there has been an increase in the use of anisotropic composite layups. One of the most promising SHM techniques is Acoustic Emission (AE) using Lamb waves. Previous location algorithms, capable of locating damage such as cracks, delamination and debonding, have focused their application to either isotropic or quasi-isotropic structures. Previous work was dedicated to anisotropic structures based on single Lamb wave mode propagations. The scope of this work is to include different modes in the AE location algorithm to improve its location. There are cases where it is likely that different modes trigger different transducers for the same event. The transducer time-of-flight is dependent on the mode velocity, therefore an AE location calculated from single-modal algorithm would expect to have significant location inaccuracy. By considering the possibility of different Lamb wave modes triggering each sensor in the location algorithm, and using certain mathematical and physical assumptions, significant improvements of the AE location can be reached, reducing NDT burden. The multi-modal algorithm also includes the ability to locate AE in anisotropic material based on previous proven single-modal algorithm known as Elliptical algorithm. Such a multi-modal elliptical approach taken in the algorithm discussed in the work is expected to reduce significantly the AE location error for highly anisotropic material. Based on analytical equations, this algorithm processes large amounts of AE data in a condensed period of time, allowing live structural monitoring of large assets.

  18. Extended Yeh's method for optically active anisotropic layered media. (United States)

    Ossikovski, Razvigor; Arteaga, Oriol


    We extend the original method of Yeh [J. Opt. Soc. Am.69, 742 (1979)JOSAAH0030-394110.1364/JOSA.69.000742] for calculating the reflection and transmission from anisotropic layered structures to media exhibiting not only dielectric, but also magnetic anisotropy, as well as optical activity. We likewise establish the relationship between the optical activity and gyration tensors from the two most used constitutive relations for optically active media and illustrate the extended Yeh's method on a practically important example.

  19. Chaotic spin precession in anisotropic universes and fermionic dark matter

    CERN Document Server

    Kamenshchik, A Yu


    We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This effect is present already in the Bianchi-I universe. In the Bianchi-IX universe it acquires the chaotic character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related helicity flip of fermions in the very early Universe may produce the sterile particles contributing to dark matter.

  20. Eigenview on Jones matrix models of homogeneous anisotropic media

    Directory of Open Access Journals (Sweden)

    Savenkov S.


    Full Text Available The polarization of light when it passes through optical medium can change as a result of change in the amplitude (dichroism or phase shift (birefringence of the electric vector. The anisotropic properties of media can be determined from these two optical effects. Our main concern here is to revisit the factor of eigenpolarizations and eigenvalues in modeling of polarization properties of homogeneous media and elucidate certain new features in polarization behavior of birefringent and dichroic media.

  1. Anisotropic behavior of quantum transport in graphene superlattices

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Cummings, Aron W.; Roche, Stephan


    We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength...... orders of magnitude, and suggesting the possibility of building graphene electronic circuits based on the unique properties of chiral massless Dirac fermions in graphene....

  2. Anisotropic adaptive mesh generation in two dimensions for CFD

    Energy Technology Data Exchange (ETDEWEB)

    Borouchaki, H.; Castro-Diaz, M.J.; George, P.L.; Hecht, F.; Mohammadi, B. [INRIA, Le Chesnay (France)


    This paper describes the extension of the classical Delaunay method in the case where anisotropic meshes are required such as in CFD when the modelized physic is strongly directional. The way in which such a mesh generation method can be incorporated in an adaptative loop of CFD as well as the case of multicriterium adaptation are discussed. Several concrete application examples are provided to illustrate the capabilities of the proposed method.

  3. Rational synthesis and self-assembly of anisotropic plasmonic nanoparticles


    Scarabelli, Leonardo


    This thesis work has been carried out in the framework of the ERC Advanced Grant Plasmaquo (nº 267867), which focused on the development of novel nanostructured plasmonic materials based on crystalline assemblies of anisotropic nanoparticles, to be used as optical enhancers for the surface enhanced Raman scattering detection of bacterial Quorum Sensing signaling molecules. More specifically, the thesis was oriented toward the design of such nanostructures, and on the characterization of their...

  4. Wave propagation in layered anisotropic media with application to composites

    CERN Document Server

    Nayfeh, AH


    Recent advances in the study of the dynamic behavior of layered materials in general, and laminated fibrous composites in particular, are presented in this book. The need to understand the microstructural behavior of such classes of materials has brought a new challenge to existing analytical tools. This book explores the fundamental question of how mechanical waves propagate and interact with layered anisotropic media. The chapters are organized in a logical sequence depending upon the complexity of the physical model and its mathematical treatment.

  5. Factorization and Criticality in the Anisotropic XY Chain via Correlations

    Directory of Open Access Journals (Sweden)

    Barış Çakmak


    Full Text Available In this review, we discuss the zero and finite temperature behavior of various bipartite quantum and total correlation measures, the skew information-based quantum coherence and the local quantum uncertainty in the thermal ground state of the one-dimensional anisotropic XY model in a transverse magnetic field. We compare the ability of the considered measures to correctly detect or estimate the quantum critical point and the non-trivial factorization point possessed by the spin chain.

  6. A new model for charged anisotropic compact star (United States)

    Maurya, S. K.; Jasim, M. K.; Gupta, Y. K.; Smitha, T. T.


    In this paper, we have obtained a new singularity free charged anisotropic fluid solution of Einstein's field equations. The physical parameters as radial pressure, tangential pressure, energy density, charge density, electric field intensity, velocity of sound and red-shift are well behaved everywhere inside the star. The obtained compact star models can represent the observational compact objects as PSR 1937{+}21 and PSR J1614-2230.

  7. Reliable exterior orientation by a robust anisotropic orthogonal Procrustes Algorithm


    Fusiello, A; Maset, E; Crosilla, F


    The paper presents a robust version of a recent anisotropic orthogonal Procrustes algorithm that has been proposed to solve the socalled camera exterior orientation problem in computer vision and photogrammetry. In order to identify outliers, that are common in visual data, we propose an algorithm based on Least Median of Squares to detect a minimal outliers-free sample, and a Forward Search procedure, used to augment the inliers set one sample at a time. Experiments with synthetic d...

  8. Spectroscopic ellipsometry characterization of coatings on biaxially anisotropic polymeric substrates (United States)

    Hilfiker, James N.; Pietz, Brandon; Dodge, Bill; Sun, Jianing; Hong, Nina; Schoeche, Stefan


    Spectroscopic ellipsometry characterization of coatings on polymeric substrates can be challenging due to the substrate optical anisotropy. We compare four characterization strategies for thin coating layers on anisotropic polymeric substrates with regard to accuracy of the resulting layer thickness and coating optical constants. Each strategy differs in measured data type, model construction, implementation complexity, and inherent capabilities and sensitivity to the coating properties. Best practices and limitations are discussed for each strategy.

  9. Pseudorapidity Dependence of Anisotropic Azimuthal Flow with the ALICE Detector

    DEFF Research Database (Denmark)

    Hansen, Alexander Colliander

    In ultra-relativistic heavy-ion collisions a new state of matter known as the strongly interacting quark-gluon plasma (sQGP) is produced. A key observable in the study of the sQGP is anisotropic azimuthal ow. The anisotropies are described by ow harmonics, vn. In this thesis, bias arising from no...... Detector and Silicon Pixel Detector at the CERN Large Hadron Collider (LHC). The results are compared to other LHC experiments andprevious experiments at lower collision energies....

  10. Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing

    Energy Technology Data Exchange (ETDEWEB)

    Asuncion, Maria Christine Tankeh, E-mail: [National University of Singapore, Department of Biomedical Engineering (Singapore); Goh, James Cho-Hong [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Orthopedic Surgery (Singapore); Toh, Siew-Lok [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Mechanical Engineering (Singapore)


    Recent studies have underlined the importance of matching scaffold properties to the biological milieu. Tissue, and thus scaffold, anisotropy is one such property that is important yet sometimes overlooked. Methods that have been used to achieve anisotropic scaffolds present challenges such as complicated fabrication steps, harsh processing conditions and toxic chemicals involved. In this study, unidirectional freezing was employed to fabricate anisotropic silk fibroin/gelatin scaffolds in a simple and mild manner. Morphological, mechanical, chemical and cellular compatibility properties were investigated, as well as the effect of the addition of gelatin to certain properties of the scaffold. It was shown that scaffold properties were suitable for cell proliferation and that mesenchymal stem cells were able to align themselves along the directed fibers. The fabricated scaffolds present a platform that can be used for anisotropic tissue engineering applications such as cardiac patches. - Highlights: • Silk/gelatin scaffolds with unidirectional alignment were fabricated using a simple and scalable process • Presence of gelatin in silk resulted to lesser shrinkage, better water retention and improved cell proliferation. • Mesenchymal stem cells were shown to align themselves according to the fiber alignment.

  11. Efficient anisotropic wavefield extrapolation using effective isotropic models

    KAUST Repository

    Alkhalifah, Tariq Ali


    Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented in the high-frequency asymptotic approximation by the eikonal equation, to develop effective isotropic models, which are used to efficiently and approximately extrapolate anisotropic wavefields using the isotropic, relatively cheaper, operators. These effective velocity models are source dependent and tend to embed the anisotropy in the inhomogeneity. Though this isotropically generated wavefield theoretically shares the same kinematic behavior as that of the first arrival anisotropic wavefield, it also has the ability to include all the arrivals resulting from a complex wavefield propagation. In fact, the effective models reduce to the original isotropic model in the limit of isotropy, and thus, the difference between the effective model and, for example, the vertical velocity depends on the strength of anisotropy. For reverse time migration (RTM), effective models are developed for the source and receiver fields by computing the traveltime for a plane wave source stretching along our source and receiver lines in a delayed shot migration implementation. Applications to the BP TTI model demonstrates the effectiveness of the approach.

  12. Tuning particle geometry of chemically anisotropic dumbbell-shaped colloids. (United States)

    van Ravensteijn, Bas G P; Kegel, Willem K


    Chemically anisotropic dumbbell-shaped colloids are prepared starting from cross-linked polymer seed particles coated with a chlorinated outer layer. These chlorinated seeds are swollen with monomer. Subsequently, a liquid protrusion is formed on the surface of the seed particle by phase separation between the monomer and the swollen polymer network. Solidification of these liquid lobes by polymerization leads to the desired dumbbell-shaped colloids. The chlorine groups remain confined on the seed lobe of the particles, ensuring chemical anisotropy of the resulting particles. Exploiting the asymmetric distribution of the chemically reactive surface chlorine groups allows for site-specific surface modifications. Here we show that the geometry of the resulting chemically anisotropic dumbbells can be systematically tuned by a number of experimental parameters including the volume of styrene by which the seeds are swollen, the cross-link density of the chlorinated seeds and chemical composition/thickness of the chlorinated coating deposited on the seed particles. Being able to control the particle geometry, and therefore the Janus balance of these chemically anisotropic particles, provides a promising starting point for the synthesis of sophisticated building blocks for future (self-assembly) studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Anisotropic Materials for Skeletal-Muscle-Tissue Engineering. (United States)

    Jana, Soumen; Levengood, Sheeny K Lan; Zhang, Miqin


    Repair of damaged skeletal-muscle tissue is limited by the regenerative capacity of the native tissue. Current clinical approaches are not optimal for the treatment of large volumetric skeletal-muscle loss. As an alternative, tissue engineering represents a promising approach for the functional restoration of damaged muscle tissue. A typical tissue-engineering process involves the design and fabrication of a scaffold that closely mimics the native skeletal-muscle extracellular matrix (ECM), allowing organization of cells into a physiologically relevant 3D architecture. In particular, anisotropic materials that mimic the morphology of the native skeletal-muscle ECM, can be fabricated using various biocompatible materials to guide cell alignment, elongation, proliferation, and differentiation into myotubes. Here, an overview of fundamental concepts associated with muscle-tissue engineering and the current status of muscle-tissue-engineering approaches is provided. Recent advances in the development of anisotropic scaffolds with micro- or nanoscale features are reviewed, and how scaffold topographical, mechanical, and biochemical cues correlate to observed cellular function and phenotype development is examined. Finally, some recent developments in both the design and utility of anisotropic materials in skeletal-muscle-tissue engineering are highlighted, along with their potential impact on future research and clinical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. DNA-nanoparticle superlattices formed from anisotropic building blocks (United States)

    Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu; Zhang, Jian; Young, Kaylie L.; Senesi, Andrew J.; Mirkin, Chad A.


    Directional bonding interactions in solid-state atomic lattices dictate the unique symmetries of atomic crystals, resulting in a diverse and complex assortment of three-dimensional structures that exhibit a wide variety of material properties. Methods to create analogous nanoparticle superlattices are beginning to be realized, but the concept of anisotropy is still largely underdeveloped in most particle assembly schemes. Some examples provide interesting methods to take advantage of anisotropic effects, but most are able to make only small clusters or lattices that are limited in crystallinity and especially in lattice parameter programmability. Anisotropic nanoparticles can be used to impart directional bonding interactions on the nanoscale, both through face-selective functionalization of the particle with recognition elements to introduce the concept of valency, and through anisotropic interactions resulting from particle shape. In this work, we examine the concept of inherent shape-directed crystallization in the context of DNA-mediated nanoparticle assembly. Importantly, we show how the anisotropy of these particles can be used to synthesize one-, two- and three-dimensional structures that cannot be made through the assembly of spherical particles.

  15. Tungsten based Anisotropic Metamaterial as an Ultra-broadband Absorber

    CERN Document Server

    Lin, Yinyue; Ding, Fei; Fung, Kin Hung; Ji, Ting; Li, Dongdong; Hao, Yuying


    The trapped rainbow effect has been mostly found on tapered anisotropic metamaterials (MMs) made of low loss noble metals, such as gold, silver, etc. In this work, we demonstrate that an anisotropic MM waveguide made of high loss metal tungsten can also support the trapped rainbow effect similar to the noble metal based structure. We show theoretically that an array of tungsten/germanium anisotropic nano-cones placed on top of a reflective substrate can absorb light at the wavelength range from 0.3 micrometer to 9 micrometer with an average absorption efficiency approaching 98%. It is found that the excitation of multiple orders of slow-light resonant modes is responsible for the efficient absorption at wavelengths longer than 2 micrometer, and the anti-reflection effect of tapered lossy material gives rise to the near perfect absorption at shorter wavelengths. The absorption spectrum suffers a small dip at around 4.2 micrometer where the first order and second order slow-light modes get overlapped, but we ca...

  16. Overview of thermal conductivity models of anisotropic thermal insulation materials (United States)

    Skurikhin, A. V.; Kostanovsky, A. V.


    Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.

  17. Anisotropic flow and flow fluctuations at the large hadron collider

    CERN Document Server

    Zhou, You

    One of the fundamental questions in the phenomenology of Quantum Chromodynamics (QCD) is what the properties of matter are at the extreme densities and temperatures where quarks and gluons are in a new state of matter, the so-called Quark Gluon Plasma (QGP). Collisions of high-energy heavy-ions at the CERN Large Hadron Collider (LHC), allow us to create and study the properties of such a system in the laboratory. Anisotropic flow (vn) is strong evidence for the existence of QGP, and has been described as one of the most important observations measured in the ultra-relativistic heavy-ion collisions. In this thesis, the anisotropic flow of not only charged particles but also identified particles are presented. In addition, the investigations of correlations and fluctuations of both flow angle (symmetry plane) and magnitude were discussed. The main goal of this thesis is to understand the nature of anisotropic flow and its response to the initial geometry of the created system as well as its fluctuations.

  18. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn (United States)

    Galceran, R.; Fina, I.; Cisneros-Fernández, J.; Bozzo, B.; Frontera, C.; López-Mir, L.; Deniz, H.; Park, K.-W.; Park, B.-G.; Balcells, Ll.; Martí, X.; Jungwirth, T.; Martínez, B.


    Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.

  19. Surface Waves Propagating on Grounded Anisotropic Dielectric Slab

    Directory of Open Access Journals (Sweden)

    Zhuozhu Chen


    Full Text Available This paper investigates the characteristics of surface waves propagating on a grounded anisotropic dielectric slab. Distinct from the existing analyses that generally assume that the fields of surface wave uniformly distribute along the transverse direction of the infinitely large grounded slab, our method takes into account the field variations along the transverse direction of a finite-width slab. By solving Maxwell’s equations in closed-form, it is revealed that no pure transverse magnetic (TM or transverse electric (TE mode exists if the fields are non-uniformly distributed along the transverse direction of the grounded slab. Instead, two hybrid modes, namely quasi-TM and quasi-TE modes, are supported. In addition, the propagation characteristics of two hybrid modes supported by the grounded anisotropic slab are analyzed in terms of the slab thickness, slab width, as well as the relative permittivity tensor of the anisotropic slab. Furthermore, different methods are employed to compare the analyses, as well as to validate our derivations. The proposed method is very suitable for practical engineering applications.

  20. Surface waves in an heterogeneous anisotropic continental lithosphere (United States)

    Maupin, V.


    At global as well as at regional scale, the lithosphere appears usually faster to Love waves than to Rayleigh waves. This Love-Rayleigh discrepancy can be modelled by introducing transverse isotropy in the mantle. In continental structures, the amount of transverse isotropy necessary to explain the discrepancy is however often quite large and not compatible with results of SKS-splitting analysis and azimuthal variation of surface wave velocities, at least in the simple framework of large scale uniform olivine orientation in the continental lithosphere. Models where the orientation of the olivine is incoherent at the scale of a few hundred km have been proposed to reconcile the different datasets, but the surface wave characteristics in such anisotropic heterogeneous models have not yet been analysed in detail. Using a mode-coupling scheme for calculating surface wave propagation in heterogeneous anisotropic structures, we analyse the characteristics of Rayleigh and Love waves in such laterally varying anisotropic models. We generate 3-D stochastic models of olivine orientation with different characteristics: preferred orientation dominantly horizontal, vertical or equally distributed in all directions, and use different correlation lengths in the horizontal and vertical directions to constrain the scale at which the anisotropy is coherent. We analyse the apparent Love-Rayleigh discrepancy and the phase velocity azimuthal variation these models generate and the mode-coupling and polarisation anomalies they produce.