WorldWideScience

Sample records for weak solar-like oscillations

  1. Modelling solar-like oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Eggenberger, P; Miglio, A [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, 17 Allee du 6 Aout, B-4000 Liege (Belgium); Carrier, F [Institute of Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Mathis, S [CEA/DSM/DAPNIA/Service d' Astrophysique, CEA/Saclay, AIM-Unite Mixte de Recherche CEA-CNRS-Universite Paris VII, UMR 7158, 91191 Gif-sur-Yvette Cedex (France)], E-mail: eggenberger@Qastro.ulg.ac.be

    2008-10-15

    The computation of models of stars for which solar-like oscillations have been observed is discussed. After a brief intoduction on the observations of solar-like oscillations, the modelling of isolated stars and of stars belonging to a binary system is presented with specific examples of recent theoretical calibrations. Finally the input physics introduced in stellar evolution codes for the computation of solar-type stars is discussed with a peculiar emphasis on the modelling of rotation for these stars.

  2. Calculating Asteroseismic Diagrams for Solar-Like Oscillations

    DEFF Research Database (Denmark)

    White, T.R.; Bedding, T.R.; Stello, D.

    2011-01-01

    With the success of the Kepler and CoRoT missions, the number of stars with detected solar-like oscillations has increased by several orders of magnitude; for the first time we are able to perform large-scale ensemble asteroseismology of these stars. In preparation for this golden age of asterose......With the success of the Kepler and CoRoT missions, the number of stars with detected solar-like oscillations has increased by several orders of magnitude; for the first time we are able to perform large-scale ensemble asteroseismology of these stars. In preparation for this golden age...... of these stars. We investigate the scaling relation between the large frequency separation, Δν, and mean stellar density. Furthermore we present model evolutionary tracks for several asteroseismic diagrams. We have extended the so-called C-D diagram beyond the main sequence to the subgiants and the red giant...

  3. Determining global parameters of the oscillations of solar-like stars

    DEFF Research Database (Denmark)

    Mathur, S.; García, R. A.; Régulo, C.

    2010-01-01

    Context. Helioseismology has enabled us to better understand the solar interior, while also allowing us to better constrain solar models. But now is a tremendous epoch for asteroseismology as space missions dedicated to studying stellar oscillations have been launched within the last years (MOST....... Aims. The goal of this research work is to estimate the global parameters of any solar-like oscillating target in an automatic manner. We want to determine the global parameters of the acoustic modes (large separation, range of excited pressure modes, maximum amplitude, and its corresponding frequency...

  4. SOLAR-LIKE OSCILLATIONS IN A METAL-POOR GLOBULAR CLUSTER WITH THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Stello, Dennis; Gilliland, Ronald L.

    2009-01-01

    We present analyses of variability in the red giant stars in the metal-poor globular cluster NGC 6397, based on data obtained with the Hubble Space Telescope. We use a nonstandard data reduction approach to turn a 23 day observing run originally aimed at imaging the white dwarf population, into time-series photometry of the cluster's highly saturated red giant stars. With this technique we obtain noise levels in the final power spectra down to 50 parts per million, which allows us to search for low-amplitude solar-like oscillations. We compare the observed excess power seen in the power spectra with estimates of the typical frequency range, frequency spacing, and amplitude from scaling the solar oscillations. We see evidence that the detected variability is consistent with solar-like oscillations in at least one and perhaps up to four stars. With metallicities 2 orders of magnitude lower than those of the Sun, these stars present so far the best evidence of solar-like oscillations in such a low-metallicity environment.

  5. Limits on surface gravities of Kepler planet-candidate host stars from non-detection of solar-like oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Campante, T. L.; Chaplin, W. J.; Handberg, R.; Miglio, A.; Davies, G. R.; Elsworth, Y. P. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lund, M. N.; Arentoft, T.; Christensen-Dalsgaard, J.; Karoff, C.; Kjeldsen, H.; Lundkvist, M. [Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Huber, D. [NASA Ames Research Center, MS 244-30, Moffett Field, CA 94035 (United States); Hekker, S. [Astronomical Institute, " Anton Pannekoek," University of Amsterdam, Amsterdam (Netherlands); García, R. A. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot (France); IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Corsaro, E. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Basu, S. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Bedding, T. R. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney (Australia); Gilliland, R. L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Kawaler, S. D., E-mail: campante@bison.ph.bham.ac.uk [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); and others

    2014-03-10

    We present a novel method for estimating lower-limit surface gravities (log g) of Kepler targets whose data do not allow the detection of solar-like oscillations. The method is tested using an ensemble of solar-type stars observed in the context of the Kepler Asteroseismic Science Consortium. We then proceed to estimate lower-limit log g for a cohort of Kepler solar-type planet-candidate host stars with no detected oscillations. Limits on fundamental stellar properties, as provided by this work, are likely to be useful in the characterization of the corresponding candidate planetary systems. Furthermore, an important byproduct of the current work is the confirmation that amplitudes of solar-like oscillations are suppressed in stars with increased levels of surface magnetic activity.

  6. On the detectability of solar-like oscillations with the NASA TESS mission

    Science.gov (United States)

    Campante, Tiago L.

    2017-10-01

    The upcoming NASA TESS mission will perform an all-sky survey for planets transiting bright nearby stars. In addition, its excellent photometric precision will enable asteroseismology of solar-type and red-giant stars. We apply a newly developed detection test along a sequence of stellar evolutionary tracks in order to predict the detectability of solar-like oscillations with TESS.

  7. Excitation of Solar-like Oscillations: From PMS to MS Stellar Models ...

    Indian Academy of Sciences (India)

    excited modes in pre-main sequence stars are also discussed. Key words. Turbulence—convection—oscillations—excitation—sun, stars: α Cen A—stars: main and pre-main sequence stars. 1. Introduction. In the past approximately five years, solar-like oscillations have been detected in several intermediate massive stars ...

  8. Evidence for the impact of stellar activity on the detectability of solar-like oscillations observed by Kepler

    NARCIS (Netherlands)

    Chaplin, W.J.; Bedding, T.R.; Bonanno, A.; Broomhall, A.M.; Garcia, R.A.; Hekker, S.; Huber, D.; Verner, G.A.; Basu, S.; Elsworth, Y.; Houdek, G.; Mathur, S.; Mosser, B.; New, R.; Stevens, I.R.; Appourchaux, T.; Karoff, C.; Metcalfe, T.S.; Molenda-Zakowicz, J.; Monteiro, M.J.P.F.G.; Thompson, M.J.; Christensen-Dalsgaard, J.; Gilliland, R.L.; Kawaler, S.D.; Kjeldsen, H.; Ballot, J.; Benomar, O.; Corsaro, E.; Campante, T.L.; Gaulme, P.; Hale, S.J.; Handberg, R.; Jarvis, E.; Regulo, C.; Roxburgh, I.W.; Salabert, D.; Stello, D.; Mullally, F.; Li, J.; Wohler, W.

    2011-01-01

    We use photometric observations of solar-type stars, made by the NASA Kepler Mission, to conduct a statistical study of the impact of stellar surface activity on the detectability of solar-like oscillations. We find that the number of stars with detected oscillations falls significantly with

  9. Solar-like Oscillations in Low-luminosity Red Giants: First Results from Kepler

    DEFF Research Database (Denmark)

    Bedding, T. R.; Huber, D.; Stello, D.

    2010-01-01

    We have measured solar-like oscillations in red giants using time-series photometry from the first 34 days of science operations of the Kepler Mission. The light curves, obtained with 30 minute sampling, reveal clear oscillations in a large sample of G and K giants, extending in luminosity from t...

  10. Solar opacities constrained by solar neutrinos and solar oscillations

    International Nuclear Information System (INIS)

    Cox, A.N.

    1989-01-01

    This review discusses the current situation for opacities at the solar center, the solar surface, and for the few million kelvin temperatures that occur below the convection zone. The solar center conditions are important because they are crucial for the neutrino production, which continues to be predicted about 4 times that observed. The main extinction effects there are free-free photon absorption in the electric fields of the hydrogen, helium and the CNO atoms, free electron scattering of photons, and the bound-free and bound-bound absorption of photons by iron atoms with two electrons in the 1s bound level. An assumption that the iron is condensed-out below the convection zone, and the opacity in the central regions is thereby reduced, results in about a 25 percent reduction in the central opacity but only a 5 percent reduction at the base of the convection zone. Furthermore, the p-mode solar oscillations are changed with this assumption, and do not fit the observed ones as well as for standard models. A discussion of the large effective opacity reduction by weakly interacting massive particles also results in poor agreement with observed p-mode oscillation frequencies. The much larger opacities for the solar surface layers from the Los Alamos Astrophysical Opacity Library instead of the widely used Cox and Tabor values show small improvements in oscillation frequency predictions, but the largest effect is in the discussion of p-mode stability. Solar oscillation frequencies can serve as an opacity experiment for the temperatures and densities, respectively, of a few million kelvin and between 0.1 and 10 g/cm 3 . Current oscillation frequency calculations indicate that possibly the Opacity Library values need an increase of typically 15 percent just at the bottom of the convection zone at 3 x 10 6 K. 41 refs., 15 figs., 1 tab

  11. ASTEROSEISMIC DIAGRAMS FROM A SURVEY OF SOLAR-LIKE OSCILLATIONS WITH KEPLER

    Energy Technology Data Exchange (ETDEWEB)

    White, Timothy R.; Bedding, Timothy R.; Stello, Dennis; Benomar, Othman; Huber, Daniel [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Appourchaux, Thierry; Gaulme, Patrick [Institut d' Astrophysique Spatiale, UMR8617, Universite Paris XI, Batiment 121, 91405 Orsay Cedex (France); Ballot, Jerome [Institut de Recherche en Astrophysique et Planetologie, CNRS, 14 avenue E. Belin, 31400 Toulouse (France); Bonanno, Alfio; Corsaro, Enrico [INAF Observatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania (Italy); Broomhall, Anne-Marie; Chaplin, William J.; Elsworth, Yvonne P.; Hekker, Saskia [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Campante, Tiago L. [Centro de Astrofisica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Christensen-Dalsgaard, Jorgen; Dogan, Guelnur; Handberg, Rasmus [Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Fletcher, Stephen T. [Materials Engineering Research Institute, Faculty of Arts, Computing, Engineering and Sciences, Sheffield Hallam University, Sheffield, S1 1WB (United Kingdom); Garcia, Rafael A., E-mail: t.white@physics.usyd.edu.au [Laboratoire AIM, CEA/DSM-CNRS, Universite Paris 7 Diderot, IRFU/SAp, Centre de Saclay, 91191 Gif-sur-Yvette (France); and others

    2011-11-20

    Photometric observations made by the NASA Kepler Mission have led to a dramatic increase in the number of main-sequence and subgiant stars with detected solar-like oscillations. We present an ensemble asteroseismic analysis of 76 solar-type stars. Using frequencies determined from the Kepler time-series photometry, we have measured three asteroseismic parameters that characterize the oscillations: the large frequency separation ({Delta}{nu}), the small frequency separation between modes of l = 0 and l = 2 ({delta}{nu}{sub 02}), and the dimensionless offset ({epsilon}). These measurements allow us to construct asteroseismic diagrams, namely the so-called Christensen-Dalsgaard diagram of {delta}{nu}{sub 02} versus {Delta}{nu}, and the recently re-introduced {epsilon} diagram. We compare the Kepler results with previously observed solar-type stars and with theoretical models. The positions of stars in these diagrams places constraints on their masses and ages. Additionally, we confirm the observational relationship between {epsilon} and T{sub eff} that allows for the unambiguous determination of radial order and should help resolve the problem of mode identification in F stars.

  12. Endogenous Cortical Oscillations Constrain Neuromodulation by Weak Electric Fields

    Science.gov (United States)

    Schmidt, Stephen L.; Iyengar, Apoorva K.; Foulser, A. Alban; Boyle, Michael R.; Fröhlich, Flavio

    2014-01-01

    Background Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation modality that may modulate cognition by enhancing endogenous neocortical oscillations with the application of sine-wave electric fields. Yet, the role of endogenous network activity in enabling and shaping the effects of tACS has remained unclear. Objective We combined optogenetic stimulation and multichannel slice electrophysiology to elucidate how the effect of weak sine-wave electric field depends on the ongoing cortical oscillatory activity. We hypothesized that the structure of the response to stimulation depended on matching the stimulation frequency to the endogenous cortical oscillation. Methods We studied the effect of weak sine-wave electric fields on oscillatory activity in mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in vivo like cortical oscillations for studying the temporal relationship between network activity and sine-wave electric field stimulation. Results Weak electric fields enhanced endogenous oscillations but failed to induce a frequency shift of the ongoing oscillation for stimulation frequencies that were not matched to the endogenous oscillation. This constraint on the effect of electric field stimulation imposed by endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like network dynamics. Together, these results suggest that the key mechanism of tACS may be enhancing but not overriding of intrinsic network dynamics. Conclusion Our results contribute to understanding the inconsistent tACS results from human studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations is key to rational design of non-invasive brain stimulation paradigms. PMID:25129402

  13. Analysing Solar-like Oscillations with an Automatic Pipeline

    International Nuclear Information System (INIS)

    Mathur, S.; Garcia, R. A.; Regulo, C.; Ballot, J.; Salabert, D.; Chaplin, W. J.

    2009-01-01

    The Kepler mission will provide a huge amount of asteroseismic data during the next few years, among which hundreds of solar-like stars will be targeted. The amount of stars and their observation length represent a step forward in the comprehension of the stellar evolution that has already been initiated by CoRoT and MOST missions. Up to now, the slow cadence of observed targets allowed an individual and personalized analysis of each star. During the survey phase of Kepler, this will be impossible. This is the reason why, within the AsteroFLAG team, we have been developing automatic pipelines for the Kepler solar-like oscillation stars. Our code starts by finding the frequency-range where p-mode power is present and, after fitting the background, it looks for the mode amplitudes as well as the central frequency of the p-mode hump. A good estimation of the large separation can thus be inferred in this region. If the signal to noise is high enough, the code obtains the characteristics of the p modes by doing a global fitting on the power spectrum. Here, we will first describe a few features of this pipeline and its application to AsteroFLAG synthetic data to check the validity of the code.

  14. Fundamental (f) oscillations in a magnetically coupled solar interior-atmosphere system - An analytical approach

    Science.gov (United States)

    Pintér, Balázs; Erdélyi, R.

    2018-01-01

    Solar fundamental (f) acoustic mode oscillations are investigated analytically in a magnetohydrodynamic (MHD) model. The model consists of three layers in planar geometry, representing the solar interior, the magnetic atmosphere, and a transitional layer sandwiched between them. Since we focus on the fundamental mode here, we assume the plasma is incompressible. A horizontal, canopy-like, magnetic field is introduced to the atmosphere, in which degenerated slow MHD waves can exist. The global (f-mode) oscillations can couple to local atmospheric Alfvén waves, resulting, e.g., in a frequency shift of the oscillations. The dispersion relation of the global oscillation mode is derived, and is solved analytically for the thin-transitional layer approximation and for the weak-field approximation. Analytical formulae are also provided for the frequency shifts due to the presence of a thin transitional layer and a weak atmospheric magnetic field. The analytical results generally indicate that, compared to the fundamental value (ω =√{ gk }), the mode frequency is reduced by the presence of an atmosphere by a few per cent. A thin transitional layer reduces the eigen-frequencies further by about an additional hundred microhertz. Finally, a weak atmospheric magnetic field can slightly, by a few percent, increase the frequency of the eigen-mode. Stronger magnetic fields, however, can increase the f-mode frequency by even up to ten per cent, which cannot be seen in observed data. The presence of a magnetic atmosphere in the three-layer model also introduces non-permitted propagation windows in the frequency spectrum; here, f-mode oscillations cannot exist with certain values of the harmonic degree. The eigen-frequencies can be sensitive to the background physical parameters, such as an atmospheric density scale-height or the rate of the plasma density drop at the photosphere. Such information, if ever observed with high-resolution instrumentation and inverted, could help to

  15. The excitation of solar-like oscillations in a δ Sct star by efficient envelope convection

    DEFF Research Database (Denmark)

    Antoci, V.; Handler, G.; Kallinger, T.

    2011-01-01

    Delta Scuti (δSct) stars are opacity-driven pulsators with masses of 1.5-2.5Msolar, their pulsations resulting from the varying ionization of helium. In less massive stars such as the Sun, convection transports mass and energy through the outer 30per cent of the star and excites a rich spectrum...... of resonant acoustic modes. Based on the solar example, with no firm theoretical basis, models predict that the convective envelope in δSct stars extends only about 1per cent of the radius, but with sufficient energy to excite solar-like oscillations. This was not observed before the Kepler mission, so...... the presence of a convective envelope in the models has been questioned. Here we report the detection of solar-like oscillations in the δSct star HD187547, implying that surface convection operates efficiently in stars about twice as massive as the Sun, as the ad hoc models predicted....

  16. Nuclear weak interactions, supernova nucleosynthesis and neutrino oscillation

    Science.gov (United States)

    Kajino, Toshitaka

    2013-07-01

    We study the nuclear weak response in light-to-heavy mass nuclei and calculate neutrino-nucleus cross sections. We apply these cross sections to the explosive nucleosynthesis in core-collapse supernovae and find that several isotopes of rare elements 7Li, 11B, 138La, 180Ta and several others are predominantly produced by the neutrino-process nucleosynthesis. We discuss how to determine the suitable neutrino spectra of three different flavors and their anti-particles in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. Light-mass nuclei like 7Li and 11B, which are produced in outer He-layer, are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect, while heavy-mass nuclei like 138La, 180Ta and r-process elements, which are produced in the inner O-Ne-Mg layer or the atmosphere of proto-neutron star, are likely to be free from the MSW effect. Using such a different nature of the neutrino-process nucleosynthesis, we study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process 11B and 7Li encapsulated in the grains. Combining the recent experimental constraints on θ13, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  17. Amplitudes of solar-like oscillations: Constraints from red giants in open clusters observed by Kepler

    DEFF Research Database (Denmark)

    Stello, Dennis; Huber, Daniel; Kallinger, Thomas

    2011-01-01

    implies that the stellar parameters can be measured to much higher precision than what is usually achievable for single stars. This makes clusters ideal for exploring the relation between the mode amplitude of solar-like oscillations and the global stellar properties. We have analyzed data obtained......Scaling relations that link asteroseismic quantities to global stellar properties are important for gaining understanding of the intricate physics that underpins stellar pulsations. The common notion that all stars in an open cluster have essentially the same distance, age, and initial composition...... with NASA's Kepler space telescope to study solar-like oscillations in 100 red giant stars located in either of the three open clusters, NGC 6791, NGC 6819, and NGC 6811. By fitting the measured amplitudes to predictions from simple scaling relations that depend on luminosity, mass, and effective...

  18. Solar neutrinos and nonradial solar oscillations

    International Nuclear Information System (INIS)

    Zatsepin, G.T.; Gavryuseva, E.A.; Kopysov, Yu.S.

    1980-01-01

    The problem of origin of surface solar oscillations is considered. It is assumed that generation of oscillations is performed by the solar nucleus. The necessary excitation condition for gravitational oscillations of the solar nucleus is a sharp decrease of the oscillation amplitude outside the nucleus, where the nuclear reaction rates are small and only radiation losses are considerable. It is shown that the specific singularities of gravitational wave propagation in solar entrails permit to attain a significant reduction of the oscillation amplitude. The solar entrails can serve as an effective trap for gravitational waves, if the substance of the solar nucleus is close to the state of convectional equilibrium. In order that the g 1 quadrupole mode of the solar nucleus has a period of 2h 40 min and sharply decreases in the solar mantle, it is enough that only the external part of the solar nucleus is close to the state of convectional equilibrium. Closeness of the solar nucleus to the state of convectional equilibrium is an argument in favour of its periodic mixing. Periodic mixing of the solar nucleus can serve as a cause of a low counting rate of solar neutrinos in R.Davis chlorous detector

  19. Discovery of a Red Giant with Solar-like Oscillations in an Eclipsing Binary System from Kepler Space-based Photometry

    DEFF Research Database (Denmark)

    Hekker, S.; Debosscher, J.; Huber, D.

    2010-01-01

    Oscillating stars in binary systems are among the most interesting stellar laboratories, as these can provide information on the stellar parameters and stellar internal structures. Here we present a red giant with solar-like oscillations in an eclipsing binary observed with the NASA Kepler...

  20. Characteristics of solar-like oscillations in red giants observed in the CoRoT exoplanet field

    Science.gov (United States)

    Hekker, S.; Kallinger, T.; Baudin, F.; De Ridder, J.; Barban, C.; Carrier, F.; Hatzes, A. P.; Weiss, W. W.; Baglin, A.

    2009-10-01

    Context: Observations during the first long run (~150 days) in the exo-planet field of CoRoT increase the number of G-K giant stars for which solar-like oscillations are observed by a factor of 100. This opens the possibility to study the characteristics of their oscillations in a statistical sense. Aims: We aim to understand the statistical distribution of the frequencies of maximum oscillation power (ν_max) in red giants and to search for a possible correlation between ν_max and the large separation (Δ ν). Methods: Red giants with detectable solar-like oscillations are identified using both semi-automatic and manual procedures. For these stars, we determine ν_max as the centre of a Gaussian fit to the oscillation power excess. For the determination of Δ ν, we use the autocorrelation of the Fourier spectra, the comb response function and the power spectrum of the power spectrum. Results: The resulting ν_max distribution shows a pronounced peak between 20-40 μHz. For about half of the stars we obtain Δ ν with at least two methods. The correlation between ν_max and Δ ν follows the same scaling relation as inferred for solar-like stars. Conclusions: The shape of the ν_max distribution can partly be explained by granulation at low frequencies and by white noise at high frequencies, but the population density of the observed stars turns out to be also an important factor. From the fact that the correlation between Δ ν and ν_max for red giants follows the same scaling relation as obtained for sun-like stars, we conclude that the sound travel time over the pressure scale height of the atmosphere scales with the sound travel time through the whole star irrespective of evolution. The fraction of stars for which we determine Δ ν does not correlate with ν_max in the investigated frequency range, which confirms theoretical predictions. The CoRoT space mission which was developed and is operated by the French space agency CNES, with participation of ESA

  1. TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USING KEPLER DATA

    Energy Technology Data Exchange (ETDEWEB)

    Huber, D.; Bedding, T. R.; Stello, D. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Hekker, S. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Mosser, B. [LESIA, CNRS, Universite Pierre et Marie Curie, Universite Denis, Diderot, Observatoire de Paris, 92195 Meudon cedex (France); Verner, G. A.; Elsworth, Y. P.; Hale, S. J.; Chaplin, W. J. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Bonanno, A. [INAF Osservatorio Astrofisico di Catania (Italy); Buzasi, D. L. [Eureka Scientific, 2452 Delmer Street Suite 100, Oakland, CA 94602-3017 (United States); Campante, T. L. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Kallinger, T. [Department of Physics and Astronomy, University of British Columbia, Vancouver (Canada); Silva Aguirre, V. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany); De Ridder, J. [Instituut voor Sterrenkunde, K.U.Leuven (Belgium); Garcia, R. A. [Laboratoire AIM, CEA/DSM-CNRS, Universite Paris 7 Diderot, IRFU/SAp, Centre de Saclay, 91191, Gif-sur-Yvette (France); Appourchaux, T. [Institut d' Astrophysique Spatiale, UMR 8617, Universite Paris Sud, 91405 Orsay Cedex (France); Frandsen, S. [Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Houdek, G., E-mail: dhuber@physics.usyd.edu.au [Institute of Astronomy, University of Vienna, 1180 Vienna (Austria); and others

    2011-12-20

    We have analyzed solar-like oscillations in {approx}1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power ({nu}{sub max}), the large frequency separation ({Delta}{nu}), and oscillation amplitudes. We show that the difference of the {Delta}{nu}-{nu}{sub max} relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M){sup s} scaling nor the revised scaling relation by Kjeldsen and Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of {approx}25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.

  2. Excitation of solar and stellar oscillations

    International Nuclear Information System (INIS)

    Baudin, Frederic

    2009-01-01

    In this report for an Accreditation to Supervise Research (HDR), and after an introduction which outlines the potential of helio-seismology, the author addresses the problem of excitation and amplitude of stellar oscillations with respect to their most important aspects, i.e. the theoretical framework of the present understanding of excitation mechanisms, and instrumental influences on measurements which are used to assess excitation rates, the difficulty to perform these measurements, and their analysis in some various cases. Thus, the author addresses excitation mechanisms of stellar oscillation (stochastic excitation, opacity- related excitation, and other excitation mechanisms), the excitation of solar modes (observation and theoretical predictions, influence of magnetic phenomena, solar g modes), and the excitation of modes in other stars (solar-type pulsators, red giants, and not so conventional pulsators such as HD180642 and Be stars like HD49330)

  3. DETECTION OF SOLAR-LIKE OSCILLATIONS FROM KEPLER PHOTOMETRY OF THE OPEN CLUSTER NGC 6819

    International Nuclear Information System (INIS)

    Stello, Dennis; Bedding, Timothy R.; Huber, Daniel; Basu, Sarbani; Bruntt, Hans; Mosser, BenoIt; Barban, Caroline; Goupil, Marie-Jo; Stevens, Ian R.; Chaplin, William J.; Elsworth, Yvonne P.; Hekker, Saskia; Brown, Timothy M.; Christensen-Dalsgaard, Joergen; Kjeldsen, Hans; Arentoft, Torben; Gilliland, Ronald L.; Ballot, Jerome; GarcIa, Rafael A.; Mathur, Savita

    2010-01-01

    Asteroseismology of stars in clusters has been a long-sought goal because the assumption of a common age, distance, and initial chemical composition allows strong tests of the theory of stellar evolution. We report results from the first 34 days of science data from the Kepler Mission for the open cluster NGC 6819-one of the four clusters in the field of view. We obtain the first clear detections of solar-like oscillations in the cluster red giants and are able to measure the large frequency separation, Δν, and the frequency of maximum oscillation power, ν max . We find that the asteroseismic parameters allow us to test cluster membership of the stars, and even with the limited seismic data in hand, we can already identify four possible non-members despite their having a better than 80% membership probability from radial velocity measurements. We are also able to determine the oscillation amplitudes for stars that span about 2 orders of magnitude in luminosity and find good agreement with the prediction that oscillation amplitudes scale as the luminosity to the power of 0.7. These early results demonstrate the unique potential of asteroseismology of the stellar clusters observed by Kepler.

  4. Chaotic solar oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blacher, S; Perdang, J [Institut d' Astrophysique, B-4200 Cointe-Ougree (Belgium)

    1981-09-01

    A numerical experiment on Hamiltonian oscillations demonstrates the existence of chaotic motions which satisfy the property of phase coherence. It is observed that the low-frequency end of the power spectrum of such motions is remarkably similar in structure to the low-frequency SCLERA spectra. Since the smallness of the observed solar amplitudes is not a sufficient mathematical ground for inefficiency of non-linear effects the possibility of chaos among solar oscillations cannot be discarded a priori.

  5. DISCOVERY OF A RED GIANT WITH SOLAR-LIKE OSCILLATIONS IN AN ECLIPSING BINARY SYSTEM FROM KEPLER SPACE-BASED PHOTOMETRY

    International Nuclear Information System (INIS)

    Hekker, S.; Debosscher, J.; De Ridder, J.; Aerts, C.; Van Winckel, H.; Beck, P. G.; Blomme, J.; Huber, D.; Hidas, M. G.; Stello, D.; Bedding, T. R.; Gilliland, R. L.; Christensen-Dalsgaard, J.; Kjeldsen, H.; Brown, T. M.; Borucki, W. J.; Koch, D.; Jenkins, J. M.; Southworth, J.; Pigulski, A.

    2010-01-01

    Oscillating stars in binary systems are among the most interesting stellar laboratories, as these can provide information on the stellar parameters and stellar internal structures. Here we present a red giant with solar-like oscillations in an eclipsing binary observed with the NASA Kepler satellite. We compute stellar parameters of the red giant from spectra and the asteroseismic mass and radius from the oscillations. Although only one eclipse has been observed so far, we can already determine that the secondary is a main-sequence F star in an eccentric orbit with a semi-major axis larger than 0.5 AU and orbital period longer than 75 days.

  6. AMPLITUDES OF SOLAR-LIKE OSCILLATIONS: CONSTRAINTS FROM RED GIANTS IN OPEN CLUSTERS OBSERVED BY KEPLER

    International Nuclear Information System (INIS)

    Stello, Dennis; Huber, Daniel; Bedding, Timothy R.; Benomar, Othman; Kallinger, Thomas; Basu, Sarbani; Mosser, BenoIt; Hekker, Saskia; Mathur, Savita; GarcIa, Rafael A.; Kjeldsen, Hans; Grundahl, Frank; Christensen-Dalsgaard, Joergen; Gilliland, Ronald L.; Verner, Graham A.; Chaplin, William J.; Elsworth, Yvonne P.; Meibom, Soeren; Molenda-Zakowicz, Joanna; Szabo, Robert

    2011-01-01

    Scaling relations that link asteroseismic quantities to global stellar properties are important for gaining understanding of the intricate physics that underpins stellar pulsations. The common notion that all stars in an open cluster have essentially the same distance, age, and initial composition implies that the stellar parameters can be measured to much higher precision than what is usually achievable for single stars. This makes clusters ideal for exploring the relation between the mode amplitude of solar-like oscillations and the global stellar properties. We have analyzed data obtained with NASA's Kepler space telescope to study solar-like oscillations in 100 red giant stars located in either of the three open clusters, NGC 6791, NGC 6819, and NGC 6811. By fitting the measured amplitudes to predictions from simple scaling relations that depend on luminosity, mass, and effective temperature, we find that the data cannot be described by any power of the luminosity-to-mass ratio as previously assumed. As a result we provide a new improved empirical relation which treats luminosity and mass separately. This relation turns out to also work remarkably well for main-sequence and subgiant stars. In addition, the measured amplitudes reveal the potential presence of a number of previously unknown unresolved binaries in the red clump in NGC 6791 and NGC 6819, pointing to an interesting new application for asteroseismology as a probe into the formation history of open clusters.

  7. Testing Scaling Relations for Solar-like Oscillations from the Main Sequence to Red Giants Using Kepler Data

    DEFF Research Database (Denmark)

    Huber, D.; Bedding, T.R.; Stello, D.

    2011-01-01

    ), and oscillation amplitudes. We show that the difference of the Δν-νmax relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M) s......We have analyzed solar-like oscillations in ~1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power (νmax), the large frequency separation (Δν...... scaling nor the revised scaling relation by Kjeldsen & Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of ~25%. The residuals show...

  8. Amplitudes of solar-like oscillations in red giants: Departures from the quasi-adiabatic approximation

    Directory of Open Access Journals (Sweden)

    Barban C.

    2013-03-01

    Full Text Available CoRoT and Kepler measurements reveal us that the amplitudes of solar-like oscillations detected in red giant stars scale from stars to stars in a characteristic way. This observed scaling relation is not yet fully understood but constitutes potentially a powerful diagnostic about mode physics. Quasi-adiabatic theoretical scaling relations in terms of mode amplitudes result in systematic and large differences with the measurements performed for red giant stars. The use of a non-adiabatic intensity-velocity relation derived from a non-adiabatic pulsation code significantly reduces the discrepancy with the CoRoT measurements. The origin of the remaining difference is still unknown. Departure from adiabatic eigenfunction is a very likely explanation that is investigated in the present work using a 3D hydrodynamical model of the surface layers of a representative red giant star.

  9. Solar-like oscillations from the depths of the red-giant star KIC4351319 observed with Kepler

    DEFF Research Database (Denmark)

    di Mauro, M.P.; Cardini, D.; Catanzaro, G.

    2011-01-01

    with the accurate determination of the atmospheric parameters (effective temperature, gravity and metallicity), provided by additional ground-based spectroscopic observations, enabled us to theoretically interpret the observed oscillation spectrum. KIC 4351319 appears to oscillate with a well-defined solar-type p...

  10. Weakly Coupled Oscillators in a Slowly Varying World

    OpenAIRE

    Park, Youngmin; Ermentrout, Bard

    2016-01-01

    We extend the theory of weakly coupled oscillators to incorporate slowly varying inputs and parameters. We employ a combination of regular perturbation and an adiabatic approximation to derive equations for the phase-difference between a pair of oscillators. We apply this to the simple Hopf oscillator and then to a biophysical model. The latter represents the behavior of a neuron that is subject to slow modulation of a muscarinic current such as would occur during transient attention through ...

  11. New Insights of High-precision Asteroseismology: Acoustic Radius and χ2-matching Method for Solar-like Oscillator KIC 6225718

    Directory of Open Access Journals (Sweden)

    Wu Tao

    2017-01-01

    parameters. In the present work, we adopt the χ2-minimization method but only use the observed high-precision seismic observations (i.e., oscillation frequencies to constrain theoretical models for analyzing solar-like oscillator KIC 6225718. Finally, we find the acoustic radius τ0 is the only global parameter that can be accurately measured by the χ2-matching method between observed frequencies and theoretical model calculations for a pure p-mode oscillation star. We obtain τ0=4601.5−8.3+4.4 seconds for KIC 6225718. It leads that the mass and radius of the CMMs are degenerate with each other. In addition, we find that the distribution range of acoustic radius is slightly enlarged by some extreme cases, which posses both a larger mass and a higher (or lower metal abundance, at the lower acoustic radius end.

  12. Period and phase comparisons of near-decadal oscillations in solar, geomagnetic, and cosmic ray time series

    Science.gov (United States)

    Juckett, David A.

    2001-09-01

    A more complete understanding of the periodic dynamics of the Sun requires continued exploration of non-11-year oscillations in addition to the benchmark 11-year sunspot cycle. In this regard, several solar, geomagnetic, and cosmic ray time series were examined to identify common spectral components and their relative phase relationships. Several non-11-year oscillations were identified within the near-decadal range with periods of ~8, 10, 12, 15, 18, 22, and 29 years. To test whether these frequency components were simply low-level noise or were related to a common source, the phases were extracted for each component in each series. The phases were nearly identical across the solar and geomagnetic series, while the corresponding components in four cosmic ray surrogate series exhibited inverted phases, similar to the known phase relationship with the 11-year sunspot cycle. Cluster analysis revealed that this pattern was unlikely to occur by chance. It was concluded that many non-11-year oscillations truly exist in the solar dynamical environment and that these contribute to the complex variations observed in geomagnetic and cosmic ray time series. Using the different energy sensitivities of the four cosmic ray surrogate series, a preliminary indication of the relative intensities of the various solar-induced oscillations was observed. It provides evidence that many of the non-11-year oscillations result from weak interplanetary magnetic field/solar wind oscillations that originate from corresponding variations in the open-field regions of the Sun.

  13. Solar atmosphere wave dynamics generated by solar global oscillating eigenmodes

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.; Zheng, R.

    2018-01-01

    The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun's atmospheric layers. In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5 Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model. We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs). Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.

  14. New Insights of High-precision Asteroseismology: Acoustic Radius and χ2-matching Method for Solar-like Oscillator KIC 6225718

    Science.gov (United States)

    Wu, Tao; Li, Yan

    2017-10-01

    Asteroseismology is a powerful tool for probing stellar interiors and determining stellar fundamental parameters. In the present work, we adopt the χ2-minimization method but only use the observed high-precision seismic observations (i.e., oscillation frequencies) to constrain theoretical models for analyzing solar-like oscillator KIC 6225718. Finally, we find the acoustic radius τ0 is the only global parameter that can be accurately measured by the χ2-matching method between observed frequencies and theoretical model calculations for a pure p-mode oscillation star. We obtain seconds for KIC 6225718. It leads that the mass and radius of the CMMs are degenerate with each other. In addition, we find that the distribution range of acoustic radius is slightly enlarged by some extreme cases, which posses both a larger mass and a higher (or lower) metal abundance, at the lower acoustic radius end.

  15. Dawn- Dusk Auroral Oval Oscillations Associated with High- Speed Solar Wind

    Science.gov (United States)

    Liou, Kan; Sibeck, David G.

    2018-01-01

    We report evidence of global-scale auroral oval oscillations in the millihertz range, using global auroral images acquired from the Ultraviolet Imager on board the decommissioned Polar satellite and concurrent solar wind measurements. On the basis of two events (15 January 1999 and 6 January 2000) studied, it is found that (1) quasi-periodic auroral oval oscillations (approximately 3 megahertz) can occur when solar wind speeds are high at northward or southward interplanetary magnetic field turning, (2) the oscillation amplitudes range from a few to more than 10 degrees in latitudes, (3) the oscillation frequency is the same for each event irrespective of local time and without any azimuthal phase shift (i.e., propagation), (4) the auroral oscillations occur in phase within both the dawn and dusk sectors but 180 degrees out of phase between the dawn and dusk sectors, and (5) no micropulsations on the ground match the auroral oscillation periods. While solar wind conditions favor the growth of the Kelvin-Helmholtz (K-H) instability on the magnetopause as often suggested, the observed wave characteristics are not consistent with predictions for K-H waves. The in-phase and out-of-phase features found in the dawn-dusk auroral oval oscillations suggest that wiggling motions of the magnetotail associated with fast solar winds might be the direct cause of the global-scale millihertz auroral oval oscillations. Plain Language Summary: We utilize global auroral image data to infer the motion of the magnetosphere and show, for the first time, the entire magnetospheric tail can move east-west in harmony like a windsock flapping in wind. The characteristic period of the flapping motion may be a major source of global long-period ULF (Ultra Low Frequency) waves, adding an extra source of the global mode ULF waves.

  16. Chaotic weak chimeras and their persistence in coupled populations of phase oscillators

    International Nuclear Information System (INIS)

    Bick, Christian; Ashwin, Peter

    2016-01-01

    Nontrivial collective behavior may emerge from the interactive dynamics of many oscillatory units. Chimera states are chaotic patterns of spatially localized coherent and incoherent oscillations. The recently-introduced notion of a weak chimera gives a rigorously testable characterization of chimera states for finite-dimensional phase oscillator networks. In this paper we give some persistence results for dynamically invariant sets under perturbations and apply them to coupled populations of phase oscillators with generalized coupling. In contrast to the weak chimeras with nonpositive maximal Lyapunov exponents constructed so far, we show that weak chimeras that are chaotic can exist in the limit of vanishing coupling between coupled populations of phase oscillators. We present numerical evidence that positive Lyapunov exponents can persist for a positive measure set of this inter-population coupling strength. (paper)

  17. Apparent Solar Tornado-Like Prominences

    Science.gov (United States)

    Panasenco, Olga; Martin, Sara F.; Velli, Marco

    2014-02-01

    Recent high-resolution observations from the Solar Dynamics Observatory (SDO) have reawakened interest in the old and fascinating phenomenon of solar tornado-like prominences. This class of prominences was first introduced by Pettit ( Astrophys. J. 76, 9, 1932), who studied them over many years. Observations of tornado prominences similar to the ones seen by SDO had already been documented by Secchi ( Le Soleil, 1877). High-resolution and high-cadence multiwavelength data obtained by SDO reveal that the tornado-like appearance of these prominences is mainly an illusion due to projection effects. We discuss two different cases where prominences on the limb might appear to have a tornado-like behavior. One case of apparent vortical motions in prominence spines and barbs arises from the (mostly) 2D counterstreaming plasma motion along the prominence spine and barbs together with oscillations along individual threads. The other case of apparent rotational motion is observed in a prominence cavity and results from the 3D plasma motion along the writhed magnetic fields inside and along the prominence cavity as seen projected on the limb. Thus, the "tornado" impression results either from counterstreaming and oscillations or from the projection on the plane of the sky of plasma motion along magnetic-field lines, rather than from a true vortical motion around an (apparent) vertical or horizontal axis. We discuss the link between tornado-like prominences, filament barbs, and photospheric vortices at their base.

  18. Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping

    International Nuclear Information System (INIS)

    Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S.R.

    2001-03-01

    We discuss the coherent atomic oscillations between two weakly coupled Bose-Einstein condensates. The weak link is provided by a laser barrier in a (possibly asymmetric) double-well trap or by Raman coupling between two condensates in different hyperfine levels. The boson Josephson junction (BJJ) dynamics is described by the two-mode nonlinear Gross-Pitaevskii equation that is solved analytically in terms of elliptic functions. The BJJ, being a neutral, isolated system, allows the investigations of dynamical regimes for the phase difference across the junction and for the population imbalance that are not accessible with superconductor Josephson junctions (SJJ's). These include oscillations with either or both of the following properties: (i) the time-averaged value of the phase is equal to π (π-phase oscillations); (ii) the average population imbalance is nonzero, in states with macroscopic quantum self-trapping. The (nonsinusoidal) generalization of the SJJ ac and plasma oscillations and the Shapiro resonance can also be observed. We predict the collapse of experimental data (corresponding to different trap geometries and the total number of condensate atoms) onto a single universal curve for the inverse period of oscillations. Analogies with Josephson oscillations between two weakly coupled reservoirs of 3 He-B and the internal Josephson effect in 3 He-A are also discussed. (author)

  19. Again on neutrino oscillations

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1976-01-01

    The general case is treated of a weak interaction theory in which a term violating lepton charges is present. In such a scheme the particles with definite masses are Majorana neutrinos (2N if in the weak interaction participate N four-component neutrinos). Neutrino oscillations are discussed and it is shown that the minimum average intensity at the earth of solar neutrinos is 1/2N of the intensity expected when oscillations are absent

  20. Fast Rotating solar-like stars using asteroseismic datasets

    DEFF Research Database (Denmark)

    A. García, R.; Ceillier, T.; Campante, T.

    2011-01-01

    The NASA Kepler mission is providing an unprecedented set of asteroseismic data. In particular, short-cadence lightcurves (~60s samplings), allow us to study solar-like stars covering a wide range of masses, spectral types and evolutionary stages. Oscillations have been observed in around 600 out...

  1. Automated Detection of Oscillating Regions in the Solar Atmosphere

    Science.gov (United States)

    Ireland, J.; Marsh, M. S.; Kucera, T. A.; Young, C. A.

    2010-01-01

    Recently observed oscillations in the solar atmosphere have been interpreted and modeled as magnetohydrodynamic wave modes. This has allowed for the estimation of parameters that are otherwise hard to derive, such as the coronal magnetic-field strength. This work crucially relies on the initial detection of the oscillations, which is commonly done manually. The volume of Solar Dynamics Observatory (SDO) data will make manual detection inefficient for detecting all of the oscillating regions. An algorithm is presented that automates the detection of areas of the solar atmosphere that support spatially extended oscillations. The algorithm identifies areas in the solar atmosphere whose oscillation content is described by a single, dominant oscillation within a user-defined frequency range. The method is based on Bayesian spectral analysis of time series and image filtering. A Bayesian approach sidesteps the need for an a-priori noise estimate to calculate rejection criteria for the observed signal, and it also provides estimates of oscillation frequency, amplitude, and noise, and the error in all of these quantities, in a self-consistent way. The algorithm also introduces the notion of quality measures to those regions for which a positive detection is claimed, allowing for simple post-detection discrimination by the user. The algorithm is demonstrated on two Transition Region and Coronal Explorer (TRACE) datasets, and comments regarding its suitability for oscillation detection in SDO are made.

  2. Solar Dynamo Driven by Periodic Flow Oscillation

    Science.gov (United States)

    Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends

  3. Surge-like Oscillations above Sunspot Light Bridges Driven by Magnetoacoustic Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingwen; Tian, Hui; He, Jiansen; Wang, Linghua, E-mail: huitian@pku.edu.cn [School of Earth and Space Sciences, Peking University, 100871 Beijing (China)

    2017-03-20

    High-resolution observations of the solar chromosphere and transition region often reveal surge-like oscillatory activities above sunspot light bridges (LBs). These oscillations are often interpreted as intermittent plasma jets produced by quasi-periodic magnetic reconnection. We have analyzed the oscillations above an LB in a sunspot using data taken by the Interface Region Imaging Spectrograph . The chromospheric 2796 Å images show surge-like activities above the entire LB at any time, forming an oscillating wall. Within the wall we often see that the core of the Mg ii k 2796.35 Å line first experiences a large blueshift, and then gradually decreases to zero shift before increasing to a redshift of comparable magnitude. Such a behavior suggests that the oscillations are highly nonlinear and likely related to shocks. In the 1400 Å passband, which samples emission mainly from the Si iv ion, the most prominent feature is a bright oscillatory front ahead of the surges. We find a positive correlation between the acceleration and maximum velocity of the moving front, which is consistent with numerical simulations of upward propagating slow-mode shock waves. The Si iv 1402.77 Å line profile is generally enhanced and broadened in the bright front, which might be caused by turbulence generated through compression or by the shocks. These results, together with the fact that the oscillation period stays almost unchanged over a long duration, lead us to propose that the surge-like oscillations above LBs are caused by shocked p-mode waves leaked from the underlying photosphere.

  4. On Interactions of Oscillation Modes for a Weakly Non-Linear Undamped Elastic Beam with AN External Force

    Science.gov (United States)

    BOERTJENS, G. J.; VAN HORSSEN, W. T.

    2000-08-01

    In this paper an initial-boundary value problem for the vertical displacement of a weakly non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends of the beam is studied. The initial-boundary value problem can be regarded as a simple model describing oscillations of flexible structures like suspension bridges or iced overhead transmission lines. Using a two-time-scales perturbation method an approximation of the solution of the initial-boundary value problem is constructed. Interactions between different oscillation modes of the beam are studied. It is shown that for certain external excitations, depending on the phase of an oscillation mode, the amplitude of specific oscillation modes changes.

  5. Global oscillations of the Sun: observed as oscillations in the apparent solar limb darkening function

    International Nuclear Information System (INIS)

    Hill, H.A.; Caudell, T.P.

    1979-01-01

    Analysis of the 1973 solar oblateness observations made at SCLERA has indicated that most of the oscillatory power found in observations of the apparent solar diameter is statistically significant and that it is produced by fluctuations in the limb darkening function rather than by a simple displacement of the solar limb. The differential refractive effects in the Earth's atmosphere may be ruled out as operative mechanisms for generating the observed oscillations. Solar and non-solar mechanisms for producing changes in the apparent limb darkening function are considered as possible sources of the observed oscillatory effects; it is concluded that acoustic and gravity modes of oscillation are the only viable mechanisms capable of producing these phenomena. This interpretation necessitates the imposition of certain constraints on modelling of the solar interior and on solar pulsation theory. The conclusion that the oscillations are detected through changes in the limb darkening function leads to a new constraint on the photospheric boundary conditions used in pulsation theory. The identification of two of the oscillations as being high-order gravity modes also necessitates the formulation of a new constraint on the Brunt-Vaisalai frequency in the solar interior and, in addition, may place a constraint depth on the convection zone. Application of the constraint on the Brunt-Vaisalai frequency permits discrimination between current models while the first constraint, if correct, may further complicate studies of the outer envelope of the Sun. (author)

  6. Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator

    Science.gov (United States)

    Hou, Jian; Yan, Xiao-peng; Li, Ping; Hao, Xin-hong

    2018-03-01

    The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillatorʼs phase trajectory in a small-scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system. Project supported by the National Natural Science Foundation of China (Grant No. 61673066).

  7. Solar filament material oscillations and drainage before eruption

    International Nuclear Information System (INIS)

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Li, Haidong; Yang, Dan; Yang, Bo

    2014-01-01

    Both large-amplitude longitudinal (LAL) oscillations and material drainage in a solar filament are associated with the flow of material along the filament axis, often followed by an eruption. However, the relationship between these two motions and a subsequent eruption event is poorly understood. We analyze a filament eruption using EUV imaging data captured by the Atmospheric Imaging Array on board the Solar Dynamics Observatory and the Hα images from the Global Oscillation Network Group. Hours before the eruption, the filament was activated, with one of its legs undergoing a slow rising motion. The asymmetric activation inclined the filament relative to the solar surface. After the active phase, LAL oscillations were observed in the inclined filament. The oscillation period increased slightly over time, which may suggest that the magnetic fields supporting the filament evolve to be flatter during the slow rising phase. After the oscillations, a significant amount of filament material was drained toward one filament endpoint, followed immediately by the violent eruption of the filament. The material drainage may further support the change in magnetic topology prior to the eruption. Moreover, we suggest that the filament material drainage could play a role in the transition from a slow to a fast rise of the erupting filament.

  8. Solar and stellar oscillations

    International Nuclear Information System (INIS)

    Fossat, E.

    1981-01-01

    We try to explain in simple words what a stellar oscillation is, what kind of restoring forces and excitation mechanisms can be responsible for its occurence, what kind of questions the theoretician asks to the observer and what kind of tools the latter is using to look for the answers. A selected review of the most striking results obtained in the last few years in solar seismology and the present status of their consequences on solar models is presented. A brief discussion on the expected extension towards stellar seismology will end the paper. A selected bibliography on theory as well as observations and recent papers is also included. (orig.)

  9. Self-oscillation in spin torque oscillator stabilized by field-like torque

    International Nuclear Information System (INIS)

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi; Imamura, Hiroshi

    2014-01-01

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation

  10. Constraints on decay plus oscillation solutions of the solar neutrino problem

    Science.gov (United States)

    Joshipura, Anjan S.; Massó, Eduard; Mohanty, Subhendra

    2002-12-01

    We examine the constraints on the nonradiative decay of neutrinos from the observations of solar neutrino experiments. The standard oscillation hypothesis among three neutrinos solves the solar and atmospheric neutrino problems. The decay of a massive neutrino mixed with the electron neutrino results in the depletion of the solar neutrino flux. We introduce neutrino decay in the oscillation hypothesis and demand that decay does not spoil the successful explanation of solar and atmospheric observations. We obtain a lower bound on the ratio of the lifetime over the mass of ν2, τ2/m2>22.7 s/MeV for the Mikheyev-Smirnov-Wolfenstein solution of the solar neutrino problem and τ2/m2>27.8 s/MeV for the vacuum oscillation solution (at 99% C.L.).

  11. Detecting Solar-like Oscillations in Red Giants with Deep Learning

    Science.gov (United States)

    Hon, Marc; Stello, Dennis; Zinn, Joel C.

    2018-05-01

    Time-resolved photometry of tens of thousands of red giant stars from space missions like Kepler and K2 has created the need for automated asteroseismic analysis methods. The first and most fundamental step in such analysis is to identify which stars show oscillations. It is critical that this step be performed with no, or little, detection bias, particularly when performing subsequent ensemble analyses that aim to compare the properties of observed stellar populations with those from galactic models. However, an efficient, automated solution to this initial detection step still has not been found, meaning that expert visual inspection of data from each star is required to obtain the highest level of detections. Hence, to mimic how an expert eye analyzes the data, we use supervised deep learning to not only detect oscillations in red giants, but also to predict the location of the frequency at maximum power, ν max, by observing features in 2D images of power spectra. By training on Kepler data, we benchmark our deep-learning classifier against K2 data that are given detections by the expert eye, achieving a detection accuracy of 98% on K2 Campaign 6 stars and a detection accuracy of 99% on K2 Campaign 3 stars. We further find that the estimated uncertainty of our deep-learning-based ν max predictions is about 5%. This is comparable to human-level performance using visual inspection. When examining outliers, we find that the deep-learning results are more likely to provide robust ν max estimates than the classical model-fitting method.

  12. A Distant Mirror: Solar Oscillations Observed on Neptune by the Kepler K2 Mission

    Science.gov (United States)

    Gaulme, P.; Rowe, J. F.; Bedding, T. R.; Benomar, O.; Corsaro, E.; Davies, G. R.; Hale, S. J.; Howe, R.; Garcia, R. A.; Huber, D.; hide

    2016-01-01

    Starting in 2014 December, Kepler (K2) observed Neptune continuously for 49 days at a 1-minute cadence. The goals consisted of studying its atmospheric dynamics, detecting its global acoustic oscillations, and those of the Sun, which we report on here. We present the first indirect detection of solar oscillations in intensity measurements. Beyond the remarkable technical performance, it indicates how Kepler would see a star like the Sun. The result from the global asteroseismic approach, which consists of measuring the oscillation frequency at maximum amplitude max velocity and the mean frequency separation between mode overtones delta velocity, is surprising as the max velocity measured from Neptune photometry is larger than the accepted value. Compared to the usual reference max velocity of the sun equal to 3100 microhertz, the asteroseismic scaling relations therefore make the solar mass and radius appear larger by 13.8 plus or minus 5.8 percent and 4.3 plus or minus 1.9 percent, respectively. The higher max velocity is caused by a combination of the value of max velocity of the sun, being larger at the time of observations than the usual reference from SOHO/VIRGO/SPM (Variability of solar IRradiance and Gravity Oscillations / on board SOHO (Solar and Heliospheric Observatory) / Sun PhotoMeters) data (3160 plus or minus 10 microhertz), and the noise level of the K2 time series, being 10 times larger than VIRGO's. The peak-bagging method provides more consistent results: despite a low signal-to-noise ratio (S/N), we model 10 overtones for degrees iota equal 0, 1, 2. We compare the K2 data with simultaneous SOHO/VIRGO/SPM photometry and Bison (Birmingham Solar-Oscillations Network) velocity measurements. The individual frequencies, widths, and amplitudes mostly match those from VIRGO and BiSON within 1 sigma, except for the few peaks with the lowest S/N.

  13. Weak ionization of the global ionosphere in solar cycle 24

    Directory of Open Access Journals (Sweden)

    Y. Q. Hao

    2014-07-01

    Full Text Available Following prolonged and extremely quiet solar activity from 2008 to 2009, the 24th solar cycle started slowly. It has been almost 5 years since then. The measurement of ionospheric critical frequency (foF2 shows the fact that solar activity has been significantly lower in the first half of cycle 24, compared to the average levels of cycles 19 to 23; the data of global average total electron content (TEC confirm that the global ionosphere around the cycle 24 peak is much more weakly ionized, in contrast to cycle 23. The weak ionization has been more notable since the year 2012, when both the ionosphere and solar activity were expected to be approaching their maximum level. The undersupply of solar extreme ultraviolet (EUV irradiance somewhat continues after the 2008–2009 minimum, and is considered to be the main cause of the weak ionization. It further implies that the thermosphere and ionosphere in the first solar cycle of this millennium would probably differ from what we have learned from the previous cycles of the space age.

  14. Inverse problem of solar oscillations

    International Nuclear Information System (INIS)

    Sekii, T.; Shibahashi, H.

    1987-01-01

    The authors present some preliminary results of numerical simulation to infer the sound velocity distribution in the solar interior from the oscillation data of the Sun as the inverse problem. They analyze the acoustic potential itself by taking account of some factors other than the sound velocity, and infer the sound velocity distribution in the deep interior of the Sun

  15. Seismic probing of solar flows using high-degree oscillations

    International Nuclear Information System (INIS)

    Haber, D.A.

    1987-01-01

    Employing solar-oscillation modes of degree 50 ≤ l ≤ 850, the author estimated the equatorial rotation rate with depth, searched for possible anisotropies in power for modes travelling in different directions, and examined the influence of a major flare on the oscillations. Motivated by the need in studying solar rotation for accurate frequency splittings between individual modes, different spatial-filtering methods were evaluated to determine which yield the most-accurate frequencies. A filtering method based on spherical-harmonic projection of the data is found to be superior in this regard. The various filtering techniques are applied to three days of concatenated Doppler-velocity data taken on a long, narrow grid centered on the solar disk. An inversion procedure is then performed to determine the equatorial solar rotation in the upper convection zone. The rotation rate is found to increase to a depth of about 2 Mm before decreasing over the next 14 Mm. Power in sectoral modes traveling along the equator (equatorial modes) is compared to that in poleward-traveling sectoral modes (polar modes). Full-disk Doppler velocities observed before and after a major white-light flare are compared to detect any influence of the flare on the 5-minute oscillations

  16. Vacuum oscillation solution to the solar neutrino problem in standard and nonstandard pictures

    International Nuclear Information System (INIS)

    Berezhiani, Z.G.; Rossi, A.

    1995-01-01

    The neutrino long wavelength (just-so) oscillation is reexamined as a solution to the solar neutrino problem. We consider the just-so scenario in various cases: in the framework of the solar models with a relaxed prediction of the boron neutrino flux, as well as in the presence of the nonstandard weak range interactions between neutrino and matter constituents. We show that the fit of the experimental data in the just-so scenario is not very good for any reasonable value of the 8 B neutrino flux, but it substantially improves if the nonstandard τ-neutrino--electron interaction is included. These new interactions could also remove the conflict of the just-so picture with the shape of the SN 1987A neutrino spectrum. Special attention is devoted to the potential of the future real-time solar neutrino detectors such as Super-Kamiokande, SNO, and BOREXINO, which could provide the model-independent tests for the just-so scenario. In particular, these imply a specific deformation of the original solar neutrino energy spectra and time variation of the intermediate energy monochromatic neutrino ( 7 Be and pep) signals

  17. Lifetime measurements and oscillator strengths in singly ionized scandium and the solar abundance of scandium

    Science.gov (United States)

    Pehlivan Rhodin, A.; Belmonte, M. T.; Engström, L.; Lundberg, H.; Nilsson, H.; Hartman, H.; Pickering, J. C.; Clear, C.; Quinet, P.; Fivet, V.; Palmeri, P.

    2017-12-01

    The lifetimes of 17 even-parity levels (3d5s, 3d4d, 3d6s and 4p2) in the region 57 743-77 837 cm-1 of singly ionized scandium (Sc II) were measured by two-step time-resolved laser induced fluorescence spectroscopy. Oscillator strengths of 57 lines from these highly excited upper levels were derived using a hollow cathode discharge lamp and a Fourier transform spectrometer. In addition, Hartree-Fock calculations where both the main relativistic and core-polarization effects were taken into account were carried out for both low- and high-excitation levels. There is a good agreement for most of the lines between our calculated branching fractions and the measurements of Lawler & Dakin in the region 9000-45 000 cm-1 for low excitation levels and with our measurements for high excitation levels in the region 23 500-63 100 cm-1. This, in turn, allowed us to combine the calculated branching fractions with the available experimental lifetimes to determine semi-empirical oscillator strengths for a set of 380 E1 transitions in Sc II. These oscillator strengths include the weak lines that were used previously to derive the solar abundance of scandium. The solar abundance of scandium is now estimated to logε⊙ = 3.04 ± 0.13 using these semi-empirical oscillator strengths to shift the values determined by Scott et al. The new estimated abundance value is in agreement with the meteoritic value (logεmet = 3.05 ± 0.02) of Lodders, Palme & Gail.

  18. A cone-like enhancement of polar solar corona plasma and its influence on heliospheric particles

    Science.gov (United States)

    Grzedzielski, Stan; Sokół, Justyna M.

    2017-04-01

    We will present results of the study of the properties of the solar wind plasma due to rotation of the polar solar corona. We focus in our study on the solar minimum conditions, when the polar coronal holes are well formed and the magnetic field in the solar polar corona exhibit almost regular "ray-like" structure. The solar rotation twists the magnetic field lines of the expanding fast polar solar wind and the resulting toroidal component of the field induces a force directed towards the rotation axis. This phenomenon is tantamount to a (weak) zeta pinch, known also in other astrophysical contexts (e.g. like in AGN jets). The pinch compresses the polar solar corona plasma and forms a cone-like enhancement of the solar wind density aligned with the rotation axis in the spherically symmetric case. The effect is likely very dynamic due to fast changing conditions in the solar corona, however in the study presented here, we assume a time independent description to get an order-of-magnitude estimate. The weak pinch is treated as a first-order perturbation to the zeroth-order radial flow. Following the assumptions based on the available knowledge about the plasma properties in the polar solar corona we estimated the most typical density enhancements. The cone like structure may extend as far from the Sun as tens of AU and thus will influence the heliospheric particles inside the heliosphere. An increase of the solar wind density in the polar region may be related with a decrease of the solar wind speed. Such changes of the solar wind plasma at high latitudes may modify the charge-exchange and electron impact ionization rates of heliospheric particles in interplanetary space. We will present their influence on the interstellar neutral gas and energetic neutral atoms observed by IBEX.

  19. Implication of two-coupled differential Van der Pol Duffing oscillator in weak signal detection

    International Nuclear Information System (INIS)

    Peng Hanghang; Xu Xuemei; Yang Bingchu; Yin Linzi

    2016-01-01

    The principle of the Van der Pol Duffing oscillator for state transition and for determining critical value is described, which has been studied to indicate that the application of the Van der Pol Duffing oscillator in weak signal detection is feasible. On the basis of this principle, an improved two-coupled differential Van der Pol Duffing oscillator is proposed which can identify signals under any frequency and ameliorate signal-to-noise ratio (SNR). The analytical methods of the proposed model and the construction of the proposed oscillator are introduced in detail. Numerical experiments on the properties of the proposed oscillator compared with those of the Van der Pol Duffing oscillator are carried out. Our numerical simulations have confirmed the analytical treatment. The results demonstrate that this novel oscillator has better detection performance than the Van der Pol Duffing oscillator. (author)

  20. Implication of Two-Coupled Differential Van der Pol Duffing Oscillator in Weak Signal Detection

    Science.gov (United States)

    Peng, Hang-hang; Xu, Xue-mei; Yang, Bing-chu; Yin, Lin-zi

    2016-04-01

    The principle of the Van der Pol Duffing oscillator for state transition and for determining critical value is described, which has been studied to indicate that the application of the Van der Pol Duffing oscillator in weak signal detection is feasible. On the basis of this principle, an improved two-coupled differential Van der Pol Duffing oscillator is proposed which can identify signals under any frequency and ameliorate signal-to-noise ratio (SNR). The analytical methods of the proposed model and the construction of the proposed oscillator are introduced in detail. Numerical experiments on the properties of the proposed oscillator compared with those of the Van der Pol Duffing oscillator are carried out. Our numerical simulations have confirmed the analytical treatment. The results demonstrate that this novel oscillator has better detection performance than the Van der Pol Duffing oscillator.

  1. PROBING THE SOLAR ATMOSPHERE USING OSCILLATIONS OF INFRARED CO SPECTRAL LINES

    International Nuclear Information System (INIS)

    Penn, M. J.; Schad, T.; Cox, E.

    2011-01-01

    Oscillations were observed across the whole solar disk using the Doppler shift and line center intensity of spectral lines from the CO molecule near 4666 nm with the National Solar Observatory's McMath/Pierce solar telescope. Power, coherence, and phase spectra were examined, and diagnostic diagrams reveal power ridges at the solar global mode frequencies to show that these oscillations are solar p-modes. The phase was used to determine the height of formation of the CO lines by comparison with the IR continuum intensity phase shifts as measured in Kopp et al.; we find that the CO line formation height varies from 425 km μ > 0.5. The velocity power spectra show that while the sum of the background and p-mode power increases with height in the solar atmosphere as seen in previous work, the power in the p-modes only (background subtracted) decreases with height. The CO line center intensity weakens in regions of stronger magnetic fields, as does the p-mode oscillation power. Across most of the solar surface the phase shift is larger than the expected value of 90 0 for an adiabatic atmosphere. We fit the phase spectra at different disk positions with a simple atmospheric model to determine that the acoustic cutoff frequency is about 4.5 mHz with only small variations, but that the thermal relaxation frequency drops significantly from 2.7 to 0 mHz at these heights in the solar atmosphere.

  2. Frequency dependence of p-mode frequency shifts induced by magnetic activity in Kepler solar-like stars

    Science.gov (United States)

    Salabert, D.; Régulo, C.; Pérez Hernández, F.; García, R. A.

    2018-04-01

    The variations of the frequencies of the low-degree acoustic oscillations in the Sun induced by magnetic activity show a dependence on radial order. The frequency shifts are observed to increase towards higher-order modes to reach a maximum of about 0.8 μHz over the 11-yr solar cycle. A comparable frequency dependence is also measured in two other main sequence solar-like stars, the F-star HD 49933, and the young 1 Gyr-old solar analog KIC 10644253, although with different amplitudes of the shifts of about 2 μHz and 0.5 μHz, respectively. Our objective here is to extend this analysis to stars with different masses, metallicities, and evolutionary stages. From an initial set of 87 Kepler solar-like oscillating stars with known individual p-mode frequencies, we identify five stars showing frequency shifts that can be considered reliable using selection criteria based on Monte Carlo simulations and on the photospheric magnetic activity proxy Sph. The frequency dependence of the frequency shifts of four of these stars could be measured for the l = 0 and l = 1 modes individually. Given the quality of the data, the results could indicate that a physical source of perturbation different from that in the Sun is dominating in this sample of solar-like stars.

  3. Analytic treatments of matter-enhanced solar-neutrino oscillations

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1987-01-01

    Mikheyev and Smirnov have pointed out that flavor oscillations of solar neutrinos could be greatly enhanced. The Mikheyev-Smirnov-Wolfenstein mechanism depends on the effective electron neutrino mass that arises from charged-current scattering off solar electrons, a phenomenon first discussed by Wolfenstein. Two analytic treatments, the adiabatic approximation and Landau-Zener (LZ) approximation, have been used in studies of this mechanism. I discuss a simple extension of the LZ approximation that merges naturally with the adiabatic approximation and is free of certain troublesome pathologies that arise in the conventional treatment. In this extension the solar density is approximated as in the conventional treatment, except that the starting and ending densities are the physical ones. Results of this finite LZ approximation are compared to those from the standard LZ approximation, the adiabatic approximation, and ''exact'' numerical integrations. The new approximation is virtually exact regardless of the point of origin of the neutrino in the solar core. This approximation is used to efficiently calculate the solar-neutrino capture rates for /sup 37/Cl, /sup 71/Ga, and /sup 98/Mo. The spatial extent of the solar core, the contributions of minor neutrino species, and the effects of 8 B neutrino capture to excited nuclear states are treated with care. Limits imposed on δm 2 and sin 2 2theta/sub v/ by the nonzero /sup 37/Cl capture rate are derived by considering the expected uncertainties in standard-solar-model flux estimates. Those oscillation parameters are determined that could account for the /sup 37/Cl puzzle and yet lead to a /sup 71/Ga counting rate above the minimum astronomical value

  4. Third Advances in Solar Physics Euroconference: Magnetic Fields and Oscillations

    Science.gov (United States)

    Schmieder, B.; Hofmann, A.; Staude, J.

    The third Advances in Solar Physics Euroconference (ASPE) "Magnetic Fields and Oscillations"concluded a series of three Euroconferences sponsored by the European Union. The meeting took place in Caputh near Potsdam, Germany, on September 22-25, 1998, followed by the JOSO (Joint Organization for Solar Observations) 30th Annual Board Meeting on September 26, 1998. The ASPE formula is attractive and compares well with other meetings with "show-and-tell" character. This meeting had 122 participants coming from 26 countries; 36 participants came from countries formerly behind the Iron Curtain; a "politically incorrect" estimate says that 48 participants were below 35 years of age, with an unusually large female-to-male ratio. This characteristic of youngness is the more striking since solar physics is a perhaps overly established field exhibiting an overly senior age profile. It was a good opportunity to train this young generation in Solar Physics. The conference topic "Magnetic Fields and Oscillations" obviously was wide enough to cater to many an interest. These proceedings are organized according to the structure of the meeting. They include the topics 'High resolution spectropolarimetry and magnetometry', 'Flux-tube dynamics', 'Modelling of the 3-D magnetic field structure', 'Mass motions and magnetic fields in sunspot penumbral structures', 'Sunspot oscillations', 'Oscillations in active regions - diagnostics and seismology', 'Network and intranetwork structure and dynamics', and 'Waves in magnetic structures'. These topics covered the first 2.5 days of the conference. The reviews, oral contributions, and poster presentations were by no means all of the meeting. The ASPE formula also adds extensive plenary sessions of JOSO Working groups on topics that involve planning of Europe-wide collaboration. At this meeting these concerned solar observing techniques, solar data bases, coordination between SOHO and ground-based observing, and preparations for August 11, 1999

  5. The Solar and Southern Oscillation Components in the Satellite Altimetry Data

    DEFF Research Database (Denmark)

    Howard, Daniel; Shaviv, Nir J.; Svensmark, Henrik

    2015-01-01

    altimetry data can be explained as the combined effect of both the solar forcing and the El Niño-Southern Oscillation (ENSO). The phase of the solar component can be used to derive the different steric and eustatic contributions. We find that the peak to peak radiative forcing associated with the solar...

  6. Weak-field precession of nano-pillar spin-torque oscillators using MgO-based perpendicular magnetic tunnel junction

    Science.gov (United States)

    Zhang, Changxin; Fang, Bin; Wang, Bochong; Zeng, Zhongming

    2018-04-01

    This paper presents a steady auto-oscillation in a spin-torque oscillator using MgO-based magnetic tunnel junction (MTJ) with a perpendicular polarizer and a perpendicular free layer. As the injected d.c. current varied from 1.5 to 3.0 mA under a weak magnetic field of 290 Oe, the oscillation frequency decreased from 1.85 to 1.3 GHz, and the integrated power increased from 0.1 to 74 pW. A narrow linewidth down to 7 MHz corresponding to a high Q factor of 220 was achieved at 2.7 mA, which was ascribed to the spatial coherent procession of the free layer magnetization. Moreover, the oscillation frequency was quite sensitive to the applied field, about 3.07 MHz/Oe, indicating the potential applications as a weak magnetic field detector. These results suggested that the MgO-based MTJ with perpendicular magnetic easy axis could be helpful for developing spin-torque oscillators with narrow-linewidth and high sensitive.

  7. Neutrino oscillations in the Earth suggest a terrestrial test of solution to solar neutrino problem

    International Nuclear Information System (INIS)

    Dar, A.; Mann, A.; Technicon-Israel Inst. of Tech., Haifa. Space Research Inst.)

    1987-01-01

    The verification of the Mikheyev-Smirnov-Wolfenstein (MSW) solution of the solar neutrino problem is discussed. One verification experiment concerns the detection of sizeable oscillations of atmospheric neutrinos in the earth, which can be detected with the massive underground proton decay detectors. Diurnal and seasonal modulations of the solar neutrino flux can perhaps be detected by the radiochemical Cl and Ga detectors. Moreover, neutrino oscillations in the Earth may modify the values of the oscillation parameters which can solve the solar neutrino problem and help determine their values. (UK)

  8. Detection of very long period solar free oscillations in ambient seismic array noise

    Science.gov (United States)

    Caton, R.; Pavlis, G. L.; Thomson, D. J.; Vernon, F.

    2017-12-01

    For nearly two decades long-period seismologists have been aware that the Earth's free oscillations are in a constant state of excitement, even in the absence of large earthquakes. This phenomenon is now called the "Earth's hum," and much research has been done to determine what generates this hum. Here we examine a hypothesis first put forward by Thomson et al. in 2007 that a portion of the hum's energy comes from the sun. They hypothesized that solar free oscillations couple into the solid Earth, likely through electromagnetic processes, and produce signals that are observable in the frequency domain. If this is true, then at least some measurement of helioseismic oscillations may be possible using relatively cheap, ground-based instruments rather than spacecraft. In this project we attempt to improve upon previous studies by producing spectra from seismic arrays, rather than a single station. We use data from two arrays: The Homestake Mine 3D array in Lead, SD, and the Pinyon Flats array, which has seismometers in boreholes drilled into bedrock. Both have exceptionally low noise levels at ultra long periods and show easily visible earth tides on horizontal component data filtered to below the microseism band. In the Homestake data, below 500 μHz we have found evidence of what we suggest may be closely spaced solar g-mode lines. Such modes are produced by a density inversion at the top of the solar core. There is no sign of these modes in the Pinyon Flats data, but we find this is likely due to the signal-to-noise ratio of those data, which is significantly lower than Homestake. Significance tests of bands below 500 μHz indicate with probability levels as high as 40σ that these lines are not the result of random processes. Critical examination of our processing steps for sources of bias indicate that the observed line structure is not a processing artifact.

  9. Robust signatures of solar neutrino oscillation solutions

    CERN Document Server

    Bahcall, J N; Peña-Garay, C; Bahcall, John N.; Peña-Garay, Carlos

    2002-01-01

    With the goal of identifying signatures that select specific neutrino oscillation parameters, we test the robustness of global oscillation solutions that fit all the available solar and reactor experimental data. We use three global analysis strategies previously applied by different authors and also determine the sensitivity of the oscillation solutions to the critical nuclear fusion cross section, S_{17}(0), for the production of 8B. The neutral current to charged current ratio for SNO is predicted to be 3.5 +- 0.6 (1 sigma) for the favored LMA, LOW, and VAC solutions, which is separated from the no-oscillation value of 1.0 by much more than the expected experimental error. The predicted range of the day-night difference in charged current rates is between 0% and 21% (3 sigma) and is to be strongly correlated with the day-night effect for neutrino-electron scattering. A measurement by SNO of either a NC to CC ratio > 3.3 or a day-night difference > 10%, would favor a small region of the currently allowed LM...

  10. Experimental study of complex mixed-mode oscillations generated in a Bonhoeffer-van der Pol oscillator under weak periodic perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Kuniyasu, E-mail: kuniyasu.shimizu@it-chiba.ac.jp [Department of Electrical, Electronics and Computer Engineering, Chiba Institute of Technology, Narashino 275-0016 (Japan); Sekikawa, Munehisa [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki 214-8571 (Japan)

    2015-02-15

    Bifurcations of complex mixed-mode oscillations denoted as mixed-mode oscillation-incrementing bifurcations (MMOIBs) have frequently been observed in chemical experiments. In a previous study [K. Shimizu et al., Physica D 241, 1518 (2012)], we discovered an extremely simple dynamical circuit that exhibits MMOIBs. Our model was represented by a slow/fast Bonhoeffer-van der Pol circuit under weak periodic perturbation near a subcritical Andronov-Hopf bifurcation point. In this study, we experimentally and numerically verify that our dynamical circuit captures the essence of the underlying mechanism causing MMOIBs, and we observe MMOIBs and chaos with distinctive waveforms in real circuit experiments.

  11. Shubnikov-de Haas oscillations in bulk ZrT e5 single crystals: Evidence for a weak topological insulator

    Science.gov (United States)

    Lv, Yang-Yang; Zhang, Bin-Bin; Li, Xiao; Zhang, Kai-Wen; Li, Xiang-Bing; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Zhang, Shan-Tao; Lu, Ming-Hui; Li, Shao-Chun; Chen, Yan-Feng

    2018-03-01

    The study of ZrT e5 crystals is revived because of the recent theoretical prediction of topological phase in bulk ZrT e5 . However, the current conclusions for the topological character of bulk ZrT e5 are quite contradictory. To resolve this puzzle, we here identify the Berry phase on both b - and c planes of high-quality ZrT e5 crystals by the Shubnikov-de-Hass (SdH) oscillation under tilted magnetic field at 2 K. The angle-dependent SdH oscillation frequency, both on b - and c planes of ZrT e5 , demonstrates the two-dimensional feature. However, phase analysis of SdH verifies that a nontrivial π-Berry phase is observed in the c -plane SdH oscillation, but not in the b -plane one. Compared to bulk Fermi surface predicted by the first-principle calculation, the two-dimensional-like behavior of SdH oscillation measured at b plane comes from the bulk electron. Based on these analyses, it is suggested that bulk ZrT e5 at low temperature (˜2 K) belongs to a weak topological insulator, rather than Dirac semimetal or strong topological insulator as reported previously.

  12. Present state of the study of 160-minutes solar oscillation

    International Nuclear Information System (INIS)

    Severny, A.B.; Kotov, V.A.; Tsap, T.T.

    1981-01-01

    Global oscillation of the Sun with a period of 160 min were first discovered in 1974 and since observed in Crimea during the last 6 years; they were confirmed, in 1976-1979, by Doppler measurements at Stanford (Scherrer et al., 1980) and quite recently by observations of Fossat and Grec at the south geographic pole. The average amplitude of the oscillation is about 0.5 m s -1 . The phase shows remarkable stability at the period 160.010 min and good agreement between different sites on the Earth; therefore, this oscillation should now be recognized as definitely of solar origin. It is probably accompanied by synchronous fluctuations in the IR brightness and radio-emission of the Sun, and exhibits a dependence of the amplitude on the phase of solar rotation (with a peak of power at 27.2 days). In agreement with results of the Birmingham group and the South Pole observation we also find evidence in favour of a discrete spectrum within the 5 min global oscillations of the Sun, with the average splitting of about 69,5 μHz in frequency. Strict gas-dynamical equations being solved in the adiabatic approximation for a polytropic sphere n = 3 display the pattern of radial oscillations with wave separated by 120 m time-intervals filled with high frequency (and split by 117 μHz) oscillations implying a similarity with the observed pattern. (orig.)

  13. A road map to solar neutrino fluxe, neutrino oscillation parameters, and tests for new physics

    CERN Document Server

    Bahcall, J N; Bahcall, John N.; Peña-Garay, Carlos

    2003-01-01

    We analyze all available solar and related reactor neutrino experiments, as well as simulated future ^7Be, p-p, pep, and ^8B solar neutrino experiments. We treat all solar neutrino fluxes as free parameters subject to the condition that the total luminosity represented by the neutrinos equals the observed solar luminosity (the `luminosity constraint'). Existing experiments show that the p-p solar neutrino flux is 1.01 + - 0.02 (1 sigma) times the flux predicted by the BP00 standard solar model; the ^7Be neutrino flux is 0.97^{+0.28}_{-0.54} the predicted flux; and the ^8B flux is 1.01 + - 0.06 the predicted flux. The oscillation parameters are: Delta m^2 = 7.3^{+0.4}_{-0.6} 10^{-5} eV^2 and tan^2 theta_{12} = 0.42^{+0.08}_{-0.06}. We evaluate how accurate future experiments must be to determine more precisely neutrino oscillation parameters and solar neutrino fluxes, and to elucidate the transition from vacuum-dominated to matter-dominated oscillations. A future ^7Be nu-e scattering experiment accurate to + -...

  14. Violation of Equivalence Principle and Solar Neutrinos

    International Nuclear Information System (INIS)

    Gago, A.M.; Nunokawa, H.; Zukanovich Funchal, R.

    2001-01-01

    We have updated the analysis for the solution to the solar neutrino problem by the long-wavelength neutrino oscillations induced by a tiny breakdown of the weak equivalence principle of general relativity, and obtained a very good fit to all the solar neutrino data

  15. THE EFFECTS OF MAGNETIC-FIELD GEOMETRY ON LONGITUDINAL OSCILLATIONS OF SOLAR PROMINENCES

    International Nuclear Information System (INIS)

    Luna, M.; Díaz, A. J.; Karpen, J.

    2012-01-01

    We investigate the influence of the geometry of the solar filament magnetic structure on the large-amplitude longitudinal oscillations. A representative filament flux tube is modeled as composed of a cool thread centered in a dipped part with hot coronal regions on either side. We have found the normal modes of the system and establish that the observed longitudinal oscillations are well described with the fundamental mode. For small and intermediate curvature radii and moderate to large density contrast between the prominence and the corona, the main restoring force is the solar gravity. In this full wave description of the oscillation a simple expression for the oscillation frequencies is derived in which the pressure-driven term introduces a small correction. We have also found that the normal modes are almost independent of the geometry of the hot regions of the tube. We conclude that observed large-amplitude longitudinal oscillations are driven by the projected gravity along the flux tubes and are strongly influenced by the curvature of the dips of the magnetic field in which the threads reside.

  16. Oscillations and concentrations generated by A-free mappings and weak lower semicontinuity of integral functionals

    Czech Academy of Sciences Publication Activity Database

    Fonseca, I.; Kružík, Martin

    Roč.16, č. 2 (2010), s. 472-502 ISSN 1262-3377 R&D Projects: GA AV ČR IAA1075402 Institutional research plan: CEZ:AV0Z10750506 Keywords : oscillations * concentrations Subject RIV: BA - General Mathematics Impact factor: 1.084, year: 2009 http://library.utia.cas.cz/separaty/2009/MTR/kruzik-oscillations and concentrations generated by a-free mappings and weak lower semicontinuity of integral functionals.pdf

  17. Effect of state-dependent delay on a weakly damped nonlinear oscillator.

    Science.gov (United States)

    Mitchell, Jonathan L; Carr, Thomas W

    2011-04-01

    We consider a weakly damped nonlinear oscillator with state-dependent delay, which has applications in models for lasers, epidemics, and microparasites. More generally, the delay-differential equations considered are a predator-prey system where the delayed term is linear and represents the proliferation of the predator. We determine the critical value of the delay that causes the steady state to become unstable to periodic oscillations via a Hopf bifurcation. Using asymptotic averaging, we determine how the system's behavior is influenced by the functional form of the state-dependent delay. Specifically, we determine whether the branch of periodic solutions will be either sub- or supercritical as well as an accurate estimation of the amplitude. Finally, we choose a few examples of state-dependent delay to test our analytical results by comparing them to numerical continuation.

  18. Solar-like oscillations in red giants observed with Kepler: comparison of global oscillation parameters from different methods

    DEFF Research Database (Denmark)

    Hekker, Saskia; Elsworth, Yvonne; De Ridder, Joris

    2011-01-01

    investigate the differences in results for global oscillation parameters of G and K red-giant stars due to different methods and definitions. We also investigate uncertainties originating from the stochastic nature of the oscillations. Methods: For this investigation we use Kepler data obtained during...... obtain results for the frequency of maximum oscillation power (ν_max) and the mean large separation () from different methods for over one thousand red-giant stars. The results for these parameters agree within a few percent and seem therefore robust to the different analysis methods and definitions...

  19. The influence of solar system oscillation on the variability of the total solar irradiance

    Science.gov (United States)

    Yndestad, Harald; Solheim, Jan-Erik

    2017-02-01

    Total solar irradiance (TSI) is the primary quantity of energy that is provided to the Earth. The properties of the TSI variability are critical for understanding the cause of the irradiation variability and its expected influence on climate variations. A deterministic property of TSI variability can provide information about future irradiation variability and expected long-term climate variation, whereas a non-deterministic variability can only explain the past. This study of solar variability is based on an analysis of two TSI data series, one since 1700 A.D. and one since 1000 A.D.; a sunspot data series since 1610 A.D.; and a solar orbit data series from 1000 A.D. The study is based on a wavelet spectrum analysis. First, the TSI data series are transformed into a wavelet spectrum. Then, the wavelet spectrum is transformed into an autocorrelation spectrum to identify stationary, subharmonic and coincidence periods in the TSI variability. The results indicate that the TSI and sunspot data series have periodic cycles that are correlated with the oscillations of the solar position relative to the barycenter of the solar system, which is controlled by gravity force variations from the large planets Jupiter, Saturn, Uranus and Neptune. A possible explanation for solar activity variations is forced oscillations between the large planets and the solar dynamo. We find that a stationary component of the solar variability is controlled by the 12-year Jupiter period and the 84-year Uranus period with subharmonics. For TSI and sunspot variations, we find stationary periods related to the 84-year Uranus period. Deterministic models based on the stationary periods confirm the results through a close relation to known long solar minima since 1000 A.D. and suggest a modern maximum period from 1940 to 2015. The model computes a new Dalton-type sunspot minimum from approximately 2025 to 2050 and a new Dalton-type period TSI minimum from approximately 2040 to 2065.

  20. Conductance oscillation in graphene-nanoribbon-based electronic Fabry-Perot resonators

    International Nuclear Information System (INIS)

    Zhang Yong; Han Mei; Shen Linjiang

    2010-01-01

    By using the tight-binding approximation and the Green's function method, the quantum conductance of the Fabry-Perot-like electronic resonators composed of zigzag and metallic armchair edge graphene nanoribbons (GNRs) was studied numerically. Obtained results show that due to Fabry-Perot-like electronic interference, the conductance of the GNR resonators oscillates periodically with the Fermi energy. The effects of disorders and coupling between the electrodes and the GNR on conductance oscillations were explored. It is found that the conductance oscillations appear at the strong coupling and become resonant peaks as the coupling is very weak. It is also found that the strong disorders in the GNR can smear the conductance oscillation periods. In other words, the weak coupling and the strong disorders all can blur the conductance oscillations, making them unclearly distinguished.

  1. Treatment of solar neutrino-oscillations in solar matter. The MSW effect

    International Nuclear Information System (INIS)

    Messiah, A.

    1986-01-01

    Mikheyev and Smirnov, following Wolfenstein's theory of neutrino oscillations in the presence of matter, have found that the change of flavour of solar neutrinos may be spectacularly enhanced in the presence of solar matter, when the parameters of the neutrino mass operator fall in a suitable range (MSW effect). It is shown that this effect can be readily deduced from the adiatic solution of the equation of flavour evolution. A complete study of the two-flavour case is given, permitting to calculate, for any set of values of the mass operator parameters, the ν e suppression factor at the site of detection on earth. The adiabatic approximation holds over a wide range of the parameters, leading to especially simple expressions. Our calculations cover the whole range, including domains where the adiabatic approximation is no longer valid. Some of the results, presented in a form most suited for an analysis of solar neutrino experiments, are displayed for illustration and discussed. 7 refs

  2. SIMULTANEOUS OBSERVATION OF SOLAR OSCILLATIONS ASSOCIATED WITH CORONAL LOOPS FROM THE PHOTOSPHERE TO THE CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Su, J. T.; Liu, S.; Zhang, Y. Z.; Zhao, H.; Xu, H. Q.; Xie, W. B. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Science, Beijing 100012 (China); Liu, Y. [National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011 (China)

    2013-01-01

    The solar oscillations along one coronal loop in AR 11504 are observed simultaneously in white light emission and Doppler velocity by SDO/HMI, and in UV and EUV emissions by SDO/AIA. The technique of the time-distance diagram is used to detect the propagating oscillations of the emission intensities along the loop. We find that although all the oscillation signals were intercorrelated, the low chromospheric oscillation correlated more closely to the oscillations of the transition region and corona than to those of the photosphere. Situated above the sunspot, the oscillation periods were {approx}3 minutes in the UV/EUV emissions; however, moving away from the sunspot and into the quiet Sun, the periods became longer, e.g., up to {approx}5 minutes or more. In addition, along another loop we observe both the high-speed outflows and oscillations, which roughly had a one-to-one corresponding relationship. This indicates that the solar periodic oscillations may modulate the magnetic reconnections between the loops of the high and low altitudes that drive the high-speed outflows along the loop.

  3. Oscillator phenomena in the solar atmosphere and radiation modulation in microwaves

    International Nuclear Information System (INIS)

    Vaz, A.M.Z.

    1983-05-01

    An overview of the principal known descriptions of oscillations in the solar atmosphere at different ranges of periods was developed. Particular attention was given to oscillations with time scale of seconds, associated to active regions or bursts. 1.5 quasi-periodic oscillations were detected by the first time at more than one microwave frequency simultaneously (22 GHz and 44 GHz), with high sensitivity and high time resolution, superimposed on a burst on Dec. 15, 1980. An advance phase of 0,3s between the oscillations in the frequencies of 22 GHz and 44 GHz was discovered. The proposed mechanism to explain such oscillations is based on oscillations of the magnetic field at the source. These oscillations modulate the gyro-synchrotron emission from high energy electrons trapped in the magnetic structure. The phase difference is attributed to the influence of the optical thickness of the gyro-synchrotron emission at 22 GHz. (Author) [pt

  4. Global Classical and Weak Solutions to the Three-Dimensional Full Compressible Navier-Stokes System with Vacuum and Large Oscillations

    Science.gov (United States)

    Huang, Xiangdi; Li, Jing

    2018-03-01

    For the three-dimensional full compressible Navier-Stokes system describing the motion of a viscous, compressible, heat-conductive, and Newtonian polytropic fluid, we establish the global existence and uniqueness of classical solutions with smooth initial data which are of small energy but possibly large oscillations where the initial density is allowed to vanish. Moreover, for the initial data, which may be discontinuous and contain vacuum states, we also obtain the global existence of weak solutions. These results generalize previous ones on classical and weak solutions for initial density being strictly away from a vacuum, and are the first for global classical and weak solutions which may have large oscillations and can contain vacuum states.

  5. EVIDENCE OF FILAMENT UPFLOWS ORIGINATING FROM INTENSITY OSCILLATIONS ON THE SOLAR SURFACE

    International Nuclear Information System (INIS)

    Cao, Wenda; Goode, Philip R.; Ning, Zongjun; Yurchyshyn, Vasyl; Ji Haisheng

    2010-01-01

    A filament footpoint rooted in an active region (NOAA 11032) was well observed for about 78 minutes with the 1.6 m New Solar Telescope at the Big Bear Solar Observatory on 2009 November 18 in Hα ±0.75 A. This data set had high cadence (∼15 s) and high spatial resolution (∼0.''1) and offered a unique opportunity to study filament dynamics. As in previous findings from space observations, several dark intermittent upflows were identified, and they behave in groups at isolated locations along the filament. However, we have two new findings. First, we find that the dark upflows propagating along the filament channel are strongly associated with the intensity oscillations on the solar surface around the filament footpoints. The upflows start at the same time as the peak in the oscillations, illustrating that the upflow velocities are well correlated with the oscillations. Second, the intensity of one of the seven upflows detected in our data set exhibits a clear periodicity when the upflow propagates along the filament. The periods gradually vary from ∼10 to ∼5 minutes. Our results give observational clues on the driving mechanism of the upflows in the filament.

  6. 4. 7s nearly periodic oscillations superimposed on the solar microwave great burst of 28 March 1976

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, P; Piazza, L R; Raffaelli, J C [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia e Astrofisica

    1977-09-01

    An unusual fast oscillation was found superimposed on the solar great burst on 28 March 1976, as measured at 7 GHz. The period of the oscillation was 4.7 +- 0.9 s, defined over the entire duration of the event. The amplitude of the oscillation was proportional to the flux density in the range 50solar flux units. The degree of circular polarization has not shown any fast periodic time structure.

  7. Ion-sound oscillations in strongly non-isotherm weakly ionized nonuniform hydrogen plasma

    International Nuclear Information System (INIS)

    Leleko, Ya.F.; Stepanov, K.N.

    2010-01-01

    A stationary distribution of strongly non-isotherm weakly ionized hydrogen plasma parameters is obtained in the hydrodynamic approximation in a quasi neutrality region in the transient layer between the plasma and dielectric taking the ionization, charge exchange, diffusion, viscosity, and a self-consistent field potential distribution. The ion-sound oscillation frequency and the collisional damping decrement as functions of the wave vector in the plasma with the obtained parameters are found in the local approximation.

  8. Liquid Metal Machine Triggered Violin-Like Wire Oscillator.

    Science.gov (United States)

    Yuan, Bin; Wang, Lei; Yang, Xiaohu; Ding, Yujie; Tan, Sicong; Yi, Liting; He, Zhizhu; Liu, Jing

    2016-10-01

    The first ever oscillation phenomenon of a copper wire embraced inside a self-powered liquid metal machine is discovered. When contacting a copper wire to liquid metal machine, it would be swallowed inside and then reciprocally moves back and forth, just like a violin bow. Such oscillation could be easily regulated by touching a steel needle on the liquid metal surface.

  9. On Analytic Solution of resonant Mixing for Solar Neutrino Oscillations

    OpenAIRE

    Masatoshi, ITO; Takao, KANEKO; Masami, NAKAGAWA; Department of Physics, Meijo University; Department of Physics, Meijo University; Department of Physics, Meijo University

    1988-01-01

    Behavior of resonant mixing in matter-enhancing region for solar neutrino oscillation, the Mikheyev-Smirnov-Wolfenstein mechanism, is reanalyzed by means of an analytic treatment recently proposed. We give solutions in terms of confluent hypergeometric functions, which agree with "exact" solutions of coupled differential equations.

  10. Solar Prominences Embedded in Flux Ropes: Morphological Features and Dynamics from 3D MHD Simulations

    Science.gov (United States)

    Terradas, J.; Soler, R.; Luna, M.; Oliver, R.; Ballester, J. L.; Wright, A. N.

    2016-04-01

    The temporal evolution of a solar prominence inserted in a three-dimensional magnetic flux rope is investigated numerically. Using the model of Titov & Démoulin under the regime of weak twist, the cold and dense prominence counteracts gravity by modifying the initially force-free magnetic configuration. In some cases a quasi-stationary situation is achieved after the relaxation phase, characterized by the excitation of standing vertical oscillations. These oscillations show a strong attenuation with time produced by the mechanism of continuum damping due to the inhomogeneous transition between the prominence and solar corona. The characteristic period of the vertical oscillations does not depend strongly on the twist of the flux rope. Nonlinearity is responsible for triggering the Kelvin-Helmholtz instability associated with the vertical oscillations and that eventually produces horizontal structures. Contrary to other configurations in which the longitudinal axis of the prominence is permeated by a perpendicular magnetic field, like in unsheared arcades, the orientation of the prominence along the flux rope axis prevents the development of Rayleigh-Taylor instabilities and therefore the appearance of vertical structuring along this axis.

  11. Asteroseismology of solar-type stars: particular physical effects

    Energy Technology Data Exchange (ETDEWEB)

    Carrier, F [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); Eggenberger, P; Leyder, J-C [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, 17 Allee du 6 aout, 4000 Liege (Belgium)], E-mail: fabien@ster.kuleuven.be

    2008-10-15

    Since the success of helioseismology, numerous efforts have been made to detect solar-like oscillations on other stars. The measurement of the frequencies of p-mode oscillations provides an insight into the internal structure and is nowadays the most powerful constraint on the theory of stellar evolution. The existing asteroseismic observations were mainly motivated by the need to explore the seismological properties of stars with various global parameters, i.e. various locations in the HR diagram. With the aim of testing different physical effects on solar-like oscillations, we report here detection of acoustic modes on solar-like targets achieved with the spectrograph HARPS installed on the 3.6-m telescope at ESO La Silla Observatory.

  12. QUASI-BIENNIAL OSCILLATIONS IN THE SOLAR TACHOCLINE CAUSED BY MAGNETIC ROSSBY WAVE INSTABILITIES

    International Nuclear Information System (INIS)

    Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon; Ballester, Jose Luis

    2010-01-01

    Quasi-biennial oscillations (QBOs) are frequently observed in solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here, we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength of ≥10 5 G triggers the instability of the m = 1 magnetic Rossby wave harmonic with a period of ∼2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends on the differential rotation parameters and magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in solar activity features. The period of QBOs may change throughout a cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.

  13. Adiabatic resonant oscillations of solar neutrinos in three generations

    International Nuclear Information System (INIS)

    Kim, C.W.; Sze, W.K.

    1987-01-01

    The Mikheyev-Smirnov-Wolfenstein model of resonant solar-neutrino oscillations is discussed for three generations of leptons. Assuming adiabatic transitions, bounds for the μ- and e-neutrinos mass-squared difference Δ/sub 21,0/ are obtained as a function of the e-μ mixing angle theta 1 . The allowed region in the Δ/sub 21,0/-theta 1 plot that would solve the solar-neutrino problem is shown to be substantially larger than that of the two-generation case. In particular, the difference between the two- and three-generation cases becomes significant for theta 1 larger than --20 0

  14. Oscillation mode frequencies of 61 main-sequence and subgiant stars observed by Kepler

    DEFF Research Database (Denmark)

    Appourchaux, T.; Chaplin, W. J.; García, R. A.

    2012-01-01

    Solar-like oscillations have been observed by Kepler and CoRoT in several solar-type stars, thereby providing a way to probe the stars using asteroseismology Aims. We provide the mode frequencies of the oscillations of various stars required to perform a comparison with those obtained from stella...

  15. Mikheyev-Smirnov-Wolfenstein enhancement of oscillations as a possible solution to the solar-neutrino problem

    International Nuclear Information System (INIS)

    Rosen, S.P.; Gelb, J.M.

    1986-01-01

    Mikheyev and Smirnov have observed that neutrino oscillations in the Sun can be greatly enhanced through the mechanism of Wolfenstein matter oscillations. We develop a qualitative understanding of this phenomenon in the small-mixing-angle limit and carry out extensive calculations in order to apply it to the solar-neutrino problem. Our simple theoretical model agrees remarkably well with the calculations. After determining those values of Δm 2 and sin 2 2theta in the small-mixing-angle limit for which the 8 B plus 7 Be neutrino capture rate in /sup 37/Cl is suppressed by a factor 2--4, we predict the corresponding capture rate for pp plus 7 Be neutrinos in /sup 71/Ga. The gallium capture rate can range from no reduction to a factor of 10 reduction. We also determine the modified spectrum of 8 B neutrinos arriving at Earth and discuss the importance of this spectrum as a means of choosing between oscillations and the solar model as the cause of the solar-neutrino problem, and also as a means of distinguishing between different sets of oscillation parameters

  16. Nonlinear theory for axisymmetric self-similar two-dimensional oscillations of electrons in cold plasma with constant proton background

    Science.gov (United States)

    Osherovich, V. A.; Fainberg, J.

    2018-01-01

    We consider simultaneous oscillations of electrons moving both along the axis of symmetry and also in the direction perpendicular to the axis. We derive a system of three nonlinear ordinary differential equations which describe self-similar oscillations of cold electrons in a constant proton density background (np = n0 = constant). These three equations represent an exact class of solutions. For weak nonlinear conditions, the frequency spectra of electric field oscillations exhibit split frequency behavior at the Langmuir frequency ωp0 and its harmonics, as well as presence of difference frequencies at low spectral values. For strong nonlinear conditions, the spectra contain peaks at frequencies with values ωp0(n +m √{2 }) , where n and m are integer numbers (positive and negative). We predict that both spectral types (weak and strong) should be observed in plasmas where axial symmetry may exist. To illustrate possible applications of our theory, we present a spectrum of electric field oscillations observed in situ in the solar wind by the WAVES experiment on the Wind spacecraft during the passage of a type III solar radio burst.

  17. BOREX: Solar neutrino experiment via weak neutral and charged currents in boron-11

    International Nuclear Information System (INIS)

    Kovacs, T.; Mitchell, J.W.; Raghavan, P.

    1989-01-01

    Borex, and experiment to observe solar neutrinos using boron loaded liquid scintillation techniques, is being developed for operation at the Gran Sasso underground laboratory. It aims to observe the spectrum of electron type 8 B solar neutrinos via charged current inverse β-decay of 11 B and the total flux solar neutrinos regardless of flavor by excitation of 11 B via the weak neutral current. 14 refs

  18. Global Analysis of Solar Neutrino Oscillations Including SNO CC Measurement

    CERN Document Server

    Bahcall, J N; Peña-Garay, C; Bahcall, John N; Peña-Garay, Carlos

    2001-01-01

    For active and sterile neutrinos, we present the globally allowed solutions for two neutrino oscillations. We include the SNO CC measurement and all other relevant solar neutrino and reactor data. Five active neutrino oscillation solutions (LMA, LOW, SMA, VAC, and Just So2) are currently allowed at 3 sigma; three sterile neutrino solutions (Just So2, SMA, and VAC) are allowed at 3 sigma. The goodness of fit is satisfactory for all eight solutions. We also investigate the robustness of the allowed solutions by carrying out global analyses with and without: 1) imposing solar model constraints on the 8B neutrino flux, 2) including the Super-Kamiokande spectral energy distribution and day-night data, 3) using an enhanced CC cross section for deuterium (due to radiative corrections), and 4) a optimistic, hypothetical reduction by a factor of three of the error of the SNO CC rate. For every analysis strategy used in this paper, the most favored solutions all involve large mixing angles: LMA, LOW, or VAC. The favore...

  19. The oscillation probability of GeV solar neutrinos of all active species

    International Nuclear Information System (INIS)

    Gouvea, Andre de

    2001-01-01

    I discuss the oscillation probability of O(GeV) neutrinos of all active flavours produced inside the Sun and detected at the Earth. In the GeV energy regime, matter effects are potentially important both for the ''1-3'' system and the ''1-2'' system. A numerical scan of the multidimensional three-flavour parameter space is presented. One curiosity is that in the three-flavour oscillation case P αβ ≠ P βα for a large portion of the parameter space, even if the MNS matrix is real. Oscillation effects computed here may play a large role in interpreting solar WIMP search data from large neutrino telescopes

  20. Seismic analysis of four solar-like stars observed during more than eight months by Kepler

    DEFF Research Database (Denmark)

    Mathur, S.; L. Campante, T.; Handberg, R.

    2011-01-01

    Having started science operations in May 2009, the Kepler photometer has been able to provide exquisite data of solar-like stars. Five out of the 42 stars observed continuously during the survey phase show evidence of oscillations, even though they are rather faint (magnitudes from 10.5 to 12). I......). In this paper, we present an overview of the results of the seismic analysis of 4 of these stars observed during more than eight months....

  1. Seismic Analysis of Four Solar-like Stars Observed during More Than Eight Months by Kepler

    Science.gov (United States)

    Mathur, S.; Campante, T. L.; Handberg, R.; García, R. A.; Appourchaux, T.; Bedding, T. R.; Mosser, B.; Chaplin, W. J.; Ballot, J.; Benomar, O.; Bonanno, A.; Corsaro, E.; Gaulme, P.; Hekker, S.; Régulo, C.; Salabert, D.; Verner, G.; White, T. R.; Brandão, I. M.; Creevey, O. L.; Dogan, G.; Bazot, M.; Cunha, M. S.; Elsworth, Y.; Huber, D.; Hale, S. J.; Houdek, G.; Karoff, C.; Lundkvist, M.; Metcalfe, T. S.; Molenda-Zakowicz, J.; Monteiro, M. J. P. F. G.; Thompson, M. J.; Stello, D.; Christensen-Dalsgaard, J.; Gilliland, R. L.; Kawaler, S. D.; Kjeldsen, H.; Clarke, B. D.; Girouard, F. R.; Hall, J. R.; Quintana, E. V.; Sanderfer, D. T.; Seader, S. E.

    2012-09-01

    Having started science operations in May 2009, the Kepler photometer has been able to provide exquisite data for solar-like stars. Five out of the 42 stars observed continuously during the survey phase show evidence of oscillations, even though they are rather faint (magnitudes from 10.5 to 12). In this paper, we present an overview of the results of the seismic analysis of 4 of these stars observed during more than eight months.

  2. SOLAR PROMINENCES EMBEDDED IN FLUX ROPES: MORPHOLOGICAL FEATURES AND DYNAMICS FROM 3D MHD SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Terradas, J.; Soler, R.; Oliver, R.; Ballester, J. L. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Luna, M. [Instituto de Astrofsíca de Canarias, E-38205 La Laguna, Tenerife (Spain); Wright, A. N., E-mail: jaume.terradas@uib.es [School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS (United Kingdom)

    2016-04-01

    The temporal evolution of a solar prominence inserted in a three-dimensional magnetic flux rope is investigated numerically. Using the model of Titov and Démoulin under the regime of weak twist, the cold and dense prominence counteracts gravity by modifying the initially force-free magnetic configuration. In some cases a quasi-stationary situation is achieved after the relaxation phase, characterized by the excitation of standing vertical oscillations. These oscillations show a strong attenuation with time produced by the mechanism of continuum damping due to the inhomogeneous transition between the prominence and solar corona. The characteristic period of the vertical oscillations does not depend strongly on the twist of the flux rope. Nonlinearity is responsible for triggering the Kelvin–Helmholtz instability associated with the vertical oscillations and that eventually produces horizontal structures. Contrary to other configurations in which the longitudinal axis of the prominence is permeated by a perpendicular magnetic field, like in unsheared arcades, the orientation of the prominence along the flux rope axis prevents the development of Rayleigh–Taylor instabilities and therefore the appearance of vertical structuring along this axis.

  3. SYNTHETIC HYDROGEN SPECTRA OF OSCILLATING PROMINENCE SLABS IMMERSED IN THE SOLAR CORONA

    International Nuclear Information System (INIS)

    Zapiór, M.; Heinzel, P.; Oliver, R.; Ballester, J. L.

    2016-01-01

    We study the behavior of H α and H β spectral lines and their spectral indicators in an oscillating solar prominence slab surrounded by the solar corona, using an MHD model combined with a 1D radiative transfer code taken in the line of sight perpendicular to the slab. We calculate the time variation of the Doppler shift, half-width, and maximum intensity of the H α and H β spectral lines for different modes of oscillation. We find a non-sinusoidal time dependence of some spectral parameters with time. Because H α and H β spectral indicators have different behavior for different modes, caused by differing optical depths of formation and different plasma parameter variations in time and along the slab, they may be used for prominence seismology, especially to derive the internal velocity field in prominences.

  4. SYNTHETIC HYDROGEN SPECTRA OF OSCILLATING PROMINENCE SLABS IMMERSED IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Zapiór, M.; Heinzel, P. [Astronomical Institute, The Czech Academy of Sciences, 25165 Ondřejov, The Czech Republic (Czech Republic); Oliver, R.; Ballester, J. L. [Universitat de les Illes Balears. Cra. de Valldemossa, km 7.5. Palma (Illes Balears), E-07122 (Spain)

    2016-08-20

    We study the behavior of H α and H β spectral lines and their spectral indicators in an oscillating solar prominence slab surrounded by the solar corona, using an MHD model combined with a 1D radiative transfer code taken in the line of sight perpendicular to the slab. We calculate the time variation of the Doppler shift, half-width, and maximum intensity of the H α and H β spectral lines for different modes of oscillation. We find a non-sinusoidal time dependence of some spectral parameters with time. Because H α and H β spectral indicators have different behavior for different modes, caused by differing optical depths of formation and different plasma parameter variations in time and along the slab, they may be used for prominence seismology, especially to derive the internal velocity field in prominences.

  5. Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind

    International Nuclear Information System (INIS)

    Howes, G. G.; Klein, K. G.; TenBarge, J. M.

    2014-01-01

    The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis—that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame—is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft or to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfvén waves is not.

  6. Solar g-mode oscillations: Comparison of SMM-ACRIM and ground-based observations

    Science.gov (United States)

    Scherrer, Philip H.

    1989-01-01

    Progress was made in access to data and in developing programs for its analysis. The difficulties in completing the work in the planned time can be traced to several factors. The correction of the Stanford oscillation using gridded intensity data was not successful. It was concluded that due to poor continuity of the 1985 and 1986 data due to clouds, that a joint analysis with the ACRIM data (best solar oscillation data to date) on the summer 1987 observations should be performed. The 1988 Stanford oscillation data are being examined and the cross comparison of the ACRIM spectrum with the Standford spectrum for 1987 in the g-mode regime will shortly begin.

  7. A DISTANT MIRROR: SOLAR OSCILLATIONS OBSERVED ON NEPTUNE BY THE KEPLER K 2 MISSION

    Energy Technology Data Exchange (ETDEWEB)

    Gaulme, P.; Jackiewicz, J. [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Rowe, J. F. [Institut de recherche sur les exoplanètes, iREx, Département de physique, Université de Montréal, Montréal, QC H3C 3J7 (Canada); Bedding, T. R.; Huber, D. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Benomar, O. [Center for Space Science, NYUAD Institute, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi (United Arab Emirates); Corsaro, E.; Garcia, R. A. [Laboratoire AIM, CEA/DRF-CNRS, Université Paris 7 Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Davies, G. R. [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Hale, S. J.; Howe, R. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B152TT (United Kingdom); Jiménez, A. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Mathur, S. [Center for Extrasolar Planetary Systems, Space Science Institute, 4750 Walnut Street, Suite #205, Boulder, CO 80301 (United States); Mosser, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Université Pierre et Marie Curie, Université Denis Diderot, F-92195 Meudon (France); Appourchaux, T.; Boumier, P.; Leibacher, J., E-mail: gaulme@nmsu.edu [Institut d’Astrophysique Spatiale, Université Paris-Sud and CNRS (UMR 8617), Bâtiment 121, F-91405 Orsay cedex (France); and others

    2016-12-10

    Starting in 2014 December, Kepler K 2 observed Neptune continuously for 49 days at a 1 minute cadence. The goals consisted of studying its atmospheric dynamics, detecting its global acoustic oscillations, and those of the Sun, which we report on here. We present the first indirect detection of solar oscillations in intensity measurements. Beyond the remarkable technical performance, it indicates how Kepler would see a star like the Sun. The result from the global asteroseismic approach, which consists of measuring the oscillation frequency at maximum amplitude ν {sub max} and the mean frequency separation between mode overtones Δ ν , is surprising as the ν {sub max} measured from Neptune photometry is larger than the accepted value. Compared to the usual reference ν {sub max,⊙} = 3100 μ Hz, the asteroseismic scaling relations therefore make the solar mass and radius appear larger by 13.8 ± 5.8% and 4.3 ± 1.9%, respectively. The higher ν {sub max} is caused by a combination of the value of ν {sub max,⊙}, being larger at the time of observations than the usual reference from SOHO /VIRGO/SPM data (3160 ± 10 μ Hz), and the noise level of the K 2 time series, being 10 times larger than VIRGO’s. The peak-bagging method provides more consistent results: despite a low signal-to-noise ratio (S/N), we model 10 overtones for degrees ℓ = 0, 1, 2. We compare the K 2 data with simultaneous SOHO /VIRGO/SPM photometry and BiSON velocity measurements. The individual frequencies, widths, and amplitudes mostly match those from VIRGO and BiSON within 1 σ, except for the few peaks with the lowest S/N.

  8. Using solar oscillations to probe the effects of element diffusion in the solar interior

    International Nuclear Information System (INIS)

    Guzik, J.A.; Cox, A.N.

    1993-01-01

    There is growing evidence from solar oscillation and evolution studies that the Sun's convection zone helium mass fraction has decreased by about 0.03 due to element diffusion. Evolution calculations show that diffusion also produces a steep Y and Z composition gradient below the convection zone. Comparisons between calculated and observed solar p-mode frequencies of angular degrees 5 thru 60 that are sensitive to solar structure near the convection zone bottom support this steep composition gradient, rather than one smoothed significantly by turbulent mixing. Turbulent mixing induced by convective overshoot or rotation has been the favored explanation for much of the solar surface lithium depletion by a factor of 200 from its presumed primordial value. These limits on the extent of turbulent mixing imply that either most of the solar lithium destruction occurred pre-main sequence, which is not supported by observation of young star, or that some other mechanism, for example a small amount of early main-sequence mass loss, is responsible for the low observed lithium abundance. Solar models including such mass loss as well as diffusion have a slightly steeper central density gradient. Comparisons between observed and calculated low-degree p-mode frequencies that are sensitive to the Sun's central structure can be used to probe this density gradient and constrain the possible amount of mass loss

  9. DETECTION OF SOLAR-LIKE OSCILLATIONS, OBSERVATIONAL CONSTRAINTS, AND STELLAR MODELS FOR θ CYG, THE BRIGHTEST STAR OBSERVED BY THE KEPLER MISSION

    Energy Technology Data Exchange (ETDEWEB)

    Guzik, J. A. [Los Alamos National Laboratory, XTD-NTA, MS T-082, Los Alamos, NM 87545 (United States); Houdek, G.; Chaplin, W. J.; Antoci, V.; Bedding, T. R.; Huber, D.; Kjeldsen, H. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Smalley, B. [Astrophysics Group, School of Physical and Geographical Sciences, Lennard-Jones Laboratories, Keele University, Staffordshire, ST5 5BG (United Kingdom); Kurtz, D. W. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Gilliland, R. L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Mullally, F.; Rowe, J. F. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Bryson, S. T.; Still, M. D. [NASA Ames Research Center, Bldg. 244, MS-244-30, Moffett Field, CA 94035 (United States); Appourchaux, T. [Institut d’Astrophysique Spatiale, Universitè de Paris Sud–CNRS, Batiment 121, F-91405 ORSAY Cedex (France); Basu, S. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Benomar, O. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Garcia, R. A. [Laboratoire AIM, CEA/DRF—CNRS—Univ. Paris Diderot—IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Latham, D. W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Metcalfe, T. S. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); and others

    2016-11-01

    θ Cygni is an F3 spectral type magnitude V = 4.48 main-sequence star that was the brightest star observed by the original Kepler spacecraft mission. Short-cadence (58.8 s) photometric data using a custom aperture were first obtained during Quarter 6 (2010 June–September) and subsequently in Quarters 8 and 12–17. We present analyses of solar-like oscillations based on Q6 and Q8 data, identifying angular degree l = 0, 1, and 2 modes with frequencies of 1000–2700 μ Hz, a large frequency separation of 83.9 ± 0.4 μ Hz, and maximum oscillation amplitude at frequency ν {sub max} = 1829 ± 54 μ Hz. We also present analyses of new ground-based spectroscopic observations, which, combined with interferometric angular diameter measurements, give T {sub eff} = 6697 ± 78 K, radius 1.49 ± 0.03 R {sub ⊙}, [Fe/H] = -0.02 ± 0.06 dex, and log g = 4.23 ± 0.03. We calculate stellar models matching these constraints using the Yale Rotating Evolution Code and the Asteroseismic Modeling Portal. The best-fit models have masses of 1.35–1.39 M {sub ⊙} and ages of 1.0–1.6 Gyr. θ Cyg’s T {sub eff} and log g place it cooler than the red edge of the γ Doradus instability region established from pre- Kepler ground-based observations, but just at the red edge derived from pulsation modeling. The pulsation models show γ Dor gravity modes driven by the convective blocking mechanism, with frequencies of 1–3 cycles per day (11 to 33 μ Hz). However, gravity modes were not seen in Kepler data; one signal at 1.776 cycles per day (20.56 μ Hz) may be attributable to a faint, possibly background, binary.

  10. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    Science.gov (United States)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  11. Investigation of Quasi-periodic Solar Oscillations in Sunspots Based on SOHO/MDI Magnetograms

    Science.gov (United States)

    Kallunki, J.; Riehokainen, A.

    2012-10-01

    In this work we study quasi-periodic solar oscillations in sunspots, based on the variation of the amplitude of the magnetic field strength and the variation of the sunspot area. We investigate long-period oscillations between three minutes and ten hours. The magnetic field synoptic maps were obtained from the SOHO/MDI. Wavelet (Morlet), global wavelet spectrum (GWS) and fast Fourier transform (FFT) methods are used in the periodicity analysis at the 95 % significance level. Additionally, the quiet Sun area (QSA) signal and an instrumental effect are discussed. We find several oscillation periods in the sunspots above the 95 % significance level: 3 - 5, 10 - 23, 220 - 240, 340 and 470 minutes, and we also find common oscillation periods (10 - 23 minutes) between the sunspot area variation and that of the magnetic field strength. We discuss possible mechanisms for the obtained results, based on the existing models for sunspot oscillations.

  12. OBSERVATIONS OF FIVE-MINUTE SOLAR OSCILLATIONS IN THE CORONA USING THE EXTREME ULTRAVIOLET SPECTROPHOTOMETER (ESP) ON BOARD THE SOLAR DYNAMICS OBSERVATORY EXTREME ULTRAVIOLET VARIABILITY EXPERIMENT (SDO/EVE)

    International Nuclear Information System (INIS)

    Didkovsky, L.; Judge, D.; Wieman, S.; Kosovichev, A. G.; Woods, T.

    2011-01-01

    We report on the detection of oscillations in the corona in the frequency range corresponding to five-minute acoustic modes of the Sun. The oscillations have been observed using soft X-ray measurements from the Extreme Ultraviolet Spectrophotometer (ESP) of the Extreme Ultraviolet Variability Experiment on board the Solar Dynamics Observatory. The ESP zeroth-order channel observes the Sun as a star without spatial resolution in the wavelength range of 0.1-7.0 nm (the energy range is 0.18-12.4 keV). The amplitude spectrum of the oscillations calculated from six-day time series shows a significant increase in the frequency range of 2-4 mHz. We interpret this increase as a response of the corona to solar acoustic (p) modes and attempt to identify p-mode frequencies among the strongest peaks. Due to strong variability of the amplitudes and frequencies of the five-minute oscillations in the corona, we study how the spectrum from two adjacent six-day time series combined together affects the number of peaks associated with the p-mode frequencies and their amplitudes. This study shows that five-minute oscillations of the Sun can be observed in the corona in variations of the soft X-ray emission. Further investigations of these oscillations may improve our understanding of the interaction of the oscillation modes with the solar atmosphere, and the interior-corona coupling, in general.

  13. Solar neutrino oscillation parameters after SNO Phase-III and SAGE Part-III

    International Nuclear Information System (INIS)

    Yang Ping; Liu Qiuyu

    2009-01-01

    We analyse the recently published results from solar neutrino experiments SNO Phase-III and SAGE Part-III and show their constraints on solar neutrino oscillation parameters, especially for the mixing angle θ 12 . Through a global analysis using all existing data from SK, SNO, Ga and Cl radiochemical experiments and long base line reactor experiment KamLAND , we obtain the parameters Δm 12 2 =7.684 -0.208 +0.212 x 10 -5 eV 2 , tan 2 θ 12 =0.440 -0.057 +0.059 . We also find that the discrepancy between the KamLAND and solar neutrino results can be reduced by choosing a small non-zero value for the mixing angle θ 13 . (authors)

  14. Oscillating particle-like solutions of nonlinear Klein-Gordon equation

    International Nuclear Information System (INIS)

    Bogolubsky, I.L.

    1976-01-01

    A denumerable set of oscillating spherically-symmetric particle-like solutions of the Klein-Gordon equation with cubic nonlinearity is found. Extended particles modelled by them turn out to be slightly radiating and long-lived

  15. Dynamics of weakly inhomogeneous oscillator populations: perturbation theory on top of Watanabe-Strogatz integrability

    Science.gov (United States)

    Vlasov, Vladimir; Rosenblum, Michael; Pikovsky, Arkady

    2016-08-01

    As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations.

  16. Dynamics of weakly inhomogeneous oscillator populations: perturbation theory on top of Watanabe–Strogatz integrability

    International Nuclear Information System (INIS)

    Vlasov, Vladimir; Rosenblum, Michael; Pikovsky, Arkady

    2016-01-01

    As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations. (letter)

  17. Radiocarbon evidence for low frequency solar oscillations

    International Nuclear Information System (INIS)

    Damon, P.E.; Jirikowic, I.

    1992-01-01

    From the spectrum of Δ 14 C variations attributed to solar activity modulation of cosmogenic isotope production, a long-period variation (the Hallstattzeit) of 2120±20 years was deduced with 93% statistical confidence. Although most Hallstattzeit harmonic overtones may be shape-related, two also behave as fundamentals: that of 212 years (Suess) and of 88 years (Gleissberg). These exceptional harmonic overtones modulate the 11-year Schwabe solar cycle determined from indices of sunspots. The Hallstattzeit period may be associated with dramatic secular changes in solar behavior. Sun-like stars exhibit quiet and active states consistent with such long-period secular variations. The climate impact of solar output changes may partially explain periods of rapid climate change such as the Little Ice Age associated with 14 C anomalies. (author) 9 tabs., 8 figs., 23 refs

  18. Detectability of weakly interacting massive particles in the Sagittarius dwarf tidal stream

    International Nuclear Information System (INIS)

    Freese, Katherine; Gondolo, Paolo; Newberg, Heidi Jo

    2005-01-01

    Tidal streams of the Sagittarius dwarf spheroidal galaxy (Sgr) may be showering dark matter onto the solar system and contributing ∼(0.3-23)% of the local density of our galactic halo. If the Sagittarius galaxy contains dark matter in the form of weakly interacting massive particles (WIMPs), the extra contribution from the stream gives rise to a steplike feature in the energy recoil spectrum in direct dark matter detection. For our best estimate of stream velocity (300 km/s) and direction (the plane containing the Sgr dwarf and its debris), the count rate is maximum on June 28 and minimum on December 27 (for most recoil energies), and the location of the step oscillates yearly with a phase opposite to that of the count rate. In the CDMS experiment, for 60 GeV WIMPs, the location of the step oscillates between 35 and 42 keV, and for the most favorable stream density, the stream should be detectable at the 11σ level in four years of data with 10 keV energy bins. Planned large detectors like XENON, CryoArray, and the directional detector DRIFT may also be able to identify the Sgr stream

  19. Matter oscillations and solar neutrinos: A review of the MSW [Mikheyev-Smirnov-Wolfenstein] effect

    International Nuclear Information System (INIS)

    Rosen, S.P.; Gelb, J.M.

    1986-01-01

    We review the theory of the Mikheyev-Smirnov-Wolfenstein effect, in which matter oscillations can greatly enhance ''in vacuo'' neutrino oscillations, and we examine its consequences for the solar neutrino problem. Using a two-flavor model, we discuss the solutions in the Δm 2 -sin 2 2Θ parameter space for the 37 Cl experiment, and describe their predictions for the 71 Ga experiment and for the spectrum of electron-neutrinos arriving at earth. We also comment on the three-flavor case

  20. Solar cycle signatures in the NCEP equatorial annual oscillation

    Science.gov (United States)

    Mayr, H. G.; Mengel, J. G.; Huang, F. T.; Nash, E. R.

    2009-08-01

    Our analysis of temperature and zonal wind data (1958 to 2006) from the National Center for Atmospheric Research (NCAR) reanalysis (Re-1), supplied by the National Centers for Environmental Prediction (NCEP), shows that the hemispherically symmetric 12-month equatorial annual oscillation (EAO) contains spectral signatures with periods around 11 years. Moving windows of 44 years show that, below 20 km, the 11-year modulation of the EAO is phase locked to the solar cycle (SC). The spectral features from the 48-year data record reveal modulation signatures of 9.6 and 12 years, which produce EAO variations that mimic in limited altitude regimes the varying maxima and minima of the 10.7 cm flux solar index. Above 20 km, the spectra also contain modulation signatures with periods around 11 years, but the filtered variations are too irregular to suggest that systematic SC forcing is the principal agent.

  1. Solar cycle signatures in the NCEP equatorial annual oscillation

    Directory of Open Access Journals (Sweden)

    H. G. Mayr

    2009-08-01

    Full Text Available Our analysis of temperature and zonal wind data (1958 to 2006 from the National Center for Atmospheric Research (NCAR reanalysis (Re-1, supplied by the National Centers for Environmental Prediction (NCEP, shows that the hemispherically symmetric 12-month equatorial annual oscillation (EAO contains spectral signatures with periods around 11 years. Moving windows of 44 years show that, below 20 km, the 11-year modulation of the EAO is phase locked to the solar cycle (SC. The spectral features from the 48-year data record reveal modulation signatures of 9.6 and 12 years, which produce EAO variations that mimic in limited altitude regimes the varying maxima and minima of the 10.7 cm flux solar index. Above 20 km, the spectra also contain modulation signatures with periods around 11 years, but the filtered variations are too irregular to suggest that systematic SC forcing is the principal agent.

  2. Scaling Laws in the Transient Dynamics of Firefly-like Oscillators

    International Nuclear Information System (INIS)

    Rubido, N; Cabeza, C; Marti, A; Ramirez Avila, G M

    2011-01-01

    Fireflies constitute a paradigm of pulse-coupled oscillators. In order to tackle the problems related to synchronisation transients of pulse-coupled oscillators, a Light-Controlled Oscillator (LCO) model is presented. A single LCO constitutes a one-dimensional relaxation oscillator described by two distinct time-scales meant to mimic fireflies in the sense that: it is capable of emitting light in a pulse-like fashion and detect the emitted by others in order to adjust its oscillation. We present dynamical results for two interacting LCOs in the torus for all possible coupling configurations. Transient times to the synchronous limit cycle are obtained experimentally and numerically as a function of initial conditions and coupling strengths. Scaling laws are found based on dimensional analysis and critical exponents calculated, thus, global dynamic is restricted. Furthermore, an analytical orthogonal transformation that allows to calculate Floquet multipliers directly from the time series is presented. As a consequence, local dynamics is also fully characterized. This transformation can be easily extended to a system with an arbitrary number of interacting LCOs.

  3. SOLAR NEUTRINO PHYSICS OSCILLATIONS: SENSITIVITY TO THE ELECTRONIC DENSITY IN THE SUN'S CORE

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilidio [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Turck-Chieze, Sylvaine, E-mail: ilidio.lopes@ist.utl.pt, E-mail: ilopes@uevora.pt, E-mail: sylvaine.turck-chieze@cea.fr [CEA/IRFU/Service d' Astrophysique, CE Saclay, F-91191 Gif sur Yvette (France)

    2013-03-01

    Solar neutrinos coming from different nuclear reactions are now detected with high statistics. Consequently, an accurate spectroscopic analysis of the neutrino fluxes arriving on Earth's detectors becomes available, in the context of neutrino oscillations. In this work, we explore the possibility of using this information to infer the radial profile of the electronic density in the solar core. So, we discuss the constraints on the Sun's density and chemical composition that can be determined from solar neutrino observations. This approach constitutes an independent and alternative diagnostic to the helioseismic investigations already done. The direct inversion method, which we propose to obtain the radial solar electronic density profile, is almost independent of the solar model.

  4. A MULTI-SITE CAMPAIGN TO MEASURE SOLAR-LIKE OSCILLATIONS IN PROCYON. II. MODE FREQUENCIES

    International Nuclear Information System (INIS)

    Bedding, Timothy R.; Bruntt, Hans; Kiss, Laszlo L.; Kjeldsen, Hans; Campante, Tiago L.; Appourchaux, Thierry; Bonanno, Alfio; Chaplin, William J.; Garcia, Rafael A.; Martic, Milena; Mosser, Benoit; Butler, R. Paul; O'Toole, Simon J.; Kambe, Eiji; Izumiura, Hideyuki; Ando, Hiroyasu; Sato, Bun'ei; Hartmann, Michael; Hatzes, Artie

    2010-01-01

    We have analyzed data from a multi-site campaign to observe oscillations in the F5 star Procyon. The data consist of high-precision velocities that we obtained over more than three weeks with 11 telescopes. A new method for adjusting the data weights allows us to suppress the sidelobes in the power spectrum. Stacking the power spectrum in a so-called echelle diagram reveals two clear ridges, which we identify with even and odd values of the angular degree (l = 0 and 2, and l = 1 and 3, respectively). We interpret a strong, narrow peak at 446 μHz that lies close to the l = 1 ridge as a mode with mixed character. We show that the frequencies of the ridge centroids and their separations are useful diagnostics for asteroseismology. In particular, variations in the large separation appear to indicate a glitch in the sound-speed profile at an acoustic depth of ∼1000 s. We list frequencies for 55 modes extracted from the data spanning 20 radial orders, a range comparable to the best solar data, which will provide valuable constraints for theoretical models. A preliminary comparison with published models shows that the offset between observed and calculated frequencies for the radial modes is very different for Procyon than for the Sun and other cool stars. We find the mean lifetime of the modes in Procyon to be 1.29 +0.55 -0.49 days, which is significantly shorter than the 2-4 days seen in the Sun.

  5. Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field.

    Science.gov (United States)

    Xi, Xiaoyu; Cegla, Frederic; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander

    2014-04-01

    The interaction of acoustically driven bubbles with a wall is important in many applications of ultrasound and cavitation, as the close boundary can severely alter the bubble dynamics. In this paper, the non-spherical surface oscillations of bubbles near a surface in a weak acoustic standing wave field are investigated experimentally and numerically. The translation, the volume, and surface mode oscillations of bubbles near a flat glass surface were observed by a high speed camera in a standing wave cell at 46.8 kHz. The model approach is based on a modified Keller-Miksis equation coupled to surface mode amplitude equations in the first order, and to the translation equations. Modifications are introduced due to the adjacent wall. It was found that a bubble's oscillation mode can change in the presence of the wall, as compared to the bubble in the bulk liquid. In particular, the wall shifts the instability pressure thresholds to smaller driving frequencies for fixed bubble equilibrium radii, or to smaller equilibrium radii for fixed excitation frequency. This can destabilize otherwise spherical bubbles, or stabilize bubbles undergoing surface oscillations in the bulk. The bubble dynamics observed in experiment demonstrated the same trend as the theoretical results.

  6. Statistical Relationship between Sawtooth Oscillations and Geomagnetic Storms

    Directory of Open Access Journals (Sweden)

    Jae-Hun Kim

    2008-06-01

    Full Text Available We have investigated a statistical relationship between sawtooth oscillations and geomagnetic storms during 2000-2004. First of all we selected a total of 154 geomagnetic storms based on the Dst index, and distinguished between different drivers such as Coronal Mass Ejection (CME and Co-rotating Interaction Region (CIR. Also, we identified a total of 48 sawtooth oscillation events based on geosynchronous energetic particle data for the same 2000-2004 period. We found that out of the 154 storms identified, 47 storms indicated the presence of sawtooth oscillations. Also, all but one sawtooth event identified occurred during a geomagnetic storm interval. It was also found that sawtooth oscillation events occur more frequently for storms driven by CME (˜62% than for storms driven by CIR (˜30%. In addition, sawtooth oscillations occurred mainly (˜82% in the main phase of storms for CME-driven storms while they occurred mostly (˜78% during the storm recovery phase for CIR-driven storms. Next we have examined the average characteristics of the Bz component of IMF, and solar wind speed, which were the main components for driving geomagnetic storm. We found that for most of the sawtooth events, the IMF Bz corresponds to --15 to 0 nT and the solar wind speed was in the range of 400˜700 km/s. We found that there was a weak tendency that the number of teeth for a given sawtooth event interval was proportional to the southward IMF Bz magnitude.

  7. Matter oscillations and solar neutrinos: A review of the MSW (Mikheyev-Smirnov-Wolfenstein) effect

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P.; Gelb, J.M.

    1986-07-16

    We review the theory of the Mikheyev-Smirnov-Wolfenstein effect, in which matter oscillations can greatly enhance ''in vacuo'' neutrino oscillations, and we examine its consequences for the solar neutrino problem. Using a two-flavor model, we discuss the solutions in the ..delta..m/sup 2/-sin/sup 2/2THETA parameter space for the /sup 37/Cl experiment, and describe their predictions for the /sup 71/Ga experiment and for the spectrum of electron-neutrinos arriving at earth. We also comment on the three-flavor case.

  8. Detection of Three-minute Oscillations in Full-disk Ly α Emission during a Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Ryan O.; Fletcher, Lyndsay [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Fleck, Bernhard [ESA Directorate of Science, Operations Department, c/o NASA/GSFC Code 671, Greenbelt, MD 20071 (United States); Ireland, Jack; Dennis, Brian R. [Solar Physics Laboratory (Code 671), Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-10-10

    In this Letter we report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Ly α (from GOES /EUVS) and Lyman continuum (from Solar Dynamics Observatory ( SDO )/EVE) emission from the 2011 February 15 X-class flare (SOL2011-02-15T01:56) revealed a ∼3 minute period present during the flare’s main phase. The formation temperature of this emission locates this radiation at the flare’s chromospheric footpoints, and similar behavior is found in the SDO /Atmospheric Imaging Assembly 1600 and 1700 Å channels, which are dominated by chromospheric continuum. The implication is that the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray (HXR) energies (50–100 keV) in Reuven Ramaty High Energy Solar Spectroscopic Imager data we can state that this 3-minute oscillation does not depend on the rate of energization of non-thermal electrons. However, a second period of 120 s found in both HXR and chromospheric lightcurves is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Ly α line may influence the composition and dynamics of planetary atmospheres during periods of high activity.

  9. The magnetosphere under weak solar wind forcing

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2007-02-01

    Full Text Available The Earth's magnetosphere was very strongly disturbed during the passage of the strong shock and the following interacting ejecta on 21–25 October 2001. These disturbances included two intense storms (Dst*≈−250 and −180 nT, respectively. The cessation of this activity at the start of 24 October ushered in a peculiar state of the magnetosphere which lasted for about 28 h and which we discuss in this paper. The interplanetary field was dominated by the sunward component [B=(4.29±0.77, −0.30±0.71, 0.49±0.45 nT]. We analyze global indicators of geomagnetic disturbances, polar cap precipitation, ground magnetometer records, and ionospheric convection as obtained from SuperDARN radars. The state of the magnetosphere is characterized by the following features: (i generally weak and patchy (in time low-latitude dayside reconnection or reconnection poleward of the cusps; (ii absence of substorms; (iii a monotonic recovery from the previous storm activity (Dst corrected for magnetopause currents decreasing from ~−65 to ~−35 nT, giving an unforced decreased of ~1.1 nT/h; (iv the probable absence of viscous-type interaction originating from the Kelvin-Helmholtz (KH instability; (v a cross-polar cap potential of just 20–30 kV; (vi a persistent, polar cap region containing (vii very weak, and sometimes absent, electron precipitation and no systematic inter-hemisphere asymmetry. Whereas we therefore infer the presence of a moderate amount of open flux, the convection is generally weak and patchy, which we ascribe to the lack of solar wind driver. This magnetospheric state approaches that predicted by Cowley and Lockwood (1992 but has never yet been observed.

  10. Oscillation mode linewidths of main-sequence and subgiant stars observed by Kepler

    DEFF Research Database (Denmark)

    Appourchaux, T.; Benomar, O.; Gruberbauer, M.

    2012-01-01

    Solar-like oscillations have been observed by {{\\it Kepler}} and CoRoT in several solar-type stars. We study the variations of stellar p-mode linewidth as a function of effective temperature. Time series of 9 months of Kepler data have been used. The power spectra of 42 cool main-sequence stars a...

  11. Solar-bound weakly interacting massive particles a no-frills phenomenology

    CERN Document Server

    Collar, J I

    1999-01-01

    The case for a stable population of solar-bound Earth-crossing Weakly Interacting Massive Particles (WIMPs) is reviewed. A practical general expression for their speed distribution in the laboratory frame is derived under basic assumptions. If such a population exists -even with a conservative phase-space density-, the next generation of large-mass, low-threshold underground bolometers should bring about a sizable enhancement in WIMP sensitivity. Finally, a characteristic yearly modulation in their recoil signal, arising from the ellipticity of the Earth's orbit, is presented.

  12. OSCILLATION OF NEWLY FORMED LOOPS AFTER MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn [Fuxian Solar Observatory, Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-03-10

    With the high spatial and temporal resolution Hα images from the New Vacuum Solar Telescope, we focus on two groups of loops with an X-shaped configuration in the dynamic chromosphere. We find that the anti-directed loops approach each other and reconnect continually. The connectivity of the loops is changed and new loops are formed and stack together. The stacked loops are sharply bent, implying that they are greatly impacted by the magnetic tension force. When another reconnection process takes place, one new loop is formed and stacks with the previously formed ones. Meanwhile, the stacked loops retract suddenly and move toward the balance position, performing an overshoot movement, which led to an oscillation with an average period of about 45 s. The oscillation of newly formed loops after magnetic reconnection in the chromosphere is observed for the first time. We suggest that the stability of the stacked loops is destroyed due to the attachment of the last new loop and then suddenly retract under the effect of magnetic tension. Because of the retraction, another lower loop is pushed outward and performs an oscillation with a period of about 25 s. The different oscillation periods may be due to their difference in three parameters, i.e., loop length, plasma density, and magnetic field strength.

  13. Kinetic theory of weakly ionized dilute gas of hydrogen-like atoms of the first principles of quantum statistics and dispersion laws of eigenwaves

    Science.gov (United States)

    Slyusarenko, Yurii V.; Sliusarenko, Oleksii Yu.

    2017-11-01

    We develop a microscopic approach to the construction of the kinetic theory of dilute weakly ionized gas of hydrogen-like atoms. The approach is based on the statements of the second quantization method in the presence of bound states of particles. The basis of the derivation of kinetic equations is the method of reduced description of relaxation processes. Within the framework of the proposed approach, a system of common kinetic equations for the Wigner distribution functions of free oppositely charged fermions of two kinds (electrons and cores) and their bound states—hydrogen-like atoms— is obtained. Kinetic equations are used to study the spectra of elementary excitations in the system when all its components are non-degenerate. It is shown that in such a system, in addition to the typical plasma waves, there are longitudinal waves of matter polarization and the transverse ones with a behavior characteristic of plasmon polaritons. The expressions for the dependence of the frequencies and Landau damping coefficients on the wave vector for all branches of the oscillations discovered are obtained. Numerical evaluation of the elementary perturbation parameters in the system on an example of a weakly ionized dilute gas of the 23Na atoms using the D2-line characteristics of the natrium atom is given. We note the possibility of using the results of the developed theory to describe the properties of a Bose condensate of photons in the diluted weakly ionized gas of hydrogen-like atoms.

  14. SEISMOLOGY OF A LARGE SOLAR CORONAL LOOP FROM EUVI/STEREO OBSERVATIONS OF ITS TRANSVERSE OSCILLATION

    International Nuclear Information System (INIS)

    Verwichte, E.; Van Doorsselaere, T.; Foullon, C.; Nakariakov, V. M.; Aschwanden, M. J.

    2009-01-01

    The first analysis of a transverse loop oscillation observed by both Solar TErrestrial RElations Observatories (STEREO) spacecraft is presented, for an event on the 2007 June 27 as seen by the Extreme Ultraviolet Imager (EUVI). The three-dimensional loop geometry is determined using a three-dimensional reconstruction with a semicircular loop model, which allows for an accurate measurement of the loop length. The plane of wave polarization is found from comparison with a simulated loop model and shows that the oscillation is a fundamental horizontally polarized fast magnetoacoustic kink mode. The oscillation is characterized using an automated method and the results from both spacecraft are found to match closely. The oscillation period is 630 ± 30 s and the damping time is 1000 ± 300 s. Also, clear intensity variations associated with the transverse loop oscillations are reported for the first time. They are shown to be caused by the effect of line-of-sight integration. The Alfven speed and coronal magnetic field derived using coronal seismology are discussed. This study shows that EUVI/STEREO observations achieve an adequate accuracy for studying long-period, large-amplitude transverse loop oscillations.

  15. U.S. Hail Frequency and the Global Wind Oscillation

    Science.gov (United States)

    Gensini, Vittorio A.; Allen, John T.

    2018-02-01

    Changes in Earth relative atmospheric angular momentum can be described by an index known as the Global Wind Oscillation. This global index accounts for changes in Earth's atmospheric budget of relative angular momentum through interactions of tropical convection anomalies, extratropical dynamics, and engagement of surface torques (e.g., friction and mountain). It is shown herein that U.S. hail events are more (less) likely to occur in low (high) atmospheric angular momentum base states when excluding weak Global Wind Oscillation days, with the strongest relationships found in the boreal spring and fall. Severe, significant severe, and giant hail events are more likely to occur during Global Wind Oscillation phases 8, 1, 2, and 3 during the peak of U.S. severe weather season. Lower frequencies of hail events are generally found in Global Wind Oscillation phases 4-7 but vary based on Global Wind Oscillation amplitude and month. In addition, probabilistic anomalies of atmospheric ingredients supportive of hail producing supercell thunderstorms closely mimic locations of reported hail frequency, helping to corroborate report results.

  16. Stochastic resonance induced by the novel random transitions of two-dimensional weak damping bistable duffing oscillator and bifurcation of moment equation

    International Nuclear Information System (INIS)

    Zhang Guangjun; Xu Jianxue; Wang Jue; Yue Zhifeng; Zou Hailin

    2009-01-01

    In this paper stochastic resonance induced by the novel random transitions of two-dimensional weak damping bistable Duffing oscillator is analyzed by moment method. This kind of novel transition refers to the one among three potential well on two sides of bifurcation point of original system at the presence of internal noise. Several conclusions are drawn. First, the semi-analytical result of stochastic resonance induced by the novel random transitions of two-dimensional weak damping bistable Duffing oscillator can be obtained, and the semi-analytical result is qualitatively compatible with the one of Monte Carlo simulation. Second, a bifurcation of double-branch fixed point curves occurs in the moment equations with noise intensity as their bifurcation parameter. Third, the bifurcation of moment equations corresponds to stochastic resonance of original system. Finally, the mechanism of stochastic resonance is presented from another viewpoint through analyzing the energy transfer induced by the bifurcation of moment equation.

  17. The not-so-sterile 4th neutrino: constraints on new gauge interactions from neutrino oscillation experiments

    Science.gov (United States)

    Kopp, Joachim; Welter, Johannes

    2014-12-01

    Sterile neutrino models with new gauge interactions in the sterile sector are phenomenologically interesting since they can lead to novel effects in neutrino oscillation experiments, in cosmology and in dark matter detectors, possibly even explaining some of the observed anomalies in these experiments. Here, we use data from neutrino oscillation experiments, in particular from MiniBooNE, MINOS and solar neutrino experiments, to constrain such models. We focus in particular on the case where the sterile sector gauge boson A ' couples also to Standard Model particles (for instance to the baryon number current) and thus induces a large Mikheyev-Smirnov-Wolfenstein potential. For eV-scale sterile neutrinos, we obtain strong constraints especially from MINOS, which restricts the strength of the new interaction to be less than ˜ 10 times that of the Standard Model weak interaction unless active-sterile neutrino mixing is very small (sin2 θ 24 ≲ 10-3). This rules out gauge forces large enough to affect short-baseline experiments like MiniBooNE and it imposes nontrivial constraints on signals from sterile neutrino scattering in dark matter experiments.

  18. Three flavour oscillation interpretation of neutrino data

    Indian Academy of Sciences (India)

    To explain the atmospheric neutrino problem in terms of neutrino oscillations, ЖС¾ of about 10-¿. eV. ¾. [8] is needed whereas the neutrino oscil- lation solution to the solar neutrino problem requires ЖС¾ ~10- eV. ¾ . Hence both solar and atmospheric neutrino problems cannot be explained in terms of e ° μ oscillations.

  19. LONGITUDINAL OSCILLATIONS IN DENSITY STRATIFIED AND EXPANDING SOLAR WAVEGUIDES

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Cardozo, M. [Instituto de Astronomia y Fisica del Espacio, CONICET-UBA, CC. 67, Suc. 28, 1428 Buenos Aires (Argentina); Verth, G. [School of Computing, Engineering and Information Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Erdelyi, R., E-mail: mluna@iafe.uba.ar, E-mail: robertus@sheffield.ac.uk, E-mail: gary.verth@northumbria.ac.uk [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2012-04-01

    Waves and oscillations can provide vital information about the internal structure of waveguides in which they propagate. Here, we analytically investigate the effects of density and magnetic stratification on linear longitudinal magnetohydrodynamic (MHD) waves. The focus of this paper is to study the eigenmodes of these oscillations. It is our specific aim to understand what happens to these MHD waves generated in flux tubes with non-constant (e.g., expanding or magnetic bottle) cross-sectional area and density variations. The governing equation of the longitudinal mode is derived and solved analytically and numerically. In particular, the limit of the thin flux tube approximation is examined. The general solution describing the slow longitudinal MHD waves in an expanding magnetic flux tube with constant density is found. Longitudinal MHD waves in density stratified loops with constant magnetic field are also analyzed. From analytical solutions, the frequency ratio of the first overtone and fundamental mode is investigated in stratified waveguides. For small expansion, a linear dependence between the frequency ratio and the expansion factor is found. From numerical calculations it was found that the frequency ratio strongly depends on the density profile chosen and, in general, the numerical results are in agreement with the analytical results. The relevance of these results for solar magneto-seismology is discussed.

  20. The 11-year solar cycle affects the intensity and annularity of the Arctic Oscillation

    Czech Academy of Sciences Publication Activity Database

    Huth, Radan; Bochníček, Josef; Hejda, Pavel

    2007-01-01

    Roč. 69, č. 9 (2007), s. 1095-1109 ISSN 1364-6826 R&D Projects: GA AV ČR IAA3042401 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z30120515 Keywords : Arctic Oscillation * Solar cycle * 10.7 cm radio flux * Sea level pressure * Principal component analysis Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.566, year: 2007

  1. 'Oscillator-wave' model: properties and heuristic instances

    International Nuclear Information System (INIS)

    Damgov, Vladimir; Trenchev, Plamen; Sheiretsky, Kostadin

    2003-01-01

    The article considers a generalized model of an oscillator, subjected to the influence of an external wave. It is shown that the systems of diverse physical background, which this model encompasses by their nature, should belong to the broader, proposed in previous works class of 'kick-excited self-adaptive dynamical systems'. The theoretical treatment includes an analytic approach to the conditions for emergence of small and large amplitudes, i.e. weak and strong non-linearity of the system. Derived also are generalized conditions for the transition of systems of this 'oscillator-wave' type to non-regular and chaotic behaviour. For the purpose of demonstrating the heuristic properties of the generalized oscillator-wave model from this point of view are considered the relevant systems and phenomena of the quantized cyclotron resonance and the megaquantum resonance-wave model of the Solar System. We point to a number of other natural and scientific phenomena, which can be effectively analyzed from the point of view of the developed approach. In particular we stress on the possibility for development and the wide applicability of specific wave influences, for example for the improvement and the speeding up of technological processes

  2. Locking the local oscillator phase to the atomic phase via weak measurement

    International Nuclear Information System (INIS)

    Shiga, N; Takeuchi, M

    2012-01-01

    A new method is proposed to reduce the frequency noise of a local oscillator to the level of white phase noise by maintaining (not destroying by projective measurement) the coherence of the ensemble pseudo-spin of atoms over many measurement cycles. This method, which we call ‘atomic phase lock (APL)’, uses weak measurement to monitor the phase in the Ramsey method and repeat the cycle without initialization of the phase. APL will achieve white phase noise as long as the noise accumulated during dead time and the decoherence are smaller than the measurement noise. A numerical simulation confirmed that with APL, the Allan deviation is averaged down at a maximum rate that is proportional to the inverse of the total measurement time, τ -1 . In contrast, current atomic clocks that use projection measurement suppress the noise only to the white frequency noise level, in which case the Allan deviation scales as τ -1/2 . Faraday rotation is one way to achieve weak measurement for APL. The strength of Faraday rotation with 171 Yb + ions trapped in a linear rf-trap is evaluated, and the performance of APL is discussed. The main source of decoherence is a spontaneous emission, induced by the probe beam for Faraday rotation measurement. The Faraday rotation measurement can be repeated until the decoherence becomes comparable to the signal-to-noise ratio of the measurement. The number of cycles for a realistic experimental parameter is estimated to be ∼100. (paper)

  3. Oscillations in solar jets observed with the SOT of Hinode: viscous effects during reconnection

    Science.gov (United States)

    Tavabi, E.; Koutchmy, S.

    2014-07-01

    Transverse oscillatory motions and recurrence behavior in the chromospheric jets observed by Hinode/SOT are studied. A comparison is considered with the behavior that was noticed in coronal X-ray jets observed by Hinode/XRT. A jet like bundle observed at the limb in Ca II H line appears to show a magnetic topology that is similar to X-ray jets (i.e., the Eiffel tower shape). The appearance of such magnetic topology is usually assumed to be caused by magnetic reconnection near a null point. Transverse motions of the jet axis are recorded but no clear evidence of twist is appearing from the highly processed movie. The aim is to investigate the dynamical behavior of an incompressible magnetic X-point occurring during the magnetic reconnection in the jet formation region. The viscous effect is specially considered in the closed line-tied magnetic X-shape nulls. We perform the MHD numerical simulation in 2-D by solving the visco-resistive MHD equations with the tracing of velocity and magnetic field. A qualitative agreement with Hinode observations is found for the oscillatory and non-oscillatory behaviors of the observed solar jets in both the chromosphere and the corona. Our results suggest that the viscous effect contributes to the excitation of the magnetic reconnection by generating oscillations that we observed at least inside this Ca II H line cool solar jet bundle.

  4. On Mode Correlation of Solar Acoustic Oscillations

    Directory of Open Access Journals (Sweden)

    Heon-Young Chang

    2009-09-01

    Full Text Available In helioseismology it is normally assumed that p-mode oscillations are excited in a statistically independent fashion. Unfortunately, however, this issue is not clearly settled down in that two experiments exist, which apparently look in discrepancy. That is, Appourchaux et al.~(2000 looked at bin-to-bin correlation and found no evidence that the assumption is invalid. On the other hand, Roth (2001 reported that p-mode pairs with nearby frequencies tend to be anti-correlated, possibly by a mode-coupling effect. This work is motivated by an idea that one may test if there exists an excess of anticorrelated power variations of pairs of solar p-modes. We have analyzed a 72-day MDI spherical-harmonic time series to examine temporal variations of p-mode power and their correlation. The power variation is computed by a running-window method after the previous study by Roth (2001, and then distribution function of power correlation between mode pairs is produced. We have confirmed Roth's result that there is an excess of anti-correlated p-mode pairs with nearby frequencies. On the other hand, the amount of excess was somewhat smaller than the previous study. Moreover, the distribution function does not exhibit significant change when we paired modes with non-nearby frequencies, implying that the excess is not due to mode coupling. We conclude that the origin of this excess of anticorrelations may not be a solar physical process, by pointing out the possibility of statistical bias playing the central role in producing the excess.

  5. A Multi-Site Campaign to Measure Solar-Like Oscillations in Procyon. II. Mode Frequencies

    DEFF Research Database (Denmark)

    Bedding, Timothy R.; Kjeldsen, Hans; Campante, Tiago L.

    2010-01-01

      We have analyzed data from a multi-site campaign to observe oscillations in the F5 star Procyon. The data consist of high-precision velocities that we obtained over more than three weeks with 11 telescopes. A new method for adjusting the data weights allows us to suppress the sidelobes in the p...

  6. Neutrino Oscillations Physics

    Science.gov (United States)

    Fogli, Gianluigi

    2005-06-01

    We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.

  7. Astrospheres and Solar-like Stellar Winds

    Directory of Open Access Journals (Sweden)

    Wood Brian E.

    2004-07-01

    Full Text Available Stellar analogs for the solar wind have proven to be frustratingly difficult to detect directly. However, these stellar winds can be studied indirectly by observing the interaction regions carved out by the collisions between these winds and the interstellar medium (ISM. These interaction regions are called "astrospheres", analogous to the "heliosphere" surrounding the Sun. The heliosphere and astrospheres contain a population of hydrogen heated by charge exchange processes that can produce enough H I Ly alpha absorption to be detectable in UV spectra of nearby stars from the Hubble Space Telescope (HST. The amount of astrospheric absorption is a diagnostic for the strength of the stellar wind, so these observations have provided the first measurements of solar-like stellar winds. Results from these stellar wind studies and their implications for our understanding of the solar wind are reviewed here. Of particular interest are results concerning the past history of the solar wind and its impact on planetary atmospheres.

  8. Investigation of matter enhanced neutrino oscillations relevant to the solar neutrino problem

    International Nuclear Information System (INIS)

    Losecco, J.M.; Bionta, R.M.; Casper, D.; Claus, R.; Errede, S.; Foster, G.; Park, H.S.; Seidel, S.; Shumard, E.; Sinclair, D.; Stone, J.L.; Sulak, L.; Van der Velde, J.C.; Blewitt, G.; Cortez, B.; Lehmann, E.; Bratton, C.B.; Gajewski, W.; Ganezer, K.S.; Haines, T.J.; Kropp, W.R.; Reines, F.; Schultz, J.; Sobel, H.W.; Wuest, C.; Goldhaber, M.; Jones, T.W.; Kielczewska, D.; Learned, J.G.; Svoboda, R.

    1987-01-01

    We study the effect of matter enhanced neutrino oscillations on atmospheric neutrinos. A recently proposed solution to the solar neutrino problem with Δm 2 =1.1x10 -4 eV 2 suggests enhanced effects in the range 200 MeV-500 MeV. We find no evidence of this effect for ν μ ??ν e mixing. Limits are set on the magnitude of the mixing angle. Our limit is sin θ V <0.14 at 90% confidence level. The limit is dominated by statistical errors and may be improved. (orig.)

  9. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  10. Bipolaron assisted Bloch-like oscillations in organic lattices

    International Nuclear Information System (INIS)

    Ribeiro, Luiz Antonio; Ferreira da Cunha, Wiliam; Magela e Silva, Geraldo

    2017-01-01

    The transport of a dissociated bipolaron in organic one-dimensional lattices is theoretically investigated in the scope of a tight-binding model that includes electron-lattice interactions and an external electric field. Remarkably, the results point to a physical picture in which the dissociated bipolaron propagates as a combined state of two free-like electrons that coherently perform spatial Bloch oscillations (BO) above a critical field strength. It was also obtained that the BO's trajectory presents a net forward motion in the direction of the applied electric field. The impact of dynamical disorder in the formation of electronic BOs is determined.

  11. Bipolaron assisted Bloch-like oscillations in organic lattices

    Science.gov (United States)

    Ribeiro, Luiz Antonio; Ferreira da Cunha, Wiliam; Magela e Silva, Geraldo

    2017-06-01

    The transport of a dissociated bipolaron in organic one-dimensional lattices is theoretically investigated in the scope of a tight-binding model that includes electron-lattice interactions and an external electric field. Remarkably, the results point to a physical picture in which the dissociated bipolaron propagates as a combined state of two free-like electrons that coherently perform spatial Bloch oscillations (BO) above a critical field strength. It was also obtained that the BO's trajectory presents a net forward motion in the direction of the applied electric field. The impact of dynamical disorder in the formation of electronic BOs is determined.

  12. Bipolaron assisted Bloch-like oscillations in organic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Luiz Antonio, E-mail: ribeirojr@unb.br [International Center for Condensed Matter Physics, University of Brasília, P.O. Box 04531, 70.919-970, Brasília, DF (Brazil); University of Brasília, UnB Faculty of Planaltina, 73.345-010, Planaltina, DF (Brazil); Ferreira da Cunha, Wiliam; Magela e Silva, Geraldo [Institute of Physics, University of Brasília, 70.919-970, Brasília (Brazil)

    2017-06-15

    The transport of a dissociated bipolaron in organic one-dimensional lattices is theoretically investigated in the scope of a tight-binding model that includes electron-lattice interactions and an external electric field. Remarkably, the results point to a physical picture in which the dissociated bipolaron propagates as a combined state of two free-like electrons that coherently perform spatial Bloch oscillations (BO) above a critical field strength. It was also obtained that the BO's trajectory presents a net forward motion in the direction of the applied electric field. The impact of dynamical disorder in the formation of electronic BOs is determined.

  13. Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler

    Energy Technology Data Exchange (ETDEWEB)

    Mazumdar, A. [Homi Bhabha Centre for Science Education, TIFR, V. N. Purav Marg, Mankhurd, Mumbai 400088 (India); Monteiro, M. J. P. F. G.; Cunha, M. S. [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ballot, J. [CNRS, Institut de Recherche en Astrophysique et Planétologie, 14 avenue Edouard Belin, F-31400 Toulouse (France); Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Basu, S. [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 065208101 (United States); Houdek, G.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Metcalfe, T. S. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); García, R. A. [Laboratoire AIM, CEA/DSM, CNRS, Université Paris Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Salabert, D. [Laboratoire Lagrange, UMR7293, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d' Azur, F-06304 Nice (France); Verner, G. A.; Chaplin, W. J. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Sanderfer, D. T. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Seader, S. E.; Smith, J. C. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-02-10

    For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results also agree reasonably well with the locations of these layers in representative models of the stars. These results firmly establish the presence of the oscillatory signals in the asteroseismic data and the viability of several techniques to determine the location of acoustic glitches inside stars.

  14. Persistent 1.5s oscillations superimposed to a solar burst observed at two mm-wavelengths

    International Nuclear Information System (INIS)

    Zodi, A.M.; Kaufmann, P.; Zirin, H.

    1983-05-01

    Long-enduring quasi-periodic oscillations (1.5s) superimposed to a solar burst were by the first time observed simultaneously at two different mm-wayelengths (22 GHz and 44 GHz). The oscillations were present throughout the burst duration (about 10 min), and were delayed at 44 GHz with respect to 22 GHz by 0.3s. The relative amplitude of the oscillation was of about 20 percent at 44 GHz and of about 5 percent at 22 GHz. Interferometer measurements at 10.6 GHz indicated the burst source stable within 1 arcsec. HeD3 line flare indicated two persistent small spots separated by about 10 arcsec. The 22/44 GHz burst position has good correspondence with the HeD3 spots' location. The oscillations display features which appear to distinguish them from ultrafast time structures found in other bursts. One possible interpretation was suggested by assuming a modulation of the gyrosynchrotron emission of trapped electrons by a variable magnetic field on a double burst source, optically thin at 44 GHz and with optical thickness > or equivalent 0.3 at 22 GHz. (Author) [pt

  15. Umbral oscillations as a probe of sunspot

    International Nuclear Information System (INIS)

    Abdelatif, T.E.H.

    1985-01-01

    The interaction of the solar five-minute oscillations with a sunspot is thoroughly explored, both on observational and theoretical grounds. Simple theoretical models are developed in order to understand the observations of umbral oscillations. Observations made at the National Solar Observatory detected both the three-minute and five-minute umbral oscillations at photospheric heights. The three-minute oscillations were found to have a kinetic energy density six times higher in the photosphere than in the chromosphere and to be concentrated in the central part of the umbra, supporting the photospheric resonance theory for the three-minute umbral oscillations. The five-minute oscillations are attenuated in the umbra, which appears to act as a filter in selecting some of the peaks in the power spectrum of five-minute oscillations in the surrounding photosphere. The k-omega power spectrum of the umbral oscillations shows a shift of power to longer wavelengths. Theoretical models of the transmission of acoustic waves into a magnetic region explain both observed effects

  16. Sun oscillations and the problem of its internal structure

    International Nuclear Information System (INIS)

    Severnyj, A.B.; Kotov, V.A.; Tsap, T.T.

    1979-01-01

    Analysis of global solar oscillation measurements for five years (1974-1978, more than 1000 hours of observations, 215 days) is given. It is shown that the period of oscillations is 160sup(m)x0.10+-0sup(m)x004 and the amplitude is 1 m/s. The phases of oscillations, obtained at the Crimea, Stanford, Kitt Peak and Pic du Midi, are in good agreement, thus making the assumption on ''telluric origin'' of the oscillations improbable. It has been found: 1) slow, synchronous (at Crimea and Stanford) drift of the phase of velocity maximum from year to year and 2) the dependence of amplitude on the phase of 27-day rotational period of the Sun which favours the assumption on the quadrupole character of oscillations. It is pointed out that these facts, as well as the absence of oscillation waves in the telluric line observed simultaneously with the solar line, exclude the possibility of explaining the results as a statistical artifact. It has also been shown that the differential extinction effect produces an oscillation effect which is by an order of magnitude lower than the observed one. The following preliminary results are noted: a) the appearance of synchronous oscillations of the mean solar magnetic field of the brightness of the Sun and of the solar radio emission; b) the disappearance of the oscillations from time to time, possibly due to the effect of the supergranulation passage across the solar disk. The oscillations observed imply new important restrictions on the problem of the internal constitution of the Sun, and point to the possibility of non-radiative heat-transfer inside the Sun which might help the solution of the low neutrino flux problem

  17. He-like spectra from laboratory plasmas and solar flares

    International Nuclear Information System (INIS)

    Kato, Takako

    1990-01-01

    The X-ray spectra of He-like ions from tokamaks and solar flares have been measured. Several physical parameters of plasma can be derived from the X-ray spectra of He-like ions. The ion temperature can be derived from the doppler width of a resonance line. The electron temperature is obtained from the intensity ratio of dielectronic satellite lines to a resonance line. The energy level for the prominent lines is shown. The line q is produced mainly by the inner-shell excitation of Li-like ions, and line beta is produced by the inner-shell excitation of Be-like ions. The intensity ratios give the ion density ratios. The intensities of the intercombination and the forbidden lines are affected by the recombination from H-like ions. The synthetic spectra including excitation, ionization and recombination processes are fitted to the measurement. In this paper, the He-like X-ray spectra of the titanium ions from TFTR tokamak plasma and of the iron ions from solar flares are discussed, paying attention to the presence of high energy electrons which affect the spectra and ionization balance. Atomic data, the spectra from the TFTR tokamak, the spectra from solar flares and so on are described. (K.I.)

  18. Nonlinear Effects in Three-minute Oscillations of the Solar Chromosphere. I. An Analytical Nonlinear Solution and Detection of the Second Harmonic

    International Nuclear Information System (INIS)

    Chae, Jongchul; Litvinenko, Yuri E.

    2017-01-01

    The vertical propagation of nonlinear acoustic waves in an isothermal atmosphere is considered. A new analytical solution that describes a finite-amplitude wave of an arbitrary wavelength is obtained. Although the short- and long-wavelength limits were previously considered separately, the new solution describes both limiting cases within a common framework and provides a straightforward way of interpolating between the two limits. Physical features of the nonlinear waves in the chromosphere are described, including the dispersive nature of low-frequency waves, the steepening of the wave profile, and the influence of the gravitational field on wavefront breaking and shock formation. The analytical results suggest that observations of three-minute oscillations in the solar chromosphere may reveal the basic nonlinear effect of oscillations with combination frequencies, superposed on the normal oscillations of the system. Explicit expressions for a second-harmonic signal and the ratio of its amplitude to the fundamental harmonic amplitude are derived. Observational evidence of the second harmonic, obtained with the Fast Imaging Solar Spectrograph, installed at the 1.6 m New Solar Telescope of the Big Bear Observatory, is presented. The presented data are based on the time variations of velocity determined from the Na i D 2 and H α lines.

  19. Nonlinear Effects in Three-minute Oscillations of the Solar Chromosphere. I. An Analytical Nonlinear Solution and Detection of the Second Harmonic

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jongchul [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton 3240 (New Zealand)

    2017-08-01

    The vertical propagation of nonlinear acoustic waves in an isothermal atmosphere is considered. A new analytical solution that describes a finite-amplitude wave of an arbitrary wavelength is obtained. Although the short- and long-wavelength limits were previously considered separately, the new solution describes both limiting cases within a common framework and provides a straightforward way of interpolating between the two limits. Physical features of the nonlinear waves in the chromosphere are described, including the dispersive nature of low-frequency waves, the steepening of the wave profile, and the influence of the gravitational field on wavefront breaking and shock formation. The analytical results suggest that observations of three-minute oscillations in the solar chromosphere may reveal the basic nonlinear effect of oscillations with combination frequencies, superposed on the normal oscillations of the system. Explicit expressions for a second-harmonic signal and the ratio of its amplitude to the fundamental harmonic amplitude are derived. Observational evidence of the second harmonic, obtained with the Fast Imaging Solar Spectrograph, installed at the 1.6 m New Solar Telescope of the Big Bear Observatory, is presented. The presented data are based on the time variations of velocity determined from the Na i D{sub 2} and H α lines.

  20. Anisotropic inharmonic Higgs oscillator and related (MICZ-)Kepler-like systems

    International Nuclear Information System (INIS)

    Nersessian, Armen; Yeghikyan, Vahagn

    2008-01-01

    We propose the integrable (pseudo)spherical generalization of the four-dimensional anisotropic oscillator with additional nonlinear potential. Performing its Kustaanheimo-Stiefel transformation we then obtain the pseudospherical generalization of the MICZ-Kepler system with linear and cos θ potential terms. We also present the generalization of the parabolic coordinates, in which this system admits the separation of variables. Finally, we get the spherical analog of the presented MICZ-Kepler-like system

  1. Testing the principle of equivalence by solar neutrinos

    International Nuclear Information System (INIS)

    Minakata, Hisakazu; Washington Univ., Seattle, WA; Nunokawa, Hiroshi; Washington Univ., Seattle, WA

    1994-04-01

    We discuss the possibility of testing the principle of equivalence with solar neutrinos. If there exists a violation of the equivalence principle quarks and leptons with different flavors may not universally couple with gravity. The method we discuss employs a quantum mechanical phenomenon of neutrino oscillation to probe into the non-university of the gravitational couplings of neutrinos. We develop an appropriate formalism to deal with neutrino propagation under the weak gravitational fields of the sun in the presence of the flavor mixing. We point out that solar neutrino observation by the next generation water Cherenkov detectors can improve the existing bound on violation of the equivalence principle by 3-4 orders of magnitude if the nonadiabatic Mikheyev-Smirnov-Wolfenstein mechanism is the solution to the solar neutrino problem

  2. Testing the principle of equivalence by solar neutrinos

    International Nuclear Information System (INIS)

    Minakata, H.; Nunokawa, H.

    1995-01-01

    We discuss the possibility of testing the principle of equivalence with solar neutrinos. If there exists a violation of the equivalence principle, quarks and leptons with different flavors may not universally couple with gravity. The method we discuss employs the quantum mechanical phenomenon of neutrino oscillation to probe into the nonuniversality of the gravitational couplings of neutrinos. We develop an appropriate formalism to deal with neutrino propagation under the weak gravitational fields of the Sun in the presence of the flavor mixing. We point out that solar neutrino observation by the next generation water Cherenkov detectors can place stringent bounds on the violation of the equivalence principle to 1 part in 10 15 --10 16 if the nonadiabatic Mikheyev-Smirnov-Wolfenstein mechanism is the solution to the solar neutrino problem

  3. Evidence for Mikheyev-Smirnov-Wolfenstein effects in solar neutrino flavor transitions

    International Nuclear Information System (INIS)

    Fogli, G.L.; Lisi, E.; Marrone, A.; Palazzo, A.

    2004-01-01

    We point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. More precisely, one can safely reject the null hypothesis of no MSW interaction energy in matter, despite the fact that the interaction amplitude (formally treated as a free parameter) is still weakly constrained by the current phenomenology. Such a constraint can be improved, however, by future data from the KamLAND experiment. In the standard MSW case, we also perform an updated analysis of two-family active oscillations of solar and reactor neutrinos

  4. Evidence for Mikheyev-Smirnov-Wolfenstein effects in solar neutrino flavor transitions

    Science.gov (United States)

    Fogli, G. L.; Lisi, E.; Marrone, A.; Palazzo, A.

    2004-03-01

    We point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. More precisely, one can safely reject the null hypothesis of no MSW interaction energy in matter, despite the fact that the interaction amplitude (formally treated as a free parameter) is still weakly constrained by the current phenomenology. Such a constraint can be improved, however, by future data from the KamLAND experiment. In the standard MSW case, we also perform an updated analysis of two-family active oscillations of solar and reactor neutrinos.

  5. Dynamical Fano-Like Interference between Rabi Oscillations and Coherent Phonons in a Semiconductor Microcavity System.

    Science.gov (United States)

    Yoshino, S; Oohata, G; Mizoguchi, K

    2015-10-09

    We report on dynamical interference between short-lived Rabi oscillations and long-lived coherent phonons in CuCl semiconductor microcavities resulting from the coupling between the two oscillations. The Fourier-transformed spectra of the time-domain signals obtained from semiconductor microcavities by using a pump-probe technique show that the intensity of the coherent longitudinal optical phonon of CuCl is enhanced by increasing that of the Rabi oscillation, which indicates that the coherent phonon is driven by the Rabi oscillation through the Fröhlich interaction. Moreover, as the Rabi oscillation frequency decreases upon crossing the phonon frequency, the spectral profile of the coherent phonon changes from a peak to a dip with an asymmetric structure. The continuous wavelet transformation reveals that these peak and dip structures originate from constructive and destructive interference between Rabi oscillations and coherent phonons, respectively. We demonstrate that the asymmetric spectral structures in relation to the frequency detuning are well reproduced by using a classical coupled oscillator model on the basis of dynamical Fano-like interference.

  6. Solar constraints

    International Nuclear Information System (INIS)

    Provost, J.

    1984-01-01

    Accurate tests of the theory of stellar structure and evolution are available from the Sun's observations. The solar constraints are reviewed, with a special attention to the recent progress in observing global solar oscillations. Each constraint is sensitive to a given region of the Sun. The present solar models (standard, low Z, mixed) are discussed with respect to neutrino flux, low and high degree five-minute oscillations and low degree internal gravity modes. It appears that actually there do not exist solar models able to fully account for all the observed quantities. (Auth.)

  7. GLOBAL SAUSAGE OSCILLATION OF SOLAR FLARE LOOPS DETECTED BY THE INTERFACE REGION IMAGING SPECTROGRAPH

    International Nuclear Information System (INIS)

    Tian, Hui; He, Jiansen; Young, Peter R.; Reeves, Katharine K.; Wang, Tongjiang; Antolin, Patrick; Chen, Bin

    2016-01-01

    An observation from the Interface Region Imaging Spectrograph reveals coherent oscillations in the loops of an M1.6 flare on 2015 March 12. Both the intensity and Doppler shift of Fe xxi 1354.08 Å show clear oscillations with a period of ∼25 s. Remarkably similar oscillations were also detected in the soft X-ray flux recorded by the Geostationary Operational Environmental Satellites ( GOES ). With an estimated phase speed of ∼2420 km s −1 and a derived electron density of at least 5.4 × 10 10 cm −3 , the observed short-period oscillation is most likely the global fast sausage mode of a hot flare loop. We find a phase shift of ∼ π /2 (1/4 period) between the Doppler shift oscillation and the intensity/ GOES oscillations, which is consistent with a recent forward modeling study of the sausage mode. The observed oscillation requires a density contrast between the flare loop and coronal background of a factor ≥42. The estimated phase speed of the global mode provides a lower limit of the Alfvén speed outside the flare loop. We also find an increase of the oscillation period, which might be caused by the separation of the loop footpoints with time.

  8. A 65--70 year oscillation in observed surface temperatures

    International Nuclear Information System (INIS)

    Schlesinger, M.E.; Ramankutty, N.

    1994-01-01

    There are three possible sources for the 65--70-year ''global'' oscillation: (1) random forcing of the ocean by the atmosphere, such as by white noise; (2) external oscillatory forcing of the climate system, such as by a variation in the solar irradiance; and (3) an internal oscillation of the atmosphere-ocean system. It is unlikely that putative variations in solar irradiance are the source of the oscillation because solar forcing should generate a global response, but the oscillation is not global. It is also unlikely that white-noise forcing is the source of the oscillation because such forcing should generate an oceanwide response, but the oscillation is not panoceanic. Consequently, the most probable cause of the oscillation is an internal oscillation of the atmosphere-ocean system. This conclusion is supported by a growing body of observational evidence and coupled atmosphere/ocean general circulation model simulation results. Comparison of the regional and global-mean temperature changes caused by the oscillation with those induced by GHG + ASA forcing shows that the rapid rise in global-mean temperature between about 1908 and 1946, and the subsequent reversal of this warming until about 1965 were the result of the oscillation. In the North Atlantic and North American regions, the domination of the GHG + ASA-induced warming by the oscillation has obscured and confounded detection of this warming

  9. Neutrino oscillations: present status and outlook

    International Nuclear Information System (INIS)

    Schwetz, T.

    2005-01-01

    In this talk the present status of neutrino oscillations is reviewed, based on a global analysis of world neutrino oscillation data from solar, atmospheric, reactor, and accelerator neutrino experiments. Furthermore, I discuss the expected improvements in the determination of neutrino parameters by future oscillation experiments within a timescale of 10 years. (author)

  10. Two different mechanisms associated with ripple-like oscillations (100-250 Hz) in the human epileptic subiculum in vitro

    Science.gov (United States)

    Alvarado-Rojas, C; Huberfeld, G; Baulac, M; Clemenceau, S; Charpier, S; Miles, R; Menendez de la Prida, L; Le Van Quyen, M

    2015-01-01

    Transient high-frequency oscillations (150-600 Hz) in local field potential generated by human hippocampal and parahippocampal areas have been related to both physiological and pathological processes. The cellular basis and effects of normal and abnormal forms of high-frequency oscillations (HFO) has been controversial. Here, we searched for HFOs in slices of the subiculum prepared from human hippocampal tissue resected for treatment of pharmacoresistant epilepsy. HFOs occurred spontaneously in extracellular field potentials during interictal discharges (IID) and also during pharmacologically induced preictal discharges (PID) preceding ictal-like events. While most of these events might be considered pathological since they invaded the fast ripple band (>250 Hz), others were spectrally similar to physiological ripples (150-250 Hz). Do similar cellular mechanisms underly IID-ripples and PID-ripples? Are ripple-like oscillations a valid proxy of epileptogenesis in human TLE? With combined intra- or juxta-cellular and extracellular recordings, we showed that, despite overlapping spectral components, ripple-like IID and PID oscillations were associated with different cellular and synaptic mechanisms. IID-ripples were associated with rhythmic GABAergic and glutamatergic synaptic potentials with moderate neuronal firing. In contrast, PID-ripples were associated with depolarizing synaptic inputs frequently reaching the threshold for bursting in most cells. Thus ripple-like oscillations (100-250 Hz) in the human epileptic hippocampus are associated with different mechanisms for synchrony reflecting distinct dynamic changes in inhibition and excitation during interictal and pre-ictal states. PMID:25448920

  11. Mikheyev-smirnov-wolfenstein effects in vacuum oscillations

    Science.gov (United States)

    Friedland

    2000-07-31

    We point out that for solar neutrino oscillations with the mass-squared difference of Deltam(2) approximately 10(-10)-10(-9) eV(2), i.e., in the so-called vacuum oscillation range, the solar matter effects are non-negligible, particularly for the low energy pp neutrinos. One consequence of this is that the values of the mixing angle straight theta and pi/2-straight theta are not equivalent, making it necessary to consider the entire physical range of the mixing angle 0oscillation parameters.

  12. Mikheyev-Smirnov-Wolfenstein Effects in Vacuum Oscillations

    International Nuclear Information System (INIS)

    Friedland, Alexander

    2000-01-01

    We point out that for solar neutrino oscillations with the mass-squared difference of Δm 2 ∼10 -10 - 10 -9 eV 2 , i.e., in the so-called vacuum oscillation range, the solar matter effects are non-negligible, particularly for the low energy pp neutrinos. One consequence of this is that the values of the mixing angle θ and π/2-θ are not equivalent, making it necessary to consider the entire physical range of the mixing angle 0≤θ≤π/2 when determining the allowed values of the neutrino oscillation parameters. (c) 2000 The American Physical Society

  13. FIRST STUDY OF DARK MATTER PROPERTIES WITH DETECTED SOLAR GRAVITY MODES AND NEUTRINOS

    Energy Technology Data Exchange (ETDEWEB)

    Turck-Chieze, S.; Garcia, R. A. [CEA/DSM/IRFU/SAp-AIM, CE Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette (France); Lopes, I. [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ballot, J. [Institut de Recherche en Astrophysique et Planetologie, CNRS, 14 avenue Edouard Belin and Universite de Toulouse, UPS-OMP, IRAP, 31400 Toulouse (France); Couvidat, S. [W.W. Hansen. E. P. L., Stanford University, Stanford, CA 94305 (United States); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Salabert, D. [CNRS, Observatoire de la Cote d' Azur, Universite de Nice Sophia-Antipolis, BP 4229, 06304 Nice Cedex 4 (France); Silk, J., E-mail: Sylvaine.Turck-Chieze@cea.fr [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France)

    2012-02-10

    We derive new limits on the cold dark matter properties for weakly interacting massive particles (WIMPs), potentially trapped in the solar core by using for the first time the central temperature constrained by boron neutrinos and the central density constrained by the dipolar gravity modes detected with the Global Oscillations at Low Frequency/Solar Helioseismic Observatory instrument. These detections disfavor the presence of non-annihilating WIMPs for masses {<=}10 GeV and spin dependent cross-sections >5 Multiplication-Sign 10{sup -36} cm{sup 2} in the solar core but cannot constrain WIMP annihilation models. We suggest that in the coming years helio- and asteroseismology will provide complementary probes of dark matter.

  14. Photospheric Origin of Three-minute Oscillations in a Sunspot

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jongchul; Lee, Jeongwoo; Cho, Kyuhyoun; Song, Donguk [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Kyungsuk; Yurchyshyn, Vasyl [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of)

    2017-02-10

    The origin of the three-minute oscillations of intensity and velocity observed in the chromosphere of sunspot umbrae is still unclear. We investigated the spatio-spectral properties of the 3 minute oscillations of velocity in the photosphere of a sunspot umbra as well as those in the low chromosphere using the spectral data of the Ni i λ 5436, Fe i λ 5435, and Na i D{sub 2} λ 5890 lines taken by the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. As a result, we found a local enhancement of the 3 minute oscillation power in the vicinities of a light bridge (LB) and numerous umbral dots (UDs) in the photosphere. These 3 minute oscillations occurred independently of the 5 minute oscillations. Through wavelet analysis, we determined the amplitudes and phases of the 3 minute oscillations at the formation heights of the spectral lines, and they were found to be consistent with the upwardly propagating slow magnetoacoustic waves in the photosphere with energy flux large enough to explain the chromospheric oscillations. Our results suggest that the 3 minute chromospheric oscillations in this sunspot may have been generated by magnetoconvection occurring in the LB and UDs.

  15. Neutrino Oscillations:. a Phenomenological Approach

    Science.gov (United States)

    Fogli, G. L.; Lisi, E.; Marrone, A.; Palazzo, A.; Rotunno, A. M.; Montanino, D.

    We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.

  16. Periodic analysis of solar activity and its link with the Arctic oscillation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Weizheng; Li, Chun; Du, Ling; Huang, Fei [Ocean University of China, 14-1' -601, 2117 Jinshui Road, Qingdao 266100 (China); Li, Yanfang, E-mail: quweizhe@ouc.edu.cn [Yantai Institute of Coastal Zone Research Chinese Academy of Sciences (China)

    2014-12-01

    Based on spectrum analysis, we provide the arithmetic expressions of the quasi 11 yr cycle, 110 yr century cycle of relative sunspot numbers, and quasi 22 yr cycle of solar magnetic field polarity. Based on a comparative analysis of the monthly average geopotential height, geopotential height anomaly, and temperature anomaly of the northern hemisphere at locations with an air pressure of 500 HPa during the positive and negative phases of AO (Arctic Oscillation), one can see that the abnormal warming period in the Arctic region corresponds to the negative phase of AO, while the anomalous cold period corresponds to its positive phase. This shows that the abnormal change in the Arctic region is an important factor in determining the anomalies of AO. In accordance with the analysis performed using the successive filtering method, one can see that the AO phenomenon occurring in January shows a clear quasi 88 yr century cycle and quasi 22 yr decadal cycle, which are closely related to solar activities. The results of our comparative analysis show that there is a close inverse relationship between the solar activities (especially the solar magnetic field index changes) and the changes in the 22 yr cycle of the AO occurring in January, and that the two trends are basically opposite of each other. That is to say, in most cases after the solar magnetic index MI rises from the lowest value, the solar magnetic field turns from north to south, and the high-energy particle flow entering the Earth's magnetosphere increases to heat the polar atmosphere, thus causing the AO to drop from the highest value; after the solar magnetic index MI drops from the highest value, the solar magnetic field turns from south to north, and the solar high-energy particle flow passes through the top of the Earth's magnetosphere rather than entering it to heat the polar atmosphere. Thus the polar temperature drops, causing the AO to rise from the lowest value. In summary, the variance

  17. Solar cycles and climate variations

    International Nuclear Information System (INIS)

    Chistyakov, V.F.

    1990-01-01

    Climate oscillations with 100-, 200- and 300-year periods are positively correlated with solar activity oscillations: the higher is solar activity the warmer is climate. According to geological data (varved clays) it is determined, that length of cycles has decreased from 23.4 up to 11 years during latter 2.5 billion years. 12-year cycles occurred during the great glaciation periods, while 10-year cycles occurred during interglaciation periods. It is suggested, that these oscillations are related with variations of the solar activity and luminescence

  18. Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Celso, E-mail: cbnfreitas@gmail.com; Macau, Elbert, E-mail: elbert.macau@inpe.br [Associate Laboratory for Computing and Applied Mathematics - LAC, Brazilian National Institute for Space Research - INPE (Brazil); Pikovsky, Arkady, E-mail: pikovsky@uni-potsdam.de [Department of Physics and Astronomy, University of Potsdam, Germany and Department of Control Theory, Nizhni Novgorod State University, Gagarin Av. 23, 606950, Nizhni Novgorod (Russian Federation)

    2015-04-15

    We study the Deserter Hubs Model: a Kuramoto-like model of coupled identical phase oscillators on a network, where attractive and repulsive couplings are balanced dynamically due to nonlinearity of interactions. Under weak force, an oscillator tends to follow the phase of its neighbors, but if an oscillator is compelled to follow its peers by a sufficient large number of cohesive neighbors, then it actually starts to act in the opposite manner, i.e., in anti-phase with the majority. Analytic results yield that if the repulsion parameter is small enough in comparison with the degree of the maximum hub, then the full synchronization state is locally stable. Numerical experiments are performed to explore the model beyond this threshold, where the overall cohesion is lost. We report in detail partially synchronous dynamical regimes, like stationary phase-locking, multistability, periodic and chaotic states. Via statistical analysis of different network organizations like tree, scale-free, and random ones, we found a measure allowing one to predict relative abundance of partially synchronous stationary states in comparison to time-dependent ones.

  19. Application of the Lyapunov exponent to detect noise-induced chaos in oscillating microbial cultures

    International Nuclear Information System (INIS)

    Patnaik, P.R.

    2005-01-01

    Oscillating microbial processes can, under certain conditions, gravitate into chaotic behavior induced by external noise. Detection and control of chaos are important for the survival of the microorganisms and to operate a process usefully. In this study the largest Lyapunov exponent is recommended as a convenient and reliable index of chaos in continuous oscillating cultures. For the growth of Saccharomyces cerevisiae as a model system, the exponents increase with the oxygen mass transfer coefficient and decrease as the dilution rate increases. By comparing with the corresponding time-domain oscillations determined earlier, it is inferred that weakly oscillating cultures are less likely to be driven to chaotic behavior. The main carbon source, glucose, is quite robust to chaotic destabilization, thus enhancing its suitability as a manipulated variable for bioreactor control

  20. Oscillations of neutral K mesons in the theory of dynamical expansion of the weak interaction theory or in the theory of dynamical analogy of the Cabibbo-Kobayashi-Maskawa matrices

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    1998-01-01

    The elements of the theory of dynamical expansion of the weak interaction theory working on the tree level, i.e., the theory of dynamical analogy of Cabibbo-Kobayashi-Maskawa matrices, are given. The equation for mass difference of K 1 0 , K 2 0 mesons or the length of K 0 -, K bar 0 - meson oscillations is calculated. In the framework of this theory the oscillations of K 0 , K 0 mesons which arise at violation of strangeness by B bosons are considered. The general conclusion is: the length of K 0 -, K 0 -meson oscillations is proportional to the mass of B boson (which changes strangeness) in the fourth degree

  1. Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions

    Science.gov (United States)

    Bick, Christian; Sebek, Michael; Kiss, István Z.

    2017-10-01

    We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.

  2. The Effects of Magnetic-Field Geometry on Longitudinal Oscillations of Solar Prominences: Cross-Sectional Area Variation for Thin Tubes

    Science.gov (United States)

    Luna, M.; Diaz, A. J.; Oliver, R.; Terradas, J.; Karpen, J.

    2016-01-01

    Solar prominences are subject to both field-aligned (longitudinal) and transverse oscillatory motions, as evidenced by an increasing number of observations. Large-amplitude longitudinal motions provide valuable information on the geometry of the filament channel magnetic structure that supports the cool prominence plasma against gravity. Our pendulum model, in which the restoring force is the gravity projected along the dipped field lines of the magnetic structure, best explains these oscillations. However, several factors can influence the longitudinal oscillations, potentially invalidating the pendulum model. Aims. The aim of this work is to study the influence of large-scale variations in the magnetic field strength along the field lines, i.e., variations of the cross-sectional area along the flux tubes supporting prominence threads. Methods. We studied the normal modes of several flux tube configurations, using linear perturbation analysis, to assess the influence of different geometrical parameters on the oscillation properties. Results. We found that the influence of the symmetric and asymmetric expansion factors on longitudinal oscillations is small.Conclusions. We conclude that the longitudinal oscillations are not significantly influenced by variations of the cross-section of the flux tubes, validating the pendulum model in this context.

  3. Power spectrum of an injection-locked Josephson oscillator

    International Nuclear Information System (INIS)

    Stancampiano, C.V.; Shapiro, S.

    1975-01-01

    Experiments have shown that a Josephson oscillator, exposed to a weak narrow-band input signal, exhibits behavior characteristic of an injection-locked oscillator. When in lock, Adler's theory of injection locking describes the experimental observations reasonably well. The range of applicability of the theory is extended to the out-of-lock regime where a spectrum of output frequencies is observed. Obtaining the theoretical output power spectrum requires solving a differential equation having the same form as the equation describing the resistively shunted junction model of Stewart and of McCumber. Experimental measurements of the output spectrum of a nearly locked Josephson oscillator are shown to be in reasonable agreement with the theory. Additional results discussed briefly include the observation of a frequency dependence of the locked Josephson oscillator output and experiments in which a Josephson oscillator-mixer was injection locked by a weak signal at the rf

  4. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  5. On p-mode oscillations in stars from 1 solar mass to 2 solar masses

    Science.gov (United States)

    Audard, N.; Provost, J.

    1994-06-01

    The structure of stars more massive than about 1.2 solar masses is characterized by a convective core. We have studied the evolution with age and mass of acoustic frequencies of high radical order n and low degree l for models of stars of 1, 1.5 and 2 solar masses. Using a polynomial approximation for the frequency, the p-mode spectrum can be characterized by derived global asteroseismic coefficients, i.e. the mean separation nu0 is approximately equal to nun, l - nun - 1, l and the small frequency separation Delta nu0, 2 is approximately equal to nun, l = 0 - nun - 1, l = 2. The diagram (nu0, delta nu0, 2/nu0) plotted along the evolutionary tracks would help to separate the effects of age and mass. We study the sensitivity of these coefficients and other observable quantities, like the radius and luminosity, to stellar parameters in the vicinity of 1 solar mass and 2 solar masses; this sensitivity substantially depends on the stellar mass and must be taken into account for asteroseismic calibration of stellar clusters. Considering finally some rapid variations of the internal structure, we show that the second frequency difference delta2 nu = nu(subn, l) - 2 nun - 1, l + nun - 2, l exponent gamma in the He II ionization zone.

  6. Speed of sound in the solar interior

    International Nuclear Information System (INIS)

    Christensen-Dalsgaard, J.; Rhodes, E.J. Jr.

    1985-01-01

    Frequencies of solar 5-min oscillations can be used to determine directly the sound speed of the solar interior. The determination described does not depend on a solar model, but relies only on a simple asymptotic description of the oscillations in terms of trapped acoustic waves. (author)

  7. Oscillating scalar fields in extended quintessence

    Science.gov (United States)

    Li, Dan; Pi, Shi; Scherrer, Robert J.

    2018-01-01

    We study a rapidly oscillating scalar field with potential V (ϕ )=k |ϕ |n nonminimally coupled to the Ricci scalar R via a term of the form (1 -8 π G0ξ ϕ2)R in the action. In the weak coupling limit, we calculate the effect of the nonminimal coupling on the time-averaged equation of state parameter γ =(p +ρ )/ρ . The change in ⟨γ ⟩ is always negative for n ≥2 and always positive for n change to be infinitesimally small at the present time whenever the scalar field dominates the expansion, but constraints in the early universe are not as stringent. The rapid oscillation induced in G also produces an additional contribution to the Friedman equation that behaves like an effective energy density with a stiff equation of state, but we show that, under reasonable assumptions, this effective energy density is always smaller than the density of the scalar field itself.

  8. The quasi-biennial oscillation of 1.7 years in ground level enhancement events

    Science.gov (United States)

    Velasco Herrera, V. M.; Pérez-Peraza, J.; Soon, W.; Márquez-Adame, J. C.

    2018-04-01

    The so-called Ground Level Enhancement events are sporadic relativistic solar particles measured at ground level by a network of cosmic ray detectors worldwide. These sporadic events are typically assumed to occur by random chance. However, we find that by studying the last 56 ground level enhancement events reported from 1966 through 2014, these events occur preferentially in the positive phase of the quasi-biennial oscillation of 1.7 year periodicity. These discrete ground level enhancement events show that there is another type of solar emission (i.e., wavelike packets) that occurs only in a specific phase of a very particular oscillation. We interpret this empirical result to support that ground level enhancement events are not a result of purely stochastic processes. We used the Morlet wavelet to analyze the phase of each of the periodicities found by the wavelet analyses and local variations of power spectral density in these sporadic events. We found quasi-regular periodicities of 10.4, 6.55, 4.12, 2.9, 1.73, 0.86, 0.61, 0.4 and 0.24 years in ground level enhancements. Although some of these quasi-biennial oscillation periodicities (i.e., oscillations operating between 0.6 and 4 years) may be interpreted as simply harmonics and overtones of the fundamental solar cycle from the underlying sun-spot magnetism phenomenon. The sources of these periodicities are still unclear. Also there is no clear mechanism for the variability of the quasi-biennial oscillation periodicities itself. The quasi-biennial oscillation periodicities are broadly considered to be a variation of solar activity, associated with the solar dynamo process. Also, the intensity of these periodicities is more important around the years of maximum solar activity because the quasi-biennial oscillation periodicities are modulated by the solar cycle where the Sun is more energetically enhanced during activity maxima. To identify the relationships among ground level enhancement, solar, and cosmic

  9. Solar polar rotation and its effect on heliospheric neutral fluxes

    Science.gov (United States)

    Sokol, J. M.; Grzedzielski, S.; Bzowski, M.

    2016-12-01

    The magnetic field in the solar polar corona exhibit a regular "ray-like" structure associated with large polar coronal holes during solar minimum. The solar rotation twists the magnetic field lines of the expanding fast solar wind over the poles. The twist induces a toroidal component of the polar magnetic field which results in magnetic forces directed towards the rotation axis. That is tantamount to a (weak) zeta pinch, known also in other astrophysical contexts (e.g. AGN plasmas). The pinch compresses the polar solar corona plasma and a cone-like enhancement in the solar wind density forms along the rotation axis. Though the effect is likely very dynamic, a time independent description is used here to get an order-of-magnitude estimate. The weak pinch is treated as a 1st order perturbation to the zero-order radial flow. The obtained density enhancement may affect the near and far heliosphere, modifying the charge-exchange and electron impact ionization rates of neutral atoms in interplanetary space. The charge exchange is the most effective ionization process for hydrogen and oxygen atoms, and electron impact ionization is a significant loss reaction for the helium atoms at close distances to the Sun. The change in the polar density due to the solar polar corona rotation could be of importance in the inner heliosphere for low energy atoms. We will present the influence of this effect on interstellar neutral gas distribution and H ENA fluxes observed by IBEX.

  10. The status of the solar neutrino problem and the Russian-American gallium experiment (SAGE)

    International Nuclear Information System (INIS)

    Bowles, T.J.

    1994-01-01

    Perhaps the most outstanding discrepancy between prediction and measurements in current particle physics comes from the solar neutrino problem, in which a large deficit of high-energy solar neutrinos is observed. Many Nonstandard Solar Models have been invoked to try to reduce the predicted flux, but all have run into problems in trying to reproduce other measured parameters (e.g., the luminosity) of the Sun. Other explanations involving new physics such as neutrino decay and neutrino oscillations, etc. have also been proffered. Again, most of these explanations have been ruled out by either laboratory or astrophysical measurements. It appears that perhaps the most likely particle physics solution is that of matter enhanced neutrino oscillation, the Mikheyev-Smirnov-Wolfenstein (MSW) oscillations. Two new radiochemical gallium experiments, which have a low enough threshold to be sensitive to the dominant flux of low-energy p-p neutrinos, now also report a deficit and also favor a particle physics solution

  11. Primordial oscillations in life: Direct observation of glycolytic oscillations in individual HeLa cervical cancer cells

    Science.gov (United States)

    Amemiya, Takashi; Shibata, Kenichi; Itoh, Yoshihiro; Itoh, Kiminori; Watanabe, Masatoshi; Yamaguchi, Tomohiko

    2017-10-01

    We report the first direct observation of glycolytic oscillations in HeLa cervical cancer cells, which we regard as primordial oscillations preserved in living cells. HeLa cells starved of glucose or both glucose and serum exhibited glycolytic oscillations in nicotinamide adenine dinucleotide (NADH), exhibiting asynchronous intercellular behaviors. Also found were spatially homogeneous and inhomogeneous intracellular NADH oscillations in the individual cells. Our results demonstrate that starved HeLa cells may be induced to exhibit glycolytic oscillations by either high-uptake of glucose or the enhancement of a glycolytic pathway (Crabtree effect or the Warburg effect), or both. Their asynchronous collective behaviors in the oscillations were probably due to a weak intercellular coupling. Elucidation of the relationship between the mechanism of glycolytic dynamics in cancer cells and their pathophysiological characteristics remains a challenge in future.

  12. Asteroseismic estimate of helium abundance of a solar analog binary system

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Kuldeep; Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Faria, João P.; Monteiro, Mário J. P. F. G. [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Basu, Sarbani [Astronomy Department, Yale University, P. O. Box 208101, New Haven, CT 065208101 (United States); Mazumdar, Anwesh [Homi Bhabha Centre for Science Education, TIFR, V. N. Purav Marg, Mankhurd, Mumbai 400088 (India); Appourchaux, Thierry [Institut d' Astrophysique Spatiale, Université Paris XI-CNRS (UMR8617), Batiment 121, F-91405 Orsay Cedex (France); Chaplin, William J. [School of Physics and Astronomy, University of Birmingham, B15 2TT (United Kingdom); García, Rafael A. [Laboratoire AIM, CEA/DSM, CNRS, Université Paris Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Metcalfe, Travis S. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2014-08-01

    16 Cyg A and B are among the brightest stars observed by Kepler. What makes these stars more interesting is that they are solar analogs. 16 Cyg A and B exhibit solar-like oscillations. In this work we use oscillation frequencies obtained using 2.5 yr of Kepler data to determine the current helium abundance of these stars. For this we use the fact that the helium ionization zone leaves a signature on the oscillation frequencies and that this signature can be calibrated to determine the helium abundance of that layer. By calibrating the signature of the helium ionization zone against models of known helium abundance, the helium abundance in the envelope of 16 Cyg A is found to lie in the range of 0.231 to 0.251 and that of 16 Cyg B lies in the range of 0.218 to 0.266.

  13. Influence of an oscillator bath on the nucleation rate

    International Nuclear Information System (INIS)

    Amritkar, R.E.

    1984-09-01

    The nucleation rate of a system in a metastable state coupled to an oscillator bath is considered. It is shown that for a weak coupling and small oscillator frequencies the nucleation rate increases. (author)

  14. Parametric resonance in neutrino oscillations in matter

    Indian Academy of Sciences (India)

    Neutrino oscillations in matter can exhibit a specific resonance enhancement - parametric resonance, which is different from the MSW resonance. Oscillations of atmospheric and solar neutrinos inside the earth can undergo parametric enhancement when neutrino trajectories cross the core of the earth. In this paper we ...

  15. Analysis of wave-like oscillations in parameters of sporadic E layer and neutral atmosphere

    Science.gov (United States)

    Mošna, Z.; Koucká Knížová, P.

    2012-12-01

    The present study mainly concerns the wave-like activity in the ionospheric sporadic E layer (Es) and in the lower lying stratosphere. The proposed analysis involves parameters describing the state of plasma in the sporadic E layer. Critical frequencies foEs and layer heights hEs were measured at the Pruhonice station (50°N, 14.5°E) during summer campaigns 2004, 2006 and 2008. Further, we use neutral atmosphere (temperature data at 10 hPa) data from the same time interval. The analysis concentrates on vertically propagating wave-like structures within distant atmospheric regions. By means of continuous wavelet transform (CWT) we have detected significant wave-like oscillation at periods covering tidal and planetary oscillation domains both in the Es layer parameters (some of them were reported earlier, for instance in works of Abdu et al., 2003; Pancheva and Mitchel, 2004; Pancheva et al., 2003; Šauli and Bourdillon, 2008) and in stratospheric temperature variations. Further analyses using cross wavelet transform (XWT) and wavelet coherence analysis (WTC) show that despite high wave-like activity in a wide period range, there are only limited coherent wave-like bursts present in both spectra. Such common coherent wave bursts occur on periods close to eigen-periods of the terrestrial atmosphere. We suppose that vertical coupling between atmospheric regions realized by vertically propagating planetary waves occurs predominantly on periods close to those of Rossby modes. Analysis of the phase shift between data from distant atmospheric regions reveals high variability and very likely supports the non-linear scenario of the vertical coupling provided by planetary waves.

  16. Solar neutrino observations and neutrino oscillations

    International Nuclear Information System (INIS)

    Kuo, T.K.; Pantaleone, J.

    1990-01-01

    The results of recent Kamiokande-II and 37 Cl solar-neutrino experiments are quantitatively analyzed assuming the Mikheyev-Smirnov-Wolfenstein solution to the solar-neutrino problem. It is found that the parameter region known as the ''large mass'' solution to the solar-neutrino problem is disfavored by a little more than 1 σ while the ''small mass'' and ''large angle'' solutions are in good agreement at this level. The implications on this analysis from time variations in the data are discussed

  17. Understanding Solar Cycle Variability

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R. H.; Schüssler, M., E-mail: cameron@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-07-10

    The level of solar magnetic activity, as exemplified by the number of sunspots and by energetic events in the corona, varies on a wide range of timescales. Most prominent is the 11-year solar cycle, which is significantly modulated on longer timescales. Drawing from dynamo theory, together with the empirical results of past solar activity and similar phenomena for solar-like stars, we show that the variability of the solar cycle can be essentially understood in terms of a weakly nonlinear limit cycle affected by random noise. In contrast to ad hoc “toy models” for the solar cycle, this leads to a generic normal-form model, whose parameters are all constrained by observations. The model reproduces the characteristics of the variable solar activity on timescales between decades and millennia, including the occurrence and statistics of extended periods of very low activity (grand minima). Comparison with results obtained with a Babcock–Leighton-type dynamo model confirm the validity of the normal-mode approach.

  18. solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    first present the allowed areas obtained from global solar analysis and demonstrate the preference of the ... We demonstrate through a pro- jected analysis ... 10%) when the same input values of the parameters are used and also demonstrate.

  19. Replicate periodic windows in the parameter space of driven oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, E.S., E-mail: esm@if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil); Souza, S.L.T. de [Universidade Federal de Sao Joao del-Rei, Campus Alto Paraopeba, Minas Gerais (Brazil); Medrano-T, R.O. [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Diadema, Sao Paulo (Brazil); Caldas, I.L. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2011-11-15

    Highlights: > We apply a weak harmonic perturbation to control chaos in two driven oscillators. > We find replicate periodic windows in the driven oscillator parameter space. > We find that the periodic window replication is associated with the chaos control. - Abstract: In the bi-dimensional parameter space of driven oscillators, shrimp-shaped periodic windows are immersed in chaotic regions. For two of these oscillators, namely, Duffing and Josephson junction, we show that a weak harmonic perturbation replicates these periodic windows giving rise to parameter regions correspondent to periodic orbits. The new windows are composed of parameters whose periodic orbits have the same periodicity and pattern of stable and unstable periodic orbits already existent for the unperturbed oscillator. Moreover, these unstable periodic orbits are embedded in chaotic attractors in phase space regions where the new stable orbits are identified. Thus, the observed periodic window replication is an effective oscillator control process, once chaotic orbits are replaced by regular ones.

  20. Detection of 3-Minute Oscillations in Full-Disk Lyman-alpha Emission During A Solar Flare

    Science.gov (United States)

    Milligan, R. O.; Ireland, J.; Fleck, B.; Hudson, H. S.; Fletcher, L.; Dennis, B. R.

    2017-12-01

    We report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Lyman-alpha (from GOES/EUVS) and Lyman continuum (from SDO/EVE) emission from the 2011 February 15 X-class flare revealed a 3-minute period present during the flare's main phase. The formation temperature of this emission locates this radiation to the flare's chromospheric footpoints, and similar behaviour is found in the SDO/AIA 1600A and 1700A channels, which are dominated by chromospheric continuum. The implication is that the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray energies (50-100 keV) in RHESSI data we can state that this 3-minute oscillation does not depend on the rate of energization of, or energy deposition by, non-thermal electrons. However, a second period of 120 s found in both hard X-ray and chromospheric emission is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Lyman-alpha line may influence the composition and dynamics of planetary atmospheres during periods of high activity.

  1. Solar-like Oscillations in KIC 11395018 and KIC 11234888 from 8 Months of Kepler Data

    DEFF Research Database (Denmark)

    Mathur, S.; Handberg, Rasmus; Campante, Tiago. L.

    2011-01-01

    We analyze the photometric short-cadence data obtained with the Kepler mission during the first 8 months of observations of two solar-type stars of spectral types G and F: KIC 11395018 and KIC 11234888, respectively, the latter having a lower signal-to-noise ratio (S/N) compared with the former. ...

  2. Intermittent and sustained periodic windows in networked chaotic Rössler oscillators

    International Nuclear Information System (INIS)

    He, Zhiwei; Sun, Yong; Zhan, Meng

    2013-01-01

    Route to chaos (or periodicity) in dynamical systems is one of fundamental problems. Here, dynamical behaviors of coupled chaotic Rössler oscillators on complex networks are investigated and two different types of periodic windows with the variation of coupling strength are found. Under a moderate coupling, the periodic window is intermittent, and the attractors within the window extremely sensitively depend on the initial conditions, coupling parameter, and topology of the network. Therefore, after adding or removing one edge of network, the periodic attractor can be destroyed and substituted by a chaotic one, or vice versa. In contrast, under an extremely weak coupling, another type of periodic window appears, which insensitively depends on the initial conditions, coupling parameter, and network. It is sustained and unchanged for different types of network structure. It is also found that the phase differences of the oscillators are almost discrete and randomly distributed except that directly linked oscillators more likely have different phases. These dynamical behaviors have also been generally observed in other networked chaotic oscillators

  3. Collapse and revival in inter-band oscillations of a two-band Bose-Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Ploetz, Patrick; Wimberger, Sandro [Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg 19, 69120 Heidelberg (Germany); Madronero, Javier, E-mail: ploetz@thphys.uni-heidelberg.d [Physik Department, Technische Universitaet Muenchen, James-Franck-Str. 1, 85748 Garching (Germany)

    2010-04-28

    We study the effect of a many-body interaction on inter-band oscillations in a two-band Bose-Hubbard model with an external Stark force. Weak and strong inter-band oscillations are observed, where the latter arise from a resonant coupling of the bands. These oscillations collapse and revive due to a weak two-body interaction between the atoms. Effective models for oscillations in and out of resonance are introduced that provide predictions for the system's behaviour, particularly for the time scales for the collapse and revival of the resonant inter-band oscillations. (fast track communication)

  4. PLASMA EMISSION BY WEAK TURBULENCE PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)

    2014-11-10

    The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.

  5. Turbulence and Solar p-Mode Oscillations

    Science.gov (United States)

    Bi, S. L.; Xu, H. Y.

    The discrepancy between observed and theoretical mode frequencies can be used to examine the reliability of the standard solar model as a faithful representation of solar real situation. With the help of an improved time-dependent convective model that takes into account contribution of the full spatial and temporal turbulent energy spectrum, we study the influence of turbulent pressure on structure and solar p-mode frequencies. For the radial modes we find that the Reynolds stress produces signification modifications in structure and p-mode spectrum. Compared with an adiabatic approximation, the discrepancy is largely removed by the turbulent correction.

  6. Long-Period Solar Variability

    Energy Technology Data Exchange (ETDEWEB)

    GAUTHIER,JOHN H.

    2000-07-20

    Terrestrial climate records and historical observations of the Sun suggest that the Sun undergoes aperiodic oscillations in radiative output and size over time periods of centuries and millenia. Such behavior can be explained by the solar convective zone acting as a nonlinear oscillator, forced at the sunspot-cycle frequency by variations in heliomagnetic field strength. A forced variant of the Lorenz equations can generate a time series with the same characteristics as the solar and climate records. The timescales and magnitudes of oscillations that could be caused by this mechanism are consistent with what is known about the Sun and terrestrial climate.

  7. Lepton mixing and the 'solar neutrino puzzle'

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1977-01-01

    The results of the well-known solar neutrino experiments in which the Cl-Ar method was employed are discussed; the results of this experiment gave a too-small neutrino signal and were referred to as the 'solar neutrino puzzle'. A number of explanations have been offered to account for the results, but it is stated that the explanation in terms of lepton mixing and neutrino sterility is attractive in terms of present day elementary particle physics and much more natural than the other explanations offered. Headings are as follows: neutrino oscillations and lepton charge, oscillations and solar neutrino experiments, lepton mixing according to old and present ideas, neutrino oscillations and the 'solar neutrino puzzle'. (U.K.)

  8. Dynamics of longitudinal-latitudinal asymmetry of solar activity at various solar cycle phases

    International Nuclear Information System (INIS)

    Baranov, D.G.; Vernova, E.S.; Grigoryan, M.S.; Tyasto, M.I.

    1995-01-01

    Solar activity longitudinal asymmetry in 1943-1984 was studied by means of the polar diagram technique. Longitudinal changes of the activity distribution for northern and southern hemispheres were considered separately. Heliolongitudinal asymmetry was compared with the first harmonic of the 27-days cosmic ray intensity variation and with phases of the Quasi-Biennial Oscillation. There is certain correspondence between the dominance of the asymmetry in one of the solar hemispheres and the phase of the Quasi-Biennial Oscillation. Correlation exists between the amplitude of the 27-days galactic cosmic ray variation and the phase of the Quasi-Biennial Oscillation. 8 refs.; 3 figs

  9. Stellar oscillations in planet-hosting giant stars

    Energy Technology Data Exchange (ETDEWEB)

    Hatzes, Artie P; Zechmeister, Mathias [Thueringer Landessternwarte, Sternwarte 5, D-07778 (Germany)], E-mail: artie@tls-tautenburg.de

    2008-10-15

    Recently a number of giant extrasolar planets have been discovered around giant stars. These discoveries are important because many of these giant stars have intermediate masses in the range 1.2-3 Msun. Early-type main sequence stars of this mass range have been avoided by radial velocity planet search surveys due the difficulty of getting the requisite radial velocity precision needed for planet discoveries. Thus, giant stars can tell us about planet formation for stars more massive than the sun. However, the determination of stellar masses for giant stars is difficult due to the fact that evolutionary tracks for stars covering a wide range of masses converge to the same region of the H-R diagram. We report here on stellar oscillations in three planet-hosting giant stars: HD 13189, {beta} Gem, and {iota} Dra. Precise stellar radial velocity measurements for these stars show variations whose periods and amplitudes are consistent with solar-like p-mode oscillations. The implied stellar masses for these objects based on the characteristics of the stellar oscillations are consistent with the predictions of stellar isochrones. An investigation of stellar oscillations in planet hosting giant stars offers us the possibility of getting an independent determination of the stellar mass for these objects which is of crucial importance for extrasolar planet studies.

  10. Detection of fast oscillating magnetic fields using dynamic multiple TR imaging and Fourier analysis.

    Directory of Open Access Journals (Sweden)

    Ki Hwan Kim

    Full Text Available Neuronal oscillations produce oscillating magnetic fields. There have been trials to detect neuronal oscillations using MRI, but the detectability in in vivo is still in debate. Major obstacles to detecting neuronal oscillations are (i weak amplitudes, (ii fast oscillations, which are faster than MRI temporal resolution, and (iii random frequencies and on/off intervals. In this study, we proposed a new approach for direct detection of weak and fast oscillating magnetic fields. The approach consists of (i dynamic acquisitions using multiple times to repeats (TRs and (ii an expanded frequency spectral analysis. Gradient echo echo-planar imaging was used to test the feasibility of the proposed approach with a phantom generating oscillating magnetic fields with various frequencies and amplitudes and random on/off intervals. The results showed that the proposed approach could precisely detect the weak and fast oscillating magnetic fields with random frequencies and on/off intervals. Complex and phase spectra showed reliable signals, while no meaningful signals were observed in magnitude spectra. A two-TR approach provided an absolute frequency spectrum above Nyquist sampling frequency pixel by pixel with no a priori target frequency information. The proposed dynamic multiple-TR imaging and Fourier analysis are promising for direct detection of neuronal oscillations and potentially applicable to any pulse sequences.

  11. Towards the resolution of the solar neutrino problem

    Energy Technology Data Exchange (ETDEWEB)

    Friedland, Alexander [Univ. of California, Berkeley, CA (United States)

    2000-08-01

    A number of experiments have accumulated over the years a large amount of solar neutrino data. The data indicate that the observed solar neutrino flux is significantly smaller than expected and, furthermore, that the electron neutrino survival probability is energy dependent. This ''solar neutrino problem'' is best solved by assuming that the electron neutrino oscillates into another neutrino species. Even though one can classify the solar neutrino deficit as strong evidence for neutrino oscillations, it is not yet considered a definitive proof. Traditional objections are that the evidence for solar neutrino oscillations relies on a combination of hard, different experiments, and that the Standard Solar Model (SSM) might not be accurate enough to precisely predict the fluxes of different solar neutrino components. Even though it seems unlikely that modifications to the SSM alone can explain the current solar neutrino data, one still cannot completely discount the possibility that a combination of unknown systematic errors in some of the experiments and certain modifications to the SSM could conspire to yield the observed data. To conclusively demonstrate that there is indeed new physics in solar neutrinos, new experiments are aiming at detecting ''smoking gun'' signatures of neutrino oscillations, such as an anomalous seasonal variation in the observed neutrino flux or a day-night variation due to the regeneration of electron neutrinos in the Earth. In this dissertation we study the sensitivity reach of two upcoming neutrino experiments, Borexino and KamLAND, to both of these effects. Results of neutrino oscillation experiments for the case of two-flavor oscillations have always been presented on the (sin2 2θ, Δm2) parameter space. We point out, however, that this parameterization misses the half of the parameter space π/4 < θ < π/2, which is physically inequivalent to the region 0 < θ < π/4 in

  12. Self-excited current oscillations in a resonant tunneling diode described by a model based on the Caldeira–Leggett Hamiltonian

    International Nuclear Information System (INIS)

    Sakurai, Atsunori; Tanimura, Yoshitaka

    2014-01-01

    The quantum dissipative dynamics of a tunneling process through double barrier structures is investigated on the basis of non-perturbative and non-Markovian treatment. We employ a Caldeira–Leggett Hamiltonian with an effective potential calculated self-consistently, accounting for the electron distribution. With this Hamiltonian, we use the reduced hierarchy equations of motion in the Wigner space representation to study non-Markovian and non-perturbative thermal effects at finite temperature in a rigorous manner. We study current variation in time and the current–voltage (I–V ) relation of the resonant tunneling diode for several widths of the contact region, which consists of doped GaAs. Hysteresis and both single and double plateau-like behavior are observed in the negative differential resistance (NDR) region. While all of the current oscillations decay in time in the NDR region in the case of a strong system–bath coupling, there exist self-excited high-frequency current oscillations in some parts of the plateau in the NDR region in the case of weak coupling. We find that the effective potential in the oscillating case possesses a basin-like form on the emitter side (emitter basin) and that the current oscillation results from tunneling between the emitter basin and the quantum well in the barriers. We find two distinct types of current oscillations, with large and small oscillation amplitudes, respectively. These two types of oscillation appear differently in the Wigner space, with one exhibiting tornado-like motion and the other exhibiting a two piston engine-like motion. (paper)

  13. Solar variability observed through changes in solar figure and mean diameter

    International Nuclear Information System (INIS)

    Hill, H.A.

    1985-01-01

    A program to monitor solar luminosity variations through diameter measurements has been operation at SCLERA since 1981. The solar diameter is currently measured at multiple angles from the equator. Measurements at these different angles have the advantage that, not only can the solar oblateness be accurately measured, but, also, systematic errors, introduced by atmospheric refraction, can be reduced to a minimum. The primary emphasis during the last year has been on data analysis and interpretation. An extension of theoretical work relevant to the relationship between the solar diameter and luminosity for long-period oscillations has been extended to include 160 min period oscillations, and several tests have been completed. An absolute calibration system for the telescope field has been constructed and is being tested. A review of this work is presented

  14. Solar neutrino problem accounting for self-consistent magnetohydrodynamics solution for solar magnetic fields

    International Nuclear Information System (INIS)

    Miranda, O.G.; Pena-Garay, C.; Valle, J.W.F.; Rashba, T.I.; Semikoz, V.B.

    2001-01-01

    The analysis of the resonant spin-flavour (RSF) solutions to the solar neutrino problem in the framework of the simplest analytical solutions to the solar magnetohydrodynamics (MHD) equations is presented. We performed the global fit of the recent solar neutrino data, including event rates as well as zenith angle distributions and recoil electron spectra induced by solar neutrino interactions in Superkamiokande. We compare quantitatively our simplest MHD-RSF fit with vacuum oscillation (VAC) and MSW-type (SMA, LMA and LOW) solutions to the solar neutrino problem using a common well-calibrated theoretical calculation and fit procedure and find MHD-RSF fit to be somewhat better than those obtained for the favored neutrino oscillation solutions. We made the predictions for future experiments (e.g., SNO) to disentangle the MHD-RSF scenario from other scenarios

  15. Damped Oscillator with Delta-Kicked Frequency

    Science.gov (United States)

    Manko, O. V.

    1996-01-01

    Exact solutions of the Schrodinger equation for quantum damped oscillator subject to frequency delta-kick describing squeezed states are obtained. The cases of strong, intermediate, and weak damping are investigated.

  16. Fractal-Like Materials Design with Optimized Radiative Properties for High-Efficiency Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Ortega, Jesus D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Christian, Joshua Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Yellowhair, Julius E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Ray, Daniel A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Kelton, John W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Peacock, Gregory [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Andraka, Charles E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Shinde, Subhash [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.

    2016-09-01

    Novel designs to increase light trapping and thermal efficiency of concentrating solar receivers at multiple length scales have been conceived, designed, and tested. The fractal-like geometries and features are introduced at both macro (meters) and meso (millimeters to centimeters) scales. Advantages include increased solar absorptance, reduced thermal emittance, and increased thermal efficiency. Radial and linear structures at the meso (tube shape and geometry) and macro (total receiver geometry and configuration) scales redirect reflected solar radiation toward the interior of the receiver for increased absorptance. Hotter regions within the interior of the receiver can reduce thermal emittance due to reduced local view factors to the environment, and higher concentration ratios can be employed with similar surface irradiances to reduce the effective optical aperture, footprint, and thermal losses. Coupled optical/fluid/thermal models have been developed to evaluate the performance of these designs relative to conventional designs. Modeling results showed that fractal-like structures and geometries can increase the effective solar absorptance by 5 – 20% and the thermal efficiency by several percentage points at both the meso and macro scales, depending on factors such as intrinsic absorptance. Meso-scale prototypes were fabricated using additive manufacturing techniques, and a macro-scale bladed receiver design was fabricated using Inconel 625 tubes. On-sun tests were performed using the solar furnace and solar tower at the National Solar Thermal Test facility. The test results demonstrated enhanced solar absorptance and thermal efficiency of the fractal-like designs.

  17. Solar neutrinos

    International Nuclear Information System (INIS)

    Phillips, R.J.N.

    1987-09-01

    The problem with solar neutrinos is that there seem to be too few of them, at least near the top end of the spectrum, since the 37 Cl detector finds only about 35% of the standard predicted flux. Various kinds of explanation have been offered: (a) the standard solar model is wrong, (b) neutrinos decay, (c) neutrinos have magnetic moments, (d) neutrinos oscillate. The paper surveys developments in each of these areas, especially the possible enhancement of neutrino oscillations by matter effects and adiabatic level crossing. The prospects for further independent experiments are also discussed. (author)

  18. About oscillations in the system of K0 mesons

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    2011-01-01

    This work considers K 0 -, K 0 bar - meson mixings and oscillations via K 1 0 , K 2 0 - meson states at strangeness violation by the weak interactions and K 1 0 -, K 2 0 - meson mixings and oscillations via K S -, K L - meson states at CP violation by the weak interactions without and with taking into account decay widths. We work in the framework of the masses mixing scheme. It is shown that K 1 0 -(K S -) meson states appear at big distances from the K 0 -mesons source after their decays (τ L ≥ τ S (τ 2 ≥τ 1 )) due to oscillations of residual K 2 0 (K L ) mesons and then again we see short-living K 1 0 (K S ) mesons. It is implied that K L ↔K S meson oscillations are absent. The case is also considered when at CP violation unitarity is violated, but orthogonality of K S , K L states remains. The general expressions for probabilities of meson oscillations (transitions) are given

  19. Magnetosonic resonance in a dipole-like magnetosphere

    Directory of Open Access Journals (Sweden)

    A. S. Leonovich

    2006-09-01

    Full Text Available A theory of resonant conversion of fast magnetosonic (FMS waves into slow magnetosonic (SMS oscillations in a magnetosphere with dipole-like magnetic field has been constructed. Monochromatic FMS waves are shown to drive standing (along magnetic field lines SMS oscillations, narrowly localized across magnetic shells. The longitudinal and transverse structures, as well as spectrum of resonant SMS waves are determined. Frequencies of fundamental harmonics of standing SMS waves lie in the range of 0.1–1 mHz, and are about two orders of magnitude lower than frequencies of similar Alfvén field line resonance harmonics. This difference makes an effective interaction between these MHD modes impossible. The amplitude of SMS oscillations rapidly decreases along the field lines from the magnetospheric equator towards the ionosphere. In this context, magnetospheric SMS oscillations cannot be observed on the ground, and the ionosphere does not play any role either in their generation or dissipation. The theory developed can be used to interpret the occurrence of compressional Pc5 waves in a quiet magnetosphere with a weak ring current.

  20. Solar Tornado Prominences: Plasma Motions Along Filament Barbs

    Science.gov (United States)

    Panasenco, Olga; Velli, Marco; Martin, Sara F.; Rappazzo, Franco

    2013-03-01

    Recent high-resolution observations from the Solar Dynamic Observatory (SDO) have reawakened interest in the old and fascinating phenomenon of solar tornado prominences. This class of prominences was first introduced by E. Pettit in 1932, who studied them over many years up to 1950. High resolution and high cadence multi-wavelength data obtained by SDO reveal that the tornado-like properties of these prominences are mainly an illusion due to projection effects. We show that counterstreaming plasma motions with projected velocities up to +/- 45 km/sec along the prominence spine and barbs create a tornado-like impression when viewed at the limb. We demonstrate that barbs are often rooted at the intersection between 4-5 supergranular cells. We discuss the observed oscillations along the vertical parts of barbs and whether they may be related to vortex flows coming from the convection downdrafts at the intersection of supergranules (and possibly smaller convective cells) in the photosphere and their entrained magnetic field. The unwinding of magnetic threads near the photosphere via reconnection might be a source of the waves which are observed as oscillations in prominence barbs.

  1. Symmetries and symmetry-breaking in oscillator ensembles

    International Nuclear Information System (INIS)

    Ujjwal, Sangeeta R.; Ramaswamy, Ram

    2017-01-01

    The behaviour of collections of oscillators has also been of interest for at least a few centuries as well. As it happens, Huygens described the interaction of two pendulums that resulted in their synchrony, namely the entrainment of one oscillator by the other. He gave a fairly accurate physical explanation for the process, namely that the pendulums oscillated in 'sympathy', adjusting their rhythms as a consequence of the weak coupling between them. The study of synchrony has thus been of interest since long, given the wide variety of systems that show 'sync'. These range from simple mechanical oscillators such as pendulums, to chemical and biological oscillators, coupled Josephson junctions and so on. In short, any system that is capable of showing sustained oscillations is also potentially able to synchronise

  2. Oscillations in the open solar magnetic flux with a period of 1.68 years: imprint on galactic cosmic rays and implications for heliospheric shielding

    Directory of Open Access Journals (Sweden)

    A. Rouillard

    2004-12-01

    Full Text Available An understanding of how the heliosphere modulates galactic cosmic ray (GCR fluxes and spectra is important, not only for studies of their origin, acceleration and propagation in our galaxy, but also for predicting their effects (on technology and on the Earth's environment and organisms and for interpreting abundances of cosmogenic isotopes in meteorites and terrestrial reservoirs. In contrast to the early interplanetary measurements, there is growing evidence for a dominant role in GCR shielding of the total open magnetic flux, which emerges from the solar atmosphere and enters the heliosphere. In this paper, we relate a strong 1.68-year oscillation in GCR fluxes to a corresponding oscillation in the open solar magnetic flux and infer cosmic-ray propagation paths confirming the predictions of theories in which drift is important in modulating the cosmic ray flux. Key words. Interplanetary physics (Cosmic rays, Interplanetary magnetic fields

  3. Supernova nucleosynthesis and the physics of neutrino oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, Toshitaka [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan) and Department of Astronomy, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-11-20

    We studied the explosive nucleosynthesis in core-collapse supernovae and found that several isotopes of rare elements like {sup 7}Li, {sup 11}B, {sup 138}La, {sup 180}Ta and others are predominantly produced by the neutrino interactions with several abundant nuclei. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here first study how to know the suitable average neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the neutrino oscillation parameters, {theta}{sub 13} and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process {sup 11}B and {sup 7}Li encapsulated in the grains. Combining the recent experimental constraints on {theta}{sub 13}, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  4. Supernova nucleosynthesis and the physics of neutrino oscillation

    Science.gov (United States)

    Kajino, Toshitaka

    2012-11-01

    We studied the explosive nucleosynthesis in core-collapse supernovae and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and others are predominantly produced by the neutrino interactions with several abundant nuclei. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here first study how to know the suitable average neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the neutrino oscillation parameters, θ13 and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process 11B and 7Li encapsulated in the grains. Combining the recent experimental constraints on θ13, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  5. Analytical solutions of weakly coupled map lattices using recurrence relations

    Energy Technology Data Exchange (ETDEWEB)

    Sotelo Herrera, Dolores, E-mail: dsh@dfmf.uned.e [Applied Maths, EUITI, UPM, Ronda de Valencia, 3-28012 Madrid (Spain); San Martin, Jesus [Applied Maths, EUITI, UPM, Ronda de Valencia, 3-28012 Madrid (Spain); Dep. Fisica Matematica y de Fluidos, UNED, Senda del Rey 9-28040 Madrid (Spain)

    2009-07-20

    By using asymptotic methods recurrence relations are found that rule weakly CML evolution, with both global and diffusive coupling. The solutions obtained from these relations are very general because they do not hold restrictions about boundary conditions, initial conditions and number of oscilators in the CML. Furthermore, oscillators are ruled by an arbitraty C{sup 2} function.

  6. Solar pulsations

    International Nuclear Information System (INIS)

    Zirker, J.B.

    1980-01-01

    Oscillations of the surface of the sun, with periods between 5 and 160 min, have been observed by several spectroscopic techniques, and preliminary interpretations have been offered. The 5-min oscillations are global, nonradial, acoustic standing waves in the subsurface zone. Internal differential rotation speeds have been deduced from the Doppler splitting of these waves. Oscillations with longer periods have been reported, but need confirmation. The longest periods offer a tool for investigating the solar interior

  7. Convective-core Overshoot and Suppression of Oscillations: Constraints from Red Giants in NGC 6811

    Energy Technology Data Exchange (ETDEWEB)

    Arentoft, T.; Brogaard, K.; Jessen-Hansen, J.; Silva Aguirre, V.; Kjeldsen, H.; Mosumgaard, J. R. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Sandquist, E. L., E-mail: toar@phys.au.dk [San Diego State University, Department of Astronomy, San Diego, CA 92182 (United States)

    2017-04-01

    Using data from the NASA spacecraft Kepler , we study solar-like oscillations in red giant stars in the open cluster NGC 6811. We determine oscillation frequencies, frequency separations, period spacings of mixed modes, and mode visibilities for eight cluster giants. The oscillation parameters show that these stars are helium-core-burning red giants. The eight stars form two groups with very different oscillation power spectra; the four stars with the lowest Δ ν values display rich sets of mixed l = 1 modes, while this is not the case for the four stars with higher Δ ν . For the four stars with lowest Δ ν , we determine the asymptotic period spacing of the mixed modes, Δ P , which together with the masses we derive for all eight stars suggest that they belong to the so-called secondary clump. Based on the global oscillation parameters, we present initial theoretical stellar modeling that indicates that we can constrain convective-core overshoot on the main sequence and in the helium-burning phase for these ∼2 M {sub ⊙} stars. Finally, our results indicate less mode suppression than predicted by recent theories for magnetic suppression of certain oscillation modes in red giants.

  8. High-frequency Oscillations in Small Magnetic Elements Observed with Sunrise/SuFI

    Energy Technology Data Exchange (ETDEWEB)

    Jafarzadeh, S. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Solanki, S. K.; Cameron, R. H.; Danilovic, S. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Stangalini, M. [INAF-Osservatorio Astronomico di Roma, I-00040 Monte Porzio Catone (RM) (Italy); Steiner, O., E-mail: shahin.jafarzadeh@astro.uio.no [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany)

    2017-04-01

    We characterize waves in small magnetic elements and investigate their propagation in the lower solar atmosphere from observations at high spatial and temporal resolution. We use the wavelet transform to analyze oscillations of both horizontal displacement and intensity in magnetic bright points found in the 300 nm and the Ca ii H 396.8 nm passbands of the filter imager on board the Sunrise balloon-borne solar observatory. Phase differences between the oscillations at the two atmospheric layers corresponding to the two passbands reveal upward propagating waves at high frequencies (up to 30 mHz). Weak signatures of standing as well as downward propagating waves are also obtained. Both compressible and incompressible (kink) waves are found in the small-scale magnetic features. The two types of waves have different, though overlapping, period distributions. Two independent estimates give a height difference of approximately 450 ± 100 km between the two atmospheric layers sampled by the employed spectral bands. This value, together with the determined short travel times of the transverse and longitudinal waves provide us with phase speeds of 29 ± 2 km s{sup −1} and 31 ± 2 km s{sup −1}, respectively. We speculate that these phase speeds may not reflect the true propagation speeds of the waves. Thus, effects such as the refraction of fast longitudinal waves may contribute to an overestimate of the phase speed.

  9. High-frequency Oscillations in Small Magnetic Elements Observed with Sunrise/SuFI

    International Nuclear Information System (INIS)

    Jafarzadeh, S.; Solanki, S. K.; Cameron, R. H.; Danilovic, S.; Stangalini, M.; Steiner, O.

    2017-01-01

    We characterize waves in small magnetic elements and investigate their propagation in the lower solar atmosphere from observations at high spatial and temporal resolution. We use the wavelet transform to analyze oscillations of both horizontal displacement and intensity in magnetic bright points found in the 300 nm and the Ca ii H 396.8 nm passbands of the filter imager on board the Sunrise balloon-borne solar observatory. Phase differences between the oscillations at the two atmospheric layers corresponding to the two passbands reveal upward propagating waves at high frequencies (up to 30 mHz). Weak signatures of standing as well as downward propagating waves are also obtained. Both compressible and incompressible (kink) waves are found in the small-scale magnetic features. The two types of waves have different, though overlapping, period distributions. Two independent estimates give a height difference of approximately 450 ± 100 km between the two atmospheric layers sampled by the employed spectral bands. This value, together with the determined short travel times of the transverse and longitudinal waves provide us with phase speeds of 29 ± 2 km s −1 and 31 ± 2 km s −1 , respectively. We speculate that these phase speeds may not reflect the true propagation speeds of the waves. Thus, effects such as the refraction of fast longitudinal waves may contribute to an overestimate of the phase speed.

  10. Pattern recognition with simple oscillating circuits

    International Nuclear Information System (INIS)

    Hoelzel, R W; Krischer, K

    2011-01-01

    Neural network devices that inherently possess parallel computing capabilities are generally difficult to construct because of the large number of neuron-neuron connections. However, there exists a theoretical approach (Hoppensteadt and Izhikevich 1999 Phys. Rev. Lett. 82 2983) that forgoes the individual connections and uses only a global coupling: systems of weakly coupled oscillators with a time-dependent global coupling are capable of performing pattern recognition in an associative manner similar to Hopfield networks. The information is stored in the phase shifts of the individual oscillators. However, to date, even the feasibility of controlling phase shifts with this kind of coupling has not yet been established experimentally. We present an experimental realization of this neural network device. It consists of eight sinusoidal electrical van der Pol oscillators that are globally coupled through a variable resistor with the electric potential as the coupling variable. We estimate an effective value of the phase coupling strength in our experiment. For that, we derive a general approach that allows one to compare different experimental realizations with each other as well as with phase equation models. We demonstrate that individual phase shifts of oscillators can be experimentally controlled by a weak global coupling. Furthermore, supplied with a distorted input image, the oscillating network can indeed recognize the correct image out of a set of predefined patterns. It can therefore be used as the processing unit of an associative memory device.

  11. Computation of periods of acoustical oscillations of the sun

    International Nuclear Information System (INIS)

    Vorontsov, S.V.; Zharkov, V.N.

    1977-01-01

    It is stated that regular pulsations of the Sun were first reported in 1975-76 by several investigators (see Nature 259:87 and 92 (1976)), and that these oscillations were difficult to identify. It was decided to compute the periods of some acoustical modes using experience gained in calculations of free oscillations of Jupiter and Saturn, employing some complete solar models for the interior, the convective zone and the solar atmosphere. The equations employed and the methods of computations are described, and the results are given. (U.K.)

  12. Neutrino oscillations at proton accelerators

    International Nuclear Information System (INIS)

    Michael, Douglas

    2002-01-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments

  13. Neutrino Oscillations at Proton Accelerators

    Science.gov (United States)

    Michael, Douglas

    2002-12-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments.

  14. Awakened Oscillations in Coupled Consumer-Resource Pairs

    Directory of Open Access Journals (Sweden)

    Almaz Mustafin

    2014-01-01

    Full Text Available The paper concerns two interacting consumer-resource pairs based on chemostat-like equations under the assumption that the dynamics of the resource is considerably slower than that of the consumer. The presence of two different time scales enables to carry out a fairly complete analysis of the problem. This is done by treating consumers and resources in the coupled system as fast-scale and slow-scale variables, respectively, and subsequently considering developments in phase planes of these variables, fast and slow, as if they are independent. When uncoupled, each pair has unique asymptotically stable steady state and no self-sustained oscillatory behavior (although damped oscillations about the equilibrium are admitted. When the consumer-resource pairs are weakly coupled through direct reciprocal inhibition of consumers, the whole system exhibits self-sustained relaxation oscillations with a period that can be significantly longer than intrinsic relaxation time of either pair. It is shown that the model equations adequately describe locally linked consumer-resource systems of quite different nature: living populations under interspecific interference competition and lasers coupled via their cavity losses.

  15. Large amplitude oscillatory motion along a solar filament

    Science.gov (United States)

    Vršnak, B.; Veronig, A. M.; Thalmann, J. K.; Žic, T.

    2007-08-01

    Context: Large amplitude oscillations of solar filaments is a phenomenon that has been known for more than half a century. Recently, a new mode of oscillations, characterized by periodical plasma motions along the filament axis, was discovered. Aims: We analyze such an event, recorded on 23 January 2002 in Big Bear Solar Observatory Hα filtergrams, to infer the triggering mechanism and the nature of the restoring force. Methods: Motion along the filament axis of a distinct buldge-like feature was traced, to quantify the kinematics of the oscillatory motion. The data were fitted by a damped sine function to estimate the basic parameters of the oscillations. To identify the triggering mechanism, morphological changes in the vicinity of the filament were analyzed. Results: The observed oscillations of the plasma along the filament were characterized by an initial displacement of 24 Mm, an initial velocity amplitude of 51 km s-1, a period of 50 min, and a damping time of 115 min. We interpret the trigger in terms of poloidal magnetic flux injection by magnetic reconnection at one of the filament legs. The restoring force is caused by the magnetic pressure gradient along the filament axis. The period of oscillations, derived from the linearized equation of motion (harmonic oscillator) can be expressed as P=π√{2}L/v_Aϕ≈4.4L/v_Aϕ, where v_Aϕ =Bϕ0/√μ_0ρ represents the Alfvén speed based on the equilibrium poloidal field Bϕ0. Conclusions: Combination of our measurements with some previous observations of the same kind of oscillations shows good agreement with the proposed interpretation. Movie to Fig. 1 is only available in electronic form at http://www.aanda.org

  16. Case for neutrino oscillations

    International Nuclear Information System (INIS)

    Ramond, P.

    1982-01-01

    The building of a machine capable of producing an intense, well-calibrated beam of muon neutrinos is regarded by particle physicists with keen interest because of its ability of studying neutrino oscillations. The possibility of neutrino oscillations has long been recognized, but it was not made necessary on theoretical or experimental grounds; one knew that oscillations could be avoided if neutrinos were massless, and this was easily done by the conservation of lepton number. The idea of grand unification has led physicists to question the existence (at higher energies) of global conservation laws. The prime examples are baryon-number conservation, which prevents proton decay, and lepton-number conservation, which keeps neutrinos massless, and therefore free of oscillations. The detection of proton decay and neutrino oscillations would therefore be an indirect indication of the idea of Grand Unification, and therefore of paramount importance. Neutrino oscillations occur when neutrinos acquire mass in such a way that the neutrino mass eigenstates do not match the (neutrino) eigenstates produced by the weak interactions. We shall study the ways in which neutrinos can get mass, first at the level of the standard SU 2 x U 1 model, then at the level of its Grand Unification Generalizations

  17. New neutrino oscillation results from NOVA

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Neutrinos oscillate among flavors as they travel because a neutrino of a particular flavor is also a superposition of multiple neutrinos with slightly different masses.  The interferometric nature of oscillations allows these tiny mass differences to be measured, along with the parameters of the PMNS matrix which governs the mixing. However, since neutrinos only interact weakly, a powerful neutrino source and massive detectors are required to measure them. In this talk I will show recently updated results from NOvA, a long-baseline neutrino oscillation experiment at Fermilab with two functionally identical scintillator detectors. I will present measurements of muon neutrino disappearance and electron neutrino appearance, and what constraints those measurements put on the remaining open questions in neutrino oscillations: Is the neutrino mass hierarchy "normal" or "inverted?" Do neutrino oscillations violate CP symmetry? Is the mixing in the atmospheric sector maximal? The recent update includes 50%...

  18. Stochastically excited oscillations on the upper main sequence

    DEFF Research Database (Denmark)

    Antoci, Victoria

    2013-01-01

    Convective envelopes in stars on the main sequence are usually connected only with stars of spectral types F5 or later. However, observations as well as theory indicate that the convective outer layers in earlier stars, despite being shallow, are still effective and turbulent enough to stochastic......Convective envelopes in stars on the main sequence are usually connected only with stars of spectral types F5 or later. However, observations as well as theory indicate that the convective outer layers in earlier stars, despite being shallow, are still effective and turbulent enough...... Pulsating B and Be stars, all in the context of solar-like oscillations....

  19. Present problems of the solar interior

    International Nuclear Information System (INIS)

    Roxburgh, I.W.

    1986-01-01

    The standard model of solar evolution is reviewed and a number of problems highlighted. A fundamental question is whether there is any mixing of matter in the central regions, since such mixing could radically alter the model of the present Sun and modify our understanding of the evolution of other stars. Standard models of solar evolution become unstable to /sup 3/He driven global oscillations at an age of 3 x 10/sup 8/ years and this may drive some mixing, even if this is not the case the finite amptitude limit of these oscillations is likely to produce modifications in the standard model. Convective overshooting at the bottom of the outer convective zone leads to an increased depth of this zone and small changes in the interior. It is pointed out that the young Sun had a /sup 12/C driven convective core whose extent and duration depends on the extend of overshooting. Such a core is likely to produce a magnetic field which will affect the internal dynamics. The internal rotation of the sun remains an enigma and absence of knowledge of any internal magnetic field makes it difficult to study the problem. Rotationally driven instabilities are ineffective in the central chemically inhomogeneous regions but may contribute to the inward diffusion of lithium from the convective zone. These and other problems are considered, but few solutions are proposed

  20. Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors

    Science.gov (United States)

    Fang, Yan; Yashin, Victor V.; Dickerson, Samuel J.; Balazs, Anna C.

    2018-05-01

    We consider a network of coupled oscillating units, where each unit comprises a self-oscillating polymer gel undergoing the Belousov-Zhabotinsky (BZ) reaction and an overlaying piezoelectric (PZ) cantilever. Through chemo-mechano-electrical coupling, the oscillations of the networked BZ-PZ units achieve in-phase or anti-phase synchronization, enabling, for example, the storage of information within the system. Herein, we develop numerical and computational models to show that the introduction of capacitors into the BZ-PZ system enhances the dynamical behavior of the oscillating network by yielding additional stable synchronization modes. We specifically show that the capacitors lead to a redistribution of charge in the system and alteration of the force that the PZ cantilevers apply to the underlying gel. Hence, the capacitors modify the strength of the coupling between the oscillators in the network. We utilize a linear stability analysis to determine the phase behavior of BZ-PZ networks encompassing different capacitances, force polarities, and number of units and then verify our findings with numerical simulations. Thus, through analytical calculations and numerical simulations, we determine the impact of the capacitors on the existence of the synchronization modes, their stability, and the rate of synchronization within these complex dynamical systems. The findings from our study can be used to design robotic materials that harness the materials' intrinsic, responsive properties to perform such functions as sensing, actuation, and information storage.

  1. A new kind of metal detector based on chaotic oscillator

    Science.gov (United States)

    Hu, Wenjing

    2017-12-01

    The sensitivity of a metal detector greatly depends on the identification ability to weak signals from the probe. In order to improve the sensitivity of metal detectors, this paper applies the Duffing chaotic oscillator to metal detectors based on its characteristic which is very sensitive to weak periodic signals. To make a suitable Duffing system for detectors, this paper computes two Lyapunov characteristics exponents of the Duffing oscillator, which help to obtain the threshold of the Duffing system in the critical state accurately and give quantitative criteria for chaos. Meanwhile, a corresponding simulation model of the chaotic oscillator is made by the Simulink tool box of Matlab. Simulation results shows that Duffing oscillator is very sensitive to sinusoidal signals in high frequency cases. And experimental results show that the measurable diameter of metal particles is about 1.5mm. It indicates that this new method can feasibly and effectively improve the metal detector sensitivity.

  2. Five-minute oscillation power within magnetic elements in the solar atmosphere

    International Nuclear Information System (INIS)

    Jain, Rekha; Gascoyne, Andrew; Hindman, Bradley W.; Greer, Benjamin

    2014-01-01

    It has long been known that magnetic plage and sunspots are regions in which the power of acoustic waves is reduced within the photospheric layers. Recent observations now suggest that this suppression of power extends into the low chromosphere and is also present in small magnetic elements far from active regions. In this paper we investigate the observed power suppression in plage and magnetic elements, by modeling each as a collection of vertically aligned magnetic fibrils and presuming that the velocity within each fibril is the response to buffeting by incident p modes in the surrounding field-free atmosphere. We restrict our attention to modeling observations made near the solar disk center, where the line-of-sight velocity is nearly vertical and hence, only the longitudinal component of the motion within the fibril contributes. Therefore, we only consider the excitation of axisymmetric sausage waves and ignore kink oscillations as their motions are primarily horizontal. We compare the vertical motion within the fibril with the vertical motion of the incident p mode by constructing the ratio of their powers. In agreement with observational measurements we find that the total power is suppressed within strong magnetic elements for frequencies below the acoustic cut-off frequency. However, further physical effects need to be examined for understanding the observed power ratios for stronger magnetic field strengths and higher frequencies. We also find that the magnitude of the power deficit increases with the height above the photosphere at which the measurement is made. Furthermore, we argue that the area of the solar disk over which the power suppression extends increases as a function of height.

  3. OBSERVATIONS OF MAGNETIC FLUX-ROPE OSCILLATION DURING THE PRECURSOR PHASE OF A SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Zhou, G. P.; Wang, J. X.; Zhang, J.

    2016-01-01

    Based on combined observations from the Interface Region Imaging Spectrograph (IRIS) spectrometer with the coronal emission line of Fe xxi at 1354.08 Å and SDO /AIA images in multiple passbands, we report the finding of the precursor activity manifested as the transverse oscillation of a sigmoid, which is likely a pre-existing magnetic flux rope (MFR), that led to the onset of an X class flare and a fast halo coronal mass ejection (CME) on 2014 September 10. The IRIS slit is situated at a fixed position that is almost vertical to the main axis of the sigmoid structure that has a length of about 1.8 × 10"5 km. This precursor oscillation lasts for about 13 minutes in the MFR and has velocities in the range of [−9, 11] km s"−"1 and a period of ∼280 s. Our analysis, which is based on the temperature, density, length, and magnetic field strength of the observed sigmoid, indicates that the nature of the oscillation is a standing wave of fast magnetoacoustic kink mode. We further find that the precursor oscillation is excited by the energy released through an external magnetic reconnection between the unstable MFR and the ambient magnetic field. It is proposed that this precursor activity leads to the dynamic formation of a current sheet underneath the MFR that subsequently reconnects to trigger the onset of the main phase of the flare and the CME.

  4. Neutrino transition magnetic moments and the solar magnetic field on the light of the Kamland evidence

    CERN Document Server

    Antonelli, V; Picariello, M; Pulido, J; Torrente-Lujan, E

    2003-01-01

    We present here a recopilation of recent results about the possibility of detecting solar electron antineutrinos produced by solar core and convective magnetic fields. These antineutrinos are predicted by spin-flavor oscillations at a significant rate even if this mechanism is not the leading solution to the SNP. Using the recent Kamland results and assuming a concrete model for antineutrino production by spin-flavor precession in the convective zone based on chaotic magnetic fields,we obtain bounds on the flux of solar antineutrinos, on the average conversion neutrino-antineutrino probability and on intrinsic neutrino magnetic moment. In the most conservative case, $\\mu\\lsim 2.5\\times 10^{-11} \\mu_B$ (95% CL). When studying the effects of a core magnetic field, we find in the weak limit a scaling of the antineutrino probability with respect to the magnetic field profile in the sense that the same probability function can be reproduced by any profile with a suitable peak field value. In this way the solar ele...

  5. Change in General Relativistic precession rates due to Lidov-Kozai oscillations in the Solar System

    Science.gov (United States)

    Sekhar, Aswin; Asher, David J.; Werner, Stephanie C.; Vaubaillon, Jeremie; Li, Gongjie

    2017-04-01

    Introduction: Two well known phenomena associated with low perihelion distance bodies in orbital dynamics are general relativistic (GR) precession and Lidov-Kozai (LK) oscillations. The accurate prediction of the perihelion shift of Mercury in accord with real observations is one of the significant triumphs of the general theory of relativity developed by Einstein. The Lidov-Kozai mechanism was first proposed and derived by Kozai and independently by Lidov explaining the periodic exchange between eccentricities e and inclinations i thereby increasing or decreasing the perihelion distance q secularly in the orbiting body. Co-existence of GR Precession and LK Oscillations: In this work, we were interested to identify bodies evolving in the near future (i.e. thousands of years in this case) into rapid sungrazing and sun colliding phases and undergoing inclination flips, due to LK oscillations and being GR active at the same time. Of all the bodies we checked from the IAU-Minor Planet Center, and Marsden plus Kracht families from the comet catalogue, 96P/Machholz 1 stands out because it shows all these trends in the near future. LK leads to secular lowering of q which in turn leads to a huge increase in GR precession of argument of pericentre. This in turn gives feedback to the LK mechanism as the e,i and argument of pericentre in Kozai cycles are closely correlated. In this work, we find real examples of solar system bodies which show the continuum nature between GR precession domi-nant and LK mechanism dominant regimes. Results and Discussion: We have shown that there are bodies in the solar system in which both GR precession and LK mechanism can co-exist at the same time and for which these effects can be measured and identified using analytical and numerical techniques. Thus there is a continuum of bodies encompassing, firstly GR precession dominant, secondly GR precession plus LK mechanism co-existing and finally LK mechanism dominant states which are all

  6. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    Science.gov (United States)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  7. Parameters of oscillation generation regions in open star cluster models

    Science.gov (United States)

    Danilov, V. M.; Putkov, S. I.

    2017-07-01

    We determine the masses and radii of central regions of open star cluster (OCL) models with small or zero entropy production and estimate the masses of oscillation generation regions in clustermodels based on the data of the phase-space coordinates of stars. The radii of such regions are close to the core radii of the OCL models. We develop a new method for estimating the total OCL masses based on the cluster core mass, the cluster and cluster core radii, and radial distribution of stars. This method yields estimates of dynamical masses of Pleiades, Praesepe, and M67, which agree well with the estimates of the total masses of the corresponding clusters based on proper motions and spectroscopic data for cluster stars.We construct the spectra and dispersion curves of the oscillations of the field of azimuthal velocities v φ in OCL models. Weak, low-amplitude unstable oscillations of v φ develop in cluster models near the cluster core boundary, and weak damped oscillations of v φ often develop at frequencies close to the frequencies of more powerful oscillations, which may reduce the non-stationarity degree in OCL models. We determine the number and parameters of such oscillations near the cores boundaries of cluster models. Such oscillations points to the possible role that gradient instability near the core of cluster models plays in the decrease of the mass of the oscillation generation regions and production of entropy in the cores of OCL models with massive extended cores.

  8. The solar neutrino problem

    International Nuclear Information System (INIS)

    Zatsepin, G.

    1982-01-01

    The problem of missing solar neutrinos is reviewed and discussed. The experiments of the 70s show a solar neutrino flux to be 4 times lower than the flux predicted by the standard model of the Sun. The three possible origins of this contradiction are analysed: the cross sections of nuclear reactions going on in the internal region of the Sun must be remeasured; the unknown properties of neutrino, like neutrino oscillation or decay, must be investigated theoretically and experimentally; or the standard model of the Sun must be changed, e.g. by a periodically pulsating star model or by a model describing periodic admixtures of He-3 to the central region of the Sun. Some new models and newly proposed experiments are described. The importance of new electronic detection methods of neutrinos is underlined. (D.Gy.)

  9. ALFVÉN WAVES IN SIMULATIONS OF SOLAR PHOTOSPHERIC VORTICES

    Energy Technology Data Exchange (ETDEWEB)

    Shelyag, S.; Cally, P. S. [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Victoria 3800 (Australia); Reid, A.; Mathioudakis, M. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom)

    2013-10-10

    Using advanced numerical magneto-hydrodynamic simulations of the magnetized solar photosphere, including non-gray radiative transport and a non-ideal equation of state, we analyze plasma motions in photospheric magnetic vortices. We demonstrate that apparent vortex-like motions in photospheric magnetic field concentrations do not exhibit 'tornado'-like behavior or a 'bath-tub' effect. While at each time instance the velocity field lines in the upper layers of the solar photosphere show swirls, the test particles moving with the time-dependent velocity field do not demonstrate such structures. Instead, they move in a wave-like fashion with rapidly changing and oscillating velocity field, determined mainly by magnetic tension in the magnetized intergranular downflows. Using time-distance diagrams, we identify horizontal motions in the magnetic flux tubes as torsional Alfvén perturbations propagating along the nearly vertical magnetic field lines with local Alfvén speed.

  10. Quasi-periodic Pulsations in the Most Powerful Solar Flare of Cycle 24

    Science.gov (United States)

    Kolotkov, Dmitrii Y.; Pugh, Chloe E.; Broomhall, Anne-Marie; Nakariakov, Valery M.

    2018-05-01

    Quasi-periodic pulsations (QPPs) are common in solar flares and are now regularly observed in stellar flares. We present the detection of two different types of QPP signals in the thermal emission light curves of the X9.3-class solar flare SOL2017-09-06T12:02, which is the most powerful flare of Cycle 24. The period of the shorter-period QPP drifts from about 12 to 25 s during the flare. The observed properties of this QPP are consistent with a sausage oscillation of a plasma loop in the flaring active region. The period of the longer-period QPP is about 4 to 5 minutes. Its properties are compatible with standing slow magnetoacoustic oscillations, which are often detected in coronal loops. For both QPP signals, other mechanisms such as repetitive reconnection cannot be ruled out, however. The studied solar flare has an energy in the realm of observed stellar flares, and the fact that there is evidence of a short-period QPP signal typical of solar flares along with a long-period QPP signal more typical of stellar flares suggests that the different ranges of QPP periods typically observed in solar and stellar flares is likely due to observational constraints, and that similar physical processes may be occurring in solar and stellar flares.

  11. Exploration of the brown dwarf regime around solar-like stars by CoRoT

    OpenAIRE

    Csizmadia, Szilárd

    2016-01-01

    Aims. A summary of the CoRoT brown dwarf investigations are presented. Methods. Transiting brown dwarfs around solar like stars were studied by using the photometric time-series of CoRoT, and ground based radial velocity measurements. Results. CoRoT detected three transiting brown dwarfs around F and G dwarf stars. The occurence rate of brown dwarfs was found to be 0.20 +/- 0.15% around solar-like stars which is compatible with the value obtained by Kepler-data.

  12. A new method to detect solar-like oscillations at very low S/N using statistical significance testing

    DEFF Research Database (Denmark)

    Lund, Mikkel N.; Chaplin, William J.; Kjeldsen, Hans

    2012-01-01

    hence a candidate detection). We apply the method to solar photometry data, whose quality was systematically degraded to test the performance of the MWPS at low signal-to-noise ratios. We also compare the performance of the MWPS against the frequently applied power-spectrum-of-power-spectrum (PSx...

  13. Lyapunov stability of large systems of van der Pol-like oscillators and connection with turbulence and fluctuations spectra

    International Nuclear Information System (INIS)

    Tasso, H.

    1993-04-01

    For a system of van der Pol-like oscillators, Lyapunov functions valid in the greater part of phase space are given. They allow a finite region of attraction to be defined. Any attractor has to be within the rigorously estimated bounds. Under a special choice of the interaction matrices the attractive region can be squeezed to zero. In this case the asymptotic behaviour is given by a conservative system of nonlinear oscillators which acts as attractor. Though this system does not possess, in general, a Hamiltonian formulation, Gibbs statistics is possible due to the proof of a Liouville theorem and the existence of a positive invariant or 'shell' condition. The 'canonical' distribution on the attractor is remarkably simple despite nonlinearities. Finally the connection of the van der Pol-like system and of the attractive region with turbulence and fluctuation spectra in fluids and plasmas is discussed. (orig.)

  14. Seismology of rapidly rotating and solar-like stars

    Science.gov (United States)

    Reese, Daniel Roy

    2018-05-01

    A great deal of progress has been made in stellar physics thanks to asteroseismology, the study of pulsating stars. Indeed, asteroseismology is currently the only way to probe the internal structure of stars. The work presented here focuses on some of the theoretical aspects of this domain and addresses two broad categories of stars, namely solar-like pulsators (including red giants), and rapidly rotating pulsating stars. The work on solar-like pulsators focuses on setting up methods for efficiently characterising a large number of stars, in preparation for space missions like TESS and PLATO 2.0. In particular, the AIMS code applies an MCMC algorithm to find stellar properties and a sample of stellar models which fit a set of seismic and classic observational constraints. In order to reduce computation time, this code interpolates within a precalculated grid of models, using a Delaunay tessellation which allows a greater flexibility on the construction of the grid. Using interpolated models based on the outputs from this code or models from other forward modelling codes, it is possible to obtain refined estimates of various stellar properties such as the mean density thanks to inversion methods put together by me and G. Buldgen, my former PhD student. Finally, I show how inversion-type methods can also be used to test more qualitative information such as whether a decreasing rotation profile is compatible with a set of observed rotational splittings and a given reference model. In contrast to solar-like pulsators, the pulsation modes of rapidly rotating stars remain much more difficult to interpret due to the complexity of the numerical calculations needed to calculate such modes, the lack of simple frequency patterns, and the fact that it is difficult to predict mode amplitudes. The work described here therefore focuses on addressing the above difficulties one at a time in the hopes that it will one day be possible to carry out detailed asteroseismology in these

  15. On the surface physics affecting solar oscillation frequencies

    DEFF Research Database (Denmark)

    Houdek, G.; Trampedach, R.; Aarslev, M. J.

    2017-01-01

    . In this Letter, we address the physical processes of turbulent convection that are predominantly responsible for the frequency differences between standard models and observations, also called 'surface effects'. We compare measured solar frequencies from the Michelson Doppler Imager instrument on the SOlar...... physics in our model computation, we are able to reproduce the observed solar frequencies to less than or similar to 3 mu Hz without the need of any additional ad hoc functional corrections....

  16. Neutrino oscillations and a new Faraday effect

    International Nuclear Information System (INIS)

    Anwar Mughal, M.; Ahmed, K.

    1992-07-01

    By analogy with the classical Faraday effect for the electromagnetic waves, a Faraday effect for massive neutrinos is found to be a somewhat generic description of neutrino oscillations when the neutrinos traverse a dense medium with or without a magnetic field. We further plot the Faraday angle for the solar neutrino problem as an illustration of the fact that the Faraday effect may yield a conceptually convenient parametrization of various neutrino oscillation scenarios. (author). 8 refs, 3 figs

  17. Destructive impact of molecular noise on nanoscale electrochemical oscillators

    Science.gov (United States)

    Cosi, Filippo G.; Krischer, Katharina

    2017-06-01

    We study the loss of coherence of electrochemical oscillations on meso- and nanosized electrodes with numeric simulations of the electrochemical master equation for a prototypical electrochemical oscillator, the hydrogen peroxide reduction on Pt electrodes in the presence of halides. On nanoelectrodes, the electrode potential changes whenever a stochastic electron-transfer event takes place. Electrochemical reaction rate coefficients depend exponentially on the electrode potential and become thus fluctuating quantities as well. Therefore, also the transition rates between system states become time-dependent which constitutes a fundamental difference to purely chemical nanoscale oscillators. Three implications are demonstrated: (a) oscillations and steady states shift in phase space with decreasing system size, thereby also decreasing considerably the oscillating parameter regions; (b) the minimal number of molecules necessary to support correlated oscillations is more than 10 times as large as for nanoscale chemical oscillators; (c) the relation between correlation time and variance of the period of the oscillations predicted for chemical oscillators in the weak noise limit is only fulfilled in a very restricted parameter range for the electrochemical nano-oscillator.

  18. Nonlinear coherent beam-beam oscillations in the rigid bunch model

    International Nuclear Information System (INIS)

    Dikansky, N.; Pestrikov, D.

    1990-01-01

    Within the framework of the rigid bunch model coherent oscillations of strong-strong colliding bunches are described by equations which are specific for the weak-strong beam case. In this paper some predictions of the model for properties of nonlinear coherent oscillations as well as for associated limitations of the luminosity are discussed. 14 refs.; 6 figs

  19. Matter effects in neutrino oscillations

    International Nuclear Information System (INIS)

    Dass, G.V.

    1989-01-01

    After a review of the relevant aspects of neutrino oscillations for propagation in vacuum and in material media, this paper discuss the Mikheyev-Smirnov-Wolfenstein mechanism and its application to a solution of the solar neutrino puzzle. The elementary level of the talk is suitable to people not working in neutrino physics

  20. The MSW Effect and Matter Effects in Neutrino Oscillations

    Science.gov (United States)

    Smirnov, A. Yu.

    2006-03-01

    The MSW (Mikheyev-Smirnov-Wolfenstein) effect is the adiabatic or partially adiabatic neutrino flavor conversion in media with varying density. The main notions related to the effect, its dynamics and physical picture are reviewed. The large mixing MSW effect is realized inside the Sun providing a solution of the solar neutrino problem. The small mixing MSW effect driven by the 1-3 mixing can be realized for the supernova (SN) neutrinos. Inside collapsing stars new elements of the MSW dynamics may show up: non-oscillatory transition, non-adiabatic conversion, time dependent adiabaticity violation induced by shock waves. Effects of the resonance enhancement and the parametric enhancement of oscillations can be realized for atmospheric and accelerator neutrinos in the Earth. Precise results for neutrino oscillations in low density media with arbitrary density profile are presented and the attenuation effect is described. The area of applications is the solar and SN neutrinos inside the Earth, and the results are crucial for the neutrino oscillation tomography.

  1. Seismology and geodesy of the sun: Low-frequency oscillations.

    Science.gov (United States)

    Dicke, R H

    1981-04-01

    The hourly averages of the solar ellipticity measured from June 13 to Sept. 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 hr nu 0.1 hr(-1) but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-hr period, with many observational days missing, and with different numbers of hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun.

  2. Faraday effect and solar neutrino problem

    International Nuclear Information System (INIS)

    Nawaz, S.

    2001-01-01

    We have studied the Faraday effect and solar neutrino problem. Our main emphasis was on the Faraday rotation of neutrino de Broglie wave of electron-neutrino producing in the nuclear reactions in the sun and converting into any other flavor of neutrino while passing through matter and/or magnetic field of the sun. We have shown that specific Faraday angle can minimize the number of free parameters occurring in the neutrino oscillation. We have also shown that the resonant Faraday angle corresponding to the resonance of MSW effect can be obtained the knowledge of the oscillation parameter delta m/sup 2/ and the neutrino energy. Using neutrino-Faraday angle approach, we have shown that the matter enhanced neutrino oscillations is dominating over the resonant spin flavor precession (RSFP) even in the favorable region of the spin flavor procession. Using the latest solar neutrino data, we have shown that Faraday angle is almost 10/sup -3/ times smaller. This can be interpreted as the interaction of magnetic moment of neutrino with the solar magnetic field is negligibly small as compare to the effect of matter field on the neutrino oscillation. (author)

  3. Fock-state view of weak-value measurements and implementation with photons and atomic ensembles

    International Nuclear Information System (INIS)

    Simon, Christoph; Polzik, Eugene S.

    2011-01-01

    Weak measurements in combination with postselection can give rise to a striking amplification effect (related to a large ''weak value''). We show that this effect can be understood by viewing the initial state of the pointer as the ground state of a fictional harmonic oscillator. This perspective clarifies the relationship between the weak-value regime and other measurement techniques and inspires a proposal to implement fully quantum weak-value measurements combining photons and atomic ensembles.

  4. UNDERSTANDING SOLAR TORSIONAL OSCILLATIONS FROM GLOBAL DYNAMO MODELS

    International Nuclear Information System (INIS)

    Guerrero, G.; Smolarkiewicz, P. K.; Pino, E. M. de Gouveia Dal; Kosovichev, A. G.; Mansour, N. N.

    2016-01-01

    The phenomenon of solar “torsional oscillations” (TO) represents migratory zonal flows associated with the solar cycle. These flows are observed on the solar surface and, according to helioseismology, extend through the convection zone. We study the origin of the TO using results from a global MHD simulation of the solar interior that reproduces several of the observed characteristics of the mean-flows and magnetic fields. Our results indicate that the magnetic tension (MT) in the tachocline region is a key factor for the periodic changes in the angular momentum transport that causes the TO. The torque induced by the MT at the base of the convection zone is positive at the poles and negative at the equator. A rising MT torque at higher latitudes causes the poles to speed up, whereas a declining negative MT torque at the lower latitudes causes the equator to slow-down. These changes in the zonal flows propagate through the convection zone up to the surface. Additionally, our results suggest that it is the magnetic field at the tachocline that modulates the amplitude of the surface meridional flow rather than the opposite as assumed by flux-transport dynamo models of the solar cycle.

  5. The effect of anneal, solar irradiation and humidity on the adhesion/cohesion properties of P3HT:PCBM based inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.

    2012-06-01

    We use a thin-film adhesion technique that enables us to precisely measure the energy required to separate adjacent layers in OPV cells. We demonstrate the presence of weak interfaces in prototypical inverted polymer solar cells, either prepared by spin, spray or slot-die coating, including flexible and non flexible solar cells. In all cases, we observed adhesive failure at P3HT:PCBM/PEDOT:PSS interface, indicating the intrinsic material dependence of this mechanism. The impact of temperature, solar irradiation and humidity on the adhesion and cohesion properties of this particular interface is discussed. First, we have found that post-deposition annealing increases the adhesion significantly. Annealing changes the morphology in the photoactive layer and consequently alters the chemical properties at the interface. Second, solar irradiation on fully encapsulated solar cells has no damaging but in contrast an enhancing effect on the adhesion properties, due to the heat generated from IR radiation. Finally, the synergetic effect of stress and an environmental species like moisture greatly accelerates the decohesion rate in the weak hygroscopic PEDOT:PSS layer. This results in a loss of mechanical integrity and device performance. The insight into the mechanisms of delamination and decohesion yields general guidelines for the design of more reliable organic electronic devices. © 2012 IEEE.

  6. Orbital Dynamics of an Oscillating Sail in the Earth-Moon System

    NARCIS (Netherlands)

    Heiligers, M.J.; Ceriotti, M.

    2017-01-01

    The oscillating sail is a novel solar sail configuration where a triangular sail is released at a deflected angle with respect to the Sun-direction. As a result, the sail will conduct an undamped oscillating motion around the Sun-line due to the offset between the centre-of-pressure and

  7. Search for Muon neutrino → Tau neutrino oscillations motivation and feasibility

    International Nuclear Information System (INIS)

    Zacek, V.

    1988-01-01

    Theoretical prejudices derived from solar-neutrino matter oscillations and assumptions of neutrino mass hierarchies suggest, that neutrino-oscillations are observable in laboratory with mass parameters of Δm 2 = 10 -3 -10 4 eV 2 . In particular Muon neutrino → Tau neutrino appearance searches at accelerators seem strongly motivated

  8. MAGNETOHYDRODYNAMICS STUDY OF THREE-DIMENSIONAL FAST MAGNETIC RECONNECTION FOR INTERMITTENT SNAKE-LIKE DOWNFLOWS IN SOLAR FLARES

    International Nuclear Information System (INIS)

    Shimizu, T.; Kondo, K.; Ugai, M.; Shibata, K.

    2009-01-01

    Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamics (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimensions. In two-dimensional models, every plasma condition is assumed to be uniform in the sheet current direction. In that case, it is well known that the two-dimensional fast magnetic reconnection can be caused by current-driven anomalous resistivity, when an initial resistive disturbance is locally put in a one-dimensional current sheet. In this paper, it is studied whether the two-dimensional fast magnetic reconnection can be destabilized or not when the initial resistive disturbance is three dimensional, i.e., that which has weak fluctuations in the sheet current direction. According to our study, the two-dimensional fast magnetic reconnection is developed to the three-dimensional intermittent fast magnetic reconnection which is strongly localized in the sheet current direction. The resulting fast magnetic reconnection repeats to randomly eject three-dimensional magnetic loops which are very similar to the intermittent downflows observed in solar flares. In fact, in some observations of solar flares, the current sheet seems to be approximately one dimensional, but the fast magnetic reconnection is strongly localized in the sheet current direction, i.e., fully three dimensional. In addition, the observed plasma downflows as snake-like curves. It is shown that those observed features are consistent with our numerical MHD study.

  9. Influence of Weak Base Addition to Hole-Collecting Buffer Layers in Polymer:Fullerene Solar Cells

    Directory of Open Access Journals (Sweden)

    Jooyeok Seo

    2017-02-01

    Full Text Available We report the effect of weak base addition to acidic polymer hole-collecting layers in normal-type polymer:fullerene solar cells. Varying amounts of the weak base aniline (AN were added to solutions of poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS. The acidity of the aniline-added PEDOT:PSS solutions gradually decreased from pH = 1.74 (AN = 0 mol% to pH = 4.24 (AN = 1.8 mol %. The electrical conductivity of the PEDOT:PSS-AN films did not change much with the pH value, while the ratio of conductivity between out-of-plane and in-plane directions was dependent on the pH of solutions. The highest power conversion efficiency (PCE was obtained at pH = 2.52, even though all devices with the PEDOT:PSS-AN layers exhibited better PCE than those with the pristine PEDOT:PSS layers. Atomic force microscopy investigation revealed that the size of PEDOT:PSS domains became smaller as the pH increased. The stability test for 100 h illumination under one sun condition disclosed that the PCE decay was relatively slower for the devices with the PEDOT:PSS-AN layers than for those with pristine PEDOT:PSS layers.

  10. The macroscopic harmonic oscillator and quantum measurements

    International Nuclear Information System (INIS)

    Hayward, R.W.

    1982-01-01

    A quantum mechanical description of a one-dimensional macroscopic harmonic oscillator interacting with its environment is given. Quasi-coherent states are introduced to serve as convenient basis states for application of a density matrix formalism to characterize the system. Attention is given to the pertinent quantum limits to the precision of measurement of physical observables that may provide some information on the nature of a weak classical force interacting with the oscillator. A number of ''quantum nondemolition'' schemes proposed by various authors are discussed. (Auth.)

  11. Unified Power Flow Controller Placement to Improve Damping of Power Oscillations

    OpenAIRE

    M. Salehi; A. A. Motie Birjandi; F. Namdari

    2015-01-01

    Weak damping of low frequency oscillations is a frequent phenomenon in electrical power systems. These frequencies can be damped by power system stabilizers. Unified power flow controller (UPFC), as one of the most important FACTS devices, can be applied to increase the damping of power system oscillations and the more effect of this controller on increasing the damping of oscillations depends on its proper placement in power systems. In this paper, a technique based on controllability is pro...

  12. Comparative study of solar cooling systems with building-integrated solar collectors for use in sub-tropical regions like Hong Kong

    International Nuclear Information System (INIS)

    Fong, K.F.; Lee, C.K.; Chow, T.T.

    2012-01-01

    Highlights: ► Performance of building-integrated solar collectors analyzed. ► Comparisons made with solar collectors installed on roof. ► Use of building-integrated solar collectors increased the total primary consumption. ► Reduction in the building load could not compensate drop in solar collector output. ► Building-integrated solar collectors only used when roof space insufficient. -- Abstract: The performance of solar cooling systems with building-integrated (BI) solar collectors was simulated and the results compared with those having the solar collectors installed conventionally on the roof based on the weather data in Hong Kong. Two types of solar collectors and the corresponding cooling systems, namely the flat-plate collectors for absorption refrigeration and the PV panels for DC-driven vapour compression refrigeration, were used in the analysis. It was found that in both cases, the adoption of BI solar collectors resulted in a lower solar fraction (SF) and consequently a higher primary energy consumption even though the zone loads were reduced. The reduction in SF was more pronounced in the peak load season when the solar radiation was nearly parallel to the solar collector surfaces during the daytimes, especially for those facing the south direction. Indeed, there were no outputs from the BI flat-plate collectors facing the south direction between May and July. The more severe deterioration in the system performance with the BI flat-plate type collectors made them technically infeasible in terms of the energy-saving potential. It was concluded that the use of BI solar collectors in solar cooling systems should be restricted only to situations where the availability of the roof was limited or insufficient when applied in sub-tropical regions like Hong Kong.

  13. OSCILLATION OF CURRENT SHEETS IN THE WAKE OF A FLUX ROPE ERUPTION OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    Energy Technology Data Exchange (ETDEWEB)

    Li, L. P.; Zhang, J.; Su, J. T. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, 100012 Beijing (China); Liu, Y. [Department of Astronomy, Beijing Normal University, 100875 Beijing (China)

    2016-10-01

    An erupting flux rope (FR) draws its overlying coronal loops upward, causing a coronal mass ejection. The legs of the overlying loops with opposite polarities are driven together. Current sheets (CSs) form, and magnetic reconnection, producing underneath flare arcades, occurs in the CSs. Employing Solar Dynamic Observatory /Atmospheric Imaging Assembly images, we study a FR eruption on 2015 April 23, and for the first time report the oscillation of CSs underneath the erupting FR. The FR is observed in all AIA extreme-ultraviolet passbands, indicating that it has both hot and warm components. Several bright CSs, connecting the erupting FR and the underneath flare arcades, are observed only in hotter AIA channels, e.g., 131 and 94 Å. Using the differential emission measure (EM) analysis, we find that both the temperature and the EM of CSs temporally increase rapidly, reach the peaks, and then decrease slowly. A significant delay between the increases of the temperature and the EM is detected. The temperature, EM, and density spatially decrease along the CSs with increasing heights. For a well-developed CS, the temperature (EM) decreases from 9.6 MK (8 × 10{sup 28} cm{sup −5}) to 6.2 MK (5 × 10{sup 27} cm{sup −5}) in 52 Mm. Along the CSs, dark supra-arcade downflows (SADs) are observed, and one of them separates a CS into two. While flowing sunward, the speeds of the SADs decrease. The CSs oscillate with a period of 11 minutes, an amplitude of 1.5 Mm, and a phase speed of 200 ± 30 km s{sup −1}. One of the oscillations lasts for more than 2 hr. These oscillations represent fast-propagating magnetoacoustic kink waves.

  14. Adiabatic and non-adiabatic electron oscillations in a static electric field

    International Nuclear Information System (INIS)

    Wahlberg, C.

    1977-03-01

    The influence of a static electric field on the oscillations of a one-dimensional stream of electrons is investigated. In the weak field limit the oscillations are adiabatic and mode coupling negligible, but becomes significant if the field is tronger. The latter effect is believed to be of importance for the stability of e.g. potential double layers

  15. Angular momentum transport and dynamo action in the sun - Implications of recent oscillation measurements

    International Nuclear Information System (INIS)

    Gilman, P. A.; Morrow, C. A.; Deluca, E. E.

    1989-01-01

    The implications of a newly proposed picture of the sun's internal rotation (Brown et al., 1989; Morrow, 1988) for the distribution and transport of angular momentum and for the solar dynamo are considered. The new results, derived from an analysis of solar acoustic oscillations, affect understanding of how momentum is cycled in the sun and provide clues as to how and where the solar dynamo is driven. The data imply that the only significant radial gradient of angular velocity exists in a transitional region between the bottom of the convection zone, which is rotating like the solar surface, and the top of the deep interior, which is rotating rigidly at a rate intermediate between the equatorial and polar rates at the surface. Thus the radial gradient must change sign at the latitude where the angular velocity of the surface matches that of the interior. These inferences suggest that the cycle of angular momentum that produces the observed latitudinal differential rotation in the convection zone may be coupled to layers of the interior beneath the convection zone. 35 refs

  16. Transverse Oscillations in Slender Ca ii H Fibrils Observed with Sunrise/SuFI

    Energy Technology Data Exchange (ETDEWEB)

    Jafarzadeh, S. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Solanki, S. K.; Gafeira, R.; Noort, M. van; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Knölker, M. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Schmidt, W., E-mail: shahin.jafarzadeh@astro.uio.no [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany)

    2017-03-01

    We present observations of transverse oscillations in slender Ca ii H fibrils (SCFs) in the lower solar chromosphere. We use a 1 hr long time series of high- (spatial and temporal-) resolution seeing-free observations in a 1.1 Å wide passband covering the line core of Ca ii H 3969 Å from the second flight of the Sunrise balloon-borne solar observatory. The entire field of view, spanning the polarity inversion line of an active region close to the solar disk center, is covered with bright, thin, and very dynamic fine structures. Our analysis reveals the prevalence of transverse waves in SCFs with median amplitudes and periods on the order of 2.4 ± 0.8 km s{sup −1} and 83 ± 29 s, respectively (with standard deviations given as uncertainties). We find that the transverse waves often propagate along (parts of) the SCFs with median phase speeds of 9 ± 14 km s{sup −1}. While the propagation is only in one direction along the axis in some of the SCFs, propagating waves in both directions, as well as standing waves are also observed. The transverse oscillations are likely Alfvénic and are thought to be representative of magnetohydrodynamic kink waves. The wave propagation suggests that the rapid high-frequency transverse waves, often produced in the lower photosphere, can penetrate into the chromosphere with an estimated energy flux of ≈15 kW m{sup −2}. Characteristics of these waves differ from those reported for other fibrillar structures, which, however, were observed mainly in the upper solar chromosphere.

  17. PROPERTIES OF 42 SOLAR-TYPE KEPLER TARGETS FROM THE ASTEROSEISMIC MODELING PORTAL

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, T. S.; Mathur, S. [Space Science Institute, 4750 Walnut Street Suite 205, Boulder, CO 80301 (United States); Creevey, O. L. [Institut d' Astrophysique Spatiale, Université Paris XI, UMR 8617, CNRS, Batiment 121, F-91405 Orsay Cedex (France); Doğan, G.; Christensen-Dalsgaard, J.; Karoff, C.; Trampedach, R. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Xu, H. [Computational and Information Systems Laboratory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Bedding, T. R.; Benomar, O. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Chaplin, W. J.; Campante, T. L.; Davies, G. R. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Brown, B. P. [Department of Astronomy and Center for Magnetic Self Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin, Madison, WI 53706 (United States); Buzasi, D. L. [Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL 33965 (United States); Çelik, Z. [Ege University, Department of Astronomy and Space Sciences, Bornova, 35100, Izmir (Turkey); Cunha, M. S. [Centro de Astrofísica e Faculdade de Ciências, Universidade do Porto, Rua das Estrelas, 4150-762, Porto (Portugal); Deheuvels, S. [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Derekas, A. [Konkoly Observatory, MTA CSFK, H-1121 Budapest, Konkoly Thege M. út 15-17 (Hungary); Mauro, M. P. Di [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); and others

    2014-10-01

    Recently the number of main-sequence and subgiant stars exhibiting solar-like oscillations that are resolved into individual mode frequencies has increased dramatically. While only a few such data sets were available for detailed modeling just a decade ago, the Kepler mission has produced suitable observations for hundreds of new targets. This rapid expansion in observational capacity has been accompanied by a shift in analysis and modeling strategies to yield uniform sets of derived stellar properties more quickly and easily. We use previously published asteroseismic and spectroscopic data sets to provide a uniform analysis of 42 solar-type Kepler targets from the Asteroseismic Modeling Portal. We find that fitting the individual frequencies typically doubles the precision of the asteroseismic radius, mass, and age compared to grid-based modeling of the global oscillation properties, and improves the precision of the radius and mass by about a factor of three over empirical scaling relations. We demonstrate the utility of the derived properties with several applications.

  18. Seismology and geodesy of the sun: low-frequency oscillations

    International Nuclear Information System (INIS)

    Dicke, R.H.

    1981-01-01

    The hourly averages of the solar ellipticity measured from June 13 to September 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 h ν -1 . Nothing significant is found for frequencies ν > 0.1 hr -1 but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-h period, with many observational days missing, and with different numbers of hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun

  19. Large Extra Dimensions, Sterile Neutrinos and Solar Neutrino Data

    International Nuclear Information System (INIS)

    Caldwell, D. O.; Mohapatra, R. N.; Yellin, S. J.

    2001-01-01

    Solar, atmospheric, and LSND neutrino oscillation results require a light sterile neutrino, ν B , which can exist in the bulk of extra dimensions. Solar ν e , confined to the brane, can oscillate in the vacuum to the zero mode of ν B and via successive Mikheyev-Smirnov-Wolfenstein transitions to Kaluza-Klein states of ν B . This new way to fit solar data is provided by both low and intermediate string scale models. From average rates seen in the three types of solar experiments, the Super-Kamiokande spectrum is predicted with 73% probability, but dips characteristic of the 0.06 mm extra dimension should be seen in the SNO spectrum

  20. Large extra dimensions, sterile neutrinos and solar neutrino data.

    Science.gov (United States)

    Caldwell, D O; Mohapatra, R N; Yellin, S J

    2001-07-23

    Solar, atmospheric, and LSND neutrino oscillation results require a light sterile neutrino, nu(B), which can exist in the bulk of extra dimensions. Solar nu(e), confined to the brane, can oscillate in the vacuum to the zero mode of nu(B) and via successive Mikheyev-Smirnov-Wolfenstein transitions to Kaluza-Klein states of nu(B). This new way to fit solar data is provided by both low and intermediate string scale models. From average rates seen in the three types of solar experiments, the Super-Kamiokande spectrum is predicted with 73% probability, but dips characteristic of the 0.06 mm extra dimension should be seen in the SNO spectrum.

  1. Integrated Solar Disk Oscillation Measurements Using the Magneto-Optical Filter: Tests with a Two Station Network

    Science.gov (United States)

    Cacciani, Alessandro; Rosati, P.; Ricci, D.; Marquedant, R.; Smith, E.

    1988-01-01

    The magneto-optical filter (MOF) was used to get high and intermediate l-modes of solar oscillations. For very low l-modes the imaging capability of the MOF is still attractive since it allows a pixel by pixel intensity normalization. However, a crude attempt to get very low l power spectra from Dopplergrams obtained at Mt. Wilson gave noisy results. This means that a careful analysis of all the factors potentially affecting high resolution Dopplergrams should be accomplished. In order to better investigate this problem, a nonimaging channel using the lock-in amplifier technique was considered. Two systems are now operational, one at JPL and the other at University of Rome. Observations in progress are used to discuss the MOF stability, the noise level, and the possible application in asteroseismology.

  2. Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare

    International Nuclear Information System (INIS)

    Li, Y.; Ding, M. D.; Sun, X.; Qiu, J.; Priest, E. R.

    2017-01-01

    Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.

  3. Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Sun, X. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Priest, E. R., E-mail: yingli@nju.edu.cn [School of Mathematics and Statistics, University of St Andrews, Fife KY16 9SS, Scotland (United Kingdom)

    2017-02-01

    Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.

  4. Magnetic Reconnection in the Solar Chromosphere

    Science.gov (United States)

    Lukin, Vyacheslav S.; Ni, Lei; Murphy, Nicholas Arnold

    2017-08-01

    We report on the most recent efforts to accurately and self-consistently model magnetic reconnection processes in the context of the solar chromosphere. The solar chromosphere is a notoriously complex and highly dynamic boundary layer of the solar atmosphere where local variations in the plasma parameters can be of the order of the mean values. At the same time, the interdependence of the physical processes such as magnetic field evolution, local and global energy transfer between internal and electromagnetic plasma energy, radiation transport, plasma reactivity, and dissipation mechanisms make it a particularly difficult system to self-consistently model and understand. Several recent studies have focused on the micro-physics of multi-fluid magnetic reconnection at magnetic nulls in the weakly ionized plasma environment of the lower chromosphere[1-3]. Here, we extend the previous work by considering a range of spatial scales and magnetic field strengths in a configuration with component magnetic reconnection, i.e., for magnetic reconnection with a guide field. We show that in all cases the non-equilibrium reactivity of the plasma and the dynamic interaction among the plasma processes play important roles in determining the structure of the reconnection region. We also speculate as to the possible observables of chromospheric magnetic reconnection and the likely plasma conditions required for generation of Ellerman and IRIS bombs.[1] Leake, Lukin, Linton, and Meier, “Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” ApJ 760 (2012).[2] Leake, Lukin, and Linton, “Magnetic reconnection in a weakly ionized plasma,” PoP 20 (2013).[3] Murphy and Lukin, “Asymmetric magnetic reconnection in weakly ionized chromospheric plasmas,” ApJ 805 (2015).[*Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National

  5. Utilization of Solar Dynamics Observatory space weather digital image data for comparative analysis with application to Baryon Oscillation Spectroscopic Survey

    Science.gov (United States)

    Shekoyan, V.; Dehipawala, S.; Liu, Ernest; Tulsee, Vivek; Armendariz, R.; Tremberger, G.; Holden, T.; Marchese, P.; Cheung, T.

    2012-10-01

    Digital solar image data is available to users with access to standard, mass-market software. Many scientific projects utilize the Flexible Image Transport System (FITS) format, which requires specialized software typically used in astrophysical research. Data in the FITS format includes photometric and spatial calibration information, which may not be useful to researchers working with self-calibrated, comparative approaches. This project examines the advantages of using mass-market software with readily downloadable image data from the Solar Dynamics Observatory for comparative analysis over with the use of specialized software capable of reading data in the FITS format. Comparative analyses of brightness statistics that describe the solar disk in the study of magnetic energy using algorithms included in mass-market software have been shown to give results similar to analyses using FITS data. The entanglement of magnetic energy associated with solar eruptions, as well as the development of such eruptions, has been characterized successfully using mass-market software. The proposed algorithm would help to establish a publicly accessible, computing network that could assist in exploratory studies of all FITS data. The advances in computer, cell phone and tablet technology could incorporate such an approach readily for the enhancement of high school and first-year college space weather education on a global scale. Application to ground based data such as that contained in the Baryon Oscillation Spectroscopic Survey is discussed.

  6. Solar Magnetized Tornadoes: Rotational Motion in a Tornado-like Prominence

    Science.gov (United States)

    Su, Yang; Gömöry, Peter; Veronig, Astrid; Temmer, Manuela; Wang, Tongjiang; Vanninathan, Kamalam; Gan, Weiqun; Li, YouPing

    2014-04-01

    Su et al. proposed a new explanation for filament formation and eruption, where filament barbs are rotating magnetic structures driven by underlying vortices on the surface. Such structures have been noticed as tornado-like prominences when they appear above the limb. They may play a key role as the source of plasma and twist in filaments. However, no observations have successfully distinguished rotational motion of the magnetic structures in tornado-like prominences from other motions such as oscillation and counter-streaming plasma flows. Here we report evidence of rotational motions in a tornado-like prominence. The spectroscopic observations in two coronal lines were obtained from a specifically designed Hinode/EIS observing program. The data revealed the existence of both cold and million-degree-hot plasma in the prominence leg, supporting the so-called prominence-corona transition region. The opposite velocities at the two sides of the prominence and their persistent time evolution, together with the periodic motions evident in SDO/AIA dark structures, indicate a rotational motion of both cold and hot plasma with a speed of ~5 km s-1.

  7. Tandem planet formation for solar system-like planetary systems

    Directory of Open Access Journals (Sweden)

    Yusuke Imaeda

    2017-03-01

    Full Text Available We present a new united theory of planet formation, which includes magneto-rotational instability (MRI and porous aggregation of solid particles in a consistent way. We show that the “tandem planet formation” regime is likely to result in solar system-like planetary systems. In the tandem planet formation regime, planetesimals form at two distinct sites: the outer and inner edges of the MRI suppressed region. The former is likely to be the source of the outer gas giants, and the latter is the source for the inner volatile-free rocky planets. Our study spans disks with a various range of accretion rates, and we find that tandem planet formation can occur for M˙=10−7.3-10−6.9M⊙yr−1. The rocky planets form between 0.4–2 AU, while the icy planets form between 6–30 AU; no planets form in 2–6 AU region for any accretion rate. This is consistent with the gap in the solid component distribution in the solar system, which has only a relatively small Mars and a very small amount of material in the main asteroid belt from 2–6 AU. The tandem regime is consistent with the idea that the Earth was initially formed as a completely volatile-free planet. Water and other volatile elements came later through the accretion of icy material by occasional inward scattering from the outer regions. Reactions between reductive minerals, such as schreibersite (Fe3P, and water are essential to supply energy and nutrients for primitive life on Earth.

  8. Amoeba-like self-oscillating polymeric fluids with autonomous sol-gel transition.

    Science.gov (United States)

    Onoda, Michika; Ueki, Takeshi; Tamate, Ryota; Shibayama, Mitsuhiro; Yoshida, Ryo

    2017-07-13

    In the field of polymer science, many kinds of polymeric material systems that show a sol-gel transition have been created. However, most systems are unidirectional stimuli-responsive systems that require physical signals such as a change in temperature. Here, we report on the design of a block copolymer solution that undergoes autonomous and periodic sol-gel transition under constant conditions without any on-off switching through external stimuli. The amplitude of this self-oscillation of the viscosity is about 2,000 mPa s. We also demonstrate an intermittent forward motion of a droplet of the polymer solution synchronized with the autonomous sol-gel transition. This polymer solution bears the potential to become the base for a type of slime-like soft robot that can transform its shape kaleidoscopically and move autonomously, which is associated with the living amoeba that moves forward by a repeated sol-gel transition.

  9. Stratospheric warmings - The quasi-biennial oscillation Ozone Hole in the Antarctic but not the Arctic - Correlations between the Solar Cycle, Polar Temperatures, and an Equatorial Oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Ulf-Peter

    2010-05-15

    This report is a tutorial and overview over some of the complex dynamic phenomena in the polar and equatorial stratosphere, and the unexpected correlation that exists between these and the solar cycle. Sudden stratospheric warmings (stratwarms) occur in the polar stratosphere in winter, but not equally distributed between the two hemispheres. As a result, the ozone hole in the springtime polar stratosphere is much more severe in the Southern Hemisphere than in the Northern Hemisphere. The Quasi-Biennial Oscillation (QBO) is a dynamic phenomenon of the equatorial stratosphere. Through processes not fully understood, the phase of the QBO (easterly or westerly) influences the onset of stratwarms. In addition, a correlation between the stratospheric winter temperature over the poles and the solar cycle has been found, but only if the datapoints are ordered by the phase of the QBO. - The best explanations and figures from four recent textbooks are selected, and abstracts of most relevant publications from the six last years are collected, with the most relevant portions for these subjects highlighted. - In addition to being basic science, the understanding of these phenomena is important in the context of the ozone hole, the greenhouse effect, as well as anthropogenic and natural climate change. (author)

  10. SUN-LIKE MAGNETIC CYCLES IN THE RAPIDLY ROTATING YOUNG SOLAR ANALOG HD 30495

    International Nuclear Information System (INIS)

    Egeland, Ricky; Metcalfe, Travis S.; Hall, Jeffrey C.; Henry, Gregory W.

    2015-01-01

    A growing body of evidence suggests that multiple dynamo mechanisms can drive magnetic variability on different timescales, not only in the Sun but also in other stars. Many solar activity proxies exhibit a quasi-biennial (∼2 year) variation, which is superimposed upon the dominant 11 year cycle. A well-characterized stellar sample suggests at least two different relationships between rotation period and cycle period, with some stars exhibiting long and short cycles simultaneously. Within this sample, the solar cycle periods are typical of a more rapidly rotating star, implying that the Sun might be in a transitional state or that it has an unusual evolutionary history. In this work, we present new and archival observations of dual magnetic cycles in the young solar analog HD 30495, a ∼1 Gyr old G1.5 V star with a rotation period near 11 days. This star falls squarely on the relationships established by the broader stellar sample, with short-period variations at ∼1.7 years and a long cycle of ∼12 years. We measure three individual long-period cycles and find durations ranging from 9.6 to 15.5 years. We find the short-term variability to be intermittent, but present throughout the majority of the time series, though its occurrence and amplitude are uncorrelated with the longer cycle. These essentially solar-like variations occur in a Sun-like star with more rapid rotation, though surface differential rotation measurements leave open the possibility of a solar equivalence

  11. Theory of weak interactions and related topics. Progress report, January 1, 1982-February 28, 1983

    International Nuclear Information System (INIS)

    Marshak, R.E.

    1985-08-01

    Progress is reported in these areas: B-L vs V-A gauge groups; work on neutron oscillations; preon models of quarks and leptons; partial unification theory (PUT); extensions of standard electroweak group; composite weak bosons; quasi-solitons in electroweak gauge groups; and weak CP nonconservation. 18 refs

  12. Catalogue of oscillator strengths for Ti II lines

    International Nuclear Information System (INIS)

    Savanov, I.S.; Huovelin, J.; Tuominen, I.

    1990-01-01

    We have revised the published values of oscillator strengths for ionized titanium. The zero point of gf-values has been established using the lifetime measurements of excited states of atoms. The data on the adopted oscillator strengths for 419 Ti II lines are compiled. Using the adopted gf-values and the analysis by Biemont for the titanium in the solar atmosphere determined from the Ti II lines and the HOLMU model, we obtained the abundance log A(Ti) = 4.96 ± 0.05

  13. Partly Duffing Oscillator Stochastic Resonance Method and Its Application on Mechanical Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Jian Dang

    2016-01-01

    Full Text Available Due to the fact that the slight fault signals in early failure of mechanical system are usually submerged in heavy background noise, it is unfeasible to extract the weak fault feature via the traditional vibration analysis. Stochastic resonance (SR, as a method of utilizing noise to amplify weak signals in nonlinear dynamical systems, can detect weak signals overwhelmed in the noise. However, based on the analysis of the impact of noise intensity on SR effect, it is concluded that the detection results are dramatically limited by the noise intensity of measured signals, especially for incipient fault feature of mechanical system with poor working environment. Therefore, this paper proposes a partly Duffing oscillator SR method to extract the fault feature of mechanical system. In this method, to locate the appearance of weak fault feature and decrease noise intensity, the permutation entropy index is constructed to select the measured signals for the input of Duffing oscillator system. Then, according to the regulation of system parameters, a reasonable match between the selected signals and Duffing oscillator model is achieved to produce a SR phenomenon and realize the fault diagnosis of mechanical system. Experiment results demonstrate that the proposed method achieves a better effect on the fault diagnosis of mechanical system.

  14. Solar cycle variation of cosmic ray intensity along with interplanetary and solar wind plasma parameters

    International Nuclear Information System (INIS)

    Mishra, R.K.; Tiwari, S.; Agarwal, R.

    2008-01-01

    Galactic cosmic rays are modulated at their propagation in the heliosphere by the effect of the large-scale structure of the interplanetary medium. A comparison of the variations in the cosmic ray intensity data obtained by neutron monitoring stations with those in geomagnetic disturbance, solar wind velocity (V), interplanetary magnetic field (B), and their product (V , B) near the Earth for the period 1964-2004 has been presented so as to establish a possible correlation between them. We used the hourly averaged cosmic ray counts observed with the neutron monitor in Moscow. It is noteworthy that a significant negative correlation has been observed between the interplanetary magnetic field, product (V , B) and cosmic ray intensity during the solar cycles 21 and 22. The solar wind velocity has a good positive correlation with cosmic ray intensity during solar cycle 21, whereas it shows a weak correlation during cycles 20, 22 and 23. The interplanetary magnetic field shows a weak negative correlation with cosmic rays for solar cycle 20, and a good anti-correlation for solar cycles 21-23 with the cosmic ray intensity, which, in turn, shows a good positive correlation with disturbance time index (Dst) during solar cycles 21 and 22, and a weak correlation for cycles 20 and 23. (Authors)

  15. ANALYSIS OF CORONAL RAIN OBSERVED BY IRIS , HINODE /SOT, AND SDO /AIA: TRANSVERSE OSCILLATIONS, KINEMATICS, AND THERMAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Kohutova, P.; Verwichte, E., E-mail: p.kohutova@warwick.ac.uk [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-08-10

    Coronal rain composed of cool plasma condensations falling from coronal heights along magnetic field lines is a phenomenon occurring mainly in active region coronal loops. Recent high-resolution observations have shown that coronal rain is much more common than previously thought, suggesting its important role in the chromosphere-corona mass cycle. We present the analysis of MHD oscillations and kinematics of the coronal rain observed in chromospheric and transition region lines by the Interface Region Imaging Spectrograph (IRIS) , the Hinode Solar Optical Telescope (SOT), and the Solar Dynamics Observatory ( SDO) Atmospheric Imaging Assembly (AIA). Two different regimes of transverse oscillations traced by the rain are detected: small-scale persistent oscillations driven by a continuously operating process and localized large-scale oscillations excited by a transient mechanism. The plasma condensations are found to move with speeds ranging from few km s{sup −1} up to 180 km s{sup −1} and with accelerations largely below the free-fall rate, likely explained by pressure effects and the ponderomotive force resulting from the loop oscillations. The observed evolution of the emission in individual SDO /AIA bandpasses is found to exhibit clear signatures of a gradual cooling of the plasma at the loop top. We determine the temperature evolution of the coronal loop plasma using regularized inversion to recover the differential emission measure (DEM) and by forward modeling the emission intensities in the SDO /AIA bandpasses using a two-component synthetic DEM model. The inferred evolution of the temperature and density of the plasma near the apex is consistent with the limit cycle model and suggests the loop is going through a sequence of periodically repeating heating-condensation cycles.

  16. Analytical description of spin-Rabi oscillation controlled electronic transitions rates between weakly coupled pairs of paramagnetic states with S=(1)/(2)

    Science.gov (United States)

    Glenn, R.; Baker, W. J.; Boehme, C.; Raikh, M. E.

    2013-04-01

    We report on the theoretical and experimental study of spin-dependent electronic transition rates which are controlled by a radiation-induced spin-Rabi oscillation of weakly spin-exchange and spin-dipolar coupled paramagnetic states (S=(1)/(2)). The oscillation components [the Fourier content, F(s)] of the net transition rates within spin-pair ensembles are derived for randomly distributed spin resonances, with an account of a possible correlation between the two distributions corresponding to individual pair partners. Our study shows that when electrically detected Rabi spectroscopy is conducted under an increasing driving field B1, the Rabi spectrum, F(s), evolves from a single peak at s=ΩR, where ΩR=γB1 is the Rabi frequency (γ is the gyromagnetic ratio), to three peaks at s=ΩR, s=2ΩR, and low s≪ΩR. The crossover between the two regimes takes place when ΩR exceeds the expectation value δ0 of the difference in the Zeeman energies within the pairs, which corresponds to the broadening of the magnetic resonance by disorder caused by a hyperfine field or distributions of Landé g factors. We capture this crossover by analytically calculating the shapes of all three peaks at an arbitrary relation between ΩR and δ0. When the peaks are well developed their widths are Δs˜δ02/ΩR. We find a good quantitative agreement between the theory and experiment.

  17. Novel relationships between superoscillations, weak values, and modular variables

    International Nuclear Information System (INIS)

    Tollaksen, Jeff

    2007-01-01

    We present several novel, unexpected relationships between superoscillations, weak values and modular variables. For example, we show how an uncertain phase, which characterizes the process of projecting a particle onto a superoscillatory region, can create the high-momentum associated with the super-oscillation. If an uncertain phase can localize the particle, then a definite phase can also localize it. This introduction of a relative phase corresponds to a nonlocal exchange of modular variables. We also present a new way to measure the nonlocality in the equation of motion for modular variables by using weak measurements

  18. The quantum to classical crossover for a weak link capacitor

    International Nuclear Information System (INIS)

    Spiller, T.P.; Clark, T.D.; Prance, H.; Prance, R.J.

    1995-01-01

    We consider a model weak link, an ultra-small capacitor subject to tunnelling, to ohmic dissipation and fed with an external displacement current. The framework we employ is the new approach of quantum state diffusion, which treats individual open quantum systems as well as being able to generate the conventional ensemble averages. We show how evidence, for archetypal quantum behaviour (coherent oscillations) and archetypal classical behaviour (chaos) arises, for weak links whose parameters are related by a rather modest scaling. Interestingly, the quantum behaviour can arise for a weak link with intrinsic parameter values such that it could exhibit chaos, if it were a purely classical device

  19. Non-singular spiked harmonic oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Guardiola, R.

    1990-01-01

    A perturbative study of a class of non-singular spiked harmonic oscillators defined by the hamiltonian H = d sup(2)/dr sup(2) + r sup(2) + λ/r sup(α) in the domain [0,∞] is carried out, in the two extremes of a weak coupling and a strong coupling regimes. A path has been found to connect both expansions for α near 2. (author)

  20. Gap junction networks can generate both ripple-like and fast ripple-like oscillations

    Science.gov (United States)

    Simon, Anna; Traub, Roger D.; Vladimirov, Nikita; Jenkins, Alistair; Nicholson, Claire; Whittaker, Roger G.; Schofield, Ian; Clowry, Gavin J.; Cunningham, Mark O.; Whittington, Miles A.

    2014-01-01

    Fast ripples (FRs) are network oscillations, defined variously as having frequencies of > 150 to > 250 Hz, with a controversial mechanism. FRs appear to indicate a propensity of cortical tissue to originate seizures. Here, we demonstrate field oscillations, at up to 400 Hz, in spontaneously epileptic human cortical tissue in vitro, and present a network model that could explain FRs themselves, and their relation to ‘ordinary’ (slower) ripples. We performed network simulations with model pyramidal neurons, having axons electrically coupled. Ripples ( 250 Hz, were sustained or interrupted, and had little jitter in the firing of individual axons. The form of model FR was similar to spontaneously occurring FRs in excised human epileptic tissue. In vitro, FRs were suppressed by a gap junction blocker. Our data suggest that a given network can produce ripples, FRs, or both, via gap junctions, and that FRs are favored by clusters of axonal gap junctions. If axonal gap junctions indeed occur in epileptic tissue, and are mediated by connexin 26 (recently shown to mediate coupling between immature neocortical pyramidal cells), then this prediction is testable. PMID:24118191

  1. Proceedings of the first workshop on solar neutrino detection

    International Nuclear Information System (INIS)

    Sakuda, Makoto; Suzuki, Y.

    1986-12-01

    The purpose of the workshop was to review this vital field of the solar neutrino physics and to search for new techniques for next generation detectors to cover full range of the solar neutrino spectrum. Reviews of the solar model, the matter oscillation and experimental status were given. Discussions were also focused on a radio chemical measurement and indium detectors. Progress reports of scintillation fibers and indium-loaded scintillators were presented. Possible new detectors to use low temperature techniques were also reported. Progress reports from the Kamioka experiment, the only one from the real world, covered their search for the solar neutrinos and the effect of the matter oscillation of atomospheric neutrinos. (author)

  2. ASYMMETRIC MAGNETIC RECONNECTION IN WEAKLY IONIZED CHROMOSPHERIC PLASMAS

    International Nuclear Information System (INIS)

    Murphy, Nicholas A.; Lukin, Vyacheslav S.

    2015-01-01

    Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection, the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase

  3. Solar Imagery - GONG

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Oscillation Network Group (GONG) is a network of 6 globally-spaced solar observatories that the NOAA Space Weather Prediction Center uses to monitor the...

  4. Direction of coupling from phases of interacting oscillators: An information-theoretic approach

    Science.gov (United States)

    Paluš, Milan; Stefanovska, Aneta

    2003-05-01

    A directionality index based on conditional mutual information is proposed for application to the instantaneous phases of weakly coupled oscillators. Its abilities to distinguish unidirectional from bidirectional coupling, as well as to reveal and quantify asymmetry in bidirectional coupling, are demonstrated using numerical examples of quasiperiodic, chaotic, and noisy oscillators, as well as real human cardiorespiratory data.

  5. Synchronisation Induced by Repulsive Interactions in a System of van der Pol Oscillators

    Science.gov (United States)

    Martins, T. V.; Toral, R.

    2011-09-01

    We consider a system of identical van der Pol oscillators, globally coupled through their velocities, and study how the presence of competitive interactions affects its synchronisation properties. We will address the question from two points of view. Firstly, we will investigate the role of competitive interactions on the synchronisation among identical oscillators. Then, we will show that the presence of a fraction of repulsive links results in the appearance of macroscopic oscillations at that signal's rhythm, in regions where the individual oscillator is unable to synchronise with a weak external signal.

  6. Oscillating neutrinos from the Galactic center

    International Nuclear Information System (INIS)

    Crocker, R.M.; Volkas, R.R.; Melia, F.

    1999-11-01

    It has recently been demonstrated that the γ-ray emission spectrum of the EGRET-identified, central Galactic source 2EG J1746-2852 can be well fitted by positing that these photons are generated by the decay of π 0, s produced in p-p scattering at or near an energizing shock. Such scattering also produces charged pions which decay leptonically. The ratio of γ-rays to neutrinos generated by the central Galactic source may be accurately determined and a well-defined and potentially-measurable high energy neutrino flux at Earth is unavoidable. An opportunity, therefore, to detect neutrino oscillations over an unprecedented scale is offered by this source. In this paper we assess the prospects for such an observation with the generation of neutrino Cerenkov telescopes now in the planning stage. We determine that the next generation of detectors may find an oscillation signature in the Galactic Center (GC) signal, but that such an observation will probably not further constrain the oscillation parameter space mapped out by current atmospheric, solar, reactor and accelerator neutrino oscillation experiments

  7. Oscillating asymmetric sneutrino dark matter from the maximally U(1L supersymmetric inverse seesaw

    Directory of Open Access Journals (Sweden)

    Shao-Long Chen

    2016-10-01

    Full Text Available The inverse seesaw mechanism provides an attractive approach to generate small neutrino mass, which origins from a tiny U(1L breaking. In this paper, we work in the supersymmetric version of this mechanism, where the singlet-like sneutrino could be an asymmetric dark matter (ADM candidate in the maximally U(1L symmetric limit. However, even a tiny δm, the mass splitting between sneutrino and anti-sneutrino as a result of the tiny U(1L breaking effect, could lead to fast oscillation between sneutrino and anti-sneutrino and thus spoils the ADM scenario. We study the evolution of this oscillation and find that a weak scale sneutrino, which tolerates a relatively larger δm∼10−5 eV, is strongly favored. We also investigate possible natural ways to realize that small δm in the model.

  8. Downshift of electron plasma oscillations in the electron foreshock region

    International Nuclear Information System (INIS)

    Fuselier, S.A.

    1984-01-01

    Electron plasma oscillations in the Earth's electron foreshock region are observed to shift above and below the local electron plasma frequency. As plasma oscillations shift from the plasma frequency, their bandwidth increases and their wavelength decreases. Observations of plasma oscillations well below the plasma frequency are correlated with times when ISEE-I is far downstream of the electron foreshock boundary. Although wavelengths of plasma oscillations below the plasma frequency satisfy klambda/sub De/ approx. = 1, the Doppler shift due to the motion of the solar wind is not sufficient to produce the observed frequency shifts. A beam-plasma interaction with beam velocities on the order of the electron thermal velocity is suggested as an explanation for plasma oscillations above and below the plasma frequency. Frequency, bandwidth, and wavelength changes predicted from the beam-plasma interaction are in good agreement with the observed characteristics of plasma oscillations in the foreshock region

  9. Oscillations of a spring-magnet system damped by a conductive plate

    Science.gov (United States)

    Ladera, C. L.; Donoso, G.

    2013-09-01

    We study the motion of a spring-magnet system that oscillates with very low frequencies above a circular horizontal non-magnetizable conductive plate. The magnet oscillations couple with the plate via the Foucault currents induced therein. We develop a simple theoretical model for this magneto-mechanical oscillator, a model that leads to the equation of a damped harmonic oscillator, whose weak attenuation constant depends upon the system parameters, e.g. the electrical conductivity of the constituent material of the plate and its thickness. We present a set of validating experiments, the results of which are predicted with good accuracy by our analytical model. Additional experiments can be performed with this oscillating system or its variants. This oscillator is simple and low-cost, easy to assemble, and can be used in experiments or project works in physics teaching laboratories at the undergraduate level.

  10. Oscillations of a spring–magnet system damped by a conductive plate

    International Nuclear Information System (INIS)

    Ladera, C L; Donoso, G

    2013-01-01

    We study the motion of a spring–magnet system that oscillates with very low frequencies above a circular horizontal non-magnetizable conductive plate. The magnet oscillations couple with the plate via the Foucault currents induced therein. We develop a simple theoretical model for this magneto-mechanical oscillator, a model that leads to the equation of a damped harmonic oscillator, whose weak attenuation constant depends upon the system parameters, e.g. the electrical conductivity of the constituent material of the plate and its thickness. We present a set of validating experiments, the results of which are predicted with good accuracy by our analytical model. Additional experiments can be performed with this oscillating system or its variants. This oscillator is simple and low-cost, easy to assemble, and can be used in experiments or project works in physics teaching laboratories at the undergraduate level. (paper)

  11. Coupled nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, J; Scott, A C

    1983-01-01

    Topics discussed include transitions in weakly coupled nonlinear oscillators, singularly perturbed delay-differential equations, and chaos in simple laser systems. Papers are presented on truncated Navier-Stokes equations in a two-dimensional torus, on frequency locking in Josephson point contacts, and on soliton excitations in Josephson tunnel junctions. Attention is also given to the nonlinear coupling of radiation pulses to absorbing anharmonic molecular media, to aspects of interrupted coarse-graining in stimulated excitation, and to a statistical analysis of long-term dynamic irregularity in an exactly soluble quantum mechanical model.

  12. A Centennial Episode of Weak East Asian Summer Monsoon in the Midst of the Medieval Warming

    Science.gov (United States)

    Jin, C.; Liu, J.; Wang, B.; Wang, Z.; Yan, M.

    2017-12-01

    Recent paleo-proxy evidences suggested that the East Asian summer monsoon (EASM) was generally strong (i.e., northern China wet and southern China dry) during the Medieval Warm Period (MWP, 9th to the mid-13th century), however, there was a centennial period (around 11th century) during which the EASM was weak. This study aims to explore the causes of this centennial weak EASM episode and in general, what controls the centennial variability of the EASM in the pre-industrial period of AD 501-1850. With the Community Earth System Model (CESM), a suit of control and forced experiments were conducted for the past 2000 years. The model run with all external forcings simulates a warm period of EA from AD 801-1250 with a generally increased summer mean precipitation over the northern EA; however, during the 11th century (roughly from AD 980 to AD 1100), the EASM is significantly weaker than the other periods during the MWP. We find that on the multi-decadal to centennial time scale, a strong EASM is associated with a La Nina-like Indo-Pacific warming and the opposite is also true. This sea surface temperature (SST) anomaly pattern represents the leading EOF mode of centennial SST variations, and it is primarily forced by the solar radiation and volcanic activity, whereas the land use/land cover and greenhouse gases as well as internal dynamics play a negligible role. During the MWP, the solar forcing plays a dominate role in supporting the SST variation as the volcanic activity is weak. The weakening of the EASM during the AD 980-1100 is attributed to the relatively low solar radiation, which leads to a prevailing El Nino-like Indo-Pacific cooling with strongest cooling occurring in the equatorial western Pacific. The suppressed convection over the equatorial western Pacific directly induces a Philippine Sea anticyclone anomaly, which increases southern China precipitation, meanwhile suppresses Philippine Sea precipitation, exciting a meridional teleconnection that

  13. Performance analysis of conventional PSS and fuzzy controller for damping power system oscillations

    OpenAIRE

    Banna, Hasan UI; Luna Alloza, Álvaro; Rodríguez Cortés, Pedro; Cabrera Tobar, Ana; Ghorbani, Hamidreza; Ying, Shaoqing

    2014-01-01

    Electro-mechanical oscillations are produced, in the machines of an interconnected power network, followed by a disturbance or due to high power transfer through weak tie lines. These oscillations should be damped as quickly as possible to ensure the reliable and stable operation of the network. To damp these oscillations different controllers, based on local or wide area signals, have been the subject of many papers. This paper presents the analysis of the performance of Conventional Power S...

  14. SOLAR MAGNETIZED TORNADOES: ROTATIONAL MOTION IN A TORNADO-LIKE PROMINENCE

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yang; Veronig, Astrid; Temmer, Manuela; Vanninathan, Kamalam [IGAM-Kanzelhöhe Observatory, Institute of Physics, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Gömöry, Peter [Astronomical Institute of the Slovak Academy of Sciences, SK-05960 Tatranská Lomnica (Slovakia); Wang, Tongjiang [Department of Physics, the Catholic University of America, Washington, DC 20064 (United States); Gan, Weiqun; Li, YouPing, E-mail: yang.su@uni-graz.at [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2014-04-10

    Su et al. proposed a new explanation for filament formation and eruption, where filament barbs are rotating magnetic structures driven by underlying vortices on the surface. Such structures have been noticed as tornado-like prominences when they appear above the limb. They may play a key role as the source of plasma and twist in filaments. However, no observations have successfully distinguished rotational motion of the magnetic structures in tornado-like prominences from other motions such as oscillation and counter-streaming plasma flows. Here we report evidence of rotational motions in a tornado-like prominence. The spectroscopic observations in two coronal lines were obtained from a specifically designed Hinode/EIS observing program. The data revealed the existence of both cold and million-degree-hot plasma in the prominence leg, supporting the so-called prominence-corona transition region. The opposite velocities at the two sides of the prominence and their persistent time evolution, together with the periodic motions evident in SDO/AIA dark structures, indicate a rotational motion of both cold and hot plasma with a speed of ∼5 km s{sup –1}.

  15. SOLAR MAGNETIZED TORNADOES: ROTATIONAL MOTION IN A TORNADO-LIKE PROMINENCE

    International Nuclear Information System (INIS)

    Su, Yang; Veronig, Astrid; Temmer, Manuela; Vanninathan, Kamalam; Gömöry, Peter; Wang, Tongjiang; Gan, Weiqun; Li, YouPing

    2014-01-01

    Su et al. proposed a new explanation for filament formation and eruption, where filament barbs are rotating magnetic structures driven by underlying vortices on the surface. Such structures have been noticed as tornado-like prominences when they appear above the limb. They may play a key role as the source of plasma and twist in filaments. However, no observations have successfully distinguished rotational motion of the magnetic structures in tornado-like prominences from other motions such as oscillation and counter-streaming plasma flows. Here we report evidence of rotational motions in a tornado-like prominence. The spectroscopic observations in two coronal lines were obtained from a specifically designed Hinode/EIS observing program. The data revealed the existence of both cold and million-degree-hot plasma in the prominence leg, supporting the so-called prominence-corona transition region. The opposite velocities at the two sides of the prominence and their persistent time evolution, together with the periodic motions evident in SDO/AIA dark structures, indicate a rotational motion of both cold and hot plasma with a speed of ∼5 km s –1

  16. Wave propagation in a non-isothermal atmosphere and the solar five-minute oscillations. [Acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Chiuderi, C; Giovanardi, C [Florence Univ. (Italy). Istituto di Astronomia

    1979-11-01

    This paper presents a detailed discussion of the properties of linear, periodic acoustic waves that propagate vertically in a non-isothermal atmosphere. In order to retain the basic feature of the solar atmosphere we have chosen a temperature profile presenting a minimum. An analytical solution of the problem is possible if T/..mu.., ..mu.. being the mean molecular weight, varies parabolically with height. The purpose of this study is to point out the qualitative differences existing between the case treated here and the customary analysis based on a locally isothermal treatment. The computed velocity amplitude and the temperature-perturbation as functions of the wave period exhibit a sharp peak in the region between 180 and 300 s, thus showing the possibility of interpreting the five-minute oscillations as a resonant phenomenon. The propagating or stationary nature of the waves is investigated by a study of the phase of the proposed analytical solution.

  17. SOHO hunts elusive solar prey

    Science.gov (United States)

    1995-10-01

    out into the solar atmosphere where they mould the electrified gas into an ever-changing shape. The entire atmosphere is continuously transformed by the Sun's varying magnetism, producing activity on a scale unknown on Earth. Looking inside the Sun There are three helioseismology experts on board SOHO that will acquire long uninterrupted observations of solar oscillations. Two of them emphasise global, long-period oscillations and sound waves that can penetrate the deep solar interior. They are known as GOLF, for Global Oscillations at Low Frequency, and VIRGO, an acronym for Variability of solar IRradiance and Gravity Oscillations. The third SOHO helioseismology instrument will obtain data for oscillations on smaller spatial scales with unprecedented precision; it is called the Solar Oscillations Investigation/Michelson Doppler Imager, or SOI/MDI for short. GOLF and MDI employ the familiar Doppler technique for measuring motions of the solar photosphere. When part of the visible surface heaves up towards us, the wavelength of a spectral line formed in that region is shortened; if the region moves away from us, back toward the solar interior, the wavelength is lengthened. (A spectral line absorbed or emitted by an atom or an ion at a specific wavelength that identifies the element; it looks like a line in a spectral display of radiation intensity as a function of wavelength). Sound waves can also be used to determine the internal rotation of the Sun. Waves propagating in the direction of rotation will appear, to a fixed observer, to move faster and their measure speeds will be shorter. Waves propagating against the rotation will be slowed down with longer periods. Accurate measurements of this oscillation period splitting will determine rotation within the solar interior. GOLF aims to measure velocities as low as 1 millimetre per second for global surface oscillations with periods from 3 minutes to 100 days. SOI/MDI will obtain precise oscillation data with high

  18. Two particle states, lepton mixing and oscillations

    CERN Document Server

    Kachelriess, M; Schönert, S

    2000-01-01

    Discussions of lepton mixing and oscillations consider generally only flavor oscillations of neutrinos and neglect the accompanying charged leptons. In cases of experimental interest like pion or nuclear beta decay an oscillation pattern is expected indeed only for neutrinos if only one of the two produced particles is observed. We argue that flavor oscillations of neutrinos without detecting the accompanying lepton is a peculiarity of the two-particle states $|l\

  19. Solar Variability Magnitudes and Timescales

    Science.gov (United States)

    Kopp, Greg

    2015-08-01

    The Sun’s net radiative output varies on timescales of minutes to many millennia. The former are directly observed as part of the on-going 37-year long total solar irradiance climate data record, while the latter are inferred from solar proxy and stellar evolution models. Since the Sun provides nearly all the energy driving the Earth’s climate system, changes in the sunlight reaching our planet can have - and have had - significant impacts on life and civilizations.Total solar irradiance has been measured from space since 1978 by a series of overlapping instruments. These have shown changes in the spatially- and spectrally-integrated radiant energy at the top of the Earth’s atmosphere from timescales as short as minutes to as long as a solar cycle. The Sun’s ~0.01% variations over a few minutes are caused by the superposition of convection and oscillations, and even occasionally by a large flare. Over days to weeks, changing surface activity affects solar brightness at the ~0.1% level. The 11-year solar cycle has comparable irradiance variations with peaks near solar maxima.Secular variations are harder to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Proxy models of the Sun based on cosmogenic isotope records and inferred from Earth climate signatures indicate solar brightness changes over decades to millennia, although the magnitude of these variations depends on many assumptions. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities.In this talk I will summarize the Sun’s variability magnitudes over different temporal ranges, showing examples relevant for climate studies as well as detections of exo-solar planets transiting Sun-like stars.

  20. Particle physics with cold neutrons

    International Nuclear Information System (INIS)

    Dubbers, D.

    1991-01-01

    Slow neutrons are used in a large number of experiments to study the physics of particles and their fundamental interactions. Some of these experiments search for manifestations of ''new physics'' like baryon- or lepton-number nonconservation, time reversal nonconservation, new particles, right-handed currents, nonzero neutron charge, nonlinear terms in the Schrodinger equation, exotic e + e - states, and others. Other slow neutron experiments test the present Standard Model. The parity nonconserving weak neutron-nucleon interaction is studied in a variety of experiments. Free neutron beta decay gives precise values for the weak vector and axialvector coupling constants, which allow precise tests of basic symmetries like the conservation of the weak vector current, the unitarity of the weak quark mixing matrix, SU(3) flavour symmetry, and right-handed currents. Neutron beta decay data are further needed to calculate weak cross-sections, for applications, in big bang cosmology, in astrophysics, in solar physics and the solar neutrino problem, and in such mundane things as neutrino detection efficiencies in neutrino oscillation or proton decay experiments. Neutron-nucleon, neutron-nucleus and neutron-electron scattering lengths are determined in high precision experiments, which use methods like neutron interferometry or neutron gravity spectrometry. The experiments give information on quantities like the neutron charge radius or the neutron electric polarizability. Precision measurements of other fundamental constants lead to a better, model-independent value of the fine structure constant. Finally, the fundamental experiments on quantum mechanics, like spinor 4π -rotation, Berry's phase, dressed neutrons, Aharanov - Casher effect, or gravitational effects on the neutron's phase will be briefly discussed. (author)

  1. Solar pumped laser and its application to hydrogen production

    International Nuclear Information System (INIS)

    Imasaki, K.; Saiki, T.; Li, D.; Motokosi, S.; Nakatsuka, M.

    2007-01-01

    Solar pumped laser has been studied. Recently, a small ceramic laser pumped by pseudo solar light shows high efficiency of more than 40% which exceeds a solar cell. Such solar pumped laser can concentrate the large area of solar energy in a focused spot of small area. This fact implies the application of such laser for clean and future renewable energy source as hydrogen. For this purpose, 100 W level laboratory solar laser HELIOS is completed using disk ceramic active mirror laser to achieve high temperature. This laser is a kind of MOPA system. Oscillator of additional small laser is used. Laser light is generated in oscillator and is amplified in ceramic disks of solar pumped. The temperature from this system is to be more than 1500 K. We will use a simple graphite cavity for laser power absorption and to get a high temperature. We are also designing a 10 MW CW laser based on this technology. This may be expected an application of solar energy for hydrogen production with total efficiency of 30%

  2. The search for solar neutrinos

    International Nuclear Information System (INIS)

    Ryder, L.

    1976-01-01

    The pioneering work on the detection of solar neutrinos by R. Davis is discussed. The discrepancy between the theoretical neutrino flux rate, according to a recent standard solar model, of 5.6 solar neutrino units (SNU) and the observed rate of 1 SNU together with three suggested solutions of the discrepancy are examined. Very recently Davis has announced an increased count rate of about 4 SNU while groups in Birmingham and in the Crimea have reported solar oscillations. The impact of these latest developments is discussed. (U.K.)

  3. Downshift of electron plasma oscillations in the electron foreshock region

    International Nuclear Information System (INIS)

    Fuselier, S.A.; Gurnett, D.A.; Fitzenreiter, R.J.; NASA, Goddard Space Flight Center, Greenbelt, MD)

    1985-01-01

    Electron plasma oscillations in the earth's electron foreshock region are observed to shift above and below the local electron plasma frequency. As plasma oscillations shift downward from the plasma frequency, their bandwidth increases and their wavelength decreases. Observations of plasma oscillations well below the plasma frequency are correlated with times when ISEE 1 is far downstream of the electron foreshock boundary. Although wavelengths of plasma oscillations below the plasma frequency satisfy k x lambda-De approximately 1 the Doppler shift due to the motion of the solar wind is not sufficient to produce the observed frequency shifts. A beam-plasma interaction with beam velocities on the order of the electron thermal velocity is suggested as an explanation for plasma oscillations above and below the plasma frequency. Frequency, bandwidth, and wavelength changes predicted from the beam-plasma interaction are in good agreement with the observed characteristics of plasma oscillations in the foreshock region. 28 references

  4. Asymmetric Collision of Concepts: Why Eigenstates Alone are Not Enough for Neutrino Flavor Oscillations

    OpenAIRE

    Williams, John Michael

    2000-01-01

    The symmetry of the problem of the apparent deficit in upward-going atmospheric muon neutrinos reveals two possible, nonexclusive kinds of solution: Nonlinearity in distance or nonlinearity in angle of observation. Nonlinearity in distance leads to the most popular theory for the atmospheric problem, neutrino flavor oscillations. If the observed deficit is caused by oscillations and not, say, flavor-changing or other weak-force scattering, neutrinos must be massive. But, if flavor oscillation...

  5. Precision Measurement of the Beryllium-7 Solar Neutrino Interaction Rate in Borexino

    Science.gov (United States)

    Saldanha, Richard Nigel

    Solar neutrinos, since their first detection nearly forty years ago, have revealed valuable information regarding the source of energy production in the Sun, and have demonstrated that neutrino oscillations are well described by the Large Mixing Angle (LMA) oscillation parameters with matter interactions due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. This thesis presents a precision measurement of the 7Be solar neutrino interaction rate within Borexino, an underground liquid scintillator detector that is designed to measure solar neutrino interactions through neutrino-electron elastic scattering. The thesis includes a detailed description of the analysis techniques developed and used for this measurement as well as an evaluation of the relevant systematic uncertainties that affect the precision of the result. The rate of neutrino-electron elastic scattering from 0.862 MeV 7Be neutrinos is determined to be 45.4 +/- 1.6 (stat) +/- 1.5 (sys) counts/day/100 ton. Due to extensive detector calibrations and improved analysis methods, the systematic uncertainty in the interaction rate has been reduced by more than a factor of two from the previous evaluation. In the no-oscillation hypothesis, the interaction rate corresponds to a 0.862 MeV 7Be electron neutrino flux of (2.75 +/- 0.13) x 10 9 cm-2 sec-1. Including the predicted neutrino flux from the Standard Solar Model yields an electron neutrino survival probability of Pee 0.51 +/- 0.07 and rules out the no-oscillation hypothesis at 5.1sigma The LMA-MSW neutrino oscillation model predicts a transition in the solar Pee value between low ( 10 MeV) energies which has not yet been experimentally confirmed. This result, in conjunction with the Standard Solar Model, represents the most precise measurement of the electron neutrino survival probability for solar neutrinos at sub-MeV energies.

  6. Vacuum Rabi Oscillation of an Atom without Rotating-Wave Approximation

    International Nuclear Information System (INIS)

    Fa-Qiang, Wang; Wei-Ci, Liu; Rui-Sheng, Liang

    2008-01-01

    We have investigated vacuum Rabi oscillation of an atom coupled with single-mode cavity field exactly, and compared the results with that of the Jaynes–Cummings (J–C) model. The results show that for resonant case, there is no Rabi oscillation for an atom. For small detuning and weak coupling case, the probability for the atom in excited state oscillates against time with different frequencies and amplitudes from that of the J-C model. It exhibits that the counter-rotating wave interaction could significantly effect the dynamic behaviour of the atom, even under the condition in which the RWA is considered to be justified

  7. Solar variability observed through changes in solar figure and mean diameter

    International Nuclear Information System (INIS)

    1984-01-01

    A program to monitor solar luminosity variations through diameter measurements has been in operation at SCLERA since 1981. The solar diameter is measured at multiple angles from the equator. Measurements at these different angles have the advantage that not only can the solar oblateness be accurately measured, but also, a systematic errors introduced by atmospheric refraction can be reduced to a minimum. An improved theoretical treatment relevant to the relationship between the solar diameter and luminosity for long period oscilations has been successfully developed, and testing is currently underway. The construction of an absolute calibration system for the telescope field has been conducted and will soon be operational. A review of this work is presented

  8. On the dynamic buckling of a weakly damped nonlinear elastic ...

    African Journals Online (AJOL)

    In this paper we determine the dynamic buckling load of a strictly nonlinear but weakly damped elastic oscillatory model structure subjected to small perturbations The loading history is explicitly time dependent and varies slowly with time over a natural period of oscillation of the structure. A multiple timing regular ...

  9. Efficient weakly-radiative wireless energy transfer: An EIT-like approach

    International Nuclear Information System (INIS)

    Hamam, Rafif E.; Karalis, Aristeidis; Joannopoulos, J.D.; Soljacic, Marin

    2009-01-01

    Inspired by a quantum interference phenomenon known in the atomic physics community as electromagnetically induced transparency (EIT), we propose an efficient weakly radiative wireless energy transfer scheme between two identical classical resonant objects, strongly coupled to an intermediate classical resonant object of substantially different properties, but with the same resonance frequency. The transfer mechanism essentially makes use of the adiabatic evolution of an instantaneous (so called 'dark') eigenstate of the coupled 3-object system. Our analysis is based on temporal coupled mode theory (CMT), and is general enough to be valid for various possible sorts of coupling, including the resonant inductive coupling on which witricity-type wireless energy transfer is based. We show that in certain parameter regimes of interest, this scheme can be more efficient, and/or less radiative than other, more conventional approaches. A concrete example of wireless energy transfer between capacitively-loaded metallic loops is illustrated at the beginning, as a motivation for the more general case. We also explore the performance of the currently proposed EIT-like scheme, in terms of improving efficiency and reducing radiation, as the relevant parameters of the system are varied.

  10. Precipitation-generated oscillations in open cellular cloud fields.

    Science.gov (United States)

    Feingold, Graham; Koren, Ilan; Wang, Hailong; Xue, Huiwen; Brewer, Wm Alan

    2010-08-12

    Cloud fields adopt many different patterns that can have a profound effect on the amount of sunlight reflected back to space, with important implications for the Earth's climate. These cloud patterns can be observed in satellite images of the Earth and often exhibit distinct cell-like structures associated with organized convection at scales of tens of kilometres. Recent evidence has shown that atmospheric aerosol particles-through their influence on precipitation formation-help to determine whether cloud fields take on closed (more reflective) or open (less reflective) cellular patterns. The physical mechanisms controlling the formation and evolution of these cells, however, are still poorly understood, limiting our ability to simulate realistically the effects of clouds on global reflectance. Here we use satellite imagery and numerical models to show how precipitating clouds produce an open cellular cloud pattern that oscillates between different, weakly stable states. The oscillations are a result of precipitation causing downward motion and outflow from clouds that were previously positively buoyant. The evaporating precipitation drives air down to the Earth's surface, where it diverges and collides with the outflows of neighbouring precipitating cells. These colliding outflows form surface convergence zones and new cloud formation. In turn, the newly formed clouds produce precipitation and new colliding outflow patterns that are displaced from the previous ones. As successive cycles of this kind unfold, convergence zones alternate with divergence zones and new cloud patterns emerge to replace old ones. The result is an oscillating, self-organized system with a characteristic cell size and precipitation frequency.

  11. FFT analysis of sensible-heat solar-dynamic receivers

    Science.gov (United States)

    Lund, Kurt O.

    The use of solar dynamic receivers with sensible energy storage in single-phase materials is considered. The feasibility of single-phase designs with weight and thermal performance comparable to existing two-phase designs is addressed. Linearized heat transfer equations are formulated for the receiver heat storage, representing the periodic input solar flux as the sum of steady and oscillating distributions. The steady component is solved analytically to produce the desired receiver steady outlet gas temperature, and the FFT algorithm is applied to the oscillating components to obtain the amplitudes and mode shapes of the oscillating solid and gas temperatures. The results indicate that sensible-heat receiver designs with performance comparable to state-of-the-art two-phase receivers are available.

  12. Do muons oscillate?

    International Nuclear Information System (INIS)

    Dolgov, A.D.; Morozov, A.Yu.; Okun, L.B.; Schepkin, M.G.

    1997-01-01

    We develop a theory of the EPR-like effects due to neutrino oscillations in the π→μν decays. Its experimental implications are space-time correlations of the neutrino and muon when they are both detected, while the pion decay point is not fixed. However, the more radical possibility of μ-oscillations in experiments where only muons are detected (as suggested in hep-ph/9509261), is ruled out. We start by discussing decays of monochromatic pions, and point out a few ''paradoxes''. Then we consider pion wave packets, solve the ''paradoxes'', and show that the formulas for μν correlations can be transformed into the usual expressions, describing neutrino oscillations, as soon as the pion decay point is fixed. (orig.)

  13. Ketamine alters lateral prefrontal oscillations in a rule-based working memory task.

    Science.gov (United States)

    Ma, Liya; Skoblenick, Kevin; Johnston, Kevin; Everling, Stefan

    2018-02-02

    Acute administration of N-methyl-D-aspartate receptor (NMDAR) antagonists in healthy humans and animals produces working memory deficits similar to those observed in schizophrenia. However, it is unclear whether they also lead to altered low-frequency (rule-based prosaccade and antisaccade working memory task, both before and after systemic injections of a subanesthetic dose (delay periods and inter-trial intervals. It also increased task-related alpha-band activities, likely reflecting compromised attention. Beta-band oscillations may be especially relevant to working memory processes, as stronger beta power weakly but significantly predicted shorter saccadic reaction time. Also in beta band, ketamine reduced the performance-related oscillation as well as the rule information encoded in the spectral power. Ketamine also reduced rule information in the spike-field phase consistency in almost all frequencies up to 60Hz. Our findings support NMDAR antagonists in non-human primates as a meaningful model for altered neural oscillations and synchrony, which reflect a disorganized network underlying the working memory deficits in schizophrenia. SIGNIFICANCE STATEMENT Low doses of ketamine-an NMDA receptor blocker-produce working memory deficits similar to those observed in schizophrenia. In the LPFC, a key brain region for working memory, we found that ketamine altered neural oscillatory activities in similar ways that differentiate schizophrenic patients and healthy subjects, during both task and non-task periods. Ketamine induced stronger gamma (30-60Hz) and weaker beta (13-30Hz) oscillations, reflecting local hyperactivity and reduced long-range communications. Furthermore, ketamine reduced performance-related oscillatory activities, as well as the rule information encoded in the oscillations and in the synchrony between single cell activities and oscillations. The ketamine model helps link the molecular and cellular basis of neural oscillatory changes to the working

  14. Quasi-biennial oscillations in the geomagnetic field: Their global characteristics and origin

    DEFF Research Database (Denmark)

    Ou, Jiaming; Du, Aimin; Finlay, Chris

    2017-01-01

    Quasi-biennial oscillations (QBOs), with periods in the range 1–3 years, have been persistently observed in the geomagnetic field. They provide unique information on the mechanisms by which magnetospheric and ionospheric current systems are modulated on interannual timescales and are also of cruc...... primarily originates from the current systems due to the solar wind-magnetosphere-ionosphere coupling process....... postmidnight sectors, and the results from spherical harmonic analysis, verify that the majority of geomagnetic QBO is of external origin. We furthermore find a very high correlation between the geomagnetic QBO and the QBOs in solar wind speed and solar wind dynamic pressure. This suggests the geomagnetic QBO......Quasi-biennial oscillations (QBOs), with periods in the range 1–3 years, have been persistently observed in the geomagnetic field. They provide unique information on the mechanisms by which magnetospheric and ionospheric current systems are modulated on interannual timescales and are also...

  15. Neutrino oscillations in a predictive SUSY GUT

    International Nuclear Information System (INIS)

    Blazek, T.; Raby, S.; Tobe, K.

    1999-01-01

    In this paper we present a predictive SO(10) supersymmetric grand unified theory with the family symmetry U(2)xU(1) which has several nice features. We are able to fit fermion masses and mixing angles, including recent neutrino data, with nine parameters in the charged fermion sector and four in the neutrino sector. The family symmetry plays a preeminent role. (i) The model is ''natural''--we include all terms allowed by the symmetry. It restricts the number of arbitrary parameters and enforces many zeros in the effective mass matrices. (ii) Family symmetry breaking from U(2)xU(1)→U(1)→ nothing generates the family hierarchy. It also constrains squark and slepton mass matrices, thus ameliorating flavor violation resulting from squark and slepton loop contributions. (iii) It naturally gives large angle ν μ -ν τ mixing describing atmospheric neutrino oscillation data and small angle ν e -ν s mixing, consistent with the small mixing angle Mikheyev-Smirnov-Wolfenstein (MSW) solution to solar neutrino data. (iv) Finally, in this paper we assume minimal family symmetry-breaking vacuum expectation values (VEV's). As a result we cannot obtain a three neutrino solution to both atmospheric and solar neutrino oscillations. In addition, the solution discussed here cannot fit liquid scintillation neutrino detector (LSND) data even though this solution requires a sterile neutrino ν s . It is important to note, however, that with nonminimal family symmetry-breaking VEV's, a three neutrino solution is possible with the small mixing angle MSW solution to solar neutrino data and large angle ν μ -ν τ mixing describing atmospheric neutrino oscillation data. In the four neutrino case, nonminimal family VEV's may also permit a solution for LSND. The results with nonminimal family breaking are still under investigation and will be reported in a future paper. (c) 1999 The American Physical Society

  16. Modeling study of the ionospheric responses to the quasi-biennial oscillations of the sun and stratosphere

    Science.gov (United States)

    Wang, Jack C.; Tsai-Lin, Rong; Chang, Loren C.; Wu, Qian; Lin, Charles C. H.; Yue, Jia

    2018-06-01

    The Quasi-biennial Oscillation (QBO) is a persistent oscillation in the zonal mean zonal winds of the low latitude middle atmosphere that is driven by breaking planetary and gravity waves with a period near two years. The atmospheric tides that dominate the dynamics of the mesosphere and lower thermosphere region (MLT, between heights of 70-120 km) are excited in the troposphere and stratosphere, and propagate through QBO-modulated zonal mean zonal wind fields. This allows the MLT tidal response to also be modulated by the QBO, with implications for ionospheric/thermospheric variability. Interannual oscillations in solar radiation can also directly drive the variations in the ionosphere with similar periodicities through the photoionization. Many studies have observed the connection between the solar activity and QBO signal in ionospheric features such as total electron content (TEC). In this research, we develop an empirical model to isolate stratospheric QBO-related tidal variability in the MLT diurnal and semidiurnal tides using values from assimilated TIMED satellite data. Migrating tidal fields corresponding to stratospheric QBO eastward and westward phases, as well as with the quasi-biennial variations in solar activity isolated by the Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) analysis from Hilbert-Huang Transform (HHT), are then used to drive the NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). The numerical experiment results indicate that the ionospheric QBO is mainly driven by the solar quasi-biennial variations during the solar maximum, since the solar quasi-biennial variation amplitude is directly proportionate to the solar cycle. The ionospheric QBO in the model is sensitive to both the stratospheric QBO and solar quasi-biennial variations during the solar minimum, with solar effects still playing a stronger role.

  17. Solar Imagery - GONG (Magnetogram)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Oscillation Network Group (GONG) is a network of 6 globally-spaced solar observatories that the NOAA Space Weather Prediction Center uses to monitor the...

  18. Solar Stereoscopy and Tomography

    Directory of Open Access Journals (Sweden)

    Markus J. Aschwanden

    2011-10-01

    Full Text Available We review stereoscopic and tomographic methods used in the solar corona, including ground-based and space-based measurements, using solar rotation or multiple spacecraft vantage points, in particular from the STEREO mission during 2007--2010. Stereoscopic and tomographic observations in the solar corona include large-scale structures, streamers, active regions, coronal loops, loop oscillations, acoustic waves in loops, erupting filaments and prominences, bright points, jets, plumes, flares, CME source regions, and CME-triggered global coronal waves. Applications in the solar interior (helioseismic tomography and reconstruction and tracking of CMEs from the outer corona and into the heliosphere (interplanetary CMEs are not included.

  19. The dynamics of two linearly coupled Goodwin oscillators

    Science.gov (United States)

    Antonova, A. O.; Reznik, S. N.; Todorov, M. D.

    2017-10-01

    In this paper the Puu model of the interaction of Goodwin's business cycles for two regions is reconsidered. We investigated the effect of the accelerator coefficients and the Hicksian 'ceiling' and 'floor' parameters on the time dynamics of incomes for different values of marginal propensity to import. The cases when the periods of isolated Goodwin's cycles are close, and when they differ approximately twice are considered. By perturbation theory we obtained the formulas for slowly varying amplitudes and phase difference of weakly nonlinear coupled Goodwin oscillations. The coupled oscillations of two Goodwin's cycles with piecewise linear accelerators with only 'floor' are considered.

  20. Shubnikov - de Haas oscillations, weak antilocalization effect and large linear magnetoresistance in the putative topological superconductor LuPdBi

    Science.gov (United States)

    Pavlosiuk, Orest; Kaczorowski, Dariusz; Wiśniewski, Piotr

    2015-01-01

    We present electronic transport and magnetic properties of single crystals of semimetallic half-Heusler phase LuPdBi, having theoretically predicted band inversion requisite for nontrivial topological properties. The compound exhibits superconductivity below a critical temperature Tc = 1.8 K, with a zero-temperature upper critical field Bc2 ≈ 2.3 T. Although superconducting state is clearly reflected in the electrical resistivity and magnetic susceptibility data, no corresponding anomaly can be seen in the specific heat. Temperature dependence of the electrical resistivity suggests existence of two parallel conduction channels: metallic and semiconducting, with the latter making negligible contribution at low temperatures. The magnetoresistance is huge and clearly shows a weak antilocalization effect in small magnetic fields. Above about 1.5 T, the magnetoresistance becomes linear and does not saturate in fields up to 9 T. The linear magnetoresistance is observed up to room temperature. Below 10 K, it is accompanied by Shubnikov-de Haas oscillations. Their analysis reveals charge carriers with effective mass of 0.06 me and a Berry phase very close to π, expected for Dirac-fermion surface states, thus corroborating topological nature of the material. PMID:25778789

  1. Bruno Pontecorvo and solar neutrinos

    International Nuclear Information System (INIS)

    MCDONALD, A. B.

    2014-01-01

    Bruno Pontecorvo had a very substantial impact on measurements of solar neutrinos, proposing a technique in 1948 that led to measurements by Davis and proposing that neutrinos could oscillate, a process that has been found to influence observed fluxes substantially. The past history and future prospects of solar neutrino measurements are reviewed, including a discussion of the contributions by Pontecorvo.

  2. Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars

    Science.gov (United States)

    Warnecke, J.; Rheinhardt, M.; Tuomisto, S.; Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A.

    2018-01-01

    Aims: We investigate dynamo action in global compressible solar-like convective dynamos in the framework of mean-field theory. Methods: We simulate a solar-type star in a wedge-shaped spherical shell, where the interplay between convection and rotation self-consistently drives a large-scale dynamo. To analyze the dynamo mechanism we apply the test-field method for azimuthally (φ) averaged fields to determine the 27 turbulent transport coefficients of the electromotive force, of which six are related to the α tensor. This method has previously been used either in simulations in Cartesian coordinates or in the geodynamo context and is applied here for the first time to fully compressible simulations of solar-like dynamos. Results: We find that the φφ-component of the α tensor does not follow the profile expected from that of kinetic helicity. The turbulent pumping velocities significantly alter the effective mean flows acting on the magnetic field and therefore challenge the flux transport dynamo concept. All coefficients are significantly affected by dynamically important magnetic fields. Quenching as well as enhancement are being observed. This leads to a modulation of the coefficients with the activity cycle. The temporal variations are found to be comparable to the time-averaged values and seem to be responsible for a nonlinear feedback on the magnetic field generation. Furthermore, we quantify the validity of the Parker-Yoshimura rule for the equatorward propagation of the mean magnetic field in the present case.

  3. Detuning-Controlled Internal Oscillations in an Exciton-Polariton Condensate

    Science.gov (United States)

    Voronova, N. S.; Elistratov, A. A.; Lozovik, Yu. E.

    2015-10-01

    We theoretically analyze exciton-photon oscillatory dynamics within a homogenous polariton gas in the presence of energy detuning between the cavity and quantum well modes. Whereas pure Rabi oscillations consist of the particle exchange between the photon and exciton states in the polariton system without any oscillations of the phases of the two subcondensates, we demonstrate that any nonzero detuning results in oscillations of the relative phase of the photon and exciton macroscopic wave functions. Different initial conditions reveal a variety of behaviors of the relative phase between the two condensates, and a crossover from Rabi-like to Josephson-like oscillations is predicted.

  4. Three-dimensional analysis of nonlinear plasma oscillation

    International Nuclear Information System (INIS)

    Miano, G.

    1990-01-01

    In an underdense plasma a large-amplitude plasma oscillation may be produced by the beating of two external and colinear electromagnetic waves with a frequency difference approximately equal to the plasma frequency - plasma beat wave (PBW) resonant mechanism. The plasma oscillations are driven by the ponderomotive force arising from the beating of the two imposed electromagnetic waves. In this paper two pump electromagnetic waves with arbitrary transverse profiles have been considered. The plasma is described by using the three dimensinal weakly relativistic fluid equations. The nonlinear plasma oscillation dynamics is studied by using the eulerian description, the averaging and the multiple time scale methods. Unlike the linear theory a strong cross field coupling between longitudinal ans transverse electric field components of the plasma oscillation comes out, resulting in a nonlinear phase change and energy transfer between the two components. Unlike the one-dimensional nonlinear theory, the nonlinear frequency shift is caused by relativistic effects as well as by convective effects and electromagnetic field generated from the three dimensional plasma oscillation. The large amplitude plasma oscillation dynamics produced by a bunched relativistic electron beam with arbitrary transverse profile - plasma wave field (PWF) - or by a high power single frequency short electromagnetic pulse with arbitrary transverse profile - electromagnetic plasma wake field (EPWF) - may be described by means of the present theory. (orig.)

  5. OSCILLATING LIGHT WALL ABOVE A SUNSPOT LIGHT BRIDGE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong; Zhang, Jun; Jiang, Fayu [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn [Fuxian Solar Observatory, Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2015-05-10

    With the high tempo-spatial Interface Region Imaging Spectrograph 1330 Å images, we find that many bright structures are rooted in the light bridge of NOAA 12192, forming a light wall. The light wall is brighter than the surrounding areas, and the wall top is much brighter than the wall body. The New Vacuum Solar Telescope Hα and the Solar Dynamics Observatory 171 and 131 Å images are also used to study the light-wall properties. In 1330, 171, and 131 Å, the top of the wall has a higher emission, while in the Hα line, the wall-top emission is very low. The wall body corresponds to bright areas in 1330 Å and dark areas in the other lines. The top of the light wall moves upward and downward successively, performing oscillations in height. The deprojected mean height, amplitude, oscillation velocity, and the dominant period are determined to be 3.6 Mm, 0.9 Mm, 15.4 km s{sup −1}, and 3.9 minutes, respectively. We interpret the oscillations of the light wall as the leakage of p-modes from below the photosphere. The constant brightness enhancement of the wall top implies the existence of some kind of atmospheric heating, e.g., via the persistent small-scale reconnection or the magneto-acoustic waves. In another series of 1330 Å images, we find that the wall top in the upward motion phase is significantly brighter than in the downward phase. This kind of oscillation may be powered by the energy released due to intermittent impulsive magnetic reconnection.

  6. Search for νμ → νe oscillations

    International Nuclear Information System (INIS)

    Godley, A.R.

    1998-01-01

    Full text: Neutrino oscillations, the changing of neutrino flavour state from one of τ, μ or e, to another, are proof of massive neutrinos, in turn pointing to Physics beyond the Standard Model, and so are of great current interest. Solar and atmospheric neutrino results suggested evidence for neutrino oscillations. Further, a tau neutrino mass of ∼ 10 eV could supply the missing mass needed to close the Universe. To satisfy the increasing interest, CERN's Neutrino Physics Program commissioned two concurrent experiments to investigate the possibility of neutrino oscillations, one of which is NOMAD, Neutrino Oscillation Magnetic Detector. NOMAD was designed to verify or deny the earlier positive neutrino oscillations results by searching for muon to tauon neutrino oscillations in accelerator neutrinos. The LSND experiment later provided evidence for muon to electron neutrino oscillations, but due to the multi-purpose design of NOMAD, it was also possible to investigate this channel. Moreover, the area of phase space being uncovered, (related to neutrino energy and oscillation length), overlaps considerably with that of LSND. An electron neutrino oscillation search involves looking for electron neutrinos in what is primarily a muon neutrino beam, with just a small contamination of electron neutrinos. It is surmised that the excess of electron neutrinos come from oscillated muon neutrinos. This type of search is called an appearance search. The principles of such a search will be detailed herein. These include a breakdown of the CERN Neutrino Beam and a method for detecting and collating different neutrino flavours at NOMAD

  7. Present and future oscillation experiments at reactors

    International Nuclear Information System (INIS)

    Mikaehlyan, L.A.

    2001-01-01

    A report is presented on recent progress and developments (since the NANP'99 Conference) in the current and future long baseline (∼100 - 800 km) oscillation experiments at reactors. These experiments, under certain assumptions, can fully reconstruct the internal mass structure of the electron neutrino and provide a laboratory test of solar and atmospheric neutrino problems

  8. Phase reduction and synchronization of a network of coupled dynamical elements exhibiting collective oscillations

    Science.gov (United States)

    Nakao, Hiroya; Yasui, Sho; Ota, Masashi; Arai, Kensuke; Kawamura, Yoji

    2018-04-01

    A general phase reduction method for a network of coupled dynamical elements exhibiting collective oscillations, which is applicable to arbitrary networks of heterogeneous dynamical elements, is developed. A set of coupled adjoint equations for phase sensitivity functions, which characterize the phase response of the collective oscillation to small perturbations applied to individual elements, is derived. Using the phase sensitivity functions, collective oscillation of the network under weak perturbation can be described approximately by a one-dimensional phase equation. As an example, mutual synchronization between a pair of collectively oscillating networks of excitable and oscillatory FitzHugh-Nagumo elements with random coupling is studied.

  9. Quasi-biennial modulation of solar neutrino flux: connections with solar activity

    Science.gov (United States)

    Vecchio, A.; Laurenza, M.; D'alessi, L.; Carbone, V.; Storini, M.

    2011-12-01

    A quasi-biennial periodicity has been recently found (Vecchio et al., 2010) in the solar neutrino flux, as detected at the Homestake experiment, as well as in the flux of solar energetic protons, by means of the Empirical Modes Decomposition technique. Moreover, both fluxes have been found to be significantly correlated at the quasi-biennial timescale, thus supporting the hypothesis of a connection between solar neutrinos and solar activity. The origin of this connection is investigated, by modeling how the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect (the process for which the well-known neutrino flavor oscillations are modified in passing through the material) could be influenced by matter fluctuations. As proposed by Burgess et al., 2004, by introducing a background magnetic field in the helioseismic model, density fluctuations can be excited in the radiative zone by the resonance between helioseismic g-modes and Alfvén waves. In particular, with reasonable values of the background magnetic field (10-100 kG), the distance between resonant layers could be of the same order of neutrino oscillation length. We study the effect over this distance of a background magnetic field which is variable with a ~2 yr period, in agreement with typical variations of solar activity. Our findings suggest that the quasi-biennial modulation of the neutrino flux is theoretically possible as a consequence of the magnetic field variations in the solar interior. A. Vecchio, M. Laurenza, V. Carbone, M. Storini, The Astrophysical Journal Letters, 709, L1-L5 (2010). C. Burgess, N. S. Dzhalilov, T. I. Rashba, V., B.Semikoz, J. W. F. Valle, Mon. Not. R. Astron. Soc., 348, 609-624 (2004).

  10. THINNING OF THE SUN'S MAGNETIC LAYER: THE PECULIAR SOLAR MINIMUM COULD HAVE BEEN PREDICTED

    International Nuclear Information System (INIS)

    Basu, Sarbani; Broomhall, Anne-Marie; Chaplin, William J.; Elsworth, Yvonne

    2012-01-01

    The solar magnetic activity cycle causes changes in the Sun on timescales that are equivalent to human lifetimes. The minimum solar activity that preceded the current solar cycle (cycle 24) was deeper and quieter than any other recent minimum. Using data from the Birmingham Solar Oscillations Network (BiSON), we show that the structure of the solar sub-surface layers during the descending phase of the preceding cycle (cycle 23) was very different from that during cycle 22. This leads us to believe that a detailed examination of the data would have led to the prediction that the cycle 24 minimum would be out of the ordinary. The behavior of the oscillation frequencies allows us to infer that changes in the Sun that affected the oscillation frequencies in cycle 23 were localized mainly to layers above about 0.996 R ☉ , depths shallower than about 3000 km. In cycle 22, on the other hand, the changes must have also occurred in the deeper-lying layers.

  11. Neutrino oscillations and the seesaw origin of neutrino mass

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, O.G., E-mail: omr@fis.cinvestav.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000 Mexico, Distrito Federal (Mexico); Valle, J.W.F. [AHEP Group, Institut de Física Corpuscular – C.S.I.C./Universitat de València, Parc Cientific de Paterna, C/Catedratico José Beltrán, 2, E-46980 Paterna (València) (Spain)

    2016-07-15

    The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.

  12. On the mechanism of oscillations in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke

    2010-01-01

    We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent...... of the external glucose concentration and the oscillations in H(2)O(2) production are 180 degrees out of phase with the oscillations in NAD(P)H. Cytochalasin B blocked the oscillations in shape and size whereas it increased the period of the oscillations in H(2)O(2) production. 1- and 2-butanol also blocked...... the oscillations in shape and size, but only 1-butanol inhibited the oscillations in H(2)O(2) production. We conjecture that the oscillations are likely to be due to feedback regulations in the signal transduction cascade involving phosphoinositide 3-kinases (PI3K). We have tested this using a simple mathematical...

  13. Flame oscillations in tubes with nonslip at the walls

    Energy Technology Data Exchange (ETDEWEB)

    Akkerman, V' yacheslav; Bychkov, Vitaly; Petchenko, Arkady [Institute of Physics, Umeaa University, SE-901 87 Umeaa (Sweden); Eriksson, Lars-Erik [Department of Applied Mechanics, Chalmers University of Technology, 412 96 Goeteborg (Sweden)

    2006-06-15

    A laminar premixed flame front propagating in a two-dimensional tube is considered with nonslip at the walls and with both ends open. The problem of flame propagation is solved using direct numerical simulations of the complete set of hydrodynamic equations including thermal conduction, diffusion, viscosity, and chemical kinetics. As a result, it is shown that flame interaction with the walls leads to the oscillating regime of burning. The oscillations involve variations of the curved flame shape and the velocity of flame propagation. The oscillation parameters depend on the characteristic tube width, which controls the Reynolds number of the flow. In narrow tubes the oscillations are rather weak, while in wider tubes they become stronger with well-pronounced nonlinear effects. The period of oscillations increases for wider tubes, while the average flame length scaled by the tube diameter decreases only slightly with increasing tube width. The average flame length calculated in the present work is in agreement with that obtained in the experiments. Numerical results reduce the gap between the theory of turbulent flames and the experiments on turbulent combustion in tubes. (author)

  14. Synchronization of diffusively coupled oscillators near the homoclinic bifurcation

    International Nuclear Information System (INIS)

    Postnov, D.; Han, Seung Kee; Kook, Hyungtae

    1998-09-01

    It has been known that a diffusive coupling between two limit cycle oscillations typically leads to the inphase synchronization and also that it is the only stable state in the weak coupling limit. Recently, however, it has been shown that the coupling of the same nature can result in the distinctive dephased synchronization when the limit cycles are close to the homoclinic bifurcation, which often occurs especially for the neuronal oscillators. In this paper we propose a simple physical model using the modified van der Pol equation, which unfolds the generic synchronization behaviors of the latter kind and in which one may readily observe changes in the synchronization behaviors between the distinctive regimes as well. The dephasing mechanism is analyzed both qualitatively and quantitatively in the weak coupling limit. A general form of coupling is introduced and the synchronization behaviors over a wide range of the coupling parameters are explored to construct the phase diagram using the bifurcation analysis. (author)

  15. Solar flares, CMEs and solar energetic particle events during solar cycle 24

    Science.gov (United States)

    Pande, Bimal; Pande, Seema; Chandra, Ramesh; Chandra Mathpal, Mahesh

    2018-01-01

    We present here a study of Solar Energetic Particle Events (SEPs) associated with solar flares during 2010-2014 in solar cycle 24. We have selected the flare events (≥GOES M-class), which produced SEPs. The SEPs are classified into three categories i.e. weak (proton intensity ≤ 1 pfu), minor (1 pfu pfu) and major (proton intensity ≥ 10 pfu). We used the GOES data for the SEP events which have intensity greater than one pfu and SOHO/ERNE data for the SEP event less than one pfu intensity. In addition to the flare and SEP properties, we have also discussed different properties of associated CMEs.

  16. Perturbation analysis of complete synchronization in networks of phase oscillators.

    Science.gov (United States)

    Tönjes, Ralf; Blasius, Bernd

    2009-08-01

    The behavior of weakly coupled self-sustained oscillators can often be well described by phase equations. Here we use the paradigm of Kuramoto phase oscillators which are coupled in a network to calculate first- and second-order corrections to the frequency of the fully synchronized state for nonidentical oscillators. The topology of the underlying coupling network is reflected in the eigenvalues and eigenvectors of the network Laplacian which influence the synchronization frequency in a particular way. They characterize the importance of nodes in a network and the relations between them. Expected values for the synchronization frequency are obtained for oscillators with quenched random frequencies on a class of scale-free random networks and for a Erdös-Rényi random network. We briefly discuss an application of the perturbation theory in the second order to network structural analysis.

  17. Heliocentric radial variation of plasma oscillations associated with type III radio bursts

    International Nuclear Information System (INIS)

    Gurnett, D.A.; Anderson, R.R.; Scarf, F.L.; Kurth, W.S.

    1978-01-01

    A survey is presented of all of the electron plasma oscillation events found to date in association with low-frequency type III solar radio bursts using approximately 9 years of observations from the Imp 6 and 8, Helios 1 and 2, and Voyager 1 and 2 spacecraft. Plasma oscillation events associated with type III radio bursts show a pronounced increase in both the intensity and the frequency of occurrence with decreasing heliocentric radial distance. This radial dependence explains why intense electron plasma oscillations are seldom observed in association with type III radio bursts at the orbit of the earth. Possible interpretations of the observed radial variation in the plasma oscillation intensity are considered

  18. Emergence of Slow Collective Oscillations in Neural Networks with Spike-Timing Dependent Plasticity

    Science.gov (United States)

    Mikkelsen, Kaare; Imparato, Alberto; Torcini, Alessandro

    2013-05-01

    The collective dynamics of excitatory pulse coupled neurons with spike-timing dependent plasticity is studied. The introduction of spike-timing dependent plasticity induces persistent irregular oscillations between strongly and weakly synchronized states, reminiscent of brain activity during slow-wave sleep. We explain the oscillations by a mechanism, the Sisyphus Effect, caused by a continuous feedback between the synaptic adjustments and the coherence in the neural firing. Due to this effect, the synaptic weights have oscillating equilibrium values, and this prevents the system from relaxing into a stationary macroscopic state.

  19. Sum rules for neutrino oscillations

    International Nuclear Information System (INIS)

    Kobzarev, I.Yu.; Martemyanov, B.V.; Okun, L.B.; Schepkin, M.G.

    1981-01-01

    Sum rules for neutrino oscillations are obtained. The derivation of the general form of the s matrix for two stage process lsub(i)sup(-)→ν→lsub(k)sup(+-) (where lsub(i)sup(-)e, μ, tau, ... are initial leptons with flavor i and lsub(k)sup(+-) is final lepton) is presented. The consideration of two stage process lsub(i)sup(-)→ν→lsub(k)sup(+-) gives the possibility to take into account neutrino masses and to obtain the expressions for the oscillating cross sections. In the case of Dirac and left-handed Majorana neutrino is obtained the sum rule for the quantities 1/Vsub(K)σ(lsub(i)sup(-)→lsub(K)sup(+-)), (where Vsub(K) is a velocity of lsub(K)). In the left-handed Majorana neutrino case there is an additional antineutrino admixture leading to lsub(i)sup(-)→lsub(K)sup(+) process. Both components (neutrino and antineutrino) oscillate independently. The sums Σsub(K)1/Vsub(k)σ(lsub(i)sup(-) - lsub(K)sup(+-) then oscillate due to the presence of left-handed antineutrinos and right-handed neutrinos which do not take part in weak interactions. If right-handed currents are added sum rules analogous to considered above may be obtained. All conclusions are valid in the general case when CP is not conserved [ru

  20. A search for matter enhanced neutrino oscillations through measurements of day and night solar neutrino fluxes at the Sudbury Neutrino Observatory

    Science.gov (United States)

    Miknaitis, Kathryn Kelly Schaffer

    The Sudbury Neutrino Observatory (SNO) is a heavy-water Cherenkov detector designed to study 8B neutrinos from the sun. Through the charged-current (CC) and neutral-current (NC) reactions of neutrinos on deuterium, SNO separately determines the flux of electron neutrinos and the flux of all active flavors of solar 8B neutrinos. SNO is also sensitive to the elastic scattering (ES) of neutrinos on electrons in the heavy water. Measurements of the CC and NC rates in SNO have conclusively demonstrated solar neutrino flavor change. This flavor change is believed to be caused by matter-enhanced oscillations in the sun, through the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Matter effects could also change the flavor composition of neutrinos that traverse the earth. A comparison of the day and night measured CC flux at SNO directly tests for the MSW effect and contributes to constraints on neutrino oscillation parameters in the MSW model. We perform measurements of the day and night neutrino fluxes using data from the second phase of SNO, in which salt (NaCl) was added to the heavy water to enhance sensitivity to the NC reaction. Better discrimination between CC and NC events in the salt phase allows the fluxes to be determined without constraining the neutrino energy spectrum. The day-night asymmetry in the CC flux measured in this model-independent analysis is ACC = [-5.6 +/- 7.4(stat.) +/- 5.3(syst.)]%, where the asymmetry is defined as the difference between the night and day values divided by their average. The asymmetries in the NC and ES fluxes are ANC = [4.2 +/- 8.6(stat.) +/- 7.2(syst.)]%, and AES = (14.6 +/- 19.8(stat.) +/- 3.3(syst.)]%. The neutral current asymmetry is expected to be zero assuming standard neutrino oscillations. When we constrain it to be zero, we obtain ACC = [-3.7 +/- 6.3(stat.) +/- 3.2(syst.)]% and AES = [15.3 +/- 19.8(stat.) +/- 3.0(syst.)]%. The day and night energy spectra from the CC reaction have been measured and show no evidence for

  1. Models of Solar Irradiance Variations: Current Status Natalie A ...

    Indian Academy of Sciences (India)

    Abstract. Regular monitoring of solar irradiance has been carried out since 1978 to show that solar total and spectral irradiance varies at different time scales. Whereas variations on time scales of minutes to hours are due to solar oscillations and granulation, variations on longer time scales are driven by the evolution of the ...

  2. Effect of line-of-sight inclinations on the observation of solar activity cycle: Lessons for CoRoT and Kepler

    International Nuclear Information System (INIS)

    Vazquez Ramio, H; Regulo, C; Mathur, S; GarcIa, R A

    2011-01-01

    CoRoT and Kepler missions are collecting data of solar-like oscillating stars of unprecedented quality. Moreover, thanks to the length of the time series, we are able to study their seismic variability. In this work we use numerical simulations based on the last 3 solar cycles to analyze the light curves as a function of the line-of-sight inclination angle. These preliminary results showed that the direct observation of the light curve can induce some bias in the position of the maximum of the cycle.

  3. Three neutrino flavors: Oscillations, mixing, and the solar-neutrino problem

    International Nuclear Information System (INIS)

    Pantaleone, J.

    1991-01-01

    An analytical, quantitative description of solar-neutrino propagation is presented which includes three flavors, matter dependence, and long-wavelength effects. Using the derived expression for the electron-neutrino survival probability, it is demonstrated that mixing is possible between the two-flavor Mikheyev-Smirnov-Wolfenstein and two-flavor long-wavelength solutions to the solar-neutrino problem. However, adiabatic conversion of a neutrino mass eigenstate tends to suppress all subsequent long-wavelength effects such as ''seasonal'' variations in the solar-neutrino flux

  4. Links between neutrino oscillations, leptogenesis, and proton decay ...

    Indian Academy of Sciences (India)

    accounts for the observed baryon asymmetry of the Universe by utilizing the process ... since the discoveries (confirmations) of the atmospheric [1] and solar neutrino oscil- lations [2,3] ... origin of their tiny masses may be at the root of the origin of matter-antimatter ..... Quite to the contrary, the minimal Higgs system provides.

  5. Solar-cycle period-amplitude relation as evidence of hysteresis of the solar-cycle nonlinear magnetic oscillation and the long-term (55 year) cyclic modulation

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1979-01-01

    A new dynamical model of the solar cycle has predicted that the cycle should have a hysteretic nature: the behavior of each 11 year cycle should depend on previous cycles. In the light of this new understanding of the dynamical mechanism of the solar cycle, Waldmeier's (hypothetical) law was examined as a yet unexplained characteristic of the cycle by studying the observed sunspot frequency curve. Contrary to this hypothetical law, however, it was found that sunspot cycle curves did not form a single-parameter family characterized by the maximum amplitude of the cycle. The evolutionary trajectories in period-amplitude phase space verified the hysteretic nature of the observed cycle and revealed long-term (55 year instead of the previously claimed 80 year) periodic modulations, called here 55 year grand cycles. Each 55 year grand cycle forms a loop in the phase space, and the characteristics of each 11 year cycle depend on its position in the ascending or descending phase of the grand cycle. This new law was analyzed by the nonlinear multiple-period dynamo oscillation model which has predicted the hysteretic nature. The era from cycle 11 to cycle 15 turned out to be an anomalous one characterized by alternating amplitudes for odd and even cycles. Cycles 16--20 seem to constitute one grand cycle. If this is true, cycle 21 would be the beginning of another grand maximum and the model predicts that its duration would be short

  6. Torsional oscillations of the sun

    International Nuclear Information System (INIS)

    Snodgrass, H.B.; Howard, R.; National Solar Observatory, Tucson, AZ)

    1985-01-01

    The sun's differential rotation has a cyclic pattern of change that is tightly correlated with the sunspot, or magnetic activity, cycle. This pattern can be described as a torsional oscillation, in which the solar rotation is periodically sped up or slowed down in certain zones of latitude while elsewhere the rotation remains essentially steady. The zones of anomalous rotation move on the sun in wavelike fashion, keeping pace with and flanking the zones of magnetic activity. It is uncertain whether this torsional oscillation is a globally coherent ringing of the sun or whether it is a local pattern caused by and causing local changes in the magnetic fields. In either case, it may be an important link in the connection between the rotation and the cycle that is widely believed to exist but is not yet understood. 46 references

  7. Pulse-coupled mixed-mode oscillators: Cluster states and extreme noise sensitivity

    Science.gov (United States)

    Karamchandani, Avinash J.; Graham, James N.; Riecke, Hermann

    2018-04-01

    Motivated by rhythms in the olfactory system of the brain, we investigate the synchronization of all-to-all pulse-coupled neuronal oscillators exhibiting various types of mixed-mode oscillations (MMOs) composed of sub-threshold oscillations (STOs) and action potentials ("spikes"). We focus particularly on the impact of the delay in the interaction. In the weak-coupling regime, we reduce the system to a Kuramoto-type equation with non-sinusoidal phase coupling and the associated Fokker-Planck equation. Its linear stability analysis identifies the appearance of various cluster states. Their type depends sensitively on the delay and the width of the pulses. Interestingly, long delays do not imply slow population rhythms, and the number of emerging clusters only loosely depends on the number of STOs. Direct simulations of the oscillator equations reveal that for quantitative agreement of the weak-coupling theory the coupling strength and the noise have to be extremely small. Even moderate noise leads to significant skipping of STO cycles, which can enhance the diffusion coefficient in the Fokker-Planck equation by two orders of magnitude. Introducing an effective diffusion coefficient extends the range of agreement significantly. Numerical simulations of the Fokker-Planck equation reveal bistability and solutions with oscillatory order parameters that result from nonlinear mode interactions. These are confirmed in simulations of the full spiking model.

  8. Free Oscillations of the Facula Node at the Stage of Slow Dissipation

    Science.gov (United States)

    Solov'ev, A. A.; Kirichek, E. A.; Efremov, V. I.

    2017-12-01

    A solar faculae having an appearance of quite long-lived magnetic nodes can perform (as well as sunspots, chromospheric filaments, coronal loops) free oscillations, i.e., they can oscillate about the stable equilibrium position as a single whole, changing quasi-periodically magnetic field averaged over the section with periods from 1 to 4 hours. Kolotkov et al. (2017) described the case in which the average magnetic field strength of the facula node considerably decreased during observations of SDO magnetograms (13 hours), and, at the same time, its oscillations acquired a specific character: the fundamental mode of free oscillations of the facula considerably increased in amplitude (by approximately two times), while the period of oscillations increased by three times. At the end of the process, the system dissipated. In this work, we present the exact solution of the equation of small-amplitude oscillations of the system with a time-variable rigidity, describing the oscillation behavior at which the elasticity of the system decreases with time, while the period and amplitude of oscillations grow.

  9. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong [Univ. of Tennessee, Knoxville, TN (United States); Gracia, Jose R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yilu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-12-01

    This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.

  10. Laboratory simulation of Euclid-like sky images to study the impact of CCD radiation damage on weak gravitational lensing

    Science.gov (United States)

    Prod'homme, T.; Verhoeve, P.; Oosterbroek, T.; Boudin, N.; Short, A.; Kohley, R.

    2014-07-01

    Euclid is the ESA mission to map the geometry of the dark universe. It uses weak gravitational lensing, which requires the accurate measurement of galaxy shapes over a large area in the sky. Radiation damage in the 36 Charge-Coupled Devices (CCDs) composing the Euclid visible imager focal plane has already been identified as a major contributor to the weak-lensing error budget; radiation-induced charge transfer inefficiency (CTI) distorts the galaxy images and introduces a bias in the galaxy shape measurement. We designed a laboratory experiment to project Euclid-like sky images onto an irradiated Euclid CCD. In this way - and for the first time - we are able to directly assess the effect of CTI on the Euclid weak-lensing measurement free of modelling uncertainties. We present here the experiment concept, setup, and first results. The results of such an experiment provide test data critical to refine models, design and test the Euclid data processing CTI mitigation scheme, and further optimize the Euclid CCD operation.

  11. Voltage-driven quantum oscillations in graphene

    International Nuclear Information System (INIS)

    Yampol'skii, V A; Savel'ev, S; Nori, Franco

    2008-01-01

    We predict unusual (for non-relativistic quantum mechanics) electron states in graphene, which are localized within a finite-width potential barrier. The density of localized states in the sufficiently high and/or wide graphene barrier exhibits a number of singularities at certain values of the energy. Such singularities provide quantum oscillations of both the transport (e.g. conductivity) and thermodynamic properties of graphene-when increasing the barrier height and/or width, similarly to the well-known Shubnikov-de-Haas (SdH) oscillations of conductivity in pure metals. However, here the SdH-like oscillations are driven by an electric field instead of the usual magnetically driven SdH-oscillations

  12. Oscillation mode transformation of edge magnetoplasmons in two-dimensional electron system on liquid-helium surface

    International Nuclear Information System (INIS)

    Yamanaka, Shuji; Yayama, Hideki; Arai, Toshikazau; Anju Sawada, Anju; Fukuda, Akira

    2013-01-01

    We measured the resonance spectra of edge magnetoplasmon (EMP) oscillations in a two-dimensional (2D) electron system located on a liquid-helium surface below 1.1 K. Systematic measurements of the resonance frequency and the damping rate as a function of the lateral confinement electric field strength shows clear evidence of the oscillation mode transformation. A pronounced change corresponding to the mode transformation was observed in the damping rate. When 2D electrons are confined in a strong lateral electric field, the damping is weak. As the lateral confinement electric field is reduced below a certain threshold value, an abrupt enhancement of the damping rate is observed. We hypothesize that the weak damping mode in the strong lateral confinement electric field is the compressive density oscillation of the electrons near the edge (conventional EMP) and the strong damping mode in the weak confinement field is the coupled mode of conventional EMP and the boundary displacement wave (BDW). The observation of the strong damping in the BDW-EMP coupled mode is a manifestation of the nearly incompressible feature of strongly interacting classical electrons, which agrees with earlier theoretical predictions.

  13. Anomalous normal mode oscillations in semiconductor microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Hou, H.Q.; Hammons, B.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-04-01

    Semiconductor microcavities as a composite exciton-cavity system can be characterized by two normal modes. Under an impulsive excitation by a short laser pulse, optical polarizations associated with the two normal modes have a {pi} phase difference. The total induced optical polarization is then expected to exhibit a sin{sup 2}({Omega}t)-like oscillation where 2{Omega} is the normal mode splitting, reflecting a coherent energy exchange between the exciton and cavity. In this paper the authors present experimental studies of normal mode oscillations using three-pulse transient four wave mixing (FWM). The result reveals surprisingly that when the cavity is tuned far below the exciton resonance, normal mode oscillation in the polarization is cos{sup 2}({Omega}t)-like, in contrast to what is expected form the simple normal mode model. This anomalous normal mode oscillation reflects the important role of virtual excitation of electronic states in semiconductor microcavities.

  14. Dynamics of the solar transition zone

    Science.gov (United States)

    Bruner, E. C., Jr.

    1978-01-01

    Time-resolved profiles of the 1548-A C IV line arising from the solar transition region are analyzed in order to determine whether the 300-sec oscillations characteristic of the photosphere and chromosphere penetrate into the transition zone and to measure the rms amplitude of transition-zone disturbances as well as their dependence on solar activity. The rms velocity amplitude is used to set limits on the mechanical energy flux available for solar heating. A power-spectrum analysis indicates that acoustic waves appear to have been detected in the transition zone, that at least one case of a strong 200- to 300-sec oscillation was observed, but that strong periodicities are not found on the average in either the intensity or the velocity field. It is suggested that the rms velocity that may be attributed to directly observable wave motion is between 3 and 7 km/s, depending on whether the individual emission elements seen in rocket spectra are coherent or independent in phase.

  15. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    Energy Technology Data Exchange (ETDEWEB)

    Bandara, R.; Khachan, J. [Plasma Physics, School of Physics, University of Sydney, Camperdown, New South Wales 2006 (Australia)

    2013-07-15

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  16. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    Science.gov (United States)

    Bandara, R.; Khachan, J.

    2013-07-01

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  17. Seismological measurement of solar helium abundance

    International Nuclear Information System (INIS)

    Vorontsov, S.V.; Pamyatnykh, A.A.

    1991-01-01

    The internal structure and evolution of the Sun depends on its chemical composition, particularly the helium abundance. In addition, the helium abundance in the solar envelope is thought to represent the protosolar value, making it a datum of cosmological significance. Spectroscopic measurements of the helium abundance are uncertain, and the most reliable estimates until now have come from the calibration of solar evolutionary models. The frequencies of solar acoustic oscillations are sensitive, however, to the behaviour of the speed of sound in the Sun's helium ionization zone, which allows a helioseismological determination of the helium abundance. Sound-speed inversion of helioseismological data can be used for this purpose, but precise frequency measurements of high-degree oscillation modes are needed. Here we describe a new approach based on an analysis of the phase shift of acoustic waves of intermediate-degree modes. From the accurate intermediate-mode data now available, we obtain a helium mass fraction Y=0.25±0.01 in the solar convection zone, significantly smaller than the value Y=0.27-0.29 predicted by recent solar evolutionary models. The discrepancy indicates either that initial helium abundance was reduced in the envelope by downward diffusion or that the protosolar value was lower than currently accepted. (author)

  18. Solar Imagery - GONG (H-alpha)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Oscillation Network Group (GONG) is a network of 6 globally-spaced solar observatories that the NOAA Space Weather Prediction Center uses to monitor the...

  19. Spin–orbit coupling induced magnetoresistance oscillation in a dc biased two-dimensional electron system

    International Nuclear Information System (INIS)

    Wang, C M; Lei, X L

    2014-01-01

    We study dc-current effects on the magnetoresistance oscillation in a two-dimensional electron gas with Rashba spin-orbit coupling, using the balance-equation approach to nonlinear magnetotransport. In the weak current limit the magnetoresistance exhibits periodical Shubnikov-de Haas oscillation with changing Rashba coupling strength for a fixed magnetic field. At finite dc bias, the period of the oscillation halves when the interbranch contribution to resistivity dominates. With further increasing current density, the oscillatory resistivity exhibits phase inversion, i.e., magnetoresistivity minima (maxima) invert to maxima (minima) at certain values of the dc bias, which is due to the current-induced magnetoresistance oscillation. (paper)

  20. Origin of solar radio waves

    International Nuclear Information System (INIS)

    Olmr, J.

    1977-01-01

    Solar radiowave radiation amounts to about 10 -7 of the total solar radiation. The solar atmosphere emits radiation of different wavelengths from a fraction of nanometer to kilometer waves. The solar radiowaves are of thermal origin and except for neutral hydrogen emission and solid body radio emission their emission always results from free electrons. The radiowave radiation active components were classified in several types, such as noise storms, flashes, flares, continuum, and flashes lasting for several minutes. The respective types are discussed and their origins shown. The mechanisms are described permitting the formation of radio waves of nonthermal origin, i.e., plasma oscillations, gyromagnetic emission, synchrotron and Cherenkov radiations. (J.P.)

  1. Neutrino oscillations on the way to long-baseline experiments

    CERN Document Server

    Ryabov, V A

    2003-01-01

    The motivations and physical objectives of experiments in the search for nu /sub mu / to nu /sub e/, nu /sub tau / oscillations in long- baseline accelerator neutrino beams are reviewed. Neutrino beams, detectors, and methods for detecting oscillations (detection of the disappearance of nu /sub mu /, and the appearance of nu /sub e/ and nu /sub tau /) in the current K2K (KEK to Super Kamiokande) experiment and in the MINOS (FNAL to Soudan) and OPERA (CERN to Gran Sasso) near-future experiments are discussed. Possibilities of measuring the oscillation parameters in these experiments are considered in connection with new data obtained in CHOOZ and Palo Verde reactor experiments, the solar neutrino deficit and nu /sub mu // nu /sub e/ anomaly of atmospheric neutrinos, which are observed in large-scale underground detectors, and the excess of nu /sub e/ events in the LSND experiment. Neutrino-oscillation scenarios used in models with three and four (including sterile) types of neutrino, as well as the possibility...

  2. Constructing a One-solar-mass Evolutionary Sequence Using Asteroseismic Data from Kepler

    DEFF Research Database (Denmark)

    Silva Aguirre, V.; Chaplin, W.J.; Ballot, J.

    2011-01-01

    Asteroseismology of solar-type stars has entered a new era of large surveys with the success of the NASA Kepler mission, which is providing exquisite data on oscillations of stars across the Hertzsprung-Russell diagram. From the time-series photometry, the two seismic parameters that can be most...... readily extracted are the large frequency separation (Δν) and the frequency of maximum oscillation power (νmax). After the survey phase, these quantities are available for hundreds of solar-type stars. By scaling from solar values, we use these two asteroseismic observables to identify for the first time...

  3. NLTE masking and the Kiev Fe I oscillator strengths

    International Nuclear Information System (INIS)

    Rutten, R.J.

    1983-01-01

    This contribution serves to advertise the empirical solar-spectrum determinations of the oscillator strengths of 860 Fe I lines by Gurtovenko and Kostik (1981), by showing that these Kiev data contain just the lines needed in cool-star abundance analyses, and by explaining why they are so good. (Auth.)

  4. Analytical treatment of neutrino asymmetry equilibration from flavor oscillations in the early universe

    Science.gov (United States)

    Wong, Yvonne Y.

    2002-07-01

    A recent numerical study by A. D. Dolgov, S. H. Hansen, S. Pastor, S. T. Petcov, G. G. Raffelt, and D. V. Semikoz (DHPPRS) [Nucl. Phys. B632, 363 (2002)] found that complete or partial equilibrium between all active neutrino flavors can be achieved before the big bang nucleosynthesis epoch via flavor oscillations, if the oscillation parameters are those inferred from the atmospheric and solar neutrino data, and, in some cases, if θ13 is also sizable. As such, cosmological constraints on the electron neutrino-antineutrino asymmetry are now applicable in all three neutrino sectors. In the present work, we provide an analytical treatment of the scenarios considered in DHPPRS, and demonstrate that their results are stable even for very large initial asymmetries. The equilibration mechanism can be understood in terms of a Mikheyev-Smirnov-Wolfenstein-like effect for a maximally mixed and effectively monochromatic system. We also comment on the DHPPRS's choices of mixing parameters, and their handling of collisional effects, both of which could impinge on the extent of flavor equilibrium.

  5. The coalescence instability in solar flares

    Science.gov (United States)

    Tajima, T.; Brunel, F.; Sakai, J.-I.; Vlahos, L.; Kundu, M. R.

    1985-01-01

    The nonlinear coalescence instability of current carrying solar loops can explain many of the characteristics of the solar flares such as their impulsive nature, heating and high energy particle acceleration, amplitude oscillations of electromagnetic and emission as well as the characteristics of two-dimensional microwave images obtained during a flare. The plasma compressibility leads to the explosive phase of loop coalescence and its overshoot results in amplitude oscillations in temperatures by adiabatic compression and decompression. It is noted that the presence of strong electric fields and super-Alfvenic flows during the course of the instability play an important role in the production of nonthermal particles. A qualitative explanation on the physical processes taking place during the nonlinear stages of the instability is given.

  6. The coalescence instability in solar flares

    International Nuclear Information System (INIS)

    Tajima, T.; Brunel, F.; Sakai, J.I.; Vlahos, L.; Kundu, M.R.

    1984-01-01

    The non-linear coalescence instability of current carrying solar loops can explain many of the characteristics of the solar flares such as their impulsive nature, heating and high energy particle acceleration, amplitude oscillations of electromagnetic emission as well as the characteristics of 2-D microwave images obtained during a flare. The plasma compressibility leads to the explosive phase of loop coalescence and its overshoot results in amplitude oscillations in temperatures by adiabatic compression and decompression. We note that the presence of strong electric fields and super-Alfvenic flows during the course of the instabilty paly an important role in the production of non-thermal particles. A qualitative explanation on the physical processes taking place during the non-linear stages of the instability is given. (author)

  7. Weak-field limit of Kaluza-Klein models with spherically symmetric static scalar field. Observational constraints

    Energy Technology Data Exchange (ETDEWEB)

    Zhuk, Alexander [The International Center of Future Science of the Jilin University, Changchun City (China); Odessa National University, Astronomical Observatory, Odessa (Ukraine); Chopovsky, Alexey; Fakhr, Seyed Hossein [Odessa National University, Astronomical Observatory, Odessa (Ukraine); Shulga, Valerii [The International Center of Future Science of the Jilin University, Changchun City (China); Institut of Radio Astronomy of National Academy of Sciences of Ukraine, Kharkov (Ukraine); Wei, Han [The International Center of Future Science of the Jilin University, Changchun City (China)

    2017-11-15

    In a multidimensional Kaluza-Klein model with Ricci-flat internal space, we study the gravitational field in the weak-field limit. This field is created by two coupled sources. First, this is a point-like massive body which has a dust-like equation of state in the external space and an arbitrary parameter Ω of equation of state in the internal space. The second source is a static spherically symmetric massive scalar field centered at the origin where the point-like massive body is. The found perturbed metric coefficients are used to calculate the parameterized post-Newtonian (PPN) parameter γ. We define under which conditions γ can be very close to unity in accordance with the relativistic gravitational tests in the solar system. This can take place for both massive or massless scalar fields. For example, to have γ ∼ 1 in the solar system, the mass of scalar field should be μ >or similar 5.05 x 10{sup -49} g ∝ 2.83 x 10{sup -16} eV. In all cases, we arrive at the same conclusion that to be in agreement with the relativistic gravitational tests, the gravitating mass should have tension: Ω = -1/2. (orig.)

  8. Broad-scale small-world network topology induces optimal synchronization of flexible oscillators

    International Nuclear Information System (INIS)

    Markovič, Rene; Gosak, Marko; Marhl, Marko

    2014-01-01

    The discovery of small-world and scale-free properties of many man-made and natural complex networks has attracted increasing attention. Of particular interest is how the structural properties of a network facilitate and constrain its dynamical behavior. In this paper we study the synchronization of weakly coupled limit-cycle oscillators in dependence on the network topology as well as the dynamical features of individual oscillators. We show that flexible oscillators, characterized by near zero values of divergence, express maximal correlation in broad-scale small-world networks, whereas the non-flexible (rigid) oscillators are best correlated in more heterogeneous scale-free networks. We found that the synchronization behavior is governed by the interplay between the networks global efficiency and the mutual frequency adaptation. The latter differs for flexible and rigid oscillators. The results are discussed in terms of evolutionary advantages of broad-scale small-world networks in biological systems

  9. Weak-light phase locking for LISA

    International Nuclear Information System (INIS)

    McNamara, Paul W

    2005-01-01

    The long armlengths of the LISA interferometer, and the finite aperture of the telescope, lead to an optical power attenuation of ∼10 -10 of the transmitted to received light. Simple reflection at the end of the arm is therefore not an optimum interferometric design. Instead, a local laser is offset phase locked to the weak incoming beam, transferring the phase information of the incoming to the outgoing light. This paper reports on an experiment to characterize a weak-light phase-locking scheme suitable for LISA in which a diode-pumped, Nd:YAG, non-planar ring oscillator (NPRO) is offset phase locked to a low-power (13 pW) frequency stabilized master NPRO. Preliminary results of the relative phase noise of the slave laser shows shot noise limited performance above 0.4 Hz. Excess noise is observed at lower frequencies, most probably due to thermal effects in the optical arrangement and phase-sensing electronics

  10. Queueing-Based Synchronization and Entrainment for Synthetic Gene Oscillators

    Science.gov (United States)

    Mather, William; Butzin, Nicholas; Hochendoner, Philip; Ogle, Curtis

    Synthetic gene oscillators have been a major focus of synthetic biology research since the beginning of the field 15 years ago. They have proven to be useful both for biotechnological applications as well as a testing ground to significantly develop our understanding of the design principles behind synthetic and native gene oscillators. In particular, the principles governing synchronization and entrainment of biological oscillators have been explored using a synthetic biology approach. Our work combines experimental and theoretical approaches to specifically investigate how a bottleneck for protein degradation, which is present in most if not all existing synthetic oscillators, can be leveraged to robustly synchronize and entrain biological oscillators. We use both the terminology and mathematical tools of queueing theory to intuitively explain the role of this bottleneck in both synchronization and entrainment, which extends prior work demonstrating the usefulness of queueing theory in synthetic and native gene circuits. We conclude with an investigation of how synchronization and entrainment may be sensitive to the presence of multiple proteolytic pathways in a cell that couple weakly through crosstalk. This work was supported by NSF Grant #1330180.

  11. Accelerator studies of neutrino oscillations

    CERN Document Server

    Ereditato, A

    2000-01-01

    The question of whether the neutrino has a non-vanishing mass plays acrucial role in particle physics. A massive neutrino would unambiguously reveal the existence of new physics beyond the Standard Model. In addition, it could have profound implications on astrophysics and cosmology, with effects on the evolution of the Universe. Experiments aiming at direct neutrino-mass measurements based on kinematics have not been able, so far, to measure the very small neutrino mass. Indirect measurements can be performed by exploiting reactions which may only occur for massive neutrinos. Neutrino oscillation is one of those processes. The mass difference between neutrino mass-eigenstates can be inferred from a phase measurement. This feature allows for high sensitivity experiments. Neutrinos from different sources can be used to search for oscillations: solar neutrinos, neutrinos produced in the interaction of cosmic rays with the atmosphere and artificially produced neutrinos from nuclear reactors and particle accelera...

  12. Detailed spectra of high power broadband microwave radiation from interactions of relativistic electron beams with weakly magnetized plasmas

    International Nuclear Information System (INIS)

    Kato, K.G.; Benford, G.; Tzach, D.

    1983-01-01

    Prodigious quantities of microwave energy are observed uniformly across a wide frequency band when a relativistic electron beam (REB) penetrates a plasma. Measurement calculations are illustrated. A model of Compton-like boosting of ambient plasma waves by beam electrons, with collateral emission of high frequency photons, qualitatively explain the spectra. A transition in spectral behavior is observed from the weak to strong turbulence theories advocated for Type III solar burst radiation, and further into the regime the authors characterize as super-strong REB-plasma interactions

  13. Speech-like orofacial oscillations in stump-tailed macaque (Macaca arctoides) facial and vocal signals.

    Science.gov (United States)

    Toyoda, Aru; Maruhashi, Tamaki; Malaivijitnond, Suchinda; Koda, Hiroki

    2017-10-01

    Speech is unique to humans and characterized by facial actions of ∼5 Hz oscillations of lip, mouth or jaw movements. Lip-smacking, a facial display of primates characterized by oscillatory actions involving the vertical opening and closing of the jaw and lips, exhibits stable 5-Hz oscillation patterns, matching that of speech, suggesting that lip-smacking is a precursor of speech. We tested if facial or vocal actions exhibiting the same rate of oscillation are found in wide forms of facial or vocal displays in various social contexts, exhibiting diversity among species. We observed facial and vocal actions of wild stump-tailed macaques (Macaca arctoides), and selected video clips including facial displays (teeth chattering; TC), panting calls, and feeding. Ten open-to-open mouth durations during TC and feeding and five amplitude peak-to-peak durations in panting were analyzed. Facial display (TC) and vocalization (panting) oscillated within 5.74 ± 1.19 and 6.71 ± 2.91 Hz, respectively, similar to the reported lip-smacking of long-tailed macaques and the speech of humans. These results indicated a common mechanism for the central pattern generator underlying orofacial movements, which would evolve to speech. Similar oscillations in panting, which evolved from different muscular control than the orofacial action, suggested the sensory foundations for perceptual saliency particular to 5-Hz rhythms in macaques. This supports the pre-adaptation hypothesis of speech evolution, which states a central pattern generator for 5-Hz facial oscillation and perceptual background tuned to 5-Hz actions existed in common ancestors of macaques and humans, before the emergence of speech. © 2017 Wiley Periodicals, Inc.

  14. Automated asteroseismic peak detections

    Science.gov (United States)

    García Saravia Ortiz de Montellano, Andrés; Hekker, S.; Themeßl, N.

    2018-05-01

    Space observatories such as Kepler have provided data that can potentially revolutionize our understanding of stars. Through detailed asteroseismic analyses we are capable of determining fundamental stellar parameters and reveal the stellar internal structure with unprecedented accuracy. However, such detailed analyses, known as peak bagging, have so far been obtained for only a small percentage of the observed stars while most of the scientific potential of the available data remains unexplored. One of the major challenges in peak bagging is identifying how many solar-like oscillation modes are visible in a power density spectrum. Identification of oscillation modes is usually done by visual inspection that is time-consuming and has a degree of subjectivity. Here, we present a peak-detection algorithm especially suited for the detection of solar-like oscillations. It reliably characterizes the solar-like oscillations in a power density spectrum and estimates their parameters without human intervention. Furthermore, we provide a metric to characterize the false positive and false negative rates to provide further information about the reliability of a detected oscillation mode or the significance of a lack of detected oscillation modes. The algorithm presented here opens the possibility for detailed and automated peak bagging of the thousands of solar-like oscillators observed by Kepler.

  15. How optimal synchronization of oscillators depends on the network structure and the individual dynamical properties of the oscillators

    International Nuclear Information System (INIS)

    Markovic, R; Gosak, M; Marhl, M

    2013-01-01

    The problem of making a network of dynamical systems synchronize onto a common evolution is the subject of much ongoing research in several scientific disciplines. It is nowadays a well-known fact that the synchronization processes are gradually influenced by the interaction topology between the dynamically interacting units. A complex coupling configuration can significantly affect the synchronization abilities of a networked system. However, the question arises what is the optimal network topology that provides enhancement of the synchronization features under given circumstances. In order to address this issue we make use of a network model in which we can smoothly tune the topology from a highly heterogeneous and efficient scale-free network to a homogeneous and less efficient network. The network is then populated with Poincaré oscillators, a paradigmatic model for limit-cycle oscillations. This oscillator model exhibits a parameter that enables changes of the limit cycle attraction and is thus immediately related to flexibility/rigidity properties of the oscillator. Our results reveal that for weak attractions of the limit cycle, intermediate homogeneous topology ensures maximal synchronization, whereas highly heterogeneous scale-free topology ensures maximal synchronization for strong attractions of the limit cycle. We argue that the flexibility/rigidity of individual nodes of the networks defines the topology, where maximal global coherence is achieved.

  16. Closed-loop suppression of chaos in nonlinear driven oscillators

    Science.gov (United States)

    Aguirre, L. A.; Billings, S. A.

    1995-05-01

    This paper discusses the suppression of chaos in nonlinear driven oscillators via the addition of a periodic perturbation. Given a system originally undergoing chaotic motions, it is desired that such a system be driven to some periodic orbit. This can be achieved by the addition of a weak periodic signal to the oscillator input. This is usually accomplished in open loop, but this procedure presents some difficulties which are discussed in the paper. To ensure that this is attained despite uncertainties and possible disturbances on the system, a procedure is suggested to perform control in closed loop. In addition, it is illustrated how a model, estimated from input/output data, can be used in the design. Numerical examples which use the Duffing-Ueda and modified van der Pol oscillators are included to illustrate some of the properties of the new approach.

  17. Solar neutrinos and the Mikheyev-Smirnov-Wolfenstein theory

    International Nuclear Information System (INIS)

    Bethe, H.A.; Bahcall, J.N.

    1991-01-01

    The observation of solar neutrinos by Kamiokande shows that the solar-neutrino problem cannot be solved by changing the solar model. In combination with the observations with a chlorine detector, it makes the nonadiabatic form of the Mikheyev-Smirnov-Wolfenstein theory most likely, and determines Δm 2 sin 2 θ=1.0x10 -8 eV 2 . Probably all neutrinos go through the resonance in the Sun, those from 8 B nonadiabatically, all others adiabatically. The latter emerge from the Sun in the higher-mass eigenstate ν 2 and have a probability sin 2 θ to be detected as ν e . The gallium experiments, when done with sufficient accuracy, will be able to determine Δm 2 =m 2 (ν μ )-m 2 (ν e ) within fairly close limits. If the day-night effect can be measured, it will further constrain these limits. The small value of Δm 2 sin 2 θ explains why the oscillation from ν e to ν μ has not been observed in the laboratory. From existing experiments, the temperature at the center of the Sun can be determined to be within about 6% of that derived from the standard solar model; future neutrino experiments may determine it to within 1%

  18. PROBABILITY OF CME IMPACT ON EXOPLANETS ORBITING M DWARFS AND SOLAR-LIKE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Kay, C. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Opher, M.; Kornbleuth, M., E-mail: ckay@bu.edu [Astronomy Department, Boston University, Boston, MA 02215 (United States)

    2016-08-01

    Solar coronal mass ejections (CMEs) produce adverse space weather effects at Earth. Planets in the close habitable zone of magnetically active M dwarfs may experience more extreme space weather than at Earth, including frequent CME impacts leading to atmospheric erosion and leaving the surface exposed to extreme flare activity. Similar erosion may occur for hot Jupiters with close orbits around solar-like stars. We have developed a model, Forecasting a CME's Altered Trajectory (ForeCAT), which predicts a CME's deflection. We adapt ForeCAT to simulate CME deflections for the mid-type M dwarf V374 Peg and hot Jupiters with solar-type hosts. V374 Peg's strong magnetic fields can trap CMEs at the M dwarfs's Astrospheric Current Sheet, that is, the location of the minimum in the background magnetic field. Solar-type CMEs behave similarly, but have much smaller deflections and do not become trapped at the Astrospheric Current Sheet. The probability of planetary impact decreases with increasing inclination of the planetary orbit with respect to the Astrospheric Current Sheet: 0.5–5 CME impacts per day for M dwarf exoplanets, 0.05–0.5 CME impacts per day for solar-type hot Jupiters. We determine the minimum planetary magnetic field necessary to shield a planet's atmosphere from CME impacts. M dwarf exoplanets require values between tens and hundreds of Gauss. Hot Jupiters around a solar-type star, however, require a more reasonable <30 G. These values exceed the magnitude required to shield a planet from the stellar wind, suggesting that CMEs may be the key driver of atmospheric losses.

  19. PROBABILITY OF CME IMPACT ON EXOPLANETS ORBITING M DWARFS AND SOLAR-LIKE STARS

    International Nuclear Information System (INIS)

    Kay, C.; Opher, M.; Kornbleuth, M.

    2016-01-01

    Solar coronal mass ejections (CMEs) produce adverse space weather effects at Earth. Planets in the close habitable zone of magnetically active M dwarfs may experience more extreme space weather than at Earth, including frequent CME impacts leading to atmospheric erosion and leaving the surface exposed to extreme flare activity. Similar erosion may occur for hot Jupiters with close orbits around solar-like stars. We have developed a model, Forecasting a CME's Altered Trajectory (ForeCAT), which predicts a CME's deflection. We adapt ForeCAT to simulate CME deflections for the mid-type M dwarf V374 Peg and hot Jupiters with solar-type hosts. V374 Peg's strong magnetic fields can trap CMEs at the M dwarfs's Astrospheric Current Sheet, that is, the location of the minimum in the background magnetic field. Solar-type CMEs behave similarly, but have much smaller deflections and do not become trapped at the Astrospheric Current Sheet. The probability of planetary impact decreases with increasing inclination of the planetary orbit with respect to the Astrospheric Current Sheet: 0.5–5 CME impacts per day for M dwarf exoplanets, 0.05–0.5 CME impacts per day for solar-type hot Jupiters. We determine the minimum planetary magnetic field necessary to shield a planet's atmosphere from CME impacts. M dwarf exoplanets require values between tens and hundreds of Gauss. Hot Jupiters around a solar-type star, however, require a more reasonable <30 G. These values exceed the magnitude required to shield a planet from the stellar wind, suggesting that CMEs may be the key driver of atmospheric losses.

  20. Compact perturbative expressions for neutrino oscillations in matter

    Energy Technology Data Exchange (ETDEWEB)

    Denton, Peter B. [Theoretical Physics Department, Fermi National Accelerator Laboratory,P.O. Box 500, Batavia, IL 60510 (United States); Physics & Astronomy Department, Vanderbilt University,PMB 401807, 2301 Vanderbilt Place, Nashville, TN 37235 (United States); Minakata, Hisakazu [Instituto de Física, Universidade de São Paulo,C.P. 66.318, 05315-970 São Paulo (Brazil); Department of Physics, Yachay Tech University,San Miguel de Urcuquí 100119 (Ecuador); Parke, Stephen J. [Theoretical Physics Department, Fermi National Accelerator Laboratory,P.O. Box 500, Batavia, IL 60510 (United States)

    2016-06-08

    We further develop and extend a recent perturbative framework for neutrino oscillations in uniform matter density so that the resulting oscillation probabilities are accurate for the complete matter potential versus baseline divided by neutrino energy plane. This extension also gives the exact oscillation probabilities in vacuum for all values of baseline divided by neutrino energy. The expansion parameter used is related to the ratio of the solar to the atmospheric Δm{sup 2} scales but with a unique choice of the atmospheric Δm{sup 2} such that certain first-order effects are taken into account in the zeroth-order Hamiltonian. Using a mixing matrix formulation, this framework has the exceptional feature that the neutrino oscillation probability in matter has the same structure as in vacuum, to all orders in the expansion parameter. It also contains all orders in the matter potential and sin θ{sub 13}. It facilitates immediate physical interpretation of the analytic results, and makes the expressions for the neutrino oscillation probabilities extremely compact and very accurate even at zeroth order in our perturbative expansion. The first and second order results are also given which improve the precision by approximately two or more orders of magnitude per perturbative order.

  1. Weak interactions in astrophysics and cosmology

    International Nuclear Information System (INIS)

    Taylor, R.J.

    1977-01-01

    There ar many problems in astrophysics and cosmology in which the form of the weak interactions, their strength or the number of weakly interacting particles, is very important. It is possible that astronomical observations may give some information about the weak interactions. In the conventional hot big bang cosmological theory the number of leptons with associated neutrinos influences the speed of expansion of the Universe and the chemical composition of pre-galactic matter. The strength of the weak interaction, as exemplified by the half-life of the neutron, has a similar effect. In addition, the form of the weak interactions will determine how effectively neutrino viscosity can smooth out irregularities in the early Universe. Because neutrinos have a very long mean free path, they can escape from the central region of stars whereas photons can only escape from the surface. In late stages of stellar evolution, neutrino luminosity is often believed to be much greater than photon luminosity. This can both accelerate the cooling of dying stars and influence the stages of stellar evolution leading to the onset of supernova explosions. In pre-super-novae it is even possible that very dense stellar cores can be opaque to neutrinos and that the absorption or scattering of neutrinos can cause the explosion. These results depend crucially on the form of the weak interactions, with the discovery of neutral currents being very important. Until the solar neutrino experiment has been reconciled with theory, the possible role of uncertainties in the weak interactions cannot be ignored. (author)

  2. CLIMATE CHANGE: LONG-TERM TRENDS AND SHORT-TERM OSCILLATIONS

    Institute of Scientific and Technical Information of China (English)

    GAO Xin-quan; ZHANG Xin; QIAN Wei-hong

    2006-01-01

    Identifying the Northern Hemisphere (NH) temperature reconstruction and instrumental data for the past 1000 years shows that climate change in the last millennium includes long-term trends and various oscillations. Two long-term trends and the quasi-70-year oscillation were detected in the global temperature series for the last 140 years and the NH millennium series. One important feature was emphasized that temperature decreases slowly but it increases rapidly based on the analysis of different series. Benefits can be obtained of climate change from understanding various long-term trends and oscillations. Millennial temperature proxies from the natural climate system and time series of nonlinear model system are used in understanding the natural climate change and recognizing potential benefits by using the method of wavelet transform analysis. The results from numerical modeling show that major oscillations contained in numerical solutions on the interdecadal timescale are consistent with that of natural proxies. It seems that these oscillations in the climate change are not directly linked with the solar radiation as an external forcing. This investigation may conclude that the climate variability at the interdecadal timescale strongly depends on the internal nonlinear effects in the climate system.

  3. Solar excitation of bicentennial Earth rotation oscillations

    Czech Academy of Sciences Publication Activity Database

    Ron, Cyril; Chapanov, Y.; Vondrák, Jan

    2012-01-01

    Roč. 9, č. 3 (2012), s. 259-268 ISSN 1214-9705 R&D Projects: GA ČR GA205/08/0908 Grant - others:Bulgarian NSF(BG) DO02-275; FP7(BG) MCA PIRSES-GA-2009-246874 Institutional support: RVO:67985815 Keywords : Earth rotation * solar activity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.530, year: 2011

  4. The Solar Wind Source Cycle: Relationship to Dynamo Behavior

    Science.gov (United States)

    Luhmann, J. G.; Li, Y.; Lee, C. O.; Jian, L. K.; Petrie, G. J. D.; Arge, C. N.

    2017-12-01

    Solar cycle trends of interest include the evolving properties of the solar wind, the heliospheric medium through which the Sun's plasmas and fields interact with Earth and the planets -including the evolution of CME/ICMEs enroute. Solar wind sources include the coronal holes-the open field regions that constantly evolve with solar magnetic fields as the cycle progresses, and the streamers between them. The recent cycle has been notably important in demonstrating that not all solar cycles are alike when it comes to contributions from these sources, including in the case of ecliptic solar wind. In particular, it has modified our appreciation of the low latitude coronal hole and streamer sources because of their relative prevalence. One way to understand the basic relationship between these source differences and what is happening inside the Sun and on its surface is to use observation-based models like the PFSS model to evaluate the evolution of the coronal field geometry. Although the accuracy of these models is compromised around solar maximum by lack of global surface field information and the sometimes non-potential evolution of the field related to more frequent and widespread emergence of active regions, they still approximate the character of the coronal field state. We use these models to compare the inferred recent cycle coronal holes and streamer belt sources of solar wind with past cycle counterparts. The results illustrate how (still) hemispherically asymmetric weak polar fields maintain a complex mix of low-to-mid latitude solar wind sources throughout the latest cycle, with a related marked asymmetry in the hemispheric distribution of the ecliptic wind sources. This is likely to be repeated until the polar field strength significantly increases relative to the fields at low latitudes, and the latter symmetrize.

  5. Time Series Decomposition into Oscillation Components and Phase Estimation.

    Science.gov (United States)

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-02-01

    Many time series are naturally considered as a superposition of several oscillation components. For example, electroencephalogram (EEG) time series include oscillation components such as alpha, beta, and gamma. We propose a method for decomposing time series into such oscillation components using state-space models. Based on the concept of random frequency modulation, gaussian linear state-space models for oscillation components are developed. In this model, the frequency of an oscillator fluctuates by noise. Time series decomposition is accomplished by this model like the Bayesian seasonal adjustment method. Since the model parameters are estimated from data by the empirical Bayes' method, the amplitudes and the frequencies of oscillation components are determined in a data-driven manner. Also, the appropriate number of oscillation components is determined with the Akaike information criterion (AIC). In this way, the proposed method provides a natural decomposition of the given time series into oscillation components. In neuroscience, the phase of neural time series plays an important role in neural information processing. The proposed method can be used to estimate the phase of each oscillation component and has several advantages over a conventional method based on the Hilbert transform. Thus, the proposed method enables an investigation of the phase dynamics of time series. Numerical results show that the proposed method succeeds in extracting intermittent oscillations like ripples and detecting the phase reset phenomena. We apply the proposed method to real data from various fields such as astronomy, ecology, tidology, and neuroscience.

  6. Quasiparticle explanation of ``weak thermalization'' regime under quench in a non-integrable quantum spin chain

    Science.gov (United States)

    Lin, Cheng-Ju; Motrunich, Olexei

    Eigenstate Thermalization Hypothesis provides one picture of thermalization in a quantum system by looking at individual eigenstates. However, it is also important to consider how local observables reach equilibrium values dynamically. Quench protocol is one of the settings to study such questions. A recent numerical study [Banuls, Cirac, and Hastings, Phys. Rev. Lett. 106, 050405 (2011)] of a nonintegrable quantum Ising model with longitudinal field under such quench setting found different behaviors under different initial quantum states. One particular case termed ``weak thermalization'' regime showed apparently persistent oscillations of some observables. Here we provide an explanation of such oscillations. We use perturbation theory near the ground state of the model, and identify the oscillation frequency as the quasiparticle mass. With this quasiparticle picture, we can then address the long-time behavior of the oscillations.

  7. Degradation of Methyl Orange and Congo Red dyes by using TiO2 nanoparticles activated by the solar and the solar-like radiation.

    Science.gov (United States)

    Ljubas, Davor; Smoljanić, Goran; Juretić, Hrvoje

    2015-09-15

    In this study we used TiO2 nanoparticles as semiconductor photocatalysts for the degradation of Methyl Orange (MO) and Congo Red (CR) dyes in an aqueous solution. Since TiO2 particles become photocatalytically active by UV radiation, two sources of UV-A radiation were used - natural solar radiation which contains 3-5% UV-A and artificial, solar-like radiation, created by using a lamp. The optimal doses of TiO2 of 500 mg/L for the CR and 1500 mg/L for the MO degradation were determined in experiments with the lamp and were also used in degradation experiments with natural solar light. The efficiency of each process was determined by measuring the absorbance at two visible wavelengths, 466 nm for MO and 498 nm for CR, and the total organic carbon (TOC), i.e. decolorization and mineralization, respectively. In both cases, considerable potential for the degradation of CR and MO was observed - total decolorization of the solution was achieved within 30-60 min, while the TOC removal was in the range 60-90%. CR and MO solutions irradiated without TiO2 nanoparticles showed no observable changes in either decolorization or mineralization. Three different commercially available TiO2 nanoparticles were used: pure-phase anatase, pure-phase rutile, and mixed-phase preparation named Degussa P25. In terms of degradation kinetics, P25 TiO2 exhibited a photocatalytic activity superior to that of pure-phase anatase or rutile. The electric energy consumption per gram of removed TOC was determined. For nearly the same degradation effect, the consumption in the natural solar radiation experiment was more than 60 times lower than in the artificial solar-like radiation experiment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Xenon-induced axial power oscillations in the 400 MW PBMR

    International Nuclear Information System (INIS)

    Strydom, Gerhard

    2008-01-01

    The redistribution of the spatial xenon concentration in the 400 MW Pebble Bed Modular Reactor (PBMR) core has a non-linear, time-dependent feedback effect on the spatial power density during several types of operational transient events. Due to the inherent weak coupling that exists between the iodine and xenon formation and destruction rates, as well as the complicating effect of spatial variance in the thermal flux field, reactor cores have been analyzed for a number of decades for the occurrence and severity of xenon-induced axial power oscillations. Of specific importance is the degree of oscillation damping exhibited by the core during transients, which involves axial variations in the local power density. In this paper the TINTE reactor dynamics code is used to assess the stability of the current 400 MW PBMR core design with regard to axial xenon oscillations. The focus is mainly on the determination of the inherent xenon and power oscillation damping properties by utilizing a set of hypothetical control rod insertion transients at various power levels. The oscillation damping properties of two 100%-50%-100% load-follow transients, one of which includes the de-stabilizing axial effects of moving control rods, are also discussed in some detail. The study shows that, although first axial mode oscillations do occur in the 400 MW PBMR core, the inherent damping of these oscillations is high, and that none of the investigated load-follow transients resulted in diverging oscillations. It is also shown that the PBMR core exhibits no radial oscillation components for these xenon-induced axial power oscillations

  9. Diamond-Like Carbon Coatings as Encapsulants for Photovoltaic Solar Cells

    International Nuclear Information System (INIS)

    Pern, F. J.; Panosyan, Zh.; Gippius, A. A.; Kontsevoy, J. A.; Touryan, K.; Voskanyan, S.; Yengibaryan, Y.

    2005-01-01

    High-quality single-layer and bilayer diamond-like carbon (DLC) thin films are fabricated by two technologies, namely, ion-assisted plasma-enhanced deposition (IAPED) and electron cyclotron resonance (ECR) deposition. Deposition on various substrates, such as sapphires and solar cells, has been performed at low substrate temperatures (50 ∼ 80 C). The two deposition technologies allow good control over the growth conditions to produce DLC films with desired optical properties, thickness, and energy bandgap. The bilayer-structured DLC can be fabricated by using IAPED for the bottom layer followed by ECR for the top layer, or just by IAPED for both layers with different compositions. The DLC films have shown good spatial uniformity, density, microhardness, and adhesion strength. They exhibit excellent stability against attack by strong acids, prolonged damp-heat exposure at 85 C and 85% relative humidity, mechanical scratch, ultrasonication, and irradiation by ultraviolet (UV), protons, and electrons. When deposited on crystalline Si and GaAs solar cells in single-layer and/or bilayer structure, the DLC films not only serve as antireflection coating and protective encapsulant, but also improve the cell efficiencies

  10. Magnetosheath waves under very low solar wind dynamic pressure: Wind/Geotail observations

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2005-06-01

    Full Text Available The expanded bow shock on and around "the day the solar wind almost disappeared" (11 May 1999 allowed the Geotail spacecraft to make a practically uninterrupted 54-h-long magnetosheath pass near dusk (16:30-21:11 magnetic local time at a radial distance of 24 to 30 RE (Earth radii. During most of this period, interplanetary parameters varied gradually and in such a way as to give rise to two extreme magnetosheath structures, one dominated by magnetohydrodynamic (MHD effects and the other by gas dynamic effects. We focus attention on unusual features of electromagnetic ion wave activity in the former magnetosheath state, and compare these features with those in the latter. Magnetic fluctuations in the gas dynamic magnetosheath were dominated by compressional mirror mode waves, and left- and right-hand polarized electromagnetic ion cyclotron (EIC waves transverse to the background field. In contrast, the MHD magnetosheath, lasting for over one day, was devoid of mirror oscillations and permeated instead by EIC waves of weak intensity. The weak wave intensity is related to the prevailing low solar wind dynamic pressures. Left-hand polarized EIC waves were replaced by bursts of right-hand polarized waves, which remained for many hours the only ion wave activity present. This activity occurred when the magnetosheath proton temperature anisotropy (= became negative. This was because the weakened bow shock exposed the magnetosheath directly to the (negative temperature anisotropy of the solar wind. Unlike the normal case studied in the literature, these right-hand waves were not by-products of left-hand polarized waves but derived their energy source directly from the magnetosheath temperature anisotropy. Brief entries into the low latitude boundary layer (LLBL and duskside magnetosphere occurred under such inflated conditions that the magnetospheric magnetic pressure was insufficient to maintain pressure balance. In these crossings, the inner edge of

  11. Roles of nuclear weak rates on the evolution of degenerate cores in stars

    Directory of Open Access Journals (Sweden)

    Suzuki Toshio

    2017-01-01

    Full Text Available Electron-capture and β-decay rates in stellar environments are evaluated with the use of new shell-model Hamiltonians for sd-shell and pf-shell nuclei as well as for nuclei belonging to the island of inversion. Important role of the nuclear weak rates on the final evolution of stellar degenerate cores is presented. The weak interaction rates for sd-shell nuclei are calculated to study nuclear Urca processes in O-Ne-Mg cores of stars with 8-10 M⊙ (solar mass and their effects on the final fate of the stars. Nucleosynthesis of iron-group elements in Type Ia supernova explosions are studied with the weak rates for pf-shell nuclei. The problem of the neutron-rich iron-group isotope over-production compared to the solar abundances is shown to be nearly solved with the use of the new rates and explosion model of slow defraglation with delayed detonation. Evaluation of the weak rates is extended to the island of inversion and the region of neutron-rich nuclei near 78Ni, where two major shells contribute to their configurations.

  12. Influences of adding negative couplings between cliques of Kuramoto-like oscillators

    Science.gov (United States)

    Yang, Li-xin; Lin, Xiao-lin; Jiang, Jun

    2018-06-01

    We study the dynamics in a clustered network of coupled oscillators by considering positive and negative coupling schemes. Second order oscillators can be interpreted as a model of consumers and generators working in a power network. Numerical results indicate that coupling strategies play an important role in the synchronizability of the clustered power network. It is found that the synchronizability can be enhanced as the positive intragroup connections increase. Meanwhile, when the intragroup interactions are positive and the probability p that two nodes belonging to different clusters are connected is increased, the synchronization has better performance. Besides, when the intragroup connections are negative, it is observed that the power network has poor synchronizability as the probability p increases. Our simulation results can help us understand the collective behavior of the power network with positive and negative couplings.

  13. An Experimentalist's Overview of Solar Neutrinos

    Science.gov (United States)

    Oser, Scott M.

    2012-02-01

    Four decades of solar neutrino research have demonstrated that solar models do a remarkable job of predicting the neutrino fluxes from the Sun, to the extent that solar neutrinos can now serve as a calibrated neutrino source for experiments to understand neutrino oscillations and mixing. In this review article I will highlight the most significant experimental results, with emphasis on the latest model-independent measurements from the Sudbury Neutrino Observatory. The solar neutrino fluxes are seen to be generally well-determined experimentally, with no indications of time variability, while future experiments will elucidate the lower energy part of the neutrino spectrum, especially pep and CNO neutrinos.

  14. An Experimentalist's Overview of Solar Neutrinos

    International Nuclear Information System (INIS)

    Oser, Scott M

    2012-01-01

    Four decades of solar neutrino research have demonstrated that solar models do a remarkable job of predicting the neutrino fluxes from the Sun, to the extent that solar neutrinos can now serve as a calibrated neutrino source for experiments to understand neutrino oscillations and mixing. In this review article I will highlight the most significant experimental results, with emphasis on the latest model-independent measurements from the Sudbury Neutrino Observatory. The solar neutrino fluxes are seen to be generally well-determined experimentally, with no indications of time variability, while future experiments will elucidate the lower energy part of the neutrino spectrum, especially pep and CNO neutrinos.

  15. An Extreme-ultraviolet Wave Generating Upward Secondary Waves in a Streamer-like Solar Structure

    Science.gov (United States)

    Zheng, Ruisheng; Chen, Yao; Feng, Shiwei; Wang, Bing; Song, Hongqiang

    2018-05-01

    Extreme-ultraviolet (EUV) waves, spectacular horizontally propagating disturbances in the low solar corona, always trigger horizontal secondary waves (SWs) when they encounter the ambient coronal structure. We present the first example of upward SWs in a streamer-like structure after the passing of an EUV wave. This event occurred on 2017 June 1. The EUV wave happened during a typical solar eruption including a filament eruption, a coronal mass ejection (CME), and a C6.6 flare. The EUV wave was associated with quasi-periodic fast propagating (QFP) wave trains and a type II radio burst that represented the existence of a coronal shock. The EUV wave had a fast initial velocity of ∼1000 km s‑1, comparable to high speeds of the shock and the QFP wave trains. Intriguingly, upward SWs rose slowly (∼80 km s‑1) in the streamer-like structure after the sweeping of the EUV wave. The upward SWs seemed to originate from limb brightenings that were caused by the EUV wave. All of the results show that the EUV wave is a fast-mode magnetohydrodynamic (MHD) shock wave, likely triggered by the flare impulses. We suggest that part of the EUV wave was probably trapped in the closed magnetic fields of the streamer-like structure, and upward SWs possibly resulted from the release of slow-mode trapped waves. It is believed that the interplay of the strong compression of the coronal shock and the configuration of the streamer-like structure is crucial for the formation of upward SWs.

  16. Implications of the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism of amplification of neutrino oscillations in matter

    International Nuclear Information System (INIS)

    Langacker, P.; Petcov, S.T.; Steigman, G.; Toshev, S.

    1987-01-01

    Mikheyev and Smirnov have recently proposed a novel and plausible solution of the solar neutrino problem, based on the resonant amplification of the neutrino oscillations in matter. We comment on several aspects of this mechanism. (i) For the values of neutrino masses and mixing angles predicted by the seesaw model of grand unified theories, the MSW effect may take place naturally in the Sun, leading to a considerable reduction of the flux of solar electron neutrinos, with the dominant transition being ν e →ν τ (rather than ν e →ν μ ). (ii) Oscillations between the ordinary neutrinos (ν e ,ν μ ,ν τ ) can affect primordial nucleosynthesis, but the effect is small (i.e., the abundance of 4 He is predicted to change by less than 1.3x10 -3 ). (iii) A comparison of some of the general properties of neutrino oscillations in matter and in vacuum is given. (orig.)

  17. Direct Measurement of the 7Be Solar Neutrino Flux with 192 Days of Borexino Data

    International Nuclear Information System (INIS)

    Arpesella, C.; Di Pietro, G.; Monzani, M. E.; Back, H. O.; Hardy, S.; Joyce, M.; Manecki, S.; Raghavan, R. S.; Rountree, D.; Vogelaar, R. B.; Balata, M.; Di Credico, A.; Gazzana, S.; Korga, G.; Laubenstein, M.; Orsini, M.; Papp, L.; Razeto, A.; Tartaglia, R.; Bellini, G.

    2008-01-01

    We report the direct measurement of the 7 Be solar neutrino signal rate performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The interaction rate of the 0.862 MeV 7 Be neutrinos is 49±3 stat ±4 syst counts/(day·100 ton). The hypothesis of no oscillation for 7 Be solar neutrinos is inconsistent with our measurement at the 4σ C.L. Our result is the first direct measurement of the survival probability for solar ν e in the transition region between matter-enhanced and vacuum-driven oscillations. The measurement improves the experimental determination of the flux of 7 Be, pp, and CNO solar ν e , and the limit on the effective neutrino magnetic moment using solar neutrinos

  18. Collision strengths and oscillator strengths for excitation to the n = 3 and 4 levels of neon-like ions

    International Nuclear Information System (INIS)

    Zhang, H.; Sampson, D.H.; Clark, R.E.H.; Mann, J.B.

    1987-01-01

    Collision strengths are given for the 88 possible fine-structure transitions between the ground level and the n = 3 and 4 levels in 20 neon-like ions with nuclear charge number Z in the range 18 ≤Z≤74. The results are given for the nine impact-electron energies in threshold units X = 1.0, 1.2, 1.5, 1.9, 2.5, 4.0, 6.0, 10.0, and 15.0. In addition, electric dipole oscillator strengths obtained by various methods are given. copyright 1987 Academic Press, Inc

  19. Solar Power and Solar Fuels Synthesis Report. Technology, market and research activities 2006-2011

    Energy Technology Data Exchange (ETDEWEB)

    Ridell, Bengt; Nilsson, Ronny; Rehnlund, Bjoern [Grontmij, Stockholm (Sweden); Kasemo, Bengt [Chalmers Univ. of Technology, Goeteborg (Sweden)

    2012-11-01

    The objectives of the synthesis is to survey the situation and give an accumulated and concentrated knowledge about status, needs and opportunities for Swedish research and Swedish industry within the area of solar power and solar fuels, to be used for prioritisation of further efforts. The synthesis shall identify strengths and weaknesses in areas fundamental for development of solar power and solar fuels, focused on the development in Sweden, but in an international context. The synthesis shall also cover proposals for future Swedish research efforts and organisation of future Swedish research programs.

  20. Solar neutrinos at super-Kamiokande

    International Nuclear Information System (INIS)

    Inoue, K.

    1999-01-01

    A huge ring imaging water Cherenkov detector, super-Kamiokande, has started data accumulation on April 1st, 1996 as promised. This experiment is expected to give a definite answer to the neutrino oscillation solutions of the long standing solar neutrino problem through high statistics and high precision spectrum and day/night flux measurement. Super-Kamiokande is accumulating 8 B solar neutrino data very quickly and preliminary results obtained from 374 days of data are presented here, instead of 306 days of data presented at the conference. No significant day/night variation nor seasonal variation are found. Systematic errors of energy scale are largely reduced by the LINAC calibrations at various positions. And the experiment is getting closer to the level of the systematic errors where we can definitely discuss about the spectrum distortion. Also implications of those preliminary results are discussed within two neutrino oscillation hypothesis

  1. X-RAY AND EUV OBSERVATIONS OF SIMULTANEOUS SHORT AND LONG PERIOD OSCILLATIONS IN HOT CORONAL ARCADE LOOPS

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Cho, Kyung-Suk; Nakariakov, Valery M.

    2015-01-01

    We report decaying quasi-periodic intensity oscillations in the X-ray (6–12 keV) and extreme-ultraviolet (EUV) channels (131, 94, 1600, 304 Å) observed by the Fermi Gamma-ray Burst Monitor and Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), respectively, during a C-class flare. The estimated periods of oscillation and decay time in the X-ray channel (6–12 keV) were about 202 and 154 s, respectively. A similar oscillation period was detected at the footpoint of the arcade loops in the AIA 1600 and 304 Å channels. Simultaneously, AIA hot channels (94 and 131 Å) reveal propagating EUV disturbances bouncing back and forth between the footpoints of the arcade loops. The period of the oscillation and decay time were about 409 and 1121 s, respectively. The characteristic phase speed of the wave is about 560 km s −1 for about 115 Mm of loop length, which is roughly consistent with the sound speed at the temperature about 10–16 MK (480–608 km s −1 ). These EUV oscillations are consistent with the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation Doppler-shift oscillations interpreted as the global standing slow magnetoacoustic wave excited by a flare. The flare occurred at one of the footpoints of the arcade loops, where the magnetic topology was a 3D fan-spine with a null-point. Repetitive reconnection at this footpoint could have caused the periodic acceleration of non-thermal electrons that propagated to the opposite footpoint along the arcade and that are precipitating there, causing the observed 202 s periodicity. Other possible interpretations, e.g., the second harmonics of the slow mode, are also discussed

  2. X-RAY AND EUV OBSERVATIONS OF SIMULTANEOUS SHORT AND LONG PERIOD OSCILLATIONS IN HOT CORONAL ARCADE LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj; Cho, Kyung-Suk [Korea Astronomy and Space Science Institute (KASI), Daejeon, 305-348 (Korea, Republic of); Nakariakov, Valery M., E-mail: pankaj@kasi.re.kr [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL (United Kingdom)

    2015-05-01

    We report decaying quasi-periodic intensity oscillations in the X-ray (6–12 keV) and extreme-ultraviolet (EUV) channels (131, 94, 1600, 304 Å) observed by the Fermi Gamma-ray Burst Monitor and Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), respectively, during a C-class flare. The estimated periods of oscillation and decay time in the X-ray channel (6–12 keV) were about 202 and 154 s, respectively. A similar oscillation period was detected at the footpoint of the arcade loops in the AIA 1600 and 304 Å channels. Simultaneously, AIA hot channels (94 and 131 Å) reveal propagating EUV disturbances bouncing back and forth between the footpoints of the arcade loops. The period of the oscillation and decay time were about 409 and 1121 s, respectively. The characteristic phase speed of the wave is about 560 km s{sup −1} for about 115 Mm of loop length, which is roughly consistent with the sound speed at the temperature about 10–16 MK (480–608 km s{sup −1}). These EUV oscillations are consistent with the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation Doppler-shift oscillations interpreted as the global standing slow magnetoacoustic wave excited by a flare. The flare occurred at one of the footpoints of the arcade loops, where the magnetic topology was a 3D fan-spine with a null-point. Repetitive reconnection at this footpoint could have caused the periodic acceleration of non-thermal electrons that propagated to the opposite footpoint along the arcade and that are precipitating there, causing the observed 202 s periodicity. Other possible interpretations, e.g., the second harmonics of the slow mode, are also discussed.

  3. An observational search for large-scale organization of five-minute oscillations on the sun. [coronal holes or sector structure relationships

    Science.gov (United States)

    Dittmer, P. H.; Scherrer, P. H.; Wilcox, J. M.

    1978-01-01

    The large-scale solar velocity field has been measured over an aperture of radius 0.8 solar radii on 121 days between April and September, 1976. Measurements are made in the line Fe I 5123.730 A, employing a velocity subtraction technique similar to that of Severny et al. (1976). Comparisons of the amplitude and frequency of the five-minute resonant oscillation with the geomagnetic C9 index and magnetic sector boundaries show no evidence of any relationship between the oscillations and coronal holes or sector structure.

  4. Solar-forced diurnal regulation of cave drip rates via phreatophyte evapotranspiration

    Directory of Open Access Journals (Sweden)

    K. Coleborn

    2016-11-01

    Full Text Available We present results of a detailed study of drip rate variations at 12 drip discharge sites in Glory Hole Cave, New South Wales, Australia. Our novel time series analysis, using the wavelet synchrosqueezed transform, reveals pronounced oscillations at daily and sub-daily frequencies occurring in 8 out of the 12 monitored sites. These oscillations were not spatially or temporally homogenous, with different drip sites exhibiting such behaviour at different times of year in different parts of the cave. We test several hypotheses for the cause of the oscillations, including variations in pressure gradients between karst and cave due to cave breathing effects or atmospheric and earth tides, variations in hydraulic conductivity due to changes in viscosity of water with daily temperature oscillations, and solar-driven daily cycles of vegetative (phreatophytic transpiration. We conclude that the only hypothesis consistent with the data and hydrologic theory is that daily oscillations are caused by solar-driven pumping by phreatophytic trees which are abundant at the site. The daily oscillations are not continuous and occur sporadically in short bursts (2–14 days throughout the year due to non-linear modification of the solar signal via complex karst architecture. This is the first indirect observation leading to the hypothesis of tree water use in cave drip water. It has important implications for karst hydrology in regards to developing a new protocol to determine the relative importance of trends in drip rate, such as diurnal oscillations, and how these trends change over timescales of weeks to years. This information can also be used to infer karst architecture. This study demonstrates the importance of vegetation on recharge dynamics, information that will inform both process-based karst models and empirical estimation approaches. Our findings support a growing body of research exploring the impact of trees on speleothem paleoclimate proxies.

  5. Photoinduced High-Frequency Charge Oscillations in Dimerized Systems

    Science.gov (United States)

    Yonemitsu, Kenji

    2018-04-01

    Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrödinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for κ-(bis[ethylenedithio]tetrathiafulvalene)2X [κ-(BEDT-TTF)2X] at three-quarter filling. After the application of a one-cycle pulse of a specifically polarized electric field, the charge densities at half of the sites of the system oscillate in the same phase and those at the other half oscillate in the opposite phase. For weak fields, the Fourier transform of the time profile of the charge density at any site after photoexcitation has peaks for finite-sized systems that correspond to those of the steady-state optical conductivity spectrum. For strong fields, these peaks are suppressed and a new peak appears on the high-energy side, that is, the charge densities mainly oscillate with a single frequency, although the oscillation is eventually damped. In the two-dimensional case without intersite repulsion and in the one-dimensional case, this frequency corresponds to charge-transfer processes by which all the bonds connecting the two classes of sites are exploited. Thus, this oscillation behaves as an electronic breathing mode. The relevance of the new peak to a recently found reflectivity peak in κ-(BEDT-TTF)2X after photoexcitation is discussed.

  6. Energy dependence of solar-neutrino--electron scattering as a test of neutral currents

    International Nuclear Information System (INIS)

    Kwong, W.; Rosen, S.P.

    1992-01-01

    The energy dependence of ν-e scattering of solar neutrinos is investigated in the framework of neutrino oscillations and the nonadiabatic Mikheyev-Smirnov-Wolfenstein effect. It is shown that, with sufficient data, it will be possible to establish unambiguously whether neutrino oscillations are actually occurring and whether the electron neutrino oscillates into active or inactive (sterile) neutrino flavors

  7. Accelerator-based neutrino oscillation searches

    International Nuclear Information System (INIS)

    Whitehouse, D.A.; Rameika, R.; Stanton, N.

    1993-01-01

    This paper attempts to summarize the neutrino oscillation section of the Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Beam Facilities. There were very lively discussions about the merits of the different oscillation channels, experiments, and facilities, but we believe a substantial consensus emerged. First, the next decade is one of great potential for discovery in neutrino physics, but it is also one of great peril. The possibility that neutrino oscillations explain the solar neutrino and atmospheric neutrino experiments, and the indirect evidence that Hot Dark Matter (HDM) in the form of light neutrinos might make up 30% of the mass of the universe, point to areas where accelerator-based experiments could play a crucial role in piecing together the puzzle. At the same time, the field faces a very uncertain future. The LSND experiment at LAMPF is the only funded neutrino oscillation experiment in the United States and it is threatened by the abrupt shutdown of LAMPF proposed for fiscal 1994. The future of neutrino physics at the Brookhaven National Laboratory AGS depends the continuation of High Energy Physics (HEP) funding after the RHIC startup. Most proposed neutrino oscillation searches at Fermilab depend on the completion of the Main Injector project and on the construction of a new neutrino beamline, which is uncertain at this point. The proposed KAON facility at TRIUMF would provide a neutrino beam similar to that at the AGS but with a much increase intensity. The future of KAON is also uncertain. Despite the difficult obstacles present, there is a real possibility that we are on the verge of understanding the masses and mixings of the neutrinos. The physics importance of such a discovery can not be overstated. The current experimental status and future possibilities are discussed below

  8. Day-night effect in solar neutrino oscillations with three flavors

    International Nuclear Information System (INIS)

    Blennow, Mattias; Ohlsson, Tommy; Snellman, Haakan

    2004-01-01

    We investigate the effects of a nonzero leptonic mixing angle θ 13 on the solar neutrino day-night asymmetry. Using a constant matter density profile for the Earth and well-motivated approximations, we derive analytical expressions for the ν e survival probabilities for solar neutrinos arriving directly at the detector and for solar neutrinos which have passed through the Earth. Furthermore, we numerically study the effects of a nonzero θ 13 on the day-night asymmetry at detectors and find that they are small. Finally, we show that if the uncertainties in the parameters θ 12 and Δm 2 as well as the uncertainty in the day-night asymmetry itself were much smaller than they are today, this effect could, in principle, be used to determine θ 13

  9. Cosmological evolution and Solar System consistency of massive scalar-tensor gravity

    Science.gov (United States)

    de Pirey Saint Alby, Thibaut Arnoulx; Yunes, Nicolás

    2017-09-01

    The scalar-tensor theory of Damour and Esposito-Farèse recently gained some renewed interest because of its ability to suppress modifications to general relativity in the weak field, while introducing large corrections in the strong field of compact objects through a process called scalarization. A large sector of this theory that allows for scalarization, however, has been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study an extension of this theory by endowing the scalar field with a mass to determine whether this allows the theory to pass Solar System constraints upon cosmological evolution for a larger sector of coupling parameter space. We show that the cosmological scalar field goes first through a quiescent phase, similar to the behavior of a massless field, but then it enters an oscillatory phase, with an amplitude (and frequency) that decays (and grows) exponentially. We further show that after the field enters the oscillatory phase, its effective energy density and pressure are approximately those of dust, as expected from previous cosmological studies. Due to these oscillations, we show that the scalar field cannot be treated as static today on astrophysical scales, and so we use time-dependent perturbation theory to compute the scalar-field-induced modifications to Solar System observables. We find that these modifications are suppressed when the mass of the scalar field and the coupling parameter of the theory are in a wide range, allowing the theory to pass Solar System constraints, while in principle possibly still allowing for scalarization.

  10. Dynamics and non-equilibrium steady state in a system of coupled harmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Ghesquière, Anne, E-mail: Anne.Ghesquiere@nithep.ac.za; Sinayskiy, Ilya, E-mail: sinayskiy@ukzn.ac.za; Petruccione, Francesco, E-mail: petruccione@ukzn.ac.za

    2013-10-15

    A system of two coupled oscillators, each of them coupled to an independent reservoir, is analysed. The analytical solution of the non-rotating wave master equation is obtained in the high-temperature and weak coupling limits. No thermal entanglement is found in the high-temperature limit. In the weak coupling limit the system converges to an entangled non-equilibrium steady state. A critical temperature for the appearance of quantum correlations is found.

  11. Propagating wave in active region-loops, located over the solar disk observed by the Interface Region Imaging Spectrograph

    Science.gov (United States)

    Zhang, B.; Hou, Y. J.; Zhang, J.

    2018-03-01

    Aims: We aim to ascertain the physical parameters of a propagating wave over the solar disk detected by the Interface Region Imaging Spectrograph (IRIS). Methods: Using imaging data from the IRIS and the Solar Dynamic Observatory (SDO), we tracked bright spots to determine the parameters of a propagating transverse wave in active region (AR) loops triggered by activation of a filament. Deriving the Doppler velocity of Si IV line from spectral observations of IRIS, we have determined the rotating directions of active region loops which are relevant to the wave. Results: On 2015 December 19, a filament was located on the polarity inversion line of the NOAA AR 12470. The filament was activated and then caused a C1.1 two-ribbon flare. Between the flare ribbons, two rotation motions of a set of bright loops were observed to appear in turn with opposite directions. Following the end of the second rotation, a propagating wave and an associated transverse oscillation were detected in these bright loops. In 1400 Å channel, there was bright material flowing along the loops in a wave-like manner, with a period of 128 s and a mean amplitude of 880 km. For the transverse oscillation, we tracked a given loop and determine the transverse positions of the tracking loop in a limited longitudinal range. In both of 1400 Å and 171 Å channels, approximately four periods are distinguished during the transverse oscillation. The mean period of the oscillation is estimated as 143 s and the displacement amplitude as between 1370 km and 690 km. We interpret these oscillations as a propagating kink wave and obtain its speed of 1400 km s-1. Conclusions: Our observations reveal that a flare associated with filament activation could trigger a kink propagating wave in active region loops over the solar disk. Movies associated to Figs. 1-4 are available at http://https://www.aanda.org

  12. Oscillations of the Outer Boundary of the Outer Radiation Belt During Sawtooth Oscillations

    Directory of Open Access Journals (Sweden)

    Jae-Hun Kim

    2006-09-01

    Full Text Available We report three sawtooth oscillation events observed at geosynchronous orbit where we find quasi-periodic (every 2-3 hours sudden flux increases followed by slow flux decreases at the energy levels of ˜50-400 keV. For these three sawtooth events, we have examined variations of the outer boundary of the outer radiation belt. In order to determine L values of the outer boundary, we have used data of relativistic electron flux observed by the SAMPEX satellite. We find that the outer boundary of the outer radiation belt oscillates periodically being consistent with sawtooth oscillation phases. Specifically, the outer boundary of the outer radiation belt expands (namely, the boundary L value increases following the sawtooth particle flux enhancement of each tooth, and then contracts (namely, the boundary L value decreases while the sawtooth flux decreases gradually until the next flux enhancement. On the other hand, it is repeatedly seen that the asymmetry of the magnetic field intensity between dayside and nightside decreases (increases due to the dipolarization (the stretching on the nightside as the sawtooth flux increases (decreases. This implies that the periodic magnetic field variations during the sawtooth oscillations are likely responsible for the expansion-contraction oscillations of the outer boundary of the outer radiation belt.

  13. Study of the atmospheric neutrino oscillations in the Frejus experiment

    International Nuclear Information System (INIS)

    Perdereau, O.

    1989-05-01

    The behavior of atmospheric neutrinos is investigated. It is a zero mass, zero charge and weak interacting particle. The aim of the investigation is to search for non standard phenomena, such as neutrino oscillations. The neutrino theoretical properties are discussed and the physical parameters experimental limits are recalled. The analysis of the approximately 200 events from atmospheric neutrinos observed in Frejus detector is carried out. The results and simulation of neutrino interactions are presented. The data analysis induces to the exclusion of neutrino oscillation hypothesis from some models. Three cases of oscillations involving two neutrino flavors are analyzed. The effect of a third flavor is also taken into account. The present data and those from IMB and Kamiokande experiments are compared. Topics involving investigations on the superposition of a signal and the atmospheric neutrinos are included [fr

  14. Precision measurement of the 7Be solar neutrino rate and absence of day-night asymmetry in Borexino

    International Nuclear Information System (INIS)

    Davini, S.

    2011-01-01

    Borexino, in data taking since May 2007, is the only experiment capable to perform the measurement of low-energy solar-ν. Borexino has performed the first direct measurement of the 7 Be solar-ν rate with accuracy better than 5%. The absence of day-night asymmetry of the 7 Be solar-ν rate was measured with a total uncertainty of 1%. Borexino results alone reject the Low Δm 2 (LOW) region of solaroscillation parameters at more than 8.5 σ CL. Combined with the other solar-ν data, Borexino measurements isolate the Large Mixing Angle (LMA)- Mikheyev Smirnov Wolfenstein (MSW) solution of neutrino oscillations without assuming CPT invariance in the neutrino sector.

  15. One dimensional Dirac-Moshinsky oscillator-like system and isospectral partners

    International Nuclear Information System (INIS)

    Contreras-Astorga, A

    2015-01-01

    Two different exactly solvable systems are constructed using the supersymmetric quantum mechanics formalism and a pseudoscalar one-dimensional version of the Dirac- Moshinsky oscillator as a departing system. One system is built using a first-order SUSY transformation. The second is obtained through the confluent supersymmetry algorithm. The two of them are explicitly designed to have the same spectrum as the departing system and pseudoscalar potentials. (paper)

  16. Solar neutrino detection

    International Nuclear Information System (INIS)

    Miramonti, Lino

    2009-01-01

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  17. Activity patterns in networks stabilized by background oscillations.

    Science.gov (United States)

    Hoppensteadt, Frank

    2009-07-01

    The brain operates in a highly oscillatory environment. We investigate here how such an oscillating background can create stable organized behavior in an array of neuro-oscillators that is not observable in the absence of oscillation, much like oscillating the support point of an inverted pendulum can stabilize its up position, which is unstable without the oscillation. We test this idea in an array of electronic circuits coming from neuroengineering: we show how the frequencies of the background oscillation create a partition of the state space into distinct basins of attraction. Thus, background signals can stabilize persistent activity that is otherwise not observable. This suggests that an image, represented as a stable firing pattern which is triggered by a voltage pulse and is sustained in synchrony or resonance with the background oscillation, can persist as a stable behavior long after the initial stimulus is removed. The background oscillations provide energy for organized behavior in the array, and these behaviors are categorized by the basins of attraction determined by the oscillation frequencies.

  18. Ensemble Asteroseismology of Solar-Type Stars with the NASA Kepler Mission

    DEFF Research Database (Denmark)

    Chaplin, William J.; Kjeldsen, Hans; Christensen-Dalsgaard, Jørgen

    2011-01-01

    In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar...

  19. Ensemble asteroseismology of solar-type stars with the NASA Kepler mission

    NARCIS (Netherlands)

    Chaplin, W.J.; Kjeldsen, H.; Christensen-Dalsgaard, J.; Basu, S.; Miglio, A.; Appourchaux, T.; Bedding, T.R.; Elsworth, Y.; Garcia, R.A.; Gilliland, R.L.; Girardi, L.; Houdek, G.; Karoff, C.; Kawaler, S.D.; Metcalfe, T.S.; Molenda-Zakowicz, J.; Monteiro, M.J.P.F.G.; Thompson, M.J.; Verner, G.A.; Ballot, J.; Bonanno, A.; Brandao, I.M.; Broomhall, A.M.; Bruntt, H.; Campante, T.L.; Corsaro, E.; Creevey, O.L.; Esch, L.; Gai, N.; Gaulme, P.; Hale, S.J.; Handberg, R.; Hekker, S.; Huber, D.; Jimenez, A.; Mathur, S.; Mazumdar, A.; Mosser, B.; New, R.; Pinsonneault, M.H.; Pricopi, D.; Quirion, P.O.; Regulo, C.; Salabert, D.; Serenelli, A.M.; Silva Aguirre, V.; Sousa, S.G.; Stello, D.; Stevens, I.R.; Suran, M.D.; Uytterhoeven, K.; White, T.R.; Borucki, W.J.; Brown, T.M.; Jenkins, J.M.; Kinemuchi, K.; Van Cleve, J.; Klaus, T.C.

    2011-01-01

    In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar

  20. Amplitude oscillations in a non-equilibrium polariton condensate

    Science.gov (United States)

    Brierley, Richard; Littlewood, Peter; Eastham, Paul

    2011-03-01

    Like cold atomic gases, semiconductor nanostructures provide new opportunities for exploring non-equilibrium quantum dynamics. In semiconductor microcavities the strong coupling between trapped photons and excitons produces new quasiparticles, polaritons, which can undergo Bose-Einstein condensation. Quantum quenches can be realised by rapidly creating cold exciton populations with a laser [Eastham and Phillips, PRB 79 165303 (2009)]. The mean field theory of non-equilibrium polariton condensates predicts oscillations in the condensate amplitude due to the excitation of a Higgs mode. These oscillations are the analogs of those predicted in quenched cold atomic gases and may occur in the polariton system after performing a quench or by direct excitation of the amplitude mode. We have studied the stability of these oscillations beyond mean field theory. We show that homogeneous amplitude oscillations are unstable to decay into lower energy phase modes at finite wavevectors, suggesting the onset of chaotic behaviour. The resulting hierarchy of decay processes can be understood by analogy to optical parametric oscillators in microcavities. Polariton systems thus provide an interesting opportunity to study the dynamics of Higgs-like modes in a solid state system.

  1. The Effects of Magnetic-field Geometry on Longitudinal Oscillaitons of Solar Prominences

    Science.gov (United States)

    Luna, M.; Diaz, A. J.; Karpen, J.

    2013-01-01

    We investigate the influence of the geometry of the solar filament magnetic structure on the large-amplitude longitudinal oscillations. A representative filament flux tube is modeled as composed of a cool thread centered in a dipped part with hot coronal regions on either side.We have found the normal modes of the system and establish that the observed longitudinal oscillations are well described with the fundamental mode. For small and intermediate curvature radii and moderate to large density contrast between the prominence and the corona, the main restoring force is the solar gravity. In this full wave description of the oscillation a simple expression for the oscillation frequencies is derived in which the pressure-driven term introduces a small correction. We have also found that the normal modes are almost independent of the geometry of the hot regions of the tube. We conclude that observed large-amplitude longitudinal oscillations are driven by the projected gravity along the flux tubes and are strongly influenced by the curvature of the dips of the magnetic field in which the threads reside.

  2. UCLA, British astronomers discover wake of planet around nearby star. Strong evidence for solar system like ours

    CERN Multimedia

    2002-01-01

    "An international team of astronomers reports the first strong evidence for the existence of massive planets on wide orbits - like those of Saturn, Uranus and Neptune - around many stars. The new research provides some of the strongest evidence so far that solar systems similar to our own, or even larger, are likely to exist: (1 page).

  3. Electromagnetic oscillations of the Earth's upper atmosphere (review)

    OpenAIRE

    A. G. Khantadze; G. V. Jandieri; G. V. Jandieri; A. Ishimaru; T. D. Kaladze; Zh. M. Diasamidze

    2010-01-01

    A complete theory of low-frequency MHD oscillations of the Earth's weakly ionized ionosphere is formulated. Peculiarities of excitation and propagation of electromagnetic acoustic-gravity, MHD and planetary waves are considered in the Earth's ionosphere. The general dispersion equation is derived for the magneto-acoustic, magneto-gravity and electromagnetic planetary waves in the ionospheric E- and F-regions. The action of the geomagnetic field on the propagation of acous...

  4. Emergence of slow collective oscillations in neural networks with spike-timing dependent plasticity

    DEFF Research Database (Denmark)

    Mikkelsen, Kaare; Imparato, Alberto; Torcini, Alessandro

    2013-01-01

    The collective dynamics of excitatory pulse coupled neurons with spike timing dependent plasticity (STDP) is studied. The introduction of STDP induces persistent irregular oscillations between strongly and weakly synchronized states, reminiscent of brain activity during slow-wave sleep. We explain...

  5. The Direct Effect of Toroidal Magnetic Fields on Stellar Oscillations: An Analytical Expression for the General Matrix Element

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, René; Schad, Ariane; Roth, Markus [Kiepenheuer-Institut für Sonnenphysik, Schöneckstraße 6, D-79104 Freiburg (Germany)

    2017-09-10

    Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies. If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.

  6. Seismology and geodesy of the sun: Solar geodesy.

    Science.gov (United States)

    Dicke, R H

    1981-03-01

    Measurements of the elliptical figure of the sun made in 1966 are analyzed on an hourly basis. This analysis yields an improved measure of the previously found solar distortion, rotating rigidly with a sidereal period of 12.38+/-0.10 days. It also yields a set of residùals used to search for signals due to low-frequency solar oscillations.

  7. The calculation of oscillator strengths for the 5s21S0→5s5p1,3P1 transitions in Cd-like ions

    International Nuclear Information System (INIS)

    Li Guangyuan

    1998-01-01

    The screened hydrogenic model is employed to calculate the oscillator strength of the 5s 2 1 S 0 -5s5p 1 P 1 resonance transition in Cd-like ions (Z = 48 -74). The expression for the oscillator strength of the 5s 2 1 S 0 -5s5p 3 P1 is given, with the introduction of the correctional coefficient K and the mixing angle in jj-coupling. The results are compared with that of other authors, and some discussions are also given

  8. Direct solar-pumped iodine laser amplifier

    Science.gov (United States)

    Han, Kwang S.; Hwang, In Heon; Kim, Khong Hon; Stock, Larry V.

    1988-01-01

    A XeCl laser pumped iodine laser oscillator was developed which will be incorporated into the Master Oscillator Power Amplifier (MOPA) system. The developed XeCl laser produces output energy of about 60 mJ per pulse. The pulse duration was about 10 nsec. The kinetic model for the solar-pumped laser was refined and the algorithm for the calculation of a set of rate equations was improved to increase the accuracy and the efficiency of the calculation. The improved algorithm was applied to explain the existing experimental data taken from a flashlamp pumped iodine laser for three kinds of lasants, i-C3F7I, n-C4F9I, and t-C4F9I. Various solid laser materials were evaluated for solar-pumping. The materials studied were Nd:YAG, Nd:YLF, and Cr:Nd:GSGG crystals. The slope efficiency of 0.17 percent was measured for the Nd:YLF near the threshold pump intensity which was 211 solar constants (29W/sq cm). The threshold pump intensity of the Nd:YAG was measured to be 236 solar constants (32W/sq cm) and the near-threshold slope efficiency was 0.12 percent. True CW laser operation of Cr:Nd:GSGG was possible only at pump intensities less than or equal to 1,500 solar constants (203 W/sq cm). This fact was attributed to the high thermal focusing effect of the Cr:Nd:GSGG rod.

  9. Influence of extracellular oscillations on neural communication: a computational perspective

    Directory of Open Access Journals (Sweden)

    Zoran eTiganj

    2014-02-01

    Full Text Available Neural communication generates oscillations of electric potential in the extracellular medium. In feedback, these oscillations affect the electrochemical processes within the neurons, influencing the timing and the number of action potentials. It is unclear whether this influence should be considered only as noise or it has some functional role in neural communication. Through computer simulations we investigated the effect of various sinusoidal extracellular oscillations on the timing and number of action potentials. Each simulation is based on a multicompartment model of a single neuron, which is stimulated through spatially distributed synaptic activations. A thorough analysis is conducted on a large number of simulations with different models of CA3 and CA1 pyramidal neurons which are modeled using realistic morphologies and active ion conductances. We demonstrated that the influence of the weak extracellular oscillations, which are commonly present in the brain, is rather stochastic and modest. We found that the stronger fields, which are spontaneously present in the brain only in some particular cases (e.g. during seizures or that can be induced externally, could significantly modulate spike timings.

  10. Instability of g-mode oscillations in white dwarf stars

    Science.gov (United States)

    Keeley, D. A.

    1979-01-01

    A white dwarf model with M = 6 solar masses, Te = 12,000 K, and L = 1.2 x 10 to the 31st erg/sec provided by Cox has been tested for linear stability of radial oscillations. The radial mode instability first reported for this model by Cox, et al. (1979) has been confirmed. The growth rates obtained are comparable to the rates found by Cox. A sequence of l = 2 g-modes has also been found to be unstable. The e-folding times range from around 10 to the 11th periods for a 137 second mode (1 radial node) to less than 100 periods for a 629 second mode (17 nodes). It is likely that the latter rate is too high because the eigenfunction has been forced to vanish at the non-zero inner radius of the model, at which the Brunt-Vaisala frequency is barely less than the mode frequency.

  11. Parametric electroconvection in a weakly conducting fluid in a horizontal parallel-plate capacitor

    International Nuclear Information System (INIS)

    Kartavykh, N. N.; Smorodin, B. L.; Il’in, V. A.

    2015-01-01

    We study the flows of a nonuniformly heated weakly conducting fluid in an ac electric field of a horizontal parallel-plate capacitor. Analysis is carried out for fluids in which the charge formation is governed by electroconductive mechanism associated with the temperature dependence of the electrical conductivity of the medium. Periodic and chaotic regimes of fluid flow are investigated in the limiting case of instantaneous charge relaxation and for a finite relaxation time. Bifurcation diagrams and electroconvective regimes charts are constructed. The regions where fluid oscillations synchronize with the frequency of the external field are determined. Hysteretic transitions between electroconvection regimes are studied. The scenarios of transition to chaotic oscillations are analyzed. Depending on the natural frequency of electroconvective system and the external field frequency, the transition from periodic to chaotic oscillations can occur via quasiperiodicity, a subharmonic cascade, or intermittence

  12. Parametric electroconvection in a weakly conducting fluid in a horizontal parallel-plate capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Kartavykh, N. N.; Smorodin, B. L., E-mail: bsmorodin@yandex.ru; Il’in, V. A. [Perm State National Research University (Russian Federation)

    2015-07-15

    We study the flows of a nonuniformly heated weakly conducting fluid in an ac electric field of a horizontal parallel-plate capacitor. Analysis is carried out for fluids in which the charge formation is governed by electroconductive mechanism associated with the temperature dependence of the electrical conductivity of the medium. Periodic and chaotic regimes of fluid flow are investigated in the limiting case of instantaneous charge relaxation and for a finite relaxation time. Bifurcation diagrams and electroconvective regimes charts are constructed. The regions where fluid oscillations synchronize with the frequency of the external field are determined. Hysteretic transitions between electroconvection regimes are studied. The scenarios of transition to chaotic oscillations are analyzed. Depending on the natural frequency of electroconvective system and the external field frequency, the transition from periodic to chaotic oscillations can occur via quasiperiodicity, a subharmonic cascade, or intermittence.

  13. Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona

    International Nuclear Information System (INIS)

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-01-01

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for (Omega) ∝ (ωL) 1/3 (ω c /ω) ∼ 1.5. Here ω c is the (angular) electron cyclotron frequency, ω the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as (Omega) increases. (4) As (Omega) increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as (Omega) increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50-70%. (7) The interference effect and the disappearance of the x mode at (Omega) ∼> 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for solar and interplanetary radio bursts. It is therefore possible that linear mode conversion

  14. Galactic cosmic ray and El Nino Southern Oscillation trends in International Satellite Cloud Climatology Project D2 low-cloud properties

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2003-01-01

    [1] The recently reported correlation between clouds and galactic cosmic rays (GCR) implies the existence of a previously unknown process linking solar variability and climate. An analysis of the interannual variability of International Satellite Cloud Climatology Project D2 (ISCCP-D2) low-cloud...... a strong correlation with GCR, which suggests that low-cloud properties observed in these regions are less likely to be contaminated from overlying cloud. The GCR-low cloud correlation cannot easily be explained by internal climate processes, changes in direct solar forcing, or UV-ozone interactions...... properties over the period July 1983 to August 1994 suggests that low clouds are statistically related to two processes, (1) GCR and (2) El Nino-Southern Oscillation (ENSO), with GCR explaining a greater percentage of the total variance. Areas where satellites have an unobstructed view of low cloud possess...

  15. Weak matrix elements efforts on the lattice: Status and prospects

    International Nuclear Information System (INIS)

    Soni, A.

    1995-01-01

    Lattice approach to weak matrix elements is reviewed. Recent progress in treating heavy quarks on the lattice is briefly discussed. Illustrative sample of results obtained so far is given. Among them I elaborate on B K , line-integral B and B → K* γ . Experimental implications especially with regard to constraints on the Standard Model (i.e. Wolfenstein) parameters, V td measurements and expectations for B s -bar B s , oscillations are briefly discussed

  16. Weiss oscillations and particle-hole symmetry at the half-filled Landau level

    Science.gov (United States)

    Cheung, Alfred K. C.; Raghu, S.; Mulligan, Michael

    2017-06-01

    Particle-hole symmetry in the lowest Landau level of the two-dimensional electron gas requires the electrical Hall conductivity to equal ±e2/2 h at half filling. We study the consequences of weakly broken particle-hole symmetry for magnetoresistance oscillations about half filling in the presence of an applied periodic one-dimensional electrostatic potential using the Dirac composite fermion theory proposed by Son [Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027]. At fixed electron density, the oscillation minima are asymmetrically biased towards higher magnetic fields, while at fixed magnetic field the oscillations occur symmetrically as the electron density is varied about half filling. We find an approximate "sum rule" obeyed for all pairs of oscillation minima that can be tested in experiment. The locations of the magnetoresistance oscillation minima for the composite fermion theory of Halperin, Lee, and Read (HLR) and its particle-hole conjugate agree exactly. Within the current experimental resolution, the locations of the oscillation minima produced by the Dirac composite fermion coincide with those of HLR. These results may indicate that all three composite fermion theories describe the same long-wavelength physics.

  17. FINE MAGNETIC STRUCTURE AND ORIGIN OF COUNTER-STREAMING MASS FLOWS IN A QUIESCENT SOLAR PROMINENCE

    International Nuclear Information System (INIS)

    Shen, Yuandeng; Liu, Yu; Xu, Zhi; Liu, Zhong; Liu, Ying D.; Chen, P. F.; Su, Jiangtao

    2015-01-01

    We present high-resolution observations of a quiescent solar prominence that consists of a vertical and a horizontal foot encircled by an overlying spine and has ubiquitous counter-streaming mass flows. While the horizontal foot and the spine were connected to the solar surface, the vertical foot was suspended above the solar surface and was supported by a semicircular bubble structure. The bubble first collapsed, then reformed at a similar height, and finally started to oscillate for a long time. We find that the collapse and oscillation of the bubble boundary were tightly associated with a flare-like feature located at the bottom of the bubble. Based on the observational results, we propose that the prominence should be composed of an overlying horizontal spine encircling a low-lying horizontal and vertical foot, in which the horizontal foot consists of shorter field lines running partially along the spine and has ends connected to the solar surface, while the vertical foot consists of piling-up dips due to the sagging of the spine fields and is supported by a bipolar magnetic system formed by parasitic polarities (i.e., the bubble). The upflows in the vertical foot were possibly caused by the magnetic reconnection at the separator between the bubble and the overlying dips, which intruded into the persistent downflow field and formed the picture of counter-streaming mass flows. In addition, the counter-streaming flows in the horizontal foot were possibly caused by the imbalanced pressure at the both ends

  18. CoRoT and Kepler results: Solar-like oscillators

    NARCIS (Netherlands)

    Hekker, S.

    2013-01-01

    The space-borne observatories CoRoT (Convection Rotation and planetary Transits) and Kepler have provided photometric time series data of unprecedented precision for large numbers of stars. These data have revolutionized the fields of transiting exoplanets and asteroseismology. In this review some

  19. Strategic Directions in Heliophysics Research Related to Weakly Ionized Plasmas

    Science.gov (United States)

    Spann, James F.

    2010-01-01

    In 2009, the Heliophysics Division of NASA published its triennial roadmap entitled "Heliophysics; the solar and space physics of a new era." In this document contains a science priority that is recommended that will serve as input into the recently initiated NRC Heliophysics Decadal Survey. The 2009 roadmap includes several science targets recommendations that are directly related to weakly ionized plasmas, including on entitled "Ion-Neutral Coupling in the Atmosphere." This talk will be a brief overview of the roadmap with particular focus on the science targets relevant to weakly ionized plasmas.

  20. Contribution to the study of velocity fields of chromosphere and solar transition zone

    International Nuclear Information System (INIS)

    Artzner, C.

    1982-06-01

    The LPSP (Laboratoire de Physique Stellaire et Planetaire) experiment on board 0508 is described. The properties of the instrument are discussed together with their evolution with time. The chromospheric oscillations and transients were studied (sunspost and active regions, prominences, oscillations in the chromosphere, chromosphere-corona transition lines). Simultaneous time-resolved observations of the H Lα, Mg k 2795A, and Ca, K solar lines were made. They indicate that the temporal variations of wavelength of the reversal of the solar H Lα and Mg k lines are correlated. A narrow absorption on the red part of the solar H Lα profile was observed and attributed to atomic hydrogen of the nearby interplanetary gas [fr

  1. Effects of neutrino oscillations on the supernova signal in LVD

    International Nuclear Information System (INIS)

    Aglietta, M.; Antonioli, P.; Bari, G.; Castagnoli, C.; Fulgione, W.; Galeotti, P.; Ghia, P.L.; Giusti, P.; Kemp, E.; Malguin, A.S.; Nurzia, G.; Pesci, A.; Picchi, P.; Pless, I.A.; Ryasny, V.G.; Ryazhskaya, O.G.; Sartorelli, G.; Selvi, M.; Vigorito, C.; Vissani, F.; Votano, L.; Yakushev, V.F.; Zatsepin, G.T.; Zichichi, A.

    2002-01-01

    We study the impact of neutrino oscillations on the supernova neutrino signal in the Large Volume Detector (LVD). The number of expected events for a galactic supernova (D = 10 kpc) is calculated, assuming neutrino masses and mixing that explain solar and atmospheric neutrino results. The possibility to detect neutrinos in different channels makes LVD sensitive to different scenarios for ν properties, such as normal or inverted ν mass hierarchy, and/or adiabatic or non adiabatic MSW resonances associated to U e3 . Of particular importance are the charged current (c.c.) reactions on 12 C: oscillations increase by almost one order of magnitude the number of events expected from this channel

  2. Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Solar Dynamics Observatory-Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline

    Science.gov (United States)

    Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, Thomas L., Jr.; Parchevsky, K.; Scherrer, P. H.

    2010-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler-velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time - distance helioseismology pipeline (Zhao et al., Solar Phys. submitted, 2010) has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross-covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time - distance helioseismology: a Gabor-wavelet fitting (Kosovichev and Duvall, SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, Astrophys. J. 571, 966, 2002), and a linearized version of the minimization method (Gizon and Birch, Astrophys. J. 614, 472, 2004). Using Doppler-velocity data from the Michelson Doppler Imager (MDI) instrument onboard SOHO, we tested and compared these definitions for the mean and difference traveltime perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet-Sun region, the method of Gizon and Birch (Astrophys. J. 614, 472, 2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997) and Gizon and Birch (Astrophys. J. 571, 966, 2002). We investigated the relationships among

  3. Experimental data on solar neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ludhova, Livia [INFN, Milano (Italy)

    2016-04-15

    Neutrino physics continues to be a very active research field, full of opened fundamental questions reaching even beyond the Standard Model of elementary particles and towards a possible new physics. Solar neutrinos have played a fundamental historical role in the discovery of the phenomenon of neutrino oscillations and thus non-zero neutrino mass. Even today, the study of solar neutrinos provides an important insight both into the neutrino as well as into the stellar and solar physics. In this section we give an overview of the most important solar-neutrino measurements from the historical ones up to the most recent ones. We cover the results from the experiments using radio-chemic (Homestake, SAGE, GNO, GALLEX), water Cherenkov (Kamiokande, Super-Kamiokande, SNO), and the liquid-scintillator (Borexino, KamLAND) detection techniques. (orig.)

  4. An Introduction to Waves and Oscillations in the Sun

    CERN Document Server

    Narayanan, A Satya

    2013-01-01

    Astrophysicists and others studying the Sun will find this expansive coverage of what we know about waves and oscillations in our nearest star an informative introduction to a hot contemporary topic. After a section summarizing the Sun's physical characteristics, the volume moves on to explore the basics of electrodynamics, which in turn facilitate a discussion of magnetohydrodynamics (MHD). The material also details the often complex nature of waves and oscillations in uniform and non-uniform media, before categorizing the observational signatures of oscillations and exploring the instabilities in fluid, dealing with a range of known forms. Lastly, a section on helioseismology explores our growing familiarity with the internal structure of the Sun. This book is a unified portal to a thorough grounding in solar waves that includes a wealth of explanatory vignettes demystifying concepts such as flux tubes, current-free and force-free magnetic fields, the prominences, and the relationship between the vorticity ...

  5. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  6. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  7. Benchmark Calculation of Radial Expectation Value for Confined Hydrogen-Like Atoms and Isotropic Harmonic Oscillators

    International Nuclear Information System (INIS)

    Yu, Rong Mei; Zan, Li Rong; Jiao, Li Guang; Ho, Yew Kam

    2017-01-01

    Spatially confined atoms have been extensively investigated to model atomic systems in extreme pressures. For the simplest hydrogen-like atoms and isotropic harmonic oscillators, numerous physical quantities have been established with very high accuracy. However, the expectation value of which is of practical importance in many applications has significant discrepancies among calculations by different methods. In this work we employed the basis expansion method with cut-off Slater-type orbitals to investigate these two confined systems. Accurate values for several low-lying bound states were obtained by carefully examining the convergence with respect to the size of basis. A scaling law for was derived and it is used to verify the accuracy of numerical results. Comparison with other calculations show that the present results establish benchmark values for this quantity, which may be useful in future studies. (author)

  8. Simulation of the charging process of the LISA test masses due to solar flares

    International Nuclear Information System (INIS)

    Vocca, H; Grimani, C; Amico, P; Bosi, L; Marchesoni, F; Punturo, M; Travasso, F; Barone, M; Stanga, R; Vetrano, F; Vicere, A

    2004-01-01

    Cosmic-ray and solar high energy particles penetrate the LISA experiment test masses. Consequently, an electric charge accumulates in the bodies of the masses, generating spurious Coulomb forces between the masses and the surrounding electrodes. This process increases the noise level of the experiment. We have estimated the amount of charge deposited per second on the LISA test masses by solar flares and primary cosmic-ray protons at solar minimum. The simulation has been carried out with the Fluka Monte Carlo program. A simplified geometry for the experiment has been considered. We have found a net charging rate of 37 ± 1 e + /s for primary protons at solar minimum between 0.1 and 1000 GeV/n. The amount of charge released by a medium-strong solar flare, like that of 16 February 1984, is 10 732 ± 30 e + /s in the energy range 0.1-10 GeV/n. This value increases or decreases by approximately one order of magnitude for strong (weak) solar flares

  9. Effects of dendritic load on the firing frequency of oscillating neurons.

    Science.gov (United States)

    Schwemmer, Michael A; Lewis, Timothy J

    2011-03-01

    We study the effects of passive dendritic properties on the dynamics of neuronal oscillators. We find that the addition of a passive dendrite can sometimes have counterintuitive effects on firing frequency. Specifically, the addition of a hyperpolarized passive dendritic load can either increase, decrease, or have negligible effects on firing frequency. We use the theory of weak coupling to derive phase equations for "ball-and-stick" model neurons and two-compartment model neurons. We then develop a framework for understanding how the addition of passive dendrites modulates the frequency of neuronal oscillators. We show that the average value of the neuronal oscillator's phase response curves measures the sensitivity of the neuron's firing rate to the dendritic load, including whether the addition of the dendrite causes an increase or decrease in firing frequency. We interpret this finding in terms of to the slope of the neuronal oscillator's frequency-applied current curve. We also show that equivalent results exist for constant and noisy point-source input to the dendrite. We note that the results are not specific to neurons but are applicable to any oscillator subject to a passive load.

  10. Wireless current sensing by near field induction from a spin transfer torque nano-oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Ramaswamy, B. [Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742 (United States); Algarin, J. M.; Waks, E., E-mail: edowaks@umd.edu [Institute for Research in Electronics and Applied Physics (IREAP), University of Maryland, College Park, Maryland 20742 (United States); Weinberg, I. N. [Weinberg Medical Physics LLC, Bethesda, Maryland 20817 (United States); Chen, Y.-J.; Krivorotov, I. N. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Katine, J. A. [HGST Research Center, San Jose, California 95135 (United States); Shapiro, B. [Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742 (United States); Institute for Systems Research (ISR), University of Maryland, College Park, Maryland 20742 (United States)

    2016-06-13

    We demonstrate that spin transfer torque nano-oscillators (STNO) can act as wireless sensors for local current. The STNO acts as a transducer that converts weak direct currents into microwave field oscillations that we detect using an inductive coil. We detect direct currents in the range of 300–700 μA and report them wirelessly to a receiving induction coil at distances exceeding 6.5 mm. This current sensor could find application in chemical and biological sensing and industrial inspection.

  11. VISCOUS-LIKE INTERACTION OF THE SOLAR WIND WITH THE PLASMA TAIL OF COMET SWIFT-TUTTLE

    International Nuclear Information System (INIS)

    Reyes-Ruiz, Mauricio; Vazquez, Roberto; Perez-de-Tejada, Hector

    2010-01-01

    We compare the results of the numerical simulation of the viscous-like interaction of the solar wind with the plasma tail of a comet, with velocities of H 2 O+ ions in the tail of comet Swift-Tuttle determined by means of spectroscopic ground-based observations. Our aim is to constrain the value of the basic parameters in the viscous-like interaction model: the effective Reynolds number of the flow and the interspecies coupling timescale. We find that in our simulations the flow rapidly evolves from an arbitrary initial condition to a quasi-steady state for which there is a good agreement between the simulated tailward velocity of H 2 O+ ions and the kinematics derived from the observations. The fiducial case of our model, characterized by a low effective Reynolds number (Re eff ∼ 20) selected on the basis of a comparison to in situ measurements of the plasma flow at comet Halley, yields an excellent fit to the observed kinematics. Given the agreement between model and observations, with no ad hoc assumptions, we believe that this result suggests that viscous-like momentum transport may play an important role in the interaction of the solar wind and the cometary plasma environment.

  12. Energy spectrum inverse problem of q -deformed harmonic oscillator and WBK approximation

    International Nuclear Information System (INIS)

    Sang, Nguyen Anh; Thuy, Do Thi Thu; Loan, Nguyen Thi Ha; Lan, Nguyen Tri; Viet, Nguyen Ai

    2016-01-01

    Using the connection between q-deformed harmonic oscillator and Morse-like anharmonic potential we investigate the energy spectrum inverse problem. Consider some energy levels of energy spectrum of q -deformed harmonic oscillator are known, we construct the corresponding Morse-like potential then find out the deform parameter q . The application possibility of using the WKB approximation in the energy spectrum inverse problem was discussed for the cases of parabolic potential (harmonic oscillator), Morse-like potential ( q -deformed harmonic oscillator). so we consider our deformed-three-levels simple model, where the set-parameters of Morse potential and the corresponding set-parameters of level deformations are easily and explicitly defined. For practical problems, we propose the deformed- three-levels simple model, where the set-parameters of Morse potential and the corresponding set-parameters of level deformations are easily and explicitly defined. (paper)

  13. Facile synthesis of highly branched jacks-like ZnO nanorods and their applications in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Sudhagar, P.; Kumar, R. Saravana; Jung, June Hyuk; Cho, Woohyung; Sathyamoorthy, R.; Won, Jongok; Kang, Yong Soo

    2011-01-01

    Graphical abstract: -- Abstract: Highly branched, jacks-like ZnO nanorods architecture were explored as a photoanode in dye-sensitized solar cells, and their photovoltaic performance was compared with that of branch-free ZnO nanorods photoanodes. The highly branched network and large pores of the jacks-like ZnO nanorods electrodes enhances the charge transport, and electrolyte penetration. Thus, the jacks-like ZnO nanorods DSSCs render a higher conversion efficiency of η = 1.82% (V oc = 0.59 V, J sc = 5.52 mA cm -2 ) than that of the branch-free ZnO nanorods electrodes (η = 1.08%, V oc = 0.49 V, J sc = 4.02 mA cm -2 ). The incident photon-to-current conversion efficiency measurements reveal that the jacks-like ZnO nanorods DSSCs exhibit higher internal quantum efficiency (∼59.1%) than do the branch-free ZnO nanorods DSSC (∼52.5%). The charge transfer resistances at the ZnO/dye/electrolyte interfaces investigated using electrochemical impedance spectroscopy showed that the jacks-like ZnO nanorods DSSC had high charge transfer resistance and a slightly longer electron lifetime, thus improving the solar-cell performance.

  14. Facile synthesis of highly branched jacks-like ZnO nanorods and their applications in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sudhagar, P. [Center for Next Generation Dye-sensitized Solar Cells, WCU Program Department of Energy Engineering, Hanyang University, Seongdong-gu, Seoul- 133 791 (Korea, Republic of); Kumar, R. Saravana [R and D Department of Physics, Kongunadu Arts and Science College, Coimbatore 641 029, Tamilnadu (India); Jung, June Hyuk; Cho, Woohyung [Center for Next Generation Dye-sensitized Solar Cells, WCU Program Department of Energy Engineering, Hanyang University, Seongdong-gu, Seoul- 133 791 (Korea, Republic of); Sathyamoorthy, R. [R and D Department of Physics, Kongunadu Arts and Science College, Coimbatore 641 029, Tamilnadu (India); Won, Jongok [Department of Chemistry, Sejong University, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Kang, Yong Soo, E-mail: kangys@hanyang.ac.kr [Center for Next Generation Dye-sensitized Solar Cells, WCU Program Department of Energy Engineering, Hanyang University, Seongdong-gu, Seoul- 133 791 (Korea, Republic of)

    2011-09-15

    Graphical abstract: -- Abstract: Highly branched, jacks-like ZnO nanorods architecture were explored as a photoanode in dye-sensitized solar cells, and their photovoltaic performance was compared with that of branch-free ZnO nanorods photoanodes. The highly branched network and large pores of the jacks-like ZnO nanorods electrodes enhances the charge transport, and electrolyte penetration. Thus, the jacks-like ZnO nanorods DSSCs render a higher conversion efficiency of {eta} = 1.82% (V{sub oc} = 0.59 V, J{sub sc} = 5.52 mA cm{sup -2}) than that of the branch-free ZnO nanorods electrodes ({eta} = 1.08%, V{sub oc} = 0.49 V, J{sub sc} = 4.02 mA cm{sup -2}). The incident photon-to-current conversion efficiency measurements reveal that the jacks-like ZnO nanorods DSSCs exhibit higher internal quantum efficiency ({approx}59.1%) than do the branch-free ZnO nanorods DSSC ({approx}52.5%). The charge transfer resistances at the ZnO/dye/electrolyte interfaces investigated using electrochemical impedance spectroscopy showed that the jacks-like ZnO nanorods DSSC had high charge transfer resistance and a slightly longer electron lifetime, thus improving the solar-cell performance.

  15. Latitudinal variation of the solar photospheric intensity

    OpenAIRE

    Rast, Mark P.; Ortiz, Ada; Meisner, Randle W.

    2007-01-01

    We have examined images from the Precision Solar Photometric Telescope (PSPT) at the Mauna Loa Solar Observatory (MLSO) in search of latitudinal variation in the solar photospheric intensity. Along with the expected brightening of the solar activity belts, we have found a weak enhancement of the mean continuum intensity at polar latitudes (continuum intensity enhancement $\\sim0.1 - 0.2%$ corresponding to a brightness temperature enhancement of $\\sim2.5{\\rm K}$). This appears to be thermal in ...

  16. Neutrino magnetic moments and the solar neutrino problem

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, E.Kh. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Valencia Univ. (Spain). Dept. de Fisica Teorica

    1994-08-01

    Present status of the neutrino magnetic moment solutions of the solar neutrino problem is reviewed. In particular, we discuss a possibility of reconciling different degrees of suppression and time variation of the signal (or lack of such a variation) observed in different solar neutrino experiments. It is shown that the resonant spin-flavor precession of neutrinos due to the interaction of their transitions magnetic moments with solar magnetic field can account for all the available solar neutrino data. For not too small neutrino mixing angles (sin 2{theta}{sub o} {approx_gt} 0.2 the combined effect of the resonant spin-flavor precession and neutrino oscillations can result in an observable flux of solar {bar {nu}}{sub e}`s.

  17. Neutrino magnetic moments and the solar neutrino problem

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Valencia Univ.

    1994-01-01

    Present status of the neutrino magnetic moment solutions of the solar neutrino problem is reviewed. In particular, we discuss a possibility of reconciling different degrees of suppression and time variation of the signal (or lack of such a variation) observed in different solar neutrino experiments. It is shown that the resonant spin-flavor precession of neutrinos due to the interaction of their transitions magnetic moments with solar magnetic field can account for all the available solar neutrino data. For not too small neutrino mixing angles (sin 2θ o approx-gt 0.2 the combined effect of the resonant spin-flavor precession and neutrino oscillations can result in an observable flux of solar bar ν e 's

  18. David Shoenberg and the beauty of quantum oscillations

    Science.gov (United States)

    Pudalov, V. M.

    2011-01-01

    The quantum oscillation effect was discovered in Leiden in 1930, by W. J. de Haas and P. M. van Alphen when measuring magnetization, and by L. W. Shubnikov and de Haas when measuring magnetoresistance. Studying single crystals of bismuth, they observed oscillatory variations in the magnetization and magnetoresistance with magnetic field. Shoenberg, whose first research in Cambridge had been on bismuth, found that much stronger oscillations are observed when a bismuth sample is cooled to liquid helium temperature rather than liquid hydrogen, which had been used by de Haas. In 1938 Shoenberg went from Cambridge to Moscow to study these oscillations at Kapitza's Institute where liquid helium was available at that time. In 1947, J. Marcus observed similar oscillations in zinc and that persuaded Schoenberg to return to this research. After that, the dHvA effect became one of his main research topics. In particular, he developed techniques for quantitative measurement of this effect in many metals. A theoretical explanation of quantum oscillations was given by L. Onsager in 1952, and an analytical quantitative theory by I. M. Lifshitz and A. M. Kosevich in 1955. These theoretical advances seemed to provide a comprehensive description of the effect. Since then, quantum oscillations have been widely used as a tool for measuring Fermi surface extremal cross-sections and all-angle electron scattering times. In his pioneering experiments of the 1960's, Shoenberg revealed the richness and deep essence of the quantum oscillation effect and showed how the beauty of the effect is disclosed under nonlinear conditions imposed by interactions in the system under study. It was quite surprising that "magnetic interaction" conditions could cause the apparently weak quantum oscillation effect to have such strong consequences as breaking the sample into magnetic (now called "Shoenberg") domains and forming an inhomogeneous magnetic state. With his contributions to the field of quantum

  19. David Schoenberg and the beauty of quantum oscillations

    International Nuclear Information System (INIS)

    Pudalov, V.M.

    2012-01-01

    The quantum oscillation effect was discovered in Leiden, in 1930, by W.J. de Haas and P.M. van Alphen in magnetization measurement, and by L.W. Shubnikov and de Haas - in magnetoresistance. Studying single crystals of bismuth, they observed oscillatory variations of magnetization and magnetoresistance with magnetic field. Shoenberg, whose first research in Cambridge had been on bismuth, found that much stronger oscillations are observed when a bismuth sample is cooled to liquid helium rather than to liquid hydrogen, which had been used by de Haas. In 1938 Shoenberg came from Cambridge to Moscow to study these oscillations at Kapitza Institute where liquid helium was available at that time. In 1947, J. Marcus observed similar oscillations in zinc, that persuaded Shoenberg to return to this research, and, since then, the dHvA effect had been one of his main research topic. In particular, he developed techniques for quantitative measurements of the effect in many metals. Theoretical explanation of quantum oscillations was given by L. Onsager in 1952, and the analytical quantitative theory by I.M. Lifshitz and A.M. Kosevich in 1955. These theoretical advancements seemed to provide a comprehensive description of the effect. Since then, quantum oscillations were commonly considered as a tool for measuring Fermi surface extremal cross-sections and all-angle electron scattering times. However, in his pioneering experiments in 1960s, Shoenberg revealed the richness and deep essence of the quantum oscillation effect and showed how the beauty of the effect is disclosed under nonlinear conditions imposed by interactions in the system under study. It was quite unexpected, that under 'magnetic interaction' conditions, the apparently weak effect of quantum oscillations may lead to such strong consequences as breaking the sample into magnetic (now called 'Shoenberg') domains and the formation of an inhomogeneous magnetic state. Owing to his contribution to the field of quantum

  20. Some unsettled questions in the problem of neutrino oscillations

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    2003-01-01

    It is noted that the theory of neutrino oscillations can be constructed only in the framework of the particle physics theory where a mass shell conception is presented and then transitions (oscillations) between neutrinos with equal masses are real and between neutrinos with different masses are virtual. There can be three types of neutrino transitions. In the experiments it is necessary to decide the question: which type of neutrino transitions is realized in nature? At present it is supposed that Dirac and Majorana neutrino oscillations can be realized. It is shown that we cannot put Majorana neutrinos in the standard weak interaction theory without violation of the gauge invariance. If we use the Majorana neutrinos then we come to contradiction with the existing experimental data. Then it is obvious that there can be only realized transitions between Dirac neutrinos with different flavors. It is also shown that the mechanism of resonance enhancement of neutrino oscillations in matter cannot be realized without violation of the law of energy-momentum conservation. Though it is supposed that in experiments we see neutrino oscillations, indeed only transitions between neutrinos are registered.To register neutrino oscillations, it is necessary to see second or even higher neutrino oscillation modes in experiments. For this purpose we can use the elliptic character of the Earth orbit at registrations of sun neutrinos. The analysis shows that the SNO experimental results do not confirm smallness of ν e → ν τ transition angle mixing, which was obtained in the CHOOZ experiment. It is also noted that there is contradiction between the SNO, Super-Kamiokande, Homestake and SAGE, and GNO (GALLEX) data. (author)

  1. On the vibrations of a simply supported square plate on a weakly nonlinear elastic foundation

    NARCIS (Netherlands)

    Zarubinskaya, M.A.; Van Horssen, W.T.

    2003-01-01

    In this paper an initial-boundary value problem for a weakly nonlinear plate equation with a quadratic nonlinearity will be studied. This initial-boundary value problem can be regarded as a simple model describing free oscillations of a simply supported square plate on an elastic foundation. It is

  2. Chimera States in Neural Oscillators

    Science.gov (United States)

    Bahar, Sonya; Glaze, Tera

    2014-03-01

    Chimera states have recently been explored both theoretically and experimentally, in various coupled nonlinear oscillators, ranging from phase-oscillator models to coupled chemical reactions. In a chimera state, both coherent and incoherent (or synchronized and desynchronized) states occur simultaneously in populations of identical oscillators. We investigate chimera behavior in a population of neural oscillators using the Huber-Braun model, a Hodgkin-Huxley-like model originally developed to characterize the temperature-dependent bursting behavior of mammalian cold receptors. One population of neurons is allowed to synchronize, with each neuron receiving input from all the others in its group (global within-group coupling). Subsequently, a second population of identical neurons is placed under an identical global within-group coupling, and the two populations are also coupled to each other (between-group coupling). For certain values of the coupling constants, the neurons in the two populations exhibit radically different synchronization behavior. We will discuss the range of chimera activity in the model, and discuss its implications for actual neural activity, such as unihemispheric sleep.

  3. CALIBRATING CONVECTIVE PROPERTIES OF SOLAR-LIKE STARS IN THE KEPLER FIELD OF VIEW

    Energy Technology Data Exchange (ETDEWEB)

    Bonaca, Ana; Tanner, Joel D.; Basu, Sarbani [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Chaplin, William J.; Metcalfe, Travis S.; Christensen-Dalsgaard, Jorgen; Garcia, Rafael A.; Mathur, Savita [Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States); Monteiro, Mario J. P. F. G.; Campante, Tiago L. [Centro de Astrofisica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ballot, Jerome [CNRS, Institut de Recherche en Astrophysique et Planetologie, 14 avenue Edouard Belin, F-31400 Toulouse (France); Bedding, Timothy R.; Corsaro, Enrico [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Bonanno, Alfio [INAF-Osservatorio Astrofisico di Catania, Via S.Sofia 78, I-95123 Catania (Italy); Broomhall, Anne-Marie; Elsworth, Yvonne [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Bruntt, Hans; Karoff, Christoffer; Kjeldsen, Hans [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Hekker, Saskia, E-mail: ana.bonaca@yale.edu, E-mail: sarbani.basu@yale.edu, E-mail: joel.tanner@yale.edu [Astronomical Institute Anton Pannekoek, University of Amsterdam, Science Park 904, 1098-XH Amsterdam (Netherlands); and others

    2012-08-10

    Stellar models generally use simple parameterizations to treat convection. The most widely used parameterization is the so-called mixing-length theory where the convective eddy sizes are described using a single number, {alpha}, the mixing-length parameter. This is a free parameter, and the general practice is to calibrate {alpha} using the known properties of the Sun and apply that to all stars. Using data from NASA's Kepler mission we show that using the solar-calibrated {alpha} is not always appropriate, and that in many cases it would lead to estimates of initial helium abundances that are lower than the primordial helium abundance. Kepler data allow us to calibrate {alpha} for many other stars and we show that for the sample of stars we have studied, the mixing-length parameter is generally lower than the solar value. We studied the correlation between {alpha} and stellar properties, and we find that {alpha} increases with metallicity. We therefore conclude that results obtained by fitting stellar models or by using population-synthesis models constructed with solar values of {alpha} are likely to have large systematic errors. Our results also confirm theoretical expectations that the mixing-length parameter should vary with stellar properties.

  4. Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares

    Science.gov (United States)

    McLaughlin, J. A.; Nakariakov, V. M.; Dominique, M.; Jelínek, P.; Takasao, S.

    2018-02-01

    Solar flare emission is detected in all EM bands and variations in flux density of solar energetic particles. Often the EM radiation generated in solar and stellar flares shows a pronounced oscillatory pattern, with characteristic periods ranging from a fraction of a second to several minutes. These oscillations are referred to as quasi-periodic pulsations (QPPs), to emphasise that they often contain apparent amplitude and period modulation. We review the current understanding of quasi-periodic pulsations in solar and stellar flares. In particular, we focus on the possible physical mechanisms, with an emphasis on the underlying physics that generates the resultant range of periodicities. These physical mechanisms include MHD oscillations, self-oscillatory mechanisms, oscillatory reconnection/reconnection reversal, wave-driven reconnection, two loop coalescence, MHD flow over-stability, the equivalent LCR-contour mechanism, and thermal-dynamical cycles. We also provide a histogram of all QPP events published in the literature at this time. The occurrence of QPPs puts additional constraints on the interpretation and understanding of the fundamental processes operating in flares, e.g. magnetic energy liberation and particle acceleration. Therefore, a full understanding of QPPs is essential in order to work towards an integrated model of solar and stellar flares.

  5. Apparent CPT violation in neutrino oscillation experiments

    International Nuclear Information System (INIS)

    Engelhardt, Netta; Nelson, Ann E.; Walsh, Jonathan R.

    2010-01-01

    We consider searching for light sterile fermions and new forces by using long baseline oscillations of neutrinos and antineutrinos. A new light sterile state and/or a new force can lead to apparent CPT violation in muon neutrino and antineutrino oscillations. As an example, we present an economical model of neutrino masses containing a sterile neutrino. The potential from the standard model weak neutral current gives rise to a difference between the disappearance probabilities of neutrinos and antineutrinos, when mixing with a light sterile neutrino is considered. The addition of a B-L interaction adds coherently to the neutrino current potential and increases the difference between neutrino and antineutrino disappearance. We find that this model can improve the fit to the results of MINOS for both neutrinos and antineutrinos, without any CPT violation, and that the regions of parameter space which improve the fit are within experimental constraints.

  6. About absence of oscillations at CP violation and presence of interference between KS-, KL-meson states in the system of K0 mesons

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    2014-01-01

    Two approaches to the description of K 0 -, K 0 -bar-meson transitions into K 1 0 mesons at CP violation in weak interactions are considered. The first approach uses the standard theory of oscillations and the second approach supposes that (K S , K L ) states which arise at CP violation are normalized but not orthogonal state functions, then there arise interferences between these states but not oscillations. It is necessary to remark that the available experimental data are in good agreement with the second approach. So, we come to the conclusion that oscillations do not arise at CP violation in weak interactions in the system of K 0 mesons. Only interference between K S and K L states takes place here.

  7. Weak chaos in the disordered nonlinear Schroedinger chain: Destruction of Anderson localization by Arnold diffusion

    International Nuclear Information System (INIS)

    Basko, D.M.

    2011-01-01

    Research highlights: → In a one-dimensional disordered chain of oscillators all normal modes are localized. → Nonlinearity leads to chaotic dynamics. → Chaos is concentrated on rare chaotic spots. → Chaotic spots drive energy exchange between oscillators. → Macroscopic transport coefficients are obtained. - Abstract: The subject of this study is the long-time equilibration dynamics of a strongly disordered one-dimensional chain of coupled weakly anharmonic classical oscillators. It is shown that chaos in this system has a very particular spatial structure: it can be viewed as a dilute gas of chaotic spots. Each chaotic spot corresponds to a stochastic pump which drives the Arnold diffusion of the oscillators surrounding it, thus leading to their relaxation and thermalization. The most important mechanism of equilibration at long distances is provided by random migration of the chaotic spots along the chain, which bears analogy with variable-range hopping of electrons in strongly disordered solids. The corresponding macroscopic transport equations are obtained.

  8. Transonic Shock-Wave/Boundary-Layer Interactions on an Oscillating Airfoil

    Science.gov (United States)

    Davis, Sanford S.; Malcolm, Gerald N.

    1980-01-01

    Unsteady aerodynamic loads were measured on an oscillating NACA 64A010 airfoil In the NASA Ames 11 by 11 ft Transonic Wind Tunnel. Data are presented to show the effect of the unsteady shock-wave/boundary-layer interaction on the fundamental frequency lift, moment, and pressure distributions. The data show that weak shock waves induce an unsteady pressure distribution that can be predicted quite well, while stronger shock waves cause complex frequency-dependent distributions due to flow separation. An experimental test of the principles of linearity and superposition showed that they hold for weak shock waves while flows with stronger shock waves cannot be superimposed.

  9. Construction of Solar-Wind-Like Magnetic Fields

    Science.gov (United States)

    Roberts, Dana Aaron

    2012-01-01

    Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfven waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This paper provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the\\random character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes (discontinuities), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles.

  10. An Independent Asteroseismic Analysis of the Fundamental Parameters and Internal Structure of the Solar-like Oscillator KIC 6225718

    Science.gov (United States)

    Wu, Tao; Li, Yan

    2017-09-01

    Asteroseismology is a useful tool that is usually used to probe stellar interiors and to determine stellar fundamental parameters, such as stellar mass, radius, and surface gravity. In order to probe stellar interiors, making comparisons between observations and models is usually used with the {χ }2-minimization method. The work of Wu & Li reported that the best parameter determined by the {χ }2-matching process is the acoustic radius for pure p-mode oscillations. In the present work, based on the theoretical calculations of Wu & Li, we will independently analyze the seismic observations of KIC 6225718 to determine its fundamental parameters and to investigate its interior properties. First, in order to test the method, we use it in the Sun to determine its fundamental parameters and to investigate interiors. Second, we independently determine the fundamental parameters of KIC 6225718 without any other non-seismic constraint. Therefore, those determined fundamental parameters are independent of those determined by other methods. They can be regarded as independent references in other analyses. Finally, we analyze the stellar internal structure and find that KIC 6225718 has a convective core with the size of 0.078-0.092 {R}⊙ . Its overshooting parameter {f}{ov} in the core is around 0.010. In addition, its center hydrogen {X}{{c}} is about 0.264-0.355.

  11. Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years

    DEFF Research Database (Denmark)

    Knudsen, Mads Faurschou; Seidenkrantz, Marit-Solveig; Jacobsen, B. H.

    2011-01-01

    Understanding the internal ocean variability and its influence on climate is imperative for society. A key aspect concerns the enigmatic Atlantic Multidecadal Oscillation (AMO), a feature defined by a 60- to 90-year variability in North Atlantic sea-surface temperatures. The nature and origin...... of the AMO is uncertain, and it remains unknown whether it represents a persistent periodic driver in the climate system, or merely a transient feature. Here, we show that distinct, ~55- to 70-year oscillations characterized the North Atlantic ocean-atmosphere variability over the past 8,000 years. We test...... and reject the hypothesis that this climate oscillation was directly forced by periodic changes in solar activity. We therefore conjecture that a quasi-persistent ~55- to 70-year AMO, linked to internal ocean-atmosphere variability, existed during large parts of the Holocene. Our analyses further suggest...

  12. Stopping power. Projectile and target modeled as oscillators

    International Nuclear Information System (INIS)

    Stevanovic, N.; Nikezic, D.

    2005-01-01

    In this Letter the collision of two quantum harmonic oscillators was considered. The oscillators interact through the Coulomb interaction. Stopping power of projectile was calculated assuming that both, target and projectile may be excited. It has been shown that the frequency of the projectile oscillation, ω p influences on stopping power, particularly in the region of Bragg peak. If, ω p ->0 is substitute in the expression for stopping power derived in this Letter, then it comes to the form when the projectile has been treated as point like charged particle

  13. Sulfur passivation of semi-insulating GaAs: Transition from Coulomb blockade to weak localization regime

    Energy Technology Data Exchange (ETDEWEB)

    Bagraev, N. T., E-mail: Bagraev@mail.ioffe.ru [Ioffe Institute (Russian Federation); Chaikina, E. I. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Division de Fisica Aplicada (Mexico); Danilovskii, E. Yu.; Gets, D. S.; Klyachkin, L. E.; L’vova, T. V.; Malyarenko, A. M. [Ioffe Institute (Russian Federation)

    2016-04-15

    The sulfur passivation of the semi-insulating GaAs bulk (SI GaAs) grown in an excess phase of arsenic is used to observe the transition from the Coulomb blockade to the weak localization regime at room temperature. The I–V characteristics of the SI GaAs device reveal nonlinear behavior that appears to be evidence of the Coulomb blockade process as well as the Coulomb oscillations. The sulfur passivation of the SI GaAs device surface results in enormous transformation of the I–V characteristics that demonstrate the strong increase of the resistance and Coulomb blockade regime is replaced by the electron tunneling processes. The results obtained are analyzed within frameworks of disordering SI GaAs surface that is caused by inhomogeneous distribution of the donor and acceptor anti-site defects which affects the conditions of quantum- mechanical tunneling. Weak localization processes caused by the preservation of the Fermi level pinning are demonstrated by measuring the negative magnetoresistance in weak magnetic fields at room temperature. Finally, the studies of the magnetoresistance at higher magnetic fields reveal the h/2e Aharonov–Altshuler–Spivak oscillations with the complicated behavior due to possible statistical mismatch of the interference paths in the presence of different microdefects.

  14. Solar and infrared radiation measurements

    CERN Document Server

    Vignola, Frank; Michalsky, Joseph

    2012-01-01

    The rather specialized field of solar and infrared radiation measurement has become more and more important in the face of growing demands by the renewable energy and climate change research communities for data that are more accurate and have increased temporal and spatial resolution. Updating decades of acquired knowledge in the field, Solar and Infrared Radiation Measurements details the strengths and weaknesses of instruments used to conduct such solar and infrared radiation measurements. Topics covered include: Radiometer design and performance Equipment calibration, installation, operati

  15. Weakly Collisional and Collisionless Astrophysical Plasmas

    DEFF Research Database (Denmark)

    Berlok, Thomas

    are used to study weakly collisional, stratified atmospheres which offer a useful model of the intracluster medium of galaxy clusters. Using linear theory and computer simulations, we study instabilities that feed off thermal and compositional gradients. We find that these instabilities lead to vigorous...... investigate helium mixing in the weakly collisional intracluster medium of galaxy clusters using Braginskii MHD. Secondly, we present a newly developed Vlasov-fluid code which can be used for studying fully collisionless plasmas such as the solar wind and hot accretions flows. The equations of Braginskii MHD...... associated with the ions and is thus well suited for studying collisionless plasmas. We have developed a new 2D-3V Vlasov-fluid code which works by evolving the phase-space density distribution of the ions while treating the electrons as an inertialess fluid. The code uses the particle-incell (PIC) method...

  16. Noise-enhanced chaos in a weakly coupled GaAs/(Al,Ga)As superlattice

    Science.gov (United States)

    Yin, Zhizhen; Song, Helun; Zhang, Yaohui; Ruiz-García, Miguel; Carretero, Manuel; Bonilla, Luis L.; Biermann, Klaus; Grahn, Holger T.

    2017-01-01

    Noise-enhanced chaos in a doped, weakly coupled GaAs /Al0.45Ga0.55As superlattice has been observed at room temperature in experiments as well as in the results of the simulation of nonlinear transport based on a discrete tunneling model. When external noise is added, both the measured and simulated current-versus-time traces contain irregularly spaced spikes for particular applied voltages, which separate a regime of periodic current oscillations from a region of no current oscillations at all. In the voltage region without current oscillations, the electric-field profile consist of a low-field domain near the emitter contact separated by a domain wall consisting of a charge accumulation layer from a high-field regime closer to the collector contact. With increasing noise amplitude, spontaneous chaotic current oscillations appear over a wider bias voltage range. For these bias voltages, the domain boundary between the two electric-field domains becomes unstable and very small current or voltage fluctuations can trigger the domain boundary to move toward the collector and induce chaotic current spikes. The experimentally observed features are qualitatively very well reproduced by the simulations. Increased noise can consequently enhance chaotic current oscillations in semiconductor superlattices.

  17. Global low-frequency modes in weakly ionized magnetized plasmas: effects of equilibrium plasma rotation

    International Nuclear Information System (INIS)

    Sosenko, P.; Pierre, Th.; Zagorodny, A.

    2004-01-01

    The linear and non-linear properties of global low-frequency oscillations in cylindrical weakly ionized magnetized plasmas are investigated analytically for the conditions of equilibrium plasma rotation. The theoretical results are compared with the experimental observations of rotating plasmas in laboratory devices, such as Mistral and Mirabelle in France, and KIWI in Germany. (authors)

  18. Helioseismic measurements in the solar envelope using group velocities of surface waves

    Science.gov (United States)

    Vorontsov, S. V.; Baturin, V. A.; Ayukov, S. V.; Gryaznov, V. K.

    2014-07-01

    At intermediate- and high-degree l, solar p and f modes can be considered as surface waves. Using variational principle, we derive an integral expression for the group velocities of the surface waves in terms of adiabatic eigenfunctions of normal modes, and address the benefits of using group-velocity measurements as a supplementary diagnostic tool in solar seismology. The principal advantage of using group velocities, when compared with direct analysis of the oscillation frequencies, comes from their smaller sensitivity to the uncertainties in the near-photospheric layers. We address some numerical examples where group velocities are used to reveal inconsistencies between the solar models and the seismic data. Further, we implement the group-velocity measurements to the calibration of the specific entropy, helium abundance Y, and heavy-element abundance Z in the adiabatically stratified part of the solar convective envelope, using different recent versions of the equation of state. The results are in close agreement with our earlier measurements based on more sophisticated analysis of the solar oscillation frequencies. These results bring further support to the downward revision of the solar heavy-element abundances in recent spectroscopic measurements.

  19. Solar Pumped Solid State Lasers for Space Solar Power: Experimental Path

    Science.gov (United States)

    Fork, Richard L.; Carrington, Connie K.; Walker, Wesley W.; Cole, Spencer T.; Green, Jason J. A.; Laycock, Rustin L.

    2003-01-01

    We outline an experimentally based strategy designed to lead to solar pumped solid state laser oscillators useful for space solar power. Our method involves solar pumping a novel solid state gain element specifically designed to provide efficient conversion of sunlight in space to coherent laser light. Kilowatt and higher average power is sought from each gain element. Multiple such modular gain elements can be used to accumulate total average power of interest for power beaming in space, e.g., 100 kilowatts and more. Where desirable the high average power can also be produced as a train of pulses having high peak power (e.g., greater than 10(exp 10 watts). The modular nature of the basic gain element supports an experimental strategy in which the core technology can be validated by experiments on a single gain element. We propose to do this experimental validation both in terrestrial locations and also on a smaller scale in space. We describe a terrestrial experiment that includes diagnostics and the option of locating the laser beam path in vacuum environment. We describe a space based experiment designed to be compatible with the Japanese Experimental Module (JEM) on the International Space Station (ISS). We anticipate the gain elements will be based on low temperature (approx. 100 degrees Kelvin) operation of high thermal conductivity (k approx. 100 W/cm-K) diamond and sapphire (k approx. 4 W/cm-K). The basic gain element will be formed by sequences of thin alternating layers of diamond and Ti:sapphire with special attention given to the material interfaces. We anticipate this strategy will lead to a particularly simple, robust, and easily maintained low mass modelocked multi-element laser oscillator useful for space solar power.

  20. Weak oceanic heat transport as a cause of the instability of glacial climates

    Energy Technology Data Exchange (ETDEWEB)

    Colin de Verdiere, Alain [Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans, Alain Colin de Verdiere, Brest 3 (France); Te Raa, L. [Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Utrecht (Netherlands); Netherlands Organisation for Applied Scientific Research TNO, The Hague (Netherlands)

    2010-12-15

    The stability of the thermohaline circulation of modern and glacial climates is compared with the help of a two dimensional ocean - atmosphere - sea ice coupled model. It turns out to be more unstable as less freshwater forcing is required to induce a polar halocline catastrophy in glacial climates. The large insulation of the ocean by the extensive sea ice cover changes the temperature boundary condition and the deepwater formation regions moves much further South. The nature of the instability is of oceanic origin, identical to that found in ocean models under mixed boundary conditions. With similar strengths of the oceanic circulation and rates of deep water formation for warm and cold climates, the loss of stability of the cold climate is due to the weak thermal stratification caused by the cooling of surface waters, the deep water temperatures being regulated by the temperature of freezing. Weaker stratification with similar overturning leads to a weakening of the meridional oceanic heat transport which is the major negative feedback stabilizing the oceanic circulation. Within the unstable regime periodic millennial oscillations occur spontaneously. The climate oscillates between a strong convective thermally driven oceanic state and a weak one driven by large salinity gradients. Both states are unstable. The atmosphere of low thermal inertia is carried along by the oceanic overturning while the variation of sea ice is out of phase with the oceanic heat content. During the abrupt warming events that punctuate the course of a millennial oscillation, sea ice variations are shown respectively to damp (amplify) the amplitude of the oceanic (atmospheric) response. This sensitivity of the oceanic circulation to a reduced concentration of greenhouse gases and to freshwater forcing adds support to the hypothesis that the millennial oscillations of the last glacial period, the so called Dansgaard - Oeschger events, may be internal instabilities of the climate system