WorldWideScience

Sample records for weak mhd turbulence

  1. Transition from weak to strong cascade in MHD turbulence.

    Science.gov (United States)

    Verdini, Andrea; Grappin, Roland

    2012-07-13

    The transition from weak to strong turbulence when passing from large to small scales in magnetohydrodynamic (MHD) turbulence with guide field is a cornerstone of anisotropic turbulence theory. We present the first check of this transition, using the Shell-RMHD, which combines a shell model of perpendicular nonlinear coupling and linear propagation along the guide field. This model allows us to reach Reynolds numbers around 10(6). We obtain surprisingly good agreement with the theoretical predictions, with a reduced perpendicular energy spectrum scaling as k(⊥)(-2) at large scales and as k(⊥)(-5/3) at small scales, where critical balance between nonlinear and propagation time is reached. However, even in the strong regime, a high level of excitation is found in the weak coupling region of Fourier space, which is due to the rich frequency spectrum of large eddies. A corollary is that the reduced parallel spectral slope is not a definite test of the spectral anisotropy, contrary to standard belief.

  2. From Weakly to Strongly Magnetized Isotropic MHD Turbulence

    CERN Document Server

    Alexakis, Alexandros

    2012-01-01

    High Reynolds number isotropic magneto-hydro-dynamic turbulence in the presence of large scale magnetic fields is investigated as a function of the magnetic field strength. For a variety of flow configurations the energy dissipation rate \\epsilon, follows the Kolmogorov scaling \\epsilon ~ U^3/L even when the large scale magnetic field energy is twenty times larger than the kinetic. Further increase of the magnetic energy showed a transition to the \\epsilon ~ U^2 B / L scaling implying that magnetic shear becomes more efficient at this point at cascading the energy than the velocity fluctuations. Strongly helical configurations form helicity condensates that deviate from these scalings. Weak turbulence scaling was absent from the investigation. Finally, the magnetic energy spectra showed support for the Kolmogorov spectrum k^{-5/3} while kinetic energy spectra are closer to the Iroshnikov-Kraichnan spectrum k^{-3/2}.

  3. Limitations of Hall MHD as a model for turbulence in weakly collisional plasmas

    Directory of Open Access Journals (Sweden)

    G. G. Howes

    2009-03-01

    Full Text Available The limitations of Hall MHD as a model for turbulence in weakly collisional plasmas are explored using quantitative comparisons to Vlasov-Maxwell kinetic theory over a wide range of parameter space. The validity of Hall MHD in the cold ion limit is shown, but spurious undamped wave modes exist in Hall MHD when the ion temperature is finite. It is argued that turbulence in the dissipation range of the solar wind must be one, or a mixture, of three electromagnetic wave modes: the parallel whistler, oblique whistler, or kinetic Alfvén waves. These modes are generally well described by Hall MHD. Determining the applicability of linear kinetic damping rates in turbulent plasmas requires a suite of fluid and kinetic nonlinear numerical simulations. Contrasting fluid and kinetic simulations will also shed light on whether the presence of spurious wave modes alters the nonlinear couplings inherent in turbulence and will illuminate the turbulent dynamics and energy transfer in the regime of the characteristic ion kinetic scales.

  4. Coexistence of weak and strong wave turbulence in incompressible Hall MHD

    Science.gov (United States)

    Meyrand, Romain; Kiyani, Khurom; Galtier, Sebastien

    2016-04-01

    We report a numerical investigation of 3D Hall Magnetohydrodynamic turbulence with a strong mean magnetic field. By using a helicity decomposition and a cross-bicoherence analysis, we observe that the nonlinear 3-wave coupling is substantial among ion cyclotron and whistler waves. By studying in detail the degree of nonlinearity of these two populations we show that ion cyclotron and whistler turbulent fluctuations belong respectively to strong and weak wave turbulence. The non trivial blending of these two regime give rise to anomalous anisotropy and scaling properties. The separation of the weak random wave and strong coherent turbulence component can however be effectively done using simultaneous space and time Fourier transforms. Using this techniques we show that it is possible to recover some statistical prediction of weak turbulent theory.

  5. The Efficiency of Second-Order Fermi Acceleration by Weakly Compressible MHD Turbulence

    CERN Document Server

    Lynn, Jacob W; Chandran, Benjamin D G; Parrish, Ian J

    2013-01-01

    We investigate the effects of pitch-angle scattering on the efficiency of particle heating and acceleration by MHD turbulence using phenomenological estimates and simulations of non-relativistic test particles interacting with strong, subsonic MHD turbulence. We include an imposed pitch-angle scattering rate, which is meant to approximate the effects of high frequency plasma waves and/or velocity space instabilities. We focus on plasma parameters similar to those found in the near-Earth solar wind, though most of our results are more broadly applicable. An important control parameter is the size of the particle mean free path lambda_{mfp} relative to the scale of the turbulent fluctuations L. For small scattering rates, particles interact quasi-resonantly with turbulent fluctuations in magnetic field strength. Scattering increases the long-term efficiency of this resonant heating by factors of a few-10, but the distribution function does not develop a significant non-thermal power-law tail. For higher scatter...

  6. MHD turbulence and distributed chaos

    CERN Document Server

    Bershadskii, A

    2016-01-01

    It is shown, using results of recent direct numerical simulations, that spectral properties of distributed chaos in MHD turbulence with zero mean magnetic field are similar to those of hydrodynamic turbulence. An exception is MHD spontaneous breaking of space translational symmetry, when the stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$ has $\\beta=4/7$.

  7. MHD Turbulence, Turbulent Dynamo and Applications

    CERN Document Server

    Beresnyak, Andrey

    2014-01-01

    MHD Turbulence is common in many space physics and astrophysics environments. We first discuss the properties of incompressible MHD turbulence. A well-conductive fluid amplifies initial magnetic fields in a process called small-scale dynamo. Below equipartition scale for kinetic and magnetic energies the spectrum is steep (Kolmogorov -5/3) and is represented by critically balanced strong MHD turbulence. In this paper we report the basic reasoning behind universal nonlinear small-scale dynamo and the inertial range of MHD turbulence. We measured the efficiency of the small-scale dynamo $C_E=0.05$, Kolmogorov constant $C_K=4.2$ and anisotropy constant $C_A=0.63$ for MHD turbulence in high-resolution direct numerical simulations. We also discuss so-called imbalanced or cross-helical MHD turbulence which is relevant for in many objects, most prominently in the solar wind. We show that properties of incompressible MHD turbulence are similar to the properties of Alfv\\'enic part of MHD cascade in compressible turbul...

  8. Planetary migration in weakly magnetized turbulent discs

    Science.gov (United States)

    Baruteau, C.; Fromang, S.; Nelson, R. P.; Masset, F.

    2011-12-01

    In laminar viscous disc models, the migration of protoplanets embedded in their nascent protoplanetary discs may be directed inwards or outwards, depending on the relative magnitude of the Lindblad and corotation torques. The long-term evolution of the corotation torque is intimately related to diffusion processes inside the planet's horseshoe region. This communication examines the properties of the corotation torque in discs where magnetohydrodynamic (MHD) turbulence develops as a result of the magnetorotational instability (MRI), considering a weak initial toroidal magnetic field. We show that the differential Lindblad torque takes very similar values in MHD turbulent and laminar viscous discs, and there exists an unsaturated corotation torque in MHD turbulent discs.

  9. MHD Turbulence and Magnetic Dynamos

    Science.gov (United States)

    Shebalin, John V

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much

  10. Electron MHD: dynamics and turbulence

    CERN Document Server

    Lyutikov, Maxim

    2013-01-01

    (Abridged) We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron MHD (EMHD). We argue there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact non-linear solutions; (ii) co-linear whistlers do not interact (including counter-propagating); (iii) waves with the same value of the wave vector, $k_1=k_2$, do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero-mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfven turbulence cannot be transferred to the E...

  11. MHD Turbulence in Accretion Disk Boundary Layers

    CERN Document Server

    Chan, Chi-kwan

    2012-01-01

    The physical modeling of the accretion disk boundary layer, the region where the disk meets the surface of the accreting star, usually relies on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear viscosity, widely adopted in astrophysics, satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability is inefficient in this inner disk region. I will discuss the results of a recent study on the generation of hydromagnetic stresses and energy density in the boundary layer around a weakly magnetized star. Our findings suggest that although magnetic energy density can be significantly amplified in this region, angular momentum transport is rather inefficient. This seems consistent with the results obtained in numerical simulations...

  12. Anisotropic turbulence in weakly stratified rotating magnetoconvection

    CERN Document Server

    Giesecke, A

    2010-01-01

    Numerical simulations of the 3D MHD-equations that describe rotating magnetoconvection in a Cartesian box have been performed using the code NIRVANA. The characteristics of averaged quantities like the turbulence intensity and the turbulent heat flux that are caused by the combined action of the small-scale fluctuations are computed. The correlation length of the turbulence significantly depends on the strength and orientation of the magnetic field and the anisotropic behavior of the turbulence intensity induced by Coriolis and Lorentz force is considerably more pronounced for faster rotation. The development of isotropic behavior on the small scales -- as it is observed in pure rotating convection -- vanishes even for a weak magnetic field which results in a turbulent flow that is dominated by the vertical component. In the presence of a horizontal magnetic field the vertical turbulent heat flux slightly increases with increasing field strength, so that cooling of the rotating system is facilitated. Horizont...

  13. The Statistical Mechanics of Ideal MHD Turbulence

    Science.gov (United States)

    Shebalin, John V.

    2003-01-01

    Turbulence is a universal, nonlinear phenomenon found in all energetic fluid and plasma motion. In particular. understanding magneto hydrodynamic (MHD) turbulence and incorporating its effects in the computation and prediction of the flow of ionized gases in space, for example, are great challenges that must be met if such computations and predictions are to be meaningful. Although a general solution to the "problem of turbulence" does not exist in closed form, numerical integrations allow us to explore the phase space of solutions for both ideal and dissipative flows. For homogeneous, incompressible turbulence, Fourier methods are appropriate, and phase space is defined by the Fourier coefficients of the physical fields. In the case of ideal MHD flows, a fairly robust statistical mechanics has been developed, in which the symmetry and ergodic properties of phase space is understood. A discussion of these properties will illuminate our principal discovery: Coherent structure and randomness co-exist in ideal MHD turbulence. For dissipative flows, as opposed to ideal flows, progress beyond the dimensional analysis of Kolmogorov has been difficult. Here, some possible future directions that draw on the ideal results will also be discussed. Our conclusion will be that while ideal turbulence is now well understood, real turbulence still presents great challenges.

  14. Type I Planetary Migration with MHD Turbulence

    CERN Document Server

    Laughlin, G; Adams, F; Laughlin, Gregory; Steinacker, Adriane; Adams, Fred

    2004-01-01

    This paper examines how type I planet migration is affected by the presence of turbulent density fluctuations in the circumstellar disk. For type I migration, the planet does not clear a gap in the disk and its secular motion is driven by torques generated by the wakes it creates in the surrounding disk fluid. MHD turbulence creates additional density perturbations that gravitationally interact with the planet and can dominate the torques produced by the migration mechanism itself. This paper shows that conventional type I migration can be readily overwhelmed by turbulent perturbations and hence the usual description of type I migration should be modified in locations where the magnetorotational instability is active. In general, the migrating planet does not follow a smooth inward trned, but rather exhibits a random walk through phase space. Our main conclusion is that MHD turbulence will alter the time scales for type I planet migration and -- because of chaos -- requires the time scales to be described by ...

  15. Dipole Alignment in Rotating MHD Turbulence

    Science.gov (United States)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  16. Turbulence evolution in MHD plasmas

    CERN Document Server

    Wisniewski, M; Spanier, F

    2013-01-01

    Turbulence in the interstellar medium has been an active field of research in the last decade. Numerical simulations are the tool of choice in most cases. But while there are a number of simulations on the market some questions have not been answered finally. In this paper we are going to examine the influence of compressible and incompressible driving on the evolution of turbulent spectra in a number of possible interstellar medium scenarios. We conclude that the driving not only has an influence on the ratio of compressible to incompressible component but also on the anisotropy of turbulence.

  17. Quasi-isotropic cascade in MHD turbulence with mean field

    CERN Document Server

    Grappin, Roland; Gürcan, Özgür

    2012-01-01

    We propose a phenomenological theory of incompressible magnetohydrodynamic turbulence in the presence of a strong large-scale magnetic field, which establishes a link between the known anisotropic models of strong and weak MHD turbulence We argue that the Iroshnikov-Kraichnan isotropic cascade develops naturally within the plane perpendicular to the mean field, while oblique-parallel cascades with weaker amplitudes can develop, triggered by the perpendicular cascade, with a reduced flux resulting from a quasi-resonance condition. The resulting energy spectrum $E(k_\\parallel,k_\\bot)$ has the same slope in all directions. The ratio between the extents of the inertial range in the parallel and perpendicular directions is equal to $b_{rms}/B_0$. These properties match those found in recent 3D MHD simulations with isotropic forcing reported in [R. Grappin and W.-C. M\\"uller, Phys. Rev. E \\textbf{82}, 26406 (2010)].

  18. Observational Tests of Recent MHD Turbulence Perspectives

    Science.gov (United States)

    Ghosh, Sanjoy

    2001-06-01

    This grant seeks to analyze the Heliospheric Missions data to test current theories on the angular dependence (with respect to mean magnetic field direction) of magnetohydrodynamic (MHD) turbulence in the solar wind. Solar wind turbulence may be composed of two or more dynamically independent components. Such components include magnetic pressure-balanced structures, velocity shears, quasi-2D turbulence, and slab (Alfven) waves. We use a method, developed during the first two years of this grant, for extracting the individual reduced spectra of up to three separate turbulence components from a single spacecraft time series. The method has been used on ISEE-3 data, Pioneer Venus Orbiter, Ulysses, and Voyager data samples. The correlation of fluctuations as a function of angle between flow direction and magnetic-field direction is the focus of study during the third year.

  19. Cosmic ray transport in MHD turbulence

    CERN Document Server

    Yan, Huirong

    2007-01-01

    Numerical simulations shed light onto earlier not trackable problem of magnetohydrodynamic (MHD) turbulence. They allowed to test the predictions of different models and choose the correct ones. Inevitably, this progress calls for revisions in the picture of cosmic ray (CR) transport. It also shed light on the problems with the present day numerical modeling of CR. In this paper we focus on the analytical way of describing CR propagation and scattering, which should be used in synergy with the numerical studies. In particular, we use recently established scaling laws for MHD modes to obtain the transport properties for CRs. We include nonlinear effects arising from large scale trapping, to remove the 90 degree divergence. We determine how the efficiency of the scattering and CR mean free path depend on the characteristics of ionized media, e.g. plasma $\\beta$, Coulomb collisional mean free path. Implications for particle transport in interstellar medium and solar corona are discussed. We also examine the perp...

  20. Eigenanalysis of Ideal Hall MHD Turbulence

    Science.gov (United States)

    Fu, T.; Shebalin, J. V.

    2011-12-01

    Ideal, incompressible, homogeneous, Hall magnetohydrodynamic (HMHD) turbulence may be investigated through a Fourier spectral method. In three-dimensional periodic geometry, the independent Fourier coefficients represent a canonical ensemble described by a Gaussian probability density. The canonical ensemble is based on the conservation of three invariants: total energy, generalized helicity, and magnetic helicity. Generalized helicity in HMHD takes the place of cross helicity in MHD. The invariants determine the modal probability density giving the spectral structure and equilibrium statistics of ideal HMHD, which are compared to known MHD results. New results in absolute equilibrium ensemble theory are derived using a novel approach that involves finding the eigenvalues of a Hermitian covariance matrix for each modal probability density. The associated eigenvectors transform the original phase space variables into eigenvariables through a special unitary transformation. These are the normal modes which facilitate the analysis of ideal HMHD non-linear dynamics. The eigenanalysis predicts that the low wavenumber modes with very small eigenvalues may have mean values that are large compared to their standard deviations, contrary to the ideal ensemble prediction of zero mean values. (Expectation values may also be relatively large at the highest wave numbers, but the addition of even small levels of dissipation removes any relevance this may have for real-world turbulence.) This behavior is non-ergodic over very long times for a numerical simulation and is termed 'broken ergodicity'. For fixed values of the ideal invariants, the effect is seen to be enhanced with increased numerical grid size. Broken ergodicity at low wave number modes gives rise to large-scale, quasi-stationary, coherent structure. Physically, this corresponds to plasma relaxation to force-free states. For real HMHD turbulence with dissipation, broken ergodicity and coherent structure are still

  1. Drag reduction in turbulent MHD pipe flows

    Science.gov (United States)

    Orlandi, P.

    1996-01-01

    This is a preliminary study devoted to verifying whether or not direct simulations of turbulent Magneto-Hydro-Dynamic (MHD) flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first case, an external azimuthal magnetic field is imposed. In this case, the magnetic field acts on the mean axial velocity and complete laminarization of the flow at N(sub a) = 30 has been achieved. In the second case, an axial magnetic field is imposed which affects only fluctuating velocities, and thus the action is less efficient. This second case is more practical, but comparison between numerical and experimental results is only qualitative.

  2. Sub-Alfvenic Non-Ideal MHD Turbulence Simulations with Ambipolar Diffusion: I. Turbulence Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R I; Li, P S; McKee, C F; Fisher, R

    2008-04-10

    Most numerical investigations on the role of magnetic fields in turbulent molecular clouds (MCs) are based on ideal magneto-hydrodynamics (MHD). However, MCs are weakly ionized, so that the time scale required for the magnetic field to diffuse through the neutral component of the plasma by ambipolar diffusion (AD) can be comparable to the dynamical time scale. We have performed a series of 256{sup 3} and 512{sup 3} simulations on supersonic but sub-Alfvenic turbulent systems with AD using the Heavy-Ion Approximation developed in Li et al. (2006). Our calculations are based on the assumption that the number of ions is conserved, but we show that these results approximately apply to the case of time-dependent ionization in molecular clouds as well. Convergence studies allow us to determine the optimal value of the ionization mass fraction when using the heavy-ion approximation for low Mach number, sub-Alfvenic turbulent systems. We find that ambipolar diffusion steepens the velocity and magnetic power spectra compared to the ideal MHD case. Changes in the density PDF, total magnetic energy, and ionization fraction are determined as a function of the AD Reynolds number. The power spectra for the neutral gas properties of a strongly magnetized medium with a low AD Reynolds number are similar to those for a weakly magnetized medium; in particular, the power spectrum of the neutral velocity is close to that for Burgers turbulence.

  3. Dynamo action in dissipative, forced, rotating MHD turbulence

    Science.gov (United States)

    Shebalin, John V.

    2016-06-01

    Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 643 grid. Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields.

  4. Numerical study of Cosmic Ray Diffusion in MHD turbulence

    OpenAIRE

    Beresnyak, A.; Yan, H.; Lazarian, A.

    2010-01-01

    We study diffusion of Cosmic Rays (CRs) in turbulent magnetic fields using test particle simulations. Electromagnetic fields are produced in direct numerical MHD simulations of turbulence and used as an input for particle tracing, particle feedback on turbulence being ignored. Statistical transport coefficients from the test particle runs are compared with earlier analytical predictions. We find qualitative correspondence between them in various aspects of CR diffusion. In the incompressible ...

  5. Achieving Fast Reconnection in Resistive MHD Models via Turbulent Means

    CERN Document Server

    Lapenta, Giovanni

    2011-01-01

    Astrophysical fluids are generally turbulent and this preexisting turbulence must be taken into account for the models of magnetic reconnection which are attepmted to be applied to astrophysical, solar or heliospheric environments. In addition, reconnection itself induces turbulence which provides an important feedback on the reconnection process. In this paper we discuss both theoretical model and numerical evidence that magnetic reconnection gets fast in the approximation of resistive MHD. We consider the relation between the Lazarian & Vishniac turbulent reconnection theory and Lapenta's numerical experiments testifying of the spontaneous onset of turbulent reconnection in systems which are initially laminar.

  6. MHD-effects in a turbulent medium of nonuniform density

    Energy Technology Data Exchange (ETDEWEB)

    Vaynshteyn, S.I.

    1978-01-01

    Turbulence in a medium of nonuniform density, such as the convective solar layer, is analyzed with the assumption that Del rho = rho lambda (exponential stratification). Considered are first the simplest case of a quasi-isotropic turbulence, then addition of a scalar factor such as the temperature, and finally anisotropic turbulence. The magnetic field and MHD-effects are then calculated without diffusion, and with two-dimensional turbulence as a special case. Also the values of the essential parameters in this problem are estimated. 7 references.

  7. Dissipation and Heating in Supersonic Hydrodynamic and MHD Turbulence

    CERN Document Server

    Lemaster, M Nicole

    2008-01-01

    We study energy dissipation and heating by supersonic MHD turbulence in molecular clouds using Athena, a new higher-order Godunov code. We analyze the dependence of the saturation amplitude, energy dissipation characteristics, power spectra, sonic scaling, and indicators of intermittency in the turbulence on factors such as the magnetic field strength, driving scale, energy injection rate, and numerical resolution. While convergence in the energies is reached at moderate resolutions, we find that the power spectra require much higher resolutions that are difficult to obtain. In a 1024^3 hydro run, we find a power law relationship between the velocity dispersion and the spatial scale on which it is measured, while for an MHD run at the same resolution we find no such power law. The time-variability and temperature intermittency in the turbulence both show a dependence on the driving scale, indicating that numerically driving turbulence by an arbitrary mechanism may not allow a realistic representation of these...

  8. Role of Cross Helicity in Cascade Processes of MHD turbulence

    CERN Document Server

    Mizeva, Irina; Frick, Peter; 10.1134/S1028335809020128

    2009-01-01

    The purpose of this work is to investigate the spectral properties of the developed isotropic (non-Alfven) MHD turbulence stationary excited by an external force, which injects the cross helicity into the flow simultaneously with the energy. It is shown that the cross helicity blocks the spectral energy transfer in MHD turbulence and results in energy accumulation in the system. This accumulation proceeds until the vortex intensification compensates the decreasing efficiency of nonlinear interactions. The formula for estimating the average turbulence energy is obtained for the set ratio between the injected helicity and energy. It is remarkable that the turbulence accumulates the injected cross helicity at its low rate injection -- the integral correlation coefficient significantly exceeds the ratio between the injected helicity and the energy. It is shown that the spectrum slope gradually increases from "5/3" to "2" with the cross helicity level.

  9. Sub-Alfvenic Non-Ideal MHD Turbulence Simulations with Ambipolar Diffusion: I. Turbulence Statistics

    CERN Document Server

    Li, Pak Shing; Klein, Richard I; Fisher, Robert T

    2008-01-01

    Most numerical investigations on the role of magnetic fields in turbulent molecular clouds (MCs) are based on ideal magneto-hydrodynamics (MHD). However, MCs are weakly ionized, so that the time scale required for the magnetic field to diffuse through the neutral component of the plasma by ambipolar diffusion (AD) can be comparable to the dynamical time scale. We have performed a series of 256^3 and 512^3 simulations on supersonic but sub-Alfvenic turbulent systems with AD using the Heavy-Ion Approximation developed in Li, McKee, & Klein (2006). Our calculations are based on the assumption that the number of ions is conserved, but we show that these results approximately apply to the case of time-dependent ionization in molecular clouds as well. Convergence studies allow us to determine the optimal value of the ionization mass fraction when using the heavy-ion approximation for low Mach number, sub-Alfvenic turbulent systems. We find that ambipolar diffusion steepens the velocity and magnetic power spectr...

  10. Spectral slope and Kolmogorov constant of MHD turbulence.

    Science.gov (United States)

    Beresnyak, A

    2011-02-18

    The spectral slope of strong MHD turbulence has recently been a matter of controversy. While the Goldreich-Sridhar model predicts a -5/3 slope, shallower slopes have been observed in numerics. We argue that earlier numerics were affected by driving due to a diffuse locality of energy transfer. Our highest-resolution simulation (3072(2)×1024) exhibited the asymptotic -5/3 scaling. We also discover that the dynamic alignment, proposed in models with -3/2 slope, saturates and cannot modify the asymptotic, high Reynolds number slope. From the observed -5/3 scaling we measure the Kolmogorov constant C(KA)=3.27±0.07 for Alfvénic turbulence and C(K)=4.2±0.2 for full MHD turbulence, which is higher than the hydrodynamic value of 1.64. This larger C(K) indicates inefficient energy transfer in MHD turbulence, which is in agreement with diffuse locality.

  11. Turbulent MHD transport coefficients - An attempt at self-consistency

    Science.gov (United States)

    Chen, H.; Montgomery, D.

    1987-01-01

    In this paper, some multiple scale perturbation calculations of turbulent MHD transport coefficients begun in earlier papers are first completed. These generalize 'alpha effect' calculations by treating the velocity field and magnetic field on the same footing. Then the problem of rendering such calculations self-consistent is addressed, generalizing an eddy-viscosity hypothesis similar to that of Heisenberg for the Navier-Stokes case. The method also borrows from Kraichnan's direct interaction approximation. The output is a set of integral equations relating the spectra and the turbulent transport coefficients. Previous 'alpha effect' and 'beta effect' coefficients emerge as limiting cases. A treatment of the inertial range can also be given, consistent with a -5/3 energy spectrum power law. In the Navier-Stokes limit, a value of 1.72 is extracted for the Kolmogorov constant. Further applications to MHD are possible.

  12. Spectrum of weak magnetohydrodynamic turbulence.

    Science.gov (United States)

    Boldyrev, Stanislav; Perez, Jean Carlos

    2009-11-27

    Turbulence of magnetohydrodynamic waves in nature and in the laboratory is generally cross-helical or nonbalanced, in that the energies of Alfvén waves moving in opposite directions along the guide magnetic field are unequal. Based on high-resolution numerical simulations it is proposed that such turbulence spontaneously generates a condensate of the residual energy E(v) - E(b) at small field-parallel wave numbers. As a result, the energy spectra of Alfvén waves are generally not scale invariant in an inertial interval of limited extent. In the limit of an infinite Reynolds number, the universality is asymptotically restored at large wave numbers, and both spectra attain the scaling E(k) proportional to k(perpendicular)(-2). The generation of a condensate is apparently related to the breakdown of mirror symmetry in nonbalanced turbulence.

  13. Intermittency in MHD turbulence and coronal nanoflares modelling

    Directory of Open Access Journals (Sweden)

    P. Veltri

    2005-01-01

    Full Text Available High resolution numerical simulations, solar wind data analysis, and measurements at the edges of laboratory plasma devices have allowed for a huge progress in our understanding of MHD turbulence. The high resolution of solar wind measurements has allowed to characterize the intermittency observed at small scales. We are now able to set up a consistent and convincing view of the main properties of MHD turbulence, which in turn constitutes an extremely efficient tool in understanding the behaviour of turbulent plasmas, like those in solar corona, where in situ observations are not available. Using this knowledge a model to describe injection, due to foot-point motions, storage and dissipation of MHD turbulence in coronal loops, is built where we assume strong longitudinal magnetic field, low beta and high aspect ratio, which allows us to use the set of reduced MHD equations (RMHD. The model is based on a shell technique in the wave vector space orthogonal to the strong magnetic field, while the dependence on the longitudinal coordinate is preserved. Numerical simulations show that injected energy is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. Due to the strong longitudinal magnetic field, dissipative structures propagate along the loop, with the typical speed of the Alfvén waves. The statistical analysis on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics. Moreover the recent observations of non thermal velocity measurements during flare occurrence are well described by the numerical results of the simulation model. All these results naturally emerge from the model dynamical evolution without any need of an ad-hoc hypothesis.

  14. MHD Turbulent Mixing Layers: Equilibrium Cooling Models

    CERN Document Server

    Esquivel, A; Cho, J; Lazarian, A; Leitner, S N

    2006-01-01

    We present models of turbulent mixing at the boundaries between hot (T~10^{6-7} K) and warm material (T~10^4 K) in the interstellar medium, using a three-dimensional magnetohydrodynamical code, with radiative cooling. The source of turbulence in our simulations is a Kelvin-Helmholtz instability, produced by shear between the two media. We found, that because the growth rate of the large scale modes in the instability is rather slow, it takes a significant amount of time (~1 Myr) for turbulence to produce effective mixing. We find that the total column densities of the highly ionized species (C IV, N V, and O VI) per interface (assuming ionization equilibrium) are similar to previous steady-state non-equilibrium ionization models, but grow slowly from log N ~10^{11} to a few 10^{12} cm^{-2} as the interface evolves. However, the column density ratios can differ significantly from previous estimates, with an order of magnitude variation in N(C IV)/N(O VI) as the mixing develops.

  15. Final Report: "Large-Eddy Simulation of Anisotropic MHD Turbulence"

    Energy Technology Data Exchange (ETDEWEB)

    Zikanov, Oleg

    2008-06-23

    To acquire better understanding of turbulence in flows of liquid metals and other electrically conducting fluids in the presence of steady magnetic fields and to develop an accurate and physically adequate LES (large-eddy simulation) model for such flows. The scientific objectives formulated in the project proposal have been fully completed. Several new directions were initiated and advanced in the course of work. Particular achievements include a detailed study of transformation of turbulence caused by the imposed magnetic field, development of an LES model that accurately reproduces this transformation, and solution of several fundamental questions of the interaction between the magnetic field and fluid flows. Eight papers have been published in respected peer-reviewed journals, with two more papers currently undergoing review, and one in preparation for submission. A post-doctoral researcher and a graduate student have been trained in the areas of MHD, turbulence research, and computational methods. Close collaboration ties have been established with the MHD research centers in Germany and Belgium.

  16. Magnetosheath Turbulence at MHD Scales: A Statistical Study

    Science.gov (United States)

    Huang, Shiyong; Sahraoui, Fouad; Hadid, Lina; Yuan, Zhigang

    2015-04-01

    Turbulence is ubiquitous in space plasmas, such as terrestrial magnetotail and magnetosheath, solar wind, or the interstellar medium. In the solar wind, it is well established that at MHD scales, the magnetic energy spectra generally follow the so-called Kolmogorov's spectrum f-5/3. In the magnetosheath, Alexandrova et al. [2006] observed a Kolmogorov-like inertial range in the frequency range f < fci. In this study, we used three years data from the Cluster mission to statistically investigate the existence of the Kolmogorov inertial range in the whole magnetosheath, including flanks and subsolar regions. Statistical results show that most spectra are shallower than the Kolmogorov one, and have a scaling ~ f-1recalling the energy containing scales of solarwind turbulence. These spectra were found to be populated by uncorrelated fluctuations. The Kolmogorov scaling is observed only away from the bock shock and in the flanks region. These results suggest that random-like fluctuations are generated behind the shock, which reach a fully developed turbulence state only after some time corresponding to their propagation (or advection) away from the shock. At kinetic scales no dependence of the turbulence scaling on the location in the magnetosheath was found.

  17. Non-ideal MHD turbulent decay in molecular clouds

    CERN Document Server

    Downes, T P

    2009-01-01

    It is well known that non-ideal magnetohydrodynamic effects are important in the dynamics of molecular clouds: both ambipolar diffusion and possibly the Hall effect have been identified as significant. We present the results of a suite of simulations with a resolution of 512-cubed of turbulent decay in molecular clouds incorporating a simplified form of both ambipolar diffusion and the Hall effect simultaneously. The initial velocity field in the turbulence is varied from being super-Alfv\\'enic and hypersonic, through to trans-Alfv\\'enic but still supersonic. We find that ambipolar diffusion increases the rate of decay of the turbulence increasing the decay from $t^{-1.25}$ to $t^{-1.4}$. The Hall effect has virtually no impact in this regard. The power spectra of density, velocity and the magnetic field are all affected by the non-ideal terms, being steepened significantly when compared with ideal MHD turbulence with exponents. The density power spectra components change from about 1.4 to about 2.1 for the i...

  18. Kinetic cascade beyond MHD of solar wind turbulence in two-dimensional hybrid simulations

    CERN Document Server

    Verscharen, Daniel; Motschmann, Uwe; Müller, Joachim

    2012-01-01

    The nature of solar wind turbulence in the dissipation range at scales much smaller than the large MHD scales remains under debate. Here a two-dimensional model based on the hybrid code abbreviated as A.I.K.E.F. is presented, which treats massive ions as particles obeying the kinetic Vlasov equation and massless electrons as a neutralizing fluid. Up to a certain wavenumber in the MHD regime, the numerical system is initialized by assuming a superposition of isotropic Alfv\\'en waves with amplitudes that follow the empirically confirmed spectral law of Kolmogorov. Then turbulence develops and energy cascades into the dispersive spectral range, where also dissipative effects occur. Under typical solar wind conditions, weak turbulence develops as a superposition of normal modes in the kinetic regime. Spectral analysis in the direction parallel to the background magnetic field reveals a cascade of left-handed Alfv\\'en/ion-cyclotron waves up to wave vectors where their resonant absorption sets in, as well as a cont...

  19. Damping of MHD turbulence in partially ionized plasma: implications for cosmic ray propagation

    CERN Document Server

    Xu, Siyao; Lazarian, A

    2015-01-01

    We study the damping from neutral-ion collisions of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in partially ionized medium. We start from the linear analysis of MHD waves applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and cutoff boundary of linear MHD waves is investigated. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and solar chromosphere. As a significant astrophysical utility, we introduce damping effects to propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.

  20. Evolution of self-gravitating magnetized disks. II- Interaction between MHD turbulence and gravitational instabilities

    CERN Document Server

    Fromang, S; Terquem, C; De Villiers, J P; Fromang, Sebastien; Balbus, Steven A.; Terquem, Caroline; Villiers, Jean-Pierre De

    2004-01-01

    We present 3D magnetohydrodynamic (MHD) numerical simulations of the evolution of self--gravitating and weakly magnetized disks with an adiabatic equation of state. Such disks are subject to the development of both the magnetorotational and gravitational instabilities, which transport angular momentum outward. As in previous studies, our hydrodynamical simulations show the growth of strong m=2 spiral structure. This spiral disturbance drives matter toward the central object and disappears when the Toomre parameter Q has increased well above unity. When a weak magnetic field is present as well, the magnetorotational instability grows and leads to turbulence. In that case, the strength of the gravitational stress tensor is lowered by a factor of about~2 compared to the hydrodynamical run and oscillates periodically, reaching very small values at its minimum. We attribute this behavior to the presence of a second spiral mode with higher pattern speed than the one which dominates in the hydrodynamical simulations...

  1. A heuristic model for MRI turbulent stresses in Hall MHD

    CERN Document Server

    Lingam, M

    2016-01-01

    Although the Shakura-Sunyaev $\\alpha$ viscosity prescription has been highly successful in characterizing myriad astrophysical environments, it has proven to be partly inadequate in modelling turbulent stresses driven by the MRI. Hence, we adopt the approach employed by \\citet{GIO03}, but in the context of Hall magnetohydrodynamics (MHD), to study MRI turbulence. We utilize the exact evolution equations for the stresses, and the non-linear terms are closed through the invocation of dimensional analysis and physical considerations. We demonstrate that the inclusion of the Hall term leads to non-trivial results, including the modification of the Reynolds and Maxwell stresses, as well as the (asymptotic) non-equipartition between the kinetic and magnetic energies; the latter issue is also addressed via the analysis of non-linear waves. The asymptotic ratio of the kinetic and magnetic energies is shown to be \\emph{independent} of the choice of initial conditions, but it is governed by the \\emph{Hall parameter}. W...

  2. Cosmic-ray pitch-angle scattering in imbalanced MHD turbulence simulations

    CERN Document Server

    Weidl, Martin S; Teaca, Bogdan; Schlickeiser, Reinhard

    2015-01-01

    Pitch-angle scattering rates for cosmic-ray particles in magnetohydrodynamic (MHD) simulations with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare with theoretical predictions derived from the quasilinear theory of cosmic-ray diffusion for an idealized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion coefficient. Additional simulations in evolving magnetic fields or static field configurations provide evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence with propagating Alfven waves, but an effect of the spatial structure of electric fields in cross-helical MHD turbulence.

  3. A MHD-turbulence model for solar corona

    Science.gov (United States)

    Romeou, Z.; Velli, M.; Einaudi, G.

    2009-02-01

    The disposition of energy in the solar corona has always been a problem of great interest. It remains an open question how the low temperature photosphere supports the occurence of solar extreme phenomena. In this work, a turbulent heating mechanism for the solar corona through the framework of reduced magnetohydrodynamics (RMHD) is proposed. Two-dimensional incompressible long time simulations of the average energy disposition have been carried out with the aim to reveal the characteristics of the long time statistical behavior of a two-dimensional cross-section of a coronal loop and the importance of the photospheric time scales in the understanding of the underlying mechanisms. It was found that for a slow, shear type photospheric driving the magnetic field in the loop self-organizes at large scales via an inverse MHD cascade. The system undergoes three distinct evolutionary phases. The initial forcing conditions are quickly “forgotten” giving way to an inverse cascade accompanied with and ending up to electric current dissipation. Scaling laws are being proposed in order to quantify the nonlinearity of the system response which seems to become more impulsive for decreasing resistivity. It is also shown that few, if any, qualitative changes in the above results occur by increasing spatial resolution.

  4. Wavelet transforms and their applications to MHD and plasma turbulence: a review

    CERN Document Server

    Farge, Marie

    2015-01-01

    Wavelet analysis and compression tools are reviewed and different applications to study MHD and plasma turbulence are presented. We introduce the continuous and the orthogonal wavelet transform and detail several statistical diagnostics based on the wavelet coefficients. We then show how to extract coherent structures out of fully developed turbulent flows using wavelet-based denoising. Finally some multiscale numerical simulation schemes using wavelets are described. Several examples for analyzing, compressing and computing one, two and three dimensional turbulent MHD or plasma flows are presented.

  5. Applications of continuous and orthogonal wavelet transforms to MHD and plasma turbulence

    Science.gov (United States)

    Farge, Marie; Schneider, Kai

    2016-10-01

    Wavelet analysis and compression tools are presented and different applications to study MHD and plasma turbulence are illustrated. We use the continuous and the orthogonal wavelet transform to develop several statistical diagnostics based on the wavelet coefficients. We show how to extract coherent structures out of fully developed turbulent flows using wavelet-based denoising and describe multiscale numerical simulation schemes using wavelets. Several examples for analyzing, compressing and computing one, two and three dimensional turbulent MHD or plasma flows are presented. Details can be found in M. Farge and K. Schneider. Wavelet transforms and their applications to MHD and plasma turbulence: A review. Support by the French Research Federation for Fusion Studies within the framework of the European Fusion Development Agreement (EFDA) is thankfully acknowledged.

  6. Cascades and Spectra of Elastic Turbulence in 2D: Spinodal Decomposition & MHD

    Science.gov (United States)

    Fan, Xiang; Diamond, Patrick; Chacon, Luis

    2016-10-01

    We report on studies of turbulence in 2D spinodal decompositions of symmetric binary mixtures. This study emphasizes a comparison and contrast of the physics of spinodal turbulence with that of 2D MHD turbulence. The important similarities include basic equations, ideal quadratic conserved quantities, cascade directions and elastic waves. Turbulence in spinodal decomposition exhibits an elastic range when the Hinze scale is sufficiently larger than the dissipation scale, i.e. LH k (analogous to HkA ≡k in MHD) scales as k - 7 / 3. This suggests an inverse cascade of Hψ, corresponding to the case in MHD. However, we also show that, the kinetic energy spectrum scales as k-3, as in the direct enstrophy cascade range for a 2D fluid (not MHD!). The resolution of this dilemma is that capillarity acts only at blob boundaries. This is in contrast to B in MHD. Thus, as blob merger progresses, the packing fraction of interfaces decreases, thus explaining the outcome for the kinetic energy spectrum. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

  7. Temporal and Spatial Turbulent Spectra of MHD Plasma and an Observation of Variance Anisotropy

    CERN Document Server

    Schaffner, D A; Lukin, V S

    2014-01-01

    The nature of MHD turbulence is analyzed through both temporal and spatial magnetic fluctuation spectra. A magnetically turbulent plasma is produced in the MHD wind-tunnel configuration of the Swarthmore Spheromak Experiment (SSX). The power of magnetic fluctuations is projected into directions perpendicular and parallel to a local mean field; the ratio of these quantities shows the presence of variance anisotropy which varies as a function of frequency. Comparison amongst magnetic, velocity, and density spectra are also made, demonstrating that the energy of the turbulence observed is primarily seeded by magnetic fields created during plasma production. Direct spatial spectra are constructed using multi-channel diagnostics and are used to compare to frequency spectra converted to spatial scales using the Taylor Hypothesis. Evidence for the observation of dissipation due to ion inertial length scale physics is also discussed as well as the role laboratory experiment can play in understanding turbulence typica...

  8. Resonance broadening modification of weak plasma turbulence theory

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, A. (Max-Planck-Inst. fuer Aeronomie, Katlenburg-Lindau (West Germany))

    1991-02-01

    The author examines the effects on energy spectra of weak Langmuir turbulence when he includes a nonlinear damping due to the perturbation of electron orbits. The physical mechanism under consideration is usually known as a resonance broadening effect. The calculations show that the inclusion of this additional damping reduces the number of cascades predicted from weak turbulence theory for waves detectable with the EISCAT UHF (933 MHz) radar in Tromso, Norway, during RF modification of the ionospheric plasma.

  9. Turbulence in weakly-ionized proto-planetary disks

    CERN Document Server

    Flock, M; Klahr, H

    2012-01-01

    We investigate the characteristic properties of self-sustained MRI turbulence in low-ionized proto-planetary disks. We study the transition regime between active and dead-zone, performing 3D global non-ideal MHD simulations of stratified disk covering range of magnetic Reynolds number between 2700 5000 with a strength of alpha ~ 0.01. Below Rm < 5000 the MRI starts to decay at the midplane, having Elsasser numbers below one. We find a transition regime between 3300 < Rm < 5000 where the MRI turbulence is still sustained but damped. At around Rm < 3000 the MRI turbulence decays but could reestablished due to the accumulation of toroidal magnetic field or the radial transport of magnetic field from the active region. Below Rm < 3000 the MRI cannot be sustained and is decaying. Here hydro-dynamical motions, like density waves dominate. We observe anti-cyclonic vortices in the transition between dead-zone and active zone.

  10. Wave damping by MHD turbulence and its effect upon cosmic ray propagation in the ISM

    CERN Document Server

    Farmer, A J; Farmer, Alison J.; Goldreich, Peter

    2004-01-01

    Cosmic rays scatter off magnetic irregularities (Alfven waves) with which they are resonant, that is waves of wavelength comparable to their gyroradii. These waves may be generated either by the cosmic rays themselves, if they stream faster than the Alfven speed, or by sources of MHD turbulence. Waves excited by streaming cosmic rays are ideally shaped for scattering, whereas the scattering efficiency of MHD turbulence is severely diminished by its anisotropy. We show that MHD turbulence has an indirect effect on cosmic ray propagation by acting as a damping mechanism for cosmic ray generated waves. The hot (``coronal'') phase of the interstellar medium is the best candidate location for cosmic ray confinement by scattering from self-generated waves. We relate the streaming velocity of cosmic rays to the rate of turbulent dissipation in this medium, for the case in which turbulent damping is the dominant damping mechanism. We conclude that cosmic rays with up to 10^2 GeV could not stream much faster than the ...

  11. Enhanced MHD transport in astrophysical accretion flows: turbulence, winds and jets

    CERN Document Server

    Dobbie, Peter B; Bicknell, Geoffrey V; Salmeron, Raquel

    2009-01-01

    Astrophysical accretion is arguably the most prevalent physical process in the Universe; it occurs during the birth and death of individual stars and plays a pivotal role in the evolution of entire galaxies. Accretion onto a black hole, in particular, is also the most efficient mechanism known in nature, converting up to 40% of accreting rest mass energy into spectacular forms such as high-energy (X-ray and gamma-ray) emission and relativistic jets. Whilst magnetic fields are thought to be ultimately responsible for these phenomena, our understanding of the microphysics of MHD turbulence in accretion flows as well as large-scale MHD outflows remains far from complete. We present a new theoretical model for astrophysical disk accretion which considers enhanced vertical transport of momentum and energy by MHD winds and jets, as well as transport resulting from MHD turbulence. We also describe new global, 3D simulations that we are currently developing to investigate the extent to which non-ideal MHD effects may...

  12. Nanoflares and MHD turbulence in coronal loops: a hybrid shell model.

    Science.gov (United States)

    Nigro, Giuseppina; Malara, Francesco; Carbone, Vincenzo; Veltri, Pierluigi

    2004-05-14

    A model to describe injection, due to footpoint motions, storage, and dissipation of MHD turbulence in coronal loops, is presented. The model is based on the use of the shell technique in the wave vector space applied to the set of reduced MHD equations. Numerical simulation showed that the energy injected is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions among these fluctuations give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. The statistical analysis performed on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics.

  13. Renormalization Group Analysis of Weakly Rotating Turbulent Flows

    Institute of Scientific and Technical Information of China (English)

    王晓宏; 周全

    2011-01-01

    Dynamic renormalization group (RNG) analysis is applied to the investigation of the behavior of the infrared limits of weakly rotating turbulence. For turbulent How subject to weak rotation, the anisotropic part in the renormalized propagation is considered to be a perturbation of the isotropic part. Then, with a low-order approximation, the coarsening procedure of RNG transformation is performed. After implementing the coarsening and rescaling procedures, the RNG analysis suggests that the spherically averaged energy spectrum has the scaling behavior E(k) ∝ k11/5 for weakly rotating turbulence. It is also shown that the Coriolis force will disturb the stability of the Kolmogorov -5/3 energy spectrum and will change the scaling behavior even in the case of weak rotation.%Dynamic renormalization group(RNG)analysis is applied to the investigation of the behavior of the infrared limits of weakly rotating turbulence.For turbulent flow subject to weak rotation,the anisotropic part in the renormalized propagation is considered to be a perturbation of the isotropic part.Then,with a low-order approximation,the coarsening procedure of RNG transformation is performed.After implementing the coarsening and rescaling procedures,the RNG analysis suggests that the spherically averaged energy spectrum has the scaling behavior E(k)∝ k-11/5 for weakly rotating turbulence.It is also shown that the Coriolis force will disturb the stability of the Kolmogorov-5/3 energy spectrum and will change the scaling behavior even in the case of weak rotation.

  14. Exploring reconnection, current sheets, and dissipation in a laboratory MHD turbulence experiment

    Science.gov (United States)

    Schaffner, D. A.

    2015-12-01

    The Swarthmore Spheromak Experiment (SSX) can serve as a testbed for studying MHD turbulence in a controllable laboratory setting, and in particular, explore the phenomena of reconnection, current sheets and dissipation in MHD turbulence. Plasma with turbulently fluctuating magnetic and velocity fields can be generated using a plasma gun source and launched into a flux-conserving cylindrical tunnel. No background magnetic field is applied so internal fields are allowed to evolve dynamically. Point measurements of magnetic and velocity fluctuations yield broadband power-law spectra with a steepening breakpoint indicative of the onset of a dissipation scale. The frequency range at which this steepening occurs can be correlated to the ion inertial scale of the plasma, a length which is characteristic of the size of current sheets in MHD plasmas and suggests a connection to dissipation. Observation of non-Gaussian intermittent jumps in magnetic field magnitude and angle along with measurements of ion temperature bursts suggests the presence of current sheets embedded within the turbulent plasma, and possibly even active reconnection sites. Additionally, structure function analysis coupled with appeals to fractal scaling models support the hypothesis that current sheets are associated with dissipation in this system.

  15. Intermittent heating of the solar corona by MHD turbulence

    Directory of Open Access Journals (Sweden)

    É. Buchlin

    2007-10-01

    Full Text Available As the dissipation mechanisms considered for the heating of the solar corona would be sufficiently efficient only in the presence of small scales, turbulence is thought to be a key player in the coronal heating processes: it allows indeed to transfer energy from the large scales to these small scales. While Direct numerical simulations which have been performed to investigate the properties of magnetohydrodynamic turbulence in the corona have provided interesting results, they are limited to small Reynolds numbers. We present here a model of coronal loop turbulence involving shell-models and Alfvén waves propagation, allowing the much faster computation of spectra and turbulence statistics at higher Reynolds numbers. We also present first results of the forward-modelling of spectroscopic observables in the UV.

  16. Numerical Simulations of Driven Supersonic Relativistic MHD Turbulence

    CERN Document Server

    Zrake, Jonathan; 10.1063/1.3621748

    2011-01-01

    Models for GRB outflows invoke turbulence in relativistically hot magnetized fluids. In order to investigate these conditions we have performed high-resolution three-dimensional numerical simulations of relativistic magneto-hydrodynamical (RMHD) turbulence. We find that magnetic energy is amplified to several percent of the total energy density by turbulent twisting and folding of magnetic field lines. Values of epsilon_B near 1% are thus naturally expected. We study the dependence of saturated magnetic field energy fraction as a function of Mach number and relativistic temperature. We then present power spectra of the turbulent kinetic and magnetic energies. We also present solenoidal (curl-like) and dilatational (divergence-like) power spectra of kinetic energy. We propose that relativistic effects introduce novel couplings between these spectral components. The case we explore in most detail is for equal amounts of thermal and rest mass energy, corresponding to conditions after collisions of shells with re...

  17. Alignment of Velocity and Magnetic Fluctuations in Simulations of Anisotropic MHD Turbulence

    Science.gov (United States)

    Ng, C. S.; Bhattacharjee, A.

    2007-11-01

    There has been recent theoretical interest in the effect of the alignment of velocity and magnetic fluctuations in three-dimensional (3D) MHD turbulence with a large-scale magnetic field [Boldyrev 2005, 2006]. This theory predicts that the angle θ between the velocity and magnetic fluctuation vectors has a scaling of θ&1/4circ;, where λ is the spatial scale of the fluctuations. There have also been simulations on 3D forced MHD turbulence that supports this prediction [Mason et al. 2006, 2007]. The scaling has also been tested against observations of solar wind turbulence [Podesta et al. 2007]. We report here simulation results based on decaying 2D turbulence. The scaling of θ&1/4circ; and Iroshnikov-Kraichnan scaling has also been observed within a range of time interval and spatial scales, despite the fact that Boldyrev's theory was developed for fully 3D turbulence in the presence of a strong external field. As the external field is reduced in magnitude and becomes comparable to the magnitude of magnetic fluctuations or lower, the scale-dependent alignment is weakened. Implications for observations of solar wind turbulence will be discussed.

  18. Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L∞(O,T;Ln(Ω))

    Institute of Scientific and Technical Information of China (English)

    Yan YONG; Quan Sen JIU

    2009-01-01

    In this paper, we study the energy equality and the uniqueness of weak solutions to the MHD equations in the critical space L∞(O,T; Ln(Ω)). We prove that if the velocity u belongs to the critical space L∞(O,T; Ln(Ω)), the energy equality holds. On the basis of the energy equality, we further prove that the weak solution to the MHD equations is unique.

  19. Corotation torques experienced by planets embedded in weakly magnetized turbulent discs

    CERN Document Server

    Baruteau, C; Nelson, R P; Masset, F

    2011-01-01

    The migration of low-mass planets is driven by the differential Lindblad torque and the corotation torque in non-magnetic viscous models of protoplanetary discs. The corotation torque has recently received detailed attention as it may slow down, stall, or reverse migration. In laminar viscous disc models, the long-term evolution of the corotation torque is intimately related to viscous and thermal diffusion processes in the planet's horseshoe region. This paper examines the properties of the corotation torque in discs where MHD turbulence develops as a result of the magnetorotational instability, considering a weak initial toroidal magnetic field. We present results of 3D MHD simulations carried out with two different codes. Non-ideal MHD effects and the disc's vertical stratification are neglected, and locally isothermal disc models are considered. The running time-averaged torque exerted by the disc on a fixed planet is evaluated in three disc models. We first present results with an inner disc cavity (plan...

  20. NATO Advanced Study Institute on Turbulence, Weak and Strong

    CERN Document Server

    Cardoso, O

    1994-01-01

    The present volume comprises the contributions of some of the participants of the NATO Advance Studies Institute "Turbulence, Weak and Strong", held in Cargese, in August 1994. More than 70 scientists, from seniors to young students, have joined to­ gether to discuss and review new (and not so new) ideas and developments in the study of turbulence. One of the objectives of the School was to incorporate, in the same meeting, two aspects of turbulence, which are obviously linked, and which are often treated sep­ arately: fully developed turbulence (in two and three dimensions) and weak turbulence (essentially one and two-dimensional systems). The idea of preparing a dictionary rather than ordinary proceedings started from the feeling that the terminology of turbulence includes many long, technical, poorly evocative words, which are usually not understood by people exterior to the field, and which might be worth explaining. Students who start working in the field of turbulence face a sort of curious situation:...

  1. Atmospheric Quantum Channels with Weak and Strong Turbulence

    Science.gov (United States)

    Vasylyev, D.; Semenov, A. A.; Vogel, W.

    2016-08-01

    The free-space transfer of high-fidelity optical signals between remote locations has many applications, including both classical and quantum communication, precision navigation, clock synchronization, etc. The physical processes that contribute to signal fading and loss need to be carefully analyzed in the theory of light propagation through the atmospheric turbulence. Here we derive the probability distribution for the atmospheric transmittance including beam wandering, beam shape deformation, and beam-broadening effects. Our model, referred to as the elliptic beam approximation, applies to weak, weak-to-moderate, and strong turbulence and hence to the most important regimes in atmospheric communication scenarios.

  2. Freely decaying weak turbulence for sea surface gravity waves.

    Science.gov (United States)

    Onorato, M; Osborne, A R; Serio, M; Resio, D; Pushkarev, A; Zakharov, V E; Brandini, C

    2002-09-30

    We study the long-time evolution of deep-water ocean surface waves in order to better understand the behavior of the nonlinear interaction processes that need to be accurately predicted in numerical models of wind-generated ocean surface waves. Of particular interest are those nonlinear interactions which are predicted by weak turbulence theory to result in a wave energy spectrum of the form of [k](-2.5). We numerically implement the primitive Euler equations for surface waves and demonstrate agreement between weak turbulence theory and the numerical results.

  3. Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    H. R. Strauss

    2012-11-27

    The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.

  4. DNS of MHD turbulent flow via the HELIOS supercomputer system at IFERC-CSC

    Science.gov (United States)

    Satake, Shin-ichi; Kimura, Masato; Yoshimori, Hajime; Kunugi, Tomoaki; Takase, Kazuyuki

    2014-06-01

    The simulation plays an important role to estimate characteristics of cooling in a blanket for such high heating plasma in ITER-BA. An objective of this study is to perform large -scale direct numerical simulation (DNS) on heat transfer of magneto hydro dynamic (MHD) turbulent flow on coolant materials assumed from Flibe to lithium. The coolant flow conditions in ITER-BA are assumed to be Reynolds number and Hartmann number of a higher order. The maximum target of the DNS assumed by this study based on the result of the benchmark of Helios at IFERC-CSC for Project cycle 1 is 116 TB (2048 nodes). Moreover, we tested visualization by ParaView to visualize directly the large-scale computational result. If this large-scale DNS becomes possible, an essential understanding and modelling of a MHD turbulent flow and a design of nuclear fusion reactor contributes greatly.

  5. SOLAR WIND TURBULENCE FROM MHD TO SUB-ION SCALES: HIGH-RESOLUTION HYBRID SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Franci, Luca; Verdini, Andrea; Landi, Simone [Dipartimento di Fisica e Astronomia, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy); Matteini, Lorenzo [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Hellinger, Petr [Astronomical Institute, AS CR, Bocni II/1401, CZ-14100 Prague (Czech Republic)

    2015-05-10

    We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wavenumbers. The simulation results simultaneously exhibit several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magnetohydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind, large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm’s law.

  6. On the nature of MHD and kinetic scale turbulence in the magnetosheath of Saturn: Cassini observations

    Science.gov (United States)

    Hadid, L.; Sahraoui, F.; Kiyani, K. H.; Retino, A.; Modolo, R.; Masters, A.; Dougherty, M.

    2015-10-01

    Low frequency turbulence in Saturn's magnetosheath is investigated using in-situ measurements of the Cassini spacecraft. We focus on the magnetic energy spectra computed in the frequency range # [10-4, 1]Hz. Three main results are reported: 1) The magnetic energy spectra showed a # f-1 scaling at MHD scales followed by an # f-2.6 scaling at the sub-ion scales without forming the so-called inertial range, breaking the universality of the Kolmogorov spectrum in the magnetosheath; 2) The magnetic compressibility and the cross-correlation between the parallel component of the magnetic field and density fluctuations C(#n, #B||) indicate the dominance of the compressible magnetosonic slow modes at MHD scales rather than the Alfvén mode [3] ; 3) Higher order statistics revealed a monofractal (resp. multifractal) behaviour of the turbulent flow behind a quasiperpendicular (resp. quasi-parallel) shock at the subion scales.

  7. Impact of observational uncertainties on universal scaling of MHD turbulence

    CERN Document Server

    Gogoberidze, G; Hnat, B; Dunlop, M W

    2011-01-01

    Scaling exponents are the central quantitative prediction of theories of turbulence and in-situ satellite observations of the high Reynolds number solar wind flow have provided an extensive testbed of these. We propose a general, instrument independent method to estimate the uncertainty of velocity field fluctuations. We obtain the systematic shift that this uncertainty introduces into the observed spectral exponent. This shift is essential for the correct interpretation of observed scaling exponents. It is sufficient to explain the contradiction between spectral features of the Elsasser fields observed in the solar wind with both theoretical models and numerical simulations of Magnetohydrodynamic turbulence.

  8. MAGNETOHYDRODYNAMIC WAVES AND CORONAL HEATING: UNIFYING EMPIRICAL AND MHD TURBULENCE MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Igor V.; Van der Holst, Bart; Oran, Rona; Jin, Meng; Manchester, Ward B. IV; Gombosi, Tamas I. [Department of AOSS, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Downs, Cooper [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Roussev, Ilia I. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Evans, Rebekah M., E-mail: igorsok@umich.edu [NASA Goddard Space Flight Center, Space Weather Lab, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2013-02-10

    We present a new global model of the solar corona, including the low corona, the transition region, and the top of the chromosphere. The realistic three-dimensional magnetic field is simulated using the data from the photospheric magnetic field measurements. The distinctive feature of the new model is incorporating MHD Alfven wave turbulence. We assume this turbulence and its nonlinear dissipation to be the only momentum and energy source for heating the coronal plasma and driving the solar wind. The difference between the turbulence dissipation efficiency in coronal holes and that in closed field regions is because the nonlinear cascade rate degrades in strongly anisotropic (imbalanced) turbulence in coronal holes (no inward propagating wave), thus resulting in colder coronal holes, from which the fast solar wind originates. The detailed presentation of the theoretical model is illustrated with the synthetic images for multi-wavelength EUV emission compared with the observations from SDO AIA and STEREO EUVI instruments for the Carrington rotation 2107.

  9. MHD turbulence-Star Formation Connection: from pc to kpc scales

    CERN Document Server

    Pino, E M de Gouveia Dal; Lazarian, A; Leão, M R M; Falceta-Gonçalves, D; Kowal, G

    2011-01-01

    The transport of magnetic flux to outside of collapsing molecular clouds is a required step to allow the formation of stars. Although ambipolar diffusion is often regarded as a key mechanism for that, it has been recently argued that it may not be efficient enough. In this review, we discuss the role that MHD turbulence plays in the transport of magnetic flux in star forming flows. In particular, based on recent advances in the theory of fast magnetic reconnection in turbulent flows, we will show results of three-dimensional numerical simulations that indicate that the diffusion of magnetic field induced by turbulent reconnection can be a very efficient mechanism, especially in the early stages of cloud collapse and star formation. To conclude, we will also briefly discuss the turbulence-star formation connection and feedback in different astrophysical environments: from galactic to cluster of galaxy scales.

  10. JOINT INVERSE CASCADE OF MAGNETIC ENERGY AND MAGNETIC HELICITY IN MHD TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, R.; Frick, P.; Mizeva, I. [Institute of Continuous Media Mechanics, Korolyov str. 1, 614013 Perm (Russian Federation)

    2015-01-10

    We show that oppositely directed fluxes of energy and magnetic helicity coexist in the inertial range in fully developed magnetohydrodynamic (MHD) turbulence with small-scale sources of magnetic helicity. Using a helical shell model of MHD turbulence, we study the high Reynolds number MHD turbulence for helicity injection at a scale that is much smaller than the scale of energy injection. In a short range of scales larger than the forcing scale of magnetic helicity, a bottleneck-like effect appears, which results in a local reduction of the spectral slope. The slope changes in a domain with a high level of relative magnetic helicity, which determines that part of the magnetic energy is related to the helical modes at a given scale. If the relative helicity approaches unity, the spectral slope tends to –3/2. We show that this energy pileup is caused by an inverse cascade of magnetic energy associated with the magnetic helicity. This negative energy flux is the contribution of the pure magnetic-to-magnetic energy transfer, which vanishes in the non-helical limit. In the context of astrophysical dynamos, our results indicate that a large-scale dynamo can be affected by the magnetic helicity generated at small scales. The kinetic helicity, in particular, is not involved in the process at all. An interesting finding is that an inverse cascade of magnetic energy can be provided by a small-scale source of magnetic helicity fluctuations without a mean injection of magnetic helicity.

  11. Weak turbulence theory and simulation of the gyro-water-bag model.

    Science.gov (United States)

    Besse, Nicolas; Bertrand, Pierre; Morel, Pierre; Gravier, Etienne

    2008-05-01

    The thermal confinement time of a magnetized fusion plasma is essentially determined by turbulent heat conduction across the equilibrium magnetic field. To achieve the study of turbulent thermal diffusivities, Vlasov gyrokinetic description of the magnetically confined plasmas is now commonly adopted, and offers the advantage over fluid models (MHD, gyrofluid) to take into account nonlinear resonant wave-particle interactions which may impact significantly the predicted turbulent transport. Nevertheless kinetic codes require a huge amount of computer resources and this constitutes the main drawback of this approach. A unifying approach is to consider the water-bag representation of the statistical distribution function because it allows us to keep the underlying kinetic features of the problem, while reducing the Vlasov kinetic model into a set of hydrodynamic equations, resulting in a numerical cost comparable to that needed for solving multifluid models. The present paper addresses the gyro-water-bag model derived as a water-bag-like weak solution of the Vlasov gyrokinetic models. We propose a quasilinear analysis of this model to retrieve transport coefficients allowing us to estimate turbulent thermal diffusivities without computing the full fluctuations. We next derive another self-consistent quasilinear model, suitable for numerical simulation, that we approximate by means of discontinuous Galerkin methods.

  12. MHD turbulence, cloud formation and star formation in the ISM

    CERN Document Server

    Vázquez-Semadeni, E; Pouquet, A

    1996-01-01

    We discuss the role of turbulence in cloud and star formation, as observed in numerical simulations of the interstellar medium. Turbulent compression at the interfaces of colliding gas streams is responsible for the formation of intermediate (\\simlt 100 pc) and small clouds (a few tens of pc), although the smallest clouds can also form from fragmentation of expanding shells around stellar heating centers. The largest cloud complexes (several hundred pc) seem to form by slow, gravitational instability-driven merging of individual clouds, which can actually be described as a large-scale tendency towards homogenization of the flow due to gravity rather than cloud collisions. These mechanisms operate as well in the presence of a magnetic field and rotation, although slight variations on the compressibility and cloud morphology are present which depend on the strength and topology of the field. In summary, the role of turbulence in the life-cycle of clouds appears to be twofold: small-scale modes contribute to clo...

  13. Extended MHD Turbulence and Its Applications to the Solar Wind

    Science.gov (United States)

    Abdelhamid, Hamdi M.; Lingam, Manasvi; Mahajan, Swadesh M.

    2016-10-01

    Extended MHD is a one-fluid model that incorporates two-fluid effects such as electron inertia and the Hall drift. This model is used to construct fully nonlinear Alfvénic wave solutions, and thereby derive the kinetic and magnetic spectra by resorting to a Kolmogorov-like hypothesis based on the constant cascading rates of the energy and generalized helicities of this model. The magnetic and kinetic spectra are derived in the ideal (k\\lt 1/{λ }i), Hall (1/{λ }i\\lt k\\lt 1/{λ }e), and electron inertia (k\\gt 1/{λ }e) regimes; k is the wavenumber and {λ }s=c/{ω }{ps} is the skin depth of species “s.” In the Hall regime, it is shown that the emergent results are fully consistent with previous numerical and analytical studies, especially in the context of the solar wind. The focus is primarily on the electron inertia regime, where magnetic energy spectra with power-law indexes of -11/3 and -13/3 are always recovered. The latter, in particular, is quite close to recent observational evidence from the solar wind with a potential slope of approximately -4 in this regime. It is thus plausible that these spectra may constitute a part of the (extended) inertial range, as opposed to the standard “dissipation” range paradigm.

  14. Extended MHD turbulence and its applications to the solar wind

    CERN Document Server

    Abdelhamid, Hamdi M; Mahajan, Swadesh M

    2016-01-01

    Extended MHD is a one-fluid model that incorporates two-fluid effects such as electron inertia and the Hall drift. This model is used to construct fully nonlinear Alfv\\'enic wave solutions, and thereby derive the kinetic and magnetic spectra by resorting to a Kolmogorov-like hypothesis based on the constant cascading rates of the energy and generalized helicities of this model. The magnetic and kinetic spectra are derived in the ideal $\\left(k 1/\\lambda_e\\right)$ regimes; $k$ is the wavenumber and $\\lambda_s = c/\\omega_{p s}$ is the skin depth of species `$s$'. In the Hall regime, it is shown that the emergent results are fully consistent with previous numerical and analytical studies, especially in the context of the solar wind. The focus is primarily on the electron inertia regime, where magnetic energy spectra with power-law indexes of $-11/3$ and $-13/3$ are always recovered. The latter, in particular, is quite close to recent observational evidence from the solar wind with a potential slope of approxima...

  15. Modeling Statistical Properties of Solar Active Regions through DNS of 3D-MHD Turbulence

    CERN Document Server

    Malapaka, Shiva Kumar

    2013-01-01

    Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the Active Regions (ARs), have been studied using the line-of-sight data from magnetograms taken by SOHO and several other instruments (see e.g. Abramenko et al (2002, 2003),Abramenko and Yurchyshyn (2010)). This includes structure functions and their exponents, flatness curves and correlation functions. In these works, the dependence of structure function exponents ($\\zeta_p$) of the order of the structure functions ($\\it{p}$) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper we compare some of the observations from Abramenko et al (2003) with the log-Poisson model (Biskamp 2003) used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustain...

  16. Large-scale Magnetic Structure Formation in 3D-MHD Turbulence

    CERN Document Server

    Malapaka, Shiva Kumar

    2013-01-01

    The inverse cascade of magnetic helicity in 3D-MHD turbulence is believed to be one of the processes responsible for large scale magnetic structure formation in astrophysical systems. In this work we present an exhaustive set of high resolution direct numerical simulations (DNS) of both forced and decaying 3D-MHD turbulence, to understand this structure formation process. It is first shown that an inverse cascade of magnetic helicity in small-scale driven turbulence does not necessarily generate coherent large-scale magnetic structures. The observed large-scale magnetic field, in this case, is severely perturbed by magnetic fluctuations generated by the small-scale forcing. In the decaying case, coherent large-scale structure form similar to those observed astronomically. Based on the numerical results the formation of large-scale magnetic structures in some astrophysical systems, is suggested to be the consequence of an initial forcing which imparts the necessary turbulent energy into the system, which, afte...

  17. Nature of the MHD and Kinetic Scale Turbulence in the Magnetosheath of Saturn: Cassini Observations

    Science.gov (United States)

    Hadid, L. Z.; Sahraoui, F.; Kiyani, K. H.; Retinò, A.; Modolo, R.; Canu, P.; Masters, A.; Dougherty, M. K.

    2015-11-01

    Low-frequency turbulence in Saturn’s magnetosheath is investigated using in situ measurements of the Cassini spacecraft. Focus is put on the magnetic energy spectra computed in the frequency range of ˜[10-4, 1]Hz. A set of 42 time intervals in the magnetosheath were analyzed, and three main results that contrast with known features of solar wind turbulence are reported. (1) The magnetic energy spectra showed a ˜f-1 scaling at MHD scales followed by an ˜ {f}-2.6 scaling at sub-ion scales without forming the so-called inertial range. (2) The magnetic compressibility and the cross-correlation between the parallel component of the magnetic field and density fluctuations C(δ n,δ {B}| | ) indicate the dominance of the compressible magnetosonic slow-like modes at MHD scales rather than the Alfvén mode. (3) Higher-order statistics revealed a monofractal (multifractal) behavior of the turbulent flow downstream of a quasi-perpendicular (quasi-parallel) shock at sub-ion scales. Implications of these results on theoretical modeling of space plasma turbulence are discussed.

  18. Formation of Rotational Discontinuities in Compressive three-dimensional MHD Turbulence

    CERN Document Server

    Yang, Liping; He, Jiansen; Tu, Chuanyi; Wang, Linghua; Marsch, Eckart; Wang, Xin; Zhang, Shaohua; Feng, Xueshang

    2015-01-01

    Measurements of solar wind turbulence reveal the ubiquity of discontinuities. In this study, we investigate how the discontinuities, especially rotational discontinuities (RDs), are formed in magnetohydrodynamic (MHD) turbulence. In a simulation of the decaying compressive three-dimensional (3-D) MHD turbulence with an imposed uniform background magnetic field, we detect RDs with sharp field rotations and little variations of magnetic field intensity as well as mass density. At the same time, in the de Hoffman-Teller (HT) frame, the plasma velocity is nearly in agreement with the Alfv\\'{e}n speed, and is field-aligned on both sides of the discontinuity. We take one of the identified RDs to analyze in details its 3-D structure and temporal evolution. By checking the magnetic field and plasma parameters, we find that the identified RD evolves from the steepening of the Alfv\\'{e}n wave with moderate amplitude, and that steepening is caused by the nonuniformity of the Alfv\\'{e}n speed in the ambient turbulence.

  19. Evidence for Decay of Turbulence by MHD Shocks in Molecular Clouds via CO Emission

    CERN Document Server

    Larson, Rebecca L; Green, Joel D; Yang, Yao-Lun

    2015-01-01

    We utilize observations of sub-millimeter rotational transitions of CO from a Herschel Cycle 2 open time program ("COPS", PI: J. Green) to identify previously predicted turbulent dissipation by magnetohydrodynamic (MHD) shocks in molecular clouds. We find evidence of the shocks expected for dissipation of MHD turbulence in material not associated with any protostar. Two models fit about equally well: model 1 has a density of 10$^{3}$ cm$^{-3}$, a shock velocity of 3 km s$^{-1}$, and a magnetic field strength of 4 ${\\mu}$G; model 2 has a density of 10$^{3.5}$ cm$^{-3}$, a shock velocity of $2$ km s$^{-1}$, and a magnetic field strength of 8 $\\mu$G. Timescales for decay of turbulence in this region are comparable to crossing times. Transitions of CO up to $J$ of 8, observed close to active sites of star formation, but not within outflows, can trace turbulent dissipation of shocks stirred by formation processes. Although the transitions are difficult to detect at individual positions, our Herschel-SPIRE survey o...

  20. On soft stability loss in rotating turbulent MHD flows

    Energy Technology Data Exchange (ETDEWEB)

    Kapusta, Arkady [Center for MHD Studies, Ben-Gurion University of the Negev PO Box 653, Beer-Sheva 84105 (Israel); Mikhailovich, Boris, E-mail: borismic@bgu.ac.il [Department of Mechanical Engineering, Ben-Gurion University of the Negev PO Box 653, Beer-Sheva 84105 (Israel)

    2014-08-01

    The problem of the stability of turbulent flows of liquid metal in a cylindrical cavity against small velocity disturbances under the action of a rotating magnetic field (RMF) has been studied. The flow is considered in the induction-free approximation using the ‘external’ friction model. A system of dimensionless equations is examined in cylindrical coordinates. The results of computations performed on the basis of this mathematical model using the exchange of stabilities principle have shown a good consistency between the critical values of computed and experimental Reynolds numbers. (paper)

  1. Atmospheric Quantum Channels with Weak and Strong Turbulence

    CERN Document Server

    Vasylyev, D; Vogel, W

    2016-01-01

    The free-space transfer of high-fidelity optical signals between remote locations has many applications, including both classical and quantum communication, precision navigation, clock synchronization, etc. The physical processes that contribute to signal fading and loss need to be carefully analyzed in the theory of light propagation through the atmospheric turbulence. Here we derive the probability distribution for the atmospheric transmittance including beam-wandering, beam shape deformation, and beam broadening effects. Our model, referred to as elliptic beam approximation, applies to both weak and strong turbulence and hence to the most important regimes in atmospheric communication scenarios.

  2. Observational Diagnostics of Self-Gravitating MHD Turbulence in Giant Molecular Clouds

    CERN Document Server

    Burkhart, Blakesley; Lazarian, Alex

    2015-01-01

    We study the observable signatures of self-gravitating MHD turbulence by applying the probability density functions (PDFs) and the spatial density power spectrum to synthetic column density maps. We find that there exists three characterizable stages of the evolution of the collapsing cloud which we term "early," "intermediate," and "advanced." At early times, i.e. $t0.35t_{ff}$, the power spectral slope is positive valued, and a dramatic increase is observed in the PDF moments and the Tsallis incremental PDF parameters, which gives rise to deviations between PDF-sonic Mach number relations. Finally, we show that the imprint of gravity on the density power spectrum can be replicated in non-gravitating turbulence by introducing a delta-function with amplitude equivalent to the maximum valued point in a given self-gravitating map. We find that the turbulence power spectrum restored through spatial filtering of the high density material.

  3. Turbulent Kinetic Energy Spectra of Solar Convection from NST Observations and Realistic MHD Simulations

    CERN Document Server

    Kitiashvili, I N; Goode, P R; Kosovichev, A G; Lele, S K; Mansour, N N; Wray, A A; Yurchyshyn, V B

    2012-01-01

    Turbulent properties of the quiet Sun represent the basic state of surface conditions, and a background for various processes of solar activity. Therefore understanding of properties and dynamics of this `basic' state is important for investigation of more complex phenomena, formation and development of observed phenomena in the photosphere and atmosphere. For characterization of the turbulent properties we compare kinetic energy spectra on granular and sub-granular scales obtained from infrared TiO observations with the New Solar Telescope (Big Bear Solar Observatory) and from 3D radiative MHD numerical simulations ('SolarBox' code). We find that the numerical simulations require a high spatial resolution with 10 - 25 km grid-step in order to reproduce the inertial (Kolmogorov) turbulence range. The observational data require an averaging procedure to remove noise and potential instrumental artifacts. The resulting kinetic energy spectra show a good agreement between the simulations and observations, opening...

  4. Numerical analysis of the average MHD flow within a cylindrical region on the basis of applicable hypotheses about turbulent stresses

    Energy Technology Data Exchange (ETDEWEB)

    Mikel' son, Yu.Ya.; Yakovich, A.T.; Pavlov, S.I.

    1978-01-01

    Turbulent stresses are considered in an incompressible fluid due to MHD flow induced within an axisymmetric region by electromagnetic forces on the basis of the linearized equation of motion as well as on the basis of the stress tensor in terms of average velocities and turbulent viscosity. The turbulent viscosity is treated according to the Boussinesq hypothesis (constant turbulent viscosity), according to the generalized Karman hypothesis (turbulent viscosity a function of the derivatives of the velocity components with respect to the respective coordinates), or as the product of its coordinate functions. The results of numerical calculations indicate a close agreement between all these formulas for an average MHD flow and experimental data. Calculations including this additional turbulent force, appropriately related to the flow parameters, are applicable to the design of liquid-metal devices. 7 references, 3 figures.

  5. Strange attractors in weakly turbulent Couette-Taylor flow

    Science.gov (United States)

    Brandstater, A.; Swinney, Harry L.

    1987-01-01

    An experiment is conducted on the transition from quasi-periodic to weakly turbulent flow of a fluid contained between concentric cylinders with the inner cylinder rotating and the outer cylinder at rest. Power spectra, phase-space portraits, and circle maps obtained from velocity time-series data indicate that the nonperiodic behavior observed is deterministic, that is, it is described by strange attractors. Various problems that arise in computing the dimension of strange attractors constructed from experimental data are discussed and it is shown that these problems impose severe requirements on the quantity and accuracy of data necessary for determining dimensions greater than about 5. In the present experiment the attractor dimension increases from 2 at the onset of turbulence to about 4 at a Reynolds number 50-percent above the onset of turbulence.

  6. Numerical Verification of the Weak Turbulent Model for Swell Evolution

    CERN Document Server

    Korotkevich, A O; Resio, D; Zakharov, V E

    2007-01-01

    We performed numerical simulation of an ensemble of nonlinearly interacting free gravity waves (swell) by two different methods: solution of primordial dynamical equations describing potential flow of the ideal fluid with a free surface and, solution of the kinetic Hasselmann equation, describing the wave ensemble in the framework of the theory of weak turbulence. Comparison of the results demonstrates applicability of the weak turbulent approach. In both cases we observed effects predicted by this theory: frequency downshift, angular spreading and formation of Zakharov-Filonenko spectrum $I_{\\omega} \\sim \\omega^{-4}$. One of the results of our article consists in the fact that physical processes in finite size laboratory wave tanks and in the ocean are quite different, and the results of such laboratory experiments can be applied to modeling of the ocean phenomena with extra care. We also present the estimate on the minimum size of the laboratory installation, allowing to model open ocean surface wave dynami...

  7. Nature of the MHD and kinetic scale turbulence in the magnetosheath of Saturn: Cassini observations

    CERN Document Server

    Hadid, L Z; Kiyani, K H; Retinò, A; Modolo, R; Canu, P; Masters, A; Dougherty, M K

    2016-01-01

    Low frequency turbulence in Saturn's magnetosheath is investigated using in-situ measurements of the Cassini spacecraft. Focus is put on the magnetic energy spectra computed in the frequency range $\\sim[10^{-4}, 1]$Hz. A set of 42 time intervals in the magnetosheath were analyzed and three main results that contrast with known features of solar wind turbulence are reported: 1) The magnetic energy spectra showed a $\\sim f^{-1}$ scaling at MHD scales followed by an $\\sim f^{-2.6}$ scaling at the sub-ion scales without forming the so-called inertial range; 2) The magnetic compressibility and the cross-correlation between the parallel component of the magnetic field and density fluctuations $ C(\\delta n,\\delta B_{||}) $ indicates the dominance of the compressible magnetosonic slow-like modes at MHD scales rather than the Alfv\\'en mode; 3) Higher order statistics revealed a monofractal (resp. multifractal) behaviour of the turbulent flow downstream of a quasi-perpendicular (resp. quasi-parallel) shock at the sub-i...

  8. A comparison of weak-turbulence and PIC simulations of weak electron-beam plasma interaction

    CERN Document Server

    Ratcliffe, Heather; Rozenan, Mohammed B Che; Nakariakov, Valery

    2014-01-01

    Quasilinear theory has long been used to treat the problem of a weak electron beam interacting with plasma and generating Langmuir waves. Its extension to weak-turbulence theory treats resonant interactions of these Langmuir waves with other plasma wave modes, in particular ion-sound waves. These are strongly damped in plasma of equal ion and electron temperatures, as sometimes seen in, for example, the solar corona and wind. Weak turbulence theory is derived in the weak damping limit, with a term describing ion-sound wave damping then added. In this paper we use the EPOCH particle-in-cell code to numerically test weak turbulence theory for a range of electron-ion temperature ratios. We find that in the cold ion limit the results agree well, but increasing ion temperature the three-wave resonance becomes broadened in proportion to the ion-sound wave damping rate. This may be important in, for example, the theory of solar radio bursts, where the spectrum of Langmuir waves is critical. Additionally we establish...

  9. Laminar and weakly turbulent oceanic gravity currents performing inertial oscillations

    Directory of Open Access Journals (Sweden)

    A. Wirth

    2012-05-01

    Full Text Available The small scale dynamics of a weakly turbulent oceanic gravity current is determined. The gravity current considered is initially at rest and adjusts by performing inertial oscillations to a geostrophic mean flow. The dynamics is explored with a hierarchy of mathematical models. The most involved are the fully 3-D Navier-Stokes equations subject to the Boussinesq approximation. A 1-D and 0-D mathematical model of the same gravity current dynamics are systematically derived. Using this hierarchy and the numerical solutions of the mathematical models, the turbulent dynamics at the bottom and the interface is explored and their interaction investigated. Three different regimes of the small scale dynamics of the gravity current are identified, they are characterised by laminar flow, coherent roll vortices and turbulent dynamics with coherent streaks and bursts.

    The problem of the rectification of the turbulent fluxes, that is, how to average out the fluctuations and calculate their average influence on the flow, is considered. It is shown that two different regimes of friction are superposed, an Ekman friction applies to the average geostrophic flow and a linear friction, not influenced by rotation, to the inertial oscillations. The combination of the two makes the bulk friction non-local in time for the 0-D model.

    The implications of the results for parametrisations of the Ekman dynamics and the small scale turbulent fluxes in the planetary boundary layer are discussed.

  10. Laminar and weakly turbulent oceanic gravity currents performing inertial oscillations

    Directory of Open Access Journals (Sweden)

    A. Wirth

    2011-09-01

    Full Text Available The small scale dynamics of a weakly turbulent oceanic gravity current is determined. The gravity current considered is initially at rest and adjusts by performing inertial oscillations to a geostrophic mean flow. The dynamics is explored with a hierarchy of mathematical models. The most involved are the fully 3-D Navier-Stokes equations subject to the Boussinesq approximation. A 1-D and 0-D mathematical model of the same gravity current dynamics are systematically derived. Using this hierarchy and the numerical solutions of the mathematical models, the turbulent dynamics at the bottom and the interface is explored and their interaction investigated. Three different regimes of the small scale dynamics of the gravity current are identified, they are characterised by laminar flow, coherent roll vortices and turbulent dynamics with coherent streaks and bursts.

    The problem of the rectification of the turbulent fluxes, that is how to average out the fluctuations and calculate their average influence on the flow is considered. It is shown that two different regimes of friction are superposed, an Ekman friction applies to the average geostrophic flow and a linear friction, not influenced by rotation, to the inertial oscillations. The combination of the two makes the bulk friction non-local in time for the 0-D model. The implications of the results for parametrisations of the Ekman dynamics and the small scale turbulent fluxes in the planetary boundary layer are discussed.

  11. Reproducing the Solar Wind proton temperature profile via DNS of MHD turbulence

    Science.gov (United States)

    Montagud-Camps, Victor; Grappin, Roland; Verdini, Andrea

    2017-04-01

    Context: The Solar Wind proton temperature Tp shows a radial profile R-0.9 significantly shallower than the adiabatic R-4/3 profile [Totten et al 1996]. This temperature profile has been attributed to turbulent heating, which requires a dissipation rate equal to Q = 3.610-5TpU/R[J/(kg s)] (1) [Vasquez et al 2007]. The possibility of a turbulent heating large enough to modify the radial profile of the temperature has not been verified yet via direct numerical simulations. Aim: We want to test if MHD turbulence developing in the range [0.2,1] AU is able to reproduce the observed R-0.9 temperature profile. Method: We use the expanding box model (EBM) [Grappin & Velli 1996] which incorporates the effects of expansion into the compressible MHD equations, and so allows to follow the evolution of the plasma advected by the solar wind between 0.2 and 1 AU. In the absence of turbulence, the R-4/3 temperature profile is obtained. We start at 0.2 AU with mean field almost aligned with the radial and k⊥-1 spectrum perpendicular to the mean field [Verdini, Grappin 2016]. Simple phenomenology (Kolmogorov) suggests that the ratio between turbulent heating and the required heating (1) is close to M2/ɛ, where M is the Mach number of the large eddies and ɛ is the nonlinear time normalized by the transport time of the plasma by the wind. We thus explore the (M,ɛ) parameter space and examine whether a large enough value of M2/ɛ indeed allows to recover the temperature profile observed by Totten et al (1996). Results: We have obtained significant slowing down of the adiabatic cooling by considering increasing Mach numbers and/or decreasing ɛ and approach in some cases the R-0.9 temperature profile. The role of the compressibility in the cascade is examined.

  12. Large- and small-scale turbulent spectra in MHD and atmospheric flows

    Directory of Open Access Journals (Sweden)

    O. G. Chkhetiani

    2006-01-01

    Full Text Available In the present review we discuss certain studies of large- and small-scale turbulent spectra in MHD and atmospheric flows performed by S. S. Moiseev and his co-authors during the last years of his life and continued by his co-authors after he passed away. It is shown that many ideas developed in these works have not lost their novelty and urgency until now, and can form the basis of future studies in this field.

  13. Global MHD Modelling of the ISM - From large towards small scale turbulence

    CERN Document Server

    D'Avillez, M A; Avillez, Miguel A. de; Breitschwerdt, Dieter

    2005-01-01

    Dealing numerically with the turbulent nature and non-linearity of the physical processes involved in the ISM requires the use of sophisticated numerical schemes coupled to HD and MHD mathematical models. SNe are the main drivers of the interstellar turbulence by transferring kinetic energy into the system. This energy is dissipated by shocks (which is more efficient) and by molecular viscosity. We carried out adaptive mesh refinement simulations (with a finest resolution of 0.625 pc) of the turbulent ISM embedded in a magnetic field with mean field components of 2 and 3 $\\mu$G. The time scale of our run was 400 Myr, sufficiently long to avoid memory effects of the initial setup, and to allow for a global dynamical equilibrium to be reached in case of a constant energy input rate. It is found that the longitudinal and transverse turbulent length scales have a time averaged (over a period of 50 Myr) ratio of 0.52-0.6, almost similar to the one expected for isotropic homogeneous turbulence. The mean characteris...

  14. The flux tube paradigm and its role in MHD turbulence in the solar atmosphere

    Science.gov (United States)

    Matthaeus, W. H.; Greco, A.; Servidio, S.; Wan, M.; Osman, K.; Ruffolo, D. J.

    2011-12-01

    Descriptions of magnetic field and plasma structures in terms of flux tubes, plasmoids and other bundles of magnetic field lines are familiar in the vocabulary of observational and theoretical space physics. "Spaghetti models" and flux ropes are well known examples. Flux tubes and families of field lines can also be defined in a medium that admits magnetic fluctuations, including strong MHD turbulence, but their behavior can become complicated. In 3D fluctuations the smooth flux tube description itself becomes in some sense unstable, as nearby field lines diverge and flux surfaces shred. This lends complexity to the structure of flux tubes, and can give rise to temporarily trapped field lines and charged test particle trajectories, with immediate implications for transport, e.g., of solar energetic particles. The properties of the turbulent magnetic field can also be strongly influenced by the dynamics of turbulence. Large scale self organizing behavior, or inverse cascade, can enhance very long wavelength structure, favoring Bohm scaling of diffusion coefficients. Meanwhile smaller scale flux tube structures are integral features of the inertial range of turbulence, giving rise to a cellularization of the plasma due to rapid dynamical relaxation processes. These drive the turbulent system locally towards low-acceleration states, including Alfvenic, Beltrami and force-free states. Cell boundaries are natural positions for formation of near discontinuous boundaries, where dynamical activity can be enhanced. A primary example is appearance of numerous discontinuities and active reconnection sites in turbulence, which appear to support a wide distribution of reconnection rates associated with coherent current structures. These discontinuities are also potential sites of enhanced heating, as expected in Kolmogorov's Refined Similarity Hypothesis. All of these features are related to self organization, cascade and intermittency of the turbulence. Examples of these

  15. Spin-Up Instability of a Levitated Molten Drop in MHD-Flow Transition to Turbulence

    Science.gov (United States)

    Abedian, B.; Hyers, R. W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    When an alternating magnetic field interacts with induced eddy currents in a conducting body, there will be a repulsive force between the body and the driving coil system generating the field. This repulsive force is the basis of electromagnetic levitation, which allows containerless processing of different materials. The eddy currents in the conducting body also generate Joule heating. Axial rotation of electromagnetically levitated objects is a common observation in levitation systems and often an undesirable side effect of such experiments on 1-g and -g. There have been recent efforts to use magnetic damping and suppress this tendency of body rotation. The first report of rotation in EML drops was attributed to a slight asymmetry of the shape and location of the levitation coils could change the axis and speed of rotation. Other theories of sample rotation include a frequency difference in the traveling electromagnetic waves and a phase difference in two different applied fields of the same frequency. All of these different mechanisms share the following characteristics: the torque is small, constant for constant field strength, and very weakly dependent on the sample's temperature and phase (solid or liquid). During experiments on the MSL-1 (First Microgravity Science Laboratory) mission of the Space Shuttle (STS-83 and STS-94, April and July 1997), a droplet of palladium-silicon alloy was electromagnetically levitated for viscosity measurements. For the non-deforming droplet, the resultant MHD flow inside the drop is inferred from motion of impurities on the surface. These observations indicate formation of a pair of co-rotating toroidal flow structures inside the spheroidal levitated drop that undergo secondary flow instabilities. As rise in the fluid temperature rises, the viscosity falls and the internal flow accelerates and becomes oscillatory; and beyond a point in the experiments, the surface impurities exhibit non-coherent chaotic motion signifying

  16. MHD-kinetic transition in imbalanced Alfv$\\'{e}$nic turbulence

    CERN Document Server

    Voitenko, Yuriy

    2016-01-01

    Alfvenic turbulence in space is usually imbalanced: amplitudes of waves propagating parallel and anti-parallel to the mean magnetic field $B_0$ are unequal. It is commonly accepted that the turbulence is driven by (counter-) collisions between these counter-propagating wave fractions. Contrary to this, we found a new ion-scale dynamical range of the turbulence established by (co-) collisions among waves co-propagating in the same direction along $B_0$. The turbulent cascade is accelerated there and power spectra are steep and non-universal. The spectral indexes vary around -3 (-4) in the strong (weak) turbulence, such that steeper spectra follow larger imbalances. Intermittency steepens spectra further, up to -3.7 (-4.5). Our theoretical predictions are compatible with steep variable spectra observed in the solar wind at ion kinetic scales.

  17. WEAKLY SWIRLING TURBULENT FLOW IN TURBID WATER HYDRAULIC SEPARATION DEVICE

    Institute of Scientific and Technical Information of China (English)

    LI Lin; QIU Xiu-yun; JIN Sheng; XIAO Jun; GONG Shou-yuan

    2008-01-01

    This article deals with the characteristics of weakly swirling turbulent flow field in a Turbid Water Hydraulic Separation Device (TWHSD) through experimental and numerical researches. The flow field was measured by PIV, which provided streamlines, vortex structure, vorticity and velocity distribution in different test planes in the TWHSD. On the basis of the experimental results, the tangential and radial velocity distributions of the swirling flow field were obtained. Meanwhile, the numerical simulations were conducted with the RNG and RSM turbulence models, respectively. According to the experimental and numerical results, the characteristics of the clear water flow field inside the TWHSD were determined. In view of simulation accuracy and time consumption, it is suggested to apply the RNG model instead of the RSM model, which is more time consuming, to make further study on two-phases flow fields in the device.

  18. Weak versus strong wave turbulence in the MMT model

    CERN Document Server

    Chibbaro, Sergio; Onorato, Miguel

    2016-01-01

    Within the spirit of fluid turbulence, we consider the one-dimensional Majda-McLaughlin-Tabak (MMT) model that describes the interactions of nonlinear dispersive waves. We perform a detailed numerical study of the direct energy cascade in the defocusing regime. In particular, we consider a configuration with large-scale forcing and small scale dissipation, and we introduce three non- dimensional parameters: the ratio between nonlinearity and dispersion, {\\epsilon}, and the analogues of the Reynolds number, Re, i.e. the ratio between the nonlinear and dissipative time-scales, both at large and small scales. Our numerical experiments show that (i) in the limit of small {\\epsilon} the spectral slope observed in the statistical steady regime corresponds to the one predicted by the Weak Wave Turbulence (WWT) theory. (ii) As the nonlinearity is increased, the WWT theory breaks down and deviations from its predictions are observed. (iii) It is shown that such departures from the WWT theoretical predictions are accom...

  19. Weak turbulence theory for rotating magnetohydrodynamics and planetary dynamos

    CERN Document Server

    Galtier, Sebastien

    2014-01-01

    A weak turbulence theory is derived for magnetohydrodynamics under rapid rotation and in the presence of a large-scale magnetic field. The angular velocity $\\Omega_0$ is assumed to be uniform and parallel to the constant Alfv\\'en speed ${\\bf b_0}$. Such a system exhibits left and right circularly polarized waves which can be obtained by introducing the magneto-inertial length $d \\equiv b_0/\\Omega_0$. In the large-scale limit ($kd \\to 0$; $k$ being the wave number), the left- and right-handed waves tend respectively to the inertial and magnetostrophic waves whereas in the small-scale limit ($kd \\to + \\infty$) pure Alfv\\'en waves are recovered. By using a complex helicity decomposition, the asymptotic weak turbulence equations are derived which describe the long-time behavior of weakly dispersive interacting waves {\\it via} three-wave interaction processes. It is shown that the nonlinear dynamics is mainly anisotropic with a stronger transfer perpendicular ($\\perp$) than parallel ($\\parallel$) to the rotating a...

  20. Energy partition, scale by scale, in magnetic Archimedes Coriolis weak wave turbulence.

    Science.gov (United States)

    Salhi, A; Baklouti, F S; Godeferd, F; Lehner, T; Cambon, C

    2017-02-01

    Magnetic Archimedes Coriolis (MAC) waves are omnipresent in several geophysical and astrophysical flows such as the solar tachocline. In the present study, we use linear spectral theory (LST) and investigate the energy partition, scale by scale, in MAC weak wave turbulence for a Boussinesq fluid. At the scale k^{-1}, the maximal frequencies of magnetic (Alfvén) waves, gravity (Archimedes) waves, and inertial (Coriolis) waves are, respectively, V_{A}k,N, and f. By using the induction potential scalar, which is a Lagrangian invariant for a diffusionless Boussinesq fluid [Salhi et al., Phys. Rev. E 85, 026301 (2012)PLEEE81539-375510.1103/PhysRevE.85.026301], we derive a dispersion relation for the three-dimensional MAC waves, generalizing previous ones including that of f-plane MHD "shallow water" waves [Schecter et al., Astrophys. J. 551, L185 (2001)AJLEEY0004-637X10.1086/320027]. A solution for the Fourier amplitude of perturbation fields (velocity, magnetic field, and density) is derived analytically considering a diffusive fluid for which both the magnetic and thermal Prandtl numbers are one. The radial spectrum of kinetic, S_{κ}(k,t), magnetic, S_{m}(k,t), and potential, S_{p}(k,t), energies is determined considering initial isotropic conditions. For magnetic Coriolis (MC) weak wave turbulence, it is shown that, at large scales such that V_{A}k/f≪1, the Alfvén ratio S_{κ}(k,t)/S_{m}(k,t) behaves like k^{-2} if the rotation axis is aligned with the magnetic field, in agreement with previous direct numerical simulations [Favier et al., Geophys. Astrophys. Fluid Dyn. (2012)] and like k^{-1} if the rotation axis is perpendicular to the magnetic field. At small scales, such that V_{A}k/f≫1, there is an equipartition of energy between magnetic and kinetic components. For magnetic Archimedes weak wave turbulence, it is demonstrated that, at large scales, such that (V_{A}k/N≪1), there is an equipartition of energy between magnetic and potential components

  1. Characterization of zonal flow generation in weak electrostatic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Negrea, M; Petrisor, I [Department of Physics, Association Euratom-MEdC, Romania, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova (Romania); Weyssow, B [Physique Statistique-Plasmas, Association Euratom-Etat Belge, Universite Libre de Bruxelles, Campus Plaine, Bd. du Triomphe, 1050 Bruxelles (Belgium)], E-mail: mnegrea@yahoo.com

    2008-05-15

    The influence of the diamagnetic Kubo number, which is proportional to the diamagnetic drift velocity, on the zonal flow generation by an anisotropic stochastic electrostatic potential is considered from a semi-analytic point of view. The analysis is performed in the weak turbulence limit and as an analytical tool the decorrelation trajectory method is used. It is shown that the fragmentation of the drift wave structures (a signature of the zonal flow generation) is influenced not only by the anisotropy parameter and the electrostatic Kubo number as expected, but also by the diamagnetic Kubo number. Global Lagrangian averages of characteristic quantities are calculated and interpreted.

  2. Local 4/5-law and energy dissipation anomaly in turbulence of incompressible MHD Equations

    Science.gov (United States)

    Guo, Shanshan; Tan, Zhong

    2016-12-01

    In this paper, we establish the longitudinal and transverse local energy balance equation of distributional solutions of the incompressible three-dimensional MHD equations. In particular, we find that the functions D_L^ɛ (u,B) and D_T^ɛ (u,B) appeared in the energy balance, all converging to the defect distribution (in the sense of distributions) D(u,B) which has been defined in Gao et al. (Acta Math Sci 33:865-871, 2013). Furthermore, we give a simpler form of defect distribution term, which is similar to the relation in turbulence theory, called the "4 / 3-law." As a corollary, we give the analogous "4 / 5-law" holds in the local sense.

  3. MODELING STATISTICAL PROPERTIES OF SOLAR ACTIVE REGIONS THROUGH DIRECT NUMERICAL SIMULATIONS OF 3D-MHD TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Malapaka, Shiva Kumar; Mueller, Wolf-Christian [Max-Planck Institute for Plasma Physics, Boltzmannstrasse 2, D-85748 Garching bei Muenchen (Germany)

    2013-09-01

    Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of the observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.

  4. Applications of weakly compressible model to turbulent flow problem towards adaptive turbulence simulation

    Science.gov (United States)

    Tsuji, Takuya; Yokomine, Takehiko; Shimizu, Akihiko

    2002-11-01

    We have been engaged in the development of multi-scale adaptive simulation technique for incompressible turbulent flow. This is designed as that important scale components in the flow field are detected automatically by lifting wavelet and solved selectively. In conventional incompressible scheme, it is very common to solve Poisson equation of pressure to meet the divergence free constraints of incompressible flow. It may be not impossible to solve the Poisson eq. in the adaptive way, but this is very troublesome because it requires generation of control volume at each time step. We gave an eye on weakly compressible model proposed by Bao(2001). This model was derived from zero Mach limit asymptotic analysis of compressible Navier-Stokes eq. and does not need to solve the Poisson eq. at all. But it is relatively new and it requires demonstration study before the combination with the adaptation by wavelet. In present study, 2-D and 3-D Backstep flow were selected as test problems and applicability to turbulent flow is verified in detail. Besides, combination of adaptation by wavelet with weakly compressible model towards the adaptive turbulence simulation is discussed.

  5. Why, how and when electrically driven flows and MHD turbulence become three-dimensional

    CERN Document Server

    Pothérat, A

    2013-01-01

    The dimensionality of electrically driven flows and magnetohydrodynamic (MHD) turbulence at low Magnetic Reynolds number is analysed by driving a square array of vortices of alternate spin in a cubic vessel filled with liquid metal, placed in a high homogeneous, static magnetic field $\\mathbf B$. A wide range of steady and unsteady flows is generated by varying the intensity $I$ of the DC current injected to drive them, and their dimensionality is influenced by increasing or decreasing the magnetic field intensity. It is shown theoretically, and then experimentally that three-dimensionality is characterised by scaling laws linking the core velocity $U_b$ near the wall where current is injected to the current intensity $I$, of either forms $U_b\\sim I$ or $U_b\\sim I^{2/3}$, depending on whether three-dimensionality originates from viscous or inertial effects. In turbulent flows. The opposite wall is found to be either active or passive depending whether the ratio of its distance to the bottom wall $h$ to the le...

  6. Turbulent magnetic Prandtl numbers obtained with MHD Taylor-Couette flow experiments

    CERN Document Server

    Gellert, M

    2008-01-01

    The stability problem of MHD Taylor-Couette flows with toroidal magnetic fields is considered in dependence on the magnetic Prandtl number. Only the most uniform (but not current-free) field with B\\_in = B\\_out has been considered. For high enough Hartmann numbers the toroidal field is always unstable. Rigid rotation, however, stabilizes the magnetic (kink-)instability. The axial current which drives the instability is reduced by the electromotive force induced by the instability itself. Numerical simulations are presented to probe this effect as a possibility to measure the turbulent conductivity in a laboratory. It is shown numerically that in a sodium experiment (without rotation) an eddy diffusivity 4 times the molecular diffusivity appears resulting in a potential difference of ~34 mV/m. If the cylinders are rotating then also the eddy viscosity can be measured. Nonlinear simulations of the instability lead to a turbulent magnetic Prandtl number of 2.1 for a molecular magnetic Prandtl number of 0.01. The...

  7. A parallel implementation of an MHD code for the simulation of mechanically driven, turbulent dynamos in spherical geometry

    Science.gov (United States)

    Reuter, K.; Jenko, F.; Forest, C. B.; Bayliss, R. A.

    2008-08-01

    A parallel implementation of a nonlinear pseudo-spectral MHD code for the simulation of turbulent dynamos in spherical geometry is reported. It employs a dual domain decomposition technique in both real and spectral space. It is shown that this method shows nearly ideal scaling going up to 128 CPUs on Beowulf-type clusters with fast interconnect. Furthermore, the potential of exploiting single precision arithmetic on standard x86 processors is examined. It is pointed out that the MHD code thereby achieves a maximum speedup of 1.7, whereas the validity of the computations is still granted. The combination of both measures will allow for the direct numerical simulation of highly turbulent cases ( 1500

  8. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades In Magentized Weakly Collisional Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.

    2009-04-23

    This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations

  9. Direct numerical simulation of the turbulent MHD channel flow at low magnetic Reynolds number for electric correlation characteristics

    Institute of Scientific and Technical Information of China (English)

    LEE; ChunHian

    2010-01-01

    Direct numerical simulation (DNS) of incompressible magnetohydrodynamic (MHD) turbulent channel flow has been performed under the low magnetic Reynolds number assumption.The velocity-electric field and electric-electric field correlations were studied in the present work for different magnetic field orientations.The Kenjeres-Hanjalic (K-H) model was validated with the DNS data in a term by term manner.The numerical results showed that the K-H model makes good predictions for most components of the velocity-electric field correlations.The mechanisms of turbulence suppression were also analyzed for different magnetic field orientations utilizing the DNS data and the K-H model.The results revealed that the dissipative MHD source term is responsible for the turbulence suppression for the case of streamwise and spanwise magnetic orientation,while the Lorentz force which speeds up the near-wall fluid and decreases the production term is responsible for the turbulence suppression for the case of the wall normal magnetic orientation.

  10. On the scaling features of magnetic field fluctuations at non-MHD scales in turbulent space plasmas

    Science.gov (United States)

    Consolini, G.; Giannattasio, F.; Yordanova, E.; Vörös, Z.; Marcucci, M. F.; Echim, M.; Chang, T.

    2016-11-01

    In several different contexts space plasmas display intermittent turbulence at magneto-hydro-dynamic (MHD) scales, which manifests in anomalous scaling features of the structure functions of the magnetic field increments. Moving to smaller scales, i.e. below the ion-cyclotron and/or ion inertial length, these scaling features are still observed, even though its is not clear if these scaling features are still anomalous or not. Here, we investigate the nature of scaling properties of magnetic field increments at non-MHD scales for a period of fast solar wind to investigate the occurrence or not of multifractal features and collapsing of probability distribution functions (PDFs) using the novel Rank-Ordered Multifractal Analysis (ROMA) method, which is more sensitive than the traditional structure function approach. We find a strong evidence for the occurrence of a near mono-scaling behavior, which suggests that the observed turbulent regime at non-MHD scales mainly displays a mono-fractal nature of magnetic field increments. The results are discussed in terms of a non-compact fractal structure of the dissipation field.

  11. Extreme-value statistics from Lagrangian convex hull analysis I. Validation for homogeneous turbulent Boussinesq convection and MHD convection

    CERN Document Server

    Pratt, J; Müller, W -C; Chapman, S C; Watkins, N W

    2016-01-01

    We investigate the utility of the convex hull to analyze physical questions related to the dispersion of a group of much more than four Lagrangian tracer particles in a turbulent flow. Validation of standard dispersion behaviors is a necessary preliminary step for use of the convex hull to describe turbulent flows. In simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection we show that the convex hull can be used to reasonably capture the dispersive behavior of a large group of tracer particles. We validate dispersion results produced with convex hull analysis against scalings for Lagrangian particle pair dispersion. In addition to this basic validation study, we show that convex hull analysis provides information that particle pair dispersion does not, in the form of a extreme value statistics, surface area, and volume for a cluster of particles. We use the convex hull surface area and volume to examine the degree of...

  12. A STABLE, ACCURATE METHODOLOGY FOR HIGH MACH NUMBER, STRONG MAGNETIC FIELD MHD TURBULENCE WITH ADAPTIVE MESH REFINEMENT: RESOLUTION AND REFINEMENT STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pak Shing; Klein, Richard I. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Martin, Daniel F. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); McKee, Christopher F., E-mail: psli@astron.berkeley.edu, E-mail: klein@astron.berkeley.edu, E-mail: DFMartin@lbl.gov, E-mail: cmckee@astro.berkeley.edu [Physics Department and Astronomy Department, University of California, Berkeley, CA 94720 (United States)

    2012-02-01

    Performing a stable, long-duration simulation of driven MHD turbulence with a high thermal Mach number and a strong initial magnetic field is a challenge to high-order Godunov ideal MHD schemes because of the difficulty in guaranteeing positivity of the density and pressure. We have implemented a robust combination of reconstruction schemes, Riemann solvers, limiters, and constrained transport electromotive force averaging schemes that can meet this challenge, and using this strategy, we have developed a new adaptive mesh refinement (AMR) MHD module of the ORION2 code. We investigate the effects of AMR on several statistical properties of a turbulent ideal MHD system with a thermal Mach number of 10 and a plasma {beta}{sub 0} of 0.1 as initial conditions; our code is shown to be stable for simulations with higher Mach numbers (M{sub rms}= 17.3) and smaller plasma beta ({beta}{sub 0} = 0.0067) as well. Our results show that the quality of the turbulence simulation is generally related to the volume-averaged refinement. Our AMR simulations show that the turbulent dissipation coefficient for supersonic MHD turbulence is about 0.5, in agreement with unigrid simulations.

  13. On developed turbulence in a weak compressibile conductive fluid

    CERN Document Server

    Wolchenkov, D Yu

    1996-01-01

    A method of construction of decomposition of correlation functions of developed turbulence in a compressible fluid on Mach number {\\em Ma} is generalized now for a model of stochastic magnetic hydrodynamics. With the help of the field theory renormalization group method the composite operators of transversal fields are studied. It is shown, that in the case of hydrodynamical interaction of fluid flows is prevalent the compressible effects are essential in inertial range. On the contrary the corrections to developed turbulent spectra due to compressibility are insignificant if the magnetic interaction of flows is more important one.

  14. A nonlinear structural subgrid-scale closure for compressible MHD Part II: a priori comparison on turbulence simulation data

    CERN Document Server

    Grete, P; Schmidt, W; Schleicher, D R G

    2016-01-01

    Even though compressible plasma turbulence is encountered in many astrophysical phenomena, its effect is often not well understood. Furthermore, direct numerical simulations are typically not able to reach the extreme parameters of these processes. For this reason, large-eddy simulations (LES), which only simulate large and intermediate scales directly, are employed. The smallest, unresolved scales and the interactions between small and large scales are introduced by means of a subgrid-scale (SGS) model. We propose and verify a new set of nonlinear SGS closures for future application as an SGS model in LES of compressible magnetohydrodynamics (MHD). We use 15 simulations (without explicit SGS model) of forced, isotropic, homogeneous turbulence with varying sonic Mach number $\\mathrm{M_s} = 0.2$ to $20$ as reference data for the most extensive \\textit{a priori} tests performed so far in literature. In these tests we explicitly filter the reference data and compare the performance of the new closures against th...

  15. Three-Dimensional Relativistic MHD Simulations of the Kelvin-Helmholtz Instability: Magnetic Field Amplification by a Turbulent Dynamo

    CERN Document Server

    Zhang, Weiqun; Wang, Peng

    2008-01-01

    Magnetic field strengths inferred for relativistic outflows including gamma-ray bursts (GRB) and active galactic nuclei (AGN) are larger than naively expected by orders of magnitude. We present three-dimensional relativistic magnetohydrodynamics (MHD) simulations demonstrating amplification and saturation of magnetic field by a macroscopic turbulent dynamo triggered by the Kelvin-Helmholtz shear instability. We find rapid growth of electromagnetic energy due to the stretching and folding of field lines in the turbulent velocity field resulting from non-linear development of the instability. Using conditions relevant for GRB internal shocks and late phases of GRB afterglow, we obtain amplification of the electromagnetic energy fraction to $\\epsilon_B \\sim 5 \\times 10^{-3}$. This value decays slowly after the shear is dissipated and appears to be largely independent of the initial field strength. The conditions required for operation of the dynamo are the presence of velocity shear and some seed magnetization b...

  16. The dynamics of small inertial particles in weakly stratified turbulence

    NARCIS (Netherlands)

    van Aartrijk, M.; Clercx, H.J.H.

    We present an overview of a numerical study on the small-scale dynamics and the large-scale dispersion of small inertial particles in stably stratified turbulence. Three types of particles are examined: fluid particles, light inertial particles (with particle-to-fluid density ratio 1Ͽp/Ͽf25) and

  17. Nonlocal bottleneck effect in two-dimensional turbulence

    CERN Document Server

    Biskamp, D; Schwarz, E

    1998-01-01

    The bottleneck pileup in the energy spectrum is investigated for several two-dimensional (2D) turbulence systems by numerical simulation using high-order diffusion terms to amplify the effect, which is weak for normal diffusion. For 2D magnetohydrodynamic (MHD) turbulence, 2D electron MHD (EMHD) turbulence and 2D thermal convection, which all exhibit direct energy cascades, a nonlocal behavior is found resulting in a logarithmic enhancement of the spectrum.

  18. "Ideal" tearing and the transition to fast reconnection in the weakly collisional MHD and EMHD regimes

    CERN Document Server

    Del Sarto, Daniele; Tenerani, Anna; Velli, Marco

    2015-01-01

    This paper discusses the transition to fast growth of the tearing instability in thin current sheets in the collisionless limit where electron inertia drives the reconnection process. It has been previously suggested that in resistive MHD there is a natural maximum aspect ratio (ratio of sheet length and breadth to thickness) which may be reached for current sheets with a macroscopic length L, the limit being provided by the fact that the tearing mode growth time becomes of the same order as the Alfv\\`en time calculated on the macroscopic scale (Pucci and Velli (2014)). For current sheets with a smaller aspect ratio than critical the normalized growth rate tends to zero with increasing Lundquist number S, while for current sheets with an aspect ratio greater than critical the growth rate diverges with S. Here we carry out a similar analysis but with electron inertia as the term violating magnetic flux conservation: previously found scalings of critical current sheet aspect ratios with the Lundquist number are...

  19. Aperture-averaging effects for weak to strong scintillations in turbulent atmosphere

    Institute of Scientific and Technical Information of China (English)

    Yixin Zhang(张逸新); Tuo Zhu(朱拓); Chunkan Tao(陶纯堪)

    2004-01-01

    Under the approximations of (1) the received irradiance fluctuations of an optical wave caused by small scale turbulent eddies are multiplicatively modulated by the fluctuations caused by large scale turbulent eddies;(2) the scintillations caused by small- and large-scale eddies, respectively, are statistically independent; (3)the Rytov method for optical scintillation collected by the finite-diameter receiving aperture is valid for light wave propagation under weak to saturation fluctuation regime, we develop the applicable apertureaveraging analytic formulas in the week-to-strong-fluctuation for the scintillations of plane and spherical waves, which include the outer- and inner-scale rules of turbulence.

  20. A new Jeans resolution criterion for (M)HD simulations of self-gravitating gas: Application to magnetic field amplification by gravity-driven turbulence

    CERN Document Server

    Federrath, Christoph; Schleicher, Dominik R G; Banerjee, Robi; Klessen, Ralf S

    2011-01-01

    Cosmic structure formation is characterized by the complex interplay between gravity, turbulence, and magnetic fields. The processes by which gravitational energy is converted into turbulent and magnetic energies, however, remain poorly understood. Here, we show with high-resolution, adaptive-mesh simulations that MHD turbulence is efficiently driven by extracting energy from the gravitational potential during the collapse of a dense gas cloud. Compressible motions generated during the contraction are converted into solenoidal, turbulent motions, leading to a natural energy ratio of E_sol/E_tot of approximately 2/3. We find that the energy injection scale of gravity-driven turbulence is close to the local Jeans scale. If small seeds of the magnetic field are present, they are amplified exponentially fast via the small-scale dynamo process. The magnetic field grows most efficiently on the smallest scales, for which the stretching, twisting, and folding of field lines, and the turbulent vortices are sufficientl...

  1. Existence of Global Weak Solutions to a Hybrid Vlasov-MHD Model for Magnetized Plasmas

    CERN Document Server

    Cheng, Bin; Tronci, Cesare

    2016-01-01

    We prove the global-in-time existence of large-data finite-energy weak solutions to an incompressible hybrid Vlasov-magnetohydrodynamic model in three space dimensions. The model couples three essential ingredients of magnetized plasmas: a transport equation for the probability density function, which models energetic rarefied particles of one species; the incompressible Navier--Stokes system for the bulk fluid; and a parabolic evolution equation, involving magnetic diffusivity, for the magnetic field. The physical derivation of our model is given. It is also shown that the weak solution, whose existence is established, has nonincreasing total energy, and that it satisfies a number of physically relevant properties, including conservation of the total momentum, conservation of the total mass, and nonnegativity of the probability density function for the energetic particles. The proof is based on a one-level approximation scheme, which is carefully devised to avoid increase of the total energy for the sequence...

  2. 3D MHD simulation of post--flare supra--arcade downflows in a turbulent current sheet medium

    CERN Document Server

    Cécere, M; Costa, A; Schneiter, M

    2014-01-01

    Supra--arcade downflows (SADs) are sunward, generally dark, plasma density depletions originated above posteruption flare arcades. In this paper using 3D MHD simulations we investigate if the SAD cavities can be produced by a direct combination of the tearing mode and Kelvin--Helmholtz instabilities leading to a turbulent current sheet (CS) medium or if the current sheet is merely the background where SADs are produced triggered by an impulsive deposition of energy. We find that to give account of the observational dark lane structures an addition of local energy provided by a reconnection event is required. This local reconnection can trigger a nonlinear internal wave dynamic, generated by the bouncing and interfering of shocks and expansion waves that compose relatively stable voids.

  3. On the theory of weak turbulence for the nonlinear Schrödinger equation

    CERN Document Server

    Escobedo, M

    2015-01-01

    The authors study the Cauchy problem for a kinetic equation arising in the weak turbulence theory for the cubic nonlinear Schrödinger equation. They define suitable concepts of weak and mild solutions and prove local and global well posedness results. Several qualitative properties of the solutions, including long time asymptotics, blow up results and condensation in finite time are obtained. The authors also prove the existence of a family of solutions that exhibit pulsating behavior.

  4. A Stable, Accurate Methodology for High Mach Number, Strong Magnetic Field MHD Turbulence with Adaptive Mesh Refinement: Resolution and Refinement Studies

    CERN Document Server

    Li, Pak Shing; Klein, Richard I; McKee, Christopher F

    2011-01-01

    Performing a stable, long duration simulation of driven MHD turbulence with a high thermal Mach number and a strong initial magnetic field is a challenge to high-order Godunov ideal MHD schemes because of the difficulty in guaranteeing positivity of the density and pressure. We have implemented a robust combination of reconstruction schemes, Riemann solvers, limiters, and Constrained Transport EMF averaging schemes that can meet this challenge, and using this strategy, we have developed a new Adaptive Mesh Refinement (AMR) MHD module of the ORION2 code. We investigate the effects of AMR on several statistical properties of a turbulent ideal MHD system with a thermal Mach number of 10 and a plasma $\\beta_0$ of 0.1 as initial conditions; our code is shown to be stable for simulations with higher Mach numbers ($M_rms = 17.3$) and smaller plasma beta ($\\beta_0 = 0.0067$) as well. Our results show that the quality of the turbulence simulation is generally related to the volume-averaged refinement. Our AMR simulati...

  5. Modeling of MHD turbulent heat transfer in channel flows imposed wall-normal magnetic fields under the various Prandtl number fluids

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yoshinobu, E-mail: yamamotoy@yamanashi.ac.jp [Division of Mechanical Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Kunugi, Tomoaki, E-mail: kunugi@nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto University, C3-d2S06, Kyoto-Daigaku Katsura, Nishikyo-Ku 615-8540, Kyoto (Japan)

    2016-11-01

    Highlights: • We show the applicability to predict the heat transfer imposed on a uniform wall-normal magnetic field by means of the zero-equation heat transfer model. • Quasi-theoretical turbulent Prandtl numbers with various molecular Prandtl number fluids were obtained. • Improvements of the prediction accuracy in turbulent kinetic energy and turbulent dissipation rate under the magnetic fields were accomplished. - Abstract: Zero-equation heat transfer models based on the constant turbulent Prandtl number are evaluated using direct numerical simulation (DNS) data for fully developed channel flows imposed on a uniform wall-normal magnetic field. Quasi-theoretical turbulent Prandtl numbers are estimated by DNS data of various molecular Prandtl number fluids. From the viewpoint of highly-accurate magneto-hydrodynamic (MHD) heat transfer prediction, the parameters of the turbulent eddy viscosity of the k–É› model are optimized under the magnetic fields. Consequently, we use the zero-equation model based on a constant turbulent Prandtl number to demonstrate MHD heat transfer, and show the applicability of using this model to predict the heat transfer.

  6. Ideal evolution of MHD turbulence when imposing Taylor-Green symmetries

    CERN Document Server

    Brachet, M E; Krstulovic, G; Mininni, P D; Pouquet, A; Rosenberg, D

    2012-01-01

    We investigate the ideal and incompressible magnetohydrodynamic (MHD) equations in three space dimensions for the development of potentially singular structures. The methodology consists in implementing the four-fold symmetries of the Taylor-Green vortex generalized to MHD, leading to substantial computer time and memory savings at a given resolution; we also use a re-gridding method that allows for lower-resolution runs at early times, with no loss of spectral accuracy. One magnetic configuration is examined at an equivalent resolution of 6144^3 points, and three different ones on grids of 4096^3 points. We find that at the highest resolution, two different current and vorticity sheet systems collide, producing two successive accelerations in the development of small scales with, at the latest time, a convergence of magnetic field lines to the location of maximum current, probably leading locally to a strong bending and directional variability of such lines.

  7. Turbulence dependence on winds and stability in a weak-wind canopy sublayer over complex terrain

    Science.gov (United States)

    Russell, Eric S.; Liu, Heping; Gao, Zhongming; Lamb, Brian; Wagenbrenner, Natalie

    2016-10-01

    The daytime and nighttime turbulence profiles within a weak-wind forest canopy were investigated by using data collected within a temperate mixed conifer canopy in northern Idaho, USA. Turbulence measurements made at three heights on a single tower within a Douglas fir canopy were compared. Data were split between the daytime and nighttime to determine the relationships among the local temperature gradient, wind direction, wind speed, and turbulence levels. The total flow field distributions and vertical statistical profiles were determined for the overnight and daytime periods to observe how the overall flow changed with time of day. During the day, the wind probability distribution function was consistent between heights but depended on the canopy depth overnight. The skewness changed with the dominant wind direction. The kurtosis increased with depth into the canopy and from during the day to overnight. The range of wind speeds observed was higher under unstable conditions than stable conditions. Daytime turbulence had no dependence on wind direction. Overnight, the relationship between turbulence and wind speed changed with wind direction and canopy depth. The highest turbulence values were associated with downslope winds near the canopy top, but the wind direction for the highest turbulence was variable within the trunk space.

  8. Properties of the First-order Fermi acceleration in fast magnetic reconnection driven by turbulence in collisional MHD flows

    CERN Document Server

    del Valle, M V; Kowal, G

    2016-01-01

    Fast magnetic reconnection may occur in different astrophysical sources, producing flare-like emission and particle acceleration. Currently, this process is being studied as an efficient mechanism to accelerate particles via a first-order Fermi process. In this work we analyse the acceleration rate and the energy distribution of test particles injected in three-dimensional magnetohydrodynamical (MHD) domains with large-scale current sheets where reconnection is made fast by the presence of turbulence. We study the dependence of the particle acceleration time with the relevant parameters of the embedded turbulence, i.e., the Alfv\\'en speed $V_{\\rm A}$, the injection power $P_{\\rm inj}$ and scale $k_{\\rm inj}$ ($k_{\\rm inj} = 1/l_{\\rm inj}$). We find that the acceleration time follows a power-law dependence with the particle kinetic energy: $t_{acc} \\propto E^{\\alpha}$, with $0.2 < \\alpha < 0.6$ for a vast range of values of $c / V_{\\rm A} \\sim 20 - 1000$. The acceleration time decreases with the Alfv\\'en...

  9. Experimental Observation of Exact Coherent Structures in a Weakly Turbulent Quasi-Two-Dimensional Flow

    Science.gov (United States)

    Suri, Balachandra; Tithof, Jeffrey; Pallantla, Ravi Kumar; Grigoriev, Roman; Schatz, Michael

    2015-11-01

    The dynamical systems approach to fluid turbulence relies on understanding the role of unstable, non-chaotic solutions - such as equilibria, traveling waves, and periodic orbits - of the Navier-Stokes equations. These solutions, called Exact Coherent Structures, exist in the same parameter regime as turbulence, but being unstable, are observed in experiments only as short transients. In this talk, we present experimental evidence for the existence and dynamical relevance of unstable equilibria in a weakly turbulent quasi-two-dimensional (Q2D) Kolmogorov flow. In the experiment, this Q2D flow is generated in an electromagnetically driven shallow layer of electrolyte. The numerical simulations, however, use a strictly 2D model which incorporates the effects of the finite thickness of the fluid layer in the experiment. During its evolution, there are instances when the dynamics of a weakly turbulent flow slow down, rather dramatically. Using experimental flow fields from such instances, and by means of a Newton-Solver, we numerically compute several unstable equilibria. Additionally, using numerical simulations, we show that the dynamics of a turbulent flow in the neighbourhood of an equilibrium are accurately described by the unstable manifold of the equilibrium. This work is supported in part by the National Science Foundation under grants CBET-0900018, and CMMI-1234436.

  10. Direct Evidence of the Transition from Weak to Strong Magnetohydrodynamic Turbulence.

    Science.gov (United States)

    Meyrand, Romain; Galtier, Sébastien; Kiyani, Khurom H

    2016-03-11

    One of the most important predictions in magnetohydrodynamics is that in the presence of a uniform magnetic field b_{0}e[over ^]_{∥} a transition from weak to strong wave turbulence should occur when going from large to small perpendicular scales. This transition is believed to be a universal property of several anisotropic turbulent systems. We present, for the first time, direct evidence of such a transition using a decaying three-dimensional direct numerical simulation of incompressible balanced magnetohydrodynamic turbulence with a grid resolution of 3072^{2}×256. From large to small scales, the change of regime is characterized by (i) a change of slope in the energy spectrum going from approximately -2 to -3/2, (ii) an increase of the ratio between the wave and nonlinear times, with a critical ratio of χ_{c}∼1/3, (iii) a modification of the isocontours of energy revealing a transition from a purely perpendicular cascade to a cascade compatible with the critical-balance-type phenomenology, and (iv) an absence followed by a dramatic increase of the communication between Alfvén modes. The changes happen at approximately the same transition scale and can be seen as manifest signatures of the transition from weak to strong wave turbulence. Furthermore, we observe a significant nonlocal three-wave coupling between strongly and weakly nonlinear modes resulting in an inverse transfer of energy from small to large scales.

  11. Energy Cascades in MHD

    Science.gov (United States)

    Alexakis, A.

    2009-04-01

    Most astrophysical and planetary systems e.g., solar convection and stellar winds, are in a turbulent state and coupled to magnetic fields. Understanding and quantifying the statistical properties of magneto-hydro-dynamic (MHD) turbulence is crucial to explain the involved physical processes. Although the phenomenological theory of hydro-dynamic (HD) turbulence has been verified up to small corrections, a similar statement cannot be made for MHD turbulence. Since the phenomenological description of Hydrodynamic turbulence by Kolmogorov in 1941 there have been many attempts to derive a similar description for turbulence in conducting fluids (i.e Magneto-Hydrodynamic turbulence). However such a description is going to be based inevitably on strong assumptions (typically borrowed from hydrodynamics) that do not however necessarily apply to the MHD case. In this talk I will discuss some of the properties and differences of the energy and helicity cascades in turbulent MHD and HD flows. The investigation is going to be based on the analysis of direct numerical simulations. The cascades in MHD turbulence appear to be a more non-local process (in scale space) than in Hydrodynamics. Some implications of these results to turbulent modeling will be discussed

  12. Nonlinear Terms of MHD Equations for Homogeneous Magnetized Shear Flow

    CERN Document Server

    Dimitrov, Z D; Hristov, T S; Mishonov, T M

    2011-01-01

    We have derived the full set of MHD equations for incompressible shear flow of a magnetized fluid and considered their solution in the wave-vector space. The linearized equations give the famous amplification of slow magnetosonic waves and describe the magnetorotational instability. The nonlinear terms in our analysis are responsible for the creation of turbulence and self-sustained spectral density of the MHD (Alfven and pseudo-Alfven) waves. Perspectives for numerical simulations of weak turbulence and calculation of the effective viscosity of accretion disks are shortly discussed in k-space.

  13. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence.

    Science.gov (United States)

    Yi, Xiang; Li, Zan; Liu, Zengji

    2015-02-20

    In clean ocean water, the performance of a underwater optical communication system is limited mainly by oceanic turbulence, which is defined as the fluctuations in the index of refraction resulting from temperature and salinity fluctuations. In this paper, using the refractive index spectrum of oceanic turbulence under weak turbulence conditions, we carry out, for a horizontally propagating plane wave and spherical wave, analysis of the aperture-averaged scintillation index, the associated probability of fade, mean signal-to-noise ratio, and mean bit error rate. Our theoretical results show that for various values of the rate of dissipation of mean squared temperature and the temperature-salinity balance parameter, the large-aperture receiver leads to a remarkable decrease of scintillation and consequently a significant improvement on the system performance. Such an effect is more noticeable in the plane wave case than in the spherical wave case.

  14. Dispersive Magnetosonic Waves and Turbulence in the Heliosheath: Multi-Fluid MHD Reconstruction of Voyager 2 Observations

    Science.gov (United States)

    Zieger, B.; Opher, M.; Toth, G.

    2016-12-01

    Recently we demonstrated that our three-fluid MHD model of the solar wind plasma (where cold thermal solar wind ions, hot pickup ions, and electrons are treated as separate fluids) is able to reconstruct the microstructure of the termination shock observed by Voyager 2 [Zieger et al., 2015]. We constrained the unknown pickup ion abundance and temperature and confirmed the presence of a hot electron population at the termination shock, which has been predicted by a number of previous theoretical studies [e.g. Chasei and Fahr, 2014; Fahr et al., 2014]. We showed that a significant part of the upstream hydrodynamic energy is transferred to the heating of pickup ions and "massless" electrons. As shown in Zieger et al., [2015], three-fluid MHD theory predicts two fast magnetosonic modes, a low-frequency fast mode or solar wind ion (SW) mode and a high-frequency fast mode or pickup ion (PUI) mode. The coupling of the two ion populations results in a quasi-stationary nonlinear mode or oscilliton, which appears as a trailing wave train downstream of the termination shock. In single-fluid plasma, dispersive effects appear on the scale of the Debye length. However, in a non-equilibrium plasma like the solar wind, where solar wind ions and PUIs have different temperatures, dispersive effects become important on fluid scales [see Zieger et al., 2015]. Here we show that the dispersive effects of fast magnetosonic waves are expected on the scale of astronomical units (AU), and dispersion plays an important role producing compressional turbulence in the heliosheath. The trailing wave train of the termination shock (the SW-mode oscilliton) does not extend to infinity. Downstream propagating PUI-mode waves grow until they steepen into PUI shocklets and overturn starting to propagate backward. The upstream propagating PUI-mode waves result in fast magnetosonic turbulence and limit the downstream extension of the oscilliton. The overturning distance of the PUI-mode, where these waves

  15. Self-recovery effect of orbital angular momentum mode of circular beam in weak non-Kolmogorov turbulence.

    Science.gov (United States)

    Zhang, Tao; Liu, Yi-Dong; Wang, Jiandong; Liu, Pusheng; Yang, Yuanjie

    2016-09-01

    It is generally true that the orbital angular momentum (OAM) mode persistently degenerate when a vortex beam propagates in the atmospheric turbulence. Here, however, we unveil an interesting self-recovery effect of OAM mode of the circular beam (CiB) in weak non-Kolmogorov turbulence. We show that the CiB displays the self-focusing effect and has clear focus in the weak non-Kolmogorov turbulence if we choose proper complex parameters, and the detection probability of the original OAM mode reaches the maximum at the focus. Our study proposes a method to alleviate the turbulent effects on OAM-based communication.

  16. Flat-topped Gaussian laser beam scintillation in weakly turbulent marine atmospheric medium

    Science.gov (United States)

    Gerçekcioğlu, Hamza; Abbas, Ahmed A.; Göktaş, H. Haldun

    2017-09-01

    In a weakly marine turbulent medium, formulation of the on-axis scintillation index of a flat topped Gaussian beam is derived by using the Rytov method and the intensity has log-normal distribution expressed. The scintillation index and average bit error rate with respect to changes in propagation distance, wavelength, beam size, and average signal to noise ratio are exhibited. Our results indicated that small advantage can be achieved in weak atmospheric marine when focal length equals to propagation distance and when the order of flatness is small value.

  17. Scaling theory of relative diffusion of charged particles in a weakly magneto-turbulent plasma

    Energy Technology Data Exchange (ETDEWEB)

    Haida Wang (University of Science and Technology of China, Hefei, Anhui. Dept. of Modern Physics); Xiaoming Qui (Southwest Inst. of Physics, Leshan, SC (China))

    1989-02-01

    Stochastic motion of charged particles in a magneto-turbulent plasma is studied for the whole time region. A set of nonlinear differential equations for describing relative spatial diffusion of charged particles is derived and some explicit results are obtained in the case of a weak magnetic field. It is found that, for the diffusion in the present system there are some new and interesting properties which do not exist in an unmagnetized plasma. The clump effect is also discussed. (author).

  18. A 3D MHD simulation of SN 1006: a polarized emission study for the turbulent case

    Science.gov (United States)

    Velázquez, P. F.; Schneiter, E. M.; Reynoso, E. M.; Esquivel, A.; De Colle, F.; Toledo-Roy, J. C.; Gómez, D. O.; Sieyra, M. V.; Moranchel-Basurto, A.

    2017-01-01

    Three dimensional magnetohydrodynamical simulations were carried out in order to perform a new polarization study of the radio emission of the supernova remnant SN 1006. These simulations consider that the remnant expands into a turbulent interstellar medium (including both magnetic field and figuredensity perturbations). Based on the referenced-polar angle technique, a statistical study was done on observational and numerical magnetic field position-angle distributions. Our results show that a turbulent medium with an adiabatic index of 1.3 can reproduce the polarization properties of the SN 1006 remnant. This statistical study reveals itself as a useful tool for obtaining the orientation of the ambient magnetic field, previous to be swept up by the main supernova remnant shock.

  19. The structure of MHD turbulence under an external magnetic field: results from simulations on elongated domains

    Science.gov (United States)

    Zhai, X. M.; Yeung, P. K.

    2016-11-01

    Turbulence in an electrically conducting fluid in the limit of low magnetic Reynolds number is, because of the Lorentz force due to an external magnetic field, very different from classical turbulence at both the large scales and the small scales. The importance of minimizing finite domain-size effects on the large scale development has often tended to limit the Reynolds number reached in the past. In this work we use periodic domains stretched along the magnetic field with aspect ratio up to 8 and beyond. The initial state is obtained from decaying isotropic turbulence with large-eddy length scales of order 1% of the length of the domain. After a transient period the kinetic energy returns to a power law decay while the integral length scales in the direction parallel to the magnetic field show preferential growth. At early times the parallel velocity component becomes stronger than the other two but this anisotropy is subsequently reversed under the combined effects of anisotropic Joule dissipation and viscous dissipation. The small scales show characteristics of quasi two-dimensional behavior in the transverse plane. Results over a range of magnetic interaction parameters and Reynolds numbers are compared with known theoretical predictions. Supported by NSF Grant CBET-1510749 and supercomputer resources at TACC/XSEDE and ALCF.

  20. Planck intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence

    CERN Document Server

    Ade, P A R; Alves, M I R; Aniano, G; Armitage-Caplan, C; Arnaud, M; Arzoumanian, D; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bracco, A; Burigana, C; Cardoso, J -F; Catalano, A; Chamballu, A; Chiang, H C; Christensen, P R; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Enßlin, T A; Eriksen, H K; Falgarone, E; Fanciullo, L; Ferrière, K; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Galeotta, S; Ganga, K; Ghosh, T; Giard, M; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gregorio, A; Gruppuso, A; Guillet, V; Hansen, F K; Harrison, D L; Helou, G; Hernández-Monteagudo, C; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Huffenberger, K M; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Lawrence, C R; Leonardi, R; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Mazzotta, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Pelkonen, V -M; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Sandri, M; Scott, D; Soler, J D; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Zonca, A

    2014-01-01

    Polarized emission observed by Planck HFI at 353 GHz towards a sample of nearby fields is presented, focusing on the statistics of polarization fractions $p$ and angles $\\psi$. The polarization fractions and column densities in these nearby fields are representative of the range of values obtained over the whole sky. We find that: (i) the largest polarization fractions are reached in the most diffuse fields; (ii) the maximum polarization fraction $p_\\mathrm{max}$ decreases with column density $N_\\mathrm{H}$ in the more opaque fields with $N_\\mathrm{H} > 10^{21}\\,\\mathrm{cm}^{-2}$; and (iii) the polarization fraction along a given line of sight is correlated with the local spatial coherence of the polarization angle. These observations are compared to polarized emission maps computed in simulations of anisotropic magnetohydrodynamical (MHD) turbulence in which we assume a uniform intrinsic polarization fraction of the dust grains. We find that an estimate of this parameter may be recovered from the maximum pol...

  1. Does Weak Turbulence Impact PMSEs' Strengths Closer To The Northern Pole?

    Science.gov (United States)

    Swarnalingam, N.; Hocking, W. K.; Janches, D.; Nicolls, M. J.

    2015-12-01

    Existing 51.0 MHz VHF radar at Eureka (80N, 86W) in northern Canada is located closer to both the northern magnetic and geomagnetic poles. A recent calibrated study of Polar Mesosphere Summer Echoes (PMSE) using this radar supports the previous results by other radars that the absolute signal strength of PMSE in this region is relatively weak compared with the radar observations located at high latitudes. Although very cold temperature and existence of charged ice particles are the most important ingredient required for PMSE to appear, several other factors could potentially influence the absolute signal strengths of these echoes. One of them is neutral air turbulence. Previous studies indicate that upper mesospheric turbulence's strength decreases with latitudes, especially in the very high latitudes [Becker, 2004; Lubken et. al., 2009]. In this study, we investigate long-term mesospheric turbulence strengths at Eureka and study how they could be associated with the weak PMSE signal strengths compared with other high latitude conditions, where PMSE are strong.

  2. Runaway Freeze-out of Volatiles in Weakly Turbulent Protoplanetary disks

    CERN Document Server

    Xu, Rui; Oberg, Karin

    2016-01-01

    Volatiles, especially CO, are important gas tracers of protoplanetary disks (PPDs). Freeze-out and sublimation processes determine their division between gas and solid phases, which affects both which disk regions can be traced by which volatiles, and the formation and composition of planets. Recently, multiple lines of evidence suggest that CO is substantially depleted from the gas in the outer regions of PPDs. In this letter, we show that the gas dynamics in the outer PPDs facilitates volatile depletion through a mechanism which we term "runaway freeze-out". Using a simple 1D model that incorporates dust settling, turbulent diffusion of dust and volatiles, as well as volatile freeze-out/sublimation processes, we show that as long as turbulence in the cold midplane is sufficiently weak to allow majority of the small grains to settle, CO in the warm surface layer can be turbulently mixed into the midplane region and depleted by freeze-out. The level of depletion sensitively depends on the level of disk turbul...

  3. Weak Turbulence in the Magnetosphere: Formation of Whistler Wave Cavity by Nonlinear Scattering

    CERN Document Server

    Crabtree, C; Ganguli, G; Mithaiwala, M; Galinsky, V; Shevchenko, V

    2011-01-01

    We consider the weak turbulence of whistler waves in the in low-\\beta\\ inner magnetosphere of the Earth. Whistler waves with frequencies, originating in the ionosphere, propagate radially outward and can trigger nonlinear induced scattering by thermal electrons provided the wave energy density is large enough. Nonlinear scattering can substantially change the direction of the wave vector of whistler waves and hence the direction of energy flux with only a small change in the frequency. A portion of whistler waves return to the ionosphere with a smaller perpendicular wave vector resulting in diminished linear damping and enhanced ability to pitch-angle scatter trapped electrons. In addition, a portion of the scattered wave packets can be reflected near the ionosphere back into the magnetosphere. Through multiple nonlinear scatterings and ionospheric reflections a long-lived wave cavity containing turbulent whistler waves can be formed with the appropriate properties to efficiently pitch-angle scatter trapped e...

  4. Research on diversity receive technology for wireless optical communication using PPM in weak turbulence atmosphere channel

    Science.gov (United States)

    Liu, Yang; Zhang, Guo-an

    2014-09-01

    In order to mitigate atmospheric turbulence, the free space optical (FSO) system model with spatial diversity is analyzed based on intensity detection pulse position modulation (PPM) in the weak turbulence atmosphere. The slot error rate (SER) calculating formula of the system without diversity is derived under pulse position modulation firstly. Then as a benchmark, independent of identical distribution, the average slot error rates of the three linear combining technologies, which are the maximal ratio combining (MRC), equal gain combining (EGC) and selection combining (SelC), are compared. Simulation results show that the performance of system is the best improved by MRC, followed by EGC, and is poor by SelC, but SelC is simpler and more convenient. Spatial diversity is efficient to improve the performance and has strong ability on resistance to atmospheric channel decline. The above scheme is more suitable for optical wireless communication systems.

  5. Some unsteady turbulent MHD flows in flat channels and circular pipes

    Energy Technology Data Exchange (ETDEWEB)

    Nemirovskiy, Yu.V.; Kheynloo, Ya.L.

    1979-04-01

    An analysis is made of the kinematic characteristics of turbulent pulsating flow of an electrically conductive fluid in a flat channnel and in a circular pipe in longitudinal and azimuthal magnetic fields. It is assumed that walls are impermeable, and that all averaged flow characteristics depend only on the transverse coordinate in accordance with the equation of continuity (the medium is taken as incompressible) and equations of motion of electrically conductive media. Disregarding the Hall effect, a system of equations is derived for the averaged velocity components and the motion of the medium. The calculations are based on a semiempirical method developed by the authors. The theoretical results agree satisfactorily with experimental data. 4 references, 2 figures.

  6. Quantum Brownian Motions and Navier-Stokes Weakly Turbulence — a Path Integral Study

    Science.gov (United States)

    Botelho, Luiz C. L.

    In this paper, we present a new method to solve exactly the Schrödinger Harmonic oscillator wave equation in the presence of time-dependent parameter. We also apply such technique to solve exactly the problem of random frequency averaged quantum propagator of a harmonic oscillator with white-noise statistics frequency. We still apply our technique to solve exactly the Brownian Quantum Oscillator in the presence of an electric field. Finally, we use these quantum mechanic techniques to solve exactly the Statistical-Turbulence of the Navier-Stokes in a region of fluid random stirring weakly (analytical) coupling through time-dependent Euclidean-Quantum oscillators path-integrals.

  7. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems

    KAUST Repository

    Oubei, Hassan M.

    2017-06-16

    In this Letter, we use laser beam intensity fluctuation measurements to model and describe the statistical properties of weak temperature-induced turbulence in underwater wireless optical communication (UWOC) channels. UWOC channels with temperature gradients are modeled by the generalized gamma distribution (GGD) with an excellent goodness of fit to the measured data under all channel conditions. Meanwhile, thermally uniform channels are perfectly described by the simple gamma distribution which is a special case of GGD. To the best of our knowledge, this is the first model that comprehensively describes both thermally uniform and gradient-based UWOC channels.

  8. Angular Momentum Transport by MHD Turbulence in Accretion Disks: Gas Pressure Dependence of the Saturation Level of the Magnetorotational Instability

    CERN Document Server

    Sano, T; Turner, N J; Stone, J M; Sano, Takayoshi; Inutsuka, Shu-ichiro; Turner, Neal J.; Stone, James M.

    2004-01-01

    The saturation level of the magnetorotational instability (MRI) is investigated using three-dimensional MHD simulations. The shearing box approximation is adopted and the vertical component of gravity is ignored, so that the evolution of the MRI is followed in a small local part of the disk. We focus on the dependence of the saturation level of the stress on the gas pressure, which is a key assumption in the standard alpha disk model. From our numerical experiments it is found that there is a weak power-law relation between the saturation level of the Maxwell stress and the gas pressure in the nonlinear regime; the higher the gas pressure, the larger the stress. Although the power-law index depends slightly on the initial field geometry, the relationship between stress and gas pressure is independent of the initial field strength, and is unaffected by Ohmic dissipation if the magnetic Reynolds number is at least 10. The relationship is the same in adiabatic calculations, where pressure increases over time, an...

  9. Numerical investigation of the turbulent MHD flow in a circular pipe with transverse magnetic field

    Science.gov (United States)

    Dechamps, Xavier; Rasquin, Michel; Degrez, Gérard

    2012-11-01

    In modern industrial metallurgical processes, external magnetic fields are often applied to control the motion of liquid metals by a non-intrusive means. The desired results are for example the damping of unwanted motions or the homogenization of a liquid zone in a partially solidified ingot. Because of the commonly appearing parameters in these processes, one can assume the quasi-static assumption for the magnetohydrodynamic equations. Here we are interested in the numerical study of the turbulent flow of a liquid metal inside an electrically insulated pipe with a transverse uniform magnetic field. For this purpose, we will use a hybrid spectral/finite element solver, which allows to study complex flows in Cartesian and axisymmetric geometries. For the case of interest, we consider a bulk Reynolds number of 8200 and a Hartmann number ranging between 5 and 30. Here, the main points of interest are the evolution of the skin friction coefficient as a function of the ratio of the Hartmann number Ha over the Reynolds number Re (with 0 FNRS) is aknowledged.

  10. MHD flow in a cylindrical vessel of finite size with turbulent boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Gorbachev, L.P.; Nikitin, N.V.

    1979-01-01

    The hydrodynamic characteristics of flows generated by electromagnetic forces in a cylindrical vessel of finite size, for the case of large values of the hydrodynamic and small values of the magnetic Reynolds numbers have been inadequately analyzed in previous literature, since neither the nonlinear nor the linear theory adequately accounts for secondary flows due to the strong action of boundary layers formed at the end faces of the cylinders at large Reynolds numbers and the results do not agree with experimental data. This paper generalizes the previously more accurate nonlinear scheme of the same authors, the basis for which was the fact that viscosity at large Reynolds numbers is manifest only close to solid surfaces. Two cases are treated: crossed fields and a rotating magnetic field in the cylindrical vessel, where the entire flow region is broken down into an inviscid core and end face boundary layers. It is assumed that the velocity distribution near the end surfaces obeys an empirical one-seventh power law, which is applicable to turbulent liquid flow in a tube in a range of Re = 3 x 10/sup 3/ to 10/sup 5/ simple engineering formulas are derived for the angular velocity, which exhibit good agreement with the experimental data for Hartmann numbers less than 10. The procedure can be generalized to the case of a rotating magnetic field having several pairs of poles. 6 references, 2 figures.

  11. Application of rank-ordered multifractal analysis (ROMA) to intermittent fluctuations in 3D turbulent flows, 2D MHD simulation and solar wind data

    Science.gov (United States)

    Wu, C.; Chang, T.

    2010-12-01

    A new method in describing the multifractal characteristics of intermittent events was introduced by Cheng and Wu [Chang T. and Wu C.C., Physical Rev, E77, 045401(R), 2008]. The procedure provides a natural connection between the rank-ordered spectrum and the idea of one-parameter scaling for monofractals. This technique has been demonstrated using results obtained from a 2D MHD simulation. It has also been successfully applied to in-situ solar wind observations [Chang T., Wu, C.C. and Podesta, J., AIP Conf Proc. 1039, 75, 2008], and the broadband electric field oscillations from the auroral zone [Tam, S.W.Y. et al., Physical Rev, E81, 036414, 2010]. We take the next step in this procedure. By using the ROMA spectra and the scaled probability distribution functions (PDFs), raw PDFs can be calculated, which can be compared directly with PDFs from observations or simulation results. In addition to 2D MHD simulation results and in-situ solar wind observation, we show clearly using the ROMA analysis the multifractal character of the 3D fluid simulation data obtained from the JHU turbulence database cluster at http://turbulence.pha.jhu.edu. In particular, we show the scaling of the non-symmetrical PDF for the parallel-velocity fluctuations of this 3D fluid data.

  12. Characterisation of the turbulent electromotive force and its magnetically-mediated quenching in a global EULAG-MHD simulation of solar convection

    CERN Document Server

    Simard, C; Dube, C

    2016-01-01

    We perform a mean-field analysis of the EULAG-MHD millenium simulation of global magnetohydrodynamical convection presented in Passos et al. 2014. The turbulent electromotive force operating in the simulation is assumed to be linearly related to the cyclic axisymmetric mean magnetic field and its first spatial derivatives. At every grid point in the simulation's meridional plane, this assumed relationship involves 27 independent tensorial coefficients. Expanding on Racine et al. 2011, we extract these coefficients from the simulation data through a least-squares minimization procedure based on singular value decomposition. The reconstructed alpha-tensor shows good agreement with that obtained by Racine et al. 2011, who did not include derivatives of the mean-field in their fit, as well as with the alpha-tensor extracted by Augustson et al. 2015 from a distinct ASH MHD simulation. The isotropic part of the turbulent magnetic diffusivity tensor beta is positive definite and reaches values of 5.0x10^7 m2s-1 in t...

  13. Study of Nonlinear Interaction and Turbulence of Alfven Waves in LAPD Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Boldyrev, Stanislav; Perez, Jean Carlos

    2013-11-29

    The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracy the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the

  14. Coexistence of Weak and Strong Wave Turbulence in a Swell Propagation

    CERN Document Server

    Zakharov, V E; Pushkarev, A; Resio, D

    2007-01-01

    By performing two parallel numerical experiments -- solving the dynamical Hamiltonian equations and solving the Hasselmann kinetic equation -- we examined the applicability of the theory of weak turbulence to the description of the time evolution of an ensemble of free surface waves (a swell) on deep water. We observed qualitative coincidence of the results. To achieve quantitative coincidence, we augmented the kinetic equation by an empirical dissipation term modelling the strongly nonlinear process of white-capping. Fitting the two experiments, we determined the dissipation function due to wave breaking and found that it depends very sharply on the parameter of nonlinearity (the surface steepness). The onset of white-capping can be compared to a second-order phase transition. This result corroborates with experimental observations by Banner, Babanin, Young.

  15. Towards Precision LSST Weak-Lensing Measurement - I: Impacts of Atmospheric Turbulence and Optical Aberration

    CERN Document Server

    Tyson, M James Jee And J Anthony

    2010-01-01

    The weak-lensing science of the LSST project drives the need to carefully model and separate the instrumental artifacts from the intrinsic lensing signal. The dominant source of the systematics for all ground based telescopes is the spatial correlation of the PSF modulated by both atmospheric turbulence and optical aberrations. In this paper, we present a full FOV simulation of the LSST images by modeling both the atmosphere and the telescope optics with the most current data for the telescope specifications and the environment. To simulate the effects of atmospheric turbulence, we generated six-layer phase screens with the parameters estimated from the on-site measurements. For the optics, we combined the ray-tracing tool ZEMAX and our simulated focal plane data to introduce realistic aberrations and focal plane height fluctuations. Although this expected flatness deviation for LSST is small compared with that of other existing cameras, the fast f-ratio of the LSST optics makes this focal plane flatness vari...

  16. Impressions of the turbulence variability in a weakly stratified, flat-bottom deep-sea ‘boundary layer’

    NARCIS (Netherlands)

    van Haren, H.

    2015-01-01

    The character of turbulent overturns in a weakly stratified deep-sea is investigated in some detail using 144 high-resolution temperature sensors at 0.7 m intervals, starting 5 m above the bottom. A 9-day, 1 Hz sampled record from the 912 m depth flat-bottom (<0.5% bottom-slope) mooring site in the

  17. Impressions of the turbulence variability in a weakly stratified, flat-bottom deep-sea ‘boundary layer’

    NARCIS (Netherlands)

    van Haren, H.

    2015-01-01

    The character of turbulent overturns in a weakly stratified deep-sea is investigated in some detail using 144 high-resolution temperature sensors at 0.7 m intervals, starting 5 m above the bottom. A 9-day, 1 Hz sampled record from the 912 m depth flat-bottom (<0.5% bottom-slope) mooring site in the

  18. Scaling laws in magnetized plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Boldyrev, Stanislav [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-28

    Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features of MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices

  19. Characterisation of the turbulent electromotive force and its magnetically-mediated quenching in a global EULAG-MHD simulation of solar convection

    Science.gov (United States)

    Simard, Corinne; Charbonneau, Paul; Dubé, Caroline

    2016-10-01

    We perform a mean-field analysis of the EULAG-MHD millenium simulation of global magnetohydrodynamical convection presented in Passos and Charbonneau (2014). The turbulent electromotive force (emf) operating in the simulation is assumed to be linearly related to the cyclic axisymmetric mean magnetic field and its first spatial derivatives. At every grid point in the simulation's meridional plane, this assumed relationship involves 27 independent tensorial coefficients. Expanding on Racine et al. (2011), we extract these coefficients from the simulation data through a least-squares minimization procedure based on singular value decomposition. The reconstructed α -tensor shows good agreement with that obtained by Racine et al. (2011), who did not include derivatives of the mean-field in their fit, as well as with the α -tensor extracted by Augustson et al. (2015) from a distinct ASH MHD simulation. The isotropic part of the turbulent magnetic diffusivity tensor β is positive definite and reaches values of 5.0 ×107 m2 s-1 in the middle of the convecting fluid layers. The spatial variations of both αϕϕ and βϕϕ component are well reproduced by expressions obtained under the Second Order Correlation Approximation, with a good matching of amplitude requiring a turbulent correlation time about five times smaller than the estimated turnover time of the small-scale turbulent flow. By segmenting the simulation data into epochs of magnetic cycle minima and maxima, we also measure α - and β -quenching. We find the magnetic quenching of the α -effect to be driven primarily by a reduction of the small-scale flow's kinetic helicity, with variations of the current helicity playing a lesser role in most locations in the simulation domain. Our measurements of turbulent diffusivity quenching are restricted to the βϕϕ component, but indicate a weaker quenching, by a factor of ≃ 1.36, than of the α -effect, which in our simulation drops by a factor of three between

  20. Turbulent General Magnetic Reconnection

    CERN Document Server

    Eyink, Gregory L

    2014-01-01

    Plasma flows with an MHD-like turbulent inertial range, such as the solar wind, require a generalization of General Magnetic Reconnection (GMR) theory. We introduce the slip-velocity source vector, which gives the rate of development of slip velocity per unit arc length of field line. The slip source vector is the ratio of the curl of the non ideal electric field in the Generalized Ohm's Law and the magnetic field strength. It diverges at magnetic nulls, unifying GMR with magnetic null-point reconnection. Only under restrictive assumptions is the slip velocity related to the gradient of the quasi potential (integral of parallel electric field along field lines). In a turbulent inertial range the curl becomes extremely large while the parallel component is tiny, so that line slippage occurs even while ideal MHD becomes accurate. The resolution of this paradox is that ideal MHD is valid for a turbulent inertial-range only in a weak sense which does not imply magnetic line freezing. The notion of weak solution i...

  1. Spectral evolution of two-layer weak geostrophic turbulence. Part I: Typical scenarios

    Directory of Open Access Journals (Sweden)

    T. Soomere

    1996-01-01

    Full Text Available Long-time evolution of large-scale geophysical flows is considered in a β-plane approximation. Motions in an infinite 2-layer model ocean are treated as a system of weakly nonlinear Rossby waves (weak geostrophic turbulence. The evolution of the energy spectrum of the barotropic and the baroclinic modes is investigated on the basis of numerical experiments with the kinetic equation for baroclinic Rossby waves. The basic features of free (nonforced inviscid spectral evolution of baroclinic flows are similar to those of the barotropic motions. A portion of the energy is transferred to a sharp spectral peak while the rest of it is isotropically distributed. The peak corresponds to an intensive nearly zonal barotropic flow. Typically, this well-defined barotropic zonal anisotropy inhibits the reinforcement of its baroclinic analogy. For a certain set of initial conditions (in particular, if the barotropic zonal flow is not present initially, a zonal anisotropy of both modes is generated. The interplay between the multimodal nearly zonal flow components leads to the excitation of large-scale (several times exceeding the scale of the initial state, mostly meridional, baroclinic motions at the expense of the barotropic nearly zonal flow. The underlying mechanism is explained on the level of elementary mixed-triad interaction. The whole wave field retains its essentially baroclinic as well as spectrally broad nature. It evidently tends towards a thermodynamically equilibrated final state, consisting of the superposition of a (usually barotropic, but occasionally multimodal zonal flow and a wave system with a Raleigh-Jeans spectrum. This evolution takes place as a multi-staged process, with fast convergence of the modal spectra to a local equilibrium followed by a more gradual adjustment of the energy balance between the modes.

  2. Solar Wind Turbulence and the Role of Ion Instabilities

    CERN Document Server

    Alexandrova, Olga; Sorriso-Valvo, Luca; Horbury, Timothy S; Bale, Stuart D

    2013-01-01

    Solar wind is probably the best laboratory to study turbulence in astrophysical plasmas. In addition to the presence of magnetic field, the differences with neutral fluid isotropic turbulence are: weakness of collisional dissipation and presence of several characteristic space and time scales. In this paper we discuss observational properties of solar wind turbulence in a large range from the MHD to the electron scales. At MHD scales, within the inertial range, turbulence cascade of magnetic fluctuations develops mostly in the plane perpendicular to the mean field. Solar wind turbulence is compressible in nature. The spectrum of velocity fluctuations do not follow magnetic field one. Probability distribution functions of different plasma parameters are not Gaussian, indicating presence of intermittency. At the moment there is no global model taking into account all these observed properties of the inertial range. At ion scales, turbulent spectra have a break, compressibility increases and the density fluctuat...

  3. Toward the Theory of Turbulence in Magnetized Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Boldyrev, Stanislav [University of Wisconsin - Madison

    2013-07-26

    The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a “condensate”, that is, concentration of magnetic and kinetic energy at small k{sub {parallel}}. A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model.

  4. Weak turbulence theory of collisionless trapped electron driven drift instability in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, T.S.; Tang, W.M.

    1990-10-01

    The toroidal collisionless trapped electron modes are analyzed in the weak turbulence regime treating both ions and trapped electrons nonlinearly in the presence of ion and electron temperature gradients. The spectral intensity of the density fluctuations in the nonlinearly saturated state is analytically obtained from the steady state solution of the wave-kinetic equation. Distant nonlinear interactions between low-k{sub {theta}} and high-k{sub {theta}} modes of similar frequencies via trapped electron scattering (the resonance between the beat wave and the trapped electron precession drift frequencies) suppress the low-k{sub {theta}} (k{sub {theta}}{rho}{sub s} {much lt} (L{sub n}/R){sup 1/2}) modes while close interactions via ion Compton scattering (nonlinear ion Landau damping) produce a monotonically decreasing spectrum from k{sub {theta}}{rho}{sub s} {congruent} (L{sub n}/R){sup 1/2} to k{sub {theta}}{rho}{sub s} {congruent} 1 according to an approximate power law k{sub {theta}}{sup {minus}3}. Various fluctuation amplitudes at saturation and the fluctuation-induced anomalous particle and heat fluxes are found to be smaller than the mixing length estimates. The plasma confinement is predicted to improve with higher T{sub i}/T{sub e}, more peaked density profile, larger aspect ratio, and higher plasma current. Also, a significant dependence of transport on the electron temperature gradient is found which could contribute to the rigidity of the electron temperature profile often experimentally observed.

  5. Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation

    Science.gov (United States)

    Creta, Francesco; Lamioni, Rachele; Lapenna, Pasquale Eduardo; Troiani, Guido

    2016-11-01

    In this study we investigate, both numerically and experimentally, the interplay between the intrinsic Darrieus-Landau (DL) or hydrodynamic instability of a premixed flame and the moderately turbulent flow field in which the flame propagates. The objective is threefold: to establish, unambiguously, through a suitably defined marker, the presence or absence of DL-induced effects on the turbulent flame, to quantify the DL effects on the flame propagation and morphology and, finally, to asses whether such effects are mitigated or suppressed as the turbulence intensity is increased. The numerical simulations are based on a deficient reactant model which lends itself to a wealth of results from asymptotic theory, such as the determination of stability limits. The skewness of the flame curvature probability density function is identified as an unambiguous morphological marker for the presence or absence of DL effects in a turbulent environment. In addition, the turbulent propagation speed is shown to exhibit a distinct dual behavior whereby it is noticeably enhanced in the presence of DL instability while it is unchanged otherwise. Furthermore, increasing the turbulence intensity is found to be mitigating with respect to DL-induced effects such as the mentioned dual behavior which disappears at higher intensities. Experimental propane and/or air Bunsen flames are also investigated, utilizing two distinct diameters, respectively, above and below the estimated DL cutoff wavelength. Curvature skewness is still clearly observed to act as a marker for DL instability while the turbulent propagation speed is concurrently enhanced in the presence of the instability.

  6. Planck intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence

    DEFF Research Database (Denmark)

    Cardoso, J. F.; Delabrouille, J.; Ganga, K.

    2015-01-01

    with the local spatial coherence of the polarization angle. These observations are compared to polarized emission maps computed in simulations of anisotropic magnetohydrodynamical turbulence in which we assume a uniform intrinsic polarization fraction of the dust grains. We find that an estimate...

  7. Turbulence energetics in stably stratified geophysical flows: strong and weak mixing regimes

    CERN Document Server

    Zilitinkevich, S S; Kleeorin, N; Rogachevskii, I; Esau, I; Mauritsen, T; Miles, M W

    2008-01-01

    Traditionally, turbulence energetics is characterized by turbulent kinetic energy (TKE) and modelled using solely the TKE budget equation. In stable stratification, TKE is generated by the velocity shear and expended through viscous dissipation and work against buoyancy forces. The effect of stratification is characterized by the ratio of the buoyancy gradient to squared shear, called Richardson number, Ri. It is widely believed that at Ri exceeding a critical value, Ric, local shear cannot maintain turbulence, and the flow becomes laminar. We revise this concept by extending the energy analysis to turbulent potential and total energies (TPE and TTE = TKE + TPE), consider their budget equations, and conclude that TTE is a conservative parameter maintained by shear in any stratification. Hence there is no "energetics Ric", in contrast to the hydrodynamic-instability threshold, Ric-instability, whose typical values vary from 0.25 to 1. We demonstrate that this interval, 0.25>1, clarify principal difference betw...

  8. WEAK TURBULENCE IN THE HD 163296 PROTOPLANETARY DISK REVEALED BY ALMA CO OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Kevin M.; Hughes, A. Meredith [Van Vleck Observatory, Astronomy Department, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); Rosenfeld, Katherine A.; Andrews, Sean M.; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chiang, Eugene; Kerzner, Skylar [Department of Earth and Planetary Science, 307 McCone Hall, University of California, Berkeley, CA 94720 (United States); Simon, Jacob B. [Department of Space Studies, Southwest Research Institute, Boulder, CO 80302 (United States)

    2015-11-10

    Turbulence can transport angular momentum in protoplanetary disks and influence the growth and evolution of planets. With spatially and spectrally resolved molecular emission line measurements provided by (sub)millimeter interferometric observations, it is possible to directly measure non-thermal motions in the disk gas that can be attributed to this turbulence. We report a new constraint on the turbulence in the disk around HD 163296, a nearby young A star, determined from Atacama Large Millimeter/submillimeter Array Science Verification observations of four CO emission lines (the CO(3-2), CO(2-1), {sup 13}CO(2-1), and C{sup 18}O(2-1) transitions). The different optical depths for these lines permit probes of non-thermal line-widths at a range of physical conditions (temperature and density) and depths into the disk interior. We derive stringent limits on the non-thermal motions in the upper layers of the outer disk such that any contribution to the line-widths from turbulence is <3% of the local sound speed. These limits are approximately an order of magnitude lower than theoretical predictions for full-blown magnetohydrodynamic turbulence driven by the magnetorotational instability, potentially suggesting that this mechanism is less efficient in the outer (R ≳ 30 AU) disk than has been previously considered.

  9. The role of MHD turbulence in magnetic self-excitation: A study of the Madison Dynamo Experiment

    Science.gov (United States)

    Nornberg, Mark D.

    2006-07-01

    Determining the onset conditions for magnetic field growth in magnetohydrodynamics is fundamental to understanding how astrophysical dynamos such as the Earth, the Sun, and the galaxy self-generate magnetic fields. The Madison Dynamo Experiment was constructed to explore the role of turbulence in changing these onset conditions for an impeller-driven flow of liquid sodium. The flow generates intermittent magnetic bursts with the spatial structure predicted from kinematic dynamo theory. A model of the mean flow was constructed from laser Doppler velocimetry measurements of the flow in an identical-scale water experiment. A kinematic eigenvalue code predicted that the flow would generate a predominantly dipolar magnetic field perpendicular to the symmetry axis for sufficiently high impeller speeds. The flow amplifies the magnetic field by stretching field lines. The field lines are then twisted back onto themselves creating a feedback loop for dynamo growth. The same flow was generated in the sodium experiment and was found to amplify an applied magnetic field oriented perpendicular to the drive shaft axis of the experiment. The amplification increased with motor rotation rate as the induced field became more closely aligned with the applied field, though a reduction in the amplitude is attributed to an enhanced resistivity due to turbulent diffusion. The turbulence was characterized by measurements of the velocity and magnetic power spectra. The velocity spectra have a Kolmogorov scaling. The wavenumber at which resistive dissipation range becomes dominant was observed to increase with flow speed indicating that smaller scale magnetic structures were generated. No amplification due to a small-scale dynamo was observed. The intermittent bursts were analyzed using conditional averaging. The growth rate was found to increase linearly with impeller rotation rate resulting in stronger bursts. The average duration decreased so that the bursts continued to satisfy Poisson

  10. Magnetic discontinuities in magnetohydrodynamic turbulence and in the solar wind.

    Science.gov (United States)

    Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne; Perez, Jean Carlos

    2012-04-27

    Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Δθ, across fixed spatial increments Δx in direct numerical simulations of MHD turbulence with an imposed uniform guide field B(0). A large region of the probability density function (pdf) for Δθ is found to follow an exponential decay, proportional to exp(-Δθ/θ(*)), with characteristic angle θ(*)≈(14°)(b(rms)/B(0))(0.65) for a broad range of guide-field strengths. We find that discontinuities observed in the solar wind can be reproduced by MHD turbulence with reasonable ratios of b(rms)/B(0). We also observe an excess of small angular discontinuities when Δx becomes small, possibly indicating an increasing statistical significance of dissipation-scale structures. The structure of the pdf in this case closely resembles the two-population pdf seen in the solar wind. We thus propose that strong discontinuities are associated with inertial-range MHD turbulence, while weak discontinuities emerge from dissipation-range turbulence. In addition, we find that the structure functions of the magnetic field direction exhibit anomalous scaling exponents, which indicates the existence of intermittent structures.

  11. MHD equilibria with diamagnetic effects

    Science.gov (United States)

    Tessarotto, M.; Zorat, R.; Johnson, J. L.; White, R. B.

    1997-11-01

    An outstanding issue in magnetic confinement is the establishment of MHD equilibria with enhanced flow shear profiles for which turbulence (and transport) may be locally effectively suppressed or at least substantially reduced with respect to standard weak turbulence models. Strong flows develop in the presence of equilibrium E× B-drifts produced by a strong radial electric field, as well as due to diamagnetic contributions produced by steep equilibrium radial profiles of number density, temperature and the flow velocity itself. In the framework of a kinetic description, this generally requires the construction of guiding-center variables correct to second order in the relevant expansion parameter. For this purpose, the Lagrangian approach developed recently by Tessarotto et al. [1] is adopted. In this paper the conditions of existence of such equilibria are analyzed and their basic physical properties are investigated in detail. 1 - M. Pozzo, M. Tessarotto and R. Zorat, in Theory of fusion Plasmas, E.Sindoni et al. eds. (Societá Italiana di Fisica, Editrice Compositori, Bologna, 1996), p.295.

  12. Angular momentum transport in accretion disk boundary layers around weakly magnetized stars

    DEFF Research Database (Denmark)

    Pessah, M.E.; Chan, C.-K.

    2013-01-01

    The standard model for turbulent shear viscosity in accretion disks is based on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. This implies that the turbulent stress must be negative and thus transport angular momentum inwards......, in the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI......) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics of MHD waves...

  13. 3D Large-Scale DNS of Weakly-Compressible Homogeneous Isotropic Turbulence With Lagrangian Tracer Particles

    Science.gov (United States)

    Fisher, R.; Lamb, D.; Kadanoff, L.; Cattaneo, F.; Constantin, P.; Plewa, T.

    2006-11-01

    When simulating turbulence with complex or embedded geometries, or which transitions from incompressible to weakly-compressible, it is desirable to have a robust numerical method which is equally capable of handling these regimes without significant loss of accuracy. The FLASH 2006 turbulence simulation is a driven, weakly-compressible, homogeneous, isotropic simulation which explores this concept in detail. It was performed at 1856^3 resolution with 16.7 million Lagrangian tracer particles at a (1D) RMS velocity of 0.17. The simulation was performed by special invitation on the LLNL BG/L machine shortly before it was permanently placed inside their secure network earlier this year. Approximately one week of CPU time on 65,536 processors were used. We will present results including both Eulerian and Lagrangian properties of the simulation, and compare these to previous experiments and theories. We will also discuss a systematic error in the determination of the higher-order structure functions due to finite statistics and address this issue for our dataset.

  14. AN INVESTIGATION OF TURBULENT RECTANGULAR JET DISCHARGED INTO A NARROW CHANNEL WEAK CROSSFLOW

    Institute of Scientific and Technical Information of China (English)

    PATHAK Manabendra; DASS Anoop K; DEWAN Anupam

    2008-01-01

    A computational investigation of the mean flow field of turbulent rectangular jets issuing into a narrow channel crossflow is presented. The length of the jet slot spans more than 55% of the crossflow channel bed, leaving a small clearance between the jet edge and sidewalls. A finite volume code employing the standard k-e model is used to predict the mean, three-dimensional flow field. The mean flow field is investigated for two velocity ratios (6 and 9). Important flow features, such as the formation of different vortical structures and their characteristics owing to different values of the velocity ratio, are discussed. Some predicted results are compared with the experimental data reported in the literature. The predicted mean and turbulent flow properties are shown to be in good agreement with the experimental data.

  15. Intermittency and universality in fully-developed inviscid and weakly-compressible turbulent flows

    OpenAIRE

    Benzi, R; Biferale, L Luca; Fisher, RT; Kadanoff, LP; Lamb, DQ; Toschi, F Federico

    2008-01-01

    We performed high resolution numerical simulations of homogenous and isotropic compressible turbulence, with an average 3D Mach number close to 0.3. We study the statistical properties of intermittency for velocity, density and entropy. For the velocity field, which is the primary quantity that can be compared to the isotropic incompressible case, we find no statistical differences in its behavior in the inertial range due either to the slight compressibility or to the different dissipative m...

  16. Can weak turbulence give high concentrations of carbon dioxide in baby cribs?

    Science.gov (United States)

    Karlsson, Edvard; Sjöstedt, Anders; Håkansson, Stellan

    The potential that Sudden Infant Death Syndrome (SIDS) is caused by expired air is examined by calculations of the diffusion of CO 2 in a crib, and considerations of the level of turbulence generated by room ventilation and expiration. The calculations indicate a risk of CO 2 accumulation for a baby in prone position, when the diffusion coefficients in the room and the crib are smaller than 10 -3 m 2s -1, and the expired air is spread only over a part of the crib bottom. The calculations also indicate that the turbulence in the room may be below the critical value of 10 -3 m 2 s -1 when there is warmer air at ceiling height compared to the floor, and the area of the ventilation inlet is large, or the ventilation rate is low. There are indications that the turbulence generated by the breathing may be smaller than the critical value when the infant is breathing through an open mouth, if the expired air is cooled to room temperature, and if the expiration rate is limited to about 3 times the normal value.

  17. Dissipation of Molecular Cloud Turbulence by Magnetohydrodynamic Shockwaves

    Science.gov (United States)

    Lehmann, Andrew; Wardle, Mark

    2015-08-01

    The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the giant molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low velocity shock waves. These shocks cause molecular line cooling of the compressed and heated gas, and so their radiative signatures probe the nature of the turbulence. In MHD fluids the three distinct families of shocks—fast, intermediate and slow—differ in how they compress and heat the molecular gas, and so observational differences between them may also distinguish driving modes of turbulent regions.Here we use a two-fluid model to compare the characteristics of one-dimensional fast and slow MHD shocks. Fast MHD shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where all the fluid variables only weakly change in the shock front. In contrast, slow MHD shocks are driven by gas pressure where neutral species collide with ion species in a thin hot slab that closely resembles an ordinary gas dynamic shock.We computed observational diagnostics for fast and slow shocks at velocities vs = 2-4 km/s and preshock Hydrogen nuclei densities n(H) = 102-4 cm-3. We followed the abundances of molecules relevant for a simple oxygen chemistry and include cooling by CO, H2 and H2O. Estimates of intensities of CO rotational lines show that high-J lines, above J = 6→5, are more strongly excited in slow MHD shocks. We discuss how these shocks could help interpret recently observed anomalously strong mid- and high-J CO lines emitted by warm gas in the Milky Way and external galaxies, and implications for simulations of MHD turbulence.

  18. Turbulence

    CERN Document Server

    Bailly, Christophe

    2015-01-01

    This book covers the major problems of turbulence and turbulent processes, including  physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...

  19. Intermittency and universality in fully developed inviscid and weakly compressible turbulent flows.

    Science.gov (United States)

    Benzi, Roberto; Biferale, Luca; Fisher, Robert T; Kadanoff, Leo P; Lamb, Donald Q; Toschi, Federico

    2008-06-13

    We perform high-resolution numerical simulations of homogenous and isotropic compressible turbulence, with an average 3D Mach number close to 0.3. We study the statistical properties of intermittency for velocity, density, and entropy. For the velocity field, which is the only quantity that can be compared to the isotropic incompressible case, we find no statistical differences in its behavior in the inertial range due either to the slight compressibility or to the different dissipative mechanism. For the density field, we find evidence of "frontlike" structures, although no shocks are produced by the simulation.

  20. Dynamic multiscaling in magnetohydrodynamic turbulence

    CERN Document Server

    Ray, Samriddhi Sankar; Pandit, Rahul

    2016-01-01

    We present the first study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.

  1. Dynamic multiscaling in magnetohydrodynamic turbulence.

    Science.gov (United States)

    Ray, Samriddhi Sankar; Sahoo, Ganapati; Pandit, Rahul

    2016-11-01

    We present a study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.

  2. Numerical simulation of MHD duct flow about laminar and turbulence model%磁流体管流的层流与湍流模型数值模拟

    Institute of Scientific and Technical Information of China (English)

    侯俊; 毛洁; 潘华辰

    2013-01-01

    采用FLUENT软件分别对外加均匀横向磁场的等截面三维充分发展液态金属管流的层流模型和低雷诺数湍流Lam/Bremhost(LB)模型进行了数值模拟,分析了外加磁场对普通方管LB模型速度分布和压降的影响.比较在相同哈特曼数下,层流和湍流模型方管截面上速度分布和管道中MHD压降.其中,对电流的计算采用磁感应方程来求得.数值模拟结果证明了用低雷诺数LB湍流模型解决方管磁流体流动的可行性.通过层流模型和湍流模型的对比可知,层流模型有较短的入口长度,但管内流体的压降却很大;而湍流模型管内速度更加平均化,管内压降较小,但管内入口长度较长.%The numerical analysis of full-developed flow of a liquid metal in a rectangular duct of constant cross-section with a uniform transverse magnetic field was proceeded in laminar and low-Reynolds number Lam/Bremhost turbulence model (for short LB model) using FLUENT software. The paper analyzed the influence of external magnetic field for velocity distribution and MHD pressure drop in turbulence model. Under the same Hartmann number conductions, the paper compared the velocity distribution and MHD pressure drop of laminar model and turbulent model. The solution of current density was obtained by means of induced magnetic field formulation. The result of numerical simulation proved that this was a feasible scheme to use the low-Reynolds LB turbulence model to calculate MHD duct flow. Comparison between laminar model and turbulent model show that laminar model made shorter entrance length, but the pressure drop in the duct increased. Turbulent model had more average speed and smaller pressure drop, but entrance length was longer.

  3. An Accurate Computational Tool for Performance Estimation of FSO Communication Links over Weak to Strong Atmospheric Turbulent Channels

    Directory of Open Access Journals (Sweden)

    Theodore D. Katsilieris

    2017-03-01

    Full Text Available The terrestrial optical wireless communication links have attracted significant research and commercial worldwide interest over the last few years due to the fact that they offer very high and secure data rate transmission with relatively low installation and operational costs, and without need of licensing. However, since the propagation path of the information signal, i.e., the laser beam, is the atmosphere, their effectivity affects the atmospheric conditions strongly in the specific area. Thus, system performance depends significantly on the rain, the fog, the hail, the atmospheric turbulence, etc. Due to the influence of these effects, it is necessary to study, theoretically and numerically, very carefully before the installation of such a communication system. In this work, we present exactly and accurately approximate mathematical expressions for the estimation of the average capacity and the outage probability performance metrics, as functions of the link’s parameters, the transmitted power, the attenuation due to the fog, the ambient noise and the atmospheric turbulence phenomenon. The latter causes the scintillation effect, which results in random and fast fluctuations of the irradiance at the receiver’s end. These fluctuations can be studied accurately with statistical methods. Thus, in this work, we use either the lognormal or the gamma–gamma distribution for weak or moderate to strong turbulence conditions, respectively. Moreover, using the derived mathematical expressions, we design, accomplish and present a computational tool for the estimation of these systems’ performances, while also taking into account the parameter of the link and the atmospheric conditions. Furthermore, in order to increase the accuracy of the presented tool, for the cases where the obtained analytical mathematical expressions are complex, the performance results are verified with the numerical estimation of the appropriate integrals. Finally, using

  4. Turbulence

    Institute of Scientific and Technical Information of China (English)

    Z. Lin; R.E. Waltz

    2007-01-01

    @@ Turbulent transport driven by plasma pressure gradients [Tangl978] is one of the most important scientific challenges in burning plasma experiments since the balance between turbulent transport and the self-heating by the fusion products (a-particles) determines the performance of a fusion reactor like ITER.

  5. Vorticity, Shocks and Magnetic Fields in Subsonic, ICM-like Turbulence

    CERN Document Server

    Porter, David H; Ryu, Dongsu

    2015-01-01

    We analyze high resolution simulations of compressible, MHD turbulence with properties resembling conditions in galaxy clusters. The flow is driven to turbulence Mach number $\\mathcal{M}_t \\sim 1/2$ in an isothermal medium with an initially very weak, uniform seed magnetic field ($\\beta = P_g/P_B = 10^6$). Since cluster turbulence is likely to result from a mix of sheared (solenoidal) and compressive forcing processes, we examine the distinct turbulence properties for both cases. In one set of simulations velocity forcing is entirely solenoidal ($\

  6. Hybrid pulse position modulation and binary phase shift keying subcarrier intensity modulation for free space optics in a weak and saturated turbulence channel.

    Science.gov (United States)

    Faridzadeh, Monire; Gholami, Asghar; Ghassemlooy, Zabih; Rajbhandari, Sujan

    2012-08-01

    In this paper a hybrid modulation scheme based on pulse position modulation (PPM) and binary phase shift keying subcarrier intensity modulation (BPSK-SIM) schemes for free-space optical communications is proposed. The analytical bit error rate (BER) performance is investigated in weak and saturated turbulence channels and results are verified with the simulation data. Results show that performance of PPM-BPSK-SIM is superior to BPSK-SIM in all turbulence regimes; however, it outperforms 2-PPM for the turbulence variance σ(1)(2)>0.2. PPM-BPSK-SIM offers a signal-to-noise ratio (SNR) gain of 50 dB in the saturation regime compared to BPSK at a BER of 10(-6). The SNR gain in comparison to PPM improves as the strength of the turbulence level increases.

  7. Inertial-range dynamics and scaling laws of two-dimensional magnetohydrodynamic turbulence in the weak-field regime.

    Science.gov (United States)

    Blackbourn, Luke A K; Tran, Chuong V

    2014-08-01

    We study inertial-range dynamics and scaling laws in unforced two-dimensional magnetohydrodynamic turbulence in the regime of moderately small and small initial magnetic-to-kinetic-energy ratio r(0), with an emphasis on the latter. The regime of small r(0) corresponds to a relatively weak field and strong magnetic stretching, whereby the turbulence is characterized by an intense conversion of kinetic into magnetic energy (dynamo action in the three-dimensional context). This conversion is an inertial-range phenomenon and, upon becoming quasisaturated, deposits the converted energy within the inertial range rather than transferring it to the small scales. As a result, the magnetic-energy spectrum E(b)(k) in the inertial range can become quite shallow and may not be adequately explained or understood in terms of conventional cascade theories. It is demonstrated by numerical simulations at high Reynolds numbers (and unity magnetic Prandtl number) that the energetics and inertial-range scaling depend strongly on r(0). In particular, for fully developed turbulence with r(0) in the range [1/4,1/4096], E(b)(k) is found to scale as k(α), where α≳-1, including α>0. The extent of such a shallow spectrum is limited, becoming broader as r(0) is decreased. The slope α increases as r(0) is decreased, appearing to tend to +1 in the limit of small r(0). This implies equipartition of magnetic energy among the Fourier modes of the inertial range and the scaling k(-1) of the magnetic potential variance, whose flux is direct rather than inverse. This behavior of the potential resembles that of a passive scalar. However, unlike a passive scalar whose variance dissipation rate slowly vanishes in the diffusionless limit, the dissipation rate of the magnetic potential variance scales linearly with the diffusivity in that limit. Meanwhile, the kinetic-energy spectrum is relatively steep, followed by a much shallower tail due to strong antidynamo excitation. This gives rise to a total

  8. Limits on the ions temperature anisotropy in turbulent intracluster medium

    CERN Document Server

    Santo-Lima, R; Pino, E M de Gouveia Dal; Lazarian, A

    2016-01-01

    Turbulence in the weakly collisional intracluster medium of galaxies (ICM) is able to generate strong thermal velocity anisotropies in the ions (with respect to the local magnetic field direction), if the magnetic moment of the particles is conserved in the absence of Coulomb collisions. In this scenario, the anisotropic MHD turbulence shows a very different statistical behaviour from the isotropic (standard) one and is unable to amplify seed magnetic fields, in disagreement with previous cosmological MHD simulations which are able to explain the observed magnetic fields in the ICM. On the other hand, temperature anisotropy can also drive kinetic instabilities which grow faster near the ions kinetic scales. Observations from the solar wind suggest that these micro- instabilities scatter the ions, thus relaxing the anisotropy. This work aims to compare this relaxation rate with the growth rate of the anisotropies driven by the turbulence. We employ quasilinear theory to estimate the scattering rate provided by...

  9. Features of collisionless turbulence in the intracluster medium from simulated Faraday rotation maps II: the effects of instabilities feedback

    CERN Document Server

    Santos-Lima, R; Falceta-Gonçalves, D A; Nakwacki, M S; Kowal, G

    2016-01-01

    Statistical analysis of Faraday Rotation Measure (RM) maps of the intracluster medium (ICM) of galaxy clusters provides a unique tool to evaluate some spatial features of the magnetic fields there. Its combination with numerical simulations of magnetohydrodynamic (MHD) turbulence allows the diagnosis of the ICM turbulence. Being the ICM plasma weakly collisional, the thermal velocity distribution of the particles naturally develops anisotropies as a consequence of the large scale motions and the conservation of the magnetic moment of the charged particles. A previous study (Paper I) analyzed the impact of large scale thermal anisotropy on the statistics of RM maps synthesized from simulations of turbulence; these simulations employed a collisionless MHD model which considered a tensor pressure with uniform anisotropy. In the present work, we extend that analysis to a collisionless MHD model in which the thermal anisotropy develops according to the conservation of the magnetic moment of the thermal particles. ...

  10. Magnetohydrodynamic Turbulence and the Geodynamo

    Science.gov (United States)

    Shebalin, John V.

    2016-01-01

    Recent research results concerning forced, dissipative, rotating magnetohydrodynamic (MHD) turbulence will be discussed. In particular, we present new results from long-time Fourier method (periodic box) simulations in which forcing contains varying amounts of magnetic and kinetic helicity. Numerical results indicate that if MHD turbulence is forced so as to produce a state of relatively constant energy, then the largest-scale components are dominant and quasistationary, and in fact, have an effective dipole moment vector that aligns closely with the rotation axis. The relationship of this work to established results in ideal MHD turbulence, as well as to models of MHD turbulence in a spherical shell will also be presented. These results appear to be very pertinent to understanding the Geodynamo and the origin of its dominant dipole component. Our conclusion is that MHD turbulence, per se, may well contain the origin of the Earth's dipole magnetic field.

  11. Resistive MHD jet simulations with large resistivity

    CERN Document Server

    Cemeljic, Miljenko; Vlahakis, Nektarios; Tsinganos, Kanaris

    2009-01-01

    Axisymmetric resistive MHD simulations for radially self-similar initial conditions are performed, using the NIRVANA code. The magnetic diffusivity could occur in outflows above an accretion disk, being transferred from the underlying disk into the disk corona by MHD turbulence (anomalous turbulent diffusivity), or as a result of ambipolar diffusion in partially ionized flows. We introduce, in addition to the classical magnetic Reynolds number Rm, which measures the importance of resistive effects in the induction equation, a new number Rb, which measures the importance of the resistive effects in the energy equation. We find two distinct regimes of solutions in our simulations. One is the low-resistivity regime, in which results do not differ much from ideal-MHD solutions. In the high-resistivity regime, results seem to show some periodicity in time-evolution, and depart significantly from the ideal-MHD case. Whether this departure is caused by numerical or physical reasons is of considerable interest for nu...

  12. Wave turbulence in magnetized plasmas

    Directory of Open Access Journals (Sweden)

    S. Galtier

    2009-02-01

    Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.

  13. Lagrangian frequency spectrum as a diagnostic for magnetohydrodynamic turbulence dynamics.

    Science.gov (United States)

    Busse, Angela; Müller, Wolf-Christian; Gogoberidze, Grigol

    2010-12-01

    For the phenomenological description of magnetohydrodynamic turbulence competing models exist, e.g., Boldyrev [Phys. Rev. Lett. 96, 115002 (2006)] and Gogoberidze [Phys. Plasmas 14, 022304 (2007)], which predict the same Eulerian inertial-range scaling of the turbulent energy spectrum although they employ fundamentally different basic interaction mechanisms. A relation is found that links the Lagrangian frequency spectrum with the autocorrelation time scale of the turbulent fluctuations τ(ac) and the associated cascade time scale τ(cas). Thus, the Lagrangian energy spectrum can serve to identify weak (τ(ac) ≪ τ(cas)) and strong (τ(ac) ∼ τ(cas)) interaction mechanisms providing insight into the turbulent energy cascade. The new approach is illustrated by results from direct numerical simulations of two- and three-dimensional incompressible MHD turbulence.

  14. On Self-Similar Solutions to a Kinetic Equation Arising in Weak Turbulence Theory for the Nonlinear Schrödinger Equation

    Science.gov (United States)

    Kierkels, A. H. M.; Velázquez, J. J. L.

    2016-06-01

    We construct a family of self-similar solutions with fat tails to a quadratic kinetic equation. This equation describes the long time behaviour of weak solutions with finite mass to the weak turbulence equation associated to the nonlinear Schrödinger equation. The solutions that we construct have finite mass, but infinite energy. In Kierkels and Velázquez (J Stat Phys 159:668-712, 2015) self-similar solutions with finite mass and energy were constructed. Here we prove upper and lower exponential bounds on the tails of these solutions.

  15. OAM mode of the Hankel-Bessel vortex beam in weak to strong turbulent link of marine-atmosphere

    Science.gov (United States)

    Li, Ye; Zhang, Yixin

    2017-04-01

    We study the turbulent effects of maritime atmosphere on the propagation of the orbital angular momentum (OAM) modes of a vortex beam. Based on the modified Rytov approximation, we model the effective marine-atmospheric spectrum and the normalized energy weight of the vortex modes of Hankel-Bessel beams in a paraxial marine turbulent channel. Our results show that the intensity of the signal vortex modes of Hankel-Bessel beams in a non-turbulence channel increases with increasing the quantum number of the OAM of vortex modes from one to higher. We can utilize OAM eigenstates of the Hankel-Bessel vortex beam to increase the channel capacity in optical communication of the remote link. The normalized energy weight of signal OAM modes increases and that of crosstalk OAM modes decreases from the worst to the best turbulent maritime climate. The normalized energy weight of signal OAM modes reduces with the increasing of the turbulent outer scale from 0.1 \\text{m} to 0.5 \\text{m} and the receiving diameter, but it increases with increasing the turbulent outer scale when the outer scale is greater than 0.5 \\text{m} . The effects of the inner scale on the normalized energy weight of OAM modes can be ignored. We can mitigate the effects of turbulence by the choice of the longer wavelength and smaller receiver aperture.

  16. Experimental study of the effects of couple weak waves on laminar-turbulent transition on attachment-line of a swept cylinder

    Science.gov (United States)

    Yermolaev, Yu. G.; Yatskih, A. A.; Kosinov, A. D.; Semionov, N. V.; Kolosov, G. L.; Panina, A. V.

    2016-10-01

    An experiment on a swept cylinder with 68°-sweep angle at Mach number M = 2.5 is described. The flow attachment line was disturbed by two weak shock waves. Shock waves were generated by a two-dimensional surface inhomogeneity on the wall of the test section of wind tunnel. It was found that the laminar-turbulent transition on the attachment-line of the cylinder is accompanied by an uneven growth of pulsations. Influence of Mach waves on the transition when their fall on the cylinder far away from domain of measuring is not observed. The laminar-turbulent transition occurs at a much lower unit Reynolds numbers in the case when a pair of waves falling on the attachment-line near the measurement field.

  17. Modelling the Propagation of a Weak Fast-Mode MHD Shock Wave near a 2D Magnetic Null Point Using Nonlinear Geometrical Acoustics

    Science.gov (United States)

    Afanasyev, A. N.; Uralov, A. M.

    2012-10-01

    We present the results of analytical modelling of fast-mode magnetohydrodynamic wave propagation near a 2D magnetic null point. We consider both a linear wave and a weak shock and analyse their behaviour in cold and warm plasmas. We apply the nonlinear geometrical acoustics method based on the Wentzel-Kramers-Brillouin approximation. We calculate the wave amplitude, using the ray approximation and the laws of solitary shock wave damping. We find that a complex caustic is formed around the null point. Plasma heating is distributed in space and occurs at a caustic as well as near the null point due to substantial nonlinear damping of the shock wave. The shock wave passes through the null point even in a cold plasma. The complex shape of the wave front can be explained by the caustic pattern.

  18. Modelling the Propagation of a Weak Fast-Mode MHD Shock Wave near a 2D Magnetic Null Point Using Nonlinear Geometrical Acoustics

    CERN Document Server

    Afanasyev, Andrey N

    2012-01-01

    We present the results of analytical modelling of fast-mode magnetohydrodynamic wave propagation near a 2D magnetic null point. We consider both a linear wave and a weak shock and analyse their behaviour in cold and warm plasmas. We apply the nonlinear geometrical acoustics method based on the Wentzel-Kramers-Brillouin approximation. We calculate the wave amplitude, using the ray approximation and the laws of solitary shock wave damping. We find that a complex caustic is formed around the null point. Plasma heating is distributed in space and occurs at a caustic as well as near the null point due to substantial nonlinear damping of the shock wave. The shock wave passes through the null point even in a cold plasma. The complex shape of the wave front can be explained by the caustic pattern.

  19. Limits on the ions temperature anisotropy in turbulent intracluster medium

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Lima, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Univ. de Sao Paulo (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas; Yan, H. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Gouveia Dal Pino, E.M. de [Univ. de Sao Paulo (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas; Lazarian, A. [Wisconsin Univ., Madison, WI (United States). Dept. of Astronomy

    2016-05-15

    Turbulence in the weakly collisional intracluster medium of galaxies (ICM) is able to generate strong thermal velocity anisotropies in the ions (with respect to the local magnetic field direction), if the magnetic moment of the particles is conserved in the absence of Coulomb collisions. In this scenario, the anisotropic pressure magnetohydrodynamic (AMHD) turbulence shows a very different statistical behaviour from the standard MHD one and is unable to amplify seed magnetic fields, in disagreement with previous cosmological MHD simulations which are successful to explain the observed magnetic fields in the ICM. On the other hand, temperature anisotropies can also drive plasma instabilities which can relax the anisotropy. This work aims to compare the relaxation rate with the growth rate of the anisotropies driven by the turbulence. We employ quasilinear theory to estimate the ions scattering rate due to the parallel firehose, mirror, and ion-cyclotron instabilities, for a set of plasma parameters resulting from AMHD simulations of the turbulent ICM. We show that the ICM turbulence can sustain only anisotropy levels very close to the instabilities thresholds. We argue that the AMHD model which bounds the anisotropies at the marginal stability levels can describe the Alfvenic turbulence cascade in the ICM.

  20. Phenomenology of non-Alfvenic turbulence in a uniformly expanding medium

    Science.gov (United States)

    Matthaeus, W. H.; Zank, G. P.

    1995-01-01

    Transport and decay of magnetohydrodynamic (MHD) turbulence in a weakly inhomogeneous uniformly expanding medium involves a fairly complex formalism, even for the case where no spectral information is required. Here we argue that the phenomenology for decay simplifies greatly if: (1) the cross helicity (Alfvenicity) is small, (2) the dynamical influence of the large scale magnetic field is negligible either because of spectral anisotropy or because the expansion speed is much greater than the corresponding Alfven speed, and (3) the ratio of kinetic energy to magnetic energy for the fluctuations is either unity or some other constant. These conditions are acceptable as an approximation to solar wind turbulence in the outer heliosphere. In these circumstances a reasonable MHD energy-containing phenomenology is essentially that of locally homogeneous Kolmogoroff turbulence in a uniformly expanding medium. Analytical solutions for this model are presented for both undriven and driven cases.

  1. Features of collisionless turbulence in the intracluster medium from simulated Faraday rotation maps - II. The effects of instabilities feedback

    Science.gov (United States)

    Santos-Lima, R.; de Gouveia Dal Pino, E. M.; Falceta-Gonçalves, D. A.; Nakwacki, M. S.; Kowal, G.

    2017-03-01

    Statistical analysis of Faraday rotation measure (RM) maps of the intracluster medium (ICM) of galaxy clusters provides a unique tool to evaluate some spatial features of the magnetic fields there. Its combination with numerical simulations of magnetohydrodynamic (MHD) turbulence allows the diagnosis of the ICM turbulence. Being the ICM plasma weakly collisional, the thermal velocity distribution of the particles naturally develops anisotropies as a consequence of the large-scale motions and the conservation of the magnetic moment of the charged particles. A previous study (Paper I) analysed the impact of large-scale thermal anisotropy on the statistics of RM maps synthesized from simulations of turbulence; these simulations employed a collisionless MHD model that considered a tensor pressure with uniform anisotropy. In this work, we extend that analysis to a collisionless MHD model in which the thermal anisotropy develops according to the conservation of the magnetic moment of the thermal particles. We also consider the effect of anisotropy relaxation caused by the microscale mirror and firehose instabilities. We show that if the relaxation rate is fast enough to keep the anisotropy limited by the threshold values of the instabilities, the dispersion and power spectrum of the RM maps are indistinguishable from those obtained from collisional MHD. Otherwise, there is a reduction in the dispersion and steepening of the power spectrum of the RM maps (compared to the collisional case). Considering the first scenario, the use of collisional MHD simulations for modelling the RM statistics in the ICM becomes better justified.

  2. Magnetohydrodynamic flow and turbulence: a report on the fifth Beer-Sheva seminar

    Energy Technology Data Exchange (ETDEWEB)

    Branover, H.; Moffatt, H.K.; Mond, M.; Pierson, E.S.; Sulem, P.S.; Yakhot, A.

    1988-03-01

    This paper is a summary of the Fifth Beer-Sheva Seminar on Magnetohydrodynamic (MHD) Flows and Turbulence, held in Jerusalem during 2-6 March 1987, with 99 participants from 12 countries. Reviews and research papers were presented on general problems of turbulence. MHD turbulence, fundamental MHD, two-phase flows with and without magnetic fields, and on different applications of liquid-metal MHD, especially in power generation nuclear fission and fusion, and in metallurgy.

  3. A FOUR-FLUID MHD MODEL OF THE SOLAR WIND/INTERSTELLAR MEDIUM INTERACTION WITH TURBULENCE TRANSPORT AND PICKUP PROTONS AS SEPARATE FLUID

    Energy Technology Data Exchange (ETDEWEB)

    Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-03-20

    We have developed a four-fluid, three-dimensional magnetohydrodynamic model of the solar wind interaction with the local interstellar medium. The unique features of the model are: (a) a three-fluid description for the charged components of the solar wind and interstellar plasmas (thermal protons, electrons, and pickup protons), (b) the built-in turbulence transport equations based on Reynolds decomposition and coupled with the mean-flow Reynolds-averaged equations, and (c) a solar corona/solar wind model that supplies inner boundary conditions at 40 au by computing solar wind and magnetic field parameters outward from the coronal base. The three charged species are described by separate energy equations and are assumed to move with the same velocity. The fourth fluid in the model is the interstellar hydrogen which is treated by separate continuity, momentum, and energy equations and is coupled with the charged components through photoionization and charge exchange. We evaluate the effects of turbulence transport and pickup protons on the global heliospheric structure and compute the distribution of plasma, magnetic field, and turbulence parameters throughout the heliosphere for representative solar minimum and maximum conditions. We compare our results with Voyager 1 observations in the outer heliosheath and show that the relative amplitude of magnetic fluctuations just outside the heliopause is in close agreement with the value inferred from Voyager 1 measurements by Burlaga et al. The simulated profiles of magnetic field parameters in the outer heliosheath are in qualitative agreement with the Voyager 1 observations and with the analytical model of magnetic field draping around the heliopause of Isenberg et al.

  4. Modeling of drag reduction in turbulent channel flow with hydrophobic walls by FVM method and weakly-compressible flow equations

    Institute of Scientific and Technical Information of China (English)

    Ling Li; Ming-Shun Yuan

    2011-01-01

    In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack's scheme on collocated mesh in the FVM framework. The slip length model is adopted to describe the behavior of the slip velocities in the streamwise and spanwise directions at the interface between the hydrophobic wall and turbulent channel flow. Simulation results are presented by analyzing flow behaviors over hydrophobic wall with the Smagorinky subgrid-scale model and a dynamic model on computational meshes of different resolutions. Comparison and analysis are made on the distributions of timeaveraged velocity, velocity fluctuations, Reynolds stress as well as the skin-friction drag. Excellent agreement between the present study and previous results demonstrates the accuracy of the simple classical second-order scheme in representing turbulent vertox near hydrophobic wall. In addition, the relation of drag reduction efficiency versus time-averaged slip velocity is established. It is also found that the decrease of velocity gradient in the close wall region is responsible for the drag reduction. Considering its advantages of high calculation precision and efficiency, the present method has good prospect in its application to practical projects.

  5. Turbulence and dynamo interlinks

    Science.gov (United States)

    de Gouveia Dal Pino, E. M.; Santos-Lima, R.; Kowal, G.; Falceta-Gonçalves, D.

    2013-07-01

    The role of turbulence in astrophysical environments and its interplay with magnetic fields is still highly debated. In this lecture, we will discuss this issue in the framework of dynamo processes. We will first present a very brief summary of turbulent dynamo theories, then will focus on small scale turbulent dynamos and their particular relevance on the origin and maintenance of magnetic fields in the intra-cluster media (ICM) of galaxies. In these environments, the very low density of the flow requires a collisionless-MHD treatment. We will show the implications of this approach in the turbulent amplification of the magnetic fields in these environments. To finalize, we will also briefly address the connection between MHD turbulence and fast magnetic reconnection and its possible implications in the diffusion of magnetic flux in the dynamo process.

  6. Turbulence and Dynamo Interlinks

    CERN Document Server

    Pino, E M de Gouveia Dal

    2013-01-01

    The role of turbulence in astrophysical environments and its interplay with magnetic fields is still highly debated. In this lecture, we will discuss this issue in the framework of dynamo processes. We will first present a very brief summary of turbulent dynamo theories, then will focus on small scale turbulent dynamos and their particular relevance on the origin and maintenance of magnetic fields in the intra-cluster media (ICM) of galaxies. In these environments, the very low density of the flow requires a collisionless-MHD treatment. We will show the implications of this approach in the turbulent amplification of the magnetic fields in these environments. To finalize, we will also briefly address the connection between MHD turbulence and fast magnetic reconnection and its possible implications in the diffusion of magnetic flux in the dynamo process.

  7. Electron magnetohydrodynamics: dynamics and turbulence.

    Science.gov (United States)

    Lyutikov, Maxim

    2013-11-01

    We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron magnetohydrodynamics (EMHD). We argue that there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. On the other hand, the relaxation principle, the long term evolution of a weakly dissipative system towards Taylor-Beltrami state, remains valid in EMHD. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact nonlinear solutions; (ii) collinear whistlers do not interact (including counterpropagating); (iii) waves with the same value of the wave vector k(1)=k(2) do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfvén turbulence can not be transferred to the EMHD turbulence. We derive the Hamiltonian formulation of EMHD, and using Bogoliubov transformation reduce it to the canonical form; we calculate the matrix elements for the three-wave interaction of whistlers. We solve numerically the kinetic equation and show that, generally, the EMHD cascade develops within a broad range of angles, while transiently it may show anisotropic, nearly two-dimensional structures. Development of a cascade depends on the forcing (nonuniversal) and often fails to reach a steady state. Analytical estimates predict the spectrum of magnetic fluctuations for the quasi-isotropic cascade [proportionality]k(-2). The cascade remains weak (not critically balanced). The cascade is UV local, while the infrared locality is weakly (logarithmically) violated.

  8. Turbulence and turbulent mixing in natural fluids

    CERN Document Server

    Gibson, Carl H

    2010-01-01

    Turbulence and turbulent mixing in natural fluids begins with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretion on a spinning pair releases 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscosity and negative turbulence stresses work against gravity, creating mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until a quark-gluon strong-force SF freeze-out. Gluon-viscosity anti-gravity ({\\Lambda}SF) exponentially inflates the fireball to preserve big bang turbulence information at scales larger than ct as the first fossil turbulence. Cosmic microwave background CMB temperature anisotropies show big bang turbulence fossils along with fossils of weak plasma turbulence triggered (10^12 s) as plasma viscous forces permit gravitational fragmentation on supercluster to galaxy mass scales (10^13 s). Turbulent morphologies and viscous-turbulent lengths a...

  9. Shell Models of Magnetohydrodynamic Turbulence

    CERN Document Server

    Plunian, Franck; Frick, Peter

    2012-01-01

    Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accu...

  10. MHD memes

    Energy Technology Data Exchange (ETDEWEB)

    Dewar, R L; Mills, R; Hole, M J, E-mail: robert.dewar@anu.edu.a [Department of Theoretical Physics and Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2009-05-01

    The celebration of Allan Kaufman's 80th birthday was an occasion to reflect on a career that has stimulated the mutual exchange of ideas (or memes in the terminology of Richard Dawkins) between many researchers. This paper will revisit a meme Allan encountered in his early career in magnetohydrodynamics, the continuation of a magnetohydrodynamic mode through a singularity, and will also mention other problems where Allan's work has had a powerful cross-fertilizing effect in plasma physics and other areas of physics and mathematics. To resolve the continuation problem we regularize the Newcomb equation, solve it in terms of Legendre functions of imaginary argument, and define the small weak solutions of the Newcomb equation as generalized functions in the manner of Lighthill, i.e. via a limiting sequence of analytic functions that connect smoothly across the singularity.

  11. MHD memes

    Science.gov (United States)

    Dewar, R. L.; Mills, R.; Hole, M. J.

    2009-05-01

    The celebration of Allan Kaufman's 80th birthday was an occasion to reflect on a career that has stimulated the mutual exchange of ideas (or memes in the terminology of Richard Dawkins) between many researchers. This paper will revisit a meme Allan encountered in his early career in magnetohydrodynamics, the continuation of a magnetohydrodynamic mode through a singularity, and will also mention other problems where Allan's work has had a powerful cross-fertilizing effect in plasma physics and other areas of physics and mathematics. To resolve the continuation problem we regularize the Newcomb equation, solve it in terms of Legendre functions of imaginary argument, and define the small weak solutions of the Newcomb equation as generalized functions in the manner of Lighthill, i.e. via a limiting sequence of analytic functions that connect smoothly across the singularity.

  12. On structural similarity in wall turbulence organization under weak thermal effects: from the wind tunnel to the atmospheric surface layer (Invited)

    Science.gov (United States)

    Guala, M.

    2013-12-01

    Reproducing the different thermal stability regimes of the atmospheric boundary layer (ABL) in wind tunnel experiments requires accurate control of the free stream air and wall temperatures and a test section long enough to ensure the establishment of fully developed conditions. Such requirements are met in the SAFL atmospheric wind tunnel, with some limitations on the achievable range of z/L, confined between the weakly stratified and weakly convective boundary layers. A number of statistical checks based on Reynolds, Monin-Obukhov similarities, Kolmogorov small scale universality, temperature and velocity variance balance equations, are available to assess the quality of the measurements, flow and estimate of the scaling parameters. However, limited work has been devoted to the comparison of the spatio-temporal structure of turbulent flows from the laboratory to the field scale. Specifically, the vertical extent, scaling and statistical relevance of different structural types pose some scalability issues and deserve further investigation. PIV and triple wire measurements from the SAFL Wind Tunnel will be presented and compared with measurements in the atmospheric surface layer. Particular care is devoted to the contributions of large and very-large scale motions to the momentum and heat fluxes, and to their role in near-surface processes and wind energy.

  13. On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence

    CERN Document Server

    González, C A; Mininni, P D; Matthaeus, W H

    2016-01-01

    The effect of compressibility in charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the compressibilty effect over the particle dynamics we performed different numerical experiments: an incompressible case, and two weak compressible cases with Mach number M = 0.1 and M = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. We show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the ot...

  14. Nonlinear evolution of parallel propagating Alfven waves: Vlasov - MHD simulation

    CERN Document Server

    Nariyuki, Y; Kumashiro, T; Hada, T

    2009-01-01

    Nonlinear evolution of circularly polarized Alfv\\'en waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landau-fluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfv\\'enic turbulence both in the linear and nonlinear stages. The present Vlasov-MHD model is proper to discuss the solar coronal heating and solar wind acceleration by Alfve\\'n waves propagating from the photosphere.

  15. Numerical simulations of turbulent ionized gas flows in the circumsolar protoplanetary disk

    Science.gov (United States)

    Marov, M. Ya.; Kuksa, M. M.

    2015-09-01

    An axisymmetric protoplanetary disk model that takes into account the interaction of turbulent gas flows with the magnetic field is considered. A closed system of equations of homogeneous compressible magnetohydrodynamics in the regime of developed turbulence in the gravitational and magnetic fields of a star has been constructed. Apart from the traditional probability-theoretical averaging of the MHD equations, the weighted Favre averaging is used. The approach by A.V. Kolesnichenko and M.Ya. Marov to modeling the turbulent transport coefficients in a weakly ionized disk has been implemented. It allows the inverse effects of the generated magnetic field on a turbulent gas flow and the dissipation of turbulence through kinematic and magnetic viscosities to be taken into account. A parallel code for numerically solving the system of averaged MHD equations has been developed. The averaged gas density and velocity distributions as well as the configuration of the disk's intrinsic magnetic field at a distance of 1 AU from the star have been obtained through numerical simulations. The assumption that the vertical (parallel to the disk's rotation axis) magnetic induction component changes much more profoundly in height than in radius and, hence, gives grounds to take into account its gradient in the model of the turbulent kinematic viscosity coefficient has been confirmed.

  16. Limits on the ion temperature anisotropy in the turbulent intracluster medium

    Science.gov (United States)

    Santos-Lima, R.; Yan, H.; de Gouveia Dal Pino, E. M.; Lazarian, A.

    2016-08-01

    Turbulence in the weakly collisional intracluster medium (ICM) of galaxies is able to generate strong thermal velocity anisotropies in the ions (with respect to the local magnetic field direction), if the magnetic moment of the particles is conserved in the absence of Coulomb collisions. In this scenario, the anisotropic pressure magnetohydrodynamic (AMHD) turbulence shows a very different statistical behaviour from the standard MHD one and is unable to amplify seed magnetic fields. This is in contrast to previous cosmological MHD simulations that are successful in explaining the observed magnetic fields in the ICM. On the other hand, temperature anisotropies can also drive plasma instabilities that can relax the anisotropy. This work aims to compare the relaxation rate with the growth rate of the anisotropies driven by the turbulence. We employ quasi-linear theory to estimate the ion scattering rate resulting from the parallel firehose, mirror and ion-cyclotron instabilities, for a set of plasma parameters resulting from AMHD simulations of the turbulent ICM. We show that the ICM turbulence can sustain only anisotropy levels very close to the instability thresholds. We argue that the AMHD model that bounds the anisotropies at the marginal stability levels can describe the Alfvénic turbulence cascade in the ICM.

  17. Statistical Theory of the Ideal MHD Geodynamo

    Science.gov (United States)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the

  18. MHD Flow Control

    Science.gov (United States)

    2006-09-01

    Aerospace Applications, AIAA-Paper 96-2355, New Orleans, 1996 2. V.A.Bityurin, A.N.Bocharov, J.Lineberry, MHD Aerospace Applications, Invited Lecture ...Paper 2003- 4303, Orlando, FL 8. V.A.Bityurin, Prospective of MHD Interaction in Hypersonic and Propulsion Technologies, In: von Karman Series : Lectures ...Efforts in MHD AeoSpace Applications, In: von Karman Series : Lectures , Introduction of Magneto-Fluid Dynamics for AeroSpace Applications, von Karman

  19. Alfven Wave Collisions, The Fundamental Building Block of Plasma Turbulence IV: Laboratory Experiment

    CERN Document Server

    Drake, D J; Howes, G G; Kletzing, C A; Skiff, F; Carter, T A; Auerbach, D W

    2013-01-01

    Turbulence is a phenomenon found throughout space and astrophysical plasmas. It plays an important role in solar coronal heating, acceleration of the solar wind, and heating of the interstellar medium. Turbulence in these regimes is dominated by Alfven waves. Most turbulence theories have been established using ideal plasma models, such as incompressible MHD. However, there has been no experimental evidence to support the use of such models for weakly to moderately collisional plasmas which are relevant to various space and astrophysical plasma environments. We present the first experiment to measure the nonlinear interaction between two counterpropagating Alfven waves, which is the building block for astrophysical turbulence theories. We present here four distinct tests that demonstrate conclusively that we have indeed measured the daughter Alfven wave generated nonlinearly by a collision between counterpropagating Alfven waves.

  20. Magnetohydrodynamic flows and turbulence: a report on the Fourth Beer-Sheva seminar

    Energy Technology Data Exchange (ETDEWEB)

    Branover, H.; Mond, M. (Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Mechanical Engineering); Pierson, E.S. (Purdue Univ. Calumet, Hammond, IN (USA)); Walker, J.S. (Illinois Univ., Urbana (USA))

    1984-11-01

    This paper is a summary of the Fourth Beer-Sheva Seminar on Magnetohydrodynamic (MHD) Flows and Turbulence held in Israel during 27 February-2 March 1984 with 67 participants from 13 countries. Reviews and contributed papers were presented on laminar and turbulent single-phase and two-phase MHD flows, turbulent and two-phase flows without magnetic fields, and applications of MHD in power generation, in nuclear fission and fusion and in metallurgy.

  1. Homogeneous turbulence theory

    Energy Technology Data Exchange (ETDEWEB)

    Bershadskii, A.G.

    1985-06-01

    An exact solution for the nonlinear problem of the spectral energy function of a homogeneous turbulence is derived under the assumption that energy transfer under the effect of inertial forces is determined mainly by the interactions among vortices whose wavenumbers are only slightly different from each other. The results are experimentally verified for turbulence behind grids. Similar problems are solved for MHD turbulence and for a nonstationary spectral energy function. It is shown that at the initial stage of degeneration, the spectral energy function is little influenced by the Stewart number; this agrees with experimental data for the damping of longitudinal velocity pulsations behind a grid in a longitudinal magnetic field. 15 references.

  2. Energy spectrum transfer equations of solar wind turbulence

    Science.gov (United States)

    Tu, C.-Y.

    1995-01-01

    The recent studies of transfer equations for solar wind magnetohydrodynamic (MHD) turbulence are reviewed with emphasis on the comparison with the statistical observational results. Helios and Voyager missions provide an opportunity to study the the radial evolution of the power spectrum. the cross-helicity the Alfven ratio and the minimum variance direction. Spectrum transfer equations are considered as a tool to explore the nature of this radial evolution of the fluctuations. The transfer equations are derived from incompressible MHD equations. Generally one needs to make assumptions about the nature of the fluctuations and the nature of the turbulent non-linear interactions to obtain numerical results which can be compared with the observations. Some special model results for several simple cases SUCH as for structures or strong mixing. for Alfven waves with weak turbulent interactions. and for a superposition of structures and Alfven waves. are discussed. The difference between the various approaches to derive and handle the transfer equations are also addressed. Finally some theoretical description of the compressible fluctuations are also briefly reviewed.

  3. Lattice Boltzmann Large Eddy Simulation Model of MHD

    CERN Document Server

    Flint, Christopher

    2016-01-01

    The work of Ansumali \\textit{et al.}\\cite{Ansumali} is extended to Two Dimensional Magnetohydrodynamic (MHD) turbulence in which energy is cascaded to small spatial scales and thus requires subgrid modeling. Applying large eddy simulation (LES) modeling of the macroscopic fluid equations results in the need to apply ad-hoc closure schemes. LES is applied to a suitable mesoscopic lattice Boltzmann representation from which one can recover the MHD equations in the long wavelength, long time scale Chapman-Enskog limit (i.e., the Knudsen limit). Thus on first performing filter width expansions on the lattice Boltzmann equations followed by the standard small Knudsen expansion on the filtered lattice Boltzmann system results in a closed set of MHD turbulence equations provided we enforce the physical constraint that the subgrid effects first enter the dynamics at the transport time scales. In particular, a multi-time relaxation collision operator is considered for the density distribution function and a single rel...

  4. Dynamos and MHD theory of turbulence suppression

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Akira [Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Itoh, Sanae-I [Research Institute for Applied Mechanics, Kyushu University, 87, Kasuga 810- 8580 (Japan); Itoh, Kimitaka [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yokoi, Nobumitsu [Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2004-03-01

    Characteristics of electrically conducting media are reviewed from the macroscopic viewpoint based on mean-field magnetohydrodynamics, while being compared using the methodology and knowledge in fluid mechanics. The themes covered in this review range from the mechanism of generating stellar magnetic fields (dynamo) to transport properties in fusion. The primary concern here is to see the characteristics common to these apparently different phenomena, within the framework of the mean-field theory. Owing to the intrinsic limitation of the approach, the present discussions are limited more or less to specific aspects of phenomena. They are supplemented with reference to theoretical, numerical, and observational approaches intrinsic to each theme. In the description of dynamo phenomena, emphasis is laid on the cross helicity dynamo. Features common to stellar magnetic-field generation and the rotational-motion drive in toroidal plasmas are illustrated on this basis. (topical review)

  5. Three-dimensional fluid and electrodynamic modeling for MHD DCW channels

    Science.gov (United States)

    Liu, B. L.; Lineberry, J. T.; Schmidt, H. J.

    1983-01-01

    A three dimensional, numerical solution for modeling diagonal conducting wall (DCW) magnetohydrodynamic (MHD) generators is developed and discussed. Cross plane gasdynamic and electrodynamic profiles are computed considering coupled MHD flow and electrical phenomena. A turbulent transport model based on the mixing length theory is used to deal with wall roughness generated turbulence effects. The infinitely fine electrode segmentation formulation is applied to simplify the governing electrical equations. Calculations show the development of distorted temperature and velocity profiles under influence of magnetohydrodynamic interaction. Since both sidewall and electrode wall boundary losses are treated, the results furnish a realistic representation of MHD generator behavior.

  6. Magnetohydrodynamic turbulence: Observation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M. R.; Schaffner, D. A.; Weck, P. J. [Department of Physics and Astronomy, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081 (United States)

    2015-05-15

    We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations E{sub B}(f). We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.

  7. Growth of Magnetic Fields Induced by Turbulent Motions

    CERN Document Server

    Cho, J; Beresnyak, A; Lazarian, A; Ryu, D

    2008-01-01

    We present numerical simulations of driven magnetohydrodynamic (MHD) turbulence with weak/moderate imposed magnetic fields. The main goal is to clarify dynamics of magnetic field growth. We also investigate the effects of the imposed magnetic fields on the MHD turbulence, including, as a limit, the case of zero external field. Our findings are as follows. First, when we start off simulations with weak mean magnetic field only (or with small scale random field with zero imposed field), we observe that there is a stage at which magnetic energy density grows linearly with time. Runs with different numerical resolutions and/or different simulation parameters show consistent results for the growth rate at the linear stage. Second, we find that, when the strength of the external field increases, the equilibrium kinetic energy density drops by roughly the product of the rms velocity and the strength of the external field. The equilibrium magnetic energy density rises by roughly the same amount. Third, when the exter...

  8. Simple MHD Equilibria

    Science.gov (United States)

    Schnack, Dalton D.

    In this lecture we will examine some simple examples of MHD equilibrium configurations. These will all be in cylindrical geometry. They form the basis for more complicated equilibrium states in toroidal geometry.

  9. Turbulence-induced magnetic fields in shock precursors

    CERN Document Server

    del Valle, Maria Victoria; Santos-Lima, Reinaldo

    2016-01-01

    Galactic cosmic rays are believed to be mostly accelerated at supernova shocks. However, the interstellar magnetic field is too weak to efficiently accelerate galactic cosmic rays up to the highest energies, i.e. $10^{15}$ eV. A stronger magnetic field in the pre-shock region could provide the efficiency required. Bell's cosmic-ray nonresonant streaming instability has been claimed to be responsible for the amplification of precursor magnetic fields. However, an alternative mechanism has been proposed in which the cosmic-ray pressure gradient forms the shock precursor and drives turbulence, amplifying the magnetic field via the small-scale dynamo. A key ingredient for the mechanism to operate are the inhomogeneities present in the interstellar medium (ISM). These inhomogeneities are the consequence of turbulence. In this work we explore the magnetic field amplification in different ISM conditions through 3D MHD numerical simulations.

  10. Polarimetric studies of magnetic turbulence with interferometer

    CERN Document Server

    Lee, Hyeseung; Cho, Jungyeon

    2016-01-01

    We study statistical properties of synchrotron polarization emitted from media with magnetohydrodynamic (MHD) turbulence. We use both synthetic and MHD turbulence simulation data for our studies. We obtain the spatial spectrum and its derivative with respect to wavelength of synchrotron polarization arising from both synchrotron radiation and Faraday rotation fluctuations. In particular, we investigate how the spectrum changes with frequency. We find that our simulations agree with the theoretical predication in Lazarian \\& Pogosyan (2016). We conclude that the spectrum of synchrotron polarization and it derivative can be very informative tools to get detailed information about the statistical properties of MHD turbulence from radio observations of diffuse synchrotron polarization. Especially, they are useful to recover the statistics of turbulent magnetic field as well as turbulent density of electrons. We also simulate interferometric observations that incorporate the effects of noise and finite telesco...

  11. Dynamics of nonlinear resonant slow MHD waves in twisted flux tubes

    Directory of Open Access Journals (Sweden)

    R. Erdélyi

    2002-01-01

    Full Text Available Nonlinear resonant magnetohydrodynamic (MHD waves are studied in weakly dissipative isotropic plasmas in cylindrical geometry. This geometry is suitable and is needed when one intends to study resonant MHD waves in magnetic flux tubes (e.g. for sunspots, coronal loops, solar plumes, solar wind, the magnetosphere, etc. The resonant behaviour of slow MHD waves is confined in a narrow dissipative layer. Using the method of simplified matched asymptotic expansions inside and outside of the narrow dissipative layer, we generalise the so-called connection formulae obtained in linear MHD for the Eulerian perturbation of the total pressure and for the normal component of the velocity. These connection formulae for resonant MHD waves across the dissipative layer play a similar role as the well-known Rankine-Hugoniot relations connecting solutions at both sides of MHD shock waves. The key results are the nonlinear connection formulae found in dissipative cylindrical MHD which are an important extension of their counterparts obtained in linear ideal MHD (Sakurai et al., 1991, linear dissipative MHD (Goossens et al., 1995; Erdélyi, 1997 and in nonlinear dissipative MHD derived in slab geometry (Ruderman et al., 1997. These generalised connection formulae enable us to connect solutions obtained at both sides of the dissipative layer without solving the MHD equations in the dissipative layer possibly saving a considerable amount of CPU-time when solving the full nonlinear resonant MHD problem.

  12. The 3D MHD code GOEMHD3 for large-Reynolds-number astrophysical plasmas

    CERN Document Server

    Skála, J; Büchner, J; Rampp, M

    2014-01-01

    The numerical simulation of turbulence and flows in almost ideal, large-Reynolds-number astrophysical plasmas motivates the implementation of almost conservative MHD computer codes. They should efficiently calculate, use highly parallelized schemes scaling well with large numbers of CPU cores, allows to obtain a high grid resolution over large simulation domains and which can easily be adapted to new computer architectures as well as to new initial and boundary conditions, allow modular extensions. The new massively parallel simulation code GOEMHD3 enables efficient and fast simulations of almost ideal, large-Reynolds-number astrophysical plasma flows, well resolved and on huge grids covering large domains. Its abilities are validated by major tests of ideal and weakly dissipative plasma phenomena. The high resolution ($2048^3$ grid points) simulation of a large part of the solar corona above an observed active region proved the excellent parallel scalability of the code using more than 30.000 processor cores...

  13. 3D-MHD simulations of the evolution of magnetic fields in FR II radio sources

    CERN Document Server

    Huarte-Espinosa, Martin; Alexander, Paul

    2010-01-01

    3D-MHD numerical simulations of bipolar, hypersonic, weakly magnetized jets and synthetic synchrotron observations are presented to study the structure and evolution of magnetic fields in FR II radio sources. The magnetic field setup in the jet is initially random. The power of the jets as well as the observational viewing angle are investigated. We find that synthetic polarization maps agree with observations and show that magnetic fields inside the sources are shaped by the jets' backflow. Polarimetry statistics correlates with time, the viewing angle and the jet-to-ambient density contrast. The magnetic structure inside thin elongated sources is more uniform than for ones with fatter cocoons. Jets increase the magnetic energy in cocoons, in proportion to the jet velocity. Both, filaments in synthetic emission maps and 3D magnetic power spectra suggest that turbulence develops in evolved sources.

  14. The Heating of Test Particles in Numerical Simulations of Alfvenic Turbulence

    CERN Document Server

    Lehe, Remi; Quataert, Eliot

    2009-01-01

    We study the heating of charged test particles in three-dimensional numerical simulations of weakly compressible magnetohydrodynamic (MHD) turbulence (``Alfvenic turbulence''); these results are relevant to particle heating and acceleration in the solar wind, solar flares, accretion disks onto black holes, and other astrophysics and heliospheric environments. The physics of particle heating depends on whether the gyrofrequency of a particle is comparable to the frequency of a turbulent fluctuation that is resolved on the computational domain. Particles with these frequencies nearly equal undergo strong perpendicular heating (relative to the local magnetic field) and pitch angle scattering. By contrast, particles with large gyrofrequency undergo strong parallel heating. Simulations with a finite resistivity produce additional parallel heating due to parallel electric fields in small-scale current sheets. Many of our results are consistent with linear theory predictions for the particle heating produced by the ...

  15. Entanglement of helicity and energy in kinetic Alfven wave/whistler turbulence

    CERN Document Server

    Galtier, S

    2014-01-01

    The role of magnetic helicity is investigated in kinetic Alfv\\'en wave and oblique whistler turbulence in presence of a relatively intense external magnetic field $b_0 {\\bf e_\\parallel}$. In this situation, turbulence is strongly anisotropic and the fluid equations describing both regimes are the reduced electron magnetohydrodynamics (REMHD) whose derivation, originally made from the gyrokinetic theory, is also obtained here from compressible Hall MHD. We use the asymptotic equations derived by Galtier \\& Bhattacharjee (2003) to study the REMHD dynamics in the weak turbulence regime. The analysis is focused on the magnetic helicity equation for which we obtain the exact solutions: they correspond to the entanglement relation, $n+\\tilde n = -6$, where $n$ and $\\tilde n$ are the power law indices of the perpendicular (to ${\\bf b_0}$) wave number magnetic energy and helicity spectra respectively. Therefore, the spectra derived in the past from the energy equation only, namely $n=-2.5$ and $\\tilde n = - 3.5$,...

  16. Collisionless magnetic reconnection under anisotropic MHD approximation

    Science.gov (United States)

    Hirabayashi, Kota; Hoshino, Masahiro

    We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless magneto-hydro-dynamic (MHD) simulations based on the double adiabatic approximation, which is an important step to bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observation. According to our results, a pair of slow shocks does form in the reconnection layer. The resultant shock waves, however, are quite weak compared with those in an isotropic MHD from the point of view of the plasma compression and the amount of the magnetic energy released across the shock. Once the slow shock forms, the downstream plasma are heated in highly anisotropic manner and a firehose-sense (P_{||}>P_{⊥}) pressure anisotropy arises. The maximum anisotropy is limited by the marginal firehose criterion, 1-(P_{||}-P_{⊥})/B(2) =0. In spite of the weakness of the shocks, the resultant reconnection rate is kept at the same level compared with that in the corresponding ordinary MHD simulations. It is also revealed that the sequential order of propagation of the slow shock and the rotational discontinuity, which appears when the guide field component exists, changes depending on the magnitude of the guide field. Especially, when no guide field exists, the rotational discontinuity degenerates with the contact discontinuity remaining at the position of the initial current sheet, while with the slow shock in the isotropic MHD. Our result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.

  17. Magnetohydrodynamics turbulence: An astronomical perspective

    Indian Academy of Sciences (India)

    S Sridhar

    2011-07-01

    Early work on magnetohydrodynamic (MHD) turbulence in the 1960s due, independently, to Iroshnikov and Kraichnan (IK) considered isotropic inertial-range spectra. Whereas laboratory experiments were not in a position to measure the spectral index, they showed that the turbulence was strongly anisotropic. Theoretical horizons correspondingly expanded in the 1980s, to accommodate both the isotropy of the IK theory and the anisotropy suggested by the experiments. Since the discovery of pulsars in 1967, many years of work on interstellar scintillation suggested that small-scale interstellar turbulence must have a hydromagnetic origin; but the IK spectrum was too flat and the ideas on anisotropic spectra too qualitative to explain the observations. In response, new theories of balanced MHD turbulence were proposed in the 1990s, which argued that the IK theory was incorrect, and made quantitative predictions of anisotropic inertial-range spectra; these theories have since found applications in many areas of astrophysics. Spacecraft measurements of solar-wind turbulence show that there is more power in Alfvén waves that travel away from the Sun than towards it. Theories of imbalanced MHD turbulence have now been proposed to address interplanetary turbulence. This very active area of research continues to be driven by astronomy.

  18. Turbulent Plasmoid Reconnection

    CERN Document Server

    Widmer, Fabien; Yokoi, Nobumitsu

    2016-01-01

    The plasmoid instability may lead to fast magnetic reconnection through long current sheets(CS). It is well known that large-Reynolds-number plasmas easily become turbulent. We address the question whether turbulence enhances the energy conversion rate of plasmoid-unstable current sheets. We carry out appropriate numerical MHD simulations, but resolving simultaneously the relevant large-scale (mean-) fields and the corresponding small-scale, turbulent, quantities by means of direct numerical simulations (DNS) is not possible. Hence we investigate the influence of small scale turbulence on large scale MHD processes by utilizing a subgrid-scale (SGS) turbulence model. We verify the applicability of our SGS model and then use it to investigate the influence of turbulence on the plasmoid instability. We start the simulations with Harris-type and force-free CS equilibria in the presence of a finite guide field in the direction perpendicular to the reconnection plane. We use the DNS results to investigate the growt...

  19. Statistical properties of transport in plasma turbulence

    DEFF Research Database (Denmark)

    Naulin, V.; Garcia, O.E.; Nielsen, A.H.;

    2004-01-01

    The statistical properties of the particle flux in different types of plasma turbulence models are numerically investigated using probability distribution functions (PDFs). The physics included in the models range from two-dimensional drift wave turbulence to three-dimensional MHD dynamics...

  20. Resonant interactions of perturbations in MHD flows

    Energy Technology Data Exchange (ETDEWEB)

    Sagalakov, A.M.; Shtern, V.N.

    1977-01-17

    The nonlinear theory of hydrodynamic stability differentiates three types of interactions: deformation of the initial velocity profile by Reynolds stress pulsations, multiplication of harmonics, and the resonant interaction of harmonics with dissimilar wave numbers and frequencies. This article analyzes an approach considering the first and third of these non-linear mechanisms, producing an acceptable approximation of the averaged characteristics of a developing pulsation movement, particularly the averaged turbulent velocity profile. The approach consists in analysis of triharmonic oscillations, the parameters of which satisfy the resonant relationships. A model of a triharmonic pulsation mode is studied which is applicable to MHD flows. It is shown in particular how a magnetic field transverse to the flow plane suppresses the resonant interaction of three-dimensional perturbations. This agrees with experimental studies on two-dimensional turbulence conducted earlier. 11 references, 3 figures.

  1. Nonlinear MHD dynamo operating at equipartition

    DEFF Research Database (Denmark)

    Archontis, V.; Dorch, Bertil; Nordlund, Åke

    2007-01-01

    Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......-equipartition and a turbulent state. The generation and evolution of such strong magnetic fields is relevant for the understanding of dynamo action that occurs in stars and other astrophysical objects. Aims.We study the mode of operation of this dynamo, in the linear and non-linear saturation regimes. We also consider...... the effect of varying the magnetic and fluid Reymolds number on the non-linear behaviour of the system. Methods.We perform three-dimensional non-linear MHD simulations and visualization using a high resolution numerical scheme. Results.We find that this dynamo has a high growth rate in the linear regime...

  2. Turbulent magnetic Prandtl number in kinematic magnetohydrodynamic turbulence: two-loop approximation.

    Science.gov (United States)

    Jurčišinová, E; Jurčišin, M; Remecký, R

    2011-10-01

    The turbulent magnetic Prandtl number in the framework of the kinematic magnetohydrodynamic (MHD) turbulence, where the magnetic field behaves as a passive vector field advected by the stochastic Navier-Stokes equation, is calculated by the field theoretic renormalization group technique in the two-loop approximation. It is shown that the two-loop corrections to the turbulent magnetic Prandtl number in the kinematic MHD turbulence are less than 2% of its leading order value (the one-loop value) and, at the same time, the two-loop turbulent magnetic Prandtl number is the same as the two-loop turbulent Prandtl number obtained in the corresponding model of a passively advected scalar field. The dependence of the turbulent magnetic Prandtl number on the spatial dimension d is investigated and the source of the smallness of the two-loop corrections for spatial dimension d=3 is identified and analyzed.

  3. Multifluid magnetohydrodynamic turbulent decay

    CERN Document Server

    Downes, Turlough P

    2011-01-01

    It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation which occurs within them. Non-ideal magnetohydrodynamic effects are known to influence the nature of this turbulence. We present the results of a suite of 512-cubed resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power-law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingl...

  4. Using Coronal Hole Maps to Constrain MHD Models

    Science.gov (United States)

    Caplan, Ronald M.; Downs, Cooper; Linker, Jon A.; Mikic, Zoran

    2017-08-01

    In this presentation, we explore the use of coronal hole maps (CHMs) as a constraint for thermodynamic MHD models of the solar corona. Using our EUV2CHM software suite (predsci.com/chd), we construct CHMs from SDO/AIA 193Å and STEREO-A/EUVI 195Å images for multiple Carrington rotations leading up to the August 21st, 2017 total solar eclipse. We then contruct synoptic CHMs from synthetic EUV images generated from global thermodynamic MHD simulations of the corona for each rotation. Comparisons of apparent coronal hole boundaries and estimates of the net open flux are used to benchmark and constrain our MHD model leading up to the eclipse. Specifically, the comparisons are used to find optimal parameterizations of our wave turbulence dissipation (WTD) coronal heating model.

  5. Recent observations of MHD fluctuations in the solar wind

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    Full Text Available A short review of recent observations of solar wind fluctuations in the magnetohydrodynamic (MHD range of scales is presented. In recent years, the use of high time-resolution data on an extended interval of heliocentric distance has allowed significant advances in our knowledge of MHD fluctuations. We first focus on the origin and evolution of the Alfvénic-type fluctuations. The role of interplanetary sources and the influence of interactions with structures convected by the solar wind are examined. Then compressive fluctuations are investigated, with special attention being given to their nature and origin. Observations are discussed in the light of recent theories and models. Finally, predictions for MHD turbulence in polar regions of the heliosphere are highlighted.

  6. Using Faraday Rotation to Probe MHD Instabilities in Intracluster Media

    CERN Document Server

    Bogdanovic, Tamara; Massey, Richard

    2010-01-01

    It has recently been suggested that conduction-driven magnetohydrodynamic (MHD) instabilities may operate at all radii within an intracluster medium (ICM), and profoundly affect the structure of a cluster's magnetic field. Where MHD instabilities dominate the dynamics of an ICM, they will re-orient magnetic field lines perpendicular to the temperature gradient inside a cooling core, or parallel to the temperature gradient outside it. This characteristic structure of magnetic field could be probed by measurements of polarized radio emission from background sources. Motivated by this possibility we have constructed 3-d models of a magnetized cooling core cluster and calculated Faraday rotation measure (RM) maps in the plane of the sky under realistic observing conditions. We compare a scenario in which magnetic field geometry is characterized by conduction driven MHD instabilities to that where it is determined by the turbulent motions. We find that future high-sensitivity spectro-polarimetric measurements of R...

  7. Lectures in magnetohydrodynamics. With an appendix on extended MHD

    Energy Technology Data Exchange (ETDEWEB)

    Schnack, Dalton D. [Wisconsin Univ., Madison, WI (United States). Dept. Physics

    2009-07-01

    This concise and self-contained primer is based on class-tested notes for an advanced graduate course in MHD. The broad areas chosen for presentation are the derivation and properties of the fundamental equations, equilibrium, waves and instabilities, self-organization, turbulence, and dynamos. The latter topics require the inclusion of the effects of resistivity and nonlinearity. Together, these span the range of MHD issues that have proven to be important for understanding magnetically confined plasmas as well as in some space and astrophysical applications. The combined length and style of the thirty-eight lectures are appropriate for complete presentation in a single semester. An extensive appendix on extended MHD is included as further reading. (orig.)

  8. Turbulence in the solar wind

    CERN Document Server

    Bruno, Roberto

    2016-01-01

    This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in...

  9. Nonaxisymmetric anisotropy of solar wind turbulence as a direct test for models of magnetohydrodynamic turbulence.

    Science.gov (United States)

    Turner, A J; Gogoberidze, G; Chapman, S C

    2012-02-24

    Single point spacecraft observations of the turbulent solar wind flow exhibit a characteristic nonaxisymmetric anisotropy that depends sensitively on the perpendicular power spectral exponent. We use this nonaxisymmetric anisotropy as a function of wave vector direction to test models of MHD turbulence. Using Ulysses magnetic field observations in the fast, quiet polar solar wind we find that the Goldreich-Sridhar model of MHD turbulence is not consistent with the observed anisotropy, whereas the observations are well reproduced by the "slab+2D" model. The Goldreich-Sridhar model alone cannot account for the observations unless an additional component is also present.

  10. Spectral properties of electromagnetic turbulence in plasmas

    Directory of Open Access Journals (Sweden)

    D. Shaikh

    2009-03-01

    Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.

  11. Proceedings of the workshop on nonlinear MHD and extended MHD

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  12. Turning the resistive MHD into a stochastic field theory

    Directory of Open Access Journals (Sweden)

    M. Materassi

    2008-08-01

    Full Text Available Classical systems stirred by random forces of given statistics may be described via a path integral formulation in which their degrees of freedom are stochastic variables themselves, undergoing a multiple-history probabilistic evolution. This framework seems to be easily applicable to resistive Magneto-Hydro-Dynamics (MHD. Indeed, MHD equations form a dynamic system of classical variables in which the terms representing the density, the pressure and the conductivity of the plasma are irregular functions of space and time when turbulence occurs. By treating those irregular terms as random stirring forces, it is possible to introduce a Stochastic Field Theory which should represent correctly the impulsive phenomena caused by the spece- and time-irregularity of plasma turbulence. This work is motivated by the recent observational evidences of the crucial role played by stochastic fluctuations in space plasmas.

  13. Turning the resistive MHD into a stochastic field theory

    Science.gov (United States)

    Materassi, M.; Consolini, G.

    2008-08-01

    Classical systems stirred by random forces of given statistics may be described via a path integral formulation in which their degrees of freedom are stochastic variables themselves, undergoing a multiple-history probabilistic evolution. This framework seems to be easily applicable to resistive Magneto-Hydro-Dynamics (MHD). Indeed, MHD equations form a dynamic system of classical variables in which the terms representing the density, the pressure and the conductivity of the plasma are irregular functions of space and time when turbulence occurs. By treating those irregular terms as random stirring forces, it is possible to introduce a Stochastic Field Theory which should represent correctly the impulsive phenomena caused by the spece- and time-irregularity of plasma turbulence. This work is motivated by the recent observational evidences of the crucial role played by stochastic fluctuations in space plasmas.

  14. A Numerical Study of Resistivity and Hall Effects for a Compressible MHD Model

    Science.gov (United States)

    Yee, H. C.; Sjogreen, B.

    2005-01-01

    The effect of resistive, Hall, and viscous terms on the flow structure compared with compressible ideal MHD is studied numerically for a one-fluid non-ideal MHD model. The goal of the present study is to shed some light on the emerging area of non-ideal MHD modeling and simulation. Numerical experiments are performed on a hypersonic blunt body flow with future application to plasma aerodynamics flow control in reentry vehicles. Numerical experiments are also performed on a magnetized time-developing mixing layer with possible application to magnetic/turbulence mixing.

  15. MHD Generation Code

    CERN Document Server

    Frutos-Alfaro, Francisco

    2015-01-01

    A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a code that can be used as a seed for a MHD code for numerical applications. As an example, we present part of output of our programs for Cartesian coordinates and how to do the discretization.

  16. SHOCKFIND - An algorithm to identify magnetohydrodynamic shock waves in turbulent clouds

    CERN Document Server

    Lehmann, Andrew; Wardle, Mark

    2016-01-01

    The formation of stars occurs in the dense molecular cloud phase of the interstellar medium. Observations and numerical simulations of molecular clouds have shown that supersonic magnetised turbulence plays a key role for the formation of stars. Simulations have also shown that a large fraction of the turbulent energy dissipates in shock waves. The three families of MHD shocks --- fast, intermediate and slow --- distinctly compress and heat up the molecular gas, and so provide an important probe of the physical conditions within a turbulent cloud. Here we introduce the publicly available algorithm, SHOCKFIND, to extract and characterise the mixture of shock families in MHD turbulence. The algorithm is applied to a 3-dimensional simulation of a magnetised turbulent molecular cloud, and we find that both fast and slow MHD shocks are present in the simulation. We give the first prediction of the mixture of turbulence-driven MHD shock families in this molecular cloud, and present their distinct distributions of s...

  17. Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence

    Science.gov (United States)

    Zank, G. P.; Adhikari, L.; Hunana, P.; Shiota, D.; Bruno, R.; Telloni, D.

    2017-02-01

    The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed largely in the early 1990s, together with an important extension to inhomogeneous flows in 2010. Much of the focus in the earlier work was to understand the apparent incompressibility of the solar wind and other plasma environments, and the relationship of density fluctuations to apparently incompressible manifestations of turbulence in the solar wind and interstellar medium. Further important predictions about the “dimensionality” of solar wind turbulence and its relationship to the plasma beta were made and subsequently confirmed observationally. However, despite the initial success of NI MHD in describing fluctuations in the solar wind, a detailed application to solar wind turbulence has not been undertaken. Here, we use the equations of NI MHD to describe solar wind turbulence, rewriting the NI MHD system in terms of Elsässer variables. Distinct descriptions of 2D and slab turbulence emerge naturally from the Elsässer formulation, as do the nonlinear couplings between 2D and slab components. For plasma beta order 1 or less regions, predictions for 2D and slab spectra result from the NI MHD description, and predictions for the spectral characteristics of density fluctuations can be made. We conclude by presenting a NI MHD formulation describing the transport of majority 2D and minority slab turbulence throughout the solar wind. A preliminary comparison of theory and observations is presented.

  18. Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence

    Science.gov (United States)

    Shebalin, John V.

    2010-01-01

    Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures

  19. Nonlinear helical MHD instability

    Energy Technology Data Exchange (ETDEWEB)

    Zueva, N.M.; Solov' ev, L.S.

    1977-07-01

    An examination is made of the boundary problem on the development of MHD instability in a toroidal plasma. Two types of local helical instability are noted - Alfven and thermal, and the corresponding criteria of instability are cited. An evaluation is made of the maximum attainable kinetic energy, limited by the degree to which the law of conservation is fulfilled. An examination is made of a precise solution to a kinematic problem on the helical evolution of a cylindrical magnetic configuration at a given velocity distribution in a plasma. A numerical computation of the development of MHD instability in a plasma cylinder by a computerized solution of MHD equations is made where the process's helical symmetry is conserved. The development of instability is of a resonance nature. The instability involves the entire cross section of the plasma and leads to an inside-out reversal of the magnetic surfaces when there is a maximum unstable equilibrium configuration in the nonlinear stage. The examined instability in the tore is apparently stabilized by a magnetic hole when certain limitations are placed on the distribution of flows in the plasma. 29 references, 8 figures.

  20. Forced magnetohydrodynamic turbulence in three dimensions using Taylor-Green symmetries.

    Science.gov (United States)

    Krstulovic, G; Brachet, M E; Pouquet, A

    2014-04-01

    We examine the scaling laws of magnetohydrodynamic (MHD) turbulence for three different types of forcing functions and imposing at all times the fourfold symmetries of the Taylor-Green (TG) vortex generalized to MHD; no uniform magnetic field is present and the magnetic Prandtl number is equal to unity. We also include pumping in the induction equation, and we take the three configurations studied in the decaying case in Lee et al. [Phys. Rev. E 81, 016318 (2010)]. To that effect, we employ direct numerical simulations up to an equivalent resolution of 20483 grid points. We find that, similarly to the case when the forcing is absent, different spectral indices for the total energy spectrum emerge, corresponding to either a Kolmogorov law, an Iroshnikov-Kraichnan law that arises from the interactions of turbulent eddies and Alfvén waves, or to weak turbulence when the large-scale magnetic field is strong. We also examine the inertial range dynamics in terms of the ratios of kinetic to magnetic energy, and of the turnover time to the Alfvén time, and analyze the temporal variations of these quasiequilibria.

  1. Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case

    Science.gov (United States)

    Béthune, William; Lesur, Geoffroy; Ferreira, Jonathan

    2017-04-01

    Context. The planet-forming region of protoplanetary disks is cold, dense, and therefore weakly ionized. For this reason, magnetohydrodynamic (MHD) turbulence is thought to be mostly absent, and another mechanism has to be found to explain gas accretion. It has been proposed that magnetized winds, launched from the ionized disk surface, could drive accretion in the presence of a large-scale magnetic field. Aims: The efficiency and the impact of these surface winds on the disk structure is still highly uncertain. We present the first global simulations of a weakly ionized disk that exhibits large-scale magnetized winds. We also study the impact of self-organization, which was previously demonstrated only in non-stratified models. Methods: We perform numerical simulations of stratified disks with the PLUTO code. We compute the ionization fraction dynamically, and account for all three non-ideal MHD effects: ohmic and ambipolar diffusions, and the Hall drift. Simplified heating and cooling due to non-thermal radiation is also taken into account in the disk atmosphere. Results: We find that disks can be accreting or not, depending on the configuration of the large-scale magnetic field. Magnetothermal winds, driven both by magnetic acceleration and heating of the atmosphere, are obtained in the accreting case. In some cases, these winds are asymmetric, ejecting predominantly on one side of the disk. The wind mass loss rate depends primarily on the average ratio of magnetic to thermal pressure in the disk midplane. The non-accreting case is characterized by a meridional circulation, with accretion layers at the disk surface and decretion in the midplane. Finally, we observe self-organization, resulting in axisymmetric rings of density and associated pressure "bumps". The underlying mechanism and its impact on observable structures are discussed.

  2. Low-Frequency Radio Observations of the Solar Corona with Arcminute Angular Resolution: Implications for Coronal Turbulence and Weak Energy Releases

    Science.gov (United States)

    Mugundhan, V.; Ramesh, R.; Barve, Indrajit V.; Kathiravan, C.; Gireesh, G. V. S.; Kharb, P.; Misra, Apurva

    2016-11-01

    We report on the first long baseline interferometer (length ≈8 km) observations of the solar corona at 37 MHz that were carried out recently with an angular resolution of ≈ {1}\\prime . The results indicate that, (1) discrete radio sources of the aforesaid angular size or even lesser are present in the solar corona from where radiation at the above frequency originates. This constrains the angular broadening of radio sources at low frequencies due to scattering by density turbulence in the solar corona; and (2) the observed sources in the present case correspond to the weakest energy releases in the solar atmosphere reported so far.

  3. Statistical Mechanics of Turbulent Dynamos

    Science.gov (United States)

    Shebalin, John V.

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much

  4. Energy cascade and its locality in compressible magnetohydrodynamic turbulence.

    Science.gov (United States)

    Yang, Yan; Shi, Yipeng; Wan, Minping; Matthaeus, William H; Chen, Shiyi

    2016-06-01

    We investigate energy transfer across scales in three-dimensional compressible magnetohydrodynamic (MHD) turbulence, a model often used to study space and astrophysical plasmas. Analysis shows that kinetic and magnetic energies cascade conservatively from large to small scales in cases with varying degrees of compression. With more compression, energy fluxes due to pressure dilation and subscale mass flux are greater, but conversion between kinetic and magnetic energy by magnetic line stretching is less efficient. Energy transfer between the same fields is dominated by local contributions regardless of compressive effects. In contrast, the conversion between kinetic and internal energy by pressure dilation is dominated by the largest scale contributions. Energy conversion between the velocity and magnetic fields is weakly local.

  5. Turbulent Mixing and the Dead Zone in Protostellar Disks

    CERN Document Server

    Turner, N J; Dziourkevitch, N

    2006-01-01

    We investigate the conditions for the presence of a magnetically inactive dead zone in protostellar disks, using 3-D shearing-box MHD calculations including vertical stratification, Ohmic resistivity and time-dependent ionization chemistry. Activity driven by the magnetorotational instability fills the whole thickness of the disk at 5 AU, provided cosmic ray ionization is present, small grains are absent and the gas-phase metal abundance is sufficiently high. At 1 AU the larger column density of 1700 g/cm^2 means the midplane is shielded from ionizing particles and remains magnetorotationally stable even under the most favorable conditions considered. Nevertheless the dead zone is effectively eliminated. Turbulence mixes free charges into the interior as they recombine, leading to a slight coupling of the midplane gas to the magnetic fields. Weak, large-scale radial fields diffuse to the midplane where they are sheared out to produce stronger azimuthal fields. The resulting midplane accretion stresses are jus...

  6. MHD Generation Code

    OpenAIRE

    Frutos-Alfaro, Francisco; Carboni-Mendez, Rodrigo

    2015-01-01

    A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a c...

  7. Mhd models for pne

    Directory of Open Access Journals (Sweden)

    G. García Segura

    2000-01-01

    Full Text Available Se presenta un escenario auto consistente para explicar la morfolog a de las nebulosas planetarias. El escenario es consistente con la distribuci on Gal actica de los diferentes tipos morfol ogicos. Este trabajo resuelve, por medio de efectos MHD, algunas de las caracter sticas controversiales que aparecen en las nebulosas planetarias. Estas caracter sticas incluyen la presencia de ujos axisim etricos y colimados, con una cinem atica que aumenta linealmente con la distancia y la existencia de morfolog as asim etricas tales como las de las nebulosas con simetr a de punto.

  8. MHD-ETF design criteria

    Energy Technology Data Exchange (ETDEWEB)

    Retallick, F.D.

    1978-04-01

    This document establishes criteria to be utilized for the design of a pilot-scale (150 to 300 MW thermal) open cycle, coal-fired MHD/steam plant. Criteria for this Engineering Test Facility (ETF) are presented relative to plant siting, plant engineering and operations, MHD-ETF testing, costing and scheduling.

  9. EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul, E-mail: nicolas.laws@gmail.ca, E-mail: strugarek@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada)

    2015-11-10

    We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.

  10. Magnetohydrodynamic simulation of reconnection in turbulent astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Widmer, Fabien

    2016-07-19

    Turbulence is ubiquitous at large-Reynolds-number astrophysical plasmas like in the Solar corona. In such environments, the turbulence is thought to enhance the energy conversion rate by magnetic reconnection above the classical model predictions. Since turbulence cannot be simulated together with the large scale behaviour of the plasma, magnetic reconnection is studied through the average properties of turbulence. A Reynolds-averaged turbulence model is explored in which turbulence is self-sustained and -generated by the large scales (mean-) field inhomogeneities. Employing that model, the influence of turbulence is investigated by large-scale MHD numerical simulations solving evolution equations of the energy and cross-helicity of the turbulence together with the MHD equations. Magnetic reconnection is found to be either rapidly enhanced or suppressed by turbulence depending on the turbulence timescale. If the turbulence timescale is self-consistently calculated, reconnection is always strongly enhanced. Since the solar corona bears strong guide magnetic fields perpendicular to the reconnecting magnetic fields, the influences of a strong guide field on turbulent reconnection is separately investigated. A slow down of reconnection, obtained in the presence of a finite guide field, can be understood by a finite residual helicity working against the enhancement of reconnection by the turbulence. The influence of turbulence on magnetic reconnection is further studied by means of high resolution simulations of plasmoid-unstable current sheets. These simulations revealed the importance of turbulence for reaching fast reconnection.

  11. Numerical Studies of Quantum Turbulence

    Science.gov (United States)

    Tsubota, Makoto; Fujimoto, Kazuya; Yui, Satoshi

    2017-09-01

    We review numerical studies of quantum turbulence. Quantum turbulence is currently one of the most important problems in low temperature physics and is actively studied for superfluid helium and atomic Bose-Einstein condensates. A key aspect of quantum turbulence is the dynamics of condensates and quantized vortices. The dynamics of quantized vortices in superfluid helium are described by the vortex filament model, while the dynamics of condensates are described by the Gross-Pitaevskii model. Both of these models are nonlinear, and the quantum turbulent states of interest are far from equilibrium. Hence, numerical studies have been indispensable for studying quantum turbulence. In fact, numerical studies have contributed to revealing the various problems of quantum turbulence. This article reviews the recent developments in numerical studies of quantum turbulence. We start with the motivation and the basics of quantum turbulence and invite readers to the frontier of this research. Though there are many important topics in the quantum turbulence of superfluid helium, this article focuses on inhomogeneous quantum turbulence in a channel, which has been motivated by recent visualization experiments. Atomic Bose-Einstein condensates are a modern issue in quantum turbulence, and this article reviews a variety of topics in the quantum turbulence of condensates, e.g., two-dimensional quantum turbulence, weak wave turbulence, turbulence in a spinor condensate, some of which have not been addressed in superfluid helium and paves the novel way for quantum turbulence researches. Finally, we discuss open problems.

  12. On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence

    Science.gov (United States)

    González, C. A.; Dmitruk, P.; Mininni, P. D.; Matthaeus, W. H.

    2016-08-01

    The effect of compressibility in a charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the flow compressibility effect over the particle dynamics, we performed different numerical experiments: an incompressible case and two weak compressible cases with Mach number M = 0.1 and M = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. What we call protons and electrons are test particles with scales comparable to (for protons) and much smaller than (for electrons) the dissipative scale of MHD turbulence, maintaining the correct mass ratio m e / m i . For these test particles, we show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the other hand, electrons remain magnetized and display an almost adiabatic motion, with no effect of compressibility observed. Another set of numerical experiments takes into account two fluid modifications, namely, electric field due to Hall effect and electron pressure gradient. We show that the electron pressure has an important contribution to electron acceleration allowing highly parallel energization. In contrast, no significant effect of these additional terms is observed for the protons.

  13. A Parametric Study of Extended-MHD Drift Tearing

    CERN Document Server

    King, Jacob R

    2014-01-01

    The linear drift-tearing mode is analyzed for different regimes of the plasma-$\\beta$, ion-skin-depth parameter space with an unreduced, extended-MHD model. New dispersion relations are found at moderate plasma $\\beta$ and previous drift-tearing results are classified as applicable at small plasma $\\beta$. The drift stabilization of the mode in the regimes varies from non-existent/weak to complete. As the diamagnetic-drift frequency is proportional to the plasma $\\beta$, verification exercises with unreduced, extended-MHD models in the small plasma-$\\beta$ regimes are impractical. The new dispersion relations in the moderate plasma-$\\beta$ regimes are used to verify the extended-MHD implementation of the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. Given the small boundary-layer skin depth, discussion of the validity of the first-order finite-Larmour-radius model is presented.

  14. Course 1: Accretion and Ejection-Related MHD

    Science.gov (United States)

    Heyvaerts, Jean

    This lecture is an introduction to MHD. Relevant equations, both in the classical and special-relativistic regimes are derived. The magnetic field evolution is considered both in the perfect-MHD limit and when weak resistivity is present, giving rise to reconnection flows. A short section gives a flavour of dynamo theory. Examples of simple stationnary flows and equilibria are then presented. Stationnary, axisymmetric, rotating perfect-MHD winds and jets are discussed in some more detail. Their asymptotic structure is described. The last sections deal with small motions about an equilibrium and stability. These issues are illustrated by a few classical examples. The last section discusses linear aspects of the magneto-rotationnal instability.

  15. Simulating solar MHD

    Directory of Open Access Journals (Sweden)

    M. Schüssler

    Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 105 G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.

    Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.

  16. Cosmic Ray transport in turbulent magnetic field

    CERN Document Server

    Yan, Huirong

    2013-01-01

    Cosmic ray (CR) transport and acceleration is determined by the properties of magnetic turbulence. Recent advances in MHD turbulence call for revisions in the paradigm of cosmic ray transport. We use the models of magnetohydrodynamic turbulence that were tested in numerical simulation, in which turbulence is injected at large scale and cascades to to small scales. We shall address the issue of the transport of CRs, both parallel and perpendicular to the magnetic field. We shall demonstrate compressible fast modes are dominant cosmic ray scatterer from both quasilinear and nonlinear theories. We shall also show that the self-generated wave growth by CRs are constrained by preexisting turbulence and discuss the process in detail in the context of shock acceleration at supernova remnants and their implications. In addition, we shall dwell on the nonlinear growth of kinetic gyroresonance instability of cosmic rays induced by large scale compressible turbulence. This gyroresonance of cosmic rays on turbulence is d...

  17. MHD Energy Bypass Scramjet Performance with Real Gas Effects

    Science.gov (United States)

    Park, Chul; Mehta, Unmeel B.; Bogdanoff, David W.

    2000-01-01

    The theoretical performance of a scramjet propulsion system incorporating an magneto-hydro-dynamic (MHD) energy bypass scheme is calculated. The one-dimensional analysis developed earlier, in which the theoretical performance is calculated neglecting skin friction and using a sudden-freezing approximation for the nozzle flow, is modified to incorporate the method of Van Driest for turbulent skin friction and a finite-rate chemistry calculation in the nozzle. Unlike in the earlier design, in which four ramp compressions occurred in the pitch plane, in the present design the first two ramp compressions occur in the pitch plane and the next two compressions occur in the yaw plane. The results for the simplified design of a spaceliner show that (1) the present design produces higher specific impulses than the earlier design, (2) skin friction substantially reduces thrust and specific impulse, and (3) the specific impulse of the MHD-bypass system is still better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Results suggest that the energy management with MHD principles offers the possibility of improving the performance of the scramjet. The technical issues needing further studies are identified.

  18. MHD Energy Bypass Scramjet Engine

    Science.gov (United States)

    Mehta, Unmeel B.; Bogdanoff, David W.; Park, Chul; Arnold, Jim (Technical Monitor)

    2001-01-01

    Revolutionary rather than evolutionary changes in propulsion systems are most likely to decrease cost of space transportation and to provide a global range capability. Hypersonic air-breathing propulsion is a revolutionary propulsion system. The performance of scramjet engines can be improved by the AJAX energy management concept. A magneto-hydro-dynamics (MHD) generator controls the flow and extracts flow energy in the engine inlet and a MHD accelerator downstream of the combustor accelerates the nozzle flow. A progress report toward developing the MHD technology is presented herein. Recent theoretical efforts are reviewed and ongoing experimental efforts are discussed. The latter efforts also include an ongoing collaboration between NASA, the US Air Force Research Laboratory, US industry, and Russian scientific organizations. Two of the critical technologies, the ionization of the air and the MHD accelerator, are briefly discussed. Examples of limiting the combustor entrance Mach number to a low supersonic value with a MHD energy bypass scheme are presented, demonstrating an improvement in scramjet performance. The results for a simplified design of an aerospace plane show that the specific impulse of the MHD-bypass system is better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Equilibrium ionization and non-equilibrium ionization are discussed. The thermodynamic condition of air at the entrance of the engine inlet determines the method of ionization. The required external power for non-equilibrium ionization is computed. There have been many experiments in which electrical power generation has successfully been achieved by magneto-hydrodynamic (MHD) means. However, relatively few experiments have been made to date for the reverse case of achieving gas acceleration by the MHD means. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. MHD has several

  19. Scale locality of magnetohydrodynamic turbulence.

    Science.gov (United States)

    Aluie, Hussein; Eyink, Gregory L

    2010-02-26

    We investigate the scale locality of cascades of conserved invariants at high kinetic and magnetic Reynold's numbers in the "inertial-inductive range" of magnetohydrodynamic (MHD) turbulence, where velocity and magnetic field increments exhibit suitable power-law scaling. We prove that fluxes of total energy and cross helicity-or, equivalently, fluxes of Elsässer energies-are dominated by the contributions of local triads. Flux of magnetic helicity may be dominated by nonlocal triads. The magnetic stretching term may also be dominated by nonlocal triads, but we prove that it can convert energy only between velocity and magnetic modes at comparable scales. We explain the disagreement with numerical studies that have claimed conversion nonlocally between disparate scales. We present supporting data from a 1024{3} simulation of forced MHD turbulence.

  20. Scaling properties of small-scale fluctuations in magnetohydrodynamic turbulence

    CERN Document Server

    Perez, J C; Boldyrev, S; Cattaneo, F

    2014-01-01

    Magnetohydrodynamic (MHD) turbulence in the majority of natural systems, including the interstellar medium, the solar corona, and the solar wind, has Reynolds numbers far exceeding the Reynolds numbers achievable in numerical experiments. Much attention is therefore drawn to the universal scaling properties of small-scale fluctuations, which can be reliably measured in the simulations and then extrapolated to astrophysical scales. However, in contrast with hydrodynamic turbulence, where the universal structure of the inertial and dissipation intervals is described by the Kolmogorov self-similarity, the scaling for MHD turbulence cannot be established based solely on dimensional arguments due to the presence of an intrinsic velocity scale -- the Alfven velocity. In this Letter, we demonstrate that the Kolmogorov first self-similarity hypothesis cannot be formulated for MHD turbulence in the same way it is formulated for the hydrodynamic case. Besides profound consequences for the analytical consideration, this...

  1. Annular MHD Physics for Turbojet Energy Bypass

    Science.gov (United States)

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  2. Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence.

    Science.gov (United States)

    Meyrand, Romain; Galtier, Sébastien

    2012-11-01

    Hall magnetohydrodynamics (MHD) is investigated through three-dimensional direct numerical simulations. We show that the Hall effect induces a spontaneous chiral symmetry breaking of the turbulent dynamics. The normalized magnetic polarization is introduced to separate the right- (R) and left-handed (L) fluctuations. A classical k(-7/3) spectrum is found at small scales for R magnetic fluctuations which corresponds to the electron MHD prediction. A spectrum compatible with k(-11/3) is obtained at large-scales for the L magnetic fluctuations; we call this regime the ion MHD. These results are explained heuristically by rewriting the Hall MHD equations in a succinct vortex dynamical form. Applications to solar wind turbulence are discussed.

  3. Comparing Numerical Methods for Isothermal Magnetized Supersonic Turbulence

    CERN Document Server

    Kritsuk, Alexei G; Collins, David; Padoan, Paolo; Norman, Michael L; Abel, Tom; Banerjee, Robi; Federrath, Christoph; Flock, Mario; Lee, Dongwook; Li, Pak Shing; Mueller, Wolf-Christian; Teyssier, Romain; Ustyugov, Sergey D; Vogel, Christian; Xu, Hao

    2011-01-01

    We employ simulations of supersonic super-Alfv\\'enic turbulence decay as a benchmark test problem to assess and compare the performance of nine astrophysical MHD methods actively used to model star formation. The set of nine codes includes: ENZO, FLASH, KT-MHD, LL-MHD, PLUTO, PPML, RAMSES, STAGGER, and ZEUS. We present a comprehensive set of statistical measures designed to quantify the effects of numerical dissipation in these MHD solvers. We compare power spectra for basic fields to determine the effective spectral bandwidth of the methods and rank them based on their relative effective Reynolds numbers. We also compare numerical dissipation for solenoidal and dilatational velocity components to check for possible impacts of the numerics on small-scale density statistics. Finally, we discuss convergence of various characteristics for the turbulence decay test and impacts of various components of numerical schemes on the accuracy of solutions. We show that the best performing codes employ a consistently high...

  4. 3D simulations of fluctuation spectra in the hall-MHD plasma.

    Science.gov (United States)

    Shaikh, Dastgeer; Shukla, P K

    2009-01-30

    Turbulent spectral cascades are investigated by means of fully three-dimensional (3D) simulations of a compressible Hall-magnetohydrodynamic (H-MHD) plasma in order to understand the observed spectral break in the solar wind turbulence spectra in the regime where the characteristic length scales associated with electromagnetic fluctuations are smaller than the ion gyroradius. In this regime, the results of our 3D simulations exhibit that turbulent spectral cascades in the presence of a mean magnetic field follow an omnidirectional anisotropic inertial-range spectrum close to k(-7/3). The latter is associated with the Hall current arising from nonequal electron and ion fluid velocities in our 3D H-MHD plasma model.

  5. 3-D nonlinear evolution of MHD instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, G.; Hicks, H. R.; Wooten, J. W.

    1977-03-01

    The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed.

  6. Magnetic reconnection as an element of turbulence

    Directory of Open Access Journals (Sweden)

    S. Servidio

    2011-10-01

    Full Text Available In this work, recent advances on the study of reconnection in turbulence are reviewed. Using direct numerical simulations of decaying incompressible two-dimensional magnetohydrodynamics (MHD, it was found that in fully developed turbulence complex processes of reconnection locally occur (Servidio et al., 2009, 2010a. In this complex scenario, reconnection is spontaneous but locally driven by the fields, with the boundary conditions provided by the turbulence. Matching classical turbulence analysis with a generalized Sweet-Parker theory, the statistical features of these multiple-reconnection events have been identified. A discussion on the accuracy of our algorithms is provided, highlighting the necessity of adequate spatial resolution. Applications to the study of solar wind discontinuities are reviewed, comparing simulations to spacecraft observations. New results are shown, studying the time evolution of these local reconnection events. A preliminary study on the comparison between MHD and Hall MHD is reported. Our new approach to the study of reconnection as an element of turbulence has broad applications to space plasmas, shedding a new light on the study of magnetic reconnection in nature.

  7. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  8. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  9. Stochastic Particle Acceleration by Helical Turbulence in Solar Flares

    CERN Document Server

    Fleishman, Gregory D

    2012-01-01

    Flaring release of magnetic energy in solar corona is only possible if the magnetic field deviates from a potential one. We show that the linear MHD modes excited on top of the non-potential magnetic field possess a nonzero kinetic helicity. Accordingly, this necessarily results in a noticeable kinetic helicity of the turbulence, composed of these linear modes with various scales and random phases, generated at the flare site by the primary energy release, which may be important for many applications. In particular, a nonzero turbulence helicity has a potentially strong effect on the particle acceleration because the helical component of the turbulence induces a mean regular large-scale (DC) electric field capable of directly accelerating the charged particles in addition to the commonly considered stochastic turbulent electric field. In this paper, we derive the kinetic helicity density of the linear MHD modes excited on top of a twisted large-scale magnetic field, estimate the corresponding turbulence helic...

  10. Tsallis statistics as a tool for studying interstellar turbulence

    CERN Document Server

    Esquivel, A

    2009-01-01

    We used magnetohydrodynamic (MHD) simulations of interstellar turbulence to study the probability distribution functions (PDFs) of increments of density, velocity, and magnetic field. We found that the PDFs are well described by a Tsallis distribution, following the same general trends found in solar wind and Electron MHD studies. We found that the PDFs of density are different in subsonic and supersonic turbulence. In order to extend this work to ISM observations we studied maps of column density obtained from 3D MHD simulations. From the column density maps we found the parameters that fit to Tsallis distributions and demonstrated that these parameters vary with the Mach and Alfvenic Mach numbers of turbulence. This opens avenues for using Tsallis distributions to study the dynamical and magnetic states of interstellar gas.

  11. Problems in nonlinear resistive MHD

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L. [General Atomics, San Diego, CA (United States)

    1998-12-31

    Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.

  12. Magnetohydrodynamic (MHD) channel corner seal

    Science.gov (United States)

    Spurrier, Francis R.

    1980-01-01

    A corner seal for an MHD duct includes a compressible portion which contacts the duct walls and an insulating portion which contacts the electrodes, sidewall bars and insulators. The compressible portion may be a pneumatic or hydraulic gasket or an open-cell foam rubber. The insulating portion is segmented into a plurality of pieces of the same thickness as the electrodes, insulators and sidewall bars and aligned therewith, the pieces aligned with the insulator being of a different size from the pieces aligned with the electrodes and sidewall bars to create a stepped configuration along the corners of the MHD channel.

  13. Coupled generator and combustor performance calculations for potential early commercial MHD power plants

    Science.gov (United States)

    Dellinger, T. C.; Hnat, J. G.; Marston, C. H.

    1979-01-01

    A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.

  14. Weak Convergence and Weak Convergence

    Directory of Open Access Journals (Sweden)

    Narita Keiko

    2015-09-01

    Full Text Available In this article, we deal with weak convergence on sequences in real normed spaces, and weak* convergence on sequences in dual spaces of real normed spaces. In the first section, we proved some topological properties of dual spaces of real normed spaces. We used these theorems for proofs of Section 3. In Section 2, we defined weak convergence and weak* convergence, and proved some properties. By RNS_Real Mizar functor, real normed spaces as real number spaces already defined in the article [18], we regarded sequences of real numbers as sequences of RNS_Real. So we proved the last theorem in this section using the theorem (8 from [25]. In Section 3, we defined weak sequential compactness of real normed spaces. We showed some lemmas for the proof and proved the theorem of weak sequential compactness of reflexive real Banach spaces. We referred to [36], [23], [24] and [3] in the formalization.

  15. Sub-Grid-Scale Description of Turbulent Magnetic Reconnection in Magnetohydrodynamics

    CERN Document Server

    Widmer, Fabien; Yokoi, Nobumitsu

    2015-01-01

    Magnetic reconnection requires, at least locally, a non-ideal plasma response. In collisionless space and astrophysical plasmas, turbulence could permit this instead of the too rare binary collisions. We investigated the influence of turbulence on the reconnection rate in the framework of a single fluid compressible MHD approach. The goal is to find out, whether unresolved, sub-grid for MHD simulations, turbulence can enhance the reconnection process in high Reynolds number astrophysical plasma. We solve, simultaneously with the grid-scale MHD equations, evolution equations for the sub-grid turbulent energy and cross helicity according to Yokoi's model (Yokoi (2013)) where turbulence is self-generated and -sustained through the inhomogeneities of the mean fields. Simulations of Harris and force free sheets confirm the results of Higashimori et al. (2013) and new results are obtained about the dependence on resistivity for large Reynolds number as well as guide field effects. The amount of energy transferred f...

  16. Dust polarization and ISM turbulence

    CERN Document Server

    Caldwell, Robert R; Kamionkowski, Marc

    2016-01-01

    Perhaps the most intriguing result of Planck's dust-polarization measurements is the observation that the power in the E-mode polarization is twice that in the B mode, as opposed to pre-Planck expectations of roughly equal dust powers in E and B modes. Here we show how the E- and B-mode powers depend on the detailed properties of the fluctuations in the magnetized interstellar medium. These fluctuations are classified into the slow, fast, and Alfv\\'en magnetohydrodynamic (MHD) waves, which are determined once the ratio of gas to magnetic-field pressures is specified. We also parametrize models in terms of the power amplitudes and power anisotropies for the three types of waves. We find that the observed EE/BB ratio (and its scale invariance) and positive TE correlation cannot be easily explained in terms of favored models for MHD turbulence. The observed power-law index for temperature/polarization fluctuations also disfavors MHD turbulence. We thus speculate that the 0.1--30 pc length scales probed by these ...

  17. Multiscale nature of the dissipation range in solar wind turbulence

    CERN Document Server

    Told, D; TenBarge, J M; Howes, G G; Hammett, G W

    2015-01-01

    Nonlinear energy transfer and dissipation in Alfv\\'en wave turbulence are analyzed in the first gyrokinetic simulation spanning all scales from the tail of the MHD range to the electron gyroradius scale. For typical solar wind parameters at 1 AU, about 30% of the nonlinear energy transfer close to the electron gyroradius scale is mediated by modes in the tail of the MHD cascade. Collisional dissipation occurs across the entire kinetic range $k_\\perp\\rho_i\\gtrsim 1$. Both mechanisms thus act on multiple coupled scales, which have to be retained for a comprehensive picture of the dissipation range in Alfv\\'enic turbulence.

  18. Inflow Turbulence Generation Methods

    Science.gov (United States)

    Wu, Xiaohua

    2017-01-01

    Research activities on inflow turbulence generation methods have been vigorous over the past quarter century, accompanying advances in eddy-resolving computations of spatially developing turbulent flows with direct numerical simulation, large-eddy simulation (LES), and hybrid Reynolds-averaged Navier-Stokes–LES. The weak recycling method, rooted in scaling arguments on the canonical incompressible boundary layer, has been applied to supersonic boundary layer, rough surface boundary layer, and microscale urban canopy LES coupled with mesoscale numerical weather forecasting. Synthetic methods, originating from analytical approximation to homogeneous isotropic turbulence, have branched out into several robust methods, including the synthetic random Fourier method, synthetic digital filtering method, synthetic coherent eddy method, and synthetic volume forcing method. This article reviews major progress in inflow turbulence generation methods with an emphasis on fundamental ideas, key milestones, representative applications, and critical issues. Directions for future research in the field are also highlighted.

  19. Test-field method for mean-field coefficients with MHD background

    CERN Document Server

    Rheinhardt, M

    2010-01-01

    Aims: The test-field method for computing turbulent transport coefficients from simulations of hydromagnetic flows is extended to the regime with a magnetohydrodynamic (MHD) background. Methods: A generalized set of test equations is derived using both the induction equation and a modified momentum equation. By employing an additional set of auxiliary equations, we derive linear equations describing the response of the system to a set of prescribed test fields. Purely magnetic and MHD backgrounds are emulated by applying an electromotive force in the induction equation analogously to the ponderomotive force in the momentum equation. Both forces are chosen to have Roberts flow-like geometry. Results: Examples with an MHD background are studied where the previously used quasi-kinematic test-field method breaks down. In cases with homogeneous mean fields it is shown that the generalized test-field method produces the same results as the imposed-field method, where the field-aligned component of the actual electr...

  20. Plasmoid Instabilities Mediated Three-Dimensional Magnetohydrodynamic Turbulent Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yi-min [Princeton University; Guo, Fan [Los Alamos National Laboratory

    2015-07-21

    After some introductory remarks on fast reconnection in resistive MHD due to plasmoid instability, oblique tearing modes in 3D, and previous studies on 3D turbulent reconnection, the subject is presented under the following topics: 3D simulation setup, time evolution of the 3D simulation, comparison with Sweet-Parker and 2D plasmoid reconnection, and diagnostics of the turbulent state (decomposition of mean fields and fluctuations, power spectra of energy fluctuations, structure function and eddy anisotropy with respect to local magnetic field). Three primary conclusions were reached: (1) The results suggest that 3D plasmoid instabilities can lead to self-generated turbulent reconnection (evidence of energy cascade and development of inertial range, energy fluctuations preferentially align with the local magnetic field, which is one of the characteristics of MHD turbulence); (2) The turbulence is highly inhomogeneous, due to the presence of magnetic shear and outflow jets (conventional MHD turbulence theories or phenomenologies may not be applicable – e.g. scale-dependent anisotropy as predicted by Goldreich & Sridhar is not found); (3) 3D turbulent reconnection is different from 2D plasmoid-dominated reconnection in many aspects. However, in fully developed state, reconnection rates in 2D and 3D are comparable — this result needs to be further checked in higher S.

  1. MHD control in burning plasmas MHD control in burning plasmas

    Science.gov (United States)

    Donné, Tony; Liang, Yunfeng

    2012-07-01

    Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokamaks like ITER, the power generated by the fusion reactions substantially exceeds the external input power (Pfusion}/Pin >= 10). When this occurs one speaks of a burning plasma. Twenty per cent of the generated fusion power in a burning plasma is carried by the charged alpha particles, which transfer their energy to the ambient plasma in collisions, a process called thermalization. A new phenomenon in burning plasmas is that the alpha particles, which form a minority but carry a large fraction of the plasma kinetic energy, can collectively drive certain types of magneto-hydrodynamic (MHD) modes, while they can suppress other MHD modes. Both types of MHD modes can have desirable effects on the plasma, as well as be detrimental to the plasma. For example, the so-called sawtooth instability, on the one hand, is largely responsible for the transport of the thermalized alpha particles out of the core, but, on the other hand, may result in the loss of the energetic alphas before they have fully thermalized. A further undesirable effect of the sawtooth instability is that it may trigger other MHD modes such as neoclassical tearing modes (NTMs). These NTMs, in turn, are detrimental to the plasma confinement and in some cases may even lead to disruptive termination of the plasma. At the edge of the plasma, finally, so-called edge localized modes or ELMs occur, which result in extremely high transient heat and particle loads on the plasma-facing components of a reactor. In order to balance the desired and detrimental effects of these modes, active feedback control is required. An additional complication occurs in a burning plasma as the external heating power, which is nowadays generally used for plasma control, is small compared to the heating power of the alpha particles. The scientific challenge

  2. Magnetic levitation and MHD propulsion

    Science.gov (United States)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  3. Weak Force

    CERN Multimedia

    Without the weak force, the sun wouldn't shine. The weak force causes beta decay, a form of radioactivity that triggers nuclear fusion in the heart of the sun. The weak force is unlike other forces: it is characterised by disintegration. In beta decay, a down quark transforms into an up quark and an electron is emitted. Some materials are more radioactive than others because the delicate balance between the strong force and the weak force varies depending on the number of particles in the atomic nucleus. We live in the midst of a natural radioactive background that varies from region to region. For example, in Cornwall where there is a lot of granite, levels of background radiation are much higher than in the Geneva region. Text for the interactive: Move the Geiger counter to find out which samples are radioactive - you may be surprised. It is the weak force that is responsible for the Beta radioactivity here. The electrons emitted do not cross the plastic cover. Why do you think there is some detected radioa...

  4. Temporal intermittency of energy dissipation in magnetohydrodynamic turbulence.

    Science.gov (United States)

    Zhdankin, Vladimir; Uzdensky, Dmitri A; Boldyrev, Stanislav

    2015-02-13

    Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in space, being concentrated in sheetlike coherent structures. Much less is known about intermittency in time, another fundamental aspect of turbulence which has great importance for observations of solar flares and other space or astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal structures, "flare events," responsible for a large fraction of the energy dissipation. We find that although the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations. We find that the probability distribution of dissipated energy has a power-law index close to α≈1.75, similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the system. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade.

  5. Non Axi-symmetric Anisotropy of Solar Wind Turbulence

    CERN Document Server

    Turner, A J; Chapman, S C; Hnat, B; Mueller, W -C

    2011-01-01

    A key prediction of turbulence theories is frame-invariance, and in magnetohydrodynamic (MHD) turbulence, axisymmetry of fluctuations with respect to the background magnetic field. Paradoxically the power in fluctuations in the turbulent solar wind are observed to be ordered with respect to the bulk macroscopic flow as well as the background magnetic field. Here, non- axisymmetry across the inertial and dissipation ranges is quantified using in-situ observations from Cluster. The observed inertial range non- axisymmetry is reproduced by a 'fly through' sampling of a Direct Numerical Simulation of MHD turbulence. Furthermore, 'fly through' sampling of a linear superposition of transverse waves with axisymmetric fluctuations generates the trend in non- axisymmetry with power spectral exponent. The observed non-axisymmetric anisotropy may thus simply arise as a sampling effect related to Taylor's hypothesis and is not related to the plasma dynamics itself.

  6. Integral Constraints and MHD Stability

    Science.gov (United States)

    Jensen, T. H.

    2003-10-01

    Determining stability of a plasma in MHD equilibrium, energetically isolated by a conducting wall, requires an assumption on what governs the dynamics of the plasma. One example is the assumption that the plasma obeys ideal MHD, leading to the well known ``δ W" criteria [I. Bernstein, et al., Proc. Roy. Soc. London A244, 17 (1958)]. A radically different approach was used by Taylor [J.B. Taylor, Rev. Mod. Phys. 58, 741 (1986)] in assuming that the dynamics of the plasma is restricted only by the requirement that helicity, an integral constant associated with the plasma, is conserved. The relevancy of Taylor's assumption is supported by the agreement between resulting theoretical results and experimental observations. Another integral constraint involves the canonical angular momentum of the plasma particles. One consequence of using this constraint is that tokamak plasmas have no poloidal current in agreement with some current hole tokamak observations [T.H. Jensen, Phys. Lett. A 305, 183 (2002)].

  7. Shunting ratios for MHD flows

    Energy Technology Data Exchange (ETDEWEB)

    Birzvalk, Yu.

    1978-01-01

    The shunting ratio and the local shunting ratio, pertaining to currents induced by a magnetic field in a flow channel, are properly defined and systematically reviewed on the basis of the Lagrange criterion. Their definition is based on the energy balance and related to dimensionless parameters characterizing an MHD flow, these parameters evolving from the Hartmann number and the hydrodynamic Reynolds number as well as the magnetic Reynolds number, and the Lundquist number. These shunting ratios, of current density in the core of a stream (uniform) or equivalent mean current density to the short-circuit (maximum) current density, are given here for a slot channel with nonconducting or conducting walls, for a conduction channel with heavy side rails, and for an MHD-flow around bodies. 5 references, 1 figure.

  8. Laboratory Plasma Source as an MHD Model for Astrophysical Jets

    Science.gov (United States)

    Mayo, Robert M.

    1997-01-01

    The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to

  9. Turbulent Velocity Structure in Molecular Clouds

    CERN Document Server

    Ossenkopf, V; Ossenkopf, Volker; Low, Mordecai-Mark Mac

    2002-01-01

    We compare velocity structure observed in the Polaris Flare molecular cloud at scales ranging from 0.015 pc to 20 pc to the velocity structure of a suite of simulations of supersonic hydrodynamic and MHD turbulence computed with the ZEUS MHD code. We examine different methods of characterising the structure, including a scanning-beam size-linewidth relation, structure functions, velocity and velocity difference probability distribution functions (PDFs), and the Delta-variance wavelet transform, and use them to compare models and observations. The Delta-variance is most sensitive in detecting characteristic scales and varying scaling laws, but is limited in the observational application by its lack of intensity weighting. We compare the true velocity PDF in our models to simulated observations of velocity centroids and average line profiles in optically thin lines, and find that the line profiles reflect the true PDF better. The observed velocity structure is consistent with supersonic turbulence showing a com...

  10. Transition from 2D HD to 2D MHD turbulence

    CERN Document Server

    Seshasayanan, Kannabiran

    2015-01-01

    We investigate the critical transition from an inverse cascade of energy to a forward energy cascade in a two-dimensional magneto-hydrodynamic flow as the ratio of magnetic to mechanical forcing amplitude is varied. It is found that the critical transition is the result of two competing processes. The first process is due to hydrodynamic interactions, cascades the energy to the large scales. The second process couples small scale magnetic fields to large scale flows transferring the energy back to the small scales via a non-local mechanism. At marginality the two cascades are both present and cancel each other. The phase space diagram of the transition is sketched.

  11. Simulations and Transport Models for Imbalanced Magnetohydrodynamic Turbulence

    Science.gov (United States)

    Ng, Chung-Sang; Dennis, T.

    2016-10-01

    We present results from a series of three-dimensional simulations of magnetohydrodynamic (MHD) turbulence based on reduced MHD equations. Alfven waves are launched from both ends of a long tube along the background uniform magnetic field so that turbulence develops due to collision between counter propagating Alfven waves in the interior region. Waves are launched randomly with specified correlation time Tc such that the length of the tube, L, is greater than (but of the same order of) VA *Tc such that turbulence can fill most of the tube. While waves at both ends are launched with equal power, turbulence generated is imbalanced in general, with normalized cross-helicity gets close to -1 at one end and 1 at the other end. This simulation setup allows easier comparison of turbulence properties with one-dimensional turbulence transport models, which have been applied rather successfully in modeling solar wind turbulence. However, direct comparison of such models with full simulations of solar wind turbulence is difficult due to much higher level of complexity involved. We will present our latest simulations at different resolutions with decreasing dissipation (resistivity and viscosity) levels and compare with model outputs from turbulence transport models. This work is supported by a NASA Grant NNX15AU61G.

  12. Longitudinal and transverse structure functions in high Reynolds-number magneto-hydrodynamic turbulence

    CERN Document Server

    Friedrich, J; Schäfer, T; Grauer, R

    2016-01-01

    We investigate the scaling behavior of longitudinal and transverse structure functions in homogeneous and isotropic magneto-hydrodynamic (MHD) turbulence by means of an exact hierarchy of structure function equations as well as by direct numerical simulations of two- and three-dimensional MHD turbulence. In particular, rescaling relations between longitudinal and transverse structure functions are derived and utilized in order to compare different scaling behavior in the inertial range. It is found that there are no substantial differences between longitudinal and transverse structure functions in MHD turbulence. This finding stands in contrast to the case of hydrodynamic turbulence which shows persistent differences even at high Reynolds numbers. We propose a physical picture that is based on an effective reduction of pressure contributions due to local regions of same magnitude and alignment of velocity and magnetic field fluctuations. Finally, our findings underline the importance of the pressure term for ...

  13. Three-dimensional characteristics of SFC type MHD generator

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Shun' ichi; Kayukawa, Naoyuki

    1988-03-20

    Concerning a Faraday type MHD generator with power output 100 MWe, a parabolic three-dimensional analysis was made on the SFC type and the conventional UFC type of the applied magnetic field, comparing the electrical and fluid fields of both types. Results are as follows: (1) In Faraday type MHD generator, Hall current which is an ineffective current is suppressed by SFC magnetic field coordination. (2) In the case of UFC, a current concentration to the central anode which occurs in the large Faraday type MHD generator does not occur in the case of SFC type. (3) In SFC, a secondary flow in the electrode boundary, especially in the vicinity of the anode is weak. (4) In addition to the velocity overshoot in the dielectric wall boundary layer, in the case of SFC, it generates in the electric wall. As a result, concentrated arc columns are suppressed by the acceleration of heat transfer to the electrode wall. (13 figs, 1 tab, 13 refs)

  14. Turbulent current drive

    Science.gov (United States)

    Garbet, X.; Esteve, D.; Sarazin, Y.; Dif-Pradalier, G.; Ghendrih, P.; Grandgirard, V.; Latu, G.; Smolyakov, A.

    2014-11-01

    The Ohm's law is modified when turbulent processes are accounted for. Besides an hyper-resistivity, already well known, pinch terms appear in the electron momentum flux. Moreover it appears that turbulence is responsible for a source term in the Ohm's law, called here turbulent current drive. Two terms contribute to this source. The first term is a residual stress in the momentum flux, while the second contribution is an electro-motive force. A non zero average parallel wave number is needed to get a finite source term. Hence a symmetry breaking mechanism must be invoked, as for ion momentum transport. E × B shear flows and turbulence intensity gradients are shown to provide similar contributions. Moreover this source term has to compete with the collision friction term (resistivity). The effect is found to be significant for a large scale turbulence in spite of an unfavorable scaling with the ratio of the electron to ion mass. Turbulent current drive appears to be a weak effect in the plasma core, but could be substantial in the plasma edge where it may produce up to 10 % of the local current density.

  15. Phenomenology treatment of magnetohydrodynamic turbulence with non-equipartition and anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y; Matthaeus, W H

    2005-02-07

    Magnetohydrodynamics (MHD) turbulence theory, often employed satisfactorily in astrophysical applications, has often focused on parameter ranges that imply nearly equal values of kinetic and magnetic energies and length scales. However, MHD flow may have disparity magnetic Prandtl number, dissimilar kinetic and magnetic Reynolds number, different kinetic and magnetic outer length scales, and strong anisotropy. Here a phenomenology for such ''non-equipartitioned'' MHD flow is discussed. Two conditions are proposed for a MHD flow to transition to strong turbulent flow, extensions of (1) Taylor's constant flux in an inertial range, and (2) Kolmogorov's scale separation between the large and small scale boundaries of an inertial range. For this analysis, the detailed information on turbulence structure is not needed. These two conditions for MHD transition are expected to provide consistent predictions and should be applicable to anisotropic MHD flows, after the length scales are replaced by their corresponding perpendicular components. Second, it is stressed that the dynamics and anisotropy of MHD fluctuations is controlled by the relative strength between the straining effects between eddies of similar size and the sweeping action by the large-eddies, or propagation effect of the large-scale magnetic fields, on the small scales, and analysis of this balance in principle also requires consideration of non-equipartition effects.

  16. Depolarization canals and interstellar turbulence

    Science.gov (United States)

    Fletcher, A.; Shukurov, A.

    Recent radio polarization observations have revealed a plethora of unexpected features in the polarized Galactic radio background that arise from propagation effects in the random (turbulent) interstellar medium. The canals are especially striking among them, a random network of very dark, narrow regions clearly visible in many directions against a bright polarized Galactic synchrotron background. There are no obvious physical structures in the ISM that may have caused the canals, and so they have been called Faraday ghosts. They evidently carry information about interstellar turbulence but only now is it becoming clear how this information can be extracted. Two theories for the origin of the canals have been proposed; both attribute the canals to Faraday rotation, but one invokes strong gradients in Faraday rotation in the sky plane (specifically, in a foreground Faraday screen) and the other only relies on line-of-sight effects (differential Faraday rotation). In this review we discuss the physical nature of the canals and how they can be used to explore statistical properties of interstellar turbulence. This opens studies of magnetized interstellar turbulence to new methods of analysis, such as contour statistics and related techniques of computational geometry and topology. In particular, we can hope to measure such elusive quantities as the Taylor microscale and the effective magnetic Reynolds number of interstellar MHD turbulence.

  17. Effects of small-scale freestream turbulence on turbulent boundary layers with and without thermal convection

    OpenAIRE

    Nagata, Kouji; Sakai, Yasuhiko; Komori, Satoru

    2011-01-01

    Effects of weak, small-scale freestream turbulence on turbulent boundary layers with and without thermal convection are experimentally investigated using a wind tunnel. Two experiments are carried out: the first is isothermal boundary layers with and without grid turbulence, and the second is non-isothermal boundary layers with and without grid turbulence. Both boundary layers develop under a small favorable pressure gradient. For the latter case, the bottom wall of the test section is heated...

  18. Investigating prominence turbulence with Hinode SOT Dopplergrams

    CERN Document Server

    Hillier, Andrew; Ichimoto, Kiyoshi

    2016-01-01

    Quiescent prominences host a diverse range of flows, including Rayleigh-Taylor instability driven upflows and impulsive downflows, and so it is no surprise that turbulent motions also exist. As prominences are believed to have a mean horizontal guide field, investigating any turbulence they host could shed light on the nature of MHD turbulence in a wide range of astrophysical systems. In this paper we have investigated the nature of the turbulent prominence motions using structure function analysis on the velocity increments estimated from H$\\alpha$ Dopplergrams constructed with observational data from Hinode SOT. The pdf of the velocity increments shows that as we look at increasingly small spatial separations the distribution displays greater departure from a reference Gaussian distribution, hinting at intermittency in the velocity field. Analysis of the even order structure functions for both the horizontal and vertical separations showed the existence of two distinct regions displaying different exponents...

  19. Helicity and its role in the varieties of magnetohydrodynamic turbulence

    Science.gov (United States)

    Montgomery, David C.; Bates, Jason W.

    Magnetic helicity has appeared as an important but slippery quantity in the theory of magnetohydrodynamic (MHD) turbulence in two contexts: (1) as a slowly-decaying ideal invariant that can control to some extent the formation of a "relaxed" MHD state—one far from thermal equilibrium—in laboratory confinement devices such as the toroidal pinch; and (2) as a potentially inversely-cascadable global quantity in driven, homogeneous MHD turbulence. In the former case, the origin of helicity is straightforwardly clear: electric current is forced to flow along a dc magnetic field, generating poloidal magnetic flux and causing the magnetic field lines to kink up, helically. In the latter, helicity's origins and physical interpretation are more obscure, sometimes having to do with mechanically driven helical motions which supposedly generate magnetic helicity that, however, no longer has any obvious "linked flux" interpretation. In both cases, its usefulness and even its definition sometimes depend sensitively on boundary conditions in a way that, say, those for energy do not. We will examine what the utility of the concept of magnetic helicity has so far been shown to be in discussing turbulent MHD, and comment on some of the ways it differs from other global ideal invariants that have been discussed, such as kinetic energy in 2D Navier-Stokes flows, and mean-square magnetic vector potential in 2D MHD. Attention will be devoted to the evidence for variational principles such as "maximal helicity," or "minimum energy," conjectured to predict various relaxation processes and late-time laminar states in evolving MHD situations. What is believed to be an important distinction between applications of the principles to decaying and driven situations will be stressed. Our discussion will be confined to the cases of small but non-zero transport coefficients, and will not deal with any possible role of helicity in ideal MHD.

  20. Imbalanced Relativistic Force-Free Magnetohydrodynamic Turbulence

    CERN Document Server

    Cho, Jungyeon

    2013-01-01

    When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfv\\'enic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., \\$b_+^2/b_-^2 \\propto (\\epsilon_+/\\epsilon_-)^n \\$ with n>2). These result...

  1. Understanding Accretion Disks through Three Dimensional Radiation MHD Simulations

    Science.gov (United States)

    Jiang, Yan-Fei

    I study the structures and thermal properties of black hole accretion disks in the radiation pressure dominated regime. Angular momentum transfer in the disk is provided by the turbulence generated by the magneto-rotational instability (MRI), which is calculated self-consistently with a recently developed 3D radiation magneto-hydrodynamics (MHD) code based on Athena. This code, developed by my collaborators and myself, couples both the radiation momentum and energy source terms with the ideal MHD equations by modifying the standard Godunov method to handle the stiff radiation source terms. We solve the two momentum equations of the radiation transfer equations with a variable Eddington tensor (VET), which is calculated with a time independent short characteristic module. This code is well tested and accurate in both optically thin and optically thick regimes. It is also accurate for both radiation pressure and gas pressure dominated flows. With this code, I find that when photon viscosity becomes significant, the ratio between Maxwell stress and Reynolds stress from the MRI turbulence can increase significantly with radiation pressure. The thermal instability of the radiation pressure dominated disk is then studied with vertically stratified shearing box simulations. Unlike the previous results claiming that the radiation pressure dominated disk with MRI turbulence can reach a steady state without showing any unstable behavior, I find that the radiation pressure dominated disks always either collapse or expand until we have to stop the simulations. During the thermal runaway, the heating and cooling rates from the simulations are consistent with the general criterion of thermal instability. However, details of the thermal runaway are different from the predictions of the standard alpha disk model, as many assumptions in that model are not satisfied in the simulations. We also identify the key reasons why previous simulations do not find the instability. The thermal

  2. MHD Driving of Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Arieh Königl

    2007-01-01

    Full Text Available Paulatinamente se ha ido reconociendo que los campos magnéticos juegan un papel dominante en la producción y colimación de chorros astrofísicos. Demostramos aquí, usando soluciones semianalíticas exactas para las ecuaciones de MHD ideal en relatividad especial, que un disco de acreción altamente magnetizado (con un campo magnético principalmente poloidal o azimutal alrededor de un agujero negro es capaz de acelerar un flujo de protones y electrones a los factores de Lorentz y energías cinéticas asociadas a fuentes de destellos de rayos gama y nucleos activos de galaxias. También se discuten las contribuciones a la aceleración provenientes de efectos térmicos (por presión de radiación y pares electrón-positrón y de MHD no ideal. Notamos que la aceleración por MHD se caracteriza por ser extendida espacialmente, y esta propiedad se manifesta más claramente en flujos relativistas. Las indicaciones observacionales de que la aceleración de movimientos superlumínicos en chorros de radio ocurre sobre escalas mucho más grandes que las del agujero negro propiamente, apoyan la idea de que la producción de chorros es principalmente un fenómeno magnético. Presentamos resultados preliminares de un modelo global que puede utilizarse para probar esta interpretación.

  3. Global MHD model of the earth's magnetosphere

    Science.gov (United States)

    Wu, C. C.

    1983-01-01

    A global MHD model of the earth's magnetosphere is defined. An introduction to numerical methods for solving the MHD equations is given with emphasis on the shock-capturing technique. Finally, results concerning the shape of the magnetosphere and the plasma flows inside the magnetosphere are presented.

  4. Weak relativity

    CERN Document Server

    Selleri, Franco

    2015-01-01

    Weak Relativity is an equivalent theory to Special Relativity according to Reichenbach’s definition, where the parameter epsilon equals to 0. It formulates a Neo-Lorentzian approach by replacing the Lorentz transformations with a new set named “Inertial Transformations”, thus explaining the Sagnac effect, the twin paradox and the trip from the future to the past in an easy and elegant way. The cosmic microwave background is suggested as a possible privileged reference system. Most importantly, being a theory based on experimental proofs, rather than mutual consensus, it offers a physical description of reality independent of the human observation.

  5. An MHD model of the earth's magnetosphere

    Science.gov (United States)

    Wu, C. C.

    1985-01-01

    It is pointed out that the earth's magnetosphere arises from the interaction of the solar wind with the earth's geomagnetic field. A global magnetohydrodynamics (MHD) model of the earth's magnetosphere has drawn much attention in recent years. In this model, MHD equations are used to describe the solar wind interaction with the magnetosphere. In the present paper, some numerical aspects of the model are considered. Attention is given to the ideal MHD equations, an equation of state for the plasma, the model as an initial- and boundary-value problem, the shock capturing technique, computational requirements and techniques for global MHD modeling, a three-dimensional mesh system employed in the global MHD model, and some computational results.

  6. Turbulence and diffusion fossil turbulence

    CERN Document Server

    Gibson, C H

    2000-01-01

    Fossil turbulence processes are central to turbulence, turbulent mixing, and turbulent diffusion in the ocean and atmosphere, in astrophysics and cosmology, and in most other natural flows. George Gamov suggested in 1954 that galaxies might be fossils of primordial turbulence produced by the Big Bang. John Woods showed that breaking internal waves on horizontal dye sheets in the interior of the stratified ocean form highly persistent remnants of these turbulent events, which he called fossil turbulence. The dark mixing paradox of the ocean refers to undetected mixing that must exist somewhere to explain why oceanic scalar fields like temperature and salinity are so well mixed, just as the dark matter paradox of galaxies refers to undetected matter that must exist to explain why rotating galaxies don't fly apart by centrifugal forces. Both paradoxes result from sampling techniques that fail to account for the extreme intermittency of random variables involved in self-similar, nonlinear, cascades over a wide ra...

  7. Coupled simulation of kinetic pedestal growth and MHD ELM crash

    Energy Technology Data Exchange (ETDEWEB)

    Park, G [Courant Institute of Mathematical Sciences, New York University (United States); Cummings, J [California Institute of Technology (United States); Chang, C S [Courant Institute of Mathematical Sciences, New York University (United States); Podhorszki, N [Univ. California at Davis (United States); Klasky, S [ORNL (United States); Ku, S [Courant Institute of Mathematical Sciences, New York University (United States); Pankin, A [Lehigh Univ. (United States); Samtaney, R [Princeton Plasma Physics Laboratory (United States); Shoshani, A [LBNL (United States); Snyder, P [General Atomics (United States); Strauss, H [Courant Institute of Mathematical Sciences, New York University (United States); Sugiyama, L [MIT (United States)

    2007-07-15

    Edge pedestal height and the accompanying ELM crash are critical elements of ITER physics yet to be understood and predicted through high performance computing. An entirely self-consistent first principles simulation is being pursued as a long term research goal, and the plan is planned for completion in time for ITER operation. However, a proof-of-principle work has already been established using a computational tool that employs the best first principles physics available at the present time. A kinetic edge equilibrium code XGC0, which can simulate the neoclassically dominant pedestal growth from neutral ionization (using a phenomenological residual turbulence diffusion motion superposed upon the neoclassical particle motion) is coupled to an extended MHD code M3D, which can perform the nonlinear ELM crash. The stability boundary of the pedestal is checked by an ideal MHD linear peeling-ballooning code, which has been validated against many experimental data sets for the large scale (type I) ELMs onset boundary. The coupling workflow and scientific results to be enabled by it are described.

  8. Two-fluid MHD Regime of Drift Wave Instability

    Science.gov (United States)

    Yang, Shang-Chuan; Zhu, Ping; Xie, Jin-Lin; Liu, Wan-Dong

    2015-11-01

    Drift wave instabilities contribute to the formation of edge turbulence and zonal flows, and thus are believed to play essential roles in the anomalous transport processes in tokamaks. Whereas drift waves are generally assumed to be local and electrostatic, experiments have often found regimes where the spatial scales and the magnetic components of drift waves approach those of magnetohydrodynamic (MHD) processes. In this work we study such a drift wave regime in a cylindrical magnetized plasma using a full two-fluid MHD model implemented in the NIMROD code. The linear dependency of growth rates on resistivity and the dispersion relation found in the NIMROD calculations qualitatively agree with theoretical analysis. As the azimuthal mode number increases, the drift modes become highly localized radially; however, unlike the conventional local approximation, the radial profile of the drift mode tends to shift toward the edge away from the center of the density gradient slope, suggesting the inhomogeneity of two-fluid effects. Supported by National Natural Science Foundation of China Grant 11275200 and National Magnetic Confinement Fusion Science Program of China Grant 2014GB124002.

  9. Feasibility of MHD submarine propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D. (ed.) (Argonne National Lab., IL (United States)); Sikes, W.C. (ed.) (Newport News Shipbuilding and Dry Dock Co., VA (United States))

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  10. Turbulent complex (dusty) plasma

    Science.gov (United States)

    Zhdanov, Sergey; Schwabe, Mierk

    2017-04-01

    As a paradigm of complex system dynamics, solid particles immersed into a weakly ionized plasma, so called complex (dusty) plasmas, were (and continue to be) a subject of many detailed studies. Special types of dynamical activity have been registered, in particular, spontaneous pairing, entanglement and cooperative action of a great number of particles resulting in formation of vortices, self-propelling, tunneling, and turbulent movements. In the size domain of 1-10 mkm normally used in experiments with complex plasmas, the characteristic dynamic time-scale is of the order of 0.01-0.1 s, and these particles can be visualized individually in real time, providing an atomistic (kinetic) level of investigations. The low-R turbulent flow induced either by the instability in a complex plasma cloud or formed behind a projectile passing through the cloud is a typical scenario. Our simulations showed formation of a fully developed system of vortices and demonstrated that the velocity structure functions scale very close to the theoretical predictions. As an important element of self-organization, cooperative and turbulent particle motions are present in many physical, astrophysical, and biological systems. Therefore, experiments with turbulent wakes and turbulent complex plasma oscillations are a promising mean to observe and study in detail the anomalous transport on the level of individual particles.

  11. Turbulent magnetic fields in the quiet Sun: implications of Hinode observations and small-scale dynamo simulations

    CERN Document Server

    Graham, Jonathan Pietarila; Schuessler, Manfred

    2008-01-01

    Using turbulent MHD simulations (magnetic Reynolds numbers up to 8000) and Hinode observations, we study effects of turbulence on measuring the solar magnetic field outside active regions. Firstly, from synthetic Stokes V profiles for the FeI lines at 630.1 and 630.2 nm, we show that a peaked probability distribution function (PDF) for observationally-derived field estimates is consistent with a monotonic PDF for actual vertical field strengths. Hence, the prevalence of weak fields is greater than would be naively inferred from observations. Secondly, we employ the fractal self-similar geometry of the turbulent solar magnetic field to derive two estimates (numerical and observational) of the true mean vertical unsigned flux density. We also find observational evidence that the scales of magnetic structuring in the photosphere extend at least down to an order of magnitude smaller than 200 km: the self-similar power-law scaling in the signed measure from a Hinode magnetogram ranges (over two decades in length s...

  12. Turbulence and the formation of filaments, loops and shock fronts in NGC 1275 in the Perseus Galaxy Cluster

    CERN Document Server

    Falceta-Goncalves, D; Gallagher, J S; Lazarian, A

    2009-01-01

    NGC1275, the central galaxy in the Perseus cluster, is the host of gigantic hot bipolar bubbles inflated by AGN jets observed in the radio as Perseus A. It presents a spectacular $H{\\alpha}$-emitting nebulosity surrounding NGC1275, with loops and filaments of gas extending to over 50 kpc. The origin of the filaments is still unknown, but probably correlates with the mechanism responsible for the giant buoyant bubbles. We present 2.5 and 3-dimensional MHD simulations of the central region of the cluster in which turbulent energy, possibly triggered by star formation and supernovae (SNe) explosions is introduced. The simulations reveal that the turbulence injected by massive stars could be responsible for the nearly isotropic distribution of filaments and loops that drag magnetic fields upward as indicated by recent observations. Weak shell-like shock fronts propagating into the ICM with velocities of 100-500 km/s are found, also resembling the observations. The isotropic outflow momentum of the turbulence slow...

  13. Magnetohydrodynamic turbulent cascade of coronal loop magnetic fields.

    Science.gov (United States)

    Rappazzo, A F; Velli, M

    2011-06-01

    The Parker model for coronal heating is investigated through a high resolution simulation. An inertial range is resolved where fluctuating magnetic energy EMk[Please see symbol]) [Please see symbol] k[Please see symbol](-2.7) exceeds kinetic energy EK(k[Please see symbol])[Please see symbol]k[Please see symbol](-0.6). Increments scale as δbℓ ~/= ℓ(-0.85) and δuℓ ~/= ℓ(+0.2) with velocity increasing at small scales, indicating that magnetic reconnection plays a prime role in this turbulent system. We show that spectral energy transport is akin to standard magnetohydrodynamic (MHD) turbulence even for a system of reconnecting current sheets sustained by the boundary. In this new MHD turbulent cascade, kinetic energy flows are negligible while cross-field flows are enhanced, and through a series of "reflections" between the two fields, cascade more than half of the total spectral energy flow.

  14. A renormalization group analysis of two-dimensional magnetohydrodynamic turbulence

    Science.gov (United States)

    Liang, Wenli Z.; Diamond, P. H.

    1993-01-01

    The renormalization group (RNG) method is used to study the physics of two-dimensional (2D) magnetohydrodynamic (MHD) turbulence. It is shown that, for a turbulent magnetofluid in two dimensions, no RNG transformation fixed point exists on account of the coexistence of energy transfer to small scales and mean-square magnetic flux transfer to large scales. The absence of a fixed point renders the RNG method incapable of describing the 2D MHD system. A similar conclusion is reached for 2D hydrodynamics, where enstrophy flows to small scales and energy to large scales. These analyses suggest that the applicability of the RNG method to turbulent systems is intrinsically limited, especially in the case of systems with dual-direction transfer.

  15. On the energy spectrum of strong magnetohydrodynamic turbulence

    CERN Document Server

    Perez, Jean Carlos; Boldyrev, Stanislav; Cattaneo, Fausto

    2012-01-01

    The energy spectrum of magnetohydrodynamic turbulence attracts interest due to its fundamental importance and its relevance for interpreting astrophysical data. Here we present measurements of the energy spectra from a series of high-resolution direct numerical simulations of MHD turbulence with a strong guide field and for increasing Reynolds number. The presented simulations, with numerical resolutions up to 2048^3 mesh points and statistics accumulated over 30 to 150 eddy turnover times, constitute, to the best of our knowledge, the largest statistical sample of steady state MHD turbulence to date. We study both the balanced case, where the energies associated with Alfv\\'en modes propagating in opposite directions along the guide field, E^+ and $E^-, are equal, and the imbalanced case where the energies are different. In the balanced case, we find that the energy spectrum converges to a power law with exponent -3/2 as the Reynolds number is increased, consistent with phenomenological models that include sc...

  16. Modeling Of Z-Pinch Dynamics With Taking Into Account The Generation Of Turbulent/Chaotic Magnetic Fields

    Science.gov (United States)

    Vikhrev, V. V.; Baronova, E. O.

    2006-01-01

    Pinch dynamics is described, which takes into account generation of turbulent magnetic fields. Turbulent/chaotic magnetic fields (TMF) appear due to MHD and kinetic instabilities. It is shown, that TMF arises near the moment of maximal compression and essentially affects plasma dynamics at the expansion stage.

  17. Wave turbulence buildup in a vibrating plate

    CERN Document Server

    Auliel, Maria Ines; Mordant, Nicolas

    2015-01-01

    We report experimental and numerical results on the buildup of the energy spectrum in wave turbulence of a vibrating thin elastic plate. Three steps are observed: first a short linear stage, then the turbulent spectrum is constructed by the propagation of a front in wave number space and finally a long time saturation due to the action of dissipation. The propagation of a front at the second step is compatible with scaling predictions from the Weak Turbulence Theory.

  18. Turbulent transport and dynamo in sheared magnetohydrodynamics turbulence with a nonuniform magnetic field.

    Science.gov (United States)

    Leprovost, Nicolas; Kim, Eun-Jin

    2009-08-01

    We investigate three-dimensional magnetohydrodynamics turbulence in the presence of velocity and magnetic shear (i.e., with both a large-scale shear flow and a nonuniform magnetic field). By assuming a turbulence driven by an external forcing with both helical and nonhelical spectra, we investigate the combined effect of these two shears on turbulence intensity and turbulent transport represented by turbulent diffusivities (turbulent viscosity, alpha and beta effect) in Reynolds-averaged equations. We show that turbulent transport (turbulent viscosity and diffusivity) is quenched by a strong flow shear and a strong magnetic field. For a weak flow shear, we further show that the magnetic shear increases the turbulence intensity while decreasing the turbulent transport. In the presence of a strong flow shear, the effect of the magnetic shear is found to oppose the effect of flow shear (which reduces turbulence due to shear stabilization) by enhancing turbulence and transport, thereby weakening the strong quenching by flow shear stabilization. In the case of a strong magnetic field (compared to flow shear), magnetic shear increases turbulence intensity and quenches turbulent transport.

  19. Muscle Weakness

    Science.gov (United States)

    Al Kaissi, Ali; Ryabykh, Sergey; Ochirova, Polina; Kenis, Vladimir; Hofstätter, Jochen G.; Grill, Franz; Ganger, Rudolf; Kircher, Susanne Gerit

    2017-01-01

    Marked ligamentous hyperlaxity and muscle weakness/wasting associated with awkward gait are the main deficits confused with the diagnosis of myopathy. Seven children (6 boys and 1 girl with an average age of 8 years) were referred to our department because of diverse forms of skeletal abnormalities. No definitive diagnosis was made, and all underwent a series of sophisticated investigations in other institutes in favor of myopathy. We applied our methodology through the clinical and radiographic phenotypes followed by targeted genotypic confirmation. Three children (2 boys and 1 girl) were compatible with the diagnosis of progressive pseudorheumatoid chondrodysplasia. The genetic mutation was correlated with the WISP 3 gene actively expressed by articular chondrocytes and located on chromosome 6. Klinefelter syndrome was the diagnosis in 2 boys. Karyotyping confirmed 47,XXY (aneuploidy of Klinefelter syndrome). And 2 boys were finally diagnosed with Morquio syndrome (MPS type IV A) as both showed missense mutations in the N-acetylgalactosamine-sulfate sulfatase gene. Misdiagnosis can lead to the initiation of a long list of sophisticated investigations. PMID:28210640

  20. Alfven Wave Tomography for Cold MHD Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    I.Y. Dodin; N.J. Fisch

    2001-09-07

    Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.

  1. Using Synthetic Spacecraft Data to Interpret Compressible Fluctuations in Solar Wind Turbulence

    CERN Document Server

    Klein, K G; TenBarge, J M; Bale, S D; Chen, C H K; Salem, C S

    2012-01-01

    Kinetic plasma theory is used to generate synthetic spacecraft data to analyze and interpret the compressible fluctuations in the inertial range of solar wind turbulence. The kinetic counterparts of the three familiar linear MHD wave modes---the fast, Alfven, and slow waves---are identified and the properties of the density-parallel magnetic field correlation for these kinetic wave modes is presented. The construction of synthetic spacecraft data, based on the quasi-linear premise---that some characteristics of magnetized plasma turbulence can be usefully modeled as a collection of randomly phased, linear wave modes---is described in detail. Theoretical predictions of the density-parallel magnetic field correlation based on MHD and Vlasov-Maxwell linear eigenfunctions are presented and compared to the observational determination of this correlation based on 10 years of Wind spacecraft data. It is demonstrated that MHD theory is inadequate to describe the compressible turbulent fluctuations and that the observ...

  2. Competition between shock and turbulent heating in coronal loop system

    Science.gov (United States)

    Matsumoto, Takuma

    2016-11-01

    2.5-dimensional magnetohydrodynamic (MHD) simulations are performed with high spatial resolution in order to distinguish between competing models of the coronal heating problem. A single coronal loop powered by Alfvén waves excited in the photosphere is the target of this study. The coronal structure is reproduced in our simulations as a natural consequence of the transportation and dissipation of Alfvén waves. Further, the coronal structure is maintained as the spatial resolution is changed from 25 to 3 km, although the temperature at the loop top increases with the spatial resolution. The heating mechanisms change gradually across the magnetic canopy at a height of 4 Mm. Below the magnetic canopy, both the shock and the MHD turbulence are dominant heating processes. Above the magnetic canopy, the shock heating rate reduces to less than 10 per cent of the total heating rate while the MHD turbulence provides significant energy to balance the radiative cooling and thermal conduction loss or gain. The importance of compressibility shown in this study would significantly impact on the prospects of successful MHD turbulence theory in the solar chromosphere.

  3. Existence of Weak Solutions to the Three-dimensional Steady Compressible Magnetohydrodynamic Equations

    Institute of Scientific and Technical Information of China (English)

    Chun Hui ZHOU

    2012-01-01

    The purpose of this paper is to prove the existence of a spatially periodic weak solution to the steady compressible isentropic MHD equations in R3 for any specific heat ratio γ> 1.The proof is based on the weighted estimates of both pressure and kinetic energy for the approximate system which result in some higher integrability of the density,and the method of weak convergence.According to the author's knowledge,it is the first result that treats in three dimensions the existence of weak solutions to the steady compressible MHD equations with γ > 1.

  4. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

  5. Cosmological AMR MHD with Enzo

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hao [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory; Li, Shengtai [Los Alamos National Laboratory

    2009-01-01

    In this work, we present EnzoMHD, the extension of the cosmological code Enzoto include magnetic fields. We use the hyperbolic solver of Li et al. (2008) for the computation of interface fluxes. We use constrained transport methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to advance the induction equation, the reconstruction technique of Balsara (2001) to extend the Adaptive Mesh Refinement of Berger & Colella (1989) already used in Enzo, though formulated in a slightly different way for ease of implementation. This combination of methods preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non cosmologjcal tests problems to demonstrate the quality of solution resulting from this combination of solvers.

  6. Plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Hu, G. [Globalstar LP, San Jose, CA (United States)

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.

  7. High Turbulence

    CERN Multimedia

    EuHIT, Collaboration

    2015-01-01

    As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.

  8. Characteristics of laminar MHD fluid hammer in pipe

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.Y.; Liu, Y.J., E-mail: yajun@scut.edu.cn

    2016-01-01

    As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems. - Highlights: • Characteristics of laminar MHD fluid hammer are discussed by simulation. • MHD effect has significant influence on attenuation of wave. • MHD effect strengthens line packing. • MHD effect inhibits Richardson annular effect.

  9. Open Boundary Conditions for Dissipative MHD

    Energy Technology Data Exchange (ETDEWEB)

    Meier, E T

    2011-11-10

    In modeling magnetic confinement, astrophysics, and plasma propulsion, representing the entire physical domain is often difficult or impossible, and artificial, or 'open' boundaries are appropriate. A novel open boundary condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is presented. LOBC, based on the idea of lacuna-based truncation originally presented by V.S. Ryaben'kii and S.V. Tsynkov, provide truncation with low numerical noise and minimal reflections. For hyperbolic systems, characteristic-based BC (CBC) exist for separating the solution into outgoing and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such separation is not possible, and CBC are numerically unstable. LOBC are applied in dissipative MHD test problems including a translating FRC, and coaxial-electrode plasma acceleration. Solution quality is compared to solutions using CBC and zero-normal derivative BC. LOBC are a promising new open BC option for dissipative MHD.

  10. Effects of water molecules of Ar-Cs MHD disk generator operated with strong MHD interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, M.; Kosugi, A.; Inui, Y.; Kabashima, S.

    1998-07-01

    Effects of water molecule impurity are studied on performance of a disk type MHD generator operated with Ar-Cs weakly ionized plasma. To reveal phenomena for a wide range of operation conditions, time-dependent one-dimensional analyses are carried out, where an up-wind, second order Chakravarthy TVD scheme is applied for the gasdynamics, while a Galerkin FEM is used for the electrodynamics. A simplified model is used for the water molecule impurity, where total effects of nonelastic collision between electrons and water molecules are estimated by the collision loss factor of electrons and also the electron momentum-transfer collision frequency is taken into account. The collision loss factor of electrons and the electron momentum-transfer collision frequency are taken from references, and the loss factor is assumed to be 700 independently of the electron temperature. On the Fuji-1 facilities at Tokyo Institute Technology, Japan, series of experiment A4105 were carried out with the Disk F-4 generator. Ar was heated with the heat-exchanger heated by the natural gas-air combustion and the metal cesium was used as the seeding material, while SCM maintained the magnetic field of 4.7 T at the center of disk and the very strong MHD interaction was realized. The thermal input was about 3 MW, the electrical output was about 500 kW with the enthalpy extraction ratio of about 17%. The numerical analyses have shown that the water molecule enhances the ionization instability at the low voltage loading because of insufficient Joule heating for electrons. The generator performance is degraded and the strong MHD interaction between the unstable plasma and the flow field induces slow and fast moving shock waves, leading to the very complicated flow field. The fast and slow moving shocks collide with each other, merge into a sharp shock moving downward, and then the shock front moves back slightly to maintain the pressure balance, collides again with another weak moving shock, and

  11. Black Hole Variability in MHD: A Numerical Test of the Propagating Fluctuations Model

    Science.gov (United States)

    Hogg, J. Drew; Reynolds, Christopher S.

    2017-08-01

    The variability properties of accreting black hole systems offer a crucial probe of the accretion physics providing the angular momentum transport and enabling the mass accretion. A few of the most telling signatures are the characteristic log-normal flux distributions, linear RMS-flux relations, and frequency-dependent time lags between energy bands. These commonly observed properties are often interpreted as evidence of inward propagating mass accretion rate fluctuations where fluctuations in the accretion flow combine multiplicatively. We present recent results from a long, semi-global MHD simulation of a thin (h/r=0.1) accretion disk that naturally reproduces this phenomenology. This bolsters the theoretical underpinnings of the “propagating fluctuations” model and demonstrates the viability of this process manifesting in MHD turbulence driven by the magnetorotational instability. We find that a key ingredient to this model is the modulation of the effective α parameter by the magnetic dynamo.

  12. Cascades and dissipation ratio in rotating magnetohydrodynamic turbulence at low magnetic Prandtl number.

    Science.gov (United States)

    Plunian, Franck; Stepanov, Rodion

    2010-10-01

    A phenomenology of isotropic magnetohydrodynamic (MHD) turbulence subject to both rotation and applied magnetic field is presented. It is assumed that the triple correlation decay time is the shortest between the eddy turn-over time and the ones associated to the rotating frequency and the Alfvén wave period. For Pm=1 it leads to four kinds of piecewise spectra, depending on four parameters: injection rate of energy, magnetic diffusivity, rotation rate, and applied field. With a shell model of MHD turbulence (including rotation and applied magnetic field), spectra for Pm ≤ 1 are presented, together with the ratio between magnetic and viscous dissipations.

  13. Diffusion in anisotropic fully developed turbulence: Turbulent Prandtl number

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2016-10-01

    Using the field theoretic renormalization group technique in the leading order of approximation of a perturbation theory the influence of the uniaxial small-scale anisotropy on the turbulent Prandtl number in the framework of the model of a passively advected scalar field by the turbulent velocity field driven by the Navier-Stokes equation is investigated for spatial dimensions d >2 . The influence of the presence of the uniaxial small-scale anisotropy in the model on the stability of the Kolmogorov scaling regime is briefly discussed. It is shown that with increasing of the value of the spatial dimension the region of stability of the scaling regime also increases. The regions of stability of the scaling regime are studied as functions of the anisotropy parameters for spatial dimensions d =3 ,4 , and 5. The dependence of the turbulent Prandtl number on the anisotropy parameters is studied in detail for the most interesting three-dimensional case. It is shown that the anisotropy of turbulent systems can have a rather significant impact on the value of the turbulent Prandtl number, i.e., on the rate of the corresponding diffusion processes. In addition, the relevance of the so-called weak anisotropy limit results are briefly discussed, and it is shown that there exists a relatively large region of small absolute values of the anisotropy parameters where the results obtained in the framework of the weak anisotropy approximation are in very good agreement with results obtained in the framework of the model without any approximation. The dependence of the turbulent Prandtl number on the anisotropy parameters is also briefly investigated for spatial dimensions d =4 and 5. It is shown that the dependence of the turbulent Prandtl number on the anisotropy parameters is very similar for all studied cases (d =3 ,4 , and 5), although the numerical values of the corresponding turbulent Prandtl numbers are different.

  14. Energy transfer in compressible turbulence

    Science.gov (United States)

    Bataille, Francoise; Zhou, YE; Bertoglio, Jean-Pierre

    1995-01-01

    This letter investigates the compressible energy transfer process. We extend a methodology developed originally for incompressible turbulence and use databases from numerical simulations of a weak compressible turbulence based on Eddy-Damped-Quasi-Normal-Markovian (EDQNM) closure. In order to analyze the compressible mode directly, the well known Helmholtz decomposition is used. While the compressible component has very little influence on the solenoidal part, we found that almost all of the compressible turbulence energy is received from its solenoidal counterpart. We focus on the most fundamental building block of the energy transfer process, the triadic interactions. This analysis leads us to conclude that, at low turbulent Mach number, the compressible energy transfer process is dominated by a local radiative transfer (absorption) in both inertial and energy containing ranges.

  15. Turbulent Transport in a Three-dimensional Solar Wind

    Science.gov (United States)

    Shiota, D.; Zank, G. P.; Adhikari, L.; Hunana, P.; Telloni, D.; Bruno, R.

    2017-03-01

    Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for the temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.

  16. Structure-function hierarchies and von Kármán-Howarth relations for turbulence in magnetohydrodynamical equations

    Science.gov (United States)

    Basu, Abhik; Naji, Ali; Pandit, Rahul

    2014-01-01

    We generalize the method of A. M. Polyakov, [Phys. Rev. E 52, 6183 (1995), 10.1103/PhysRevE.52.6183] for obtaining structure-function relations in turbulence in the stochastically forced Burgers equation, to develop structure-function hierarchies for turbulence in three models for magnetohydrodynamics (MHD). These are the Burgers analogs of MHD in one dimension [Eur. Phys. J. B 9, 725 (1999), 10.1007/s100510050817], and in three dimensions (3DMHD and 3D Hall MHD). Our study provides a convenient and unified scheme for the development of structure-function hierarchies for turbulence in a variety of coupled hydrodynamical equations. For turbulence in the three sets of MHD equations mentioned above, we obtain exact relations for third-order structure functions and their derivatives; these expressions are the analogs of the von Kármán-Howarth relations for fluid turbulence. We compare our work with earlier studies of such relations in 3DMHD and 3D Hall MHD.

  17. An unsplit, cell-centered Godunov method for ideal MHD

    Energy Technology Data Exchange (ETDEWEB)

    Crockett, Robert K.; Colella, Phillip; Fisher, Robert T.; Klein, Richard I.; McKee, Christopher F.

    2003-08-29

    We present a second-order Godunov algorithm for multidimensional, ideal MHD. Our algorithm is based on the unsplit formulation of Colella (J. Comput. Phys. vol. 87, 1990), with all of the primary dependent variables centered at the same location. To properly represent the divergence-free condition of the magnetic fields, we apply a discrete projection to the intermediate values of the field at cell faces, and apply a filter to the primary dependent variables at the end of each time step. We test the method against a suite of linear and nonlinear tests to ascertain accuracy and stability of the scheme under a variety of conditions. The test suite includes rotated planar linear waves, MHD shock tube problems, low-beta flux tubes, and a magnetized rotor problem. For all of these cases, we observe that the algorithm is second-order accurate for smooth solutions, converges to the correct weak solution for problems involving shocks, and exhibits no evidence of instability or loss of accuracy due to the possible presence of non-solenoidal fields.

  18. An Unsplit, Cell-Centered Godunov Method for Ideal MHD

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R; Crockett, R; Colella, P; Klein, R; McKee, C

    2003-10-16

    We present a second-order Godunov algorithm for multidimensional, ideal MHD. Our algorithm is based on the unsplit formulation of Colella, with all of the primary dependent variables centered at the same location. To properly represent the divergence-free condition of the magnetic fields, we apply a discrete projection to the intermediate values of the field at cell faces, and apply a filter to the primary dependent variables at the end of each time step. We apply the method to a suite of linear and nonlinear tests to ascertain accuracy and stability of the scheme under a variety of conditions. The test suite includes rotated planar linear waves, MHD shock tube problems, and low-beta flux tubes. For all of these cases, we observe that the algorithm is second-order accurate for smooth solutions, converges to the correct weak solution for problems involving shocks, and exhibits no evidence of instability or loss of accuracy due to the possible presence of non-solenoidal fields.

  19. INTERSTELLAR TURBULENCE

    Directory of Open Access Journals (Sweden)

    D. Falceta-Gonçalves

    2011-01-01

    Full Text Available The Interstellar Medium (ISM is a complex, multi-phase system, where the history of the stars occurs. The processes of birth and death of stars are strongly coupled to the dynamics of the ISM. The observed chaotic and diffusive motions of the gas characterize its turbulent nature. Understanding turbulence is crucial for understanding the star-formation process and the energy-mass feedback from evolved stars. Magnetic fields, threading the ISM, are also observed, making this effort even more difficult. In this work, I briefly review the main observations and the characterization of turbulence from these observable quantities. Following on, I provide a review of the physics of magnetized turbulence. Finally, I will show the main results from theoretical and numerical simulations, which can be used to reconstruct observable quantities, and compare these predictions to the observations.

  20. Wall Turbulence.

    Science.gov (United States)

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  1. GEOMETRIC TURBULENCE

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2014-05-01

    Full Text Available In this article we have investigated the solutions of Maxwell's equations, Navier-Stokes equations and the Schrödinger associated with the solutions of Einstein's equations for empty space. It is shown that in some cases the geometric instability leading to turbulence on the mechanism of alternating viscosity, which offered by N.N. Yanenko. The mechanism of generation of matter from dark energy due to the geometric turbulence in the Big Bang has been discussed

  2. On the Nature of Magnetic Turbulence in Rotating, Shearing Flows

    CERN Document Server

    Walker, Justin; Boldyrev, Stanislav

    2015-01-01

    The local properties of turbulence driven by the magnetorotational instability (MRI) in rotating, shearing flows are studied in the framework of a shearing-box model. Based on numerical simulations, we propose that the MRI-driven turbulence comprises two components: the large-scale shear-aligned strong magnetic field and the small-scale fluctuations resembling magnetohydrodynamic (MHD) turbulence. The energy spectrum of the large-scale component is close to $k^{-2}$, whereas the spectrum of the small-scale component agrees with the spectrum of strong MHD turbulence $k^{-3/2}$. While the spectrum of the fluctuations is universal, the outer-scale characteristics of the turbulence are not; they depend on the parameters of the system, such as the net magnetic flux. However, there is remarkable universality among the allowed turbulent states -- their intensity $v_0$ and their outer scale $\\lambda_0$ satisfy the balance condition $v_0/\\lambda_0\\sim \\mathrm d\\Omega/\\mathrm d\\ln r$, where $\\mathrm d\\Omega/\\mathrm d\\l...

  3. MHD Jets in inhomogeneous media

    Directory of Open Access Journals (Sweden)

    S. O´Sullivan

    2002-01-01

    Full Text Available Presentamos simulaciones de la propagaci on de jets moleculares no-adiab aticos en un medio ambiente inhomog eneo. Los jets tienen condiciones descritos por un modelo de jet MHD en el cual la forma de las l neas magn eticas se prescribe cerca de la fuente. Per les de densidad ambiental fueron elegidos para representar la zona de transici on entre las regiones exteriores de una nube molecular y el medio interestelar. Escalamos las tasas de enfriamiento at omico y molecular a niveles apropriados para resolver todas las escalas espaciales apropriadas. Con la inclusi on de variabilidad de la fuente, las simulaciones reproducen varias caracter sticas observacionales de jets moleculares, entre ellas las cavidades moleculares. Adicionalmente, encontramos similitudes entre teor a y observaci on para la fracci on de ionizaci on a lo largo del jet. Encontramos que la extensi on lateral de las super cies de trabajo internas son sensibles al medio ambiente. Tambi en presentamos resultados preliminares para un m etodo de calcular mapas de emisi on en l neas usando solamente variables fundamentales de estado que parecen reproducir la emisi on lamentosa de Balmer en frentes de choque.

  4. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

  5. Chiral Exact Relations for Helicities in Hall Magnetohydrodynamic Turbulence

    CERN Document Server

    Banerjee, Supratik

    2016-01-01

    Besides total energy, three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses two inviscid invariants which are the magnetic helicity and the generalized helicity. New exact relations are derived for homogeneous (non-isotropic) stationary Hall MHD turbulence (and also for its inertialess electron MHD limit) with non-zero helicities and in the asymptotic limit of large Reynolds numbers. The universal laws are written only in terms of mixed second-order structure functions, i.e. the scalar product of two different increments. It provides, therefore, a direct measurement of the dissipation rates for the corresponding invariant flux. This study shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations while the magnetic helicity cascade is linked to the right polarized fluctuations.

  6. Chiral exact relations for helicities in Hall magnetohydrodynamic turbulence.

    Science.gov (United States)

    Banerjee, Supratik; Galtier, Sébastien

    2016-03-01

    Besides total energy, three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses two inviscid invariants, which are the magnetic helicity and the generalized helicity. Exact relations are derived for homogeneous (nonisotropic) stationary Hall MHD turbulence (and also for its inertialess electron MHD limit) with nonzero helicities and in the asymptotic limit of large Reynolds numbers. The universal laws are written only in terms of mixed second-order structure functions, i.e., the scalar product of two different increments. It provides, therefore, a direct measurement of the dissipation rates for the corresponding invariant flux. This study shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations, while the magnetic helicity cascade is linked to the right polarized fluctuations.

  7. The 3D MHD code GOEMHD3 for astrophysical plasmas with large Reynolds numbers. Code description, verification, and computational performance

    Science.gov (United States)

    Skála, J.; Baruffa, F.; Büchner, J.; Rampp, M.

    2015-08-01

    Context. The numerical simulation of turbulence and flows in almost ideal astrophysical plasmas with large Reynolds numbers motivates the implementation of magnetohydrodynamical (MHD) computer codes with low resistivity. They need to be computationally efficient and scale well with large numbers of CPU cores, allow obtaining a high grid resolution over large simulation domains, and be easily and modularly extensible, for instance, to new initial and boundary conditions. Aims: Our aims are the implementation, optimization, and verification of a computationally efficient, highly scalable, and easily extensible low-dissipative MHD simulation code for the numerical investigation of the dynamics of astrophysical plasmas with large Reynolds numbers in three dimensions (3D). Methods: The new GOEMHD3 code discretizes the ideal part of the MHD equations using a fast and efficient leap-frog scheme that is second-order accurate in space and time and whose initial and boundary conditions can easily be modified. For the investigation of diffusive and dissipative processes the corresponding terms are discretized by a DuFort-Frankel scheme. To always fulfill the Courant-Friedrichs-Lewy stability criterion, the time step of the code is adapted dynamically. Numerically induced local oscillations are suppressed by explicit, externally controlled diffusion terms. Non-equidistant grids are implemented, which enhance the spatial resolution, where needed. GOEMHD3 is parallelized based on the hybrid MPI-OpenMP programing paradigm, adopting a standard two-dimensional domain-decomposition approach. Results: The ideal part of the equation solver is verified by performing numerical tests of the evolution of the well-understood Kelvin-Helmholtz instability and of Orszag-Tang vortices. The accuracy of solving the (resistive) induction equation is tested by simulating the decay of a cylindrical current column. Furthermore, we show that the computational performance of the code scales very

  8. Generation of sheet currents by high frequency fast MHD waves

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Manuel, E-mail: mnjmhd@am.uva.es

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium. - Highlights: • Regular solutions of quasilinear hyperbolic systems may evolve into shocks. • The shock location is found for high frequency fast MHD waves. • The result is applied to static axisymmetric equilibria. • The previous process may lead to the formation of sheet currents and destruction of the equilibrium.

  9. Saturation of the turbulent dynamo.

    Science.gov (United States)

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  10. A numerical study of the alpha model for two-dimensional magnetohydrodynamic turbulent flows

    CERN Document Server

    Mininni, P D; Pouquet, A G

    2004-01-01

    We explore some consequences of the ``alpha model,'' also called the ``Lagrangian-averaged'' model, for two-dimensional incompressible magnetohydrodynamic (MHD) turbulence. This model is an extension of the smoothing procedure in fluid dynamics which filters velocity fields locally while leaving their associated vorticities unsmoothed, and has proved useful for high Reynolds number turbulence computations. We consider several known effects (selective decay, dynamic alignment, inverse cascades, and the probability distribution functions of fluctuating turbulent quantities) in magnetofluid turbulence and compare the results of numerical solutions of the primitive MHD equations with their alpha-model counterparts' performance for the same flows, in regimes where available resolution is adequate to explore both. The hope is to justify the use of the alpha model in regimes that lie outside currently available resolution, as will be the case in particular in three-dimensional geometry or for magnetic Prandtl number...

  11. Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection

    CERN Document Server

    Lazarian, A; Takamoto, M; Pino, E M de Gouveia Dal; Cho, J

    2015-01-01

    Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, includi...

  12. Characterization and parametric dependencies of low wavenumber pedestal turbulence in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. R.; Fonck, R. J.; McKee, G. R.; Thompson, D. S. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Bell, R. E.; Diallo, A.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B. P.; Podesta, M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2013-05-15

    The spherical torus edge region is among the most challenging regimes for plasma turbulence simulations. Here, we measure the spatial and temporal properties of ion-scale turbulence in the steep gradient region of H-mode pedestals during edge localized mode-free, MHD quiescent periods in the National Spherical Torus Experiment. Poloidal correlation lengths are about 10 ρ{sub i}, and decorrelation times are about 5 a/c{sub s}. Next, we introduce a model aggregation technique to identify parametric dependencies among turbulence quantities and transport-relevant plasma parameters. The parametric dependencies show the most agreement with transport driven by trapped-electron mode, kinetic ballooning mode, and microtearing mode turbulence, and the least agreement with ion temperature gradient turbulence. In addition, the parametric dependencies are consistent with turbulence regulation by flow shear and the empirical relationship between wider pedestals and larger turbulent structures.

  13. The Acceleration Mechanism of Resistive MHD Jets Launched from Accretion Disks

    CERN Document Server

    Kuwabara, T; Kudoh, T; Matsumoto, R

    2004-01-01

    We analyzed the results of non-linear resistive magnetohydrodynamical (MHD) simulations of jet formation to study the acceleration mechanism of axisymmetric, resistive MHD jets. The initial state is a constant angular momentum, polytropic torus threaded by weak uniform vertical magnetic fields. The time evolution of the torus is simulated by applying the CIP-MOCCT scheme extended for resistive MHD equations. We carried out simulations up to 50 rotation period at the innermost radius of the disk created by accretion from the torus. The acceleration forces and the characteristics of resistive jets were studied by computing forces acting on Lagrangian test particles. Since the angle between the rotation axis of the disk and magnetic field lines is smaller in resistive models than in ideal MHD models, magnetocentrifugal acceleration is smaller. The effective potential along a magnetic field line has maximum around $z \\sim 0.5r_0$ in resistive models, where $r_0$ is the radius where the density of the initial toru...

  14. Study of extended MHD effects on interchange modes in spheromak equilibria

    Science.gov (United States)

    Howell, E. C.; Sovinec, C. R.

    2014-10-01

    A study of extended MHD effects on linear interchange modes is performed using the NIMROD code [Sovinec & King JCP 2010]. A linear cylindrical equilibrium model is adapted from [Jardin NF 1982] to allow finite toroidal current at the edge. These equilibria are representative of SSPX discharges where currents are driven on the open field to keep the safety factor above 1/2 across the profile [McLean et al., POP 2006]. These spheromaks have weak magnetic shear, and interchange stability is an important consideration. The Suydam parameter, D, is scaled to study resistive and ideal interchange modes. The calculated MHD growth rate increases with D. The resistive interchange scaling γ ~η 1 / 3 is observed for D <1/4 . Calculations using the full extended MHD model are performed for a range of hall parameters Λ. This model includes gyro-viscosity, the hall term, equilibrium diamagnetic flows, and the cross-field diamagnetic heat flux. Two fluid effects in the full model are always destabilizing at large Λ. However, some cases exhibit a range of Λ where the growth rate for the full model is reduced relative to the MHD growth rate. Work supported by US DOE.

  15. Planetary turbulence: survey of Cassini data in the Saturn's magnetosheath

    Science.gov (United States)

    Hadid, Lina; Sahraoui, Fouad; Kiyani, Khurom; Modolo, Ronan; Retino, Alessandro; Canu, Patrick; Masters, Adam; Dougherty, Michele K.; Gurnett, Donald A.

    2015-04-01

    Turbulence is one of the most important yet not fully understood topics of modern physics. Understanding turbulence is collisionless plasmas, where kinetic effects mediate interactions between fields and charged particles play, is crucial to apprehend many dynamical processes such as particle heating and acceleration. Among others, one key open issue of plasma turbulence is how the energy associated to magnetic and electric fields is converted, and eventually dissipated, into kinetic and internal energy of the plasma. The planets' magnetosheath present a high level of turbulence that involves both nonlinear stochastic processes and a rich variety of wave phenomena. In comparison with turbulence in the solar wind and in the terrestrial magnetosheath, turbulence around other planets is far less explored. Here, we expand our knowledge in plasma turbulence by exploring the properties of turbulence in the Kronian magnetosheath using the Cassini spacecraft data. These properties include the magnetic field energy spectra, the magnetic compressibility and intermittency at both MHD and kinetic scales. The analysis is based on in-situ data provided by the Fluxgate Magnetometer of the MAG instrument, which measures the magnetic field data with 32ms time resolution and the plasma data from the CAPS/IMS (Cassini Plasma Spectrometer) and the Electron Spectrometer (ELS), during 39 shock-crossings between 2004 and 2005. Similarities and differences with the solar wind were found, in particular about the nature of the turbulence and its scaling laws, as well as the dependence of those properties on the topology of the bow shock.

  16. Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence

    CERN Document Server

    Grete, Philipp; Schmidt, Wolfram; Schleicher, Dominik R G; Federrath, Christoph

    2015-01-01

    Turbulence in compressible plasma plays a key role in many areas of astrophysics and engineering. The extreme plasma parameters in these environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows, however, make direct numerical simulations computationally intractable even for the simplest treatment -- magnetohydrodynamics (MHD). To overcome this problem one can use subgrid-scale (SGS) closures -- models for the influence of unresolved, subgrid-scales on the resolved ones. In this work we propose and validate a set of constant coefficient closures for the resolved, compressible, ideal MHD equations. The subgrid-scale energies are modeled by Smagorinsky-like equilibrium closures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are nonlinear in terms of large scale velocity and magnetic field gradients. To verify the closures we conduct a priori tests over 137 simulation snapshots from two different codes with varying ratios of thermal to magnetic pre...

  17. Magnetic Flux Transport by turbulent reconnection in astrophysical flows

    CERN Document Server

    Pino, Elisabete M de Gouveia Dal; Santos-Lima, Reinaldo; Guerrero, Gustavo; Kowal, Grzegorz; Lazarian, Alex

    2011-01-01

    The role of MHD turbulence in astrophysical environments is still highly debated. An important question that permeates this debate is the transport of magnetic flux. This is particularly important, for instance, in the context of star formation. When clouds collapse gravitationally to form stars, there must be some magnetic flux transport. otherwise the new born stars would have magnetic fields several orders of magnitude larger than the observed ones. Also, the magnetic flux that is dragged in the late stages of the formation of a star can remove all the rotational support from the accretion disk that grows around the protostar. The efficiency of the mechanism which is often invoked to allow the transport of magnetic fields in the different stages of star formation, namely, the ambipolar diffusion, has been lately put in check. We here discuss an alternative mechanism for magnetic flux transport which is based on turbulent fast magnetic reconnection. We review recent results obtained from 3D MHD numerical si...

  18. Helical mode interactions and spectral transfer processes in magnetohydrodynamic turbulence

    CERN Document Server

    Linkmann, Moritz F; McKay, Mairi E; Jäger, Julia

    2015-01-01

    Spectral transfer processes in magnetohydrodynamic (MHD) turbulence are investigated analytically by decomposition of the velocity and magnetic fields in Fourier space into helical modes. Steady solutions of the dynamical system which governs the evolution of the helical modes are determined, and a stability analysis of these solutions is carried out. The interpretation of the analysis is that unstable solutions lead to energy transfer between the interacting modes while stable solutions do not. From this, a dependence of possible interscale energy and helicity transfers on the helicities of the interacting modes is derived. As expected from the inverse cascade of magnetic helicity in 3D MHD turbulence, mode interactions with like helicities lead to transfer of energy and magnetic helicity to smaller wavenumbers. However, some interactions of modes with unlike helicities also contribute to an inverse energy transfer. As such, an inverse energy cascade for nonhelical magnetic fields is shown to be possible. Fu...

  19. The influence of turbulence during magnetized core collapse and its consequences on low-mass star formation

    CERN Document Server

    Joos, Marc; Ciardi, Andrea; Fromang, Sebastien

    2013-01-01

    [Abridged] Theoretical and numerical studies of star formation have shown that magnetic field (B) has a strong influence on both disk formation and fragmentation; even a relatively low B can prevent these processes. However, very few studies investigated the combined effects of B and turbulence. We study the effects of turbulence in magnetized core collapse, focusing on the magnetic diffusion, the orientation of the angular momentum (J) of the protostellar core, and on its consequences on disk formation, fragmentation and outflows. We perform 3D, AMR, MHD simulations of magnetically supercritical collapsing dense cores of 5 Msun using the MHD code RAMSES. A turbulent velocity field is imposed as initial conditions, characterised by a Kolmogorov power spectrum. Different levels of turbulence and magnetization are investigated, as well as 3 realisations for the turbulent velocity field. Magnetic diffusion, orientation of the rotation axis with respect to B, transport of J, disk formation, fragmentation and outf...

  20. Hot and turbulent gas in clusters

    Science.gov (United States)

    Schmidt, W.; Engels, J. F.; Niemeyer, J. C.; Almgren, A. S.

    2016-06-01

    The gas in galaxy clusters is heated by shock compression through accretion (outer shocks) and mergers (inner shocks). These processes additionally produce turbulence. To analyse the relation between the thermal and turbulent energies of the gas under the influence of non-adiabatic processes, we performed numerical simulations of cosmic structure formation in a box of 152 Mpc comoving size with radiative cooling, UV background, and a subgrid scale model for numerically unresolved turbulence. By smoothing the gas velocities with an adaptive Kalman filter, we are able to estimate bulk flows towards cluster cores. This enables us to infer the velocity dispersion associated with the turbulent fluctuation relative to the bulk flow. For haloes with masses above 1013 M⊙, we find that the turbulent velocity dispersions averaged over the warm-hot intergalactic medium (WHIM) and the intracluster medium (ICM) are approximately given by powers of the mean gas temperatures with exponents around 0.5, corresponding to a roughly linear relation between turbulent and thermal energies and transonic Mach numbers. However, turbulence is only weakly correlated with the halo mass. Since the power-law relation is stiffer for the WHIM, the turbulent Mach number tends to increase with the mean temperature of the WHIM. This can be attributed to enhanced turbulence production relative to dissipation in particularly hot and turbulent clusters.

  1. Radiation-driven MHD systems for space applications

    Science.gov (United States)

    Lee, J. H.; Jalufka, N. W.

    High-power radiation such as concentrated solar or high-power laser radiation is considered as a driver for magnetohydrodynamic (MHD) systems which could be developed for efficient power generation and propulsion in space. Eight different systems are conceivable since the MHD systems can be classified in two: plasma and liquid-metal MHD's. Each of these systems is reviewed and solar- (or laser-) driven MHD thrusters are proposed.

  2. The mathematical theory of reduced MHD models for fusion plasmas

    OpenAIRE

    Guillard, Hervé

    2015-01-01

    The derivation of reduced MHD models for fusion plasma is here formulated as a special instance of the general theory of singular limit of hyperbolic system of PDEs with large operator. This formulation allows to use the general results of this theory and to prove rigorously that reduced MHD models are valid approximations of the full MHD equations. In particular, it is proven that the solutions of the full MHD system converge to the solutions of an appropriate reduced model.

  3. Simulation of wave interactions with MHD

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, D; Bernholdt, D; Berry, L; Elwasif, W; Jaeger, E; Keyes, D; Klasky, S [Oak Ridge National Laboratory, Oak Ridge, TN 37331 (United States); Alba, C; Choi, M [General Atomics, San Diego, CA 92186 (United States); Bateman, G [Lehigh University, Bethlehem, PA 18015 (United States); Bonoli, P [Plasma Science and Fusion Center, MTT, Cambridge, MA 02139 (United States); Bramley, R [Indiana University, Bloomington, IN 47405 (United States); Breslau, J; Chance, M; Chen, J; Fu, G; Jardin, S [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Harvey, R [CompX, Del Mar, CA 92014 (United States); Jenkins, T [University of Wisconsin, Madison, WI 53706 (United States); Kruger, S [Tech-X, Boulder, CO 80303 (United States)], E-mail: batchelordb@ornl.gov (and others)

    2008-07-15

    The broad scientific objectives of the SWIM (Simulation 01 Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RP effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.

  4. Simulation of wave interactions with MHD

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, Donald B [ORNL; Abla, G [General Atomics, San Diego; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, J. [Princeton Plasma Physics Laboratory (PPPL); Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Jenkins, T [University of Wisconsin; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); Lynch, Vickie E [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, D. [General Atomics; Schnack, [University of Wisconsin; Wright, J. [Massachusetts Institute of Technology (MIT)

    2008-07-01

    The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RF effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.

  5. Turbulence and turbulent mixing in natural fluids

    OpenAIRE

    2010-01-01

    Turbulence and turbulent mixing in natural fluids begins with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretions on a spinning pair releases 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscous stresses and negative turbulence stresses work against gravity, extracting mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until str...

  6. Weak Galois and Weak Cocleft Coextensions

    Institute of Scientific and Technical Information of China (English)

    J.N. Alonso (A)lvarez; J.M. Fernández Vilaboa; R. González Rodríguez; A.B. Rodríguez Raposo

    2007-01-01

    For a weak entwining structure (A, C,ψ) living in a braided monoidal category with equalizers and coequalizers, we formulate the notion of weak A-Galois coextension with normal basis and we show that these Galois coextensions are equivalent to the weak A-cocleft coextensions introduced by the authors.

  7. Euler potentials for the MHD Kamchatnov-Hopf soliton solution

    NARCIS (Netherlands)

    Semenov, VS; Korovinski, DB; Biernat, HK

    2002-01-01

    In the MHD description of plasma phenomena the concept of magnetic helicity turns out to be very useful. We present here an example of introducing Euler potentials into a topological MHD soliton which has non-trivial helicity. The MHD soliton solution (Kamchatnov, 1982) is based on the Hopf invarian

  8. Safety and reliability in superconducting MHD magnets

    Energy Technology Data Exchange (ETDEWEB)

    Laverick, C.; Powell, J.; Hsieh, S.; Reich, M.; Botts, T.; Prodell, A.

    1979-07-01

    This compilation adapts studies on safety and reliability in fusion magnets to similar problems in superconducting MHD magnets. MHD base load magnet requirements have been identified from recent Francis Bitter National Laboratory reports and that of other contracts. Information relevant to this subject in recent base load magnet design reports for AVCO - Everett Research Laboratories and Magnetic Corporation of America is included together with some viewpoints from a BNL workshop on structural analysis needed for superconducting coils in magnetic fusion energy. A summary of design codes used in large bubble chamber magnet design is also included.

  9. Explosively-driven magnetohydrodynamic (MHD) generator studies

    Energy Technology Data Exchange (ETDEWEB)

    Agee, F.J.; Lehr, F.M. [Phillips Lab., Kirtland AFB, NM (United States); Vigil, M.; Kaye, R. [Sandia National Labs., Albuquerque, NM (United States); Gaudet, J.; Shiffler, D. [New Mexico Univ., Albuquerque, NM (United States)

    1995-08-01

    Plasma jet generators have been designed and tested which used an explosive driver and shocktube with a rectangular cross section that optimize the flow velocity and electrical conductivity. The latest in a series of designs has been tested using a reactive load to diagnose the electrical properties of the MHD generator/electromagnet combination. The results of these tests indicate that the plasma jet/MHD generator design does generate a flow velocity greater than 25 km/s and produces several gigawatts of pulsed power in a very small package size. A larger, new generator design is also presented.

  10. Global MHD Simulations of Accretion Disks in Cataclysmic Variables (CVs): I. The Importance of Spiral Shocks

    CERN Document Server

    Ju, Wenhua; Zhu, Zhaohuan

    2016-01-01

    We present results from the first global 3D MHD simulations of accretion disks in Cataclysmic Variable (CV) systems in order to investigate the relative importance of angular momentum transport via turbulence driven by the magnetorotational instability (MRI) compared to that driven by spiral shock waves. Remarkably, we find that even with vigorous MRI turbulence, spiral shocks are an important component to the overall angular momentum budget, at least when temperatures in the disk are high (so that Mach numbers are low). In order to understand the excitation, propagation, and damping of spiral density waves in our simulations more carefully, we perform a series of 2D global hydrodynamical simulations with various equation of states and both with and without mass inflow via the Lagrangian point (L1). Compared with previous similar studies, we find the following new results. 1) Linear wave dispersion relation fits the pitch angles of spiral density waves very well. 2) We demonstrate explicitly that mass accreti...

  11. Investigating Magnetic Activity in the Galactic Centre by Global MHD Simulation

    CERN Document Server

    Suzuki, Takeru K; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji; Kakiuchi, Kensuke

    2016-01-01

    By performing a global magnetohydrodynamical (MHD) simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic centre (GC) region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches >~ 0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the intermittency of the magnetic turbulence; the present model provides a viable alternati...

  12. Magnetohydrodynamic dynamo: global flow generation in plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, Nobumitsu; Yoshizawa, Akira [Tokyo Univ. (Japan). Inst. of Industrial Science; Itoh, Kimitaka; Itoh, Sanae-I.

    1999-07-01

    Generation mechanism of the spontaneous plasma rotation observed in an improved confinement mode in tokamak's is examined from the viewpoint of the turbulent magnetohydrodynamic (MHD) dynamo. A dynamo model, where the concept of cross helicity (velocity/magnetic-field correlation) plays a key role, is applied to the reversed shear (RS) modes. The concave electric-current profile occurred in the RS modes is shown to be a cause of the global plasma rotation through a numerical simulation of the cross-helicity turbulence model. (author)

  13. Molecular Tracers of Turbulent Shocks in Giant Molecular Clouds

    CERN Document Server

    Pon, A; Kaufman, M J

    2012-01-01

    Giant molecular clouds contain supersonic turbulence and simulations of MHD turbulence show that these supersonic motions decay in roughly a crossing time, which is less than the estimated lifetimes of molecular clouds. Such a situation requires a significant release of energy. We run models of C-type shocks propagating into gas with densities around 10^3 cm^(-3) at velocities of a few km / s, appropriate for the ambient conditions inside of a molecular cloud, to determine which species and transitions dominate the cooling and radiative energy release associated with shock cooling of turbulent molecular clouds. We find that these shocks dissipate their energy primarily through CO rotational transitions and by compressing pre-existing magnetic fields. We present model spectra for these shocks and by combining these models with estimates for the rate of turbulent energy dissipation, we show that shock emission should dominate over emission from unshocked gas for mid to high rotational transitions (J >5) of CO. ...

  14. The generation, destination, and astrophysical applications of magnetohydrodynamic turbulence

    Science.gov (United States)

    Xu, Siyao; Lazarian, Alex; Zhang, Bing

    2017-01-01

    The ubiquitous turbulence in the interstellar medium (ISM) participates in astrophysical processes over a huge dynamic range of scales. Understanding the turbulence properties in the multiphase, magnetized, partially ionized, and compressible ISM is the fundamental step prior to the studies of the ISM physics and other fields of astrophysics. I feel that a triad of analytical, numerical and observational efforts provides a winning combination to understand this complex system and solve long-standing puzzles. I have intensively studied the fundamental physics of magnetohydrodynamic (MHD) turbulence, and focused on two primary domains, dynamo and dissipation, which concern the origin of strong magnetic fields and the destination of turbulence, respectively. I further applied my theoretical studies in interpreting numerical results and observational data in various astrophysical contexts. The advanced analyses of MHD turbulence enable me to address a number of challenging astrophysical problems, e.g. the importance of magnetic fields for star formation in the early and present-day universe, new methods of measuring magnetic fields, the density distribution in the Galaxy and the host galaxy of a fast radio burst, the diffusion and acceleration of cosmic rays in partially ionized ISM phases.

  15. Reynolds-number dependence of the dimensionless dissipation rate in homogeneous magnetohydrodynamic turbulence

    Science.gov (United States)

    Linkmann, Moritz; Berera, Arjun; Goldstraw, Erin E.

    2017-01-01

    This paper examines the behavior of the dimensionless dissipation rate Cɛ for stationary and nonstationary magnetohydrodynamic (MHD) turbulence in the presence of external forces. By combining with previous studies for freely decaying MHD turbulence, we obtain here both the most general model equation for Cɛ applicable to homogeneous MHD turbulence and a comprehensive numerical study of the Reynolds number dependence of the dimensionless total energy dissipation rate at unity magnetic Prandtl number. We carry out a series of medium to high resolution direct numerical simulations of mechanically forced stationary MHD turbulence in order to verify the predictions of the model equation for the stationary case. Furthermore, questions of nonuniversality are discussed in terms of the effect of external forces as well as the level of cross- and magnetic helicity. The measured values of the asymptote Cɛ ,∞ lie between 0.193 ≤Cɛ ,∞≤0.268 for free decay, where the value depends on the initial level of cross- and magnetic helicities. In the stationary case we measure Cɛ ,∞=0.223 .

  16. Energy Cascade Rate in Compressible Fast and Slow Solar Wind Turbulence

    Science.gov (United States)

    Hadid, L. Z.; Sahraoui, F.; Galtier, S.

    2017-03-01

    Estimation of the energy cascade rate in the inertial range of solar wind turbulence has been done so far mostly within incompressible magnetohydrodynamics (MHD) theory. Here, we go beyond that approximation to include plasma compressibility using a reduced form of a recently derived exact law for compressible, isothermal MHD turbulence. Using in situ data from the THEMIS/ARTEMIS spacecraft in the fast and slow solar wind, we investigate in detail the role of the compressible fluctuations in modifying the energy cascade rate with respect to the prediction of the incompressible MHD model. In particular, we found that the energy cascade rate (1) is amplified particularly in the slow solar wind; (2) exhibits weaker fluctuations in spatial scales, which leads to a broader inertial range than the previous reported ones; (3) has a power-law scaling with the turbulent Mach number; (4) has a lower level of spatial anisotropy. Other features of solar wind turbulence are discussed along with their comparison with previous studies that used incompressible or heuristic (nonexact) compressible MHD models.

  17. Signatures of fast and slow magnetohydrodynamic shocks in turbulent molecular clouds

    CERN Document Server

    Lehmann, Andrew

    2015-01-01

    The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the giant molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low-velocity shock waves. These shocks cause molecular line cooling of the compressed and heated gas, and so their radiative signatures probe the nature of the turbulence. In MHD fluids the three distinct families of shocks---fast, intermediate and slow---differ in how they compress and heat the molecular gas, and so observational differences between them may also distinguish driving modes of turbulent regions. Here we use a two-fluid model to compare the characteristics of one-dimensional fast and slow MHD shocks propagating at low speeds (a few km/s) in molecular clouds. Fast MHD shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where...

  18. Small-scale dynamo action during the formation of the first stars and galaxies. I. The ideal MHD limit

    NARCIS (Netherlands)

    Schleicher, D. R. G.; Banerjee, R.; Sur, S.; Arshakian, T. G.; Klessen, R. S.; Beck, R.; Spaans, M.

    2010-01-01

    We explore the amplification of magnetic seeds during the formation of the first stars and galaxies. During gravitational collapse, turbulence is created from accretion shocks, which may act to amplify weak magnetic fields in the protostellar cloud. Numerical simulations showed that such turbulence

  19. Turbulence Modeling

    Science.gov (United States)

    1991-10-01

    and complexity of thermochemistry . Accordingly a practical viewpoint is required to meet near-term work required for use in advanced CFD codes...teachers the opportunity to learn/explore/ teach turbulence issues. While such a product could be an invaluable eductaional tool (university), it also

  20. Turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  1. Burgers turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bec, Jeremie [Laboratoire Cassiopee UMR6202, CNRS, OCA, BP4229, 06304 Nice Cedex 4 (France)]. E-mail: jeremie.bec@obs-nice.fr; Khanin, Konstantin [Department of Mathematics, University of Toronto, Toronto, Ont., M5S 3G3 (Canada)]. E-mail: khanin@math.toronto.edu

    2007-08-15

    The last decades witnessed a renewal of interest in the Burgers equation. Much activities focused on extensions of the original one-dimensional pressureless model introduced in the thirties by the Dutch scientist J.M. Burgers, and more precisely on the problem of Burgers turbulence, that is the study of the solutions to the one- or multi-dimensional Burgers equation with random initial conditions or random forcing. Such work was frequently motivated by new emerging applications of Burgers model to statistical physics, cosmology, and fluid dynamics. Also Burgers turbulence appeared as one of the simplest instances of a nonlinear system out of equilibrium. The study of random Lagrangian systems, of stochastic partial differential equations and their invariant measures, the theory of dynamical systems, the applications of field theory to the understanding of dissipative anomalies and of multiscaling in hydrodynamic turbulence have benefited significantly from progress in Burgers turbulence. The aim of this review is to give a unified view of selected work stemming from these rather diverse disciplines.

  2. CUDA Simulation of Homogeneous, Incompressible Turbulence

    Science.gov (United States)

    Morin, Lee; Shebalin, John V.; Shum, Victor; Fu, Terry

    2011-01-01

    We discuss very fast Compute Unified Device Architecture (CUDA) simulations of ideal homogeneous incompressible turbulence based on Fourier models. These models have associated statistical theories that predict that Fourier coefficients of fluid velocity and magnetic fields (if present) are zero-mean random variables. Prior numerical simulations have shown that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation. We review the theoretical basis of this "broken ergodicity" as applied to 2-D and 3-D fluid and magnetohydrodynamic simulations of homogeneous turbulence. Our new simulations examine the phenomenon of broken ergodicity through very long time and large grid size runs performed on a state-of-the-art CUDA platform. Results comparing various CUDA hardware configurations and grid sizes are discussed. NS and MHD results are compared.

  3. Fully Parallel MHD Stability Analysis Tool

    Science.gov (United States)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2015-11-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.

  4. Application of ADER Scheme in MHD Simulation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yanyan; FENG Xueshang; JIANG Chaowei; ZHOU Yufen

    2012-01-01

    The Arbitrary accuracy Derivatives Riemann problem method(ADER) scheme is a new high order numerical scheme based on the concept of finite volume integration,and it is very easy to be extended up to any order of space and time accuracy by using a Taylor time expansion at the cell interface position.So far the approach has been applied successfully to flow mechanics problems.Our objective here is to carry out the extension of multidimensional ADER schemes to multidimensional MHD systems of conservation laws by calculating several MHD problems in one and two dimensions: (ⅰ) Brio-Wu shock tube problem,(ⅱ) Dai-Woodward shock tube problem,(ⅲ) Orszag-Tang MHD vortex problem.The numerical results prove that the ADER scheme possesses the ability to solve MHD problem,remains high order accuracy both in space and time,keeps precise in capturing the shock.Meanwhile,the compared tests show that the ADER scheme can restrain the oscillation and obtain the high order non-oscillatory result.

  5. Hodograph method in MHD orthogonal fluid flows

    Directory of Open Access Journals (Sweden)

    P. V. Nguyen

    1992-01-01

    Full Text Available Equations for steady plane MHD orthogonal flows of a viscous incompressible fluid of finite electrical conductivity are recast in the hodograph plane by using the Legendre transform function of the streamfunction. Three examples are studied to illustrate the developed theory. Solutions and geometries for these examples are determined.

  6. Principal characteristics of SFC type MHD generator

    Energy Technology Data Exchange (ETDEWEB)

    Kayukawa, Naoyuki; Oikawa, Shun-ichi; Aoki, Yoshiaki; Seidou, Tadashi; Okinaka, Noriyuki

    1988-02-01

    This paper describes the experimental and analytical results obtained for an MHD channel with a two dimensionally shaped magnetic field configuration called 'the SFC-type'. The power generating performance was examined under various load conditions and B-field intensities with a 2 MWt shock tunnel MHD facility. It is demonstrated that the power output performance and the enthalpy extraction scaling law of the conventional uniform B-field MHD generator (UFC-type) were significantly improved by the SFC-design of the spatial distribution of the magnetic field. The arcing processes were also examined by a high speed camera and the post-test observation of arc spot traces on electrodes. Further, the characteristic frequencies of each of the so-called micro and constricted arcs were clarified by spectral analyses. The critical current densities, which define the transient conditions of each from the diffuse-to micro arc, and from the micro-to constricted arc modes could be clearly obtained by the present spectral analysis method. We also investigated the three-dimensional behavior under strong magnetic field based on the coupled electrical and hydrodynamical equations for both of the middle scale SFC-and UFC-type generators. Finally, it is concluded from the above mentioned various aspects that the shaped 2-D magnetic field design will offer a most useful means for the realization of a compact, high efficiency and a long duration open-cycle MHD generator.

  7. Pseudo-reconnection in MHD numerical simulation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A class of pseudo-reconnections caused by a shifted mesh in magnetohydrodynamics (MHD) simulations is reported. In terms of this mesh system, some non-physical results may be obtained in certain circumstances, e.g. magnetic reconnection occurs without resistivity. After comparison, another kind of mesh is strongly recommended.

  8. MHD equilibrium and stability in heliotron plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ichiguchi, Katsuji [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-09-01

    Recent topics in the theoretical magnetohydrodynamic (MHD) analysis in the heliotron configuration are overviewed. Particularly, properties of three-dimensional equilibria, stability boundary of the interchange mode, effects of the net toroidal current including the bootstrap current and the ballooning mode stability are focused. (author)

  9. Simulation of weak and strong Langmuir collapse regimes

    Energy Technology Data Exchange (ETDEWEB)

    Hadzievski, L.R.; Skoric, M.M. [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia); Kono, M.; Sato, T.

    1998-01-01

    In order to check the validity of the self-similar solutions and the existence of weak and strong collapse regimes, direct two dimensional simulation of the time evolution of a Langmuir soliton instability is performed. Simulation is based on the Zakharov model of strong Langmuir turbulence in a weakly magnetized plasma accounting for the full ion dynamics. For parameters considered, agreement with self-similar dynamics of the weak collapse type is found with no evidence of the strong Langmuir collapse. (author)

  10. Realistic Modeling of Multi-Scale MHD Dynamics of the Solar Atmosphere

    Science.gov (United States)

    Kitiashvili, Irina; Mansour, Nagi N.; Wray, Alan; Couvidat, Sebastian; Yoon, Seokkwan; Kosovichev, Alexander

    2014-01-01

    Realistic 3D radiative MHD simulations open new perspectives for understanding the turbulent dynamics of the solar surface, its coupling to the atmosphere, and the physical mechanisms of generation and transport of non-thermal energy. Traditionally, plasma eruptions and wave phenomena in the solar atmosphere are modeled by prescribing artificial driving mechanisms using magnetic or gas pressure forces that might arise from magnetic field emergence or reconnection instabilities. In contrast, our 'ab initio' simulations provide a realistic description of solar dynamics naturally driven by solar energy flow. By simulating the upper convection zone and the solar atmosphere, we can investigate in detail the physical processes of turbulent magnetoconvection, generation and amplification of magnetic fields, excitation of MHD waves, and plasma eruptions. We present recent simulation results of the multi-scale dynamics of quiet-Sun regions, and energetic effects in the atmosphere and compare with observations. For the comparisons we calculate synthetic spectro-polarimetric data to model observational data of SDO, Hinode, and New Solar Telescope.

  11. Comparison of MHD-induced rotation damping with NTV predictions on MAST

    Science.gov (United States)

    Hua, M.-D.; Chapman, I. T.; Field, A. R.; Hastie, R. J.; Pinches, S. D.; MAST Team

    2010-03-01

    Plasma rotation in tokamaks is of special interest for its potential stabilizing effect on micro- and macro-instabilities, leading to increased confinement. In MAST, the torque from neutral beam injection can spin the plasma to a core velocity ~300 km s-1 (Alfvén Mach number ~0.3). Low density plasmas often exhibit a weakly non-monotonic safety factor profile just above unity. Theory predicts that such equilibria are prone to magneto-hydro-dynamic (MHD) instabilities, which was confirmed by recent observations. The appearance of the mode is accompanied by strong damping of core rotation on a timescale much faster than the momentum confinement time. The mode's saturated structure is estimated using the CASTOR code together with soft x-ray measurements, enabling the calculation of the plasma braking by the MHD mode according to neoclassical toroidal viscosity (NTV) theory. The latter exhibits strong similarities with the torque measured experimentally.

  12. MHD Shock Conditions for Accreting Plasma onto Kerr Black Holes - I

    CERN Document Server

    Takahashi, M; Fukumura, K; Tsuruta, S; Takahashi, Masaaki; Rilett, Darrell; Fukumura, Keigo; Tsuruta, Sachiko

    2002-01-01

    We extend the work by Appl and Camenzind (1988) for special relativistic magnetohydrodynamic (MHD) jets, to fully general relativistic studies of the standing shock formation for accreting MHD plasma in a rotating, stationary and axisymmetric black hole magnetosphere. All the postshock physical quantities are expressed in terms of the relativistic compression ratio, which can be obtained in terms of preshock quantities. Then, the downstream state of a shocked plasma is determined by the upstream state of the accreting plasma. In this paper sample solutions are presented for slow magnetosonic shocks for accreting flows in the equatorial plane. We find that some properties of the slow magnetosonic shock for the rotating magnetosphere can behave like a fast magnetosonic shock. In fact, it is confirmed that in the limit of weak gravity for the upstream non-rotating accretion plasma where the magnetic field lines are leading and rotating, our results are very similar to the fast magnetosonic shock solution by Appl...

  13. New aspects of plasma sheet dynamics - MHD and kinetic theory

    Directory of Open Access Journals (Sweden)

    H. Wiechen

    Full Text Available Magnetic reconnection is a process of fundamental importance for the dynamics of the Earth's plasma sheet. In this context, the development of thin current sheets in the near-Earth plasma sheet is a topic of special interest because they could be a possible cause of microscopic fluctuations acting as collective non-idealness from a macroscopic point of view. Simulations of the near-Earth plasma sheet including boundary perturbations due to localized inflow through the northern (or southern plasma sheet boundary show developing thin current sheets in the near-Earth plasma sheet about 810 RE tailwards of the Earth. This location is largely independent from the localization of the perturbation. The second part of the paper deals with the problem of the macroscopic non-ideal consequences of microscopic fluctuations. A new model is presented that allows the quantitative calculation of macroscopic non-idealness without considering details of microscopic instabilities or turbulence. This model is only based on the assumption of a strongly fluctuating, mixing dynamics on microscopic scales in phase space. The result of this approach is an expression for anomalous non-idealness formally similar to the Krook resistivity but now describing the macroscopic consequences of collective microscopic fluctuations, not of collisions.

    Key words. Magnetospheric physics (plasma sheet · Space plasma physics (kinetic and MHD theory; magnetic reconnection

  14. Numerical Validation and Comparison of Three Solar Wind Heating Methods by the SIP-CESE MHD Model

    Institute of Scientific and Technical Information of China (English)

    YANG Li-Ping; FENG Xue-Shang; XIANG Chang-Qing; JIANG Chao-Wei

    2011-01-01

    We conduct simulations using the three-dimensional(3D) solar-interplanetary conservation element/solution element(SIP-CESE) maguetohydrodynamic(MHD) model and magnetogram data from a Carrington rotation (CR) 1897 to compare the three commonly used heating methods, I.e. The Wentzel-Kramers-Brillouin(WKB)Alfvén wave heating method, the turbulence heating method and the volumetric heating method. Our results show that all three heating models can basically reproduce the bimodal structure of the solar wind observed near the solar minimum. The results also demonstrate that the major acceleration interval terminates about 4Rs for the turbulence heating method and 1ORs for both the WKB Alfvén wave heating method and the volumetric heating method. The turbulence heating and the volumetric heating methods can capture the observed changing trends by the WIND satellite, while the WKB Alfvén wave heating method does not.

  15. Solar-wind/magnetospheric dynamos: MHD-scale collective entry of the solar wind energy, momentum and mass into the magnetosphere

    Science.gov (United States)

    Song, Yan; Lysak, Robert L.

    1992-01-01

    A quasi open MHD (Magnetohydrodynamic) scale anomalous transport controlled boundary layer model is proposed, where the MHD collective behavior of magnetofluids (direct dynamo effect, anomalous viscous interaction and anomalous diffusion of the mass and the magnetic field) plays the main role in the conversion of the Solar Wind (SW) kinetic and magnetic energy into electromagnetic energy in the Magnetosphere (MSp). The so called direct and indirect dynamo effects are based on inductive and purely dissipative energy conversion, respectively. The self organization ability of vector fields in turbulent magnetofluids implies an inductive response of the plasma, which leads to the direct dynamo effect. The direct dynamo effect describes the direct formation of localized field aligned currents and the transverse Alfven waves and provides a source for MHD scale anomalous diffusivity and viscosity. The SW/MSp coupling depends on the dynamo efficiency.

  16. Three-Dimensional Multiscale MHD Model of Cometary Plasma Environments

    Science.gov (United States)

    Gombosi, Tamas I.; DeZeeuw, Darren L.; Haberli, Roman M.; Powell, Kenneth G.

    1996-01-01

    First results of a three-dimensional multiscale MHD model of the interaction of an expanding cometary atmosphere with the magnetized solar wind are presented. The model starts with a supersonic and super-Alfvenic solar wind far upstream of the comet (25 Gm upstream of the nucleus) with arbitrary interplanetary magnetic field orientation. The solar wind is continuously mass loaded with cometary ions originating from a 10-km size nucleus. The effects of photoionization, electron impact ionization, recombination, and ion-neutral frictional drag are taken into account in the model. The governing equations are solved on an adaptively refined unstructured Cartesian grid using our new multiscale upwind scalar conservation laws-type numerical technique (MUSCL). We have named this the multiscale adaptive upwind scheme for MHD (MAUS-MHD). The combination of the adaptive refinement with the MUSCL-scheme allows the entire cometary atmosphere to be modeled, while still resolving both the shock and the diamagnetic cavity of the comet. The main findings are the following: (1) Mass loading decelerates the solar wind flow upstream of the weak cometary shock wave (M approximately equals 2, M(sub A) approximately equals 2), which forms at a subsolar standoff distance of about 0.35 Gm. (2) A cometary plasma cavity is formed at around 3 x 10(exp 3) km from the nucleus. Inside this cavity the plasma expands outward due to the frictional interaction between ions and neutrals. On the nightside this plasma cavity considerably narrows and a relatively fast and dense cometary plasma beam is ejected into the tail. (3) Inside the plasma cavity a teardrop-shaped inner shock is formed, which is terminated by a Mach disk on the nightside. Only the region inside the inner shock is the 'true' diamagnetic cavity. (4) The model predicts four distinct current systems in the inner coma: the density peak current, the cavity boundary current, the inner shock current, and finally the cross-tail current

  17. Discontinuous Galerkin Methods for Turbulence Simulation

    Science.gov (United States)

    Collis, S. Scott

    2002-01-01

    A discontinuous Galerkin (DG) method is formulated, implemented, and tested for simulation of compressible turbulent flows. The method is applied to turbulent channel flow at low Reynolds number, where it is found to successfully predict low-order statistics with fewer degrees of freedom than traditional numerical methods. This reduction is achieved by utilizing local hp-refinement such that the computational grid is refined simultaneously in all three spatial coordinates with decreasing distance from the wall. Another advantage of DG is that Dirichlet boundary conditions can be enforced weakly through integrals of the numerical fluxes. Both for a model advection-diffusion problem and for turbulent channel flow, weak enforcement of wall boundaries is found to improve results at low resolution. Such weak boundary conditions may play a pivotal role in wall modeling for large-eddy simulation.

  18. Recent developments in plasma turbulence and turbulent transport

    Energy Technology Data Exchange (ETDEWEB)

    Terry, P.W. [Univ. of Wisconsin, Madison, WI (United States)

    1997-09-22

    This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.

  19. Shock Wave Dynamics in Weakly Ionized Plasmas

    Science.gov (United States)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  20. Effects of small-scale freestream turbulence on turbulent boundary layers with and without thermal convection

    Science.gov (United States)

    Nagata, Kouji; Sakai, Yasuhiko; Komori, Satoru

    2011-06-01

    Effects of weak, small-scale freestream turbulence on turbulent boundary layers with and without thermal convection are experimentally investigated using a wind tunnel. Two experiments are carried out: the first is isothermal boundary layers with and without grid turbulence, and the second is non-isothermal boundary layers with and without grid turbulence. Both boundary layers develop under a small favorable pressure gradient. For the latter case, the bottom wall of the test section is heated at a constant wall temperature to investigate the effects of thermal convection under the effects of freestream turbulence. For both cases, the turbulence intensity in the freestream is Tu = 1.3% ˜ 2.4%, and the integral length scale of freestream turbulence, L∞, is much smaller than the boundary layer thickness δ, i.e., L∞/δ ≪1. The Reynolds numbers Reθ based on the momentum thickness and freestream speed U∞ are Reθ = 560, 1100, 1310, and 2330 in isothermal boundary layers without grid turbulence. Instantaneous velocities, U and V, and instantaneous temperature T are simultaneously measured using a hot-wire anemometry and a constant-current resistance thermometer. The results show that the rms velocities and Reynolds shear stress normalized by the friction velocity are strongly suppressed by the freestream turbulence throughout the boundary layer in both isothermal and non-isothermal boundary layers. In the non-isothermal boundary layers, the normalized rms temperature and vertical turbulent heat flux are also strongly suppressed by the freestream turbulence. Turbulent momentum and heat transfer at the wall are enhanced by the freestream turbulence and the enhancement is notable in unstable stratification. The power spectra of u, v, and θ and their cospectra show that motions of almost all scales are suppressed by the freestream turbulence in both the isothermal and non-isothermal boundary layers.

  1. Lack of universality in decaying magnetohydrodynamic turbulence.

    Science.gov (United States)

    Lee, E; Brachet, M E; Pouquet, A; Mininni, P D; Rosenberg, D

    2010-01-01

    Using computations of three-dimensional magnetohydrodynamic (MHD) turbulence with a Taylor-Green flow, whose inherent time-independent symmetries are implemented numerically, and in the absence of either a forcing function or an imposed uniform magnetic field, we show that three different inertial ranges for the energy spectrum may emerge for three different initial magnetic fields, the selecting parameter being the ratio of nonlinear eddy to Alfvén time. Equivalent computational grids range from 128(3) to 2048(3) points with a unit magnetic Prandtl number and a Taylor Reynolds number of up to 1500 at the peak of dissipation. We also show a convergence of our results with Reynolds number. Our study is consistent with previous findings of a variety of energy spectra in MHD turbulence by studies performed in the presence of both a forcing term with a given correlation time and a strong, uniform magnetic field. However, in contrast to the previous studies, here the ratio of characteristic time scales can only be ascribed to the intrinsic nonlinear dynamics of the paradigmatic flows under study.

  2. Universal turbulence on branes in holography

    CERN Document Server

    Hashimoto, Koji; Sonoda, Akihiko

    2015-01-01

    At a meson melting transition in holographic QCD, a weak turbulence of mesons was found with critical embeddings of probe D-branes in gravity duals. The turbulent mesons have a power-law energy distribution $\\varepsilon_n \\propto (\\omega_n)^\\alpha$ where $\\omega_n$ is the mass of the $n$-th excited resonance of the meson tower. In this paper, we find that the turbulence power $\\alpha$ is universal, irrespective of how the transition is driven, by numerically calculating the power in various static brane setups at criticality. We also find that the power $\\alpha$ depends only on the cone dimensions of the probe D-branes.

  3. Turbulence Model

    DEFF Research Database (Denmark)

    Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens

    2011-01-01

    In this report a new turbulence model is presented.In contrast to the bulk of modern work, the model is a classical continuum model with a relatively simple constitutive equation. The constitutive equation is, as usual in continuum mechanics, entirely empirical. It has the usual Newton or Stokes...... term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence....... The model is in a virgin state, but a number of numerical tests have been carried out with good results. It is published to encourage other researchers to study the model in order to find its merits and possible limitations....

  4. Two-fluid turbulence including electron inertia

    Energy Technology Data Exchange (ETDEWEB)

    Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, 1428 Buenos Aires (Argentina); Gonzalez, Carlos; Martin, Luis; Dmitruk, Pablo [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, 1428 Buenos Aires (Argentina)

    2014-12-15

    We present a full two-fluid magnetohydrodynamic (MHD) description for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure, and electron inertia. According to this description, each plasma species introduces a new spatial scale: the ion inertial length λ{sub i} and the electron inertial length λ{sub e}, which are not present in the traditional MHD description. In the present paper, we seek for possible changes in the energy power spectrum in fully developed turbulent regimes, using numerical simulations of the two-fluid equations in two-and-a-half dimensions. We have been able to reproduce different scaling laws in different spectral ranges, as it has been observed in the solar wind for the magnetic energy spectrum. At the smallest wavenumbers where plain MHD is valid, we obtain an inertial range following a Kolmogorov k{sup −5∕3} law. For intermediate wavenumbers such that λ{sub i}{sup −1}≪k≪λ{sub e}{sup −1}, the spectrum is modified to a k{sup −7∕3} power-law, as has also been obtained for Hall-MHD neglecting electron inertia terms. When electron inertia is retained, a new spectral region given by k>λ{sub e}{sup −1} arises. The power spectrum for magnetic energy in this region is given by a k{sup −11∕3} power law. Finally, when the terms of electron inertia are retained, we study the self-consistent electric field. Our results are discussed and compared with those obtained in the solar wind observations and previous simulations.

  5. On Weak Regular *-semigroups

    Institute of Scientific and Technical Information of China (English)

    Yong Hua LI; Hai Bin KAN; Bing Jun YU

    2004-01-01

    In this paper, a special kind of partial algebras called projective partial groupoids is defined.It is proved that the inverse image of all projections of a fundamental weak regular *-semigroup under the homomorphism induced by the maximum idempotent-separating congruence of a weak regular *-semigroup has a projective partial groupoid structure. Moreover, a weak regular *-product which connects a fundamental weak regular *-semigroup with corresponding projective partial groupoid is defined and characterized. It is finally proved that every weak regular *-product is in fact a weak regular *-semigroup and any weak regular *-semigroup is constructed in this way.

  6. Light propagation through anisotropic turbulence.

    Science.gov (United States)

    Toselli, Italo; Agrawal, Brij; Restaino, Sergio

    2011-03-01

    A wealth of experimental data has shown that atmospheric turbulence can be anisotropic; in this case, a Kolmogorov spectrum does not describe well the atmospheric turbulence statistics. In this paper, we show a quantitative analysis of anisotropic turbulence by using a non-Kolmogorov power spectrum with an anisotropic coefficient. The spectrum we use does not include the inner and outer scales, it is valid only inside the inertial subrange, and it has a power-law slope that can be different from a Kolmogorov one. Using this power spectrum, in the weak turbulence condition, we analyze the impact of the power-law variations α on the long-term beam spread and scintillation index for several anisotropic coefficient values ς. We consider only horizontal propagation across the turbulence cells, assuming circular symmetry is maintained on the orthogonal plane to the propagation direction. We conclude that the anisotropic coefficient influences both the long-term beam spread and the scintillation index by the factor ς(2-α).

  7. Controlling turbulence

    Science.gov (United States)

    Kühnen, Jakob; Hof, Björn

    2015-11-01

    We show that a simple modification of the velocity profile in a pipe can lead to a complete collapse of turbulence and the flow fully relaminarises. The annihilation of turbulence is achieved by a steady manipulation of the streamwise velocity component alone, greatly reducing control efforts. Several different control techniques are presented: one with a local modification of the flow profile by means of a stationary obstacle, one employing a nozzle injecting fluid through a small gap at the pipe wall and one with a moving wall, where a part of the pipe is shifted in the streamwise direction. All control techniques act on the flow such that the streamwise velocity profile becomes more flat and turbulence gradually grows faint and disappears. In a smooth straight pipe the flow remains laminar downstream of the control. Hence a reduction in skin friction by a factor of 8 and more can be accomplished. Stereoscopic PIV-measurements and movies of the development of the flow during relaminarisation are presented.

  8. Mixing and turbulent mixing in fluids, plasma and materials: summary of works presented at the 3rd International Conference on Turbulent Mixing and Beyond

    Science.gov (United States)

    Gauthier, Serge; Keane, Christopher J.; Niemela, Joseph J.; Abarzhi, Snezhana I.

    2013-07-01

    . Chernyak et al consider compressible gas flows in a gravity field above a homogeneous surface in a shallow water approximation within the Riemann invariants form. Fukumoto and Mie develop a weakly nonlinear stability theory for a rotating flow confined in a cylinder of elliptic cross-section. Karelsky and Petrosyan further expand the use of the shallow-water approximation and Riemann invariants to study the problem of a steady-state flow over a step. Meshram and Sahu employ the Lewis-Kraichnan space-time version of the Hopf functional formalism to investigate MHD turbulence. Nepomnyashchy and Volpert study particle growth due to sub-diffusion (described by an equation with fractional derivatives) of a dissolved component. Stochastic processes and probabilistic description. Two research papers are dedicated to this theme. Abarzhi et al present a stochastic model of statistically unsteady RT mixing with uniform and non-uniform accelerations. Within the framework of non-equilibrium thermodynamics, Klimenko considers the combustion problem and interprets it as a competitive mixing. Advanced numerical methods. Seven research papers are dedicated to advanced numerical methods and numerical simulations. Denisenko and Oparina study the stability of the laminar flow between two rotating cylinders (the Taylor-Couette flow) by means of numerical simulations based on the compressible inviscid Euler equations. Fortova investigates spectral characteristics of the vortex cascades in a shear flow. Ghods and Herrmann present a consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using the level set methods. Kaman et al provide an overview on recent progress in turbulent mixing. Koppula et al report the development of a universal realizable anisotropic and pre-stress closure model and illustrate the model application in shear flows. Kozlov and Eriklintsev carry out numerical simulation of countercurrent flow and diffusion processes

  9. Numerical Tests of Fast Reconnection in Weakly Stochastic Magnetic Fields

    CERN Document Server

    Kowal, G; Vishniac, E T; Otmianowska-Mazur, K

    2009-01-01

    We study the effects of turbulence on magnetic reconnection using 3D numerical simulations. This is the first attempt to test a model of fast magnetic reconnection in the presence of weak turbulence proposed by Lazarian & Vishniac (1999). This model predicts that weak turbulence, generically present in most of astrophysical systems, enhances the rate of reconnection by reducing the transverse scale for reconnection events and by allowing many independent flux reconnection events to occur simultaneously. As a result the reconnection speed becomes independent of Ohmic resistivity and is determined by the magnetic field wandering induced by turbulence. To quantify the reconnection speed we use both an intuitive definition, i.e. the speed of the reconnected flux inflow, as well as a more sophisticated definition based on a formally derived analytical expression. Our results confirm the predictions of the Lazarian & Vishniac model. In particular, we find that Vrec Pinj^(1/2), as predicted by the model. The...

  10. Generation of Electrojets in Weakly Ionized Plasmas through a Collisional Dynamo

    CERN Document Server

    Dimant, Yakov S; Fletcher, Alex C

    2016-01-01

    Intense electric currents called electrojets occur in weakly ionized magnetized plasmas. An example occurs in the Earth's ionosphere near the magnetic equator where neutral winds drive the plasma across the geomagnetic field. Similar processes take place in the Solar chromosphere and MHD generators. This letter argues that not all convective neutral flows generate electrojets and it introduces the corresponding universal criterion for electrojet formation, $\

  11. Les Houches 2000 Summer School: Session 74: New Trends in Turbulence

    CERN Document Server

    Yaglom, A; David, F; New Trends in Turbulence

    2001-01-01

    This book is written for researchers as well as engineers in an industrial environment. Following a longstanding tradition of the Les Houches Summer Schools, all chapters are pedagogically presented and accessible for graduate students. The book treats 2D and 3D turbulence from the experimental, theoretical and computational points of view. The reader will find, for example, comprehensive accounts of fully developed turbulence experiments, simulating deterministically coherent vortices formation, and statistical prediction of industrial flows, and a very complete review of 2D turbulence. Fundamental concepts like topological fluid dynamics in MHD flows or finite-time singularities of the Burgers, Euler and Navier--Stokes equations complete the volume.

  12. A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at

  13. The structure and statistics of interstellar turbulence

    Science.gov (United States)

    Kritsuk, A. G.; Ustyugov, S. D.; Norman, M. L.

    2017-06-01

    We explore the structure and statistics of multiphase, magnetized ISM turbulence in the local Milky Way by means of driven periodic box numerical MHD simulations. Using the higher order-accurate piecewise-parabolic method on a local stencil (PPML), we carry out a small parameter survey varying the mean magnetic field strength and density while fixing the rms velocity to observed values. We quantify numerous characteristics of the transient and steady-state turbulence, including its thermodynamics and phase structure, kinetic and magnetic energy power spectra, structure functions, and distribution functions of density, column density, pressure, and magnetic field strength. The simulations reproduce many observables of the local ISM, including molecular clouds, such as the ratio of turbulent to mean magnetic field at 100 pc scale, the mass and volume fractions of thermally stable Hi, the lognormal distribution of column densities, the mass-weighted distribution of thermal pressure, and the linewidth-size relationship for molecular clouds. Our models predict the shape of magnetic field probability density functions (PDFs), which are strongly non-Gaussian, and the relative alignment of magnetic field and density structures. Finally, our models show how the observed low rates of star formation per free-fall time are controlled by the multiphase thermodynamics and large-scale turbulence.

  14. The Solar Wind as a Turbulence Laboratory

    Directory of Open Access Journals (Sweden)

    Vincenzo Carbone

    2013-05-01

    Full Text Available In this review we will focus on a topic of fundamental importance for both astrophysics and plasma physics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Helios inner heliosphere and Ulysses' high latitude observations, recent multi-spacecrafts measurements in the solar wind (Cluster four satellites and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.

  15. Compressible Relativistic Magnetohydrodynamic Turbulence in Magnetically-Dominated Plasmas And Implications for A New Regime

    CERN Document Server

    Takamoto, Makoto

    2016-01-01

    In this Letter, we report compressible mode effects on relativistic magnetohydrodynamic (RMHD) turbulence in Poynting-dominated plasmas using 3-dimensional numerical simulations. We decomposed fluctuations in the turbulence into 3 MHD modes (fast, slow, and Alfv\\'en) following the procedure mode decomposition in (Cho & Lazarian 2002), and analyzed their energy spectra and structure functions separately. We also analyzed the ratio of compressible mode to Alfv\\'en mode energy with respect to its Mach number. We found the ratio of compressible mode increases not only with the Alfv\\'en Mach number but with the background magnetization, which indicates a strong coupling between the fast and Alfv\\'en modes and appearance of a new regime of RMHD turbulence in Poynting-dominated plasmas where the fast and Alfv\\'en modes strongly couples and cannot be distinguished, different from the non-relativistic MHD case. This finding will affect particle acceleration efficiency obtained by assuming Alfv\\'enic critical balan...

  16. Sheared E×B flow and plasma turbulence viscosity in a Reversed Field Pinch

    Science.gov (United States)

    Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Regnoli, G.; Zuin, M.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.

    2004-11-01

    The relationship between electromagnetic turbulence and sheared plasma flow in Reversed Field Pinch configuration is addressed. The momentum balance equation for a compressible plasma is considered and the terms involved are measured in the outer region of Extrap-T2R RFP device. It results that electrostatic fluctuations determine the plasma flow through the electrostatic component of Reynolds Stress tensor. This term involves spatial and temporal scales comparable to those of MHD activity. The derived experimental perpendicular viscosity is consistent with anomalous diffusion, the latter being discussed in terms of electrostatic turbulence background and coherent structures emerging from fluctuations. The results indicate a dynamical interplay between turbulence, anomalous transport and mean E×B profiles. The momentum balance has been studied also in non-stationary condition during the application of Pulsed Poloidal Current Drive, which is known to reduce the amplitude of MHD modes.

  17. Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence.

    Science.gov (United States)

    Alexakis, Alexandros; Mininni, Pablo D; Pouquet, Annick

    2005-10-01

    We investigate the transfer of energy from large scales to small scales in fully developed forced three-dimensional magnetohydrodynamics (MHD) turbulence by analyzing the results of direct numerical simulations in the absence of an externally imposed uniform magnetic field. Our results show that the transfer of kinetic energy from large scales to kinetic energy at smaller scales and the transfer of magnetic energy from large scales to magnetic energy at smaller scales are local, as is also found in the case of neutral fluids and in a way that is compatible with the Kolmogorov theory of turbulence. However, the transfer of energy from the velocity field to the magnetic field is a highly nonlocal process in Fourier space. Energy from the velocity field at large scales can be transferred directly into small-scale magnetic fields without the participation of intermediate scales. Some implications of our results to MHD turbulence modeling are also discussed.

  18. A nonlinear structural subgrid-scale closure for compressible MHD Part I: derivation and energy dissipation properties

    CERN Document Server

    Vlaykov, Dimitar G; Schmidt, Wolfram; Schleicher, Dominik R G

    2016-01-01

    Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are nearly inescapable, due to the large degree of nonlinearity involved. However the dynamical ranges of these phenomena are much larger than what is computationally accessible. In large eddy simulations (LES), the resulting limited resolution effects are addressed explicitly by introducing to the equations of motion additional terms associated with the unresolved, subgrid-scale (SGS) dynamics. This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal MHD LES equations with particular emphasis on the effects of compressibility. The closures are based on a gradient expansion of the finite-resolution operator (W.K. Yeo CUP 1993, ed. Galperin & Orszag) and require no assumptions about the nature of the flow or magnetic field. Thus the scope of their applicability ranges from the sub- to ...

  19. Numerical study of the MHD flow characteristics in a three-surface-multi-layered channel with different inlet conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aoyagi, Mitsuhiro, E-mail: mao@karma.qse.tohoku.ac.jp; Ito, Satoshi; Hashizume, Hidetoshi

    2014-10-15

    A 3D MHD flow simulation was conducted to clarify the effects of the inlet flow conditions on the results of the validation experiment carried out previously and on the design window of the first wall using a three-surface-multi-layered channel. MHD pressure drop was largely influenced by the inlet condition. The numerical model with turbulent velocity profile showed qualitatively good agreement with the experimental result. The first wall temperature and pressure distributions obtained by the 3D simulation corresponded well to those obtained by the 2D simulation assuming fully developed flow. This suggested that complicated three-dimensional inlet flow condition generated in the L-shape elbow would not affects the existing design window.

  20. VisAn MHD: a toolbox in Matlab for MHD computer model data visualisation and analysis

    Directory of Open Access Journals (Sweden)

    P. Daum

    2007-03-01

    Full Text Available Among the many challenges facing modern space physics today is the need for a visualisation and analysis package which can examine the results from the diversity of numerical and empirical computer models as well as observational data. Magnetohydrodynamic (MHD models represent the latest numerical models of the complex Earth's space environment and have the unique ability to span the enormous distances present in the magnetosphere from several hundred kilometres to several thousand kilometres above the Earth surface. This feature enables scientist to study complex structures of processes where otherwise only point measurements from satellites or ground-based instruments are available. Only by combining these observational data and the MHD simulations it is possible to enlarge the scope of the point-to-point observations and to fill the gaps left by measurements in order to get a full 3-D representation of the processes in our geospace environment. In this paper we introduce the VisAn MHD toolbox for Matlab as a tool for the visualisation and analysis of observational data and MHD simulations. We have created an easy to use tool which is capable of highly sophisticated visualisations and data analysis of the results from a diverse set of MHD models in combination with in situ measurements from satellites and ground-based instruments. The toolbox is being released under an open-source licensing agreement to facilitate and encourage community use and contribution.

  1. MHD Shallow Water Waves: Linear Analysis

    CERN Document Server

    Heng, Kevin

    2009-01-01

    We present a linear analysis of inviscid, incompressible, magnetohydrodynamic (MHD) shallow water systems. In spherical geometry, a generic property of such systems is the existence of five wave modes. Three of them (two magneto-Poincare modes and one magneto-Rossby mode) are previously known. The other two wave modes are strongly influenced by the magnetic field and rotation, and have substantially lower angular frequencies; as such, we term them "magnetostrophic modes". We obtain analytical functions for the velocity, height and magnetic field perturbations in the limit that the magnitude of the MHD analogue of Lamb's parameter is large. On a sphere, the magnetostrophic modes reside near the poles, while the other modes are equatorially confined. Magnetostrophic modes may be an ingredient in explaining the frequency drifts observed in Type I X-ray bursts from neutron stars.

  2. MHD Equilibria and Triggers for Prominence Eruption

    CERN Document Server

    Fan, Yuhong

    2015-01-01

    Magneto-hydrodynamic (MHD) simulations of the emergence of twisted magnetic flux tubes from the solar interior into the corona are discussed to illustrate how twisted and sheared coronal magnetic structures (with free magnetic energy), capable of driving filament eruptions, can form in the corona in emerging active regions. Several basic mechanisms that can disrupt the quasi-equilibrium coronal structures and trigger the release of the stored free magnetic energy are discussed. These include both ideal processes such as the onset of the helical kink instability and the torus instability of a twisted coronal flux rope structure and the non-ideal process of the onset of fast magnetic reconnections in current sheets. Representative MHD simulations of the non-linear evolution involving these mechanisms are presented.

  3. Graphic Turbulence Guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...

  4. Graphical Turbulence Guidance - Composite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...

  5. Reconnection current sheet structure in a turbulent medium

    Directory of Open Access Journals (Sweden)

    E. T. Vishniac

    2012-11-01

    Full Text Available In the presence of turbulence, magnetic field lines lose their dynamical identity and particles entrained on field lines diffuse through space at a rate determined by the amplitude of the turbulence. In previous work (Lazarian and Vishniac, 1999; Kowal et al., 2009; Eyink et al., 2011 we showed that this leads to reconnection speeds which are independent of resistivity. In particular, in Kowal et al. (2009 we showed that numerical simulations were consistent with the predictions of this model. Here we examine the structure of the current sheet in simulations of turbulent reconnection. Laminar flows consistent with the Sweet-Parker reconnection model produce very thin and well ordered currents sheets. On the other hand, the simulations of Kowal et al. (2009 show a strongly disordered state even for relatively low levels of turbulence. Comparing data cubes with and without reconnection, we find that large scale field reversals are the cumulative effect of many individual eddies, each of which has magnetic properties which are not very different from turbulent eddies in a homogeneous background. This implies that the properties of stationary and homogeneous MHD turbulence are a reasonable guide to understanding turbulence during large scale magnetic reconnection events. In addition, dissipation and high energy particle acceleration during reconnection events take place over a macroscopic volume, rather than being confined to a narrow zone whose properties depend on microscopic transport coefficients.

  6. Role of a MHD mode crash in triggering H-mode at marginal heating power on the HL-2A tokamak

    Science.gov (United States)

    Cheng, J.; Xu, Y.; Hidalgo, C.; Yan, L. W.; Liu, Yi; Jiang, M.; Li, Y. G.; Yu, L. M.; Dong, Y. B.; Li, D.; Liu, L.; Zhong, W. L.; Xu, J. Q.; Huang, Z. H.; Ji, X. Q.; Song, S. D.; Yu, D. L.; Xu, M.; Shi, Z. B.; Pan, O.; Yang, Q. W.; Ding, X. T.; Duan, X. R.; Liu, Yong

    2016-12-01

    The impact of a low frequency MHD mode crash on triggering the H-mode has been studied in detail on the HL-2A tokamak. The mode manifests fishbone characteristics with a precession frequency f ≈ 14- 19 kHz. The abrupt mode crash evokes substantial energy release from the core to the plasma boundary and hence increases the edge pressure gradient and Er × B flow shear, which further suppresses turbulence and leads to confinement improvement into the H-mode. Under the same NBI heating (∼1 MW), the I-phase plasma transits into H-mode with a rapid MHD mode crash while it returns to the L-mode without the presence of the mode in the I-phase. With increasing heating power by the ECRH added to the NBI, the MHD mode disappears. The statistical result shows that with the MHD mode crash the heating power for accessing the H-mode is significantly lower than that without the mode crash. All these facts reveal that the MHD mode crash in the I-phase plays a critical role in trigging the I → H transition at marginal heating power. In addition, it has been found that with the same NBI power heating, the magnitude of the mode (crash) increases with increasing plasma density, implying larger energy release being needed to access the H-mode for higher density plasmas.

  7. Magnetic Reconnection in a Compressible MHD Plasma

    Science.gov (United States)

    Hesse, Michael; Birn, Joachim; Zenitani, Seiji

    2011-01-01

    Using steady-state resistive MHD, magnetic reconnection is reinvestigated for conditions of high resistivity/low magnetic Reynolds number, when the thickness of the diffusion region is no longer small compared to its length. Implicit expressions for the reconnection rate and other reconnection parameters are derived based on the requirements of mass, momentum, and energy conservation. These expressions are solved via simple iterative procedures. Implications specifically for low Reynolds number/high resistivity are being discussed

  8. MHD simulations on an unstructured mesh

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, H.R. [New York Univ., NY (United States); Park, W.; Belova, E.; Fu, G.Y. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Longcope, D.W. [Univ. of Montana, Missoula, MT (United States); Sugiyama, L.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1998-12-31

    Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.

  9. MHD Technology Transfer, Integration and Review Committee

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

  10. Design Study: Rocket Based MHD Generator

    Science.gov (United States)

    1997-01-01

    This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.

  11. Formation of turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Struminskii, V.V. (Sektor Mekhaniki Neodnorodnykh Sred, Moscow (USSR))

    1989-01-01

    Two essentially different forms of turbulence are identified in liquids and gases: (1) turbulent flow in the vicinity of solid or liquid boundaries and (2) turbulent flows evolving far from the walls. The generation mechanisms and principal characteristics of the two types of turbulent flows are discussed. It is emphasized that the two types of turbulent flows are caused by different physical mechanisms and should be considered separately in turbulence studies. 14 refs.

  12. Inductive ionospheric solver for magnetospheric MHD simulations

    Directory of Open Access Journals (Sweden)

    H. Vanhamäki

    2011-01-01

    Full Text Available We present a new scheme for solving the ionospheric boundary conditions required in magnetospheric MHD simulations. In contrast to the electrostatic ionospheric solvers currently in use, the new solver takes ionospheric induction into account by solving Faraday's law simultaneously with Ohm's law and current continuity. From the viewpoint of an MHD simulation, the new inductive solver is similar to the electrostatic solvers, as the same input data is used (field-aligned current [FAC] and ionospheric conductances and similar output is produced (ionospheric electric field. The inductive solver is tested using realistic, databased models of an omega-band and westward traveling surge. Although the tests were performed with local models and MHD simulations require a global ionospheric solution, we may nevertheless conclude that the new solution scheme is feasible also in practice. In the test cases the difference between static and electrodynamic solutions is up to ~10 V km−1 in certain locations, or up to 20-40% of the total electric field. This is in agreement with previous estimates. It should also be noted that if FAC is replaced by the ground magnetic field (or ionospheric equivalent current in the input data set, exactly the same formalism can be used to construct an inductive version of the KRM method originally developed by Kamide et al. (1981.

  13. MHD thrust vectoring of a rocket engine

    Science.gov (United States)

    Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic

    2016-09-01

    In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.

  14. Inductive ionospheric solver for magnetospheric MHD simulations

    Science.gov (United States)

    Vanhamäki, H.

    2011-01-01

    We present a new scheme for solving the ionospheric boundary conditions required in magnetospheric MHD simulations. In contrast to the electrostatic ionospheric solvers currently in use, the new solver takes ionospheric induction into account by solving Faraday's law simultaneously with Ohm's law and current continuity. From the viewpoint of an MHD simulation, the new inductive solver is similar to the electrostatic solvers, as the same input data is used (field-aligned current [FAC] and ionospheric conductances) and similar output is produced (ionospheric electric field). The inductive solver is tested using realistic, databased models of an omega-band and westward traveling surge. Although the tests were performed with local models and MHD simulations require a global ionospheric solution, we may nevertheless conclude that the new solution scheme is feasible also in practice. In the test cases the difference between static and electrodynamic solutions is up to ~10 V km-1 in certain locations, or up to 20-40% of the total electric field. This is in agreement with previous estimates. It should also be noted that if FAC is replaced by the ground magnetic field (or ionospheric equivalent current) in the input data set, exactly the same formalism can be used to construct an inductive version of the KRM method originally developed by Kamide et al. (1981).

  15. The CHEASE code for toroidal MHD equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Luetjens, H. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique; Bondeson, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Inst. for Electromagnetic Field Theory and Plasma Physics; Sauter, O. [ITER-San Diego, La Jolla, CA (United States)

    1996-03-01

    CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function {Psi}. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs.

  16. Explosive turbulent magnetic reconnection.

    Science.gov (United States)

    Higashimori, K; Yokoi, N; Hoshino, M

    2013-06-21

    We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This fast turbulent reconnection is achieved by the localization of turbulent diffusion. Additionally, localized structure forms through the interaction of the mean field and turbulence.

  17. Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind.

    Science.gov (United States)

    Weck, P J; Schaffner, D A; Brown, M R; Wicks, R T

    2015-02-01

    The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge I(sat). The CH plane coordinates are compared to the shape and distribution of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool on solar wind plasma, as well as on an MHD turbulent experimental plasma.

  18. Scattering of sonic booms by anisotropic turbulence in the atmosphere

    Science.gov (United States)

    Kelly; Raspet; Bass

    2000-06-01

    An earlier paper [J. Acoust. Soc. Am. 98, 3412-3417 (1995)] reported on the comparison of rise times and overpressures of sonic booms calculated with a scattering center model of turbulence to measurements of sonic boom propagation through a well-characterized turbulent layer under moderately turbulent conditions. This detailed simulation used spherically symmetric scatterers to calculate the percentage of occurrence histograms of received overpressures and rise times. In this paper the calculation is extended to include distorted ellipsoidal turbules as scatterers and more accurately incorporates the meteorological data into a determination of the number of scatterers per unit volume. The scattering center calculation overpredicts the shifts in rise times for weak turbulence, and still underpredicts the shift under more turbulent conditions. This indicates that a single-scatter center-based model cannot completely describe sonic boom propagation through atmospheric turbulence.

  19. Evolutionary Conditions in the Dissipative MHD System Revisited

    CERN Document Server

    Inoue, Tsuyoshi

    2007-01-01

    The evolutionary conditions for the dissipative continuous magnetohydrodynamic (MHD) shocks are studied. We modify Hada's approach in the stability analysis of the MHD shock waves. The matching conditions between perturbed shock structure and asymptotic wave modes shows that all types of the MHD shocks, including the intermediate shocks, are evolutionary and perturbed solutions are uniquely defined. We also adopt our formalism to the MHD shocks in the system with resistivity without viscosity, which is often used in numerical simulation, and show that all types of shocks that are found in the system satisfy the evolutionary condition and perturbed solutions are uniquely defined. These results suggest that the intermediate shocks may appear in reality.

  20. Cofinitely weak supplemented modules

    OpenAIRE

    Alizade, Rafail; Büyükaşık, Engin

    2003-01-01

    We prove that a module M is cofinitely weak supplemented or briefly cws (i.e., every submodule N of M with M/N finitely generated, has a weak supplement) if and only if every maximal submodule has a weak supplement. If M is a cws-module then every M-generated module is a cws-module. Every module is cws if and only if the ring is semilocal. We study also modules, whose finitely generated submodules have weak supplements.

  1. Fundamental Physical Processes in Coronae: Waves, Turbulence, Reconnection, and Particle Acceleration

    CERN Document Server

    Aschwanden, Markus J

    2007-01-01

    Our understanding of fundamental processes in the solar corona has been greatly progressed based on the space observations of SMM, Yohkoh, Compton GRO, SOHO, TRACE, RHESSI, and STEREO. We observe now acoustic waves, MHD oscillations, turbulence-related line broadening, magnetic configurations related to reconnection processes, and radiation from high-energy particles on a routine basis. We review a number of key observations in EUV, soft X-rays, and hard X-rays that innovated our physical understanding of the solar corona, in terms of hydrodynamics, MHD, plasma heating, and particle acceleration processes.

  2. Ribbon Turbulence

    CERN Document Server

    Venaille, Antoine; Vallis, Geoffrey K

    2014-01-01

    We investigate the non-linear equilibration of a two-layer quasi-geostrophic flow in a channel forced by an imposed unstable zonal mean flow, paying particular attention to the role of bottom friction. In the limit of low bottom friction, classical theory of geostrophic turbulence predicts an inverse cascade of kinetic energy in the horizontal with condensation at the domain scale and barotropization on the vertical. By contrast, in the limit of large bottom friction, the flow is dominated by ribbons of high kinetic energy in the upper layer. These ribbons correspond to meandering jets separating regions of homogenized potential vorticity. We interpret these result by taking advantage of the peculiar conservation laws satisfied by this system: the dynamics can be recast in such a way that the imposed mean flow appears as an initial source of potential vorticity levels in the upper layer. The initial baroclinic instability leads to a turbulent flow that stirs this potential vorticity field while conserving the...

  3. Small-scale behavior of Hall magnetohydrodynamic turbulence.

    Science.gov (United States)

    Stawarz, Julia E; Pouquet, Annick

    2015-12-01

    Decaying Hall magnetohydrodynamic (HMHD) turbulence is studied using three-dimensional (3D) direct numerical simulations with grids up to 768(3) points and two different types of initial conditions. Results are compared to analogous magnetohydrodynamic (MHD) runs and both Laplacian and Laplacian-squared dissipative operators are examined. At scales below the ion inertial length, the ratio of magnetic to kinetic energy as a function of wave number transitions to a magnetically dominated state. The transition in behavior is associated with the advection term in the momentum equation becoming subdominant to dissipation. Examination of autocorrelation functions reveals that, while current and vorticity structures are similarly sized in MHD, HMHD current structures are narrower and vorticity structures are wider. The electric field autocorrelation function is significantly narrower in HMHD than in MHD and is similar to the HMHD current autocorrelation function at small separations. HMHD current structures are found to be significantly more intense than in MHD and appear to have an enhanced association with strong alignment between the current and magnetic field, which may be important in collisionless plasmas where field-aligned currents can be unstable. When hyperdiffusivity is used, a longer region consistent with a k(-7/3) scaling is present for right-polarized fluctuations when compared to Laplacian dissipation runs.

  4. Magnetic field amplification and evolution in turbulent collisionless magnetohydrodynamics: An application to the intracluster medium

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Lima, R.; De Gouveia Dal Pino, E. M.; Kowal, G. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, R. do Matão, 1226, São Paulo, SP 05508-090 (Brazil); Falceta-Gonçalves, D. [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Bettio, 1000, São Paulo, SP 03828-000 (Brazil); Lazarian, A. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Nakwacki, M. S. [Instituto de Astronomía y Física del Espacio (IAFE), CONICET (Argentina)

    2014-02-01

    The amplification of magnetic fields (MFs) in the intracluster medium (ICM) is attributed to turbulent dynamo (TD) action, which is generally derived in the collisional-MHD framework. However, this assumption is poorly justified a priori, since in the ICM the ion mean free path between collisions is of the order of the dynamical scales, thus requiring a collisionless MHD description. The present study uses an anisotropic plasma pressure that brings the plasma within a parametric space where collisionless instabilities take place. In this model, a relaxation term of the pressure anisotropy simulates the feedback of the mirror and firehose instabilities, in consistency with empirical studies. Our three-dimensional numerical simulations of forced transonic turbulence, aiming the modeling of the turbulent ICM, were performed for different initial values of the MF intensity and different relaxation rates of the pressure anisotropy. We found that in the high-β plasma regime corresponding to the ICM conditions, a fast anisotropy relaxation rate gives results that are similar to the collisional-MHD model, as far as the statistical properties of the turbulence are concerned. Also, the TD amplification of seed MFs was found to be similar to the collisional-MHD model. The simulations that do not employ the anisotropy relaxation deviate significantly from the collisional-MHD results and show more power at the small-scale fluctuations of both density and velocity as a result of the action of the instabilities. For these simulations, the large-scale fluctuations in the MF are mostly suppressed and the TD fails in amplifying seed MFs.

  5. GENERALIZED WEAK FUNCTIONS

    Institute of Scientific and Technical Information of China (English)

    丁夏畦; 罗佩珠

    2004-01-01

    In this paper the authors introduce some new ideas on generalized numbers and generalized weak functions. They prove that the product of any two weak functions is a generalized weak function. So in particular they solve the problem of the multiplication of two generalized functions.

  6. Competition between shock and turbulent heating in coronal loop system

    CERN Document Server

    Matsumoto, Takuma

    2016-01-01

    2.5-dimensional magnetohydrodynamic (MHD) simulations are performed with high spatial resolution in order to distinguish between competing models of the coronal heating problem. A single coronal loop powered by Alfv\\'{e}n waves excited in the photosphere is the target of the present study. The coronal structure is reproduced in our simulations as a natural consequence of the transportation and dissipation of Alfv\\'{e}n waves. Further, the coronal structure is maintained as the spatial resolution is changed from 25 to 3 km, although the temperature at the loop top increases with the spatial resolution. The heating mechanisms change gradually across the magnetic canopy at a height of 4 Mm. Below the magnetic canopy, both the shock and the MHD turbulence are dominant heating processes. Above the magnetic canopy, the shock heating rate reduces to less than 10 % of the total heating rate while the MHD turbulence provides significant energy to balance the radiative cooling and thermal conduction loss or gain. The i...

  7. Comparing Numerical Methods for Isothermal Magnetized Supersonic Turbulence

    Science.gov (United States)

    Kritsuk, Alexei G.; Nordlund, Åke; Collins, David; Padoan, Paolo; Norman, Michael L.; Abel, Tom; Banerjee, Robi; Federrath, Christoph; Flock, Mario; Lee, Dongwook; Li, Pak Shing; Müller, Wolf-Christian; Teyssier, Romain; Ustyugov, Sergey D.; Vogel, Christian; Xu, Hao

    2011-08-01

    Many astrophysical applications involve magnetized turbulent flows with shock waves. Ab initio star formation simulations require a robust representation of supersonic turbulence in molecular clouds on a wide range of scales imposing stringent demands on the quality of numerical algorithms. We employ simulations of supersonic super-Alfvénic turbulence decay as a benchmark test problem to assess and compare the performance of nine popular astrophysical MHD methods actively used to model star formation. The set of nine codes includes: ENZO, FLASH, KT-MHD, LL-MHD, PLUTO, PPML, RAMSES, STAGGER, and ZEUS. These applications employ a variety of numerical approaches, including both split and unsplit, finite difference and finite volume, divergence preserving and divergence cleaning, a variety of Riemann solvers, and a range of spatial reconstruction and time integration techniques. We present a comprehensive set of statistical measures designed to quantify the effects of numerical dissipation in these MHD solvers. We compare power spectra for basic fields to determine the effective spectral bandwidth of the methods and rank them based on their relative effective Reynolds numbers. We also compare numerical dissipation for solenoidal and dilatational velocity components to check for possible impacts of the numerics on small-scale density statistics. Finally, we discuss the convergence of various characteristics for the turbulence decay test and the impact of various components of numerical schemes on the accuracy of solutions. The nine codes gave qualitatively the same results, implying that they are all performing reasonably well and are useful for scientific applications. We show that the best performing codes employ a consistently high order of accuracy for spatial reconstruction of the evolved fields, transverse gradient interpolation, conservation law update step, and Lorentz force computation. The best results are achieved with divergence-free evolution of the

  8. Smoothed Particle Magnetohydrodynamics Simulations of Protostellar Jets and Turbulent Dynamos

    CERN Document Server

    Tricco, Terrence S; Federrath, Christoph; Bate, Matthew R

    2013-01-01

    We presents results from Smoothed Particle Magnetohydrodynamics simulations of collapsing molecular cloud cores, and dynamo amplification of the magnetic field in the presence of Mach 10 magnetised turbulence. Our star formation simulations have produced, for the first time ever, highly collimated magnetised protostellar jets from the first hydrostatic core phase. Up to 40% of the initial core mass may be ejected through this outflow. The primary difficulty in performing these simulations is maintaining the divergence free constraint of the magnetic field, and to address this issue, we have developed a new divergence cleaning method which has allowed us to stably follow the evolution of these protostellar jets for long periods. The simulations performed of supersonic MHD turbulence are able to exponentially amplify magnetic energy by up to 10 orders of magnitude via turbulent dynamo. To reduce numerical dissipation, a new shock detection algorithm is utilised which is able to track magnetic shocks throughout ...

  9. The Theory of Nearly Incompressible Magnetohydrodynamic Turbulence: Homogeneous Description

    Science.gov (United States)

    Zank, G. P.; Adhikari, L.; Hunana, P.; Shiota, D.; Bruno, R.; Telloni, D.; Avinash, K.

    2017-09-01

    The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed to understand the apparent incompressibility of the solar wind and other plasma environments, particularly the relationship of density fluctuations to incompressible manifestations of turbulence in the solar wind and interstellar medium. Of interest was the identification of distinct leading-order incompressible descriptions for plasma beta β ≫ 1 and β ∼ 1 or ≪ 1 environments. In the first case, the “dimensionality” of the MHD description is 3D whereas for the latter two, there is a collapse of dimensionality in that the leading-order incompressible MHD description is 2D in a plane orthogonal to the large-scale or mean magnetic field. Despite the success of NI MHD in describing fluctuations in a low-frequency plasma environment such as the solar wind, a basic turbulence description has not been developed. Here, we rewrite the NI MHD system in terms of Elsässer variables. We discuss the distinction that emerges between the three cases. However, we focus on the β ∼ 1 or ≪ 1 regimes since these are appropriate to the solar wind and solar corona. In both cases, the leading-order turbulence model describes 2D turbulence and the higher-order description corresponds to slab turbulence, which forms a minority component. The Elsäasser β ∼ 1 or ≪ 1 formulation exhibits the nonlinear couplings between 2D and slab components very clearly, and shows that slab fluctuations respond in a passive scalar sense to the turbulently evolving majority 2D component fluctuations. The coupling of 2D and slab fluctuations through the β ∼ 1 or ≪ 1 NI MHD description leads to a very natural emergence of the “Goldreich-Sridhar” critical balance scaling parameter, although now with a different interpretation. Specifically, the critical balance parameter shows that the energy flux in wave number space is a consequence of the intensity of Alfvén wave sweeping versus passive scalar

  10. Structure of nonlocality of plasma turbulence

    Science.gov (United States)

    Gürcan, Ö. D.; Vermare, L.; Hennequin, P.; Berionni, V.; Diamond, P. H.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, P.; Grandgirard, V.; McDevitt, C. J.; Morel, P.; Sarazin, Y.; Storelli, A.; Bourdelle, C.; the Tore Supra Team

    2013-07-01

    Various indications on the weakly nonlocal character of turbulent plasma transport both from experimental fluctuation measurements from Tore Supra and observations from the full-f, flux-driven gyrokinetic code GYSELA are reported. A simple Fisher equation model of this weakly nonlocal dynamics can be formulated in terms of an evolution equation for the turbulent entropy density, which contains the basic phenomenon of radial turbulence spreading in addition to avalanche-like dynamics via coupling to profile modulations. A derivation of this model, which contains the so-called beach effect, a diffusive and convective flux components for the flux of turbulence intensity, in addition to linear group propagation is given, starting from the drift-kinetic equation. The proposed model has the form of a transport equation for turbulence intensity, and may be considered as an addition to transport modelling. The kinetic fluxes given, can be computed using model closures, or local gyrokinetics. The model is also used in a particular setup that represents the near edge region as a relatively stable zone between the core and edge region where the energy injection is locally more substantial. It is observed that with constant, physical coefficients, the model gives a convincing qualitative profile of fluctuation intensity when the turbulence is coming from the core region with either a group velocity or a convective flux.

  11. Effects of long-wavelength dissipation on beam-driven Langmuir turbulence

    Science.gov (United States)

    Robinson, P. A.; Newman, D. L.; Rubenchik, A. M.

    1992-01-01

    The effects of long-wavelength dissipation on beam-driven Langmuir turbulence are investigated using numerical simulations that include both weak and strong turbulence effects. Strong-turbulence wave collapses occur concurrently with weak-turbulence energy cascades if the long-wavelength damping is sufficiently small relative to the growth rate of the beam-unstable waves. Above a threshold damping level, only the weak-turbulence backscatter cascade is observed, and it becomes increasingly truncated as the damping increases, eventually consisting of only a single backscatter. A simple Lotka-Volterra model gives an excellent description of the periodic evolution observed in the weak-turbulence regime. Suppression of the usual backscatter cascade by long-wavelength damping enables intense beam-aligned density troughs to form, which trap and duct Langmuir waves.

  12. Stochastic reacceleration of relativistic electrons by turbulent reconnection: a mechanism for cluster-scale radio emission ?

    CERN Document Server

    Brunetti, G

    2016-01-01

    In this paper we investigate a situation where relativistic particles are reaccelerated diffusing across regions of reconnection and magnetic dynamo in super-Alfvenic, incompressible large-scale turbulence. We present an exploratory study of this mechanism in the intra-cluster-medium (ICM). In view of large-scale turbulence in the ICM we adopt a reconnection scheme that is based on turbulent reconnection and MHD turbulence. In this case particles are accelerated and decelerated in a systematic way in reconnecting and magnetic-dynamo regions, respectively, and on longer time-scales undergo a stochastic process diffusing across these sites (similar to second-order Fermi). Our study extends on larger scales numerical studies that focused on the acceleration in and around turbulent reconnecting regions. We suggest that this mechanism may play a role in the reacceleration of relativistic electrons in galaxy clusters providing a new physical scenario to explain the origin of cluster-scale diffuse radio emission. In...

  13. Turbulence in Extrasolar Planetary Systems Implies that Mean Motion Resonances are Rare

    CERN Document Server

    Adams, Fred C; Bloch, Anthony M

    2008-01-01

    This paper considers the effects of turbulence on mean motion resonances in extrasolar planetary systems and predicts that systems rarely survive in a resonant configuration. A growing number of systems are reported to be in resonance, which is thought to arise from the planet migration process. If planets are brought together and moved inward through torques produced by circumstellar disks, then disk turbulence can act to prevent planets from staying in a resonant configuration. This paper studies this process through numerical simulations and via analytic model equations, where both approaches include stochastic forcing terms due to turbulence. We explore how the amplitude and forcing time intervals of the turbulence affect the maintenance of mean motion resonances. If turbulence is common in circumstellar disks during the epoch of planet migration, with the amplitudes indicated by current MHD simulations, then planetary systems that remain deep in mean motion resonance are predicted to be rare. More specif...

  14. Statistical turbulence theory and turbulence phenomenology

    Science.gov (United States)

    Herring, J. R.

    1973-01-01

    The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.

  15. Electromagnetically driven dwarf tornados in turbulent convection

    NARCIS (Netherlands)

    Kenjeres, S.

    2011-01-01

    Motivated by the concept of interdependency of turbulent flow and electromagnetic fields inside the spiraling galaxies, we explored the possibilities of generating a localized Lorentz force that will produce a three-dimensional swirling flow in weakly conductive fluids. Multiple vortical flow patter

  16. Charge transport scaling in turbulent electroconvection

    NARCIS (Netherlands)

    Tsai, Peichun; Daya, Zahir A.; Morris, Stephen W.

    2005-01-01

    We describe a local-power-law scaling theory for the mean dimensionless electric current Nu in turbulent electroconvection. The experimental system consists of a weakly conducting, submicron-thick liquid-crystal film supported in the annulus between concentric circular electrodes. It is driven into

  17. Electromagnetically driven dwarf tornados in turbulent convection

    NARCIS (Netherlands)

    Kenjeres, S.

    2011-01-01

    Motivated by the concept of interdependency of turbulent flow and electromagnetic fields inside the spiraling galaxies, we explored the possibilities of generating a localized Lorentz force that will produce a three-dimensional swirling flow in weakly conductive fluids. Multiple vortical flow patter

  18. Two-dimensional MHD model of the Jovian magnetodisk

    Science.gov (United States)

    Kislov, R. A.; Malova, H. V.; Vasko, I. Y.

    2015-09-01

    A self-consistent stationary axially symmetric MHD model of the Jovian magnetodisk is constructed. This model is a generalization of the models of plane current sheets that have been proposed earlier in order to describe the structure of the current sheet in the magnetotail of the Earth [1, 2]. The model takes centrifugal force, which is induced by the corotation electric field, and the azimuthal magnetic field into account. The configurations of the magnetic field lines for the isothermic (plasma temperature assumed to be constant) and the isentropic (plasma entropy assumed to be constant) models of the magnetodisk are determined. The dependence of the thickness of the magnetodisk on the distance to Jupiter is obtained. The thickness of the magnetodisk and the magnetic field distribution in the isothermic and isentropic models are similar. The inclusion of a low background plasma pressure results in a considerable reduction in the thickness of the magnetodisk. This effect may be attributed to the fact that centrifugal force prevails over the pressure gradient at large distances from the planet. The mechanism of unipolar induction and the related large-scale current system are analyzed. The direct and return Birkeland currents are determined in the approximation of a weak azimuthal magnetic field. The modeling results agree with theoretical estimates from other studies and experimental data.

  19. Relativistic MHD Simulations of Poynting Flux-Driven Jets

    CERN Document Server

    Guan, Xiaoyue; Li, Shengtai

    2013-01-01

    Relativistic, magnetized jets are observed to propagate to very large distances in many Active Galactic Nuclei (AGN). We use 3D relativistic MHD (RMHD) simulations to study the propagation of Poynting flux-driven jets in AGN. These jets are assumed already being launched from the vicinity ($\\sim 10^3$ gravitational radii) of supermassive black holes. Jet injections are characterized by a model described in Li et al. (2006) and we follow the propagation of these jets to ~ parsec scales. We find that these current-carrying jets are always collimated and mildly relativistic. When $\\alpha$, the ratio of toroidal-to-poloidal magnetic flux injection, is large the jet is subject to non-axisymmetric current-driven instabilities (CDI) which lead to substantial dissipation and reduced jet speed. However, even with the presence of instabilities, the jet is not disrupted and will continue to propagate to large distances. We suggest that the relatively weak impact by the instability is due to the nature of the instability...

  20. Optical Turbulence above the Internal Antarctic Plateau

    CERN Document Server

    Masciadri, E; Hagelin, S; Moigne, P Le; Noilhan, J

    2010-01-01

    The internal antarctic plateau revealed in the last years to be a site with interesting potentialities for the astronomical applications due to the extreme dryness and low temperatures, the typical high altitude of the plateau, the weak level of turbulence in the free atmosphere down to a just few tens of meters from the ground and the thin optical turbulence layer developed at the ground. The main goal of a site testing assessment above the internal antarctic plateau is to characterize the site (optical turbulence and classical meteorological parameters) and to quantify which is the gain we might obtain with respect to equivalent astronomical observations done above mid-latitude sites to support plans for future astronomical facilities. Our group is involved, since a few years, in studies related to the assessment of this site for astronomical applications that include the characterization of the meteorological parameters and optical turbulence provided by general circulation models as well as mesoscale atmo...

  1. MHD stability limits in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2001-07-01

    Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation {kappa} and triangularity {delta}, with high {kappa}, and low {delta} leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The

  2. NUMERICAL STUDIES OF WEAKLY STOCHASTIC MAGNETIC RECONNECTION

    Directory of Open Access Journals (Sweden)

    G. Kowal

    2009-01-01

    Full Text Available We study the e ects of turbulence on magnetic reconnection using three-dimensional numerical simulations.This is the rst attempt to test the model of fast magnetic reconnection proposed by Lazarian & Vishniac (1999, which assumes the presence of weak, small-scale magnetic eld structure near the current sheet. This a ects the rate of reconnection by reducing the transverse scale for reconnection ows and by allowing many independent ux reconnection events to occur simultaneously. We performed a number of simulations to test the dependencies of the reconnection speed, de ned as the ratio of the in ow velocity to the Alfv n speed, on the turbulence power, the injection scale and resistivity. Our results show that turbulence signi cantly a ects the topology of magnetic eld near the di usion region and increases the thickness of the out ow region. We con rm the predictions of the Lazarian & Vishniac model. In particular, we report the growth of the reconnection speed proportional to V 2 l , where Vl is the amplitude of velocity at the injection scale. It depends on the injection scale linj as (linj=L2=3, where L is the size of the system, which is somewhat faster but still roughly consistent with the theoretical expectations. We also show that for 3D reconnection the Ohmic resistivity is important in the local reconnection events only, and the global reconnection rate in the presence of turbulence does not depend on it.

  3. Consistent Initial Conditions for the DNS of Compressible Turbulence

    Science.gov (United States)

    Ristorcelli, J. R.; Blaisdell, G. A.

    1996-01-01

    Relationships between diverse thermodynamic quantities appropriate to weakly compressible turbulence are derived. It is shown that for turbulence of a finite turbulent Mach number there is a finite element of compressibility. A methodology for generating initial conditions for the fluctuating pressure, density and dilatational velocity is given which is consistent with finite Mach number effects. Use of these initial conditions gives rise to a smooth development of the flow, in contrast to cases in which these fields are specified arbitrarily or set to zero. Comparisons of the effect of different types of initial conditions are made using direct numerical simulation of decaying isotropic turbulence.

  4. Nonlinear transverse cascade and two-dimensional magnetohydrodynamic subcritical turbulence in plane shear flows.

    Science.gov (United States)

    Mamatsashvili, G R; Gogichaishvili, D Z; Chagelishvili, G D; Horton, W

    2014-04-01

    We find and investigate via numerical simulations self-sustained two-dimensional turbulence in a magnetohydrodynamic flow with a maximally simple configuration: plane, noninflectional (with a constant shear of velocity), and threaded by a parallel uniform background magnetic field. This flow is spectrally stable, so the turbulence is subcritical by nature and hence it can be energetically supported just by a transient growth mechanism due to shear flow non-normality. This mechanism appears to be essentially anisotropic in the spectral (wave-number) plane and operates mainly for spatial Fourier harmonics with streamwise wave numbers less than the ratio of flow shear to Alfvén speed, kymagnetohydrodynamic (MHD) turbulence research. We find similarity of the nonlinear dynamics to the related dynamics in hydrodynamic flows: to the bypass concept of subcritical turbulence. The essence of the analyzed nonlinear MHD processes appears to be a transverse redistribution of kinetic and magnetic spectral energies in the wave-number plane [as occurs in the related hydrodynamic flow; see Horton et al., Phys. Rev. E 81, 066304 (2010)] and differs fundamentally from the existing concepts of (anisotropic direct and inverse) cascade processes in MHD shear flows.

  5. NONLINEAR MHD WAVES IN A PROMINENCE FOOT

    Energy Technology Data Exchange (ETDEWEB)

    Ofman, L. [Catholic University of America, Washington, DC 20064 (United States); Knizhnik, K.; Kucera, T. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)

    2015-11-10

    We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.

  6. An advanced implicit solver for MHD

    Science.gov (United States)

    Udrea, Bogdan

    A new implicit algorithm has been developed for the solution of the time-dependent, viscous and resistive single fluid magnetohydrodynamic (MHD) equations. The algorithm is based on an approximate Riemann solver for the hyperbolic fluxes and central differencing applied on a staggered grid for the parabolic fluxes. The algorithm employs a locally aligned coordinate system that allows the solution to the Riemann problems to be solved in a natural direction, normal to cell interfaces. The result is an original scheme that is robust and reduces the complexity of the flux formulas. The evaluation of the parabolic fluxes is also implemented using a locally aligned coordinate system, this time on the staggered grid. The implicit formulation employed by WARP3 is a two level scheme that was applied for the first time to the single fluid MHD model. The flux Jacobians that appear in the implicit scheme are evaluated numerically. The linear system that results from the implicit discretization is solved using a robust symmetric Gauss-Seidel method. The code has an explicit mode capability so that implementation and test of new algorithms or new physics can be performed in this simpler mode. Last but not least the code was designed and written to run on parallel computers so that complex, high resolution runs can be per formed in hours rather than days. The code has been benchmarked against analytical and experimental gas dynamics and MHD results. The benchmarks consisted of one-dimensional Riemann problems and diffusion dominated problems, two-dimensional supersonic flow over a wedge, axisymmetric magnetoplasmadynamic (MPD) thruster simulation and three-dimensional supersonic flow over intersecting wedges and spheromak stability simulation. The code has been proven to be robust and the results of the simulations showed excellent agreement with analytical and experimental results. Parallel performance studies showed that the code performs as expected when run on parallel

  7. Probing Acceleration and Turbulence at Relativistic Shocks in Blazar Jets

    CERN Document Server

    Baring, Matthew G; Summerlin, Errol J

    2016-01-01

    Diffusive shock acceleration (DSA) at relativistic shocks is widely thought to be an important acceleration mechanism in various astrophysical jet sources, including radio-loud active galactic nuclei such as blazars. Such acceleration can produce the non-thermal particles that emit the broadband continuum radiation that is detected from extragalactic jets. An important recent development for blazar science is the ability of Fermi-LAT spectroscopy to pin down the shape of the distribution of the underlying non-thermal particle population. This paper highlights how multi-wavelength spectra spanning optical to X-ray to gamma-ray bands can be used to probe diffusive acceleration in relativistic, oblique, magnetohydrodynamic (MHD) shocks in blazar jets. Diagnostics on the MHD turbulence near such shocks are obtained using thermal and non-thermal particle distributions resulting from detailed Monte Carlo simulations of DSA. These probes are afforded by the characteristic property that the synchrotron $\

  8. Modelling turbulence in the outer heliosphere

    Science.gov (United States)

    Macek, Wieslaw

    2016-07-01

    Turbulence is complex behaviour that is ubiquitous both in laboratory and astrophysical magnetized plasmas. Notwithstanding the progress in simulation of turbulence in various continuous media, its mechanism is still not sufficiently clear. Therefore, following the basic idea of Kolmogorov, some phenomenological models of scaling behaviour have been proposed, including fractal and multifractal modelling, that can reveal the intermittent character of turbulence. Based on wealth of data provided by deep spacecraft missions including Voyager 1 and 2, these models show that the turbulence in the entire heliosphere is intermittent and multifractal. Moreover, the degree of multifractality decreases with the heliocentric distance and is modulated by the phases of the solar cycles, also beyond the heliospheric termination shock, i. e. in the heliosheath. However, in the very local interstellar medium beyond the heliopause turbulence becomes rather weak and less intermittent, as shown by recent measurements from Voyager 1. This suggests that the heliosphere is immersed in a relatively quiet environment. Hence these studies of turbulence, especially at the heliospheric boundaries, demonstrate that the outer heliosphere provides an interesting possibility to look into turbulence in various media.

  9. Turbulent energy transfer in electromagnetic turbulence: hints from a Reversed Field Pinch plasma

    Science.gov (United States)

    Vianello, N.; Bergsaker, H.

    2005-10-01

    The relationship between electromagnetic turbulence and sheared plasma flow in a Reversed Field Pinch is addressed. ExB sheared flows and turbulence at the edge tends to organize themeselves near marginal stability, suggesting an underlying energy exchange process between turbulence and mean flow. In MHD this process is well described through the quantity P which represents the energy transfer (per mass and time unit) from turbulence to mean fields. In the edge region of RFP configuration, where magnetic field is mainly poloidal and the mean ExB is consequently toroidal, the quantity P results: P =[ -ρμ0 + ]Vφr where Vφ is the mean ExB toroidal flow, ρ the mean mass density and b and v the fluctuations of velocity and magnetic field respectively. Both the radial profiles and the temporal evolution of P have been measured in the edge region of Extrap-T2R Reversed Field Pinch experiment. The results support the existence of oscillating energy exchange process between fluctuations and mean flow.

  10. Exploring Plasma Turbulence in the Kronian Magnetosheath Using Cassini Data

    Science.gov (United States)

    Hadid, L.; Sahraoui, F.; Kiyani, K. H.; Modolo, R.; Retino, A.; Canu, P.; Masters, A.; Dougherty, M. K.

    2014-12-01

    The shocked solar wind plasma upstream of the bowshock forms the magnetosheath. Through this region energy, mass and momentum are transported from the solar wind into the planet's magnetosphere, playing a crucial role in the solar-planet interactions. Hence, the planets' magnetosheath present a high level of turbulence, with a rich variety of wave and stochastic phenomena. While the magnetic turbulence of the terrestrial magnetosheath has been extensively studied, not so much work has been done regarding the planets magnetosheaths. Therefore, and in order to expand our knowledge on plasma turbulence, we investigate here the main properties of the plasma turbulence in the magnetosheath of Saturn using the Cassini spacecraft data and compare it with the well-explored terrestrial solar wind turbulence. These properties include the magnetic field energy spectra, the magnetic compressibility and intermittency, at both MHD and kinetic scales. The analysis is based on in-situ data provided by the Fluxgate Magnetometer of the MAG instrument, which measures the magnetic field data with 32ms time resolution and the plasma data from the CAPS/IMS (Cassini Plasma Spectrometer) and the Electron Spectrometer (ELS), during 39 shock-crossings between 2004 and 2005. Similarities and differences were found between the different media, in particular about the nature of the turbulence and its scaling laws. These finding will be discussed along with theoretical implications on the modeling of space plasma.

  11. Explosive Turbulent Magnetic Reconnection

    OpenAIRE

    Higashimori, Katsuaki; Yokoi, Nobumitsu; Hoshino, Masahiro

    2013-01-01

    We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This ...

  12. Airfoils in Turbulent Inflow

    DEFF Research Database (Denmark)

    Gilling, Lasse

    of resolved inflow turbulence on airfoil simulations in CFD. The detached-eddy simulation technique is used because it can resolve the inflow turbulence without becoming too computationally expensive due to its limited requirements for mesh resolution in the boundary layer. It cannot resolve the turbulence...... synthetic turbulence in arbitrary domains. The purpose is to generate a synthetic turbulence field corresponding to the field encountered by a rotating blade....

  13. Cascades and spectra of a turbulent spinodal decomposition in two-dimensional symmetric binary liquid mixtures

    Science.gov (United States)

    Fan, Xiang; Diamond, P. H.; Chacón, L.; Li, Hui

    2016-09-01

    We study the fundamental physics of cascades and spectra in two-dimensional (2D) Cahn-Hilliard-Navier-Stokes (CHNS) turbulence, and compare and contrast this system with 2D magnetohydrodynamic (MHD) turbulence. The important similarities include basic equations, ideal quadratic invariants, cascades, and the role of linear elastic waves. Surface tension induces elasticity, and the balance between surface tension energy and turbulent kinetic energy determines a length scale (Hinze scale) of the system. The Hinze scale may be thought of as the scale of emergent critical balance between fluid straining and elastic restoring forces. The scales between the Hinze scale and dissipation scale constitute the elastic range of the 2D CHNS system. By direct numerical simulation, we find that in the elastic range, the mean square concentration spectrum Hkψ of the 2D CHNS system exhibits the same power law (-7 /3 ) as the mean square magnetic potential spectrum HkA in the inverse cascade regime of 2D MHD. This power law is consistent with an inverse cascade of Hψ, which is observed. The kinetic energy spectrum of the 2D CHNS system is EkK˜k-3 if forced at large scale, suggestive of the direct enstrophy cascade power law of 2D Navier-Stokes turbulence. The difference from the energy spectra of 2D MHD turbulence implies that the back reaction of the concentration field to fluid motion is limited. We suggest this is because the surface tension back reaction is significant only in the interfacial regions. The interfacial regions fill only a small portion of the 2D CHNS system, and their interface packing fraction is much smaller than that for 2D MHD.

  14. Magnetic stresses in ideal MHD plasmas

    DEFF Research Database (Denmark)

    Jensen, V.O.

    1995-01-01

    and it is shown that the resulting magnetic forces on a finite volume element can be obtained by integrating the magnetic stresses over the surface of the element. The concept is used to rederive and discuss the equilibrium conditions for axisymmetric toroidal plasmas, including the virial theorem......The concept of magnetic stresses in ideal MHD plasma theory is reviewed and revisited with the aim of demonstrating its advantages as a basis for calculating and understanding plasma equilibria. Expressions are derived for the various stresses that transmit forces in a magnetized plasma...

  15. Modeling magnetized neutron stars using resistive MHD

    CERN Document Server

    Palenzuela, Carlos

    2013-01-01

    This work presents an implementation of the resistive MHD equations for a generic algebraic Ohm's law which includes the effects of finite resistivity within full General Relativity. The implementation naturally accounts for magnetic-field-induced anisotropies and, by adopting a phenomenological current, is able to accurately describe electromagnetic fields in the star and in its magnetosphere. We illustrate the application of this approach in interesting systems with astrophysical implications; the aligned rotator solution and the collapse of a magnetized rotating neutron star to a black hole.

  16. Local potential analysis of MHD instability

    Science.gov (United States)

    Sen, K. K.; Wilson, S. J.

    1985-02-01

    The use of the local potential method for studying instabilities of MHD fluids is examined. The mathematical method is similar to that developed by the authors for studying the time-dependent radiative transfer problem and the radiative stability of interstellar masers. The scheme is based on the universal evolution criterion proposed by Glansdorff and Prigogine (1964) as demonstrated by Hays (1965) for the heat equation and Schechter and Himmelblau (1965) for the Benard problem in hydrodynamics. The scheme for securing stability criteria is demonstrated for two particular cases.

  17. MHD Equations with Regularity in One Direction

    Directory of Open Access Journals (Sweden)

    Zujin Zhang

    2014-01-01

    Full Text Available We consider the 3D MHD equations and prove that if one directional derivative of the fluid velocity, say, ∂3u∈Lp0, T;LqR3, with 2/p + 3/q = γ ∈ [1,3/2, 3/γ ≤ q ≤ 1/(γ - 1, then the solution is in fact smooth.  This improves previous results greatly.

  18. MHD squeezing flow between two infinite plates

    Directory of Open Access Journals (Sweden)

    Umar Khan

    2014-03-01

    Full Text Available Magneto hydrodynamic (MHD squeezing flow of a viscous fluid has been discussed. Conservation laws combined with similarity transformations have been used to formulate the flow mathematically that leads to a highly nonlinear ordinary differential equation. Analytical solution to the resulting differential equation is determined by employing Variation of Parameters Method (VPM. Runge–Kutta order-4 method is also used to solve the same problem for the sake of comparison. It is found that solution using VPM reduces the computational work yet maintains a very high level of accuracy. The influence of different parameters is also discussed and demonstrated graphically.

  19. Relativistic MHD with Adaptive Mesh Refinement

    CERN Document Server

    Anderson, M; Liebling, S L; Neilsen, D; Anderson, Matthew; Hirschmann, Eric; Liebling, Steven L.; Neilsen, David

    2006-01-01

    We solve the relativistic magnetohydrodynamics (MHD) equations using a finite difference Convex ENO method (CENO) in 3+1 dimensions within a distributed parallel adaptive mesh refinement (AMR) infrastructure. In flat space we examine a Balsara blast wave problem along with a spherical blast wave and a relativistic rotor test both with unigrid and AMR simulations. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. We also investigate the impact of hyperbolic divergence cleaning for the spherical blast wave and relativistic rotor. We include unigrid and mesh refinement parallel performance measurements for the spherical blast wave.

  20. 3D MHD Simulations of Tokamak Disruptions

    Science.gov (United States)

    Woodruff, Simon; Stuber, James

    2014-10-01

    Two disruption scenarios are modeled numerically by use of the CORSICA 2D equilibrium and NIMROD 3D MHD codes. The work follows the simulations of pressure-driven modes in DIII-D and VDEs in ITER. The aim of the work is to provide starting points for simulation of tokamak disruption mitigation techniques currently in the CDR phase for ITER. Pressure-driven instability growth rates previously observed in simulations of DIIID are verified; Halo and Hiro currents produced during vertical displacements are observed in simulations of ITER with implementation of resistive walls in NIMROD. We discuss plans to exercise new code capabilities and validation.