WorldWideScience

Sample records for weak high energy

  1. Weak interactions at high energies

    International Nuclear Information System (INIS)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references

  2. Weak interactions at high energies. [Lectures, review

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references. (JFP)

  3. Weakly supervised classification in high energy physics

    International Nuclear Information System (INIS)

    Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco; Schwartzman, Ariel

    2017-01-01

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. This paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics — quark versus gluon tagging — we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervised classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.

  4. Weakly supervised classification in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dery, Lucio Mwinmaarong [Physics Department, Stanford University,Stanford, CA, 94305 (United States); Nachman, Benjamin [Physics Division, Lawrence Berkeley National Laboratory,1 Cyclotron Rd, Berkeley, CA, 94720 (United States); Rubbo, Francesco; Schwartzman, Ariel [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA, 94025 (United States)

    2017-05-29

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. This paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics — quark versus gluon tagging — we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervised classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.

  5. Charged current weak interactions at high energy

    International Nuclear Information System (INIS)

    Cline, D.

    1977-01-01

    We review high energy neutrino and antineutrino charged current interactions. An overview of the experimental data is given, including a discussion of the experimental status of the y anomaly. Locality tests, μ-e universality and charge symmetry invariance tests are discussed. Charm production is discussed. The experimental status of trimuon events and possible phenomenological models for these events are presented. (orig.) [de

  6. Theory and phenomenology of strong and weak interaction high energy physics: Progress report, May 1, 1987-April 30, 1988

    International Nuclear Information System (INIS)

    Carruthers, P.; Thews, R.L.

    1988-01-01

    This paper contains progress information on the following topics in High Energy Physics: strong, electromagnetic, and weak interactions; aspects of quark-gluon models for hadronic interactions, decays, and structure; the dynamical generation of a mass gap and the role and truthfulness of perturbation theory; statistical and dynamical aspects of hadronic multiparticle production; and realization of chiral symmetry and temperature effects in supersymmetric theories

  7. Theory and phenomenology of strong and weak interaction high energy physics

    International Nuclear Information System (INIS)

    1989-01-01

    This paper reviews research done on theoretical high energy physics. Areas of discussion are: chiral symmetry; quantum chromodynamics; quark-gluon plasma; particle decay of kaons; photonuclear reactions from cosmic ray showers; symmetry breaking and other related topics

  8. Weak lensing and dark energy

    International Nuclear Information System (INIS)

    Huterer, Dragan

    2002-01-01

    We study the power of upcoming weak lensing surveys to probe dark energy. Dark energy modifies the distance-redshift relation as well as the matter power spectrum, both of which affect the weak lensing convergence power spectrum. Some dark-energy models predict additional clustering on very large scales, but this probably cannot be detected by weak lensing alone due to cosmic variance. With reasonable prior information on other cosmological parameters, we find that a survey covering 1000 sq deg down to a limiting magnitude of R=27 can impose constraints comparable to those expected from upcoming type Ia supernova and number-count surveys. This result, however, is contingent on the control of both observational and theoretical systematics. Concentrating on the latter, we find that the nonlinear power spectrum of matter perturbations and the redshift distribution of source galaxies both need to be determined accurately in order for weak lensing to achieve its full potential. Finally, we discuss the sensitivity of the three-point statistics to dark energy

  9. Magnifying Lenses with Weak Achromatic Bends for High-Energy Electron Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Walstrom, Peter Lowell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-27

    This memo briefly describes bremsstrahlung background effects in GeV-range electron radiography systems and the use of weak bending magnets to deflect the image to the side of the forward bremsstrahlung spot to reduce background. The image deflection introduces first-order chromatic image blur due to dispersion. Two approaches to eliminating the dispersion effect to first order by use of magnifying lens with achromatic bends are described. Also, higher-order image blur terms caused by weak bends are also discussed, and shown to be negligibly small in most cases of interest.

  10. Low-energy Electro-weak Reactions

    International Nuclear Information System (INIS)

    Gazit, Doron

    2012-01-01

    Chiral effective field theory (EFT) provides a systematic and controlled approach to low-energy nuclear physics. Here, we use chiral EFT to calculate low-energy weak Gamow-Teller transitions. We put special emphasis on the role of two-body (2b) weak currents within the nucleus and discuss their applications in predicting physical observables.

  11. A high-resolution processing technique for improving the energy of weak signal based on matching pursuit

    Directory of Open Access Journals (Sweden)

    Shuyan Wang

    2016-05-01

    Full Text Available This paper proposes a new method to improve the resolution of the seismic signal and to compensate the energy of weak seismic signal based on matching pursuit. With a dictionary of Morlet wavelets, matching pursuit algorithm can decompose a seismic trace into a series of wavelets. We abstract complex-trace attributes from analytical expressions to shrink the search range of amplitude, frequency and phase. In addition, considering the level of correlation between constituent wavelets and average wavelet abstracted from well-seismic calibration, we can obtain the search range of scale which is an important adaptive parameter to control the width of wavelet in time and the bandwidth of frequency. Hence, the efficiency of selection of proper wavelets is improved by making first a preliminary estimate and refining a local selecting range. After removal of noise wavelets, we integrate useful wavelets which should be firstly executed by adaptive spectral whitening technique. This approach can improve the resolutions of seismic signal and enhance the energy of weak wavelets simultaneously. The application results of real seismic data show this method has a good perspective of application.

  12. Weak lensing in the Dark Energy Survey

    Science.gov (United States)

    Troxel, Michael

    2016-03-01

    I will present the current status of weak lensing results from the Dark Energy Survey (DES). DES will survey 5000 square degrees in five photometric bands (grizY), and has already provided a competitive weak lensing catalog from Science Verification data covering just 3% of the final survey footprint. I will summarize the status of shear catalog production using observations from the first year of the survey and discuss recent weak lensing science results from DES. Finally, I will report on the outlook for future cosmological analyses in DES including the two-point cosmic shear correlation function and discuss challenges that DES and future surveys will face in achieving a control of systematics that allows us to take full advantage of the available statistical power of our shear catalogs.

  13. Weak lensing: Dark Matter, Dark Energy and Dark Gravity

    International Nuclear Information System (INIS)

    Heavens, Alan

    2009-01-01

    In this non-specialist review I look at how weak lensing can provide information on the dark sector of the Universe. The review concentrates on what can be learned about Dark Matter, Dark Energy and Dark Gravity, and why. On Dark Matter, results on the confrontation of theoretical profiles with observation are reviewed, and measurements of neutrino masses discussed. On Dark Energy, the interest is whether this could be Einstein's cosmological constant, and prospects for high-precision studies of the equation of state are considered. On Dark Gravity, we consider the exciting prospects for future weak lensing surveys to distinguish General Relativity from extra-dimensional or other gravity theories.

  14. Weak links in high critical temperature superconductors

    Science.gov (United States)

    Tafuri, Francesco; Kirtley, John R.

    2005-11-01

    The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-TC superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence

  15. Weak links in high critical temperature superconductors

    International Nuclear Information System (INIS)

    Tafuri, Francesco; Kirtley, John R

    2005-01-01

    The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-T C superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence

  16. Weak coupling theory of high temperature superconductors

    International Nuclear Information System (INIS)

    Labbe, J.

    1990-01-01

    Many theories of the high T c superconductors are founded on the hypothesis that the electron-electron correlations are so strong in these materials that, in the absence of doping or internal charge transfer, they should be Mott insulators. The authors consider this hypothesis as unlikely for the following reasons. At first, very strong correlations would arise from a very large repulsive Coulomb energy between electrons within each atom. This would be the case only with very strongly localized atomic orbitals, as for instance the f orbitals in the rare earths, leading to very narrow energy bands. But in the copper oxides, the d orbitals of copper, or the p orbitals of oxygen, are not so strongly localized, and thus the intra-atomic repulsive Coulomb energy has no reason to be much larger than in the simple transitional metals or their other compounds

  17. Search for Higgs boson production via weak boson fusion and decaying to bb¯in association with a high-energy photon using the ATLAS detector

    CERN Document Server

    Liang, Zhijun; The ATLAS collaboration

    2017-01-01

    A search for the bb¯ decay of the Standard Model Higgs boson produced through vector boson fusion in association with a high transverse energy (ET) photon has been conducted with the ATLAS detector. The high-ET photon provides a distinct signature for both triggering and reducing the large QCD jet background present in the inclusive bb¯jj signature. The talk will focus on new trigger strategy implemented in 2016 data taking to target the specific final state as well as the implementation of the multivariate strategy for the signal extraction. This analysis has been combined with a complementary analysis in the more inclusive bb¯jj final state, which results in a significant improvement in the sensitivity. Results with pp collision data collected in 2015 and 2016 at a centre-of-mass energy of 13 TeV are presented.

  18. HIGH-REDSHIFT SDSS QUASARS WITH WEAK EMISSION LINES

    International Nuclear Information System (INIS)

    Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Jiang Linhua; Kim, J. Serena; Schmidt, Gary D.; Smith, Paul S.; Vestergaard, Marianne; Young, Jason E.; Brandt, W. N.; Shemmer, Ohad; Gibson, Robert R.; Schneider, Donald P.; Strauss, Michael A.; Shen Yue; Anderson, Scott F.; Carilli, Christopher L.; Richards, Gordon T.

    2009-01-01

    We identify a sample of 74 high-redshift quasars (z > 3) with weak emission lines from the Fifth Data Release of the Sloan Digital Sky Survey and present infrared, optical, and radio observations of a subsample of four objects at z > 4. These weak emission-line quasars (WLQs) constitute a prominent tail of the Lyα + N v equivalent width distribution, and we compare them to quasars with more typical emission-line properties and to low-redshift active galactic nuclei with weak/absent emission lines, namely BL Lac objects. We find that WLQs exhibit hot (T ∼ 1000 K) thermal dust emission and have rest-frame 0.1-5 μm spectral energy distributions that are quite similar to those of normal quasars. The variability, polarization, and radio properties of WLQs are also different from those of BL Lacs, making continuum boosting by a relativistic jet an unlikely physical interpretation. The most probable scenario for WLQs involves broad-line region properties that are physically distinct from those of normal quasars.

  19. Overcoming weak intrinsic depolarizing resonances with energy-jump

    International Nuclear Information System (INIS)

    Huang, H.; Ahrens, L.; Alessi, J.G.

    1997-01-01

    In the recent polarized proton runs in the AGS, a 5% partial snake was used successfully to overcome the imperfection depolarizing resonances. Polarized proton beam was accelerated up to the required RHIC injection energy of 25 GeV. However, significant amount of polarization was lost at 0+ν y , 12+ν y and 36+ν y , which is believed to be partially due to the coupling resonances. To overcome the coupling resonance, an energy-jump was generated by rapidly changing the beam circumference using the powerful AGS rf system. It clearly demonstrates that the novel energy-jump method can successfully overcome coupling resonances and weak intrinsic resonances

  20. High energy physics problems

    International Nuclear Information System (INIS)

    Arbuzov, B.A.

    1977-01-01

    Described are modern views on the particle structure and particle interactions at high energies. According to the latest data recieved, all particles can be classified in three groups: 1) strong interacting hadrons; 2) leptons, having no strong interactions; 3) photon. The particle structure is described in a quark model, and with the use of gluons. The elementary particle theory is based on the quantum field theory. The energy increase of interacting particles enables to check the main theory principles, such as conventions for causality, relativistic invariance and unitarity. Investigations of weak interactions are of great importance. The progress in this field is connected with unified gauge theories of weak and electromagnetic interactions. For weak interactions promissing are the experiments with colliding electron-proton rings. The new data, especially at higher energies, will lead to a further refinement of the nature of particles and their interactions

  1. High-redshift SDSS Quasars with Weak Emission Lines

    DEFF Research Database (Denmark)

    Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Brandt, W. N.

    2009-01-01

    We identify a sample of 74 high-redshift quasars (z > 3) with weak emission lines from the Fifth Data Release of the Sloan Digital Sky Survey and present infrared, optical, and radio observations of a subsample of four objects at z > 4. These weak emission-line quasars (WLQs) constitute a promine...

  2. Theory and phenomenology of strong and weak interaction high energy physics: [Technical progress report, 5/1/86-4/30/87

    International Nuclear Information System (INIS)

    Thews, R.L.

    1986-01-01

    The research reported includes: low energy quark-hadron dynamics; quark-gluon models for hadronic interactions, decays and structure; mathematical and physical properties of nonlinear sigma models, Yang-Mills theories, and Coulomb gases, which are of interest in both particle physics and condensed matter physics; statistical and dynamical aspects of hadronic multiparticle production. 28 refs

  3. Constraints on the dark matter and dark energy interactions from weak lensing bispectrum tomography

    Energy Technology Data Exchange (ETDEWEB)

    An, Rui [School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Feng, Chang [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Wang, Bin, E-mail: an_rui@sjtu.edu.cn, E-mail: chang.feng@uci.edu, E-mail: wang_b@sjtu.edu.cn [Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, Yangzhou 225009 (China)

    2017-10-01

    We estimate uncertainties of cosmological parameters for phenomenological interacting dark energy models using weak lensing convergence power spectrum and bispectrum. We focus on the bispectrum tomography and examine how well the weak lensing bispectrum with tomography can constrain the interactions between dark sectors, as well as other cosmological parameters. Employing the Fisher matrix analysis, we forecast parameter uncertainties derived from weak lensing bispectra with a two-bin tomography and place upper bounds on strength of the interactions between the dark sectors. The cosmic shear will be measured from upcoming weak lensing surveys with high sensitivity, thus it enables us to use the higher order correlation functions of weak lensing to constrain the interaction between dark sectors and will potentially provide more stringent results with other observations combined.

  4. Fingerprinting dark energy. II. Weak lensing and galaxy clustering tests

    International Nuclear Information System (INIS)

    Sapone, Domenico; Kunz, Martin; Amendola, Luca

    2010-01-01

    The characterization of dark energy is a central task of cosmology. To go beyond a cosmological constant, we need to introduce at least an equation of state and a sound speed and consider observational tests that involve perturbations. If dark energy is not completely homogeneous on observable scales, then the Poisson equation is modified and dark matter clustering is directly affected. One can then search for observational effects of dark energy clustering using dark matter as a probe. In this paper we exploit an analytical approximate solution of the perturbation equations in a general dark energy cosmology to analyze the performance of next-decade large-scale surveys in constraining equation of state and sound speed. We find that tomographic weak lensing and galaxy redshift surveys can constrain the sound speed of the dark energy only if the latter is small, of the order of c s < or approx. 0.01 (in units of c). For larger sound speeds the error grows to 100% and more. We conclude that large-scale structure observations contain very little information about the perturbations in canonical scalar field models with a sound speed of unity. Nevertheless, they are able to detect the presence of cold dark energy, i.e. a dark energy with nonrelativistic speed of sound.

  5. Subharmonic energy-gap structure in superconducting weak links

    DEFF Research Database (Denmark)

    Flensberg, K.; Hansen, Jørn Bindslev; Octavio, M.

    1988-01-01

    We present corrected calculations of the subharmonic energy-gap structure using the model of Octavio, Tinkham, Blonder, and Klapwijk, which includes the effect of normal scattering in the weak link. We show that while the overall predictions of this model do not change qualitatively, the details...... of the predicted curves are different and in better agreement with experiment. We also present calculation of the current-voltage characteristics and of the excess currents for T=0, as the normal scattering parameter Z is varied. We also show how the calculation can be shortened using symmetry arguments...

  6. Search for Higgs boson production via weak boson fusion and decaying to $b \\bar b$ in association with a high-energy photon in the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    A search has been conducted for the $b\\bar b$ decay of the Standard Model Higgs boson produced through vector boson fusion in association with a photon and two jets. The search in this $b\\bar b \\gamma jj$ signature benefits from a large reduction of QCD jet background relative to the inclusive $b\\bar b j j$ signature and from the presence of a high-tranverse-momentum photon for triggering. Results are reported from the analysis of 12.6 fb$^{-1}$ of LHC proton-proton collision data at $\\sqrt{s} = 13$ TeV collected with the ATLAS detector. The observed 95\\% confidence level upper limit on the production cross section times branching ratio for a Higgs mass of 125 GeV is $4.0$ times the Standard Model expectation, and the expected upper limit is $6.0^{+2.3}_{-1.7}$. The measured signal strength is $\\mu=-3.9^{+2.8}_{-2.7}$ times the Standard Model value. The analysis methods are also used to search for $Z+\\gamma$ vector boson fusion production in the same $b\\bar b \\gamma j j$ signature. The observed upper limit on...

  7. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1990-05-01

    This report discusses progress on theoretical high energy physics at Columbia University in New York City. Some of the topics covered are: Chern-Simons gauge field theories; dynamical fermion QCD calculations; lattice gauge theory; the standard model of weak and electromagnetic interactions; Boson-fermion model of cuprate superconductors; S-channel theory of superconductivity and axial anomaly and its relation to spin in the parton model

  8. Reactions with weakly bound nuclei at near barrier energies

    International Nuclear Information System (INIS)

    Nanal, Vandana

    2014-01-01

    In reactions with weakly bound nuclei, the effect of breakup on fusion process has attracted much attention in recent years. The experimental study shows that breakup channel leads to suppression of complete fusion at above barrier energies due to loss of flux. The fusion barrier distribution can provide a further insight into understanding the influence of coupling to the breakup channels. Similar information could be obtained from the elastic and quasielastic (QEL) scattering because of the conservation of the reaction flux (i.e. R+T= 1), where R is the reflection probability and T is the transmission probability. Thus, quasi-elastic scattering at backward angles is the counterpart of the fusion process and it is expected that the barrier distributions extracted from two processes, namely, QEL and fusion should be similar. While this is true for tightly bound reaction systems, in reactions involving weakly bound projectiles significant differences have been observed for QEL barrier distributions with and without inclusion of breakup processes. This talk will present the recent results for fusion and quasi-elastic scattering in "6","7Li + "1"9"7Au system. Developmental efforts towards a momentum achromatic separator, MARIE, to extract projectile-like secondary ion beams following the reactions of heavy-ion beams from superconducting LINAC booster at Mumbai will also be presented. (author)

  9. The design of high performance weak current integrated amplifier

    International Nuclear Information System (INIS)

    Chen Guojie; Cao Hui

    2005-01-01

    A design method of high performance weak current integrated amplifier using ICL7650 operational amplifier is introduced. The operating principle of circuits and the step of improving amplifier's performance are illustrated. Finally, the experimental results are given. The amplifier has programmable measurement range of 10 -9 -10 -12 A, automatic zero-correction, accurate measurement, and good stability. (authors)

  10. Dark Energy Survey Year 1 Results: Weak Lensing Shape Catalogues

    Energy Technology Data Exchange (ETDEWEB)

    Zuntz, J.; et al.

    2017-08-04

    We present two galaxy shape catalogues from the Dark Energy Survey Year 1 data set, covering 1500 square degrees with a median redshift of $0.59$. The catalogues cover two main fields: Stripe 82, and an area overlapping the South Pole Telescope survey region. We describe our data analysis process and in particular our shape measurement using two independent shear measurement pipelines, METACALIBRATION and IM3SHAPE. The METACALIBRATION catalogue uses a Gaussian model with an innovative internal calibration scheme, and was applied to $riz$-bands, yielding 34.8M objects. The IM3SHAPE catalogue uses a maximum-likelihood bulge/disc model calibrated using simulations, and was applied to $r$-band data, yielding 21.9M objects. Both catalogues pass a suite of null tests that demonstrate their fitness for use in weak lensing science. We estimate the 1$\\sigma$ uncertainties in multiplicative shear calibration to be $0.013$ and $0.025$ for the METACALIBRATION and IM3SHAPE catalogues, respectively.

  11. Constraints on early dark energy from CMB lensing and weak lensing tomography

    International Nuclear Information System (INIS)

    Hollenstein, Lukas; Crittenden, Robert; Sapone, Domenico; Schäfer, Björn Malte

    2009-01-01

    Dark energy can be studied by its influence on the expansion of the Universe as well as on the growth history of the large-scale structure. In this paper, we follow the growth of the cosmic density field in early dark energy cosmologies by combining observations of the primary CMB temperature and polarisation power spectra at high redshift, of the CMB lensing deflection field at intermediate redshift and of weak cosmic shear at low redshifts for constraining the allowed amount of early dark energy. We present these forecasts using the Fisher matrix formalism and consider the combination of Planck data with the weak lensing survey of Euclid. We find that combining these data sets gives powerful constraints on early dark energy and is able to break degeneracies in the parameter set inherent to the various observational channels. The derived statistical 1σ-bound on the early dark energy density parameter is σ(Ω e d ) = 0.0022 which suggests that early dark energy models can be well examined in our approach. In addition, we derive the dark energy figure of merit for the considered dark energy parameterisation and comment on the applicability of the growth index to early dark energy cosmologies

  12. Weak gravitational lensing towards high-precision cosmology

    International Nuclear Information System (INIS)

    Berge, Joel

    2007-01-01

    This thesis aims at studying weak gravitational lensing as a tool for high-precision cosmology. We first present the development and validation of a precise and accurate tool for measuring gravitational shear, based on the shapelets formalism. We then use shapelets on real images for the first time, we analyze CFHTLS images, and combine them with XMM-LSS data. We measure the normalisation of the density fluctuations power spectrum σ 8 , and the one of the mass-temperature relation for galaxy clusters. The analysis of the Hubble space telescope COSMOS field confirms our σ 8 measurement and introduces tomography. Finally, aiming at optimizing future surveys, we compare the individual and combined merits of cluster counts and power spectrum tomography. Our results demonstrate that next generation surveys will allow weak lensing to yield its full potential in the high-precision cosmology era. (author) [fr

  13. Energy balance in turbulent weakly ionized ionospheric plasma

    International Nuclear Information System (INIS)

    Dyatko, N.A.; Mishin, E.V.; Telegin, V.A.

    1994-01-01

    On the base of numerical solution of the Boltzmann equation are determined the electron distribution function and energy balance in the case if the longitudinal current exceeds the critical one and the resistance becames anomalously high one. In the equation are accounted for both electron scattering by plasma density fluctuations and electron elastic and inelastic collisions with atoms and molecules and electron-electron collisions

  14. Constraining the interacting dark energy models from weak gravity conjecture and recent observations

    International Nuclear Information System (INIS)

    Chen Ximing; Wang Bin; Pan Nana; Gong Yungui

    2011-01-01

    We examine the effectiveness of the weak gravity conjecture in constraining the dark energy by comparing with observations. For general dark energy models with plausible phenomenological interactions between dark sectors, we find that although the weak gravity conjecture can constrain the dark energy, the constraint is looser than that from the observations.

  15. High Energy $\

    CERN Multimedia

    2002-01-01

    This experiment is a high statistics exposure of BEBC filled with hydrogen to both @n and &bar.@n beams. The principal physics aims are : \\item a) The study of the production of charmed mesons and baryons using fully constrained events. \\end{enumerate} b) The study of neutral current interactions on the free proton. \\item c) Measurement of the cross-sections for production of exclusive final state N* and @D resonances. \\item d) Studies of hadronic final states in charged and neutral current reactions. \\item e) Measurement of inclusive charged current cross-sections and structure functions. \\end{enumerate}\\\\ \\\\ The neutrino flux is determined by monitoring the flux of muons in the neutrino shield. The Internal Picket Fence and External Muon Identifier of BEBC are essential parts of the experiment. High resolution cameras are used to search for visible decays of short-lived particles.

  16. Weak interaction contribution to the energy spectrum of two-lepton system

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1995-01-01

    The contribution of neutral currents to the weak interaction quasi-potential of two leptons is investigated. The exact expression for the weak interaction operator of the system for arbitrary biding energies in one-boson approximation is obtained. The weak interaction contribution to the S-levels displacement of hydrogen-like atom. 14 refs

  17. Illusions, weak points and realism in global energy policy

    International Nuclear Information System (INIS)

    Kleinpeter, M.; Heierle, M.

    2005-01-01

    This article asks the question if renewable forms of energy are a viable option for future energy supplies. The energy-supply situation is discussed on the basis of the results of a comprehensive study made by the World Energy Council and the IAASA in Vienna in 1998. This study produced six scenarios for energy supply with reference to the years 2050 and 2100. The situation concerning various energy carriers such as oil, gas, coal and hydropower is reviewed. Questions concerning atomic energy are looked at. The chances for renewable forms of energy such as solar and wind energy, biomass, geothermal energy and hydropower are also reviewed

  18. High energy

    International Nuclear Information System (INIS)

    Bonner, B.E.; Roberts, J.B. Jr.

    1993-01-01

    We report here on progress made for the period from December 1, 1992 (the date of submission of our latest progress report) to November 30, 1993 for DOE Grant No. DE-FG05-92ER40717. The new results from the SMC experiment have generated a buzz of theoretical activity. Our involvement with the D0 experiment and the upgrade has increased substantially during the past two years so that we now have six people heavily committed and making what can only be described as a large and disproportionate impact on D0 physics output. Some of the new developments made here at Rice in Neural Network and Probability Density Estimation techniques for data analysis promise to have applications both in D0 and beyond. We report a load of new results from our high-p t jet photoproduction experiment. In addition we have been working on KTeV, albeit without having adequate funding for this work. Progress on the theoretical front has been nothing short of amazing, as is reported herein. In a grand lecture tour during this sabbatical year, Paul Stevenson has already reported his breakthroughs at ten institutions, including CERN, Oxford, Cambridge, Rutherford Lab, Imperial College, and Durham University. The group at Rice University has had an exceptionally productive year and we are justifiably proud of the progress which is reported here

  19. Modified weak energy condition for the energy momentum tensor in quantum field theory

    International Nuclear Information System (INIS)

    Latorre, J.

    1998-01-01

    The weak energy condition is known to fail in general when applied to expectation values of the energy momentum tensor in flat space quantum field theory. It is shown how the usual counter arguments against its validity are no longer applicable if the states vertical stroke ψ right angle for which the expectation value is considered are restricted to a suitably defined subspace. A possible natural restriction on vertical stroke ψ right angle is suggested and illustrated by two quantum mechanical examples based on a simple perturbed harmonic oscillator Hamiltonian. The proposed alternative quantum weak energy condition is applied to states formed by the action of the scalar, vector and the energy momentum tensor operators on the vacuum. We assume conformal invariance in order to determine almost uniquely three-point functions involving the energy momentum tensor in terms of a few parameters. The positivity conditions lead to non-trivial inequalities for these parameters. They are satisfied in free field theories, except in one case for dimensions close to two. Further restrictions on vertical stroke ψ right angle are suggested which remove this problem. The inequalities which follow from considering the state formed by applying the energy momentum tensor to the vacuum are shown to imply that the coefficient of the topological term in the expectation value of the trace of the energy momentum tensor in an arbitrary curved space background is positive, in accord with calculations in free field theories. (orig.)

  20. Weak-scale hidden sector and energy transport in fireball models of gamma-ray bursts

    International Nuclear Information System (INIS)

    Demir, Durmus A.; Mosquera Cuesta, Herman J.

    2000-12-01

    The annihilation of pairs of very weakly interacting particles in the neighborhood of gamma-ray sources is introduced here as a plausible mechanism to overcome the baryon load problem. This way we can explain how these very high energy gamma-ray bursts can be powered at the onset of very energetic events like supernovae (collapsars) explosions or coalescences of binary neutron stars. Our approach uses the weak-scale hidden sector models in which the Higgs sector of the standard model is extended to include a gauge singlet that only interacts with the Higgs particle. These particles would be produced either during the implosion of the red supergiant star core or at the aftermath of a neutron star binary merger. The whole energetics and timescales of the relativistic blast wave, the fireball, are reproduced. (author)

  1. Designing future dark energy space missions. II. Photometric redshift of space weak lensing optimized surveys

    Science.gov (United States)

    Jouvel, S.; Kneib, J.-P.; Bernstein, G.; Ilbert, O.; Jelinsky, P.; Milliard, B.; Ealet, A.; Schimd, C.; Dahlen, T.; Arnouts, S.

    2011-08-01

    Context. With the discovery of the accelerated expansion of the universe, different observational probes have been proposed to investigate the presence of dark energy, including possible modifications to the gravitation laws by accurately measuring the expansion of the Universe and the growth of structures. We need to optimize the return from future dark energy surveys to obtain the best results from these probes. Aims: A high precision weak-lensing analysis requires not an only accurate measurement of galaxy shapes but also a precise and unbiased measurement of galaxy redshifts. The survey strategy has to be defined following both the photometric redshift and shape measurement accuracy. Methods: We define the key properties of the weak-lensing instrument and compute the effective PSF and the overall throughput and sensitivities. We then investigate the impact of the pixel scale on the sampling of the effective PSF, and place upper limits on the pixel scale. We then define the survey strategy computing the survey area including in particular both the Galactic absorption and Zodiacal light variation accross the sky. Using the Le Phare photometric redshift code and realistic galaxy mock catalog, we investigate the properties of different filter-sets and the importance of the u-band photometry quality to optimize the photometric redshift and the dark energy figure of merit (FoM). Results: Using the predicted photometric redshift quality, simple shape measurement requirements, and a proper sky model, we explore what could be an optimal weak-lensing dark energy mission based on FoM calculation. We find that we can derive the most accurate the photometric redshifts for the bulk of the faint galaxy population when filters have a resolution ℛ ~ 3.2. We show that an optimal mission would survey the sky through eight filters using two cameras (visible and near infrared). Assuming a five-year mission duration, a mirror size of 1.5 m and a 0.5 deg2 FOV with a visible pixel

  2. Support mechanisms for renewable energies, their strengths and weaknesses

    International Nuclear Information System (INIS)

    Percebois, Jacques

    2014-01-01

    There is an on-going debate in France over whether or not it is better to stay with the System actually in place to promote renewable energy penetration, notably wind and solar photovoltaic power in the overall energy mix. This System is one of guaranteed prices with compulsory purchase (feed-in tariffs, FIT); but it is increasingly called into question because of the perverse impacts that have become evident. (author)

  3. Electron energy distribution in a weakly ionized plasma

    International Nuclear Information System (INIS)

    Cesari, C.

    1967-03-01

    The aim of this work is to determine from both the theoretical and experimental points of view the type of distribution function for the electronic energies existing in a positive-column type cold laboratory plasma having an ionization rate of between 10 -6 and 10 -7 . The theoretical analysis, based on the imperfect Lorentz model and taking into account inelastic collisions is developed from the Boltzmann equation. The experimental method which we have employed for making an electrostatic analysis of the electronic energies makes use of a Langmuir probe used in conjunction with a transistorized electronic device. A comparison between the experimental and theoretical results yields information concerning the mechanisms governing electronic energy transfer on a microscopic scale. (author) [fr

  4. THE ULTRAVIOLET-TO-MID-INFRARED SPECTRAL ENERGY DISTRIBUTION OF WEAK EMISSION LINE QUASARS

    International Nuclear Information System (INIS)

    Lane, Ryan A.; Shemmer, Ohad; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2011-01-01

    We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey (SDSS) quasars at 2.7 ≤ z ≤ 5.9 which have weak or undetectable high-ionization emission lines in their rest-frame ultraviolet (UV) spectra (hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with SDSS spectra and ground-based, near-infrared (IR) photometry of these sources to produce a large inventory of spectral energy distributions (SEDs) of WLQs across the rest-frame ∼0.1-5 μm spectral band. The SEDs of our sources are inconsistent with those of BL Lacertae objects which are dominated by synchrotron emission due to a jet aligned close to our line of sight, but are consistent with the SED of ordinary quasars with similar luminosities and redshifts that exhibit a near-to-mid-IR 'bump', characteristic of hot dust emission. This indicates that broad emission lines in WLQs are intrinsically weak, rather than suffering continuum dilution from a jet, and that such sources cannot be selected efficiently from traditional photometric surveys.

  5. THE ULTRAVIOLET-TO-MID-INFRARED SPECTRAL ENERGY DISTRIBUTION OF WEAK EMISSION LINE QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Ryan A.; Shemmer, Ohad [Department of Physics, University of North Texas, Denton, TX 76203 (United States); Diamond-Stanic, Aleksandar M. [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA 92093 (United States); Fan Xiaohui [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Anderson, Scott F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Brandt, W. N.; Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Plotkin, Richard M. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam (Netherlands); Richards, Gordon T. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Strauss, Michael A., E-mail: RyanLane@my.unt.edu, E-mail: ohad@unt.edu [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States)

    2011-12-20

    We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey (SDSS) quasars at 2.7 {<=} z {<=} 5.9 which have weak or undetectable high-ionization emission lines in their rest-frame ultraviolet (UV) spectra (hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with SDSS spectra and ground-based, near-infrared (IR) photometry of these sources to produce a large inventory of spectral energy distributions (SEDs) of WLQs across the rest-frame {approx}0.1-5 {mu}m spectral band. The SEDs of our sources are inconsistent with those of BL Lacertae objects which are dominated by synchrotron emission due to a jet aligned close to our line of sight, but are consistent with the SED of ordinary quasars with similar luminosities and redshifts that exhibit a near-to-mid-IR 'bump', characteristic of hot dust emission. This indicates that broad emission lines in WLQs are intrinsically weak, rather than suffering continuum dilution from a jet, and that such sources cannot be selected efficiently from traditional photometric surveys.

  6. Weak Localisation in Clean and Highly Disordered Graphene

    International Nuclear Information System (INIS)

    Hilke, Michael; Massicotte, Mathieu; Whiteway, Eric; Yu, Victor

    2013-01-01

    We look at the magnetic field induced weak localisation peak of graphene samples with different mobilities. At very low temperatures, low mobility samples exhibit a very broad peak as a function of the magnetic field, in contrast to higher mobility samples, where the weak localisation peak is very sharp. We analyze the experimental data in the context of the localisation length, which allows us to extract, both the localisation length and the phase coherence length of the samples, regardless of their mobilities. This analysis is made possible by the observation that the localisation length undergoes a generic weak localisation dependence with striking universal properties

  7. Why high energy physics

    International Nuclear Information System (INIS)

    Diddens, A.N.; Van de Walle, R.T.

    1981-01-01

    An argument is presented for high energy physics from the point of view of the practitioners. Three different angles are presented: The cultural consequence and scientific significance of practising high energy physics, the potential application of the results and the discovery of high energy physics, and the technical spin-offs from the techniques and methods used in high energy physics. (C.F.)

  8. A POPULATION OF X-RAY WEAK QUASARS: PHL 1811 ANALOGS AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Wu Jianfeng; Brandt, W. N.; Schneider, Donald P.; Hall, Patrick B.; Gibson, Robert R.; Schmidt, Sarah J.; Richards, Gordon T.; Shemmer, Ohad; Just, Dennis W.

    2011-01-01

    We report the results from Chandra and XMM-Newton observations of a sample of 10 type 1 quasars selected to have unusual UV emission-line properties (weak and blueshifted high-ionization lines; strong UV Fe emission) similar to those of PHL 1811, a confirmed intrinsically X-ray weak quasar. These quasars were identified by the Sloan Digital Sky Survey at high redshift (z ∼ 2.2); eight are radio quiet while two are radio intermediate. All of the radio-quiet PHL 1811 analogs, without exception, are notably X-ray weak by a mean factor of ∼13. These sources lack broad absorption lines and have blue UV/optical continua, supporting the hypothesis that they are intrinsically X-ray weak like PHL 1811 itself. However, their average X-ray spectrum appears to be harder than those of typical quasars, which may indicate the presence of heavy intrinsic X-ray absorption. Our sample of radio-quiet PHL 1811 analogs supports a connection between an X-ray weak spectral energy distribution and PHL 1811-like UV emission lines; this connection provides an economical way to identify X-ray weak type 1 quasars. The fraction of radio-quiet PHL 1811 analogs in the radio-quiet quasar population is estimated to be ∼< 1.2%. We have investigated correlations between relative X-ray brightness and UV emission-line properties (e.g., C IV equivalent width and blueshift) for a sample combining our radio-quiet PHL 1811 analogs, PHL 1811 itself, and typical type 1 quasars. These correlation analyses suggest that PHL 1811 analogs may have extreme wind-dominated broad emission-line regions. Observationally, the radio-quiet PHL 1811 analogs appear to be a subset (∼30%) of radio-quiet weak-line quasars (WLQs). The existence of a subset of quasars in which high-ionization 'shielding gas' covers most of the broad emission-line region (BELR), but little more than the BELR, could potentially unify the PHL 1811 analogs and WLQs. The two radio-intermediate PHL 1811 analogs are X-ray bright. X

  9. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs

  10. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  11. High energy physics and nuclear structure

    International Nuclear Information System (INIS)

    Measday, D.F.; Thomas, A.W.

    1980-01-01

    These proceedings contain the papers presented at the named conference. These concern eletromagnetic interactions, weak interactions, strong interactions at intermediate energy, pion reactions, proton reactions, strong interactions at high energy, as well as new facilities and applications. See hints under the relevant topics. (HSI)

  12. Stacking fault energy measurements in WSe2 single crystals using weak-beam techniques

    International Nuclear Information System (INIS)

    Agarwal, M.K.; Patel, J.V.; Patel, N.G.

    1981-01-01

    The weak-beam method of electron microscopy is used to observe threefold dislocations in WSe 2 single crystals grown by direct vapour transport method. The widths of the three fold ribbons are used to determine the stacking fault energy in these crystals. Variation of the width of the ribbons with temperature are also studied and discussed. (author)

  13. Wormholes in viable f(R) modified theories of gravity and weak energy condition

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, Petar [Universitaet Hamburg, II. Institut fuer Theoretische Physik, Hamburg (Germany); Sossich, Marko [University of Zagreb, Department of Physics, Faculty of Electrical Engineering and Computing, Zagreb (Croatia)

    2015-03-01

    In this work wormholes in viable f(R) gravity models are analyzed. We are interested in exact solutions for stress-energy tensor components depending on different shape and redshift functions. Several solutions of gravitational equations for different f(R) models are examined. The solutions found imply no need for exotic material, while this need is implied in the standard general theory of relativity. A simple expression for weak energy condition (WEC) violation near the throat is derived and analyzed. High curvature regime is also discussed, as well as the question of the highest possible values of the Ricci scalar for which the WEC is not violated near the throat, and corresponding functions are calculated for several models. The approach here differs from the one that has been common since no additional assumptions to simplify the equations have been made, and the functions in f(R) models are not considered to be arbitrary functions, but rather a feature of the theory that has to be evaluated on the basis of consistency with observations for the Solar System and cosmological evolution. Therefore in this work we show that the existence of wormholes without exotic matter is not only possible in simple arbitrary f(R) models, but also in models that are in accordance with empirical data. (orig.)

  14. Energy metrics for driving competitiveness of countries: Energy weakness magnitude, GDP per barrel and barrels per capita

    International Nuclear Information System (INIS)

    Coccia, Mario

    2010-01-01

    Energy metrics is the development of a whole new theoretical framework for the conception and measurement of energy and economic system performances, energy efficiency and productivity improvements with important political economy implications consistent with the best use of all natural and economic resources. The purpose of this research is to present some vital energy indicators based on magnitude and scale of energy weakness, GDP per barrel of oil that is an indicator of energy productivity and barrels (of oil) per capita that is an indicator of energy efficiency. Energy metrics can support the monitoring of energy and economic system performances in order to design effective energy strategy and political economy interventions focused on the 'competitive advantage' increase of countries in modern economies.

  15. Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials

    Science.gov (United States)

    Antonelli, Paolo; Michelangeli, Alessandro; Scandone, Raffaele

    2018-04-01

    We prove the existence of weak solutions in the space of energy for a class of nonlinear Schrödinger equations in the presence of a external, rough, time-dependent magnetic potential. Under our assumptions, it is not possible to study the problem by means of usual arguments like resolvent techniques or Fourier integral operators, for example. We use a parabolic regularisation, and we solve the approximating Cauchy problem. This is achieved by obtaining suitable smoothing estimates for the dissipative evolution. The total mass and energy bounds allow to extend the solution globally in time. We then infer sufficient compactness properties in order to produce a global-in-time finite energy weak solution to our original problem.

  16. High energy hadron scattering

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1980-01-01

    High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)

  17. The high energy galaxy

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1986-08-01

    The galaxy is host to a wide variety of high energy events. I review here recent results on large scale galactic phenomena: cosmic-ray origin and confinement, the connexion to ultra high energy gamma-ray emission from X-ray binaries, gamma ray and synchrotron emission in interstellar space, galactic soft and hard X-ray emission

  18. Dynamic high pressure induced strong and weak hydrogen bonds enhanced by pre-resonance stimulated Raman scattering in liquid water.

    Science.gov (United States)

    Wang, Shenghan; Fang, Wenhui; Li, Fabing; Gong, Nan; Li, Zhanlong; Li, Zuowei; Sun, Chenglin; Men, Zhiwei

    2017-12-11

    355 nm pulsed laser is employed to excite pre-resonance forward stimulated Raman scattering (FSRS) of liquid water at ambient temperature. Due to the shockwave induced dynamic high pressure, the obtained Raman spectra begin to exhibit double peaks distribution at 3318 and 3373 cm -1 with the input energy of 17 mJ,which correspond with OH stretching vibration with strong and weak hydrogen (H) bonds. With laser energy rising from 17 to 27 mJ, the Stokes line at 3318 cm -1 shifts to 3255 and 3230 cm -1 because of the high pressure being enlarged. When the energy is up to 32 mJ, only 3373 cm -1 peak exists. The strong and weak H bond exhibit quite different energy dependent behaviors.

  19. WEAK LINE QUASARS AT HIGH REDSHIFT: EXTREMELY HIGH ACCRETION RATES OR ANEMIC BROAD-LINE REGIONS?

    International Nuclear Information System (INIS)

    Shemmer, Ohad; Trakhtenbrot, Benny; Netzer, Hagai; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Lira, Paulina; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2010-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd =0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91 +0.24 -0.22 , which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  20. Weak lensing magnification in the Dark Energy Survey Science Verification data

    Science.gov (United States)

    Garcia-Fernandez, M.; Sanchez, E.; Sevilla-Noarbe, I.; Suchyta, E.; Huff, E. M.; Gaztanaga, E.; Aleksić, J.; Ponce, R.; Castander, F. J.; Hoyle, B.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Eifler, T. F.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Jarvis, M.; Kirk, D.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; MacCrann, N.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Miquel, R.; Mohr, J. J.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Scarpine, V.; Schubnell, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Tarle, G.; Thomas, D.; Walker, A. R.; Wester, W.; DES Collaboration

    2018-05-01

    In this paper, the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using the Dark Energy Survey Science Verification data set. This analysis is carried out for galaxies that are selected only by its photometric redshift. An extensive analysis of the systematic effects, using new methods based on simulations is performed, including a Monte Carlo sampling of the selection function of the survey.

  1. Modeling nuclear weak-interaction processes with relativistic energy density functionals

    International Nuclear Information System (INIS)

    Paar, N.; Marketin, T.; Vale, D.; Vretenar, D.

    2015-01-01

    Relativistic energy density functionals have become a standard framework for nuclear structure studies of ground state properties and collective excitations over the entire nuclide chart. In this paper, we review recent developments in modeling nuclear weak-interaction processes: Charge-exchange excitations and the role of isoscalar proton–neutron pairing, charged-current neutrino–nucleus reactions relevant for supernova evolution and neutrino detectors and calculation of β-decay rates for r-process nucleosynthesis. (author)

  2. Energies and intensities of weak transitions in the decay of 132I

    International Nuclear Information System (INIS)

    Nettles, W.G.; Scoggins, R.K.; James, W.K.; Whitlock, L.C.; Subba RaoD, B.N.; Hamilton, J.H.; Ramayya, A.V.; Gunnink, R.

    1978-01-01

    The γ-ray spectrum of a 132 Te- 132 I equilibrium source was measured with an 18% efficiency Ge(Li) detector to search for weak transitions in the 132 I decay. A more detailed study was made of an earlier spectrum taken with a Compton suppression system and a chemically purified source. The results are compared with all available data and average values of the energies and intensities are given

  3. Turning a weakness into a strength. A smart external energy policy for Europe

    International Nuclear Information System (INIS)

    Coby van der, Linde

    2008-01-01

    Energy policy objectives and the suitability of traditional instruments to achieve them are currently under review. The main goals are to improve the balance among the three priorities of energy policy-making, to make a transition to both a more sustainable energy mix and, at the same time, improve the security of that mix during the transition to it. As this policy will only produce result in the longer term, an alternative in EU external energy policy-making should be found to coercing reluctant members states into accepting the usually top down, generic approach of the EU and into giving up competencies that serve national interests. This pragmatic route to policy-making could be to explore a path that turns EU weakness in the foreign and energy policy sphere into strengths by the smart use of diversity, asymmetry and subsidiarity in a bottom up, more tailor-made approach

  4. High energy colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  5. High energy astrophysics

    International Nuclear Information System (INIS)

    Engel, A.R.

    1979-01-01

    High energy astrophysical research carried out at the Blackett Laboratory, Imperial College, London is reviewed. Work considered includes cosmic ray particle detection, x-ray astronomy, gamma-ray astronomy, gamma and x-ray bursts. (U.K.)

  6. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  7. Proposed activity - Budget for research in high energy physics

    International Nuclear Information System (INIS)

    Barger, V.; Camerini, U.; Carlsmith, D.

    1989-01-01

    This paper contains task reports on the following topics: Hadron physics at Fermilab; Lepton hadron scattering; Electroweak and weak interactions at the Stanford Linear Accelerator Center; Hyperon beam program/hadroproduction of heavy flavors at Fermilab; High energy physics colliding beam detector facility at Fermilab; Data analysis facility; Institute for Elementary Particle Physics research; Study of weak and electromagnetic interactions at Desy and Cern; Theoretical high energy physics; Dumand; and Ultra high energy gamma rays

  8. Weakly dynamic dark energy via metric-scalar couplings with torsion

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Sourav; Bhatia, Arshdeep Singh, E-mail: sourav.sur@gmail.com, E-mail: arshdeepsb@gmail.com [Department of Physics and Astrophysics, University of Delhi, New Delhi, 110 007 (India)

    2017-07-01

    We study the dynamical aspects of dark energy in the context of a non-minimally coupled scalar field with curvature and torsion. Whereas the scalar field acts as the source of the trace mode of torsion, a suitable constraint on the torsion pseudo-trace provides a mass term for the scalar field in the effective action. In the equivalent scalar-tensor framework, we find explicit cosmological solutions representing dark energy in both Einstein and Jordan frames. We demand the dynamical evolution of the dark energy to be weak enough, so that the present-day values of the cosmological parameters could be estimated keeping them within the confidence limits set for the standard LCDM model from recent observations. For such estimates, we examine the variations of the effective matter density and the dark energy equation of state parameters over different redshift ranges. In spite of being weakly dynamic, the dark energy component differs significantly from the cosmological constant, both in characteristics and features, for e.g. it interacts with the cosmological (dust) fluid in the Einstein frame, and crosses the phantom barrier in the Jordan frame. We also obtain the upper bounds on the torsion mode parameters and the lower bound on the effective Brans-Dicke parameter. The latter turns out to be fairly large, and in agreement with the local gravity constraints, which therefore come in support of our analysis.

  9. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  10. Maximal Entanglement in High Energy Physics

    Directory of Open Access Journals (Sweden)

    Alba Cervera-Lierta, José I. Latorre, Juan Rojo, Luca Rottoli

    2017-11-01

    Full Text Available We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i $s$-channel processes where the virtual photon carries equal overlaps of the helicities of the final state particles, and ii the indistinguishable superposition between $t$- and $u$-channels. We then study whether requiring maximal entanglement constrains the coupling structure of QED and the weak interactions. In the case of photon-electron interactions unconstrained by gauge symmetry, we show how this requirement allows reproducing QED. For $Z$-mediated weak scattering, the maximal entanglement principle leads to non-trivial predictions for the value of the weak mixing angle $\\theta_W$. Our results are a first step towards understanding the connections between maximal entanglement and the fundamental symmetries of high-energy physics.

  11. Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling

    Science.gov (United States)

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2015-07-01

    Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices.

  12. High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations

    KAUST Repository

    Abdulle, Assyr; Cohen, David; Vilmart, Gilles; Zygalakis, Konstantinos C.

    2012-01-01

    © 2012 Society for Industrial and Applied Mathematics. Inspired by recent advances in the theory of modified differential equations, we propose a new methodology for constructing numerical integrators with high weak order for the time integration

  13. Energy dependence of the optical potential of weakly and tightly bound nuclei as projectiles on a medium-mass target

    International Nuclear Information System (INIS)

    Figueira, J. M.; Arazi, A.; Carnelli, P.; Heimann, D. Martinez; Negri, A. E.; Pacheco, A. J.; Niello, J. O. Fernandez; Capurro, O. A.; Fimiani, L.; Marti, G. V.; Lubian, J.; Monteiro, D. S.; Gomes, P. R. S.

    2010-01-01

    Angular distributions for the elastic scattering of the weakly bound 6,7 Li+ 144 Sm systems were measured with high accuracy at bombarding energies from 85% up to 170% of the Coulomb barrier. An optical model analysis was performed, and the relevant parameters of the real and imaginary parts of the optical potential were extracted. The results are compared with those previously published for the tightly bound 12 C+ 144 Sm and 16 O+ 144 Sm systems. The usual threshold anomaly observed in the behavior of the potential of tightly bound systems was not observed for either weakly bound system. This absence is attributed to the repulsion due to breakup coupling which cancels the attraction arising from couplings with bound channels.

  14. High energy nuclear excitations

    International Nuclear Information System (INIS)

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  15. High energy radiation detector

    International Nuclear Information System (INIS)

    Vosburgh, K.G.

    1975-01-01

    The high energy radiation detector described comprises a set of closely spaced wedge reflectors. Each wedge reflector is composed of three sides forming identical isoceles triangles with a common apex and an open base forming an equilateral triangle. The length of one side of the base is less than the thickness of the coat of material sensitive to high energy radiation. The wedge reflectors reflect the light photons spreading to the rear of the coat in such a way that each reflected track is parallel to the incident track of the light photon spreading rearwards. The angle of the three isosceles triangles with a common apex is between 85 and 95 deg. The first main surface of the coat of high energy radiation sensitive material is in contact with the projecting edges of the surface of the wedge reflectors of the reflecting element [fr

  16. Energy-momentum tensor for a Casimir apparatus in a weak gravitational field

    International Nuclear Information System (INIS)

    Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero; Rosa, Luigi

    2006-01-01

    The influence of the gravity acceleration on the regularized energy-momentum tensor of the quantized electromagnetic field between two plane-parallel conducting plates is derived. We use Fermi coordinates and work to first order in the constant acceleration parameter. A perturbative expansion, to this order, of the Green functions involved and of the energy-momentum tensor is derived by means of the covariant geodesic point-splitting procedure. In correspondence to the Green functions satisfying mixed and gauge-invariant boundary conditions, and Ward identities, the energy-momentum tensor is covariantly conserved and satisfies the expected relation between gauge-breaking and ghost parts, while a new simple formula for the trace anomaly is obtained to first order in the constant acceleration. A more systematic derivation is therefore obtained of the theoretical prediction according to which the Casimir device in a weak gravitational field will experience a tiny push in the upwards direction

  17. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1991-01-01

    This report discusses theoretical research in high energy physics at Columbia University. Some of the research topics discussed are: quantum chromodynamics with dynamical fermions; lattice gauge theory; scattering of neutrinos by photons; atomic physics constraints on the properties of ultralight-ultraweak gauge bosons; black holes; Chern- Simons physics; S-channel theory of superconductivity; charged boson system; gluon-gluon interactions; high energy scattering in the presence of instantons; anyon physics; causality constraints on primordial magnetic manopoles; charged black holes with scalar hair; properties of Chern-Aimona-Higgs solitons; and extended inflationary universe

  18. Charged weak currents

    International Nuclear Information System (INIS)

    Turlay, R.

    1979-01-01

    In this review of charged weak currents I shall concentrate on inclusive high energy neutrino physics. There are surely still things to learn from the low energy weak interaction but I will not discuss it here. Furthermore B. Tallini will discuss the hadronic final state of neutrino interactions. Since the Tokyo conference a few experimental results have appeared on charged current interaction, I will present them and will also comment on important topics which have been published during the last past year. (orig.)

  19. Global low-energy weak solution and large-time behavior for the compressible flow of liquid crystals

    Science.gov (United States)

    Wu, Guochun; Tan, Zhong

    2018-06-01

    In this paper, we consider the weak solution of the simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows in R3. When the initial data are of small energy and initial density is positive and essentially bounded, we prove the existence of a global weak solution in R3. The large-time behavior of a global weak solution is also established.

  20. Energy partition, scale by scale, in magnetic Archimedes Coriolis weak wave turbulence.

    Science.gov (United States)

    Salhi, A; Baklouti, F S; Godeferd, F; Lehner, T; Cambon, C

    2017-02-01

    Magnetic Archimedes Coriolis (MAC) waves are omnipresent in several geophysical and astrophysical flows such as the solar tachocline. In the present study, we use linear spectral theory (LST) and investigate the energy partition, scale by scale, in MAC weak wave turbulence for a Boussinesq fluid. At the scale k^{-1}, the maximal frequencies of magnetic (Alfvén) waves, gravity (Archimedes) waves, and inertial (Coriolis) waves are, respectively, V_{A}k,N, and f. By using the induction potential scalar, which is a Lagrangian invariant for a diffusionless Boussinesq fluid [Salhi et al., Phys. Rev. E 85, 026301 (2012)PLEEE81539-375510.1103/PhysRevE.85.026301], we derive a dispersion relation for the three-dimensional MAC waves, generalizing previous ones including that of f-plane MHD "shallow water" waves [Schecter et al., Astrophys. J. 551, L185 (2001)AJLEEY0004-637X10.1086/320027]. A solution for the Fourier amplitude of perturbation fields (velocity, magnetic field, and density) is derived analytically considering a diffusive fluid for which both the magnetic and thermal Prandtl numbers are one. The radial spectrum of kinetic, S_{κ}(k,t), magnetic, S_{m}(k,t), and potential, S_{p}(k,t), energies is determined considering initial isotropic conditions. For magnetic Coriolis (MC) weak wave turbulence, it is shown that, at large scales such that V_{A}k/f≪1, the Alfvén ratio S_{κ}(k,t)/S_{m}(k,t) behaves like k^{-2} if the rotation axis is aligned with the magnetic field, in agreement with previous direct numerical simulations [Favier et al., Geophys. Astrophys. Fluid Dyn. (2012)] and like k^{-1} if the rotation axis is perpendicular to the magnetic field. At small scales, such that V_{A}k/f≫1, there is an equipartition of energy between magnetic and kinetic components. For magnetic Archimedes weak wave turbulence, it is demonstrated that, at large scales, such that (V_{A}k/N≪1), there is an equipartition of energy between magnetic and potential components

  1. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1992-01-01

    This progress report discusses research by Columbia University staff in high energy physics. Some of the topics discussed are as follows: lattice gauge theory; quantum chromodynamics; parity doublets; solitons; baryon number violation; black holes; magnetic monopoles; gluon plasma; Chern-Simons theory; and the inflationary universe

  2. High energy astrophysics

    International Nuclear Information System (INIS)

    Shklorsky, I.S.

    1979-01-01

    A selected list of articles of accessible recent review articles and conference reports, wherein up-to-date summaries of various topics in the field of high energy astrophysics can be found, is presented. A special report outlines work done in the Soviet Union in this area. (Auth.)

  3. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  4. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  5. High Energy Physics

    Science.gov (United States)

    Untitled Document [Argonne Logo] [DOE Logo] High Energy Physics Home Division ES&H Personnel Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Mechanical Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP

  6. Energy Optimization for a Weak Hybrid Power System of an Automobile Exhaust Thermoelectric Generator

    Science.gov (United States)

    Fang, Wei; Quan, Shuhai; Xie, Changjun; Tang, Xinfeng; Ran, Bin; Jiao, Yatian

    2017-11-01

    An integrated starter generator (ISG)-type hybrid electric vehicle (HEV) scheme is proposed based on the automobile exhaust thermoelectric generator (AETEG). An eddy current dynamometer is used to simulate the vehicle's dynamic cycle. A weak ISG hybrid bench test system is constructed to test the 48 V output from the power supply system, which is based on engine exhaust-based heat power generation. The thermoelectric power generation-based system must ultimately be tested when integrated into the ISG weak hybrid mixed power system. The test process is divided into two steps: comprehensive simulation and vehicle-based testing. The system's dynamic process is simulated for both conventional and thermoelectric powers, and the dynamic running process comprises four stages: starting, acceleration, cruising and braking. The quantity of fuel available and battery pack energy, which are used as target vehicle energy functions for comparison with conventional systems, are simplified into a single energy target function, and the battery pack's output current is used as the control variable in the thermoelectric hybrid energy optimization model. The system's optimal battery pack output current function is resolved when its dynamic operating process is considered as part of the hybrid thermoelectric power generation system. In the experiments, the system bench is tested using conventional power and hybrid thermoelectric power for the four dynamic operation stages. The optimal battery pack curve is calculated by functional analysis. In the vehicle, a power control unit is used to control the battery pack's output current and minimize energy consumption. Data analysis shows that the fuel economy of the hybrid power system under European Driving Cycle conditions is improved by 14.7% when compared with conventional systems.

  7. Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  8. High energy dosimetry

    International Nuclear Information System (INIS)

    Ruhm, W.

    2010-01-01

    Full text: Currently, quantification of doses from high-energy radiation fields is a topical issue. This is so because high-energy neutrons play an important role for radiation exposure of air crew members and personnel outside the shielding of ion therapy facilities. In an effort to study air crew exposure from cosmic radiation in detail, two Bonner Sphere Spectrometers (BSSs) have recently been installed to measure secondary neutrons from cosmic radiation, one at the environmental research station 'Schneefernerhaus' at an altitude of 2650 m on the Zugspitze mountain, Germany, the other at the Koldewey station close to the North Pole on Spitsbergen. Based on the measured neutron fluence distributions and on fluence-to-dose conversion coefficients, mean ambient dose equivalent rate values of 75.0 ± 2.9 nSv/h and 8.7 ± 0.6 nSv/h were obtained for October 2008, respectively. Neutrons with energies above about 20 MeV contribute about 50% to dose, at 2650 m. Ambient dose equivalent rates measured by means of a standard rem counter and an extended rem counter at the Schneefernerhaus confirm this result. In order to study the response of state-of-the-art radiation instrumentation in such a high-energy radiation field, a benchmark exercise that included both measurements in and simulation of the stray neutron radiation field at the high-energy particle accelerator at GSI, Germany, were performed. This CONRAD (COordinated Network for RAdiation Dosimetry) project was funded by the European Commission, and the organizational framework was provided by the European Radiation Dosimetry Group, EURADOS. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers suggest the neutron fluence distributions to be very similar to those of secondary neutrons from cosmic radiation. The results of this intercomparison exercise in terms of ambient dose equivalent are also discussed

  9. Discrete Energies of a Weakly Outcoupled Atom Laser Beam Outside the Bose–Einstein Condensate Region

    Directory of Open Access Journals (Sweden)

    Teguh Budi Prayitno

    2014-12-01

    Full Text Available We consider the possibility of a discrete set of energies of a weakly outcoupled atom laser beam to the homogeneous Schrödinger equation with anisotropic harmonic trap in Cartesian coordinates outside the Bose–Einstein condensate region. This treatment is used because working in the cylindrical coordinates is not really possible, even though we implement the cigar-shaped trap case. The Schrödinger equation appears to replace a set of two-coupled Gross– Pitaevskii equations by enabling the weak-coupling assumption. This atom laser can be produced in a simple way that only involves extracting the atoms in a condensate from by using the radio frequency field. We initially present the relation between condensates as sources and atom laser as an output by exploring the previous work of Riou et al. in the case of theoretical work for the propagation of atom laser beams. We also show that even though the discrete energies are obtained by means of an approaching harmonic oscillator, degeneracy is only available in two states because of the anisotropic external potential

  10. Some peculiarities of interactions of weakly bound lithium nuclei at near-barrier energies

    Science.gov (United States)

    Kabyshev, A. M.; Kuterbekov, K. A.; Sobolev, Yu G.; Penionzhkevich, Yu E.; Kubenova, M. M.; Azhibekov, A. K.; Mukhambetzhan, A. M.; Lukyanov, S. M.; Maslov, V. A.; Kabdrakhimova, G. D.

    2018-02-01

    This paper presents new experimental data on the total cross sections of 9Li + 28Si reactions at low energies as well as the analysis of previously obtained data for 6,7Li. Based on a large collection of data (authors’ and literature data) we carried out a comparative analysis of the two main experimental interaction cross sections (angular distributions of the differential cross sections and total reaction cross sections) for weakly bound lithium (6-9Li, 11Li) nuclei in the framework of Kox parameterization and the macroscopic optical model. We identified specific features of these interactions and predicted the experimental trend in the total reaction cross sections for Li isotopes at energies close to the Coulomb barrier.

  11. High energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    The Counter Group continues to work on data analysis for Fermilab Experiment E653. Altogether, they expect several thousand reconstructed charm events and approximately 25 B pair events of which 12 have been observed thus far. Preparation continue for Fermilab Experiment E781, a high statistics study of charm baryon production. In the Theory Group, Cutkosky and collaborators study hadron phenomenology and non-perturbative QCD calculations. Levine has a long standing program in computational QED to obtain improved theoretical values for g-2 of the electron. Wolfenstein, Li, and their collaborators have worked on areas of weak interaction phenomenology that may yield insights beyond the standard model, e.g. CP violation and non-zero neutrino masses. Holman has been concerned with phase transitions in gauge theories relevant to cosmological problems. During 1991 most of the group effort was concentrated on the L3 experiment at CERN. Highlights of the results from the analysis of the Z degrees resonance include (a) a measurement of the strong coupling constant α s for b quarks (b) a precision measurement of the average time of B hadrons and (c) a direct determination of the number of light neutrino faculties from the reaction e + e - → ν bar νγ. We also began a major upgrade of the L3 luminosity monitor by replacing PWC chamber by a Si strip system in front of the BGO calorimeters. Finally we have continued our SSC R ampersand D work on BaF 2 by joining the GEM collaboration

  12. High energy nuclear physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1988-01-01

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π 0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed [fr

  13. High energy medical accelerators

    International Nuclear Information System (INIS)

    Mandrillon, P.

    1990-01-01

    The treatment of tumours with charged particles, ranging from protons to 'light ions' (carbon, oxygen, neon), has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. These high energy medical accelerators are presented in this paper. (author) 15 refs.; 14 figs.; 8 tabs

  14. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1985-05-01

    The conclusions are relatively simple, but represent a considerable challenge to the machine builder. High luminosity is essential. We may in the future discover some new kind of high cross section physics, but all we know now indicates that the luminosity has to increase as the square of the center of mass energy. A reasonable luminosity to scale from for electron machines would be 10 33 cm -2 s -1 at a center of mass energy of 3 TeV. The required emittances in very high energy machines are small. It will be a real challenge to produce these small emittances and to maintain them during acceleration. The small emittances probably make acceleration by laser techniques easier, if such techniques will be practical at all. The beam spot sizes are very small indeed. It will be a challenge to design beam transport systems with the necessary freedom from aberration required for these small spot sizes. It would of course help if the beta functions at the collision points could be reduced. Beam power will be large - to paraphrase the old saying, ''power is money'' - and efficient acceleration systems will be required

  15. Perturbative expansions from Monte Carlo simulations at weak coupling: Wilson loops and the static-quark self-energy

    Science.gov (United States)

    Trottier, H. D.; Shakespeare, N. H.; Lepage, G. P.; MacKenzie, P. B.

    2002-05-01

    Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 34 to 164) and couplings (from β~9 to β~60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.

  16. High energy physics: Experimental, theoretical and phenomenology institute

    International Nuclear Information System (INIS)

    Barger, V.; Camerini, U.; Carlsmith, D.; Durand, B.; Durand, L.; Erwin, A.; Fry, W.; Goebel, C.; Halzen, F.; Loveless, R.; March, R.; Morse, R.; Olsson, M.; Pondrom, L.; Prepost, R.; Reeder, D.; Sheaff, M.; Smith, W.; Thompson, M.; Wu, S.L.

    1991-01-01

    This report discusses research in the following task: hadron physics at Fermilab; Lepton hadron scattering; electromagnetic ampersand weak interactions at the Stanford Linear Accelerator Center - SLAC; hyperon beam program - hadroproduction of heavy beam flavors at Fermilab; ultra high energy colliding beam physics; Institute for high energy physics phenomenology; weak ampersand electromagnetic interactions using PETRA at DESY ampersand LEP at CERN; theoretical high energy physics; DUMAND; study of ultra high energy gamma rays; data analysis facility; and R ampersand D for major subsystems for the SSC detectors

  17. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1993-01-01

    Brief reports are given on the work of several professors. The following areas are included: quantum chromodynamics calculations using numerical lattice gauge theory and a high-speed parallel computer; the ''spin wave'' description of bosonic particles moving on a lattice with same-site exclusion; a high-temperature expansion to 13th order for the O(4)-symmetric φ 4 model on a four-dimensional F 4 lattice; spin waves and lattice bosons; superconductivity of C 60 ; meson-meson interferometry in heavy-ion collisions; baryon number violation in the Standard Model in high-energy collisions; hard thermal loops in QCD; electromagnetic interactions of anyons; the relation between Bose-Einstein and BCS condensations; Euclidean wormholes with topology S 1 x S 2 x R; vacuum decay and symmetry breaking by radiative corrections; inflationary solutions to the cosmological horizon and flatness problems; and magnetically charged black holes

  18. High frequency energy measurements

    International Nuclear Information System (INIS)

    Stotlar, S.C.

    1981-01-01

    High-frequency (> 100 MHz) energy measurements present special problems to the experimenter. Environment or available electronics often limit the applicability of a given detector type. The physical properties of many detectors are frequency dependent and in some cases, the physical effect employed can be frequency dependent. State-of-the-art measurements generally involve a detection scheme in association with high-speed electronics and a method of data recording. Events can be single or repetitive shot requiring real time, sampling, or digitizing data recording. Potential modification of the pulse by the detector and the associated electronics should not be overlooked. This presentation will review typical applications, methods of choosing a detector, and high-speed detectors. Special considerations and limitations of some applications and devices will be described

  19. High energy ion implantation

    International Nuclear Information System (INIS)

    Ziegler, J.F.

    1985-01-01

    High energy ion implantation offers the oppertunity for unique structures in semiconductor processing. The unusual physical properties of such implantations are discussed as well as the special problems in masking and damage annealing. A review is made of proposed circuit structures which involve deep implantation. Examples are: deep buried bipolar collectors fabricated without epitaxy, barrier layers to reduce FET memory sensitivity to soft-fails, CMOS isolation well structures, MeV implantation for customization and correction of completed circuits, and graded reach-throughs to deep active device components. (orig.)

  20. High energy physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1991-01-01

    This progress report presents a review of research done over the past five years by the Duke High Energy Physics Group. This research has been centered at Fermilab where we have had a continuing involvement with both the Tevatron collider and fixed-target programs. In 1988 we began extensive detector R ampersand D for the SSC through its Major Subsystem Program. Duke has been an active member of the Solenoidal Detector Collaboration (SDC) since its formation. These last five years has also been used to finish the analysis of data from a series of hybrid bubble chamber experiments which formed the core of Duke's research program in the early 1980's

  1. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  2. Efficient weakly-radiative wireless energy transfer: An EIT-like approach

    International Nuclear Information System (INIS)

    Hamam, Rafif E.; Karalis, Aristeidis; Joannopoulos, J.D.; Soljacic, Marin

    2009-01-01

    Inspired by a quantum interference phenomenon known in the atomic physics community as electromagnetically induced transparency (EIT), we propose an efficient weakly radiative wireless energy transfer scheme between two identical classical resonant objects, strongly coupled to an intermediate classical resonant object of substantially different properties, but with the same resonance frequency. The transfer mechanism essentially makes use of the adiabatic evolution of an instantaneous (so called 'dark') eigenstate of the coupled 3-object system. Our analysis is based on temporal coupled mode theory (CMT), and is general enough to be valid for various possible sorts of coupling, including the resonant inductive coupling on which witricity-type wireless energy transfer is based. We show that in certain parameter regimes of interest, this scheme can be more efficient, and/or less radiative than other, more conventional approaches. A concrete example of wireless energy transfer between capacitively-loaded metallic loops is illustrated at the beginning, as a motivation for the more general case. We also explore the performance of the currently proposed EIT-like scheme, in terms of improving efficiency and reducing radiation, as the relevant parameters of the system are varied.

  3. Prospects at high energies

    International Nuclear Information System (INIS)

    Quigg, C.

    1988-11-01

    I discuss some possibilities for neutrino experiments in the fixed-target environment of the SPS, Tevatron, and UNK, with their primary proton beams of 0.4, 0.9, and 3.0 TeV. The emphasis is on unfinished business: issues that have been recognized for some time, but not yet resolved. Then I turn to prospects for proton-proton colliders to explore the 1-TeV scale. I review the motivation for new physics in the neighborhood of 1 TeV and mention some discovery possibilities for high-energy, high-luminosity hadron colliders and the implications they would have for neutrino physics. I raise the possibility of the direct study of neutrino interactions in hadron colliders. I close with a report on the status of the SSC project. 38 refs., 17 figs

  4. High Frequency Resonance Damping of DFIG based Wind Power System under Weak Network

    DEFF Research Database (Denmark)

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    When operating in a micro or weak grid which has a relatively large network impedance, the Doubly Fed Induction Generator (DFIG) based wind power generation system is prone to suffer high frequency resonance due to the impedance interaction between DFIG system and the parallel compensated network...

  5. Eulerian and Lagrangian statistics from high resolution numerical simulations of weakly compressible turbulence

    NARCIS (Netherlands)

    Benzi, R.; Biferale, L.; Fisher, R.T.; Lamb, D.Q.; Toschi, F.

    2009-01-01

    We report a detailed study of Eulerian and Lagrangian statistics from high resolution Direct Numerical Simulations of isotropic weakly compressible turbulence. Reynolds number at the Taylor microscale is estimated to be around 600. Eulerian and Lagrangian statistics is evaluated over a huge data

  6. Impedance-Based High Frequency Resonance Analysis of DFIG System in Weak Grids

    DEFF Research Database (Denmark)

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    Resonance (SSR). However, the High Frequency Resonance (HFR) of DFIG systems due to the impedance interaction between DFIG system and parallel compensated weak network is often overlooked. This paper thus investigates the impedance characteristics of DFIG systems for the analysis of HFR. The influences...

  7. High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations

    KAUST Repository

    Abdulle, Assyr

    2012-01-01

    © 2012 Society for Industrial and Applied Mathematics. Inspired by recent advances in the theory of modified differential equations, we propose a new methodology for constructing numerical integrators with high weak order for the time integration of stochastic differential equations. This approach is illustrated with the constructions of new methods of weak order two, in particular, semi-implicit integrators well suited for stiff (meansquare stable) stochastic problems, and implicit integrators that exactly conserve all quadratic first integrals of a stochastic dynamical system. Numerical examples confirm the theoretical results and show the versatility of our methodology.

  8. Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps

    International Nuclear Information System (INIS)

    Clerkin, L.; Kirk, D.; Manera, M.; Lahav, O.; Abdalla, F.

    2016-01-01

    It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (κWL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the counts-in-cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey Science Verification data over 139 deg"2. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirm that the galaxy density contrast distribution is well modelled by a lognormal PDF convolved with Poisson noise at angular scales from 10 to 40 arcmin (corresponding to physical scales of 3–10 Mpc). We note that as κWL is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the κWL distribution is well modelled by a lognormal PDF convolved with Gaussian shape noise at scales between 10 and 20 arcmin, with a best-fitting χ"2/dof of 1.11 compared to 1.84 for a Gaussian model, corresponding to p-values 0.35 and 0.07, respectively, at a scale of 10 arcmin. Above 20 arcmin a simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate lognormal. As a consistency check, we compare the variances derived from the lognormal modelling with those directly measured via CiC. Lastly, our methods are validated against maps from the MICE Grand Challenge N-body simulation.

  9. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb - 1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989

  10. High energy astrophysical techniques

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.

  11. Systematic Biases in Weak Lensing Cosmology with the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Samuroff, Simon [Manchester U.

    2017-01-01

    This thesis sets out a practical guide to applying shear measurements as a cosmological tool. We first present one of two science-ready galaxy shape catalogues from Year 1 of the Dark Energy Survey (DES Y1), which covers 1500 square degrees in four bands $griz$, with a median redshift of $0.59$. We describe the shape measurement process implemented by the DES Y1 imshape catalogue, which contains 21.9 million high-quality $r$-band bulge/disc fits. In Chapter 3 a new suite of image simulations, referred to as Hoopoe, are presented. The Hoopoe dataset is tailored to DES Y1 and includes realistic blending, spatial masks and variation in the point spread function. We derive shear corrections, which we show are robust to changes in calibration method, galaxy binning and variance within the simulated dataset. Sources of systematic uncertainty in the simulation-based shear calibration are discussed, leading to a final estimate of the $1\\sigma$ uncertainties in the residual multiplica tive bias after calibration of 0.025. Chapter 4 describes an extension of the analysis on the Hoopoe simulations into a detailed investigation of the impact of galaxy neighbours on shape measurement and shear cosmology. Four mechanisms by which neighbours can have a non-negligible influence on shear measurement are identified. These effects, if ignored, would contribute a net multiplicative bias of $m \\sim 0.03 - 0.09$ in DES Y1, though the precise impact will depend on both the measurement code and the selection cuts applied. We use the cosmological inference pipeline of DES Y1 to explore the cosmological implications of neighbour bias and show that omitting blending from the calibration simulation for DES Y1 would bias the inferred clustering amplitude $S_8 \\equiv \\sigma_8 (\\omegam /0.3)^{0.5}$ by $1.5 \\sigma$ towards low values. Finally, we use the Hoopoe simulations to test the effect of neighbour-induced spatial correlations in the multiplicative bias. We find the cosmo logical

  12. Mice deficient in ribosomal protein S6 phosphorylation suffer from muscle weakness that reflects a growth defect and energy deficit.

    Directory of Open Access Journals (Sweden)

    Igor Ruvinsky

    Full Text Available BACKGROUND: Mice, whose ribosomal protein S6 cannot be phosphorylated due to replacement of all five phosphorylatable serine residues by alanines (rpS6(P-/-, are viable and fertile. However, phenotypic characterization of these mice and embryo fibroblasts derived from them, has established the role of these modifications in the regulation of the size of several cell types, as well as pancreatic beta-cell function and glucose homeostasis. A relatively passive behavior of these mice has raised the possibility that they suffer from muscle weakness, which has, indeed, been confirmed by a variety of physical performance tests. METHODOLOGY/PRINCIPAL FINDINGS: A large variety of experimental methodologies, including morphometric measurements of histological preparations, high throughput proteomic analysis, positron emission tomography (PET and numerous biochemical assays, were used in an attempt to establish the mechanism underlying the relative weakness of rpS6(P-/- muscles. Collectively, these experiments have demonstrated that the physical inferiority appears to result from two defects: a a decrease in total muscle mass that reflects impaired growth, rather than aberrant differentiation of myofibers, as well as a diminished abundance of contractile proteins; and b a reduced content of ATP and phosphocreatine, two readily available energy sources. The abundance of three mitochondrial proteins has been shown to diminish in the knockin mouse. However, the apparent energy deficiency in this genotype does not result from a lower mitochondrial mass or compromised activity of enzymes of the oxidative phosphorylation, nor does it reflect a decline in insulin-dependent glucose uptake, or diminution in storage of glycogen or triacylglycerol (TG in the muscle. CONCLUSIONS/SIGNIFICANCE: This study establishes rpS6 phosphorylation as a determinant of muscle strength through its role in regulation of myofiber growth and energy content. Interestingly, a similar

  13. Performance Optimization Design for a High-Speed Weak FBG Interrogation System Based on DFB Laser.

    Science.gov (United States)

    Yao, Yiqiang; Li, Zhengying; Wang, Yiming; Liu, Siqi; Dai, Yutang; Gong, Jianmin; Wang, Lixin

    2017-06-22

    A performance optimization design for a high-speed fiber Bragg grating (FBG) interrogation system based on a high-speed distributed feedback (DFB) swept laser is proposed. A time-division-multiplexing sensor network with identical weak FBGs is constituted to realize high-capacity sensing. In order to further improve the multiplexing capacity, a waveform repairing algorithm is designed to extend the dynamic demodulation range of FBG sensors. It is based on the fact that the spectrum of an FBG keeps stable over a long period of time. Compared with the pre-collected spectra, the distorted spectra waveform are identified and repaired. Experimental results show that all the identical weak FBGs are distinguished and demodulated at the speed of 100 kHz with a linearity of above 0.99, and the range of dynamic demodulation is extended by 40%.

  14. Performance Optimization Design for a High-Speed Weak FBG Interrogation System Based on DFB Laser

    Directory of Open Access Journals (Sweden)

    Yiqiang Yao

    2017-06-01

    Full Text Available A performance optimization design for a high-speed fiber Bragg grating (FBG interrogation system based on a high-speed distributed feedback (DFB swept laser is proposed. A time-division-multiplexing sensor network with identical weak FBGs is constituted to realize high-capacity sensing. In order to further improve the multiplexing capacity, a waveform repairing algorithm is designed to extend the dynamic demodulation range of FBG sensors. It is based on the fact that the spectrum of an FBG keeps stable over a long period of time. Compared with the pre-collected spectra, the distorted spectra waveform are identified and repaired. Experimental results show that all the identical weak FBGs are distinguished and demodulated at the speed of 100 kHz with a linearity of above 0.99, and the range of dynamic demodulation is extended by 40%.

  15. High energy magnetic excitations

    International Nuclear Information System (INIS)

    Endoh, Yasuo

    1988-01-01

    The report emphasizes that the current development in condensed matter physics opens a research field fit to inelastic neutron scattering experiments in the eV range which is easilly accessed by spallation neutron sources. Several important subjects adopted at thermal reactors are shown. It is desired to extend the implementation of the spectroscopic experiments for investigation of higher energy magnetic excitations. For La 2 CuO 4 , which is the mother crystal of the first high Tc materials found by Bednortz and Muller, it seems to be believed that the magnetism is well characterized by the two-dimensional Heisenberg antiferromagnetic Hamiltonian, and it is widely accepted that the magnetism is a most probable progenitor of high Tc superconductors. The unusual properties of spin correlations in this crystal have been studied extensively by standard neutron scattering techniques with steady neutrons at BNL. FeSi is not ordered magnetically but shows a very unique feature of temperature induced magnetism, which also has been studied extensively by using the thermal neutron scattering technique at BNL. In these experiments, polarized neutrons are indispensable to extract the clean magnetic components out of other components of non-magnetic scattering. (N.K.)

  16. Detailed spectra of high power broadband microwave radiation from interactions of relativistic electron beams with weakly magnetized plasmas

    International Nuclear Information System (INIS)

    Kato, K.G.; Benford, G.; Tzach, D.

    1983-01-01

    Prodigious quantities of microwave energy are observed uniformly across a wide frequency band when a relativistic electron beam (REB) penetrates a plasma. Measurement calculations are illustrated. A model of Compton-like boosting of ambient plasma waves by beam electrons, with collateral emission of high frequency photons, qualitatively explain the spectra. A transition in spectral behavior is observed from the weak to strong turbulence theories advocated for Type III solar burst radiation, and further into the regime the authors characterize as super-strong REB-plasma interactions

  17. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Watase, Yoshiyuki

    1991-09-15

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors.

  18. High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.; Davis, M.

    1989-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics for the evolution of the early Universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including the development of constraints on the inflationary predictions of scale--free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon. We will examine the observable imprint of primordial density fluctuations on the cosmic microwave background radiation curved cosmological models. Most astronomical evidence points to an open universe: one of our goals is to reconcile this conclusion with the particle physics input. We will investigate the response of the matter distribution to a network of cosmic strings produced during an early symmetry-breaking transition, and compute the resulting cosmic microwave background anisotropies. We will simulate the formation of large-scale structures whose dynamics are dominated by weakly interacting particles such as axions, massive neutrinos or photinos in order to model the formation of galaxies, galaxy clusters and superclusters. We will study of the distortions in the microwave background radiation, both spectral and angular, that are produced by ionized gas associated with forming clusters and groups of galaxies. We will also study constraints on exotic cooling mechanisms involving axions and majorons set by stellar evolution and the energy input into low mass stars by cold dark matter annihilation galactic nuclei. We will compute the detailed gamma ray spectrum predicted by various cold dark matter candidates undergoing annihilation in the galactic halo and bulge

  19. [High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.; Davis, M.

    1988-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics for the evolution of the early Universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including the development of constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon. We will examine the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in curved cosmological models. Most astronomical evidence points to an open universe: one of our goals is to reconcile this conclusion with the particle physics input. We will investigate the response of the matter distribution to a network of cosmic strings produced during an early symmetry--breaking transition, and compute the resulting cosmic microwave background anisotropies. We will simulate the formation of large--scale structures whose dynamics are dominated by weakly interacting particles such as axions massive neutrinos or photinos in order to model the formation of galaxies, galaxy clusters and superclusters. We will study the distortions in the microwave background radiation, both spectral and angular, that are produced by ionized gas associated with forming clusters and groups of galaxies. We will also study constraints on exotic cooling mechanisms involving axions and majorons set by stellar evolution and the energy input into low mass stars by cold dark matter annihilation in galactic nuclei. We will compute the detailed gamma ray spectrum predicted by various cold dark matter candidates undergoing annihilation in the galactic halo and bulge

  20. FSU High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Prosper, Harrison B. [Florida State Univ., Tallahassee, FL (United States); Adams, Todd [Florida State Univ., Tallahassee, FL (United States); Askew, Andrew [Florida State Univ., Tallahassee, FL (United States); Berg, Bernd [Florida State Univ., Tallahassee, FL (United States); Blessing, Susan K. [Florida State Univ., Tallahassee, FL (United States); Okui, Takemichi [Florida State Univ., Tallahassee, FL (United States); Owens, Joseph F. [Florida State Univ., Tallahassee, FL (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Wahl, Horst D. [Florida State Univ., Tallahassee, FL (United States)

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  1. Weak lensing magnification in the Dark Energy Survey Science Verification Data

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fernandez, M.; et al.

    2016-11-30

    In this paper the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using data from the Dark Energy Survey Science Verification dataset. The analysis is carried out for two photometrically-selected galaxy samples, with mean photometric redshifts in the $0.2 < z < 0.4$ and $0.7 < z < 1.0$ ranges, in the riz bands. A signal is detected with a $3.5\\sigma$ significance level in each of the bands tested, and is compatible with the magnification predicted by the $\\Lambda$CDM model. After an extensive analysis, it cannot be attributed to any known systematic effect. The detection of the magnification signal is robust to estimated uncertainties in the outlier rate of the pho- tometric redshifts, but this will be an important issue for use of photometric redshifts in magnification mesurements from larger samples. In addition to the detection of the magnification signal, a method to select the sample with the maximum signal-to-noise is proposed and validated with data.

  2. A Precision Low-Energy Measurement of the Weak Mixing Angle in Moller Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mastromarino, P.

    2005-01-26

    The E-158 experiment at the Stanford Linear Accelerator Center (SLAC) measures the parity-violating cross-section asymmetry in electron-electron (Moeller) scattering at low Q{sup 2}. This asymmetry, whose Standard Model prediction is roughly -150 parts per billion (ppb), is directly proportional to (1-4 sin{sup 2} {theta}{sub W}), where {theta}{sub W} is the weak mixing angle. Measuring this asymmetry to within 10% provides an important test of the Standard Model at the quantum loop level and probes for new physics at the TeV scale. The experiment employs the SLAC 50 GeV electron beam, scattering it off a liquid hydrogen target. A system of magnets and collimators is used to isolate and focus the Moeller scattering events into an integrating calorimeter. The electron beam is generated at the source using a strained, gradient-doped GaAs photocathode, which produces roughly 5 x 10{sup 11} electrons/pulse (at a beam rate of 120 Hz) with {approx} 80% longitudinal polarization. The helicity of the beam can be rapidly switched, eliminating problems associated with slow drifts. Helicity-correlations in the beam parameters (charge, position, angle and energy) are minimized at the source and corrected for using precision beam monitoring devices.

  3. Energy Gap, Microwave-Assisted Tunneling, and Josephson Steps in Thin-Film Weak Links at 63 and 302 GHz

    DEFF Research Database (Denmark)

    Kofoed, Bent; Særmark, Knud

    1973-01-01

    We present experimental evidence for the occurrence of energy-gap structure and microwave-assisted tunneling in the IV curves for superconducting thin-film weak links. From measurements of the power and the temperature dependence of the Josephson steps we argue that also the Riedel peak is observ......We present experimental evidence for the occurrence of energy-gap structure and microwave-assisted tunneling in the IV curves for superconducting thin-film weak links. From measurements of the power and the temperature dependence of the Josephson steps we argue that also the Riedel peak...

  4. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics Program at the University of California, Riverside. In 1990, we will concentrate on analysis of LEP data from the OPAL detector. We expect to record 10 5 Z's by the end of 1989 and 10 6 in 1990. This data will be used to measure the number of quark-lepton families in the universe. In the second half of 1990 we will also be occupied with the installation of the D-Zero detector in the Tevatron Collider and the preparation of software for the 1991 run. A new initiative made possible by generous university support is a laboratory for detector development at UCR. The focus will be on silicon strip tracking detectors both for the D-Zero upgrade and for SSC physics. The theory program will pursue further various mass-generating radiative mechanisms for understanding small quark and lepton masses as well as some novel phenomenological aspects of supersymmetry

  5. High energy plasma accelerators

    International Nuclear Information System (INIS)

    Tajima, T.

    1985-05-01

    Colinear intense laser beams ω 0 , kappa 0 and ω 1 , kappa 1 shone on a plasma with frequency separation equal to the electron plasma frequency ω/sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ω/sub pe//e of the order of 1GeV/cm for a plasma density of 10 18 cm -3 through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed

  6. Global weak solutions for coupled transport processes in concrete walls at high temperatures

    OpenAIRE

    Beneš, Michal; Štefan, Radek

    2012-01-01

    We consider an initial-boundary value problem for a fully nonlinear coupled parabolic system with nonlinear boundary conditions modelling hygro-thermal behavior of concrete at high temperatures. We prove a global existence of a weak solution to this system on an arbitrary time interval. The main result is proved by an approximation procedure. This consists in proving the existence of solutions to mollified problems using the Leray-Schauder theorem, for which a priori estimates are obtained. T...

  7. Dark Energy Survey Year 1 Results: Redshift distributions of the weak lensing source galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hoyle, B.; et al.

    2017-08-04

    We describe the derivation and validation of redshift distribution estimates and their uncertainties for the galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z=0.2 and 1.3, and to produce initial estimates of the lensing-weighted redshift distributions $n^i_{PZ}(z)$ for bin i. Accurate determination of cosmological parameters depends critically on knowledge of $n^i$ but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts $n^i(z)=n^i_{PZ}(z-\\Delta z^i)$ to correct the mean redshift of $n^i(z)$ for biases in $n^i_{\\rm PZ}$. The $\\Delta z^i$ are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the $\\Delta z^i$ are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15

  8. Dark Energy Survey Year 1 Results: Redshift distributions of the weak lensing source galaxies

    Science.gov (United States)

    Hoyle, B.; Gruen, D.; Bernstein, G. M.; Rau, M. M.; De Vicente, J.; Hartley, W. G.; Gaztanaga, E.; DeRose, J.; Troxel, M. A.; Davis, C.; Alarcon, A.; MacCrann, N.; Prat, J.; Sánchez, C.; Sheldon, E.; Wechsler, R. H.; Asorey, J.; Becker, M. R.; Bonnett, C.; Carnero Rosell, A.; Carollo, D.; Carrasco Kind, M.; Castander, F. J.; Cawthon, R.; Chang, C.; Childress, M.; Davis, T. M.; Drlica-Wagner, A.; Gatti, M.; Glazebrook, K.; Gschwend, J.; Hinton, S. R.; Hoormann, J. K.; Kim, A. G.; King, A.; Kuehn, K.; Lewis, G.; Lidman, C.; Lin, H.; Macaulay, E.; Maia, M. A. G.; Martini, P.; Mudd, D.; Möller, A.; Nichol, R. C.; Ogando, R. L. C.; Rollins, R. P.; Roodman, A.; Ross, A. J.; Rozo, E.; Rykoff, E. S.; Samuroff, S.; Sevilla-Noarbe, I.; Sharp, R.; Sommer, N. E.; Tucker, B. E.; Uddin, S. A.; Varga, T. N.; Vielzeuf, P.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Busha, M. T.; Capozzi, D.; Carretero, J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kirk, D.; Krause, E.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Nord, B.; O'Neill, C. R.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.; Yanny, B.; Zuntz, J.; DES Collaboration

    2018-04-01

    We describe the derivation and validation of redshift distribution estimates and their uncertainties for the populations of galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z ≈ 0.2 and ≈1.3, and to produce initial estimates of the lensing-weighted redshift distributions n^i_PZ(z)∝ dn^i/dz for members of bin i. Accurate determination of cosmological parameters depends critically on knowledge of ni but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts n^i(z)=n^i_PZ(z-Δ z^i) to correct the mean redshift of ni(z) for biases in n^i_PZ. The Δzi are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the Δzi of the three lowest redshift bins are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15 < z < 0.9. This paper details the BPZ and COSMOS procedures, and demonstrates that the cosmological inference is insensitive to details of the ni(z) beyond the choice of Δzi. The clustering and COSMOS validation methods produce consistent estimates of Δzi in the bins where both can be applied, with combined uncertainties of σ _{Δ z^i}=0.015, 0.013, 0.011, and 0.022 in the four bins. Repeating the photo-z proceedure instead using the Directional Neighborhood Fitting (DNF) algorithm, or using the ni(z) estimated from the matched sample in COSMOS, yields no discernible difference in cosmological inferences.

  9. High energy neutron generator

    International Nuclear Information System (INIS)

    Barjon, R.; Breynat, G.

    1987-01-01

    This patent describes a generator of fast neutrons only slightly contaminated by neutrons of energy less than 15 MeV, comprising a source of charged particles of energy equal to at least 15 MeV, a target made of lithium deuteride, and means for cooling the target. The target comprises at least two elements placed in series in the path of the charged particles and separated from each other, the thickness of each of the elements being selected as a function of the average energy of the charged particles emitted from the source and the energy of the fast neutrons to be generated such that neutrons of energy equal to at least 15 MeV are emitted in the forward direction in response to the bombardment of the target from behind by the charged particles. The target cooling means comprises means for circulating between and around the elements a gas which does not chemically react with lithium deuteride

  10. Dosimetry of high energy radiation

    CERN Document Server

    Sahare, P D

    2018-01-01

    High energy radiation is hazardous to living beings and a threat to mankind. The correct estimation of the high energy radiation is a must and a single technique may not be very successful. The process of estimating the dose (the absorbed energy that could cause damages) is called dosimetry. This book covers the basic technical knowledge in the field of radiation dosimetry. It also makes readers aware of the dangers and hazards of high energy radiation.

  11. Renewable Energy Riding High

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    China is putting greater emphasis on green energy as it tries to clean up industry and meet target for cuts in carbon emissions over the past two years, China has already leapfrogged competitors from Denmark, Germany, Spain and the United States to become the world's largest maker of wind turbines and solar panels. At the same time, the country is also taking steps to build more nuclear reactors and energy-efficient coal power plants.

  12. Weak interactions

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1978-01-01

    Weak interactions are studied from a phenomenological point of view, by using a minimal number of theoretical hypotheses. Charged-current phenomenology, and then neutral-current phenomenology are discussed. This all is described in terms of a global SU(2) symmetry plus an electromagnetic correction. The intermediate-boson hypothesis is introduced and lower bounds on the range of the weak force are inferred. This phenomenology does not yet reconstruct all the predictions of the conventional SU(2)xU(1) gauge theory. To do that requires an additional assumption of restoration of SU(2) symmetry at asymptotic energies

  13. The energy band structure of ultra small capacitance weak links - QED in condensed matter circuits

    International Nuclear Information System (INIS)

    Prance, H.; Clark, T.D.; Prance, R.J.; Spiller, T.P.; Diggins, J.; Ralph, J.F.

    1993-01-01

    We consider various superconducting weak link circuits in which quantum effects dominate. We show that in this quantum regime these circuits take on a quantum electrodynamic description, at least as far as the electromagnetic field contribution is concerned. (orig.)

  14. Energy peaks: A high energy physics outlook

    Science.gov (United States)

    Franceschini, Roberto

    2017-12-01

    Energy distributions of decay products carry information on the kinematics of the decay in ways that are at the same time straightforward and quite hidden. I will review these properties and discuss their early historical applications, as well as more recent ones in the context of (i) methods for the measurement of masses of new physics particle with semi-invisible decays, (ii) the characterization of Dark Matter particles produced at colliders, (iii) precision mass measurements of Standard Model particles, in particular of the top quark. Finally, I will give an outlook of further developments and applications of energy peak method for high energy physics at colliders and beyond.

  15. Perturbative expansions from Monte Carlo simulations at weak coupling: Wilson loops and the static-quark self-energy

    International Nuclear Information System (INIS)

    Trottier, H.D.; Shakespeare, N.H.; Lepage, G.P.; Mackenzie, P.B.

    2002-01-01

    Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 3 4 to 16 4 ) and couplings (from β≅9 to β≅60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported

  16. BROOKHAVEN: High energy gold

    International Nuclear Information System (INIS)

    Bleser, Ed

    1992-01-01

    On April 24, Brookhaven's Alternating Gradient Synchrotron (AGS) started to deliver gold ions at 11.4 GeV per nucleon (2,000 GeV per ion) to experimenters who were delighted not only to receive the world's highest energy gold beam but also to receive it on schedule

  17. Weak Lensing Peaks in Simulated Light-Cones: Investigating the Coupling between Dark Matter and Dark Energy

    Science.gov (United States)

    Giocoli, Carlo; Moscardini, Lauro; Baldi, Marco; Meneghetti, Massimo; Metcalf, Robert B.

    2018-05-01

    In this paper, we study the statistical properties of weak lensing peaks in light-cones generated from cosmological simulations. In order to assess the prospects of such observable as a cosmological probe, we consider simulations that include interacting Dark Energy (hereafter DE) models with coupling term between DE and Dark Matter. Cosmological models that produce a larger population of massive clusters have more numerous high signal-to-noise peaks; among models with comparable numbers of clusters those with more concentrated haloes produce more peaks. The most extreme model under investigation shows a difference in peak counts of about 20% with respect to the reference ΛCDM model. We find that peak statistics can be used to distinguish a coupling DE model from a reference one with the same power spectrum normalisation. The differences in the expansion history and the growth rate of structure formation are reflected in their halo counts, non-linear scale features and, through them, in the properties of the lensing peaks. For a source redshift distribution consistent with the expectations of future space-based wide field surveys, we find that typically seventy percent of the cluster population contributes to weak-lensing peaks with signal-to-noise ratios larger than two, and that the fraction of clusters in peaks approaches one-hundred percent for haloes with redshift z ≤ 0.5. Our analysis demonstrates that peak statistics are an important tool for disentangling DE models by accurately tracing the structure formation processes as a function of the cosmic time.

  18. What we have learned so far on reactions and scattering with weakly bound nuclei at near barrier energies

    International Nuclear Information System (INIS)

    Gomes, P.R.S.

    2011-01-01

    Reactions involving weakly bound nuclei, especially halo nuclei, at near barrier energies, are an important subject not yet fully understood. Due to the low threshold energy for breakup, this process is particularly important and may affect significantly the fusion process and elastic scattering. In this talk I will show the systematic of results so far available in this field, concerning static and dynamical effects of halo and breakup on fusion and total reaction cross sections, the energy dependence of the optical potential on the elastic scattering and coupling effects on quasi-elastic scattering barrier distributions involving weakly bound nuclei, both stable and radioactive. The data to be discussed are new data from our group and from the literature, together with some older data. I will also present some experimental challenges for the development of this field. (author)

  19. Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, T.M.C.; et al.

    2017-08-04

    We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg$^2$ of $griz$ imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while blind to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat $\\Lambda$CDM and $w$CDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for $\\Lambda$CDM) or 7 (for $w$CDM) cosmological parameters including the neutrino mass density and including the 457 $\\times$ 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions, and from their combination obtain $S_8 \\equiv \\sigma_8 (\\Omega_m/0.3)^{0.5} = 0.783^{+0.021}_{-0.025}$ and $\\Omega_m = 0.264^{+0.032}_{-0.019}$ for $\\Lambda$CDM for $w$CDM, we find $S_8 = 0.794^{+0.029}_{-0.027}$, $\\Omega_m = 0.279^{+0.043}_{-0.022}$, and $w=-0.80^{+0.20}_{-0.22}$ at 68% CL. The precision of these DES Y1 results rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for $S_8$ and $\\Omega_m$ are lower than the central values from Planck ...

  20. Theory of photoemission and inverse-photoemission spectra of highly correlated electron systems: A weak-coupling 1/N expansion

    International Nuclear Information System (INIS)

    Riseborough, P.S.

    1989-01-01

    An N-fold-degenerate Hubbard model is examined in the weak-coupling regime. The one-electron Green's function is calculated from a systematic expansion of the irreducible self-energy in powers of 1/N. To lowest order in the expansion, one obtains a trivial mean-field theory. In the next leading order in 1/N, one finds that the dynamics are dominated by bosonlike collective excitations. The resulting expansion has the characteristics of the standard weak-coupling field theory, except the inclusion of the 1/N factors extends the regime of applicability to include Stoner-like enhancement factors which can be N times larger. The joint valence-band photoemission and inverse-photoemission spectrum is given by the trace of the imaginary part of the one-electron Green's function. The electronic spectrum has been calculated by truncating the series expansion for the self-energy in the lowest nontrivial order of 1/N. For small values of the Coulomb interaction between the electrons, the spectrum reduces to the form obtained by calculating the self-energy to second order in the Coulomb interaction. The spectra shows a narrowing of the band in the vicinity of the Fermi level and long high-energy band tails. When the boson spectrum softens, indicating the vicinity of a phase transition, the electronic spectrum shows the appearance of satellites. The results are compared with experimental observations of anomalies in the electronic spectra of uranium-based systems. The relation between the electronic spectrum and the thermodynamic mass enhancements is also discussed

  1. High energy cosmic ray astronomy

    International Nuclear Information System (INIS)

    Fonseca, V.

    1996-01-01

    A brief introduction to High Energy Cosmic Ray Astronomy is presented. This field covers a 17 decade energy range (2.10 4 -10 20 ) eV. Recent discoveries done with gamma-ray detectors on-board satellites and ground-based Cherenkov devices are pushing for a fast development of new and innovative techniques, specially in the low energy region which includes the overlapping of satellite and ground-based measurements in the yet unexplored energy range 20 keV-250 GeV. Detection of unexpected extremely high energy events have triggered the interest of the international scientific community. (orig.)

  2. High Energy Materials

    Indian Academy of Sciences (India)

    IAS Admin

    Propellants used in rockets, pyrotechnics used in festivities, explosives used for .... In World War II, Wernher von Braun designed the. V-2 rockets which were ... A. Solid Propellants. A solid propellant is made from low or diluted high explosives.

  3. High-intensity interval training prevents oxidant-mediated diaphragm muscle weakness in hypertensive mice.

    Science.gov (United States)

    Bowen, T Scott; Eisenkolb, Sophia; Drobner, Juliane; Fischer, Tina; Werner, Sarah; Linke, Axel; Mangner, Norman; Schuler, Gerhard; Adams, Volker

    2017-01-01

    Hypertension is a key risk factor for heart failure, with the latter characterized by diaphragm muscle weakness that is mediated in part by increased oxidative stress. In the present study, we used a deoxycorticosterone acetate (DOCA)-salt mouse model to determine whether hypertension could independently induce diaphragm dysfunction and further investigated the effects of high-intensity interval training (HIIT). Sham-treated (n = 11), DOCA-salt-treated (n = 11), and DOCA-salt+HIIT-treated (n = 15) mice were studied over 4 wk. Diaphragm contractile function, protein expression, enzyme activity, and fiber cross-sectional area and type were subsequently determined. Elevated blood pressure confirmed hypertension in DOCA-salt mice independent of HIIT (P HIIT. Myosin heavy chain (MyHC) protein expression tended to decrease (∼30%; P = 0.06) in DOCA-salt vs. sham- and DOCA-salt+HIIT mice, whereas oxidative stress increased (P HIIT further prevented direct oxidant-mediated diaphragm contractile dysfunction (P hypertension induces diaphragm contractile dysfunction via an oxidant-mediated mechanism that is prevented by HIIT.-Bowen, T. S., Eisenkolb, S., Drobner, J., Fischer, T., Werner, S., Linke, A., Mangner, N., Schuler, G., Adams, V. High-intensity interval training prevents oxidant-mediated diaphragm muscle weakness in hypertensive mice. © FASEB.

  4. Computing in high energy physics

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1991-01-01

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors

  5. Low energy constituent quark and pion effective couplings in a weak external magnetic field

    Science.gov (United States)

    Braghin, Fábio L.

    2018-03-01

    An effective model with pions and constituent quarks in the presence of a weak external background electromagnetic field is derived by starting from a dressed one gluon exchange quark-quark interaction. By applying the auxiliary field and background field methods, the structureless pion limit is considered to extract effective pion and constituent quark couplings in the presence of a weak magnetic field. The leading terms of a large quark and gluon masses expansion are obtained by resolving effective coupling constants which turn out to depend on a weak magnetic field. Two pion field definitions are considered for that. Several relations between the effective coupling constants and parameters can be derived exactly or in the limit of very large quark mass at zero and weak constant magnetic field. Among these ratios, the Gell-Mann-Oakes-Renner and the quark level Goldberger-Treiman relations are obtained. In addition to that, in the pion sector, the leading terms of Chiral Perturbation Theory coupled to the electromagnetic field are recovered. Some numerical estimates are provided for the effective coupling constants and parameters.

  6. High-energy communication

    CERN Multimedia

    CERN Communication Group

    2015-01-01

    On Wednesday at 10.40 a.m., the LHC operators declared “stable beams” after two years of technical stop and a few months of commissioning. It was an exciting day for all the teams involved, including those who worked on communicating the news to the public and the media on multiple platforms.   CERN’s most successful tweet on 3 June featured collision images from ALICE, ATLAS, CMS and LHCb and was shared 800 times by the Twitter audience. Live blogging, social media posts, a live webcast, and a constant outpouring of photos and videos: Wednesday morning was a crazy time for the communication teams from CERN, the experiments and various institutes around the world. Even though the event started very early in the morning (the live CCC blog started at 7 a.m. and the live webcast at 8.20 a.m.), the public and the media tuned in to follow and generously cover the start of the LHC’s physics run at an unprecedented energy of 13 TeV. The statistics showed th...

  7. Closeout for U.S. Department of Energy Final Technical Report for University of Arizona grant DOE Award Number DE-FG03-95ER40906 From 1 February 1995 to 31 January 2004 Grant title: Theory and Phenomenology of Strong and Weak High Energy Physics (Task A) and Experimental Elementary Particle Physics (Task B)

    Energy Technology Data Exchange (ETDEWEB)

    Rutherfoord, John; Toussaint, Doug; Sarcevic, Ina

    2005-03-03

    The following pages describe the high energy physics program at the University of Arizona which was funded by DOE grant DE-FG03-95ER40906, for the period 1 February 1995 to 31 January 2004. In this report, emphasis was placed on more recent accomplishments. This grant was divided into two tasks, a theory task (Task A) and an experimental task (Task B but called Task C early in the grant period) with separate budgets. Faculty supported by this grant, for at least part of this period, include, for the theory task, Adrian Patrascioiu (now deceased), Ina Sarcevic, and Douglas Toussaint., and, for the experimental task, Elliott Cheu, Geoffrey Forden, Kenneth Johns, John Rutherfoord, Michael Shupe, and Erich Varnes. Grant monitors from the Germantown DOE office, overseeing our grant, changed over the years. Dr. Marvin Gettner covered the first years and then he retired from the DOE. Dr. Patrick Rapp worked with us for just a few years and then left for a position at the University of Puerto Rico. Dr. Kathleen Turner took his place and continues as our grant monitor. The next section of this report covers the activities of the theory task (Task A) and the last section the activities of the experimental task (Task B).

  8. Closeout for U.S. Department of Energy Final Technical Report for University of Arizona grant DOE Award Number DE-FG03-95ER40906 From 1 February 1995 to 31 January 2004 Grant title: Theory and Phenomenology of Strong and Weak High Energy Physics (Task A) and Experimental Elementary Particle Physics (Task B)

    International Nuclear Information System (INIS)

    Rutherfoord, John; Toussaint, Doug; Sarcevic, Ina

    2005-01-01

    The following pages describe the high energy physics program at the University of Arizona which was funded by DOE grant DE-FG03-95ER40906, for the period 1 February 1995 to 31 January 2004. In this report, emphasis was placed on more recent accomplishments. This grant was divided into two tasks, a theory task (Task A) and an experimental task (Task B but called Task C early in the grant period) with separate budgets. Faculty supported by this grant, for at least part of this period, include, for the theory task, Adrian Patrascioiu (now deceased), Ina Sarcevic, and Douglas Toussaint., and, for the experimental task, Elliott Cheu, Geoffrey Forden, Kenneth Johns, John Rutherfoord, Michael Shupe, and Erich Varnes. Grant monitors from the Germantown DOE office, overseeing our grant, changed over the years. Dr. Marvin Gettner covered the first years and then he retired from the DOE. Dr. Patrick Rapp worked with us for just a few years and then left for a position at the University of Puerto Rico. Dr. Kathleen Turner took his place and continues as our grant monitor. The next section of this report covers the activities of the theory task (Task A) and the last section the activities of the experimental task (Task B)

  9. Occurrence of weak, sub-micron, tropospheric aerosol events at high Arctic latitudes

    Science.gov (United States)

    O'Neill, N. T.; Pancrati, O.; Baibakov, K.; Eloranta, E.; Batchelor, R. L.; Freemantle, J.; McArthur, L. J. B.; Strong, K.; Lindenmaier, R.

    2008-07-01

    Numerous fine mode (sub-micron) aerosol optical events were observed during the summer of 2007 at the High Arctic atmospheric observatory (PEARL) located at Eureka, Nunavut, Canada. Half of these events could be traced to forest fires in southern and eastern Russia and the Northwest Territories of Canada. The most notable findings were that (a) a combination of ground-based measurements (passive sunphotometry, high spectral resolution lidar) could be employed to determine that weak (near sub-visual) fine mode events had occurred, and (b) this data combined with remote sensing imagery products (MODIS, OMI-AI, FLAMBE fire sources), Fourier transform spectroscopy and back trajectories could be employed to identify the smoke events.

  10. Study of breakup and transfer of weakly bound nucleus 6Li to explore the low energy reaction dynamics

    Directory of Open Access Journals (Sweden)

    Zhang G. L.

    2017-01-01

    In order to have a proper understanding of the influence of breakup and transfer of weakly bound projectiles on the fusion process, we performed the 6Li+89Y experiment with incident energies of 22 MeV and 34 MeV on Galileo array in cooperation with Si-ball EUCLIDES at Legnaro National Laboratory (LNL in Italy. Using particle-particle and particle-γ coincidences, the different reaction mechanisms can be clearly explored.

  11. On the energy inequality for weak solutions to the Navier-Stokes equations of compressible fluids on unbounded domains

    Czech Academy of Sciences Publication Activity Database

    Dell'Oro, Filippo; Feireisl, Eduard

    2015-01-01

    Roč. 128, November (2015), s. 136-148 ISSN 0362-546X R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : compressible Navier-Stokes equations * unbounded domain * weak solutions * energy inequality Subject RIV: BA - General Mathematics Impact factor: 1.125, year: 2015 http://www.sciencedirect.com/science/article/pii/S0362546X15002692

  12. High-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, Thomas K. [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)]. E-mail: gaisser@bartol.udel.edu; Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2006-10-17

    After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the knee above 10{sup 15} eV and the ankle above 10{sup 18} eV. An important question is whether the highest-energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

  13. Ultra high energy cosmic rays

    International Nuclear Information System (INIS)

    Watson, A.A.

    1986-01-01

    Cosmic radiation was discovered 70 years ago but its origin remains an open question. The background to this problem is outlined and attempts to discover the origin of the most energetic and rarest group above 10 15 eV are described. Measurements of the energy spectrum and arrival direction pattern of the very highest energy particles, mean energy about 6 x 10 19 eV, are used to argue that these particles originate outside our galaxy. Recent evidence from the new field of ultra high energy γ-ray astronomy are discussed in the context of a galactic origin hypothesis for lower energy cosmic rays. (author)

  14. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R ampersand D on silicon microstrip tracking devices for the SSC. High statistics studies of Z 0 decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka's program includes a detailed investigation of the magnetic-flip approach to the solar neutrino

  15. Detailed spectra of high-power broadband microwave radiation from interactions of relativistic electron beams with weakly magnetized plasmas

    International Nuclear Information System (INIS)

    Kato, K.G.; Benford, G.; Tzach, D.

    1983-01-01

    Prodigious quantities of microwave energy distributed uniformly across a wide frequency band are observed when a relativistic electron beam (REB) penetrates a plasma. Typical measured values are 20 MW total for Δνapprox. =40 GHz with preliminary observations of bandwidths as large as 100 GHz. An intense annular pulsed REB (Iapprox. =128 kA; rapprox. =3 cm; Δrapprox. =1 cm; 50 nsec FWHM; γapprox. =3) is sent through an unmagnetized or weakly magnetized plasma column (n/sub plasma/approx.10 13 cm -3 ). Beam-to-plasma densities of 0.01 >ω/sub p/ and weak harmonic structure is wholly unanticipated from Langmuir scattering or soliton collapse models. A model of Compton-like boosting of ambient plasma waves by the beam electrons, with collateral emission of high-frequency photons, qualitatively explains these spectra. Power emerges largely in an angle approx.1/γ, as required by Compton mechanisms. As n/sub b//n/sub p/ falls, ω/sub p/-2ω/sub p/ structure and harmonic power ratios consistent with soliton collapse theories appear. With further reduction of n/sub b//n/sub p/ only the ω/sub p/ line persists

  16. A Note on Weak Solutions of Conservation Laws and Energy/Entropy Conservation

    Science.gov (United States)

    Gwiazda, Piotr; Michálek, Martin; Świerczewska-Gwiazda, Agnieszka

    2018-03-01

    A common feature of systems of conservation laws of continuum physics is that they are endowed with natural companion laws which are in such cases most often related to the second law of thermodynamics. This observation easily generalizes to any symmetrizable system of conservation laws; they are endowed with nontrivial companion conservation laws, which are immediately satisfied by classical solutions. Not surprisingly, weak solutions may fail to satisfy companion laws, which are then often relaxed from equality to inequality and overtake the role of physical admissibility conditions for weak solutions. We want to answer the question: what is a critical regularity of weak solutions to a general system of conservation laws to satisfy an associated companion law as an equality? An archetypal example of such a result was derived for the incompressible Euler system in the context of Onsager's conjecture in the early nineties. This general result can serve as a simple criterion to numerous systems of mathematical physics to prescribe the regularity of solutions needed for an appropriate companion law to be satisfied.

  17. High energy physics research

    International Nuclear Information System (INIS)

    Piroue, P.A.

    1992-10-01

    The goal of this research is to understand the fundamental constituents of matter and their interactions. At this time, the following activities are underway: e + e - interactions and Z 0 physics at CERN; studies to upgrade the L3 detector at LHC; very high statistics charm physics at Fermilab; search for the H particle at BNL; search for the fifth force; rare kaon decay experiments at BNL; study of B-meson physics at hadron colliders; e + e - pair creation by light at SLAC; R ampersand D related to SSC experiments and the GEM detector; and theoretical research in elementary particle physics and cosmology. The main additions to the activities described in detail in the original grant proposal are (1) an experiment at SLAC (E-144) to study strong-field QED effects in e-laser and γ-laser collisions, and (2) a search for the H particle at BNL (E-188). The R ampersand D efforts for the GEM detector have also considerably expanded. In this paper we give a brief status report for each activity currently under way

  18. Conference on High Energy Physics

    CERN Document Server

    2016-01-01

    Conference on High Energy Physics (HEP 2016) will be held from August 24 to 26, 2016 in Xi'an, China. This Conference will cover issues on High Energy Physics. It dedicates to creating a stage for exchanging the latest research results and sharing the advanced research methods. HEP 2016 will be an important platform for inspiring international and interdisciplinary exchange at the forefront of High Energy Physics. The Conference will bring together researchers, engineers, technicians and academicians from all over the world, and we cordially invite you to take this opportunity to join us for academic exchange and visit the ancient city of Xi’an.

  19. Limiting absorption principle at low energies for a mathematical model of weak interaction: the decay of a boson

    International Nuclear Information System (INIS)

    Barbarouxa, J.M.; Guillot, J.C.

    2009-01-01

    We study the spectral properties of a Hamiltonian describing the weak decay of spin 1 massive bosons into the full family of leptons. We prove that the considered Hamiltonian is self-adjoint, with a unique ground state and we derive a Mourre estimate and a limiting absorption principle above the ground state energy and below the first threshold, for a sufficiently small coupling constant. As a corollary, we prove absence of eigenvalues and absolute continuity of the energy spectrum in the same spectral interval. (authors)

  20. Future of high energy physics

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e - colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place

  1. Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows

    Science.gov (United States)

    Baker, A. J.; Freels, J. D.

    1989-01-01

    A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.

  2. High Energy Transport Code HETC

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1985-09-01

    The physics contained in the High Energy Transport Code (HETC), in particular the collision models, are discussed. An application using HETC as part of the CALOR code system is also given. 19 refs., 5 figs., 3 tabs

  3. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas; quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  4. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Sarah; Devenish, Robin [Nuclear Physics Laboratory, Oxford University (United Kingdom)

    1989-07-15

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'.

  5. [Research in high energy physics

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses progress in the following research in high energy physics: The crystal ball experiment; delco at PEP; proton decay experiment; MACRO detector; mark III detector; SLD detector; CLEO II detector; and the caltech L3 group

  6. Computing in high energy physics

    International Nuclear Information System (INIS)

    Smith, Sarah; Devenish, Robin

    1989-01-01

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'

  7. Problems of high energy physics

    International Nuclear Information System (INIS)

    Kadyshevskij, V.G.

    1989-01-01

    Some problems of high energy physics are discussed. The main attention is paid to describibg the standard model. The model comprises quantum chromodynamics and electroweak interaction theory. The problem of CP breaking is considered as well. 8 refs.; 1 tab

  8. Developments in high energy theory

    Indian Academy of Sciences (India)

    journal of. July 2009 physics pp. 3–60. Developments in high energy theory .... and operated by CERN (European Organization for Nuclear Research), this ma- ...... [2] S Dodelson, Modern cosmology (Academic Press, Amsterdam, 2003).

  9. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas: quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  10. Strengths-weaknesses-opportunities-threats (Swot) of wave energy industry in Portugal

    International Nuclear Information System (INIS)

    La regina, Veronica; Neumann, Frank; Russell, Iain; Sarmento, Antonio J. N. A.

    2006-01-01

    Energy policy-makers in countries are facing the daunting challenge of achieving energy security environmental protection and economic efficie16ncy. Renewable are considered by many policy-makers to contribute to improving energy security and protecting the environment. On an average cost basis, some renewables in the best locations are still not competitive. Supportive policies are still needed to encourage the further development and deployment especially of 'new' renewables in energy markets. Wave energy (WE) is front-runner of Marine Renewable Energies, as its technologies are not yet mature for a complete commercial status. Thus, a new a potential wave energy industry requires strong policy support from all stakeholders involved in it. We, like most other forms of renewable energy (RE), has a significant potential to mitigate global climate change, address regional and local environmental concerne, reduce poverty and increase energy security. The challenge is to provide the right policy frameworks and financial tools that will enable RE to achieve its market potential and move from marginal significance for the energy supply into the mainstream. Policy-makers thus have a mandate to take action and, since most of the capital for these green-actions will not come from public treasuries, most of these actions will need to focus on creating enabling frameworks and finance mechanisms for technology R and D, commercialisation and investment. For this form of RE to achieve its market potential, policy frameworks and financial instruments are necessary that give financiers the necessary assurance and incentives to shift investment away from oil technologies to large-scale investment in a clean energy systems. The paper assesses how Portugal should result attractive for wave energy industry according with geographical position, wave motions' power and policies' ability to attract finance. It describes present financing instruments for wave energy plant development and

  11. Dark Energy Survey Year 1 results: curved-sky weak lensing mass map

    Science.gov (United States)

    Chang, C.; Pujol, A.; Mawdsley, B.; Bacon, D.; Elvin-Poole, J.; Melchior, P.; Kovács, A.; Jain, B.; Leistedt, B.; Giannantonio, T.; Alarcon, A.; Baxter, E.; Bechtol, K.; Becker, M. R.; Benoit-Lévy, A.; Bernstein, G. M.; Bonnett, C.; Busha, M. T.; Rosell, A. Carnero; Castander, F. J.; Cawthon, R.; da Costa, L. N.; Davis, C.; De Vicente, J.; DeRose, J.; Drlica-Wagner, A.; Fosalba, P.; Gatti, M.; Gaztanaga, E.; Gruen, D.; Gschwend, J.; Hartley, W. G.; Hoyle, B.; Huff, E. M.; Jarvis, M.; Jeffrey, N.; Kacprzak, T.; Lin, H.; MacCrann, N.; Maia, M. A. G.; Ogando, R. L. C.; Prat, J.; Rau, M. M.; Rollins, R. P.; Roodman, A.; Rozo, E.; Rykoff, E. S.; Samuroff, S.; Sánchez, C.; Sevilla-Noarbe, I.; Sheldon, E.; Troxel, M. A.; Varga, T. N.; Vielzeuf, P.; Vikram, V.; Wechsler, R. H.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Estrada, J.; Neto, A. Fausti; Fernandez, E.; Flaugher, B.; Frieman, J.; García-Bellido, J.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kent, S.; Kirk, D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Martini, P.; Menanteau, F.; Miquel, R.; Mohr, J. J.; Neilsen, E.; Nichol, R. C.; Petravick, D.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Walker, A. R.; Wester, W.; Zhang, Y.

    2018-04-01

    We construct the largest curved-sky galaxy weak lensing mass map to date from the DES first-year (DES Y1) data. The map, about 10 times larger than the previous work, is constructed over a contiguous ≈1500 deg2, covering a comoving volume of ≈10 Gpc3. The effects of masking, sampling, and noise are tested using simulations. We generate weak lensing maps from two DES Y1 shear catalogues, METACALIBRATION and IM3SHAPE, with sources at redshift 0.2 < z < 1.3, and in each of four bins in this range. In the highest signal-to-noise map, the ratio between the mean signal to noise in the E-mode map and the B-mode map is ˜1.5 (˜2) when smoothed with a Gaussian filter of σG = 30 (80) arcmin. The second and third moments of the convergence κ in the maps are in agreement with simulations. We also find no significant correlation of κ with maps of potential systematic contaminants. Finally, we demonstrate two applications of the mass maps: (1) cross-correlation

  12. Dark Energy Survey Year 1 Results: Curved-Sky Weak Lensing Mass Map

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.; et al.

    2017-08-04

    We construct the largest curved-sky galaxy weak lensing mass map to date from the DES first-year (DES Y1) data. The map, about 10 times larger than previous work, is constructed over a contiguous $\\approx1,500 $deg$^2$, covering a comoving volume of $\\approx10 $Gpc$^3$. The effects of masking, sampling, and noise are tested using simulations. We generate weak lensing maps from two DES Y1 shear catalogs, Metacalibration and Im3shape, with sources at redshift $0.2

  13. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  14. Bridging micro to macroscale fracture properties in highly heterogeneous brittle solids: weak pinning versus fingering

    Science.gov (United States)

    Vasoya, Manish; Lazarus, Véronique; Ponson, Laurent

    2016-10-01

    The effect of strong toughness heterogeneities on the macroscopic failure properties of brittle solids is investigated in the context of planar crack propagation. The basic mechanism at play is that the crack is locally slowed down or even trapped when encountering tougher material. The induced front deformation results in a selection of local toughness values that reflect at larger scale on the material resistance. To unravel this complexity and bridge micro to macroscale in failure of strongly heterogeneous media, we propose a homogenization procedure based on the introduction of two complementary macroscopic properties: An apparent toughness defined from the loading required to make the crack propagate and an effective fracture energy defined from the rate of energy released by unit area of crack advance. The relationship between these homogenized properties and the features of the local toughness map is computed using an iterative perturbation method. This approach is applied to a circular crack pinned by a periodic array of obstacles invariant in the radial direction, which gives rise to two distinct propagation regimes: A weak pinning regime where the crack maintains a stationary shape after reaching an equilibrium position and a fingering regime characterized by the continuous growth of localized regions of the fronts while the other parts remain trapped. Our approach successfully bridges micro to macroscopic failure properties in both cases and illustrates how small scale heterogeneities can drastically affect the overall failure response of brittle solids. On a broader perspective, we believe that our approach can be used as a powerful tool for the rational design of heterogeneous brittle solids and interfaces with tailored failure properties.

  15. Determination of the coherence length in high-mobility semiconductor-coupled Josephson weak links

    International Nuclear Information System (INIS)

    Kleinsasser, A.W.

    1991-01-01

    A Nb-InAs-Nb superconductor-semiconductor-superconductor weak link based on a high-mobility homoepitaxial n-InAs film was reported recently [Akazaki, Kawakami, and Nittu J. Appl. Phys. 66, 6121 (1989)]. Measurements of the electron concentration, effective mass, and mobility allowed the coherence length in the normal link to be calculated. The mobility was high enough that the dirty limit was not applicable in the temperature range (∼2--7 K) over which the device critical current was measured. The temperature dependence of the critical current could not be fit by the usual theoretical form, even though an expression for the coherence length was used that should be applicable in both the clean and dirty limits. In this paper is demonstrated an excellent fit to the data, obtained by using the magnitude of the coherence length as a fitting parameter and assuming the dirty limit temperature dependence. This implies a coherence length proportional to T -1/2 but far shorter than that calculated from the known material parameters. It is suggested that a different scaling length may apply in high-mobility devices

  16. High energy HF pulsed lasers

    International Nuclear Information System (INIS)

    Patterson, E.L.; Gerber, R.A.

    1976-01-01

    Recent experiments show that pulsed HF lasers are capable of producing high energy with good efficiency. Preliminary experiments show that the laser radiation from the high-gain medium can be controlled with a low-power probe laser beam or with low-level feedback. These results indicate that the HF laser may have potential for second-generation laser fusion experiments

  17. Assessing high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers...... expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project...... with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h....

  18. Study of Various Techniques for Improving Weak and Compressible Clay Soil under a High Earth Embankment

    Directory of Open Access Journals (Sweden)

    Zein A.K. M.

    2014-04-01

    Full Text Available This paper investigates the suitability of three soil improvement techniques for the construction of a high earth embankment on thick weak and highly compressible clay soil. The eastern approach embankment of Alhalfaya Bridge on the River Nile linking Khartoum North and Omdurman cities was chosen as a case study and a comprehensive site investigation program was carried out to determine the properties the subsurface soils. The study results showed that unless the subsurface soils have been improved they may fail or undergo excessively large settlements due to the embankment construction. Three ground improvement techniques based on the principles of the “staged construction method, SCM”, “vertical sand drain, VSD” and “sand compaction piles, SCP” of embankment foundation soil treatment are discussed and evaluated. Embankment design options based on applications of the above methods have been proposed for foundation treatment to adequately support embankment loads. A method performance evaluation based on the improvement of soil properties achieved; the time required for construction and compared estimated costs criteria was made to assess the effectiveness and expected overall performance. Adoption of any of the soil improvement techniques considered depends mainly on the most critical and decisive factor governing the embankment design. Based on the overall performance for the embankment case studied, the sand drains is considered as the most appropriate improvement method followed by the sand compaction piles technique whereas the staged construction method showed the poorest overall performance.

  19. High energy proton PIXE [HEPP

    International Nuclear Information System (INIS)

    McKee, J.S.C.

    1993-01-01

    Studies of particle induced X-ray emission (PIXE) have been widespread and detailed in recent years and despite the fact that most data obtained are from low energy 1-3 MeV experiments, the value of higher energy proton work with its emphasis on K X-ray emission has become more marked as time has progressed. The purpose of this review paper is to outline the history of analysis using high energy protons and to compare and contrast the results obtained with those from lower energy analysis using more firmly established analytical techniques. The work described will concentrate exclusively on proton induced processes and will attempt to outline the rationale for selecting an energy, greater than 20 and up to 70 MeV protons for initiating particles. The relative ease and accuracy of the measurements obtained will be addressed. Clearly such X-ray studies should be seen as complementing low energy work in many instances rather than competing directly with them. However, it will be demonstrated that above a Z value of approximately 20, K X-ray analysis using high energy protons is the only way to go in this type of analysis. (author)

  20. High energy elastic hadron scattering

    International Nuclear Information System (INIS)

    Fearnly, T.A.

    1986-04-01

    The paper deals with the WA7 experiment at the CERN super proton synchrotron (SPS). The elastic differential cross sections of pion-proton, kaon-proton, antiproton-proton, and proton-proton at lower SPS energies over a wide range of momentum transfer were measured. Some theoretical models in the light of the experimental results are reviewed, and a comprehensive impact parameter analysis of antiproton-proton elastic scattering over a wide energy range is presented. A nucleon valence core model for high energy proton-proton and antiproton-proton elastic scattering is described

  1. P-odd effects in πN-scattering at low energies and determination of the isotopical structure of the weak nonleptonic interaction

    International Nuclear Information System (INIS)

    Gershtein, S.S.; Folomeshkin, V.N.; Khlopov, M.Yu.

    1974-01-01

    P-odd effects in the πN-scattering on a target polarized along and again a pion beam have been considered. The P-odd correlations are intensified by interference of weak and strong interactions, whose amplitude is great in the energy range of the order of 100 to 300 MeV. When measuring cross-section differences of the πN-scattering at meson factories, it is possible to hope that the Lobashow integral method may be used in this range. The P-odd amplitudes have been calculated in the approximation of low-energy pions from the P-odd πNN vertex. High-energy meson effects are taken account of in the model of a rho-meson exchange. A kinematic analysis shows that the P-odd effects in a backward charge exchange reaction are sensitive to the presence of neutral currents. Investigation of the P-odd effects in a forward (elastica and with charge exchange) πN-scattering makes it possible to establish the isotopic structure of the nonlepton weak interaction and in particular to check the assumption of an intensified rho-meson exchange which has been offered by. Danilov to explain the high value of circular polarization of γ-quanta in the np → dγ reaction

  2. Evaluating interaction energies of weakly bonded systems using the Buckingham-Hirshfeld method

    Science.gov (United States)

    Krishtal, A.; Van Alsenoy, C.; Geerlings, P.

    2014-05-01

    We present the finalized Buckingham-Hirshfeld method (BHD-DFT) for the evaluation of interaction energies of non-bonded dimers with Density Functional Theory (DFT). In the method, dispersion energies are evaluated from static multipole polarizabilities, obtained on-the-fly from Coupled Perturbed Kohn-Sham calculations and partitioned into diatomic contributions using the iterative Hirshfeld partitioning method. The dispersion energy expression is distributed over four atoms and has therefore a higher delocalized character compared to the standard pairwise expressions. Additionally, full multipolar polarizability tensors are used as opposed to effective polarizabilities, allowing to retain the anisotropic character at no additional computational cost. A density dependent damping function for the BLYP, PBE, BP86, B3LYP, and PBE0 functionals has been implemented, containing two global parameters which were fitted to interaction energies and geometries of a selected number of dimers using a bi-variate RMS fit. The method is benchmarked against the S22 and S66 data sets for equilibrium geometries and the S22x5 and S66x8 data sets for interaction energies around the equilibrium geometry. Best results are achieved using the B3LYP functional with mean average deviation values of 0.30 and 0.24 kcal/mol for the S22 and S66 data sets, respectively. This situates the BHD-DFT method among the best performing dispersion inclusive DFT methods. Effect of counterpoise correction on DFT energies is discussed.

  3. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    1999-01-01

    Following the tradition, the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics are presented under a common header, they are: Department of Particle Theory (Dept 5); Department of Leptonic Interactions (Dept 11); Department of Hadron Structure (Dept 12); Department of High Energy Nuclear Interactions (Dept 13); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). The research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY) is also presented. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy (UMM). This location, close to the Jagiellonian University (JU), facilitates the collaboration with the latter and with the UMM. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of the activities is teaching and training students from the academic community in Cracow. Joint research, teaching and academic training in the high energy physics are carried out within the M. Miesowicz

  4. Turning a Weakness into a Strength. A Smart External Energy Policy for Europe

    International Nuclear Information System (INIS)

    Van der Linde, C.

    2008-04-01

    The EU should recognize that the current incomplete powers in the field of energy and the strategic foreign policy dimensions will take a long time to develop into what can be considered 'one voice'. If immediate accomplishments in this area are desired, a different approach to the development of an external energy policy is required. Instead of trying to convince the Member States to transfer their competencies in energy, foreign and security policy as soon as possible to the EU level, the EC should promote a bottom-up approach. This should allow for the smarter use of diversity, asymmetry, and subsidiarity among Member States, and turning these perceived stumbling blocks into assets or instruments of external energy policy. Such an approach uses, for example, the discipline of the internal energy market, climate change policies, and the expert ministries of individual Member States with producer and competing consumer countries. The EC can start by enhancing transparency and beginning to prepare the ground for a crisis mechanism. They should focus on stimulating the Member States and the companies in a race to the top, and reward best practices, bottom-up rather than top-down. It is also important that the development towards a low-carbon economy, as the EU's longterm containment policy, is made an integral part of security of supply approaches. A smart crisis mechanism is the basis for external energy policy to be developed on, not the other way around. Furthermore, Member States should substantiate why their external energy policy contributes not only to the national but also to the EU-regional or EU-wide security of supply. National interests should not run counter to the interests in continuous energy flows of other Member States, but instead should help increase the energy flows available to the European market. By using diversity and asymmetry as an asset of EU policy-making, those policies that truly are most effective at the European level will be

  5. Strong interactions at high energy

    International Nuclear Information System (INIS)

    Anselmino, M.

    1995-01-01

    Spin effects in strong interaction high energy processes are subtle phenomena which involve both short and long distance physics and test perturbative and non perturbative aspects of QCD. Moreover, depending on quantities like interferences between different amplitudes and relative phases, spin observables always test a theory at a fundamental quantum mechanical level; it is then no surprise that spin data are often difficult to accommodate within the existing models. A report is made on the main issues and contributions discussed in the parallel Session on the open-quote open-quote Strong interactions at high energy close-quote close-quote in this Conference. copyright 1995 American Institute of Physics

  6. Relativistic corrections to the static energy in terms of Wilson loops at weak coupling

    Energy Technology Data Exchange (ETDEWEB)

    Peset, Clara [Technische Universitaet Muenchen, Physik Department T31, Garching (Germany); Pineda, Antonio [Universitat Autonoma de Barcelona, Grup de Fisica Teorica, Dept. Fisica y IFAE-BIST, Barcelona (Spain); Stahlhofen, Maximilian [Johannes Gutenberg University, PRISMA Cluster of Excellence, Institute of Physics, Mainz (Germany)

    2017-10-15

    We consider the O(1/m) and the spin-independent momentum-dependent O(1/m{sup 2}) quasi-static energies of heavy quarkonium (with unequal masses). They are defined nonperturbatively in terms of Wilson loops. We determine their short-distance behavior through O(α{sup 3}) and O(α{sup 2}), respectively. In particular, we calculate the ultrasoft contributions to the quasi-static energies, which requires the resummation of potential interactions. Our results can be directly compared to lattice simulations. In addition, we also compare the available lattice data with the expectations from effective string models for the long-distance behavior of the quasi-static energies. (orig.)

  7. How plasmas dissipate: cascade and the production of internal energy and entropy in weakly collisional plasma turbulence

    Science.gov (United States)

    Matthaeus, W. H.; Yang, Y.; Servidio, S.; Parashar, T.; Chasapis, A.; Roytershteyn, V.

    2017-12-01

    Turbulence cascade transfers energy from large scale to small scale but what happens once kinetic scales are reached? In a collisional medium, viscosity and resistivity remove fluctuation energy in favor of heat. In the weakly collisional solar wind, (or corona, m-sheath, etc.), the sequence of events must be different. Heating occurs, but through what mechanisms? In standard approaches, dissipation occurs though linear wave modes or instabilities and one seeks to identify them. A complementary view is that cascade leads to several channels of energy conversion, interchange and spatial rearrangement that collectively leads to production of internal energy. Channels may be described using compressible MHD & multispecies Vlasov Maxwell formulations. Key steps are: Conservative rearrangement of energy in space; Parallel incompressible and compressible cascades - conservative rearrangment in scale; electromagnetic work on particles that drives flows, both macroscopic and microscopic; and pressure-stress interactions, both compressive and shear-like, that produces internal energy. Examples given from MHD, PIC simulations and MMS observations. A more subtle issue is how entropy is related to this degeneration (or, "dissipation") of macroscopic, fluid-scale fluctuations. We discuss this in terms of Boltzmann and thermodynamic entropies, and velocity space effects of collisions.

  8. Planar real polynomial differential systems of degree n > 3 having a weak focus of high order

    International Nuclear Information System (INIS)

    Llibre, J.; Rabanal, R.

    2008-06-01

    We construct planar polynomial differential systems of even (respectively odd) degree n > 3, of the form linear plus a nonlinear homogeneous part of degree n having a weak focus of order n 2 -1 (respectively (n 2 -1)/2 ) at the origin. As far as we know this provides the highest order known until now for a weak focus of a polynomial differential system of arbitrary degree n. (author)

  9. Partons and their applications at high energies

    International Nuclear Information System (INIS)

    Drell, Sidney D.; Yan, Tung-Mow

    2000-01-01

    We discuss Feynman's parton model for deep inelastic weak or electromagnetic processes as an application of the impulse approximation to elementary particle interactions. The special features and conditions permitting this application are elaborated upon in some detail including the dependence of the parton model and the impulse treatment on an appropriate choice of coordinate frames and the role of the very soft or wee partons. Application of the parton model is made to the calculation of the cross section for massive lepton pair production in very high energy hadron-hadron collisions and compared with experiment. The conjectured role of light cone singularities in describing this and the other deep inelastic amplitudes is also discussed. (c) 2000 Academic Press, Inc

  10. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  11. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  12. Study of breakup and transfer of weakly bound nucleus 6Li to explore the low energy reaction dynamics

    Science.gov (United States)

    Zhang, G. L.; Zhang, G. X.; Hu, S. P.; Zhang, H. Q.; Gomes, P. R. S.; Lubian, J.; Guo, C. L.; Wu, X. G.; Yang, J. C.; Zheng, Y.; Li, C. B.; He, C. Y.; Zhong, J.; Li, G. S.; Yao, Y. J.; Guo, M. F.; Sun, H. B.; Valiente-Dobòn, J. J.; Goasduff, A.; Siciliano, M.; Galtarosa, F.; Francesco, R.; Testov, D.; Mengoni, D.; Bazzacco, D.; John, P. R.; Qu, W. W.; Wang, F.; Zheng, L.; Yu, L.; Chen, Q. M.; Luo, P. W.; Li, H. W.; Wu, Y. H.; Zhou, W. K.; Zhu, B. J.; Li, E. T.; Hao, X.

    2017-11-01

    Investigation of the breakup and transfer effect of weakly bound nuclei on the fusion process has been an interesting research topic in the past several years. However, owing to the low intensities of the presently available radioactive ion beam (RIB), it is difficult to clearly explore the reaction mechanisms of nuclear systems with unstable nuclei. In comparison with RIB, the beam intensities of stable weakly bound nuclei such as 6,7Li and 9Be, which have significant breakup probability, are orders of magnitude higher. Precise fusion measurements have already been performed with those stable weakly bound nuclei, and the effect of breakup of those nuclei on the fusion process has been extensively studied. Those nuclei indicated large production cross sections for particles other than the α + x breakup. The particles are originated from non-capture breakup (NCBU), incomplete fusion (ICF) and transfer processes. However, the conclusion of reaction dynamics was not clear and has the contradiction. In our previous experiments we have performed 6Li+96Zr and 154Sm at HI-13 Tandem accelerator of China Institute of Atomic Energy (CIAE) by using HPGe array. It is shown that there is a small complete fusion (CF) suppression on medium-mass target nucleus 96Zr different from about 35% suppression on heavier target nucleus 154Sm at near-barrier energies. It seems that the CF suppression factor depends on the charge of target nuclei. We also observed one neutron transfer process. However, the experimental data are scarce for medium-mass target nuclei. In order to have a proper understanding of the influence of breakup and transfer of weakly bound projectiles on the fusion process, we performed the 6Li+89Y experiment with incident energies of 22 MeV and 34 MeV on Galileo array in cooperation with Si-ball EUCLIDES at Legnaro National Laboratory (LNL) in Italy. Using particle-particle and particle-γ coincidences, the different reaction mechanisms can be clearly explored.

  13. Weak boson emission in hadron collider processes

    International Nuclear Information System (INIS)

    Baur, U.

    2007-01-01

    The O(α) virtual weak radiative corrections to many hadron collider processes are known to become large and negative at high energies, due to the appearance of Sudakov-like logarithms. At the same order in perturbation theory, weak boson emission diagrams contribute. Since the W and Z bosons are massive, the O(α) virtual weak radiative corrections and the contributions from weak boson emission are separately finite. Thus, unlike in QED or QCD calculations, there is no technical reason for including gauge boson emission diagrams in calculations of electroweak radiative corrections. In most calculations of the O(α) electroweak radiative corrections, weak boson emission diagrams are therefore not taken into account. Another reason for not including these diagrams is that they lead to final states which differ from that of the original process. However, in experiment, one usually considers partially inclusive final states. Weak boson emission diagrams thus should be included in calculations of electroweak radiative corrections. In this paper, I examine the role of weak boson emission in those processes at the Fermilab Tevatron and the CERN LHC for which the one-loop electroweak radiative corrections are known to become large at high energies (inclusive jet, isolated photon, Z+1 jet, Drell-Yan, di-boson, tt, and single top production). In general, I find that the cross section for weak boson emission is substantial at high energies and that weak boson emission and the O(α) virtual weak radiative corrections partially cancel

  14. Disentangling dark energy and cosmic tests of gravity from weak lensing systematics

    Science.gov (United States)

    Laszlo, Istvan; Bean, Rachel; Kirk, Donnacha; Bridle, Sarah

    2012-06-01

    We consider the impact of key astrophysical and measurement systematics on constraints on dark energy and modifications to gravity on cosmic scales. We focus on upcoming photometric ‘stage III’ and ‘stage IV’ large-scale structure surveys such as the Dark Energy Survey (DES), the Subaru Measurement of Images and Redshifts survey, the Euclid survey, the Large Synoptic Survey Telescope (LSST) and Wide Field Infra-Red Space Telescope (WFIRST). We illustrate the different redshift dependencies of gravity modifications compared to intrinsic alignments, the main astrophysical systematic. The way in which systematic uncertainties, such as galaxy bias and intrinsic alignments, are modelled can change dark energy equation-of-state parameter and modified gravity figures of merit by a factor of 4. The inclusion of cross-correlations of cosmic shear and galaxy position measurements helps reduce the loss of constraining power from the lensing shear surveys. When forecasts for Planck cosmic microwave background and stage IV surveys are combined, constraints on the dark energy equation-of-state parameter and modified gravity model are recovered, relative to those from shear data with no systematic uncertainties, provided fewer than 36 free parameters in total are used to describe the galaxy bias and intrinsic alignment models as a function of scale and redshift. While some uncertainty in the intrinsic alignment (IA) model can be tolerated, it is going to be important to be able to parametrize IAs well in order to realize the full potential of upcoming surveys. To facilitate future investigations, we also provide a fitting function for the matter power spectrum arising from the phenomenological modified gravity model we consider.

  15. Multiprocessors for high energy physics

    International Nuclear Information System (INIS)

    Pohl, M.

    1987-01-01

    I review the role, status and progress of multiprocessor projects relevant to high energy physics. A short overview of the large variety of multiprocessors architectures is given, with special emphasis on machines suitable for experimental data reconstruction. A lot of progress has been made in the attempt to make the use of multiprocessors less painful by creating a ''Parallel Programming Environment'' supporting the non-expert user. A high degree of usability has been reached for coarse grain (event level) parallelism. The program development tools available on various systems (subroutine packages, preprocessors and parallelizing compilers) are discussed in some detail. Tools for execution control and debugging are also developing, thus opening the path from dedicated systems for large scale, stable production towards support of a more general job mix. At medium term, multiprocessors will thus cover a growing fraction of the typical high energy physics computing task. (orig.)

  16. High energy astrophysics an introduction

    CERN Document Server

    Courvoisier, Thierry J -L

    2013-01-01

    High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad...

  17. Instrumentation in high energy physics

    International Nuclear Information System (INIS)

    Serin, L.

    2007-01-01

    The instrumentation in high energy physics is a wide and advanced domain which cannot be covered in a single lesson. The main basic physics processes for charged and neutral particles are recalled with the definition of a few concepts needed to understand or design a detector. The application of these principles to charged particle measurement devices (momentum), light detection or energy measurement are presented mostly with examples from collider experiments. The particle identification which is often the combination of different techniques in a same experiment is also discussed. Finally in a very short section, a few considerations about electronics/processing with their impact on the detector performance are given

  18. Baryon number violation and nonperturbative weak processes at Superconducting Super Collider energies

    Science.gov (United States)

    Shuryak, E. V.; Verbaarschot, J. J. M.

    1992-04-01

    Baryon number violation and multiple production of W and Higgs bosons are described semiclassically in terms of the instanton-anti-instanton valley. We find (i) two saddle points, one describing reflection from a barrier and the other describing tunneling through it. We find (ii) a critical energy Ec~35 TeV where the cross section is suppressed as exp(-const/g2w), but the formulas are no longer valid; (iii) however, depending on the (still uncertain) Higgs bosson action, the cross section at this point may be large enough to be observable.

  19. High prevalence of respiratory muscle weakness in hospitalized acute heart failure elderly patients.

    Directory of Open Access Journals (Sweden)

    Pedro Verissimo

    Full Text Available Respiratory Muscle Weakness (RMW has been defined when the maximum inspiratory pressure (MIP is lower than 70% of the predictive value. The prevalence of RMW in chronic heart failure patients is 30 to 50%. So far there are no studies on the prevalence of RMW in acute heart failure (AHF patients.Evaluate the prevalence of RMW in patients admitted because of AHF and the condition of respiratory muscle strength on discharge from the hospital.Sixty-three patients had their MIP measured on two occasions: at the beginning of the hospital stay, after they had reached respiratory, hemodynamic and clinical stability and before discharge from the hospital. The apparatus and technique to measure MIP were adapted because of age-related limitations of the patients. Data on cardiac ejection fraction, ECG, brain natriuretic peptide (BNP levels and on the use of noninvasive ventilation (NIV were collected.The mean age of the 63 patients under study was 75 years. On admission the mean ejection fraction was 33% (95% CI: 31-35 and the BNP hormone median value was 726.5 pg/ml (range: 217 to 2283 pg/ml; 65% of the patients used NIV. The median value of MIP measured after clinical stabilization was -52.7 cmH2O (range: -20 to -120 cmH2O; 76% of the patients had MIP values below 70% of the predictive value. On discharge, after a median hospital stay of 11 days, the median MIP was -53.5 cmH2O (range:-20 to -150 cmH2O; 71% of the patients maintained their MIP values below 70% of the predictive value. The differences found were not statistically significant.Elderly patients admitted with AHF may present a high prevalence of RMW on admission; this condition may be maintained at similar levels on discharge in a large percentage of these patients, even after clinical stabilization of the heart condition.

  20. The origin of high eccentricity planets: The dispersed planet formation regime for weakly magnetized disks

    Directory of Open Access Journals (Sweden)

    Yusuke Imaeda

    2017-03-01

    Full Text Available In the tandem planet formation regime, planets form at two distinct sites where solid particles are densely accumulated due to the on/off state of the magnetorotational instability (MRI. We found that tandem planet formation can reproduce the solid component distribution of the Solar System and tends to produce a smaller number of large planets through continuous pebble flow into the planet formation sites. In the present paper, we investigate the dependence of tandem planet formation on the vertical magnetic field of the protoplanetary disk. We calculated two cases of Bz=3.4×10−3 G and Bz=3.4×10−5 G at 100 AU as well as the canonical case of Bz=3.4×10−4 G. We found that tandem planet formation holds up well in the case of the strong magnetic field (Bz=3.4×10−3 G. On the other hand, in the case of a weak magnetic field (Bz=3.4×10−5 G at 100 AU, a new regime of planetary growth is realized: the planets grow independently at different places in the dispersed area of the MRI-suppressed region of r=8−30 AU at a lower accretion rate of M˙<10−7.4 M⊙yr−1. We call this the “dispersed planet formation” regime. This may lead to a system with a larger number of smaller planets that gain high eccentricity through mutual collisions.

  1. Finding structure in the dark: Coupled dark energy, weak lensing, and the mildly nonlinear regime

    Science.gov (United States)

    Miranda, Vinicius; González, Mariana Carrillo; Krause, Elisabeth; Trodden, Mark

    2018-03-01

    We reexamine interactions between the dark sectors of cosmology, with a focus on robust constraints that can be obtained using only mildly nonlinear scales. While it is well known that couplings between dark matter and dark energy can be constrained to the percent level when including the full range of scales probed by future optical surveys, calibrating matter power spectrum emulators to all possible choices of potentials and couplings requires many computationally expensive n-body simulations. Here we show that lensing and clustering of galaxies in combination with the cosmic microwave background (CMB) are capable of probing the dark sector coupling to the few percent level for a given class of models, using only linear and quasilinear Fourier modes. These scales can, in principle, be described by semianalytical techniques such as the effective field theory of large-scale structure.

  2. Strengths and weaknesses of current energy chains in a sustainable development perspective

    International Nuclear Information System (INIS)

    Hirschberg, S.; Dones, R.; Heck, T.; Burgherr, P.; Schenler, W.; Bauer, C.

    2006-01-01

    The paper summarizes a framework for a systematic comparative evaluation of the sustainability of energy systems and includes a comprehensive application of this framework to major electricity generating technologies and the associated fuel cycles in Germany. Main efforts have focussed on the generation of quantitative, technology-specific, economic, environmental and social indicators. A number of methods have been employed, including Life Cycle Assessment (LCA), Risk Assessment (RA), and the Impact Pathway Approach (IPA). Two methods of indicator aggregation were used: namely, the estimation of total (internal and external) costs, and Multi-Criteria Decision Analysis (MCDA). Use of MCDA is motivated principally by the acknowledgement of the role of value judgments in decision-making. (orig.)

  3. Computing in high energy physics

    International Nuclear Information System (INIS)

    Hertzberger, L.O.; Hoogland, W.

    1986-01-01

    This book deals with advanced computing applications in physics, and in particular in high energy physics environments. The main subjects covered are networking; vector and parallel processing; and embedded systems. Also examined are topics such as operating systems, future computer architectures and commercial computer products. The book presents solutions that are foreseen as coping, in the future, with computing problems in experimental and theoretical High Energy Physics. In the experimental environment the large amounts of data to be processed offer special problems on-line as well as off-line. For on-line data reduction, embedded special purpose computers, which are often used for trigger applications are applied. For off-line processing, parallel computers such as emulator farms and the cosmic cube may be employed. The analysis of these topics is therefore a main feature of this volume

  4. Harvard University High Energy Physics

    International Nuclear Information System (INIS)

    1993-01-01

    The mainly experimental research program in high energy physics at Harvard is summarized in a descriptive fashion according to the following outline: Proton endash antiproton colliding beam program at Fermilab -- CDF (forward/backward electromagnetic calorimeters -- FEM, central muon extension -- CMX, gas calorimetry and electronics development, front-end electronics upgrades, software development, physics analysis, timetable), electron -- positron collisions in the upsilon region -- CLEO (the hardware projects including CLEO II barrel TOF system and silicon drift detector R ampersand D, physics analysis), search for ν μ to ν τ oscillations with the NOMAD experiment at CERN, the solenoidal detector collaboration at the SSC, muon scattering at FNAL -- E665, the L3 experiment, and phenomenological analysis of high-energy bar pp cross sections. 149 refs

  5. A high energy physics perspective

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1997-01-01

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional open-quotes Hidden Symmetries close quotes are discussed. Experimental approaches to uncover open-quotes New Physicsclose quotes associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given

  6. [Research in high energy physics

    International Nuclear Information System (INIS)

    LoSecco, J.

    1989-01-01

    We review the efforts of the Notre Dame non accelerator high energy physics group. Our major effort has been directed toward the IMB deep underground detector. Since the departure of the Michigan group our responsibilities to the group have grown. We are also very active in pursuing physics with the IMB 3 detector. Currently we are studying proton decay, point neutrino sources and neutrino oscillations with the contained event sample

  7. Cosmology for high energy physicists

    International Nuclear Information System (INIS)

    Albrecht, A.

    1987-11-01

    The standard big bang model of cosmology is presented. Although not perfect, its many successes make it a good starting point for most discussions of cosmology. Places are indicated where well understood laboratory physics is incorporated into the big bang, leading to successful predictions. Much less established aspects of high energy physics and some of the new ideas they have introduced into the field of cosmology are discussed, such as string theory, inflation and monopoles. 49 refs., 5 figs

  8. High Energy Physics in Europe

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    A thorough survey of the present and possible future activities and resources in high energy physics in the CERN Member States has been carried out by a Working Group of ECFA (European Committee for Future Accelerators) under the Chairmanship of John Mulvey. The aim has been to obtain a view of the present European scene and to see whether it looks well adapted to the effective exploitation of possible future machines in Europe (particular LEP) and the rest of the world

  9. Energy decay for wave equations of phi-Laplacian type with weakly nonlinear dissipation

    Directory of Open Access Journals (Sweden)

    Aissa Guesmia

    2008-08-01

    Full Text Available In this paper, first we prove the existence of global solutions in Sobolev spaces for the initial boundary value problem of the wave equation of $phi$-Laplacian with a general dissipation of the form $$ (|u'|^{l-2}u''-Delta_{phi}u+sigma(t g(u'=0 quadext{in } Omegaimes mathbb{R}_+ , $$ where $Delta_{phi}=sum_{i=1}^n partial_{x_i}igl(phi (|partial_{x_i}|^2partial_{x_i}igr$. Then we prove general stability estimates using multiplier method and general weighted integral inequalities proved by the second author in [18]. Without imposing any growth condition at the origin on $g$ and $phi$, we show that the energy of the system is bounded above by a quantity, depending on $phi$, $sigma$ and $g$, which tends to zero (as time approaches infinity. These estimates allows us to consider large class of functions $g$ and $phi$ with general growth at the origin. We give some examples to illustrate how to derive from our general estimates the polynomial, exponential or logarithmic decay. The results of this paper improve and generalize many existing results in the literature, and generate some interesting open problems.

  10. Traversable wormholes satisfying the weak energy condition in third-order Lovelock gravity

    Science.gov (United States)

    Zangeneh, Mahdi Kord; Lobo, Francisco S. N.; Dehghani, Mohammad Hossein

    2015-12-01

    In this paper, we consider third-order Lovelock gravity with a cosmological constant term in an n -dimensional spacetime M4×Kn -4, where Kn -4 is a constant curvature space. We decompose the equations of motion to four and higher dimensional ones and find wormhole solutions by considering a vacuum Kn -4 space. Applying the latter constraint, we determine the second- and third-order Lovelock coefficients and the cosmological constant in terms of specific parameters of the model, such as the size of the extra dimensions. Using the obtained Lovelock coefficients and Λ , we obtain the four-dimensional matter distribution threading the wormhole. Furthermore, by considering the zero tidal force case and a specific equation of state, given by ρ =(γ p -τ )/[ω (1 +γ )], we find the exact solution for the shape function which represents both asymptotically flat and nonflat wormhole solutions. We show explicitly that these wormhole solutions in addition to traversibility satisfy the energy conditions for suitable choices of parameters and that the existence of a limited spherically symmetric traversable wormhole with normal matter in a four-dimensional spacetime implies a negative effective cosmological constant.

  11. High energy electron positron physics

    International Nuclear Information System (INIS)

    Ali, A.; Soding, P.

    1987-01-01

    With the termination of the physics program at PETRA in a year from now, and with the start of TRISTAN and the SLC and later LEP, an era of e/sup +/e/sup -/ physics will come to an end and a new one begins. The field is changing from a field of a few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way more useful to any high energy physicist in particular to newcomers in the e/sup +/e/sup -/ field. This is the purpose of the book. This book should be used as a reference for future workers in the field of e/sup +/e/sup -/ interactions. It includes the most relevant data, parametrizations, theoretical background, and a chapter on detectors. Contents: Foreword; Detectors for High Energy e/sup +/e/sup -/ Physics; Lepton Pair Production and Electroweak Parameters; Hadron Production, Strong and Electroweak Properties; tau Physics; Recent Results on the Charm Sector; Bottom Physics; Lifetime Measurements of tau, Charmed and Beauty Hadrons; Υ Spectroscopy; Hadronic Decays of the Υ; Quark and Gluon Fragmentation in the e/sup +/e/sup -/ Continuum; Jet Production and QCD; Two Photon Physics; Search for New Particles

  12. Astrophysics at very high energies

    International Nuclear Information System (INIS)

    Aharonian, Felix; Bergstroem, Lars; Dermer, Charles

    2013-01-01

    Presents three complementary lectures on very-high-energy astrophysics given by worldwide leaders in the field. Reviews the recent advances in and prospects of gamma-ray astrophysics and of multi-messenger astronomy. Prepares readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors. With the success of Cherenkov Astronomy and more recently with the launch of NASA's Fermi mission, very-high-energy astrophysics has undergone a revolution in the last years. This book provides three comprehensive and up-to-date reviews of the recent advances in gamma-ray astrophysics and of multi-messenger astronomy. Felix Aharonian and Charles Dermer address our current knowledge on the sources of GeV and TeV photons, gleaned from the precise measurements made by the new instrumentation. Lars Bergstroem presents the challenges and prospects of astro-particle physics with a particular emphasis on the detection of dark matter candidates. The topics covered by the 40th Saas-Fee Course present the capabilities of current instrumentation and the physics at play in sources of very-high-energy radiation to students and researchers alike. This book will encourage and prepare readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors.

  13. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    2000-01-01

    Full text: Following our long-time tradition we will present under a common header the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics: Department of Particle Theory (Dept. V); Department of Leptonic Interactions (Dept XI); Department of Hadron Structure (Dept XII); Department of High Energy Nuclear Interactions (Dept XIII); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). At the end we will list our common activities: lectures and courses as well as seminars. Our research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also evaluation of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY, Hamburg) is also carried out. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy. This location, close to the Jagiellonian University, facilitates the collaboration with the latter and with the University of Mining and Metallurgy. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of our activities is teaching and training students from

  14. Quantum chromodynamics at high energy

    CERN Document Server

    Kovchegov, Yuri V

    2012-01-01

    Filling a gap in the current literature, this book is the first entirely dedicated to high energy QCD including parton saturation. It presents groundbreaking progress on the subject and describes many of the problems at the forefront of research, bringing postgraduate students, theorists and advanced experimentalists up to date with the current status of the field. A broad range of topics in high energy QCD are covered, most notably on the physics of parton saturation and the Color Glass Condensate (CGC). The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear and non-linear BFKL/BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and experimental outlook and present the physics of strong interactions in a universal way, making it useful to physicists from various sub-communities and applicable to processes studied at high energy accelerators around the world.

  15. High energy overcurrent protective device

    Science.gov (United States)

    Praeg, Walter F.

    1982-01-01

    Electrical loads connected to capacitance elements in high voltage direct current systems are protected from damage by capacitance discharge overcurrents by connecting between the capacitance element and the load, a longitudinal inductor comprising a bifilar winding wound about a magnetic core, which forms an incomplete magnetic circuit. A diode is connected across a portion of the bifilar winding which conducts a unidirectional current only. Energy discharged from the capacitance element is stored in the inductor and then dissipated in an L-R circuit including the diode and the coil winding. Multiple high voltage circuits having capacitance elements may be connected to loads through bifilar windings all wound about the aforementioned magnetic core.

  16. Photoproduction at high energy and high intensity

    CERN Multimedia

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  17. Evidence of weak pair coupling in the penetration depth of bi-based high-Tc superconductors

    International Nuclear Information System (INIS)

    Thompson, J.R.; Sun, Yang Ren; Ossandon, J.G.; Christen, D.K.; Chakoumakos, B.C.; Sales, B.C.; Kerchner, H.R.; Sonder, E.

    1990-01-01

    The magnetic penetration depth λ(T) has been investigated in Bi(Pb)SrCaCuO high-T c compounds having 2- and 3-layers of copper-oxygen per unit cell. Studies of the magnetization in the vortex state were employed and the results were compared with weak and strong coupling calculations. The temperature dependence of λ is described well by BCS theory in the clean limit, giving evidence for weak pair coupling in this family of materials. For the short component of the λ tensor, we obtain values of 292 and 220 nm (T = 0) for Bi-2212 and (BiPb)-2223, respectively

  18. Atomistic detailed mechanism and weak cation-conducting activity of HIV-1 Vpu revealed by free energy calculations.

    Directory of Open Access Journals (Sweden)

    Siladitya Padhi

    Full Text Available The viral protein U (Vpu encoded by HIV-1 has been shown to assist in the detachment of virion particles from infected cells. Vpu forms cation-specific ion channels in host cells, and has been proposed as a potential drug target. An understanding of the mechanism of ion transport through Vpu is desirable, but remains limited because of the unavailability of an experimental structure of the channel. Using a structure of the pentameric form of Vpu--modeled and validated based on available experimental data--umbrella sampling molecular dynamics simulations (cumulative simulation time of more than 0.4 µs were employed to elucidate the energetics and the molecular mechanism of ion transport in Vpu. Free energy profiles corresponding to the permeation of Na+ and K+ were found to be similar to each other indicating lack of ion selection, consistent with previous experimental studies. The Ser23 residue is shown to enhance ion transport via two mechanisms: creating a weak binding site, and increasing the effective hydrophilic length of the channel, both of which have previously been hypothesized in experiments. A two-dimensional free energy landscape has been computed to model multiple ion permeation, based on which a mechanism for ion conduction is proposed. It is shown that only one ion can pass through the channel at a time. This, along with a stretch of hydrophobic residues in the transmembrane domain of Vpu, explains the slow kinetics of ion conduction. The results are consistent with previous conductance studies that showed Vpu to be a weakly conducting ion channel.

  19. Chirality of weakly bound complexes: The potential energy surfaces for the hydrogen-peroxide−noble-gas interactions

    Energy Technology Data Exchange (ETDEWEB)

    Roncaratti, L. F., E-mail: lz@fis.unb.br; Leal, L. A.; Silva, G. M. de [Instituto de Física, Universidade de Brasília, 70910 Brasília (Brazil); Pirani, F. [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, V. [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Instituto de Física, Universidade Federal da Bahia, 40210 Salvador (Brazil); Gargano, R. [Instituto de Física, Universidade de Brasília, 70910 Brasília (Brazil); Departments of Chemistry and Physics, University of Florida, Quantum Theory Project, Gainesville, Florida 32611 (United States)

    2014-10-07

    We consider the analytical representation of the potential energy surfaces of relevance for the intermolecular dynamics of weakly bound complexes of chiral molecules. In this paper we study the H{sub 2}O{sub 2}−Ng (Ng=He, Ne, Ar, Kr, and Xe) systems providing the radial and the angular dependence of the potential energy surface on the relative position of the Ng atom. We accomplish this by introducing an analytical representation which is able to fit the ab initio energies of these complexes in a wide range of geometries. Our analysis sheds light on the role that the enantiomeric forms and the symmetry of the H{sub 2}O{sub 2} molecule play on the resulting barriers and equilibrium geometries. The proposed theoretical framework is useful to study the dynamics of the H{sub 2}O{sub 2} molecule, or other systems involving O–O and S–S bonds, interacting by non-covalent forces with atoms or molecules and to understand how the relative orientation of the O–H bonds changes along collisional events that may lead to a hydrogen bond formation or even to selectivity in chemical reactions.

  20. High Energy Colliders and Hidden Sectors

    Science.gov (United States)

    Dror, Asaf Jeff

    This thesis explores two dominant frontiers of theoretical physics, high energy colliders and hidden sectors. The Large Hadron Collider (LHC) is just starting to reach its maximum operational capabilities. However, already with the current data, large classes of models are being put under significant pressure. It is crucial to understand whether the (thus far) null results are a consequence of a lack of solution to the hierarchy problem around the weak scale or requires expanding the search strategy employed at the LHC. It is the duty of the current generation of physicists to design new searches to ensure that no stone is left unturned. To this end, we study the sensitivity of the LHC to the couplings in the Standard Model top sector. We find it can significantly improve the measurements on ZtRtR coupling by a novel search strategy, making use of an implied unitarity violation in such models. Analogously, we show that other couplings in the top sector can also be measured with the same technique. Furthermore, we critically analyze a set of anomalies in the LHC data and how they may appear from consistent UV completions. We also propose a technique to measure lifetimes of new colored particles with non-trivial spin. While the high energy frontier will continue to take data, it is likely the only collider of its kind for the next couple decades. On the other hand, low-energy experiments have a promising future with many new proposed experiments to probe the existence of particles well below the weak scale but with small couplings to the Standard Model. In this work we survey the different possibilities, focusingon the constraints as well as possible new hidden sector dynamics. In particular, we show that vector portals which couple to an anomalous current, e.g., baryon number, are significantly constrained from flavor changing meson decays and rare Z decays. Furthermore, we present a new mechanism for dark matter freezeout which depletes the dark sector through an

  1. IV. Workshop on High Energy Spin Physics

    International Nuclear Information System (INIS)

    Nurushev, S.

    1992-01-01

    In this proceedings the results on high energy spin physics are summarized. The theory of spin phenomenon and the experimental results at intermediate energy and at high energy spin physics and new technical developments in polarization experiments are presented

  2. Developments in high energy physics

    International Nuclear Information System (INIS)

    Mukhi, Sunil; Roy, Probir

    2009-01-01

    This non-technical review article is aimed at readers with some physics background, including beginning research students. It provides a panoramic view of the main theoretical developments in high energy physics since its inception more than half a century ago, a period in which experiments have spanned an enormous range of energies, theories have been developed leading up to the standard model, and proposals - including the radical paradigm of string theory - have been made to go beyond the standard model. The list of references provided here is not intended to properly credit all original work but rather to supply the reader with a few pointers to the literature, specifically highlighting work done by Indian authors. (author)

  3. Assessing high wind energy penetration

    International Nuclear Information System (INIS)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project settings are close to ideal, including a very capable national utility company, Electra, a conventional power supply system based on imported heavy fuel and gas oil, and favourable wind conditions with an estimated annual average of 9.3 m/s at the hub height of the wind turbines. With the applied case study assumptions, simulations with WINSYS over the lifetime of the assessed wind power investment show that investments up to 4.2 MW are economically viable. The economic optimum is found at 2.4 MW reaching an internal rate of return of almost 8% p.a. This 2.4 MW of wind power would, together with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h. (Author)

  4. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  5. Duke University high energy physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and Χ meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report

  6. The high energy astronomy observatories

    Science.gov (United States)

    Neighbors, A. K.; Doolittle, R. F.; Halpers, R. E.

    1977-01-01

    The forthcoming NASA project of orbiting High Energy Astronomy Observatories (HEAO's) designed to probe the universe by tracing celestial radiations and particles is outlined. Solutions to engineering problems concerning HEAO's which are integrated, yet built to function independently are discussed, including the onboard digital processor, mirror assembly and the thermal shield. The principle of maximal efficiency with minimal cost and the potential capability of the project to provide explanations to black holes, pulsars and gamma-ray bursts are also stressed. The first satellite is scheduled for launch in April 1977.

  7. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  8. Weak antilocalization in a three-dimensional topological insulator based on a high-mobility HgTe film

    Science.gov (United States)

    Savchenko, M. L.; Kozlov, D. A.; Kvon, Z. D.; Mikhailov, N. N.; Dvoretsky, S. A.

    2016-09-01

    The anomalous magnetoresistance (AMR) caused by the weak antilocalization effects in a three-dimensional topological insulator based on a strained mercury telluride film is experimentally studied. It is demonstrated that the obtained results are in a good agreement with the universal theory of Zduniak, Dyakonov, and Knap. It is found that the AMR in the bulk band gap is far below that expected for the system of Dirac fermions. Such a discrepancy can assumingly be related to a nonzero effective mass of Dirac fermions. The filling of energy bands in the bulk is accompanied by a pronounced increase in the AMR. This is a signature of the weak coupling between the surface and bulk charge carriers.

  9. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Geskin, E.S.; Leu, M.C.

    1989-01-01

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  10. High energy polarized electron beams

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  11. Weak-lensing mass calibration of redMaPPer galaxy clusters in Dark Energy Survey Science Verification data

    Energy Technology Data Exchange (ETDEWEB)

    Melchior, P.; Gruen, D.; McClintock, T.; Varga, T. N.; Sheldon, E.; Rozo, E.; Amara, A.; Becker, M. R.; Benson, B. A.; Bermeo, A.; Bridle, S. L.; Clampitt, J.; Dietrich, J. P.; Hartley, W. G.; Hollowood, D.; Jain, B.; Jarvis, M.; Jeltema, T.; Kacprzak, T.; MacCrann, N.; Rykoff, E. S.; Saro, A.; Suchyta, E.; Troxel, M. A.; Zuntz, J.; Bonnett, C.; Plazas, A. A.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Desai, S.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kirk, D.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; Menanteau, F.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Ogando, R.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.; Weller, J.; Zhang, Y.

    2017-05-16

    We use weak-lensing shear measurements to determine the mean mass of optically selected galaxy clusters in Dark Energy Survey Science Verification data. In a blinded analysis, we split the sample of more than 8,000 redMaPPer clusters into 15 subsets, spanning ranges in the richness parameter $5 \\leq \\lambda \\leq 180$ and redshift $0.2 \\leq z \\leq 0.8$, and fit the averaged mass density contrast profiles with a model that accounts for seven distinct sources of systematic uncertainty: shear measurement and photometric redshift errors; cluster-member contamination; miscentering; deviations from the NFW halo profile; halo triaxiality; and line-of-sight projections. We combine the inferred cluster masses to estimate the joint scaling relation between mass, richness and redshift, $\\mathcal{M}(\\lambda,z) \\varpropto M_0 \\lambda^{F} (1+z)^{G}$. We find $M_0 \\equiv \\langle M_{200\\mathrm{m}}\\,|\\,\\lambda=30,z=0.5\\rangle=\\left[ 2.35 \\pm 0.22\\ \\rm{(stat)} \\pm 0.12\\ \\rm{(sys)} \\right] \\cdot 10^{14}\\ M_\\odot$, with $F = 1.12\\,\\pm\\,0.20\\ \\rm{(stat)}\\, \\pm\\, 0.06\\ \\rm{(sys)}$ and $G = 0.18\\,\\pm\\, 0.75\\ \\rm{(stat)}\\, \\pm\\, 0.24\\ \\rm{(sys)}$. The amplitude of the mass-richness relation is in excellent agreement with the weak-lensing calibration of redMaPPer clusters in SDSS by Simet et al. (2016) and with the Saro et al. (2015) calibration based on abundance matching of SPT-detected clusters. Our results extend the redshift range over which the mass-richness relation of redMaPPer clusters has been calibrated with weak lensing from $z\\leq 0.3$ to $z\\leq0.8$. Calibration uncertainties of shear measurements and photometric redshift estimates dominate our systematic error budget and require substantial improvements for forthcoming studies.

  12. Duke University High Energy Physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1993-03-01

    The research program of the Duke High Energy Physics Group is described in this Progress Report and a separate Proposal containing their plans for 1994. These two documents are supplemented by compilations of selected publications, thesis abstracts, and the curriculum vitae of the eleven Ph.D. physicists who are carrying out this research program. This Progress Report contains a review of the research which has been done over the first half (1992 and 1993 to date) of the current three-year DOE grant, plus some earlier research to establish a broader perspective of the research interests. High energy physics research at Duke has three components. The first, Task A, is based upon experiments carried out at Fermilab's Tevatron Collider. The group is finishing the analysis of data from their first collider experiment (E735), a study of inclusive particle production from bar p p collisions at √ bar s = 1.8 TeV. The second component of the research, Task B, deals primarily with heavy flavor physics. The third part of the research program, Task D, deals with preparation for research at the SSC. The authors have been active in the development of tracking detectors for the SSC since 1989, and are now concentrating on the design and construction of straw tube drift chambers for the solenoid detector

  13. Spinoff from high energy physics

    International Nuclear Information System (INIS)

    Hoffmann, Hans

    1994-01-01

    This year the CERN Courier is featuring the spinoff and technological benefits arising from research in fundamental physics. After initial illustrations in applied data processing sectors, this article by Hans Hoffman of CERN examines the rationale and underlying objectives of the 'new awareness' of the market value of basic science. He is the Chairman of a new panel on the subject set up recently by the International Committee for Future Accelerators (ICFA). The other members are: Oscar Barbalat of CERN, Hans Christian Dehne of DESY, Sin-ichi Kurakawa of KEK, Gennady Kulipanov of the Budker Institute (Novosibirsk), Anthony Montgomery, formerly of the SSC, A. H. Walenta of Siegen, Germany, and Zhongqiang Yu of IHEP Beijing. High energy physics - the quest to find and understand the structure of matter - is mainly seen as an essential part of human culture. However this basic science increasingly has to jostle for funding attention with other branches of science. Applied sciences aim for a rapid transformation of investment cash into viable market products. In times of economic difficulties this is attractive to funding agencies and governments, and economic usefulness and technological relevance also become criteria for a basic science like high energy physics.

  14. High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.

    1991-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics of the evolution of the early universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including studies of the nature of dark matter and the signature of annihilations in the galactic halo, where the resulting γ-ray fluxes are potentially observable, and in stars, where stellar evolution may be affects. We will develop constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon, examining the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in both flat and curved cosmological models, and implications for observations of large-scale galaxy clustering and structure formation theories. We will also study spectral distortions in the microwave background radiation that are produced by exotic particle decays in the very early universe. We expect such astrophysical considerations to provide fruitful insights both into high-energy particle physics and into possible cosmological for the early universe

  15. Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing

    Energy Technology Data Exchange (ETDEWEB)

    Bonnett, C.; Troxel, M. A.; Hartley, W.; Amara, A.; Leistedt, B.; Becker, M. R.; Bernstein, G. M.; Bridle, S. L.; Bruderer, C.; Busha, M. T.; Carrasco Kind, M.; Childress, M. J.; Castander, F. J.; Chang, C.; Crocce, M.; Davis, T. M.; Eifler, T. F.; Frieman, J.; Gangkofner, C.; Gaztanaga, E.; Glazebrook, K.; Gruen, D.; Kacprzak, T.; King, A.; Kwan, J.; Lahav, O.; Lewis, G.; Lidman, C.; Lin, H.; MacCrann, N.; Miquel, R.; O’Neill, C. R.; Palmese, A.; Peiris, H. V.; Refregier, A.; Rozo, E.; Rykoff, E. S.; Sadeh, I.; Sánchez, C.; Sheldon, E.; Uddin, S.; Wechsler, R. H.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S.; Armstrong, R.; Banerji, M.; Bauer, A. H.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Fausti Neto, A.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gerdes, D. W.; Gruendl, R. A.; Honscheid, K.; Jain, B.; James, D. J.; Jarvis, M.; Kim, A. G.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miller, C. J.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Vikram, V.; Walker, A. R.

    2016-08-01

    We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods { annz2, bpz calibrated against BCC-U fig simulations, skynet, and tpz { are analysed. For training, calibration, and testing of these methods, we also construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evalu-ated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-zs. From the galaxies in the DES SV shear catalogue, which have mean redshift 0.72 ±0.01 over the range 0:3 < z < 1:3, we construct three tomographic bins with means of z = {0.45; 0.67,1.00g}. These bins each have systematic uncertainties δz ≲ 0.05 in the mean of the fiducial skynet photo-z n(z). We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of σ8 of approx. 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalog. We also found that further study of the potential impact of systematic differences on the critical surface density, Σcrit, contained levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0:05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.

  16. High-energy electroweak neutrino-nucleon deeply virtual Compton scattering

    International Nuclear Information System (INIS)

    Machado, Magno V. T.

    2007-01-01

    In this work we estimate the differential and total cross sections for the high-energy deeply virtual Compton scattering in the weak sector. In the weak neutral sector one considers neutrino scattering off an unpolarized proton target through the exchange of Z 0 . We numerically compute the process Z*p→γp within the QCD color dipole formalism, which successfully describes the current high-energy electromagnetic DVCS experimental data. We also discuss possible applications for the weak charged sector and perform predictions for scattering on nuclear targets

  17. P2. A fused silica Cherenkov detector for the high precision determination of the weak mixing angle

    Energy Technology Data Exchange (ETDEWEB)

    Gerz, Kathrin; Becker, Dominik; Jennewein, Thomas; Baunack, Sebastian [Johannes Gutenberg Universitaet Mainz (Germany); Kumar, Krishna [Department of Physics and Astronomy, Stony Brook University, Stony Brook (United States); Maas, Frank [Johannes Gutenberg Universitaet Mainz (Germany); Helmholtz Institut Mainz (Germany)

    2016-07-01

    The weak mixing angle is a central parameter of the standard model and its high precision determination is tantamount to probing for new physics effects. The P2 experiment at the MESA accelerator in Mainz will perform such a measurement of the weak mixing angle via parity violating electron-proton scattering. We aim to determine sin{sup 2}(Θ{sub W}) to a relative precision of 0.13%. Since the weak charge of the proton is small compared to its electric charge, the measurable asymmetry is only 33 ppb, requiring a challenging measurement to a precision of only 0.44 ppb. In order to achieve this precision we need to collect very high statistics and carefully minimize interfering effects like apparatus induced false asymmetries. We present the status of the development of an integrating fused-silica Cherenkov detector, which is suitable for a high precision and high intensity experiment like P2. The contribution will focus on the investigation of the detector's response to incoming signal and background particles both by simulations and by beam tests at the MAMI accelerator.

  18. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  19. Statistical learning in high energy and astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, J.

    2005-06-16

    be controlled in a physically correct way. Besides there are many different statistical learning methods to choose from and all the different methods have their advantages and disadvantages -- compared to each other and to classical algorithms. By discussing several examples from high energy and astrophysics experiments the principles, advantages and weaknesses of all popular statistical learning methods will be analysed. A focus will be put on neural networks as they form some kind of standard among different learning methods in physics analysis. (Orig.)

  20. Statistical learning in high energy and astrophysics

    International Nuclear Information System (INIS)

    Zimmermann, J.

    2005-01-01

    physically correct way. Besides there are many different statistical learning methods to choose from and all the different methods have their advantages and disadvantages -- compared to each other and to classical algorithms. By discussing several examples from high energy and astrophysics experiments the principles, advantages and weaknesses of all popular statistical learning methods will be analysed. A focus will be put on neural networks as they form some kind of standard among different learning methods in physics analysis. (Orig.)

  1. Dynamics of high energy reactions

    International Nuclear Information System (INIS)

    Field, R.D.

    1979-01-01

    During last several years, a new framework to describe strong interaction physics has emerged, i.e. quantum chromodynamics (QCD). It is the simplest field theory which incorporates color-dependent force among quarks. This force is generated by the exchange of colored vector gluons coupled to the quarks in gauge-invariant manner. The theory is closely related to the most successful quantum field theory, QED, and the only but very important difference is the gauge group involved. Although the theory is well defined, precisely what it predicts is not yet clearly known. However, at very high energy or momentum transfer Q, the effective coupling between quarks and gluons decreases toward zero with increasing Q 2 , and the calculation of a process involving high Q 2 is possible by the use of perturbation theory. In this paper, many applications of QCD to the processes involving high momentum transfer are examined. The effective coupling resulting from strong interaction between quarks and gluons, the scale violation in deep inelastic lepton scattering, large mass muon pair production, quark and gluon fragmentation functions, large transverse momentum meson and jet production in hadron-hadron collision, and the search for three-jet events are discussed. (Kako, I.)

  2. Weak currents

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1976-01-01

    A survey of the fundamental ideas on weak currents such as CVC and PCAC and a presentation of the Cabibbo current and the neutral weak currents according to the Salam-Weinberg model and the Glashow-Iliopoulos-Miami model are given [fr

  3. High-energy particle diffraction

    International Nuclear Information System (INIS)

    Barone, V.; Predazzi, E.

    2002-01-01

    This monograph gives a comprehensive and up-to-date overview of soft and hard diffraction processes in strong interaction physics. The first part covers the general formalism (the optical analogy, the eikonal picture, high-energy kinematics, S-matrix theory) and soft hadron-hadron scattering (including the Regge theory) in a complete and mature presentation. It can be used as a textbook in particle physics classes. The remainder of the book is devoted to the 'new diffraction': the pomeron in QCD, low-x physics, diffractive deep inelastic scattering and related processes, jet production etc. It presents recent results and experimental findings and their phenomenological interpretations. This part addresses graduate students as well as researchers. (orig.)

  4. Diffraction of high energy electrons

    International Nuclear Information System (INIS)

    Bourret, A.

    1981-10-01

    The diffraction of electrons by a crystal is examined to study its structure. As the electron-substance interaction is strong, it must be treated in a dynamic manner. Using the N waves theory and physical optics the base equations giving the wave at the outlet are deduced for a perfect crystal and their equivalence is shown. The more complex case of an imperfect crystal is then envisaged in these two approaches. In both cases, only the diffraction of high energy electrons ( > 50 KeV) are considered since in the diffraction of slow electrons back scattering cannot be ignored. Taking into account an increasingly greater number of beams, through fast calculations computer techniques, enables images to be simulated in very varied conditions. The general use of the Fast Fourier Transform has given a clear cut practical advantage to the multi-layer method [fr

  5. Using REDUCE in high energy physics

    International Nuclear Information System (INIS)

    Grozin, A.G.

    1997-01-01

    This book describes the use of the symbolic manipulation language REDUCE in particle physics. There are several general purpose mathematics packages available to physicists, including Mathematica, Maple, and REDUCE. Each has advantages and disadvantages, but REDUCE has been found to be both powerful and convenient in solving a wide range of problems. This book introduces the reader to REDUCE and demonstrates its utility as a mathematical tool in physics. The first chapter of the book describes the REDUCE system, including some library packages. The following chapters show the use of REDUCE in examples from classical mechanics, hydrodynamics, general relativity, and quantum mechanics. The rest of the book systematically presents the Standard Model of particle physics (QED, weak interactions, QCD). A large number of scattering and decay processes are calculated with REDUCE. All example programs from the book can be downloaded via Internet. The emphasis throughout is on learning through worked examples. This will be an essential introduction and reference for high energy and theoretical physicists. (author)

  6. Caging in high energy reactions

    International Nuclear Information System (INIS)

    Ache, H.J.

    1977-01-01

    The concept of caging high energy reactions is considered. It is noted that there is no easy and unambiguous way, short of a complete and very tedious product and mechanistic analysis, which is feasible only for very few systems, to determine the contribution made by caging. It is emphasized that some products resulting from the hot reaction with a certain substrate may be formed via caging while others are not. In research on the mechanism of caging the results of Roots work on the reactions of hot 18 F with the CF 3 CH 3 system seem to provide evidence for caging, with 18 F being the caged moiety, thus proceeding via a radical--radical recombination mechanism. Their work with H 2 S additive also seems to indicate that scavenging via hydrogen abstraction from H 2 S to form does not interfere with the radical--radical recombination consistent with Bunkers molecular approach to explain the cage effects. In other research a series of observations resulting from stereochemical and combined stereochemical density variation techniques seem to favor a caged-complex. It is clear that a more conclusive answer can only be reached by more systematic studies, utilizing the whole range of nuclear reactions such as (n,2n), (n,γ) and E.C. processes in mechanistically well defined systems to elucidate the effect of variations in the recoil energies, by carrying out studies in different solvents or host substances to assess the effect of the physical parameters, such as molecule size and intermolecular interactions on the escape probability or caging efficiencies

  7. Weak decays

    International Nuclear Information System (INIS)

    Wojcicki, S.

    1978-11-01

    Lectures are given on weak decays from a phenomenological point of view, emphasizing new results and ideas and the relation of recent results to the new standard theoretical model. The general framework within which the weak decay is viewed and relevant fundamental questions, weak decays of noncharmed hadrons, decays of muons and the tau, and the decays of charmed particles are covered. Limitation is made to the discussion of those topics that either have received recent experimental attention or are relevant to the new physics. (JFP) 178 references

  8. Quantum Sensing for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Zeeshan; et al.

    2018-03-29

    Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics.

  9. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    International Nuclear Information System (INIS)

    PARSA, Z.

    2000-01-01

    In this paper, high energy physics possibilities and future colliders are discussed. The μ + μ - collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged

  10. Lasers and future high energy colliders

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-02-01

    Future high energy colliders, directions for particle physics and relationship to new technology such as lasers are discussed. Experimental approaches to explore New Physics with emphasis on the utility of high energy colliders are also discussed

  11. Weak interactions

    International Nuclear Information System (INIS)

    Ogava, S.; Savada, S.; Nakagava, M.

    1983-01-01

    The problem of the use of weak interaction laws to study models of elementary particles is discussed. The most typical examples of weak interaction is beta-decay of nucleons and muons. Beta-interaction is presented by quark currents in the form of universal interaction of the V-A type. Universality of weak interactions is well confirmed using as examples e- and μ-channels of pion decay. Hypothesis on partial preservation of axial current is applicable to the analysis of processes with pion participation. In the framework of the model with four flavours lepton decays of hadrons are considered. Weak interaction without lepton participation are also considered. Properties of neutral currents are described briefly

  12. Weak interactions

    International Nuclear Information System (INIS)

    Chanda, R.

    1981-01-01

    The theoretical and experimental evidences to form a basis for Lagrangian Quantum field theory for Weak Interactions are discussed. In this context, gauge invariance aspects of such interactions are showed. (L.C.) [pt

  13. Hadron dynamics at high energies

    International Nuclear Information System (INIS)

    Storrow, J.K.

    1977-01-01

    The nine lectures give a very brief introduction to hadron dynamics at high energies. They concentrate on basic concepts such as Regge poles, duality and geometrical ideas, and simple applications of these ideas to the problem of understanding data. To some extent two body phenomenology is emphasized at the expense of multiparticle final states and when the latter have been considered they have concentrated on inclusive reactions. One lecture discussed data on 2-2 reactions in order to provide the motivation for Regge pole theory, then two lectures are devoted to basic concepts. Then duality is introduced and shown to provide reasonable restrictions on a pole model. A lecture is then devoted to discussing geometrical ideas i.e. the t-dependence of data is looked at from an s-channel point of view. The section on two-body phenomenology is then concluded by discussing applications of the above ideas to two reactions-pion-nucleon scattering and np charge exchange scattering. The remaining three lectures are devoted to multiparticle reactions. Exclusive reactions are considered briefly and then the remainder of the course is concerned with inclusive reactions. The concepts of scaling and limiting fragmentation are discussed and Mueller's generalised optical theorem introduced and then applied in various kinematic limits. (author)

  14. Study of the weak localization in high quality two dimensional p-GaAs/AIGaAs systems

    International Nuclear Information System (INIS)

    Yasin, C.E.; Simmons, M.Y.; Hamilton, A.R.; Pepper, M.; Ritchie, D.A.

    2002-01-01

    Full text: Despite numerous experimental and theoretical work over the past ∼ 30 years, the nature of the ground state in 2D semiconductor systems remains a subject of controversy. Does the anomalous 'metallic' behavior observed at B = 0 imply the existence of a new 2D 'metallic' ground state or can it be explained within the conventional Fermi liquid theory? To address this question, we have investigated the single particle phase coherent 'weak localization' effect in high quality 2D p-GaAs systems that shows an apparent ' metallic' behavior at B = 0. We have performed detailed temperature dependent magnetoresistance measurements at different carrier densities and fit the experimental data to various models of weak localization in order to extract the phase coherence time, τ φ . We find that as the sample quality increases the mean free path increases, and weak localization must be treated beyond the diffusion approximation, making the data analysis more complex. Our result shows that when these more complex models are applied to the experimental data the systems are well described by Fermi liquid theory despite the strong interactions (r s ∼ 20), indicating that there is no 'metallic' phase in 2D at B = 0

  15. Superconducting magnets in high energy physics

    International Nuclear Information System (INIS)

    Prodell, A.G.

    1978-01-01

    The applications of superconducting magnets in high energy physics in the last ten years have made feasible developments which are vital to high energy research. These developments include high magnetic field, large volume detectors, such as bubble chambers, required for effective resolution of high energy particle trajectories, particle beam transport magnets, and superconducting focusing and bending magnets for the very high energy accelerators and storage rings needed to pursue the study of interactions between elementary particles. The acceptance of superconductivity as a proven technology in high energy physics was reinforced by the recognition that the existing large accelerators using copper-iron magnets had reached practical limits in terms of magnetic field intensity, cost, space, and energy usage, and that large-volume, high-field, copper-iron magnets were not economically feasible. Some of the superconducting magnets and associated systems being used in and being developed for high energy physics are described

  16. High energy physics and grid computing

    International Nuclear Information System (INIS)

    Yu Chuansong

    2004-01-01

    The status of the new generation computing environment of the high energy physics experiments is introduced briefly in this paper. The development of the high energy physics experiments and the new computing requirements by the experiments are presented. The blueprint of the new generation computing environment of the LHC experiments, the history of the Grid computing, the R and D status of the high energy physics grid computing technology, the network bandwidth needed by the high energy physics grid and its development are described. The grid computing research in Chinese high energy physics community is introduced at last. (authors)

  17. Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.; Pujol, A.; Gaztañaga, E.; Amara, A.; Réfrégier, A.; Bacon, D.; Becker, M. R.; Bonnett, C.; Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Giannantonio, T.; Hartley, W.; Jarvis, M.; Kacprzak, T.; Ross, A. J.; Sheldon, E.; Troxel, M. A.; Vikram, V.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Rosell, A. Carnero; Kind, M. Carrasco; Cunha, C. E.; D' Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2016-04-15

    We measure the redshift evolution of galaxy bias from a magnitude-limited galaxy sample by combining the galaxy density maps and weak lensing shear maps for a $\\sim$116 deg$^{2}$ area of the Dark Energy Survey (DES) Science Verification data. This method was first developed in Amara et al. (2012) and later re-examined in a companion paper (Pujol et al., in prep) with rigorous simulation tests and analytical treatment of tomographic measurements. In this work we apply this method to the DES SV data and measure the galaxy bias for a magnitude-limited galaxy sample. We find the galaxy bias and 1$\\sigma$ error bars in 4 photometric redshift bins to be 1.33$\\pm$0.18 (z=0.2-0.4), 1.19$\\pm$0.23 (z=0.4-0.6), 0.99$\\pm$0.36 ( z=0.6-0.8), and 1.66$\\pm$0.56 (z=0.8-1.0). These measurements are consistent at the 1-2$\\sigma$ level with mea- surements on the same dataset using galaxy clustering and cross-correlation of galaxies with CMB lensing. In addition, our method provides the only $\\sigma_8$-independent constraint among the three. We forward-model the main observational effects using mock galaxy catalogs by including shape noise, photo-z errors and masking effects. We show that our bias measurement from the data is consistent with that expected from simulations. With the forthcoming full DES data set, we expect this method to provide additional constraints on the galaxy bias measurement from more traditional methods. Furthermore, in the process of our measurement, we build up a 3D mass map that allows further exploration of the dark matter distribution and its relation to galaxy evolution.

  18. A high control bandwidth design method for aalborg inverter under weak grid condition

    DEFF Research Database (Denmark)

    Wu, Weimin; Zhou, Cong; Wang, Houqin

    2017-01-01

    Aalborg Inverter is a kind of high efficient Buck-Boost inverter. Since it may work in “Buck-Boost” mode, the control bandwidth should be high enough to ensure a good performance under any grid condition. However, during the “Boost” operation, the control bandwidth depends much on the grid...

  19. High density energy storage capacitor

    International Nuclear Information System (INIS)

    Whitham, K.; Howland, M.M.; Hutzler, J.R.

    1979-01-01

    The Nova laser system will use 130 MJ of capacitive energy storage and have a peak power capability of 250,000 MW. This capacitor bank is a significant portion of the laser cost and requires a large portion of the physical facilities. In order to reduce the cost and volume required by the bank, the Laser Fusion Program funded contracts with three energy storage capacitor producers: Aerovox, G.E., and Maxwell Laboratories, to develop higher energy density, lower cost energy storage capacitors. This paper describes the designs which resulted from the Aerovox development contract, and specifically addresses the design and initial life testing of a 12.5 kJ, 22 kV capacitor with a density of 4.2 J/in 3 and a projected cost in the range of 5 cents per joule

  20. States of high energy density

    International Nuclear Information System (INIS)

    Murray, M.

    1988-02-01

    The transverse energy, E/sub tau/ spectra for O 16 and S 32 incident for various elements at 200 GeVnucleon are shown. The target and projectile dependencies of the data are discussed. The energy density achieved is estimated. For O 16 on Tungsten the multiplicity spectrum is also presented as well as the pseudorapidity spectra as a function of the transverse energy. The multiplicity cross section dσdN as measured in the backward hemisphere (0.9 < /eta/ < 2.9/ is found to be very similar in shape to the transverse energy distribution dσdE/tau/ reflecting the particular geometry of nucleus nucleus nucleus collisions. The dependence on the atomic mass of the target, A/sub tau/ and projectile A/sub p/ is not what one would expect from naive considerations

  1. Cosmology with weak lensing surveys

    International Nuclear Information System (INIS)

    Munshi, Dipak; Valageas, Patrick; Waerbeke, Ludovic van; Heavens, Alan

    2008-01-01

    Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening matter. The distortions are due to fluctuations in the gravitational potential, and are directly related to the distribution of matter and to the geometry and dynamics of the Universe. As a consequence, weak gravitational lensing offers unique possibilities for probing the Dark Matter and Dark Energy in the Universe. In this review, we summarise the theoretical and observational state of the subject, focussing on the statistical aspects of weak lensing, and consider the prospects for weak lensing surveys in the future. Weak gravitational lensing surveys are complementary to both galaxy surveys and cosmic microwave background (CMB) observations as they probe the unbiased non-linear matter power spectrum at modest redshifts. Most of the cosmological parameters are accurately estimated from CMB and large-scale galaxy surveys, so the focus of attention is shifting to understanding the nature of Dark Matter and Dark Energy. On the theoretical side, recent advances in the use of 3D information of the sources from photometric redshifts promise greater statistical power, and these are further enhanced by the use of statistics beyond two-point quantities such as the power spectrum. The use of 3D information also alleviates difficulties arising from physical effects such as the intrinsic alignment of galaxies, which can mimic weak lensing to some extent. On the observational side, in the next few years weak lensing surveys such as CFHTLS, VST-KIDS and Pan-STARRS, and the planned Dark Energy Survey, will provide the first weak lensing surveys covering very large sky areas and depth. In the long run even more ambitious programmes such as DUNE, the Supernova Anisotropy Probe (SNAP) and Large-aperture Synoptic Survey Telescope (LSST) are planned. Weak lensing of diffuse components such as the CMB and 21 cm emission can also

  2. Cosmology with weak lensing surveys

    Energy Technology Data Exchange (ETDEWEB)

    Munshi, Dipak [Institute of Astronomy, Madingley Road, Cambridge, CB3 OHA (United Kingdom); Astrophysics Group, Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE (United Kingdom)], E-mail: munshi@ast.cam.ac.uk; Valageas, Patrick [Service de Physique Theorique, CEA Saclay, 91191 Gif-sur-Yvette (France); Waerbeke, Ludovic van [University of British Columbia, Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Heavens, Alan [SUPA - Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)

    2008-06-15

    Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening matter. The distortions are due to fluctuations in the gravitational potential, and are directly related to the distribution of matter and to the geometry and dynamics of the Universe. As a consequence, weak gravitational lensing offers unique possibilities for probing the Dark Matter and Dark Energy in the Universe. In this review, we summarise the theoretical and observational state of the subject, focussing on the statistical aspects of weak lensing, and consider the prospects for weak lensing surveys in the future. Weak gravitational lensing surveys are complementary to both galaxy surveys and cosmic microwave background (CMB) observations as they probe the unbiased non-linear matter power spectrum at modest redshifts. Most of the cosmological parameters are accurately estimated from CMB and large-scale galaxy surveys, so the focus of attention is shifting to understanding the nature of Dark Matter and Dark Energy. On the theoretical side, recent advances in the use of 3D information of the sources from photometric redshifts promise greater statistical power, and these are further enhanced by the use of statistics beyond two-point quantities such as the power spectrum. The use of 3D information also alleviates difficulties arising from physical effects such as the intrinsic alignment of galaxies, which can mimic weak lensing to some extent. On the observational side, in the next few years weak lensing surveys such as CFHTLS, VST-KIDS and Pan-STARRS, and the planned Dark Energy Survey, will provide the first weak lensing surveys covering very large sky areas and depth. In the long run even more ambitious programmes such as DUNE, the Supernova Anisotropy Probe (SNAP) and Large-aperture Synoptic Survey Telescope (LSST) are planned. Weak lensing of diffuse components such as the CMB and 21 cm emission can also

  3. High energy neutrinos: sources and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark DE 19716 (United States)

    2006-05-15

    We discuss briefly the potential sources of high energy astrophysical neutrinos and show estimates of the neutrino fluxes that they can produce. A special attention is paid to the connection between the highest energy cosmic rays and astrophysical neutrinos.

  4. Multiplicities in high energy interactions

    International Nuclear Information System (INIS)

    Derrick, M.

    1984-01-01

    Charged particle multiplicities in hadronic collision have been measured for all energies up to √s = 540 GeV in the center of mass. Similar measurements in e + e - annihilation cover the much smaller range - up to √s = 40 GeV. Data are also available from deep inelastic neutrino scattering up to √s approx. 10 GeV. The experiments measure the mean charged multiplicity , the rapidity density at y = O, and the distributions in prong number. The mean number of photons associated with the events can be used to measure the π 0 and eta 0 multiplicities. Some information is also available on the charged pion, kaon, and nucleon fractions as well as the K 0 and Λ 0 rates and for the higher energy data, the identically equal fraction. We review this data and consider the implications of extrapolations to SSC energies. 13 references

  5. High education and nuclear energy

    International Nuclear Information System (INIS)

    Ghitescu, Petre; Prisecaru, Ilie; Stefanescu, Petre

    1998-01-01

    The Faculty of Energy of the University 'Politecnica' in Bucharest is the only faculty in Romania in the field of nuclear energy education. With an experience of more than 29 years, the Faculty of Energy offers the major 'Nuclear Power Plants', which students graduate after a 5-year education as engineers in the Nuclear Power Plant major. Among the principal objectives of the development and reshape of the Romanian education system was mentioned the upgrading of organizational forms by introducing the transfer credit system, and starting in the fall '97 by accrediting Radioprotection and Nuclear Safety Master education. As a result of co-operation and assistance offered by TEMPUS-SENECA program, the new major is shaped and endowed with a modern curriculum harmonized with UE and IAEA requirements and a modern and performing laboratory. This way the Romanian higher education offers a fully correct and concordant structure with UE countries education. (authors)

  6. Magnetic-flux dynamics of high-Tc superconductors in weak magnetic fields

    DEFF Research Database (Denmark)

    Il’ichev, E. V.; Jacobsen, Claus Schelde

    1994-01-01

    Aspects of magnetic-flux dynamics in different types of samples of the high-temperature superconductor YBa2Cu3Ox have been investigated in magnetic fields below 1 Oe and at 77 K. The experiments were carried out in an arrangement including a field coil, a flat sample perpendicular to the field...

  7. Middle Grades to High School: Mending a Weak Link. Research Brief.

    Science.gov (United States)

    Cooney, Sondra; Bottoms, Gene

    This research brief describes a study of the readiness for high school of eighth-graders who participated in the Southern Regional Education Board's (SREB) Middle Grades Assessment in spring 2000. The assessment included testing in reading, math, and science, and surveys of students and teachers. Following the 2000-01 school year, SREB gathered…

  8. The role of weak selection and high mutation rates in nearly neutral evolution.

    Science.gov (United States)

    Lawson, Daniel John; Jensen, Henrik Jeldtoft

    2009-04-21

    Neutral dynamics occur in evolution if all types are 'effectively equal' in their reproductive success, where the definition of 'effectively equal' depends on the population size and the details of mutations. Empirically observed neutral genetic evolution in extremely large clonal populations can only be explained under current models if selection is completely absent. Such models typically consider the case where population dynamics occurs on a different timescale to evolution. However, this assumption is invalid when mutations are not rare in a whole population. We show that this has important consequences for the occurrence of neutral evolution in clonal populations. In highly connected type spaces, neutral dynamics can occur for all population sizes despite significant selective differences, via the forming of effectively neutral networks connecting rare neutral types. Biological implications include an explanation for the high diversity of rare types that survive in large clonal populations, and a theoretical justification for the use of neutral null models.

  9. High energy particle accelerators as radiation Sources

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, M E [National Center for Nuclear Safety and Radiation Vontrol, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Small accelerators in the energy range of few million electron volts are usually used as radiation sources for various applications, like radiotherapy, food irradiation, radiation sterilization and in other industrial applications. High energy accelerators with energies reaching billions of electron volts also find wide field of applications as radiation sources. Synchrotrons with high energy range have unique features as radiation sources. This review presents a synopsis of cyclic accelerators with description of phase stability principle of high energy accelerators with emphasis on synchrotrons. Properties of synchrotron radiation are given together with their applications in basic and applied research. 13 figs.,1 tab.

  10. Moderate energy ions for high energy density physics experiments

    International Nuclear Information System (INIS)

    Grisham, L.R.

    2004-01-01

    This paper gives the results of a preliminary exploration of whether moderate energy ions (≅0.3-3 MeV/amu) could be useful as modest-cost drivers for high energy density physics experiments. It is found that if the target thickness is chosen so that the ion beam enters and then leaves the target in the vicinity of the peak of the dE/dX (stopping power) curve, high uniformity of energy deposition may be achievable while also maximizing the amount of energy per beam particle deposited within the target

  11. Experimental investigation on the use of highly charged nanoparticles to improve the stability of weakly charged colloidal system.

    Science.gov (United States)

    Zubir, Mohd Nashrul Mohd; Badarudin, A; Kazi, S N; Misran, Misni; Amiri, Ahmad; Sadri, Rad; Khalid, Solangi

    2015-09-15

    The present work highlighted on the implementation of a unique concept for stabilizing colloids at their incipiently low charge potential. A highly charged nanoparticle was introduced within a coagulated prone colloidal system, serving as stabilizer to resist otherwise rapid flocculation and sedimentation process. A low size asymmetry of nanoparticle/colloid serves as the new topic of investigation in addition to the well-established large size ratio nanoparticle/microparticle study. Highly charged Al2O3 nanoparticles were used within the present research context to stabilize TiO2 and Fe3O4 based colloids via the formation of composite structures. It was believed, based on the experimental evidence, that Al2O3 nanoparticle interact with the weakly charged TiO2 and Fe3O4 colloids within the binary system via absorption and/or haloing modes to increase the overall charge potential of the respective colloids, thus preventing further surface contact via van der Waal's attraction. Series of experimental results strongly suggest the presence of weakly charged colloids in the studied bimodal system where, in the absence of highly charged nanoparticle, experience rapid instability. Absorbance measurement indicated that the colloidal stability drops in accordance to the highly charged nanoparticle sedimentation rate, suggesting the dominant influence of nanoparticles to attain a well-dispersed binary system. Further, it was found that the level of colloidal stability was enhanced with increasing nanoparticle fraction within the mixture. Rheological observation revealed that each hybrid complexes demonstrated behavior reminiscence to water with negligible increase in viscosity which serves as highly favorable condition particularly in thermal transport applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Harvard University High Energy Physics progress report

    International Nuclear Information System (INIS)

    1992-01-01

    The principal goals of this work are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. The program is based at Harvard's High Energy Physics Laboratory, which has offices, computing facilities, and engineering support, and both electronics and machine shops

  13. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  14. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  15. Particle accelerators and lasers high energy sources

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1985-04-01

    Particle accelerators and lasers are to-day precious devices for physicist and engineer. Their performance and scope do not stop growing. Producing thin beams of high energy particles or photons, they are able to be very high energy sources which interact strongly with matter. Numerous applications use them: research, industry, communication, medicine, agroalimentary, defence, and soon. In this note, their operation principles are described and some examples of their use as high energy sources are given [fr

  16. Renewable energy at high altitudes

    International Nuclear Information System (INIS)

    Beltramo, R.; Cuzzolin, B.

    2000-01-01

    Improving environmental performance by paying greater attention to the environment factor is becoming the prime objective of many companies and organizations in general. But not theirs alone. Even the tourism sector is making a number of efforts in this direction. This is the case, for example, of the Regina Margherita Refuge located on Point Gnifetti on the Monte Rosa massif, where a research project called Crest was conducted. This was a study on the feasibility of meeting the refuge's energy sources, that is, by using a photovoltaic or hybrid (wind-based and photovoltaic) energy production system. A plant thus able to exploit the landscape and meteorological characteristics typical of a mountain refuge, saving money and reducing the pollution load [it

  17. High-energy cosmic rays

    CERN Document Server

    Cronin, James Watson

    1996-01-01

    Recently two cosmic rays with energy in excess of 2 1020 eV have been recorded. These are some 108 times more energetic than the protons produced by accelerators on earth. There is no credible understanding of the mechanism of acceleration by known a Because of the short mean free path in the cosmic background radiation they must come from nearby distances on a cosmological scale (< 50 Mpc). Their magnetic rigidity suggests that they should point to their source. Lectures will cover the present available data on the highest energy cosmic rays, their detection, possible acceleration mechanisms, their propagation in the galaxy and in extra galactic space and design of new detectors where simulations of air show ers play an important role.

  18. Detection of a weak meddy-like anomaly from high-resolution satellite SST maps

    Directory of Open Access Journals (Sweden)

    Mikhail Emelianov

    2012-09-01

    Full Text Available Despite the considerable impact of meddies on climate through the long-distance transport of properties, a consistent observation of meddy generation and propagation in the ocean is rather elusive. Meddies propagate at about 1000 m below the ocean surface, so satellite sensors are not able to detect them directly and finding them in the open ocean is more fortuitous than intentional. However, a consistent census of meddies and their paths is required in order to gain knowledge about their role in transporting properties such as heat and salt. In this paper we propose a new methodology for processing high-resolution sea surface temperature maps in order to detect meddy-like anomalies in the open ocean on a near-real-time basis. We present an example of detection, involving an atypical meddy-like anomaly that was confirmed as such by in situ measurements.

  19. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  20. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  1. High energy physics and cloud computing

    International Nuclear Information System (INIS)

    Cheng Yaodong; Liu Baoxu; Sun Gongxing; Chen Gang

    2011-01-01

    High Energy Physics (HEP) has been a strong promoter of computing technology, for example WWW (World Wide Web) and the grid computing. In the new era of cloud computing, HEP has still a strong demand, and major international high energy physics laboratories have launched a number of projects to research on cloud computing technologies and applications. It describes the current developments in cloud computing and its applications in high energy physics. Some ongoing projects in the institutes of high energy physics, Chinese Academy of Sciences, including cloud storage, virtual computing clusters, and BESⅢ elastic cloud, are also described briefly in the paper. (authors)

  2. A possible high-mobility signal in bulk MoTe2: Temperature independent weak phonon decay

    Directory of Open Access Journals (Sweden)

    Titao Li

    2016-11-01

    Full Text Available Layered transition metal dichalcogenides (TMDs have attracted great attention due to their non-zero bandgap for potential application in high carrier mobility devices. Recent studies demonstrate that the carrier mobility of MoTe2 would decrease by orders of magnitude when used for few-layer transistors. As phonon scattering has a significant influence on carrier mobility of layered material, here, we first reported temperature-dependent Raman spectra of bulk 2H-MoTe2 from 80 to 300 K and discovered that the phonon lifetime of both E12g and A1g vibration modes are independent with temperature. These results were explained by the weak phonon decay in MoTe2. Our results imply the existence of a carrier mobility higher than the theoretical value in intrinsic bulk 2H-MoTe2 and the feasibility to obtain MoTe2-based transistors with sufficiently high carrier mobility.

  3. Implications for Primordial Non-Gaussianity ($f_{NL}$) from weak lensing masses of high-z galaxy clusters

    CERN Document Server

    Jimenez, Raul

    2009-01-01

    The recent weak lensing measurement of the dark matter mass of the high-redshift galaxy cluster XMMUJ2235.3-2557 of (8.5 +- 1.7) x 10^{14} Msun at z=1.4, indicates that, if the cluster is assumed to be the result of the collapse of dark matter in a primordial gaussian field in the standard LCDM model, then its abundance should be 3-10 if the non-Gaussianity parameter f^local_NL is in the range 150-200. This value is comparable to the limit for f_NL obtained by current constraints from the CMB. We conclude that mass determination of high-redshift, massive clusters can offer a complementary probe of primordial non-gaussianity.

  4. Elementary particles and high energy phenomena: Progress report

    International Nuclear Information System (INIS)

    Cumalat, J.P.

    1988-01-01

    This paper reviews the research being done at the University of Colorado in High Energy Physics. Topics discussed in this paper are: Charmed Photoproduction; Hadronic Production of Charm Particles; Photoproduction of States Containing Heavy Quarks; Electron-Positron Physics with the MAC Detector at PEP; Electron-Positron Physics with the Upgraded Mark II Detector at SLC; The SLD Detector at SLC; Nonperturbative Studies of QCD; Hadron Phenomenology - Application to Experiment; Perturbative QCD and Weak Matrix Elements; Quarkonium Physics; Supersymmetry, Supergravity, and Superstrings; and Experimental Gravity. 50 refs., 13 figs

  5. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  6. WEAK AND COMPACT RADIO EMISSION IN EARLY HIGH-MASS STAR-FORMING REGIONS. I. VLA OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rosero, V.; Hofner, P. [Physics Department, New Mexico Tech, 801 Leroy Pl., Socorro, NM 87801 (United States); Claussen, M. [National Radio Astronomy Observatory, 1003 Lopezville Rd., Socorro, NM 87801 (United States); Kurtz, S.; Carrasco-González, C.; Rodríguez, L. F.; Loinard, L. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58090, México (Mexico); Cesaroni, R. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Araya, E. D. [Physics Department, Western Illinois University, 1 University Circle, Macomb, IL 61455 (United States); Menten, K. M.; Wyrowski, F. [Max-Planck-Institute für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Ellingsen, S. P. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania 7001 (Australia)

    2016-12-01

    We present a high-sensitivity radio continuum survey at 6 and 1.3 cm using the Karl G. Jansky Very Large Array toward a sample of 58 high-mass star-forming regions. Our sample was chosen from dust clumps within infrared dark clouds with and without IR sources (CMC–IRs and CMCs, respectively), and hot molecular cores (HMCs), with no previous, or relatively weak radio continuum detection at the 1 mJy level. Due to the improvement in the continuum sensitivity of the Very Large Array, this survey achieved map rms levels of ∼3–10  μ Jy beam{sup −1} at sub-arcsecond angular resolution. We extracted 70 continuum sources associated with 1.2 mm dust clumps. Most sources are weak, compact, and prime candidates for high-mass protostars. Detection rates of radio sources associated with the millimeter dust clumps for CMCs, CMC–IRs, and HMCs are 6%, 53%, and 100%, respectively. This result is consistent with increasing high-mass star formation activity from CMCs to HMCs. The radio sources located within HMCs and CMC–IRs occur close to the dust clump centers, with a median offset from it of 12,000 au and 4000 au, respectively. We calculated 5–25 GHz spectral indices using power-law fits and obtained a median value of 0.5 (i.e., flux increasing with frequency), suggestive of thermal emission from ionized jets. In this paper we describe the sample, observations, and detections. The analysis and discussion will be presented in Paper II.

  7. URBox : High tech energy and informal housing

    NARCIS (Netherlands)

    Cuperus, Y.J.; Smets, D.

    2011-01-01

    This paper reports on the URBox concept encompassing the high tech end of solar energy and informal low cost and affordable housing. It aims to contribute to solving the global energy crisis by building solar energy settlements in deserts where land is affordable and sunshine in abundance. First the

  8. Responding to high energy prices: energy management services

    International Nuclear Information System (INIS)

    Raynolds, M.

    2001-01-01

    Rapid growth in the number and sophistication of energy management companies has been observed in the wake of rising energy prices. These companies offer energy-efficiency consulting services to utilities, government and industry with the promise of improved cost efficiency, marketplace competitiveness and environmental commitments. The environmental benefits result from the reduction in emissions and pollutants associated with power production and natural gas used for space heating. In general, the stock in trade of these energy management companies is the energy audit involving evaluation of existing equipment in buildings and facilities and the resulting recommendations to install energy-efficient equipment such as lighting retrofits, boiler replacement, chiller replacement, variable speed drives, high-efficiency motors, improved insulation and weather proofing, water heaters and piping. The North American market for energy management services was estimated in 1997 at $208 billion (rising to $350 billion by 2004). Current market penetration is less than two per cent

  9. High-Energy Neutrino Interactions

    CERN Multimedia

    2002-01-01

    This experiment studies neutrino interactions in iron at the highest available energies using the narrow-band neutrino beam N3 and the wide-band neutrino beam N1. The basis of the detector is a massive target-calorimeter in which the energy deposited by a neutrino (or antineutrino) is measured by electronic techniques and the momentum of outgoing muons is determined by magnetic deflection. The detector is constructed in the form of a 20 m long iron-cored toroidal magnet, composed of modules of length 70~cm and 90~cm, and of 3.75~m diameter. Drift chambers placed in between each module measure the trajectory of muons from the neutrino interactions. The modules are of three types. The first ten modules are constructed of 2.5~cm iron plates with 20~scintillator planes inserted between the plates. The next five modules are constructed of 5~cm plates with 15~planes of scintillator and the last six modules are constructed of 15~cm plates with 5~planes of scintillators. The total mass of the detector is @=~1400 tons...

  10. Interferometry of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Padula, S.S.

    1990-01-01

    The interferometry is used for determining large space time dimensions of the Quark Gluon Plasma formed in high energy nuclear collisions or in high multiplicity fluctuations in p-barp collisions. (M.C.K.)

  11. High energy physics in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Month, M.

    1985-10-16

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range. (LEW)

  12. High energy physics in the United States

    International Nuclear Information System (INIS)

    Month, M.

    1985-01-01

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range

  13. A unified treatment of high energy interactions

    International Nuclear Information System (INIS)

    Drescher, H.J.; Werner, K.; Ostapchenko, S.; Centre National de la Recherche Scientifique, 44 - Nantes

    1999-01-01

    It is well known that high energy interactions as different as electron-positron annihilation, deep inelastic lepton-nucleon scattering, proton-proton interactions, and nucleus-nucleus collisions have many features in common. Based upon this observation, a model for all these interactions is constructed which relies on the fundamental hypothesis that the behavior of high energy interactions is universal. (author)

  14. CAMAC high energy physics electronics hardware

    International Nuclear Information System (INIS)

    Kolpakov, I.F.

    1977-01-01

    CAMAC hardware for high energy physics large spectrometers and control systems is reviewed as is the development of CAMAC modules at the High Energy Laboratory, JINR (Dubna). The total number of crates used at the Laboratory is 179. The number of CAMAC modules of 120 different types exceeds 1700. The principles of organization and the structure of developed CAMAC systems are described. (author)

  15. Expectations for ultra-high energy interactions

    International Nuclear Information System (INIS)

    Feynman, R.P.

    1978-01-01

    Strong interactions at ultra-high energies are discussed with emphasis on the hadrons produced in high energy collisions. Evidence is considered that quantum chromodynamics might be the right theory, and also some estimates are given of quantum chromodynamics asymptotic-freedom phenomena, the work under discussion being very preliminary. 6 references

  16. New aspects of high energy density plasma

    International Nuclear Information System (INIS)

    Hotta, Eiki

    2005-10-01

    The papers presented at the symposium on 'New aspects of high energy density plasma' held at National Institute for Fusion Science are collected in this proceedings. The papers reflect the present status and recent progress in the experiments and theoretical works on high energy density plasma produced by pulsed power technology. The 13 of the presented papers are indexed individually. (J.P.N.)

  17. High energy physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    The hadron collider group is studying proton-antiproton interactions at the world`s highest collision energy 2 TeV. Data-taking with the D0 detector is in progress at Fermilab and the authors have begun the search for the top quark. S. Wimpenny is coordinating the effort to detect t{bar t} decaying to two leptons, the most readily identifiable channel. At UC Riverside design and testing for a silicon tracker for the D0 upgrade is in progress; a parallel development for the SDC detector at SSC is also underway. The major group effort of the lepton group has been devoted to the OPAL experiment at LEP. They will continue to focus on data-taking to improve the quality and quantity of their data sample. A large number of papers have been published based on approximately 500,000 events taken so far. The authors will concentrate on physics analysis which provides stringent tests of the Standard Model. The authors are continuing participation in the RD5 experiment at the SPS to study muon triggering and tracking. The results of this experiment will provide critical input for the design of the Compact Muon Solenoid experiment being proposed for the LHC. The theory group has been working on problems concerning the possible vilation of e-{mu}-{tau} universality, effective Lagrangians, neutrino physics, as well as quark and lepton mass matrices.

  18. High energy physics at UCR

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.

    1997-01-01

    The hadron collider group is studying proton-antiproton interactions at the world's highest collision energy 2 TeV. Data-taking with the D0 detector is in progress at Fermilab and the authors have begun the search for the top quark. S. Wimpenny is coordinating the effort to detect t bar t decaying to two leptons, the most readily identifiable channel. At UC Riverside design and testing for a silicon tracker for the D0 upgrade is in progress; a parallel development for the SDC detector at SSC is also underway. The major group effort of the lepton group has been devoted to the OPAL experiment at LEP. They will continue to focus on data-taking to improve the quality and quantity of their data sample. A large number of papers have been published based on approximately 500,000 events taken so far. The authors will concentrate on physics analysis which provides stringent tests of the Standard Model. The authors are continuing participation in the RD5 experiment at the SPS to study muon triggering and tracking. The results of this experiment will provide critical input for the design of the Compact Muon Solenoid experiment being proposed for the LHC. The theory group has been working on problems concerning the possible vilation of e-μ-τ universality, effective Lagrangians, neutrino physics, as well as quark and lepton mass matrices

  19. Estimates of the Attenuation Rates of Baroclinic Tidal Energy Caused by Resonant Interactions Among Internal Waves based on the Weak Turbulence Theory

    Science.gov (United States)

    Onuki, Y.; Hibiya, T.

    2016-02-01

    The baroclinic tides are thought to be the dominant energy source for turbulent mixing in the ocean interior. In contrast to the geography of the energy conversion rates from the barotropic to baroclinic tides, which has been clarified in recent numerical studies, the global distribution of the energy sink for the resulting low-mode baroclinic tides remains obscure. A key to resolve this issue is the resonant wave-wave interactions, which transfer part of the baroclinic tidal energy to the background internal wave field enhancing the local energy dissipation rates. Recent field observations and numerical studies have pointed out that parametric subharmonic instability (PSI), one of the resonant interactions, causes significant energy sink of baroclinic tidal energy at mid-latitudes. The purpose of this study is to analyze the quantitative aspect of PSI to demonstrate the global distribution of the intensity of resonant wave interactions, namely, the attenuation rate of low-mode baroclinic tidal energy. Our approach is basically following the weak turbulence theory, which is the standard theory for resonant wave-wave interactions, where techniques of singular perturbation and statistical physics are employed. This study is, however, different from the classical theory in some points; we have reformulated the weak turbulence theory to be applicable to low-mode internal waves and also developed its numerical calculation method so that the effects of stratification profile and oceanic total depth can be taken into account. We have calculated the attenuation rate of low-mode baroclinic tidal waves interacting with the background Garrett-Munk internal wave field. The calculated results clearly show the rapid attenuation of baroclinic tidal energy at mid-latitudes, in agreement with the results from field observations and also show the zonal inhomogeneity of the attenuation rate caused by the density structures associated with the subtropical gyre. This study is expected

  20. Weak relativity

    CERN Document Server

    Selleri, Franco

    2015-01-01

    Weak Relativity is an equivalent theory to Special Relativity according to Reichenbach’s definition, where the parameter epsilon equals to 0. It formulates a Neo-Lorentzian approach by replacing the Lorentz transformations with a new set named “Inertial Transformations”, thus explaining the Sagnac effect, the twin paradox and the trip from the future to the past in an easy and elegant way. The cosmic microwave background is suggested as a possible privileged reference system. Most importantly, being a theory based on experimental proofs, rather than mutual consensus, it offers a physical description of reality independent of the human observation.

  1. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  2. Remarks on High Energy Evolution

    OpenAIRE

    Kovner, Alex; Lublinsky, Michael

    2005-01-01

    We make several remarks on the B-JIMWLK hierarchy. First, we present a simple and instructive derivation of this equation by considering an arbitrary projectile wave function with small number of valence gluons. We also generalize the equation by including corrections which incorporate effects of high density in the projectile wave function. Second, we systematically derive the dipole model approximation to the hierarchy. We show that in the dipole approximation the hierarchy has a simplifyin...

  3. Ultra high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Wdowczyk, J.

    1986-01-01

    The experimental data on ultra high energy γ-rays are reviewed and a comparison of the properties of photon and proton initiated shower is made. The consequences of the existence of the strong ultra high energy γ-ray sources for other observations is analysed and possible mechanisms for the production of ultra high energy γ-rays in the sources are discussed. It is demonstrated that if the γ-rays are produced via cosmic ray interactions the sources have to produce very high fluxes of cosmic ray particles. In fact it is possible that a small number of such sources can supply the whole Galactic cosmic ray flux

  4. Physics of (very) high energy e+-e- colliders

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1984-10-01

    I review the physics capabilities of e + e - colliders of hundred GeV to TeV center-of-mass energies, emphasizing issues relevant to the physics of symmetry breaking in the weak interactions. 24 references

  5. Weak and strong factorization properties in nucleus-nucleus collisions in the energy region 290-2100 MeV/nucleon

    International Nuclear Information System (INIS)

    La Tessa, C. . E-mail chiara@nephy.chalmers.se; Sihver, L.; Mancusi, D.; Zeitlin, C.; Miller, J.; Guetersloh, S.; Heilbronn, L.

    2007-01-01

    We have collected from the literature partial charge-changing cross sections for projectiles with charge 6=< Z=<26, energy ranging from 290 up to 2100 MeV/nucleon and interacting with several targets, in order to investigate weak and strong factorization properties. The same analysis methods as in our previous work have been applied to the data: we have shown that, except for hydrogen targets, weak and strong factorization properties are valid within 5%, thus confirming the results obtained in the first paper [C. La Tessa, et al., Test of weak and strong factorization in nucleus-nucleus collisions at several hundred MeV/nucleon, Nucl. Phys. A, in press]. Factorization parameters have been calculated and, in particular, target factors have been expressed with ad hoc analytical functions which describe the data trend very well. New expressions for weak and strong factorization properties can then be obtained by substituting the target factors with these functions: this formulation partially isolates the dependence of the partial charge-changing cross sections on the target and projectile mass numbers; moreover, fragment factors are the only parameters left in the formulas thus facilitating the future task of interpolating them with appropriate analytical expressions

  6. High- and middle-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    High and middle energy geothermal resources correspond to temperature intervals of 220-350 C and 90-180 C, respectively, and are both exploited for electricity production. Exploitation techniques and applications of high and of middle energy geothermics are different. High energy geothermics is encountered in active volcanic and tectonic zones, such as the circum-Pacific fire-belt, the lesser Antilles, the peri-Mediterranean Alpine chain or the African rift zone. The geothermal steam is directly expanded in a turbine protected against gas and minerals corrosion. About 350 high energy plants are distributed in more than 20 different countries and represent 6000 M We. The cost of high energy installed geothermal kWh ranges from 0.20 to 0.50 French Francs. Middle energy geothermics is encountered in sedimentary basins (between 2000 and 4000 m of depth), in localized fractured zones or at lower depth in the high energy geothermal fields. Heat exchangers with organic fluid Rankine cycle technology is used to produce electricity. Unit power of middle energy plants generally ranges from few hundreds of k W to few MW and correspond to a worldwide installed power of about 400 M We. The annual progression of geothermal installed power is estimated to 4 to 8 % in the next years and concerns principally the circum-Pacific countries. In France, geothermal resources are mainly localized in overseas departments. (J.S.). 3 photos

  7. High energy hadron spin-flip amplitude

    International Nuclear Information System (INIS)

    Selyugin, O.V.

    2016-01-01

    The high-energy part of the hadron spin-flip amplitude is examined in the framework of the new high-energy general structure (HEGS) model of the elastic hadron scattering at high energies. The different forms of the hadron spin-flip amplitude are compared in the impact parameter representation. It is shown that the existing experimental data of the proton-proton and proton-antiproton elastic scattering at high energy in the region of the diffraction minimum and at large momentum transfer give support in the presence of the energy-independent part of the hadron spin-flip amplitude with the momentum dependence proposed in the works by Galynskii-Kuraev. [ru

  8. Individual Dosimetry for High Energy Radiation Fields

    International Nuclear Information System (INIS)

    Spurny, F.

    1999-01-01

    The exposure of individuals on board aircraft increased interest in individual dosimetry in high energy radiation fields. These fields, both in the case of cosmic rays as primary radiation and at high energy particle accelerators are complex, with a large diversity of particle types, their energies, and linear energy transfer (LET). Several already existing individual dosemeters have been tested in such fields. For the component with high LET (mostly neutrons) etched track detectors were tested with and without fissile radiators, nuclear emulsions, bubble detectors for both types available and an albedo dosemeter. Individual dosimetry for the low LET component has been performed with thermoluminescent detectors (TLDs), photographic film dosemeters and two types of electronic individual dosemeters. It was found that individual dosimetry for the low LET component was satisfactory with the dosemeters tested. As far as the high LET component is concerned, there are problems with both the sensitivity and the energy response. (author)

  9. High-Frequency Ground-Motion Parameters from Weak-Motion Data in the Sicily Channel and Surrounding Regions

    Science.gov (United States)

    D'Amico, Sebastiano; Akinci, Aybige; Pischiutta, Marta

    2018-03-01

    In this paper we characterize the high frequency (1.0 - 10 Hz) seismic wave crustal attenuation and the source excitation in the Sicily Channel and surrounding regions using background seismicity from weak-motion database. The data set includes 15995 waveforms related to earthquakes having local magnitude ranging from 2.0 to 4.5 recorded between 2006 and 2012. The observed and predicted ground motions form the weak-motion data are evaluated in several narrow frequency bands from 0.25 to 20.0 Hz. The filtered observed peaks are regressed to specify a proper functional form for the regional attenuation, excitation and site specific term separately. The results are then used to calibrate effective theoretical attenuation and source excitation models using the Random Vibration Theory (RVT). In the log-log domain, the regional seismic wave attenuation and the geometrical spreading coefficient are modeled together. The geometrical spreading coefficient, g (r), modeled with a bilinear piecewise functional form and given as g (r) ∝ r-1.0 for the short distances (r selected reference distance with a magnitude independent roll-off spectral parameter, κ 0.04 s and with a Brune stress drop parameter increasing with moment magnitude, from Δσ = 2 MPa for Mw = 2.0 to Δσ = 13 MPa for Mw = 4.5. For events M≤4.5 (being Mwmax = 4.5 available in the dataset) the stress parameters are obtained by correlating the empirical/excitation source spectra with the Brune spectral model as function of magnitude. For the larger magnitudes (Mw>4.5) outside the range available in the calibration dataset where we do not have recorded data, we extrapolate our results through the calibration of the stress parameters of the Brune source spectrum over the Bindi et al. (2011) ground motion prediction equation (GMPE) selected as a reference model (hereafter also ITA10).

  10. Intercomparison of high energy neutron personnel dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1993-03-01

    An intercomparison of high-energy neutron personnel dosimeters was performed to evaluate the uniformity of the response characteristics of typical neutron dosimeters presently in use at US Department of Energy (DOE) accelerator facilities. It was necessary to perform an intercomparison because there are no national or international standards for high-energy neutron dosimetry. The testing that is presently under way for the Department of Energy Laboratory Accreditation Program (DOELAP) is limited to the use of neutron sources that range in energy from about 1 keV to 2 MeV. Therefore, the high-energy neutron dosimeters presently in use at DOE accelerator facilities are not being tested effectively. This intercomparison employed neutrons produced by the 9 Be(p,n) 9 B interaction at the University of Washington cyclotron, using 50-MeV protons. The resulting neutron energy spectrum extended to a maximum of approximately 50-MeV, with a mean energy of about 20-MeV. Intercomparison results for currently used dosimeters, including Nuclear Type A (NTA) film, thermoluminescent dosimeter (TLD)-albedo, and track-etch dosimeters (TEDs), indicated a wide variation in response to identical doses of high-energy neutrons. Results of this study will be discussed along with a description of plans for future work

  11. Steep Hard-X-ray Spectra Indicate Extremely High Accretion Rates in Weak Emission-Line Quasars

    Science.gov (United States)

    Marlar, Andrea; Shemmer, Ohad; Anderson, Scott F.; Brandt, W. Niel; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Luo, Bin; Plotkin, Richard; Richards, Gordon T.; Schneider, Donald P.; Wu, Jianfeng

    2018-06-01

    We present XMM-Newton imaging spectroscopy of ten weak emission-line quasars (WLQs) at 0.928 ≤ z ≤ 3.767, six of which are radio quiet and four which are radio intermediate. The new X-ray data enabled us to measure the hard-X-ray power-law photon index (Γ) in each source with relatively high accuracy. These measurements allowed us to confirm previous reports that WLQs have steeper X-ray spectra, therefore indicating higher accretion rates with respect to "typical" quasars. A comparison between the Γ values of our radio-quiet WLQs and those of a carefully-selected, uniform sample of 84 quasars shows that the first are significantly higher, at the ≥ 3σ level. Collectively, the four radio-intermediate WLQs have lower Γ values with respect to the six radio-quiet WLQs, as may be expected if the spectra of the first group are contaminated by X-ray emission from a jet. These results suggest that, in the absence of significant jet emission along our line of sight, WLQs constitute the extreme high end of the accretion rate distribution in quasars. We detect soft excess emission in our lowest-redshift radio-quiet WLQ, in agreement with previous findings suggesting that the prominence of this feature is associated with a high accretion rate. We have not detected signatures of Compton reflection, Fe Kα lines, or strong variability between two X-ray epochs in any of our WLQs.

  12. Practical neutron dosimetry at high energies

    International Nuclear Information System (INIS)

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently

  13. Computing in high-energy physics

    International Nuclear Information System (INIS)

    Mount, Richard P.

    2016-01-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software

  14. Computing in high-energy physics

    Science.gov (United States)

    Mount, Richard P.

    2016-04-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Finally, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  15. CERN and the high energy frontier

    Directory of Open Access Journals (Sweden)

    Tsesmelis Emmanuel

    2014-04-01

    Full Text Available This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC, this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  16. On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  17. Biological effects of high-energy radiation

    International Nuclear Information System (INIS)

    Curtis, S.B.

    1976-01-01

    The biological effects of high-energy radiation are reviewed, with emphasis on the effects of the hadronic component. Proton and helium ion effects are similar to those of the more conventional and sparsely ionizing x- and γ-radiation. Heavy-ions are known to be more biologically effective, but the long term hazard from accumulated damage has yet to be assessed. Some evidence of widely varying but dramatically increased effectiveness of very high-energy (approximately 70 GeV) hadron beams is reviewed. Finally, the importance of the neutron component in many situations around high-energy accelerators is pointed out

  18. New accelerators in high-energy physics

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting

  19. High-energy vector boson scattering after the Higgs discovery

    International Nuclear Information System (INIS)

    Kilian, Wolfgang; Sekulla, Marco; Ohl, Thorsten; Reuter, Juergen

    2014-08-01

    Weak vector-boson W,Z scattering at high energy probes the Higgs sector and is most sensitive to any new physics associated with electroweak symmetry breaking. We show that in the presence of the 125 GeV Higgs boson, a conventional effective-theory analysis fails for this class of processes. We propose to extrapolate the effective-theory ansatz by an extension of the parameter-free K-matrix unitarization prescription, which we denote as direct T-matrix unitarization. We generalize this prescription to arbitrary non-perturbative models and describe the implementation, as an asymptotically consistent reference model matched to the low-energy effective theory. We present exemplary numerical results for full six-fermion processes at the LHC.

  20. Nonlinear energy loss of highly charged heavy ions

    International Nuclear Information System (INIS)

    Zwicknagel, G.Guenter.

    2000-01-01

    For slow, highly charged heavy ions strong coupling effects in the energy transfer from the projectile-ion to an electron target plasma become important. A theoretical description of this nonlinear ion stopping has to go beyond the standard approaches like the dielectric linear response or the binary collision model which are strictly valid only at weak ion-target coupling. Here we outline an improved treatment which is based on a suitable combination of binary collision and linear response contributions. As has been verified for isotropic, nonmagnetized electron plasmas by comparison with simulations, this approach well reproduces the essential features of nonlinear stopping up to moderate coupling strength. Its extension to anisotropic, magnetized electron plasmas basically involves the fully numerical determination of the momentum and energy transfer in binary ion-electron collisions in the presence of a magnetic field. First results of such calculations are presented and discussed

  1. High energy physics. Ultimate structure of matter and energy

    International Nuclear Information System (INIS)

    1979-04-01

    Some of the principle discoveries and insights and their development up to today are sketched. It is shown how one layer after another was discovered by penetrating farther into the structure of matter. Covered are the mounting energy scale, discoveries at high energy frontier, the families of quarks and leptons, the four forces of nature, some achievements of the past few years, particle accelerators and experimental apparatus. A glossary of terms is included

  2. High to ultra-high power electrical energy storage.

    Science.gov (United States)

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  3. Ultra high-energy cosmic ray composition

    International Nuclear Information System (INIS)

    Longley, N.P.

    1993-01-01

    The Soudan 2 surface-underground cosmic ray experiment can simultaneously measure surface shower size, underground muon multiplicity, and underground muon separation for ultra high energy cosmic ray showers. These measurements are sensitive to the primary composition. Analysis for energies from 10 1 to 10 4 TeV favors a light flux consisting of predominantly H and He nuclei

  4. Pi-nucleon phenomenology at high energies

    International Nuclear Information System (INIS)

    Kogitz, S.

    1973-01-01

    A brief introduction to the phenomenology of strong interactions at high energy is presented. This includes discussion of the topics including absorption, finite energy sum rules, and duality. The application of these ideas to two-particle inelastic reactions is examined. (author)

  5. Experiments on very high energy heavy ions

    International Nuclear Information System (INIS)

    Willis, W.J.

    1981-01-01

    In this paper I describe experimental techniques which could be used to investigate central collision of very high energy heavy ions. For my purposes, the energy range is defined by the number of pions produced, Nsub(π) >> 100, and consequently Nsub(π) >> Nsub(nucleon). In this regime we may expect that new phenomena will appear. (orig.)

  6. Energy confinement of high-density tokamaks

    NARCIS (Netherlands)

    Schüller, F.C.; Schram, D.C.; Coppi, B.; Sadowski, W.

    1977-01-01

    Neoclassical ion heat conduction is the major energy loss mechanism in the center of an ohmically heated high-d. tokamak discharge (n>3 * 1020 m-3). This fixes the mutual dependence of plasma quantities on the axis and leads to scaling laws for the poloidal b and energy confinement time, given the

  7. Geometrical scaling in high energy hadron collisions

    International Nuclear Information System (INIS)

    Kundrat, V.; Lokajicek, M.V.

    1984-06-01

    The concept of geometrical scaling for high energy elastic hadron scattering is analyzed and its basic equations are solved in a consistent way. It is shown that they are applicable to a rather small interval of momentum transfers, e.g. maximally for |t| 2 for pp scattering at the ISR energies. (author)

  8. Nuclear energy - Radioprotection - Procedure for radiation protection monitoring in nuclear installations for external exposure to weakly penetrating radiation, especially to beta radiation

    International Nuclear Information System (INIS)

    2002-01-01

    This International Standard specifies a procedure for radiation protection monitoring in nuclear installations for external exposure to weakly penetrating radiation, especially to beta radiation and describes the procedure in radiation protection monitoring for external exposure to weakly penetrating radiation in nuclear installations. This radiation comprises β - radiation, β + radiation and conversion electron radiation as well as photon radiation with energies below 15 keV. This International Standard describes the procedure in radiation protection planning and monitoring as well as the measurement and analysis to be applied. It applies to regular nuclear power plant operation including maintenance, waste handling and decommissioning. The recommendations of this International Standard may also be transferred to other nuclear fields including reprocessing, if the area-specific issues are considered. This International Standard may also be applied to radiation protection at accelerator facilities and in nuclear medicine, biology and research facilities

  9. Low energy current accumulator for high-energy proton rings

    International Nuclear Information System (INIS)

    Month, M.

    1977-01-01

    Building current in high-energy p-p colliding beam machines is most appropriately done in a low-energy (small circumference) current accumulator. Three significant factors favor such a procedure: First, large rings tend to be susceptible to unstable longitudinal density oscillations. These can be avoided by pumping up the beam in the accumulator. When the current stack is injected into the storage ring, potentially harmful instability is essentially neutralized. Second, high-field magnets characteristic of future high energy proton rings are designed with superconducting coils within the iron magnetic shield. This means coil construction and placement errors propagate rapidly within the beam aperture. An intermediate ''stacking ring'' allows the minimum use of the superconducting ring aperture. Finally, the coils are vulnerable to radiation heating and possible magnet quenching. By minimizing beam manipulaion in the superconducting environment and using only the central portion of the beam aperture, coil vulnerability can be put at a minimum

  10. Laser fusion and high energy density science

    International Nuclear Information System (INIS)

    Kodama, Ryosuke

    2005-01-01

    High-power laser technology is now opening a variety of new fields of science and technology using laser-produced plasmas. The laser plasma is now recognized as one of the important tools for the investigation and application of matter under extreme conditions, which is called high energy density science. This chapter shows a variety of applications of laser-produced plasmas as high energy density science. One of the more attractive industrial and science applications is the generation of intense pulse-radiation sources, such as the generation of electro-magnetic waves in the ranges of EUV (Extreme Ultra Violet) to gamma rays and laser acceleration of charged particles. The laser plasma is used as an energy converter in this regime. The fundamental science applications of high energy density physics are shown by introducing laboratory astrophysics, the equation of state of high pressure matter, including warm dense matter and nuclear science. Other applications are also presented, such as femto-second laser propulsion and light guiding. Finally, a new systematization is proposed to explore the possibility of the high energy density plasma application, which is called high energy plasma photonics''. This is also exploration of the boundary regions between laser technology and beam optics based on plasma physics. (author)

  11. Layer-by-layer modification of high surface curvature nanoparticles with weak polyelectrolytes using a multiphase solvent precipitation process.

    Science.gov (United States)

    Nagaraja, Ashvin T; You, Yil-Hwan; Choi, Jeong-Wan; Hwang, Jin-Ha; Meissner, Kenith E; McShane, Michael J

    2016-03-15

    The layer-by-layer modification of ≈5 nm mercaptocarboxylic acid stabilized gold nanoparticles was studied in an effort to illustrate effective means to overcome practical issues in handling and performing surface modification of such extremely small materials. To accomplish this, each layer deposition cycle was separated into a multi-step process wherein solution pH was controlled in two distinct phases of polyelectrolyte adsorption and centrifugation. Additionally, a solvent precipitation step was introduced to make processing more amenable by concentrating the sample and exchanging solution pH before ultracentrifugation. The pH-dependent assembly on gold nanoparticles was assessed after each layer deposition cycle by monitoring the plasmon peak absorbance location, surface charge, and the percentage of nanoparticles recovered. The selection of solution pH during the adsorption phase was found to be a critical parameter to enhance particle recovery and maximize surface charge when coating with weak polyelectrolytes. One bilayer was deposited with a high yield and the modified particles exhibited enhanced colloidal stability across a broad pH range and increased ionic strength. These findings support the adoption of this multi-step processing approach as an effective and generalizable approach to improve stability of high surface curvature particles. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Physics at high energy photon photon colliders

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking

  13. Organisation of high-energy physics

    CERN Document Server

    Kluyver, J C

    1981-01-01

    Tabulates details of major accelerator laboratories in western Europe, USA, and USSR, and describes the various organisations concerned with high-energy physics. The Dutch organisation uses the NIKHEF laboratory in Amsterdam and cooperates with CERN. (0 refs).

  14. New informative techniques in high energy physics

    International Nuclear Information System (INIS)

    Klimenko, S.V.; Ukhov, V.I.

    1992-01-01

    A number of new informative techniques applied to high energy physics are considered. These are the object-oriented programming, systems integration, UIMS, visualisation, expert systems, neural networks. 100 refs

  15. Multiplicity distributions in high energy collisions

    International Nuclear Information System (INIS)

    Giovannini, A.; Lupia, S.; Ugoccioni, R.

    1992-01-01

    We discuss the important phases in the evolution of our understanding of multiplicity distributions in high energy collisions with particular emphasis to intermittent behavior and shoulder structure problem. (orig.)

  16. Multiplicity distributions in high energy collisions

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, A.; Lupia, S.; Ugoccioni, R. (Dipt. di Fisica Teorica, Univ. Turin (Italy) INFN, Turin (Italy))

    1992-03-01

    We discuss the important phases in the evolution of our understanding of multiplicity distributions in high energy collisions with particular emphasis to intermittent behavior and shoulder structure problem. (orig.).

  17. The evolution of high energy accelerators

    International Nuclear Information System (INIS)

    Courant, E.D.

    1989-10-01

    In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community

  18. High Energy Density Polymer Film Capacitors

    National Research Council Canada - National Science Library

    Boufelfel, Ali

    2006-01-01

    High-energy-density capacitors that are compact and light-weight are extremely valuable in a number of critical DoD systems that include portable field equipment, pulsed lasers, detection equipment...

  19. Research in High Energy Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  20. Studies In Theoretical High Energy Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Keung, Wai Yee [Univ. of Illinois, Chicago, IL (United States)

    2017-07-01

    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  1. Proceedings of progress in high energy physics

    International Nuclear Information System (INIS)

    Pauchy Hwang, W.Y.; Lee, S.C.; Lee, C.E.; Ernst, D.J.

    1991-01-01

    This book contains the proceedings of progress in high energy physics. Topics covered include: Particle Phenomology; Particles and Fields; Physics in 2 and 1 Dimensions; Cosmology, Astrophysics, and Gravitation; Some Perspertives on the Future of Particle Physics

  2. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP)

  3. Scaling violations at ultra-high energies

    International Nuclear Information System (INIS)

    Tung, W.K.

    1979-01-01

    The paper discusses some of the features of high energy lepton-hadron scattering, including the observed (Bjorken) scaling behavior. The cross-sections where all hadron final states are summed over, are examined and the general formulas for the differential cross-section are examined. The subjects of scaling, breaking and phenomenological consequences are studied, and a list of what ultra-high energy neutrino physics can teach QCD is given

  4. Elementary particle physics and high energy phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  5. Research of high energy radioactivity identification detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Kyun; Lee, Yong Bum; Hwang, Jong Sun; Choi, Seok Ki

    1998-07-01

    {Delta} {Epsilon}-{Epsilon} telescope high radioactivity detector was designed, fabricated, and tested at the 35 MeV proton energy. We developed the computer code to calculate the energy loss of projectile ions in the matter. Using the code, we designed and fabricated a detector to measure 15-50 MeV protons. The detector was successfully tested to measure the energy of protons and deuterons and to identify the ions. In future, we would like to extend the present result to the development of a higher energy proton detector and a heavy ion detector. (author). 10 refs., 3 tabs., 14 figs

  6. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  7. Study of weak interaction with p-p colliding beam

    International Nuclear Information System (INIS)

    Arafune, Jiro; Sugawara, Hirotaka

    1975-01-01

    Weak interaction in the energy range of TRISTAN project is discussed. The cross-section of production of weak boson in p-p reaction was calculated with the parton model. The observation of weak boson may be possible. The production rate of neutral weak boson was also estimated on the basis of the Weinberg model, and was almost same as that of weak boson. The method of observation of weak boson is suggested. The direct method is the observation of lepton pair due to the decay of neutral weak boson. It is expected that the spectrum of decay products (+ -) in the decay of weak boson shows a characteristic feature, and it shows the existence of weak boson. Weak interaction makes larger contribution in case of large momentum transfer than electromagnetic interaction. When the momentum transfer is larger than 60 GeV/c, the contribution of weak interaction is dominant over the others. Therefore, the experiments at high energy will give informations concerning the relations among the interactions of elementary particles. Possibility of study on the Higgs scalar meson is also discussed. (Kato, T.)

  8. Report on high energy neutron dosimetry workshop

    International Nuclear Information System (INIS)

    Alvar, K.R.; Gavron, A.

    1993-01-01

    The workshop was called to assess the performance of neutron dosimetry per the responses from ten DOE accelerator facilities to an Office of Energy Research questionnaire regarding implementation of a personnel dosimetry requirement in DRAFT DOE 5480.ACC, ''Safety of Accelerator Facilities''. The goals of the workshop were to assess the state of dosimetry at high energy accelerators and if such dosimetry requires improvement, to reach consensus on how to proceed with such improvements. There were 22 attendees, from DOE Programs and contract facilities, DOE, Office of Energy Research (ER), Office of Environmental Safety and Health (EH), Office of Fusion Energy, and the DOE high energy accelerator facilities. A list of attendees and the meeting agenda are attached. Copies of the presentations are also attached

  9. Ultra-High-Energy Cosmic Rays

    CERN Document Server

    Dova, M.T.

    2015-05-22

    The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 10 17 eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present anintroduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.

  10. Cosmic physics: the high energy frontier

    International Nuclear Information System (INIS)

    Stecker, F W

    2003-01-01

    Cosmic rays have been observed up to energies 10 8 times larger than those of the best particle accelerators. Studies of astrophysical particles (hadrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. Thus, the cosmic high energy frontier is the nexus to new particle physics. This overview discusses recent advances being made in the physics and astrophysics of cosmic rays and cosmic γ-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. These topics touch on questions of grand unification, violations of Lorentz invariance as well as Planck scale physics and quantum gravity. (topical review)

  11. Calibration processes for high-energy accelerators

    International Nuclear Information System (INIS)

    Bartos, E.

    2005-01-01

    The Dissertation is devoted to the processes on high energy colliders, namely, to the measurement and evaluation of muon anomalous magnetic moment, the lepton pair production in peripheral collisions of relativistic heavy ions, γγ and γ-lepton collisions in helicity representation and finally to the derivation of new sum rule for photoproduction processes. The anomalous magnetic moment of the electron and muon, a e and a μ , played an important role in the development of particle physics. Until now they have continued to serve as basic quantities for testing the validity of the Quantum Electrodynamics (QED) and Standard Model, put the strict constraints for the theories beyond the Standard Model and provided important insights into the structure of the fundamental interactions. While the value of anomalous magnetic moment of electron is known very well, in the case of a muon the situation is more complicated. The discrepancy between the theoretical and experimental value varies from 1.02 to 2.96 standard deviation σ. The reason is that the theoretical value consists (unlike the case of electron) from various types of contributions. While QED and weak interaction contributions to a μ seem to be estimated quite reliably, there is critical situation in hadronic contributions, mainly for light-by-light meson pole terms, therefore the third.order (in fine structure constant) hadronic light-by-light contributions to a μ from the pole terms of the scalar σ a 0 and pseudoscalar π 0 , η, η ' mesons in the framework of the linearized extended Nambu-Jona-Lasinio model has been recalculated. As the QED and Quantum Chromodynamics (QCD) share many properties, the solving of the issue of the lepton pair production in peripheral collisions of heavy ions can help to understand very important and unsolved problem of accounting the final state interaction of quarks and gluons in QCD. Unfortunately, even QED is not solving this problem satisfactorily despite the recent high

  12. High energy physics advisory panel's subpanel on vision for the future of high-energy physics

    International Nuclear Information System (INIS)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report's own origins and development

  13. [A 34-year-old woman with delayed motor milestones, high arched palate, and proximal muscle weakness].

    Science.gov (United States)

    Yamamoto, T; Kitada, T; Hirasawa, E; Mori, H; Mizuno, Y

    1996-07-01

    We report a right-handed 34-year-old woman with diffuse muscle atrophy. The patient was a full-term infant of uneventful delivery, however, motor milestones were delayed in that neck control was obtained at 10 months of the age and she started to walk unassisted at 2 years of the age. Mental development was normal. She was unable to run with her mates at her kindergarten and she required a handrail when she walk up the stairs. She could not close her mouth completely at the primary school. She was unable to use a straw as a middle school pupil. Recently, she noted difficulty in raising her head from the supine position, and has become unable to walk a long distance. She was admitted to our hospital in September 17, 1994 when she was 34-year-old. On admission, general physical examination revealed that she looked slender weighing 38 kg with 149.5 cm height. She showed a high arched palate, slight scoliosis, and pes equinus. Otherwise general physical examination was unremarkable. Upon neurologic examination, she was alert and well oriented. Cranial nerves were unremarkable except for bilateral facial atrophy and moderate weakness. Her voice was of nasal quality, and swallowing was slightly difficult. No atrophy was noted in the sternocleidomastoid muscle. She showed waddling gait and positive Gowers' sign. Diffuse muscle atrophy was noted and mild to moderate weakness was presented more in the proximal part in both upper and lower extremities, however, deltoid muscles retained normal power. No ataxia was noted. All the deep tendon reflexes were lost. Sensation was intact. Routine laboratory examination was unremarkable. Serum CK was 56 IU/l. Electromyography revealed myogenic changes in the deltoid, biceps, and quadriceps muscles. A diagnostic biopsy was performed in the left biceps brachii muscle. The patient was discussed in the neurologic CPC, and the chief discussant arrived at the conclusion that the patient had nemaline myopathy. Opinions were divided among

  14. Ion-specific weak adsorption of salts and water/octanol transfer free energy of a model amphiphilic hexapeptide.

    Science.gov (United States)

    Déjugnat, Christophe; Dufrêche, Jean-François; Zemb, Thomas

    2011-04-21

    An amphiphilic hexapeptide has been used as a model to quantify how specific ion effects induced by addition of four salts tune the hydrophilic/hydrophobic balance and induce temperature-dependant coacervate formation from aqueous solution. The hexapeptide chosen is present as a dimer with low transfer energy from water to octanol. Taking sodium chloride as the reference state in the Hofmeister scale, we identify water activity effects and therefore measure the free energy of transfer from water to octanol and separately the free energy associated to the adsorption of chaotropic ions or the desorption of kosmotropic ions for the same amphiphilic peptide. These effects have the same order of magnitude: therefore, both energies of solvation as well as transfer into octanol strongly depend on the nature of the electrolytes used to formulate any buffer. Model peptides could be used on separation processes based on criteria linked to "Hofmeister" but different from volume and valency.

  15. Cosmic rays at ultra high energies (Neutrinos.)

    International Nuclear Information System (INIS)

    Ahlers, M.; Ringwald, A.; Tu, H.

    2005-06-01

    Resonant photopion production with the cosmic microwave background predicts a suppression of extragalactic protons above the famous Greisen-Zatsepin-Kuzmin cutoff at about E GZK ∼ 5 x 10 10 GeV. Current cosmic ray data measured by the AGASA and HiRes Collaborations do not unambiguously confirm the GZK cutoff and leave a window for speculations about the origin and chemical composition of the highest energy cosmic rays. In this work we analyze the possibility of strongly interacting neutrino primaries and derive model-independent quantitative requirements on the neutrino-nucleon inelastic cross section for a viable explanation of the cosmic ray data. Search results on weakly interacting cosmic particles from the AGASA and RICE experiments are taken into account simultaneously. Using a flexible parameterization of the inelastic neutrino-nucleon cross section we find that a combined fit of the data does not favor the Standard Model neutrino-nucleon inelastic cross section, but requires, at 90% confidence level, a steep increase within one energy decade around E GZK by four orders of magnitude. We illustrate such an enhancement within some extensions of the Standard Model. The impact of new cosmic ray data or cosmic neutrino search results on this scenario, notably from the Pierre Auger Observatory soon, can be immediately evaluated within our approach. (orig.)

  16. The high energy accelerator program in Japan

    International Nuclear Information System (INIS)

    Ozaki, S.

    1987-01-01

    The author observes that in order to survey the intentions of Japanese high energy physicists and to make a recommendation to the High Energy Committee on future plans for high energy physics in Japan, including accelerators after TRISTAN, international collaboration projects and non-accelerator physics, a subcommittee of fifteen members is formed. The committee recommendation reads: A) For a new energy frontier, 1. Immediate initiation of R/D efforts for an e/sup +/e/sup -/ linear collider of TeV class, constructs a possible home-based facility, 2. Promotes international collaborative experiments using the SSC for the hadron sector, B) As projects of immediate concern: 1. The energy of the TRISTAN main ring increases further makes a possible low energy, high luminosity e/sup +/e/sup -/ collider operation in the TRISTAN complex, 2. The intensity of the 12 GeV PS at KEK increases, 3. Experiments in non-accelerator particle physics are promoted. In this contribution, the current status of the TRISTAN project and some of the R/D program on accelerator technology are reported

  17. Indiana University High Energy Physics, Task A

    International Nuclear Information System (INIS)

    Brabson, B.; Crittenden, R.; Dzierba, A.

    1993-01-01

    This report discusses research at Indians University on the following high energy physics experiments: A search for mesons with unusual quantum numbers; hadronic states produced in association with high-mass dimuons; FNAL E740 (D0); superconducting super collider; and OPAL experiment at CERN

  18. High energy experimental physics: Progress report

    International Nuclear Information System (INIS)

    Rosen, J.; Miller, D.

    1988-01-01

    This report contains papers of high energy physics experiments and detector equipment design. Proposals are also given for future experiments. Some of the topics covered in this report are: high energy predictions for /bar char/pp and pp elastic scattering and total cross sections; D0 forward drift chambers; polarized beam facility; analyzing power measurment in inclusive pion production at high transverse momentum; Skyrme model for baryons; string models for color flux tubes; hadronic decays for the /tau/ lepton; and meson form factors in perturbative QCD

  19. Augmented potential, energy densities, and virial relations in the weak- and strong-interaction limits of DFT

    Science.gov (United States)

    Vuckovic, Stefan; Levy, Mel; Gori-Giorgi, Paola

    2017-12-01

    The augmented potential introduced by Levy and Zahariev [Phys. Rev. Lett. 113, 113002 (2014)] is shifted with respect to the standard exchange-correlation potential of the Kohn-Sham density functional theory by a density-dependent constant that makes the total energy become equal to the sum of the occupied orbital energies. In this work, we analyze several features of this approach, focusing on the limit of infinite coupling strength and studying the shift and the corresponding energy density at different correlation regimes. We present and discuss coordinate scaling properties of the augmented potential, study its connection to the response potential, and use the shift to analyze the classical jellium and uniform gas models. We also study other definitions of the energy densities in relation to the functional construction by local interpolations along the adiabatic connection. Our findings indicate that the energy density that is defined in terms of the electrostatic potential of the exchange-correlation hole is particularly well suited for this purpose.

  20. Opportunities for high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.; Hansen, J.C.

    1997-01-01

    Wind power is today a mature technology, which at windy locations, is economically competitive to conventional power generation technologies. This and growing global environmental concerns have led governments to encourage and plan for wind energy development, a typical aim being 10% of electricity...... consumption. The successful operation of the three major power systems of Cape Verde, with a total wind energy penetration of about 15% since December 1994, demonstrates that power systems can be operated with high penetration of wind energy by adding simple control and monitoring systems only. Thorough...... analyses conclude that expanding to even above 15% wind energy penetration in the Cape Verde power systems is economical. Worldwide, numerous locations with favorable wind conditions and power systems similar to the Capeverdean provide good opportunities for installing wind farms and achieving high wind...

  1. High-energy capacitance electrostatic micromotors

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, E. G.

    2003-03-01

    The design and parameters of a new electrostatic micromotor with high energy output are described. The motor is created by means of microelectronic technology. Its operation is based on the electromechanic energy conversion during the electrostatic rolling of the metallic films (petals) on the ferroelectric film surface. The mathematical simulation of the main characteristics of the rolling process is carried out. The experimentally measured parameters of the petal step micromotors are shown. The motor operation and its efficiency are investigated.

  2. High energy collisions of nuclei: experiments

    International Nuclear Information System (INIS)

    Heckman, H.H.

    1977-09-01

    Heavy-ion nuclear reactions with projectile energies up to 2.1 GeV/A are reviewed. The concept of ''rapidity'' is elucidated, and the reactions discussed are divided into sections dealing with target fragmentation, projectile fragmentation, and the intermediate region, with emphasis on the production of light nuclei in high-energy heavy-ion collisions. Target fragmentation experiments using nuclear emulsion and AgCl visual track detectors are also summarized. 18 figures

  3. High energy cosmic rays: sources and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor; Gaisser, Thomas K.; Tilav, Serap

    2014-04-01

    We discuss the production of a unique energy spectrum of the high energy cosmic rays detected with air showers by shifting the energy estimates of different detectors. After such a spectrum is generated we fit the spectrum with three or four populations of cosmic rays that might be accelerated at different cosmic ray sources. We also present the chemical composition that the fits of the spectrum generates and discuss some new data sets presented this summer at the ICRC in Rio de Janeiro that may require new global fits.

  4. Hardon cross sections at ultra high energies

    International Nuclear Information System (INIS)

    Yodh, G.B.

    1987-01-01

    A review of results on total hadronic cross sections at ultra high energies obtained from a study of longitudinal development of cosmic ray air showers is given. The experimental observations show that proton-air inelastic cross section increases from 275 mb to over 500 mb as the collision energy in the center of mass increases from 20 GeV to 20 TeV. The proton-air inelastic cross section, obtained from cosmic ray data at √s = 30 TeV, is compared with calculations using various different models for the energy variation of the parameters of the elementary proton-proton interaction. Three conclusions are derived

  5. High Energy Density Sciences with High Power Lasers at SACLA

    Science.gov (United States)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  6. New directions in elementary particle physics: p anti p from very low to very high energies

    International Nuclear Information System (INIS)

    Jacob, M.

    1979-01-01

    The review covers low energy anti pp physics including annihilation processes, the spectroscopy of baryonium states, quasinuclear states and their relation to baryonium, the spectroscopy of protonium, and access to the whole charmonium family. High energy anti pp physics is reviewed covering total cross section rise, the common shape of cross sections, real part of forward amplitude, particle production, quantum number excitation, high transverse momentum, and high mass lepton pair. Also reviewed are the search for the weak bosons, hadron physics at collider energies, and the anti pp collider program. 47 references

  7. Detector studies for a high precision determination of the weak mixing angle at the future P2-experiment in Mainz

    Energy Technology Data Exchange (ETDEWEB)

    Gerz, Kathrin; Baunack, Sebastian; Becker, Dominik; Diefenbach, Juergen; Glaeser, Boris; Imai, Yoshio; Jennewein, Thomas [Institut fuer Kernphysik, Johannes-Gutenberg-Universitaet Mainz (Germany); Maas, Frank [Institut fuer Kernphysik, Johannes-Gutenberg-Universitaet Mainz (Germany); Helmholz-Institut Mainz (Germany); PRISMA Cluster of Excellence, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); Rodriguez, David [Helmholz-Institut Mainz (Germany); Collaboration: A4-Collaboration

    2015-07-01

    The P2 experiment at the upcoming MESA accelerator in Mainz aims for a high precision determination of the electroweak mixing angle: The 2% measurement of the parity violating asymmetry in elastic electron-proton scattering will allow for a determination of sin{sup 2}(θ{sub W}) of 0.15%. The experimental setup is currently being designed and will employ the use of an integrating, large solid angle magnetic solenoid spectrometer with quartz bars for the detection of elastically scattered electrons. The low-energy and high-statistics experiment places high demands on detector performance and radiation hardness of all materials used in the setup. We are going to present the current status of the development of the experiment, feasibility calculations and simulations. We put an emphasis on technology and design of a Cherenkov detector.

  8. High-energy hadron-hadron collisions

    International Nuclear Information System (INIS)

    Yang, C.N.

    1983-01-01

    While high energy collision experiments yield a wealth of complicated patterns, there are a few general and very striking features that stand out. Because of the universality of these features, and because of the dominating influence they have on high energy phenomena, it is the authors opinion that a physical picture of high energy collisions must address itself first of all to these features before going into specific details. In this short talk these general and striking features are stated and a physical picture developed in the last few years to specifically accommodate these features is described. The picture was originally discussed for elastic scattering. But it leads naturally, indeed inevitably as they shall discuss, to conclusions about inelastic processes, resulting in an idea called the hypothesis of limiting fragmentation

  9. Experimental and theoretical high energy physics research

    International Nuclear Information System (INIS)

    1992-01-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e + e - analysis, bar P decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the φ factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K L 0 → π 0 γγ and π 0 ν bar ν, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R ampersand D

  10. The HESP (High Energy Solar Physics) project

    Science.gov (United States)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  11. Finite energy shifts in SU(n) supersymmetric Yang-Mills theory on T3xR at weak coupling

    International Nuclear Information System (INIS)

    Ohlsson, Fredrik

    2010-01-01

    We consider a perturbative treatment, in the regime of weak gauge coupling, of supersymmetric Yang-Mills theory in a space-time of the form T 3 xR with SU(n)/Z n gauge group and a nontrivial gauge bundle. More specifically, we consider the theories obtained as power series expansions around a certain class of normalizable vacua of the classical theory, corresponding to isolated points in the moduli space of flat connections, and the perturbative corrections to the free energy eigenstates and eigenvalues in the weakly interacting theory. The perturbation theory construction of the interacting Hilbert space is complicated by the divergence of the norm of the interacting states. Consequently, the free and interacting Hilbert spaces furnish unitarily inequivalent representations of the algebra of creation and annihilation operators of the quantum theory. We discuss a consistent redefinition of the Hilbert space norm to obtain the interacting Hilbert space and the properties of the interacting representation. In particular, we consider the lowest nonvanishing corrections to the free energy spectrum and discuss the crucial importance of supersymmetry for these corrections to be finite.

  12. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z 0 with the SLD detector; fixed-target K-decay experiments; the R ampersand D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs

  13. High energy physics computing in Japan

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1989-01-01

    A brief overview of the computing provision for high energy physics in Japan is presented. Most of the computing power for high energy physics is concentrated in KEK. Here there are two large scale systems: one providing a general computing service including vector processing and the other dedicated to TRISTAN experiments. Each university group has a smaller sized mainframe or VAX system to facilitate both their local computing needs and the remote use of the KEK computers through a network. The large computer system for the TRISTAN experiments is described. An overview of a prospective future large facility is also given. (orig.)

  14. Precise energy of the weak 32-keV gamma transition observed in Kr-83m decay

    Czech Academy of Sciences Publication Activity Database

    Vénos, Drahoslav; Dragoun, Otokar; Špalek, Antonín; Vobecký, Miloslav

    2006-01-01

    Roč. 560, č. 2 (2006), s. 352-359 ISSN 0168-9002 R&D Projects: GA ČR GA202/06/0002 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z40310501 Keywords : transition energy * gamma spectrum * neutrino mass Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.185, year: 2006

  15. Progress in high-energy laser technology

    International Nuclear Information System (INIS)

    Miyanaga, Noriaki; Kitagawa, Yoneyoshi; Nakatsuka, Masahiro; Kanabe, Tadashi; Okuda, Isao

    2005-01-01

    The technological development of high-energy lasers is one of the key issues in laser fusion research. This paper reviews several technologies on the Nd:glass laser and KrF excimer laser that are being used in the current laser fusion experiments and related plasma experiments. Based on the GEKKO laser technology, a new high-energy Nd: glass laser system, which can deliver energy from 10 kJ (boad-band operation) to 20 kJ (narrow-band operation), is under construction. The key topics in KrF laser development are improved efficiency and repetitive operation, which aim at the development of a laser driven for fusion reactor. Ultra-intense-laser technology is also very important for fast ignition research. The key technology for obtaining the petawatt output with high beam quality is reviewed. Regarding the uniform laser irradiation required for high-density compression, the beam-smoothing methods on the GEKKO XII laser are reviewed. Finally, we discuss the present status of MJ-class lasers throughout the world, and summarize by presenting the feasibility of various applications of the high-energy lasers to a wide range of scientific and technological fields. (author)

  16. Searches for supersymmetry at high-energy colliders

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Grivaz, Jean-Francois; Nachtman, Jane

    2010-01-01

    This review summarizes the state of the art in searches for supersymmetry at colliders on the eve of the Large Hadron Collider era. Supersymmetry is unique among extensions of the standard model in being motivated by naturalness, dark matter, and force unification, both with and without gravity. At the same time, weak-scale supersymmetry encompasses a wide range of experimental signals that are also found in many other frameworks. Motivations for supersymmetry are recalled and the various models and their distinctive features are reviewed. Searches for neutral and charged Higgs bosons and standard-model superpartners at the high energy frontier are summarized comprehensively, considering both canonical and noncanonical supersymmetric models, and including results from the LEP collider at CERN, HERA at DESY, and the Fermilab Tevatron.

  17. High energy physics: V. 1 and 2. Proceedings

    International Nuclear Information System (INIS)

    Bussey, P.J.; Knowles, I.G.

    1995-01-01

    The 27th International Conference on High Energy Physics attracted 950 abstracts eventually materialising as 613 full papers. These were made accessible on the World Wide Web and formed the basis of 22 plenary session talks and 274 parallel session talks. The plenary session talks are reproduced in Volume 1 of the Proceedings and most of the parallel session talks in Volume 2. The main topics covered were: top quark searches; electroweak interactions; low x physics; deep inelastic scattering and structure functions; beyond the Standard Model; searches for new particles; non-perturbative methods; lattice gauge theory; weak and rare decays; CP violation and BB-bar mixing; developments in field and string theory; light quark and gluonium spectroscopy; QCD and jet physics; flavour production on hadronic targets; non-accelerator experiments; neutrino masses; mixing and oscillations; new detectors and experimental techniques; low Q 2 and soft phenomena; particle astrophysics and cosmology; heavy quark physics; heavy ion collisions; future accelerators. (UK)

  18. High Tc superconducting energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  19. Baryon number violation in high energy collisions

    International Nuclear Information System (INIS)

    Farrar, G.R.; Meng, R.

    1990-08-01

    We study the phenomenology of baryon number violation induced by electroweak instantons. We find that if the naive-instanton amplitudes were valid for arbitrarily high energies, the event rate at the SSC would be a few per hour, with a typical event consisting of 3 'primary' antileptons and 7 'primary' antiquark jets, accompanied by ≅ 85 electroweak gauge bosons, having a sharp threshold in the total sub-energy at about 17 TeV. We describe how to establish their electroweak-instanton-induced origin. The naive instanton approximation is known to overestimate the rate for these processes, so this work focusses attention on the need for more accurate calculations, and for a calculational method which is appropriate when the energy of the initial particles is above the sphaleron energy. (orig.)

  20. Application of nanotechnologies in high energy physics

    International Nuclear Information System (INIS)

    Angelucci, R.; Corticelli, F.; Cuffiani, M.; Dallavalle, G.M.; Malferraxi, L.; Montanari, A.; Montanari, C.; Odorici, F.; Rizzoli, R.; Summonte, C.

    2003-01-01

    In the past, the progressive reduction of electronics integration scale has allowed high energy physics experiments to build particle detectors with a high number of sensitive channels and high spatial granularity, down to the micron scale. Nowadays, the increasing effort towards nanoelectronics and progresses in various fields of nanotechnologies, suggests that the time for nanodetectors is not far to come. As an example of possible application of nanotechnologies in HEP, we present results on fabrication of nanochannel matrices in anodic porous alumina as a template for preparing an array of carbon nanotubes, which we believe can be a promising building block in developing particle detectors with high spatial resolution

  1. 22nd DAE High Energy Physics Symposium

    CERN Document Server

    2018-01-01

    These proceedings gather invited and contributed talks presented at the XXII DAE-BRNS High Energy Physics (HEP) Symposium, which was held at the University of Delhi, India, on 12–16 December 2016. The contributions cover a variety of topics in particle physics, astroparticle physics, cosmology and related areas from both experimental and theoretical perspectives, namely (1) Neutrino Physics, (2) Standard Model Physics (including Electroweak, Flavour Physics), (3) Beyond Standard Model Physics, (4) Heavy Ion Physics & QCD (Quantum Chromodynamics), (5) Particle Astrophysics & Cosmology, (6) Future Experiments and Detector Development, (7) Formal Theory, and (8) Societal Applications: Medical Physics, Imaging, etc. The DAE-BRNS High Energy Physics Symposium, widely considered to be one of the leading symposiums in the field of Elementary Particle Physics, is held every other year in India and supported by the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), India. As man...

  2. Photodisintegration of the deuteron at high energy

    International Nuclear Information System (INIS)

    Holt, R.J.

    1992-01-01

    Measurements of the angular distribution for the γd→+pn reaction were performed at SLAC for photon energies between 0.7 and 1.8 GeV (experiment NE8) and between 1.6 and 4.4. GeV (experiment NE17). The final results for experiment NE8 will be presented, but only preliminary results for NE17 will be discussed. The data at θ cm = 90 degrees appear to follow the constituent counting rules. The angular distribution at high photon energies exhibit large values of the cross section at forward angles. There is evidence that the cross section may also be large at backward angles and high energies

  3. The rational weakness of strong ties : Failure of group solidarity in a highly cohesive group of rational agents

    NARCIS (Netherlands)

    Flache, Andreas

    2002-01-01

    Recent research (Flache, 1996; Flache and Macy, 1996) suggests a "weakness of strong ties." Cohesive social networks may undermine group solidarity, rather than sustain it. In the original analysis, simulations showed that adaptive actors learn cooperation in bilateral exchanges faster than

  4. The rational weakness of strong ties : Failure of group solidarity in a highly cohesive group of rational agents

    NARCIS (Netherlands)

    Flache, A; Yamamoto, H

    2006-01-01

    Recent research (Flache 1996; Flache and Macy 1996) suggests a "weakness of strong ties." Cohesive social networks may undermine group solidarity, rather than sustain it. In the original analysis, simulations showed that adaptive actors learn cooperation in bilateral exchanges faster than

  5. High energy excitations in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Prange, R.E.

    1984-01-01

    Itinerant magnets, those whose electrons move throughout the crystal, are described by band theory. Single particle excitations offer confirmation of band theory, but their description requires important corrections. The energetics of magnetism in iron and nickel is also described in band theory but requires complex bands. Magnetism above the critical temperature and the location of the critical temperature offer discriminants between the two major models of magnetism at high temperature and can be addressed by high energy excitations

  6. High energy electron multibeam diffraction and imaging

    International Nuclear Information System (INIS)

    Bourret, Alain.

    1980-04-01

    The different theories of dynamical scattering of electrons are firstly reviewed with special reference to their basis and the validity of the different approximations. Then after a short description of the different experimental set ups, structural analysis and the investigation of the optical potential by means of high energy electrons will be surveyed

  7. Nuclear emulsion and high-energy physics

    International Nuclear Information System (INIS)

    Sun Hancheng; Zhang Donghai

    2008-01-01

    The history of the development of nuclear emulsion and its applications in high-energy physics, from the discovery of pion to the discovery of tau neutrino, are briefly reviewed in this paper. A new stage of development of nuclear-emulsion technique is discussed

  8. High energy spin isospin modes in nuclei

    International Nuclear Information System (INIS)

    Chanfray, G.; Ericson, M.

    1984-01-01

    The high energy response of nuclei to a spin-isospin excitation is investigated. We show the existence of a strong contrast between the spin transverse and spin longitudinal responses. The second one undergoes a shadow effect in the Δ region and displays the occurrence of the pionic branch

  9. Theoretical and experimental high energy physics

    International Nuclear Information System (INIS)

    Walsh, T.; Ruddick, K.

    1990-01-01

    This report discusses the following topics: The Soudan enterprise; study of strange quarks at Fermilab; direct photons at Fermilab; the Brookhaven programs; AMY and CLEO: studies of e + e - annihilations; cosmic ray studies with the DO muon chamber; progress report on HEP computer upgrade; muon triggering and reconstruction at SSC; and, theoretical high energy physics

  10. Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.; Green, J.

    1993-02-01

    The NIU high energy physics group has three main efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, members of the group participate in the SDC collaboration at the SSC

  11. PC database for high energy preprint collections

    International Nuclear Information System (INIS)

    Haymaker, R.

    1985-06-01

    We describe a microcomputer database used by the high energy group to keep track of preprints in our collection. It is used as a supplement to the SLAC-SPIRES database to retrieve preprints on hand. This was designed as a low overhead system for a small group

  12. Indiana University High Energy Physics, Task A

    International Nuclear Information System (INIS)

    Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthuy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

    1991-01-01

    This report discusses research in High Energy Physics under the following experiments: Meson spectroscopy at BNL; dimuon production at FNAL; the DO collider experiment at FNAL; the Mark II experiment at SLC and PEP; the OPAL experiment at CERN; and the superconducting supercollider

  13. High energy electron irradiation of flowable materials

    International Nuclear Information System (INIS)

    Offermann, B.P.

    1975-01-01

    In order to efficiently irradiate a flowable material with high energy electrons, a hollow body is disposed in a container for the material and the material is caused to flow in the form of a thin layer across a surface of the body from or to the interior of the container while the material flowing across the body surface is irradiated. (U.S.)

  14. Trends in experimental high-energy physics

    International Nuclear Information System (INIS)

    Sanford, T.W.L.

    1982-06-01

    Data from a scan of papers in Physical Review Letters and Physical Review are used to demonstrate that American high-energy physicists show a pattern of accelerator and instrumentation usage characteristic of that expected from the logistic-substitution model of Marchetti and of Fischer and Pry

  15. High energy radiation from neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1985-04-01

    Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs

  16. Indiana University High Energy Physics, Task A

    Energy Technology Data Exchange (ETDEWEB)

    Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthuy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

    1991-01-01

    This report discusses research in High Energy Physics under the following experiments: Meson spectroscopy at BNL; dimuon production at FNAL; the DO collider experiment at FNAL; the Mark II experiment at SLC and PEP; the OPAL experiment at CERN; and the superconducting supercollider.

  17. Synthesis and Characterization of High Energy Polymers.

    Science.gov (United States)

    1981-03-31

    and characterization of new high energy elastomers. IV. References 1. J.C.W. Chien, T. Kohara , C. P. Lillya, T. Sarubbi, B.-H. Su and R. S. Miller, J...Catalyzed Nitromercuration of Diene Polymers, J.C.W. Chien, T. Kohara , C. P. Lillya, T. Sarubbi, B.-H. Su, and R. S. Miller, J. Polm.. Sci. Polym. Chem. Ed

  18. Perspective in high energy physics instrumentation

    International Nuclear Information System (INIS)

    Rossi, L.

    1995-10-01

    The discovery potential of the next generation of particle accelerators, and in particular of the large hadron collider (LHC), can only be fully exploited by very sophisticated particle detectors. The basics of detectors for momentum and energy measurement is here presented together with a recollection of recent developments which are relevant for use at high luminosity accelerators

  19. High energy hadron-nucleus scattering

    International Nuclear Information System (INIS)

    Koplik, J.; Mueller, A.H.

    1975-01-01

    Theoretical expectations for hadron-nucleus scattering at high energy if the basic hadron-hadron interaction is due to Regge poles and cuts arising in multiperipheral or soft field theory models are described. Experiments at Fermilab may provide a critical test of such models

  20. Theoretical and experimental high energy physics

    International Nuclear Information System (INIS)

    Gasiorowicz, S.; Ruddick, K.

    1988-01-01

    This report discusses experimental and theoretical work in High Energy Physics. Some topics discussed are: quantum field theory; supersymmetry; cosmology; superstring model; relic photinos; inflationary universe; dark matter; standard model; supernovae; semileptonic decay; quantum Langevin equation; underground neutrino detection at Soudan; strange quark systems; cosmic ray detection; superconducting super collider detectors; and studies of direct photon production

  1. Prizes reward high-energy physics

    CERN Multimedia

    2005-01-01

    The European Physical Society (EPS) has recognized four individuals and a collaboration for their work on charge-parity (CP) violation, gamma-ray astronomy, cosmology and outreach activities. Heinrich Wahl, formerly of CERN, and the NA31 collaboration share the 2005 High Energy and Particle Physics Prize for their work on CP violation at CERN (½ page)

  2. Astrophysics, cosmology and high energy physics

    International Nuclear Information System (INIS)

    Rees, M.J.

    1983-01-01

    A brief survey is given of some topics in astrophysics and cosmology, with special emphasis on the inter-relation between the properties of the early Universe and recent ideas in high energy physics, and on simple order-of-magnitude arguments showing how the scales and dimensions of cosmic phenomena are related to basic physical constants. (orig.)

  3. Heavy ion fragmentation in high energy

    International Nuclear Information System (INIS)

    Nemes, M.C.

    1985-01-01

    A review is made on the theoretical aspects of heavy ion collisions at high energies. A comparison with several experimental data obtained in a large variety of experiments is present. An emphasis is given on the basis of Glauber's theory of scattering. (L.C.) [pt

  4. SU(5) at very high energies

    International Nuclear Information System (INIS)

    Hueffel, H.

    1982-01-01

    By exhibiting the relationship between the full SU(5) theory in the unitary gauge and the underlying Higgs-Goldstone system in the t'Hooft-Feynman gauge the high energy limits of amplitudes (involving gauge and Higgs bosons) can be calculated easily. As an application tree unitarity bounds on Higgs parameters and masses are discussed. (Author)

  5. Status of (US) High Energy Physics Networking

    International Nuclear Information System (INIS)

    Montgomery, H.E.

    1987-02-01

    The current status of Networking to and between computers used by the High Energy Physics community is discussed. Particular attention is given to developments over the last year and to future prospects. Comparison between the current status and that of two years ago indicates that considerable strides have been made but that much remains to be done to achieve an acceptable level of functionality

  6. UNIX at high energy physics Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, Alan

    1994-03-15

    With more and more high energy physics Laboratories ''downsizing'' from large central proprietary mainframe computers towards distributed networks, usually involving UNIX operating systems, the need was expressed at the 1991 Computers in HEP (CHEP) Conference to create a group to consider the implications of this trend and perhaps work towards some common solutions to ease the transition for HEP users worldwide.

  7. Studies in theorectical high energy particles physics

    International Nuclear Information System (INIS)

    Aratyn, H.; Keung, Wai-Yee; Panigrahi, P.; Sukhatme, U.

    1990-02-01

    This paper discusses the research being done at the University of Illinois in theoretical high energy physics. Some areas discussed are string models, collider physics, symmetries in gauge theories, sigma model, radiative decay of mesons, supersymmetry, superconducting, and hydroproduction of charm

  8. Saving energy via high-efficiency fans.

    Science.gov (United States)

    Heine, Thomas

    2016-08-01

    Thomas Heine, sales and market manager for EC Upgrades, the retrofit arm of global provider of air movement solutions, ebm-papst A&NZ, discusses the retrofitting of high-efficiency fans to existing HVAC equipment to 'drastically reduce energy consumption'.

  9. Activities in nuclear and high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    High energy and nuclear physics research concerning bubble chamber investigations, European hybrid system ACCMOR, WA 18, PETRA, PEP, VA 4, SING, LENA, LEP 3 and DELPHI experiments is summarized. Experiments with electron beams, and in pions and muons physics, and radiochemistry are reported on.

  10. Resume: networking in high energy physics

    International Nuclear Information System (INIS)

    Hutton, J.S.

    1985-11-01

    Networking in High Energy Physics covers communications inside the experiment and internationally. Inside the experiment the need for agreed 'codes of practice' is now accepted. Within Europe it is accepted that a common infrastructure based on the use of the ISO OSI protocols should be used. In the USA a community initiative has been proposed. The background to these approaches is discussed. (author)

  11. Microphysics, cosmology, and high energy astrophysics

    International Nuclear Information System (INIS)

    Hoyle, F.

    1974-01-01

    The discussion of microphysics, cosmology, and high energy astrophysics includes particle motion in an electromagnetic field, conformal transformations, conformally invariant theory of gravitation, particle orbits, Friedman models with k = 0, +-1, the history and present status of steady-state cosmology, and the nature of mass. (U.S.)

  12. High-Energy Physics: Exit America?

    CERN Multimedia

    Seife, Charles

    2005-01-01

    Budget cuts and cancellations threaten to end U.S. exploration of the particle frontier. Fermilab's Tevatron, due to shut down around 200, could be the last large particle accelerator in the United States; the Large Hadron Collider in Geneva should ensure European dominance of high-energy physics (3 pages)

  13. A Gas Calorimeter for High-Energy Experiment and Study of High-Energy Cascade Shower

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Hitoshi [Univ. of Tsukuba (Japan)

    1984-09-01

    High energy behavior of the electromagnetic cascade shower has been studied. high energy showers were created by electron and hadron beams with energies between 25 GeV and 150 GeV at Fermi National Accelerator Laboratory. The showers were observed by a shower detector consisting of multi-layer of lead plates and proportional chambers. The experimental results were analyzed with special emphasis on the fluctuation problem of the electromagnetic cascade shower.

  14. KEK (National Laboratory for High Energy Physics) annual report, 1988

    International Nuclear Information System (INIS)

    1989-01-01

    Throughout this year, TRISTAN has maintained the highest energy among the electron-positron colliders in the world. After operating at 57 GeV in the center of mass with full operation of the APS-type room temperature RF accelerating system, 16 units of 5-cell superconducting RF cavities 24 m in total length were installed in the Nikko straight section during the summer shutdown. As a result, 30.4 GeV/beam or 60.8 GeV in the center of mass was achieved beyond the original design energy goal of TRISTAN. All experimental collaborations at the four intersections have collected much interesting data in the new energy region of electron-positron collisions. The experiment SHIP, a search for highly ionizing particles, has completed data taking in the Nikko experimental hall and is going to give new limits on Dirac monopoles. At the 24th International Conference on High Energy Physics held at Munich in August, 1988, as CERN Courier's report, for instance, the results from TRISTAN were really the highlight in e + e - collision physics. Although we could not find any definite evidence for the existence of toponium under 60 GeV or other new particles under 56 GeV, we obtained much new physics concerning interfering effects between electromagnetic and weak interactions, new information about QCD and so on. Active experiments on hadron physics with the 12 GeV main ring also have been carried out. For instance, an internal gas target experiment with a polarized proton beam was performed by a group from Texas A and M University in cooperation with a Japanese group. The KEK PS is now a very unique proton machine in the 10 GeV energy region as well as Brookhaven's AGS. (J.P.N.)

  15. Coexistence of weak ferromagnetism and ferroelectricity in the high pressure LiNbO3-type phase of FeTiO3.

    Science.gov (United States)

    Varga, T; Kumar, A; Vlahos, E; Denev, S; Park, M; Hong, S; Sanehira, T; Wang, Y; Fennie, C J; Streiffer, S K; Ke, X; Schiffer, P; Gopalan, V; Mitchell, J F

    2009-07-24

    We report the magnetic and electrical characteristics of polycrystalline FeTiO_{3} synthesized at high pressure that is isostructural with acentric LiNbO_{3} (LBO). Piezoresponse force microscopy, optical second harmonic generation, and magnetometry demonstrate ferroelectricity at and below room temperature and weak ferromagnetism below approximately 120 K. These results validate symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LBO structure.

  16. Portable high energy gamma ray imagers

    International Nuclear Information System (INIS)

    Guru, S.V.; Squillante, M.R.

    1996-01-01

    To satisfy the needs of high energy gamma ray imagers for industrial nuclear imaging applications, three high energy gamma cameras are presented. The RMD-Pinhole camera uses a lead pinhole collimator and a segmented BGO detector viewed by a 3 in. square position sensitive photomultiplier tube (PSPMT). This pinhole gamma camera displayed an energy resolution of 25.0% FWHM at the center of the camera at 662 keV and an angular resolution of 6.2 FWHM at 412 keV. The fixed multiple hole collimated camera (FMCC), used a multiple hole collimator and a continuous slab of NaI(Tl) detector viewed by the same PSPMT. The FMCC displayed an energy resolution of 12.4% FWHM at 662 keV at the center of the camera and an angular resolution of 6.0 FWHM at 412 keV. The rotating multiple hole collimated camera (RMCC) used a 180 antisymmetric rotation modulation collimator and CsI(Tl) detectors coupled to PIN silicon photodiodes. The RMCC displayed an energy resolution of 7.1% FWHM at 662 keV and an angular resolution of 4.0 FWHM at 810 keV. The performance of these imagers is discussed in this paper. (orig.)

  17. High energy hadron-hadron collisions

    International Nuclear Information System (INIS)

    Chou, T.T.

    1990-01-01

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (i) the elastic hadron-hadron collision, (ii) the inelastic hadron-hadron collision, and (iii) the e + e - annihilation. The geometrical description of high-energy elastic scattering developed earlier is still in general agreement with experiments at the CERN-S bar ppS energies. A simple one-parameter expression for the blackness of bar pp system has been proposed recently which describes very well all existing data from ISR to S bar ppS energies. The geometrical description has also been extended to include processes of fragmentation and diffraction dissociation and other phenomena. In the past five years, a unified physical picture for multiparticle emission in hadron-hadron and e + e - collisions was developed. It focuses on the idea of the wide range of values for the total angular momentum in hadron-hadron collisions. An extension of this consideration yields a theory for the momentum distribution of the outgoing particles which agrees with bar pp and e + e - collision experiments. The results and conclusions of this theory have been extrapolated to higher energies and yielded many predictions which can be experimentally tested. 37 refs

  18. Non-critical strings at high energy

    CERN Document Server

    Aoki, Kenichiro; Aoki, Kenichiro; Hoker, Eric D'

    1996-01-01

    We consider scattering amplitudes in non-critical string theory of $N$ external states in the limit where the energy of all external states is large compared to the string tension. We argue that the amplitudes are naturally complex analytic in the matter central charge $c$ and we propose to define the amplitudes for arbitrary value of $c$ by analytic continuation. We show that the high energy limit is dominated by a saddle point that can be mapped onto an equilibrium electro-static energy configuration of an assembly of $N$ pointlike (Minkowskian) charges, together with a density of charges arising from the Liouville field. We argue that the Liouville charges accumulate on segments of curves, and produce quadratic branch cuts on the worldsheet. The electro-statics problem is solved for string tree level in terms of hyper-elliptic integrals and is given explicitly for 3- and 4-point functions. We show that the high energy limit should behave in a string-like fashion with exponential dependence on the energy sc...

  19. Automatic Energy Schemes for High Performance Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  20. Dark Energy Survey Year 1 results: the impact of galaxy neighbours on weak lensing cosmology with IM3SHAPE

    Science.gov (United States)

    Samuroff, S.; Bridle, S. L.; Zuntz, J.; Troxel, M. A.; Gruen, D.; Rollins, R. P.; Bernstein, G. M.; Eifler, T. F.; Huff, E. M.; Kacprzak, T.; Krause, E.; MacCrann, N.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Doel, P.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jarvis, M.; Jeltema, T.; Kirk, D.; Kuehn, K.; Kuhlmann, S.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Menanteau, F.; Miquel, R.; Nord, B.; Ogando, R. L. C.; Plazas, A. A.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; DES Collaboration

    2018-04-01

    We use a suite of simulated images based on Year 1 of the Dark Energy Survey to explore the impact of galaxy neighbours on shape measurement and shear cosmology. The HOOPOE image simulations include realistic blending, galaxy positions, and spatial variations in depth and point spread function properties. Using the IM3SHAPE maximum-likelihood shape measurement code, we identify four mechanisms by which neighbours can have a non-negligible influence on shear estimation. These effects, if ignored, would contribute a net multiplicative bias of m ˜ 0.03-0.09 in the Year One of the Dark Energy Survey (DES Y1) IM3SHAPE catalogue, though the precise impact will be dependent on both the measurement code and the selection cuts applied. This can be reduced to percentage level or less by removing objects with close neighbours, at a cost to the effective number density of galaxies neff of 30 per cent. We use the cosmological inference pipeline of DES Y1 to explore the cosmological implications of neighbour bias and show that omitting blending from the calibration simulation for DES Y1 would bias the inferred clustering amplitude S8 ≡ σ8(Ωm/0.3)0.5 by 2σ towards low values. Finally, we use the HOOPOE simulations to test the effect of neighbour-induced spatial correlations in the multiplicative bias. We find the impact on the recovered S8 of ignoring such correlations to be subdominant to statistical error at the current level of precision.

  1. Very High Energy Neutron Scattering from Hydrogen

    International Nuclear Information System (INIS)

    Cowley, R A; Stock, C; Bennington, S M; Taylor, J; Gidopoulos, N I

    2010-01-01

    The neutron scattering from hydrogen in polythene has been measured with the direct time-of flight spectrometer, MARI, at the ISIS facility of the Rutherford Appleton Laboratory with incident neutron energies between 0.5 eV and 600 eV. The results of experiments using the spectrometer, VESUVIO, have given intensities from hydrogen containing materials that were about 60% of the intensity expected from hydrogen. Since VESUVIO is the only instrument in the world that routinely operates with incident neutron energies in the eV range we have chosen to measure the scattering from hydrogen at high incident neutron energies with a different type of instrument. The MARI, direct time-of-flight, instrument was chosen for the experiment and we have studied the scattering for several different incident neutron energies. We have learnt how to subtract the gamma ray background, how to calibrate the incident energy and how to convert the spectra to an energy plot . The intensity of the hydrogen scattering was independent of the scattering angle for scattering angles from about 5 degrees up to 70 degrees for at least 3 different incident neutron energies between 20 eV and 100 eV. When the data was put on an absolute scale, by measuring the scattering from 5 metal foils with known thicknesses under the same conditions we found that the absolute intensity of the scattering from the hydrogen was in agreement with that expected to an accuracy of ± 5.0% over a wide range of wave-vector transfers between 1 and 250 A -1 . These measurements show that it is possible to measure the neutron scattering with incident neutron energies up to at least 100 eV with a direct geometry time-of-flight spectrometer and that the results are in agreement with conventional scattering theory.

  2. Chemistry of high-energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Klapoetke, Thomas M. [Ludwig-Maximilians-Univ., Muenchen (Germany). Dept. of Chemistry; Maryland Univ., College Park, MD (US). Center of Energetic Concepts Development (CECD)

    2011-07-01

    The graduate-level textbook Chemistry of High-Energy Materials provides an introduction to and an overview of primary and secondary (high) explosives as well as propellant charges, rocket propellants and pyrotechnics. After a brief historical overview, the main classes of energetic materials are discussed systematically. Thermodynamic aspects, as far as relevant to energetic materials, are discussed, as well as modern computational approaches to predict performance and sensitivity parameters. The most important performance criteria such as detonation velocity, detonation pressure and heat of explosion, as well as the relevant sensitivity parameters suc as impact and friction sensitivity and electrostatic discharge sensitivity are explored in detail. Modern aspects of chemical synthesis including lead-free primary explosives and high-nitrogen compounds are also included in this book together with a discussion of high-energy materials for future defense needs. The most important goal of this book, based on a lecture course which has now been held at LMU Munich for over 12 years, is to increase knowledge and know-how in the synthesis and safe handling of high-energy materials. Society needs now as much as ever advanced explosives, propellant charges, rocket propellants and pyrotechnics to meet the demands in defense and engineering. This book is first and foremost aimed at advanced students in chemistry, engineering and materials sciences. However, it is also intended to provide a good introduction to the chemistry of energetic materials and chemical defense technology for scientists in the defense industry and government-run defense organizations. (orig.)

  3. Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    Vary, J.P.

    1992-01-01

    Progress during the last year is reviewed under the following topics: relativistic hadron--nucleus and nucleus--nucleus collisions (heavy meson production, photon production and fragmentation functions--direct photon production with the QCM and photon fragmentation functions, Cronin efffect and multiple scattering, effective nuclear parton distributions); solving quantum field theories in nonperturbative regime; light-front dynamics and high-spin states (soft form factor of the pion and nucleon for transverse and longitudinal momentum transfers, light front spinors for high-spin objects); high-energy spin physics; relativistic wave equations, quarkonia, and e + e - resonances; associated production of Higgs boson at collider energies, and microscopic nuclear many-body theory and reactions. 135 refs

  4. Radiation monitoring in high energy research facility

    International Nuclear Information System (INIS)

    Miyajima, Mitsuhiro

    1975-01-01

    In High Energy Physics Research Laboratory, construction of high energy proton accelerator is in progress. The accelerator is a cascaded machine comprising Cockcroft type (50 keV), linac (20 MeV), booster synchrotron (500 MeV), and synchrotron (8-12 GeV). Its proton beam intensity is 1x10 13 photons/pulse, and acceleration is carried out at the rate of every 2 minutes. The essential problems of radiation control in high energy accelerators are those of various radiations generated secondarily by proton beam and a number of induced radiations simultaneously originated with such secondary particles. In the Laboratory, controlled areas are divided into color-coded four regions, red, orange, yellow and green, based on each dose-rate. BF 3 counters covered with thick paraffin are used as neutron detectors, and side-window GM tubes, NaI (Tl) scintillators and ionization chambers as γ-detectors. In red region, however, ionization chambers are applied to induced radiation detection, and neutrons are not monitored. NIM standards are adopted for the circuits of all above monitors considering easy maintenance, economy and interchangeability. Notwithstanding the above described systems, these monitors are not sufficient to complete the measurement of whole radiations over wide energy region radiated from the accelerators. Hence separate radiation field measurement is required periodically. An example of the monitoring systems in National Accelerator Laboratory (U.S.) is referred at the last section. (Wakatsuki, Y.)

  5. Proposal for a High Energy Nuclear Database

    International Nuclear Information System (INIS)

    Brown, David A.; Vogt, Ramona

    2005-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews

  6. Rare earth magnets with high energy products

    International Nuclear Information System (INIS)

    Hirosawa, S.; Kaneko, Y.

    1998-01-01

    High energy-products exceeding 430 kj/m 3 (54 MGOe) have been realized on anisotropic permanent magnets based on the Nd 2 Fe 14 B phase, recently. To produce extremely high-energy-product permanent magnets, special processes have been designed in order to realize the minimum oxygen content, the maximum volume fraction of the hard magnetic Nd 2 Fe 14 B phase, the highest orientation of the easy axis of magnetization, and small and homogeneous crystalline grain sizes in the finished magnets. For the powder metallurgical process, special techniques such as low-oxygen fine powder processing and magnetic alignment using pulsed magnetic fields have been developed. It has been shown that a good control of both homogeneity of distribution of constituent phases and the narrowness of the size distribution in the starting powder have great influences on the magnetic energy products. It is emphasized that the recently developed techniques are applicable in a large-scale production, meaning that extremely high-energy-product magnets are available on commercial basis. (orig.)

  7. High-Energy Beam Transport system

    International Nuclear Information System (INIS)

    Melson, K.E.; Farrell, J.A.; Liska, D.J.

    1979-01-01

    The High-Energy Beam Transport (HEBT) system for the Fusion Materials Irradiation Test (FMIT) Facility is to be installed at the Hanford Engineering Development Laboratory (HEDL) at Richland, Washington. The linear accelerator must transport a large emittance, high-current, high-power, continuous-duty deuteron beam with a large energy spread either to a lithium target or a beam stop. A periodic quadrupole and bending-magnet system provides the beam transport and focusing on target with small beam aberrations. A special rf cavity distributes the energy in the beam so that the Bragg Peak is distributed within the lithium target. Operation of the rf control system, the Energy Dispersion Cavity (EDC), and the beam transport magnets is tested on the beam stop during accelerator turn-on. Characterizing the beam will require extensions of beam diagnostic techniques and noninterceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports using a cluster system to simplify maintenance and alignment techniques

  8. A high-energy nuclear database proposal

    International Nuclear Information System (INIS)

    Brown, D.A.; Vogt, R.; UC Davis, CA

    2006-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from the Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews. (author)

  9. Proposal for a High Energy Nuclear Database

    International Nuclear Information System (INIS)

    Brown, D A; Vogt, R

    2005-01-01

    The authors propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, they propose periodically performing evaluations of the data and summarizing the results in topical reviews

  10. Experimental microdosimetry in high energy radiation fields

    International Nuclear Information System (INIS)

    Spurny, F.; Bednar, J.; Vlcek, B.; Bottollier-Depois, J.-F.; Molokanov, A.G.

    2000-01-01

    To determine microdosimetric characteristics in the beams and fields of high energy panicles with the goal, also, to compare the classical method of experimental microdosimetry, a tissue equivalent low pressure proportional counter (TEPC) with the linear energy transfer (LET) spectrometer based on a chemically etched polyallyldiglycolcarbonate as a track etched detector (TED). To test the use of TED LET spectrometer in the conditions, where the use or TEPC is not possible (high energy charged particle beams at high dose rates). The results obtained with the TEPC NAUSICAA were used in this work to compare them with other data. This TEPC measures directly the linear energy in the interval between 0.15 and 1500 keV/μm in tissue, the low gas pressure (propan based TE mixture) permits to simulate a tissue element of about 3 μm. It can be used in the fields with instantaneous dose equivalent rates between 1 μSv/hour and 1 mSv/ hour. TED LET spectrometer developed to determine LET spectra between 10 and 700 keV/μm in tissue. Primarily, track-to-bulk etch rate ratios are determined through the track parameters measurements, the spectra of these ratios are convened to LET spectra using the calibration curve established by means of heavy charge panicles. The critical volume of thi spectrometer is supposed to be a few nm. There is no limit of use for the dose rate, the background tracks limit the lowest threshold to about 1 mSv, the overlapping of tracks (the highest one) to 100 mSv. Both experimental microdosimetry methods have been used in on board aircraft radiation fields, in on-Earth high energy radiation reference fields, and in the beams of protons with energies up to 300 MeV (Dubna, Moscow, Loma Linda). First, it should be emphasized, that in all high energy radiation fields studied, we concentrated our analysis on the region, where both methods overlap, i.e. between 10 and 1000 keV/μm in tissue. It should be also stressed, that the events observed in this region

  11. Ionization of atoms by high energy photons

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Ioffe, A.F.

    1994-01-01

    Photoionization of atoms by high energy photons is considered. It is emphasized that in this frequency region the cross section and other characteristics of the process are strongly effected by electron shell polarization and rearrangement effects, including that due to inner vacancy Auger decay. In the effects of nuclear structure could be important and noticeable, i.e. of virtual or real excitation of the nucleus degrees of freedom and of the Quantum Electrodynamics vacuum. Ionization accompanied by secondary photon emission (Compton ionization) is analyzed in the considered domain of energies

  12. High energy photons production in nuclear reactions

    International Nuclear Information System (INIS)

    Nifenecker, H.; Pinston, J.A.

    1990-01-01

    Hard photon production, in nucleus-nucleus collisions, were studied at beam energies between 10 and 125 MeV. The main characteristics of the photon emission are deduced. They suggest that the neutron-proton collisions in the early stage of the reaction are the main source of high energy gamma-rays. An overview of the theoretical approaches is given and compared with experimental results. Theoretical attempts to include the contribution of charged pion exchange currents to photon production, in calculations of proton-nucleus-gamma and nucleus-nucleus-gamma reactions, showed suitable fitting with experimental data

  13. Models of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1978-06-01

    The discussion covers nuclear collisions at relativistic energies including classes of high energy nucleus--nucleus collisions, and the kinetics of a central collision; and the asymptotic hadron spectrum including known and unknown hadrons, the relevance of the spectrum and the means of its study, thermodynamics of hadronic matter, examples of hadronic spectra, the temperature, composition of the initial fireball and its expansion, isoergic expansion with no pre-freezeout radiation, isentropic expansion of the fireball, the quasi-dynamical expansion, and finally antinuclei, hypernuclei, and the quark phase. 28 references

  14. Shock waves in weakly compressed granular media.

    Science.gov (United States)

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  15. High temperature underground thermal energy storage system for solar energy

    Science.gov (United States)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  16. Dark Energy Survey Year 1 Results: The Impact of Galaxy Neighbours on Weak Lensing Cosmology with im3shape

    Energy Technology Data Exchange (ETDEWEB)

    Samuroff, S.; et al.

    2017-08-04

    We use a suite of simulated images based on Year 1 of the Dark Energy Survey to explore the impact of galaxy neighbours on shape measurement and shear cosmology. The hoopoe image simulations include realistic blending, galaxy positions, and spatial variations in depth and PSF properties. Using the im3shape maximum-likelihood shape measurement code, we identify four mechanisms by which neighbours can have a non-negligible influence on shear estimation. These effects, if ignored, would contribute a net multiplicative bias of $m \\sim 0.03 - 0.09$ in the DES Y1 im3shape catalogue, though the precise impact will be dependent on both the measurement code and the selection cuts applied. This can be reduced to percentage level or less by removing objects with close neighbours, at a cost to the effective number density of galaxies $n_\\mathrm{eff}$ of 30%. We use the cosmological inference pipeline of DES Y1 to explore the cosmological implications of neighbour bias and show that omitting blending from the calibration simulation for DES Y1 would bias the inferred clustering amplitude $S_8\\equiv \\sigma_8 (\\Omega _\\mathrm{m} /0.3)^{0.5}$ by $2 \\sigma$ towards low values. Finally, we use the hoopoe simulations to test the effect of neighbour-induced spatial correlations in the multiplicative bias. We find the impact on the recovered $S_8$ of ignoring such correlations to be subdominant to statistical error at the current level of precision.

  17. First high energy hydrogen cluster beams

    International Nuclear Information System (INIS)

    Gaillard, M.J.; Genre, R.; Hadinger, G.; Martin, J.

    1993-03-01

    The hydrogen cluster accelerator of the Institut de Physique Nucleaire de Lyon (IPN Lyon) has been upgraded by adding a Variable Energy Post-accelerator of RFQ type (VERFQ). This operation has been performed in the frame of a collaboration between KfK Karlsruhe, IAP Frankfurt and IPN Lyon. The facility has been designed to deliver beams of mass selected Hn + clusters, n chosen between 3 and 49, in the energy range 65-100 keV/u. For the first time, hydrogen clusters have been accelerated at energies as high as 2 MeV. This facility opens new fields for experiments which will greatly benefit from a velocity range never available until now for such exotic projectiles. (author) 13 refs.; 1 fig

  18. Production processes at extremely high energies

    CERN Document Server

    Gastmans, R; Wu, Tai Tsun

    2013-01-01

    The production processes are identified that contribute to the rise of the total cross section in proton-proton scattering at extremely high energies, s->~. At such energies, the scattering can be described by a black disk (completely absorptive) with a radius expanding logarithmically with energy surrounded by a gray fringe (partially absorptive). For the leading term of (lns)^2 in the increasing total cross section, the gray fringe is neglected, and geometrical optics is generalized to production processes. It is known that half of the rise in the total cross section is due to elastic scattering. The other half is found to originate from the production of jets with relatively small momenta in the center-of-mass system.

  19. Energy harvesting in high voltage measuring techniques

    International Nuclear Information System (INIS)

    Żyłka, Pawel; Doliński, Marcin

    2016-01-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed. (paper)

  20. PASOTRON high-energy microwave source

    Science.gov (United States)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  1. High energy multi-cycle terahertz generation

    International Nuclear Information System (INIS)

    Ahr, Frederike Beate

    2017-10-01

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  2. High energy multi-cycle terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Ahr, Frederike Beate

    2017-10-15

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  3. Shielding for high energy, high intensity electron accelerator installation

    International Nuclear Information System (INIS)

    Warawas, C.; Chongkum, S.

    1997-03-01

    The utilization of electron accelerators (eBA) is gradually increased in Thailand. For instance, a 30-40 MeV eBA are used for tumor and cancer therapy in the hospitals, and a high current eBA in for gemstone colonization. In the near future, an application of eBA in industries will be grown up in a few directions, e.g., flue gases treatment from the coal fire-power plants, plastic processing, rubber vulcanization and food preservation. It is the major roles of Office of Atomic Energy for Peace (OAEP) to promote the peaceful uses of nuclear energy and to regulate the public safety and protection of the environment. By taking into account of radiation safety aspect, high energy electrons are not only harmful to human bodies, but the radioactive nuclides can be occurred. This report presents a literature review by following the National Committee on Radiation Protection and Measurements (NCRP) report No.31. This reviews for parametric calculation and shielding design of the high energy (up to 100 MeV), high intensity electron accelerator installation

  4. Electroweak splitting functions and high energy showering

    Science.gov (United States)

    Chen, Junmou; Han, Tao; Tweedie, Brock

    2017-11-01

    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2) L × U(1) Y and discuss their general features in the collinear and soft-collinear regimes. These are the leading contributions at a splitting scale ( k T ) far above the EW scale ( v). We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in v/ k T . We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching between shower and decay, kinematic back-reaction corrections in multi-stage showers, and mixed-state evolution of neutral bosons ( γ/ Z/ h) using density-matrices. We employ the EW showering formalism to study a number of important physical processes at O (1-10 TeV) energies. They include (a) electroweak partons in the initial state as the basis for vector-boson-fusion; (b) the emergence of "weak jets" such as those initiated by transverse gauge bosons, with individual splitting probabilities as large as O (35%); (c) EW showers initiated by top quarks, including Higgs bosons in the final state; (d) the occurrence of O (1) interference effects within EW showers involving the neutral bosons; and (e) EW corrections to new physics processes, as illustrated by production of a heavy vector boson ( W ') and the subsequent showering of its decay products.

  5. The evolution of high energy accelerators

    International Nuclear Information System (INIS)

    Courant, E.D.

    1994-01-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet

  6. [Experimental and theoretical high energy physics

    International Nuclear Information System (INIS)

    Boulware, D.

    1988-01-01

    We are carrying out a research program in high energy experimental particle physics. Studies of high energy hadronic interactions and leptoproduction processes continue using several experimental techniques. Progress has been made on the study of multiparticle production processes in nuclei. Ultra-high energy cosmic ray nucleus-nucleus interactions have been investigated by the Japanese American Cosmic Emulsion Experiment (JACEE) using balloon-borne emulsion chamber detectors. In the area of particle astrophysics, our studies of cosmic ray nuclear interactions have enabled us to make the world's most accurate determination of the composition of the cosmic rays above 10 13 eV. We have the only detector that can observe interaction vertices and identify particles at energies up to 10--15 eV. Our observations are getting close to placing limits on the acceleration mechanisms postulated for pulsars in which the spin and magnetic moment axes are at different angles. In June, 1989 approval was given by NASA for our participation in the Space Station program. The SCINATT experiment will make use of emulsion chamber detectors, similar to the planned JACEE hybrid balloon flight detectors. These detectors will permit precise determination of secondary particle charges, momenta and rapidities, and the accumulation of data will be at least a factor of 10 to 100 greater than in balloon experiments. Emulsion chamber techniques are also employed in an experiment using accelerator heavy ion beams at CERN and Brookhaven National Laboratory to investigate particle production processes in central collisions of nuclei in the energy range 15--200A GeV. Our study of hadroproduction in lepton interactions is continuing with approval of another 8 months run for deep inelastic muon scattering experiment E665 at Fermilab

  7. Reactions with Weakly Bound Nuclei, at near Barrier Energies, and the Breakup and Transfer Influences on the Fusion and Elastic Scattering

    International Nuclear Information System (INIS)

    Gomes, P. R. S.; Lubian, J.; Mendes-Junior, D. R.; Faria, P. N. de; Linares, R.; Sigaud, L.; Rangel, J.; Ferreira, J. L.; Paes, B.; Cardozo, E. N.; Cortes, M. R.; Canto, L. F.; Ermamatov, M. J.; Otomar, D. R.; Ferioli, E.; Lotti, P.; Hussein, M. S.

    2016-01-01

    We present a brief review of the reaction mechanisms involved in collisions of weakly bound projectiles with tightly bound targets, at near-barrier energies. We discuss systematic behaviors of the data, with emphasis in fusion, breakup, nucleon transfer and elastic scattering. The dependence of the breakup cross section on the charge and mass of the target is discussed, and the influence of the breakup channel on complete fusion is investigated. For this purpose, we compare reduced fusion cross sections with a benchmark universal curve. The behaviors observed in the comparisons are explained in terms of polarization potentials and of nucleon transfer followed by breakup. The influence of the breakup process on elastic scattering is also discussed. Some apparent contradictions between results of different authors are explained and some perspectives of the field are presented. (author)

  8. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts in the DES -- Calibration of the Weak Lensing Source Redshift Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.; et al.

    2017-10-06

    We present the calibration of the Dark Energy Survey Year 1 (DES Y1) weak lensing source galaxy redshift distributions from clustering measurements. By cross-correlating the positions of source galaxies with luminous red galaxies selected by the redMaGiC algorithm we measure the redshift distributions of the source galaxies as placed into different tomographic bins. These measurements constrain any such shifts to an accuracy of $\\sim0.02$ and can be computed even when the clustering measurements do not span the full redshift range. The highest-redshift source bin is not constrained by the clustering measurements because of the minimal redshift overlap with the redMaGiC galaxies. We compare our constraints with those obtained from $\\texttt{COSMOS}$ 30-band photometry and find that our two very different methods produce consistent constraints.

  9. [Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Albanese, R.C.

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from March--December of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiments 772 and 789. Finally, we are also participating in the design of detectors for the SSC. A more detailed description of the work of the NIU high energy physics group may be found in the narrative accompanying our contract renewal proposal

  10. [Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from March through December of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiments 772 and 789. Finally, we are also participating in the design of detectors for the SSC. A more detailed description of the work of the NIU high energy physics group may be found in the narrative accompanying our contract renewal proposal

  11. Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.; Green, J.

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contact AC02-87ER40368 during the period from March of 1989 to February of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a precision study of the A-dependence of massive muon-pion production and a study of low-multiplicity decay modes of charm. We are also participating in the design of detectors for the SSC. Finally, a minor effort is being given to analyzing data from Fermilab of particles with lifetime between 10 -12 and 10 -13 seconds. A more detailed description of the work of the NIU high energy physics group can be found in the narrative accompanying our grant renewal proposal. 10 refs

  12. Prospects of High Energy Laboratory Astrophysics

    International Nuclear Information System (INIS)

    Ng, Johnny S.T.; SLAC

    2006-01-01

    Ultra high energy cosmic rays (UHECR) have been observed but their sources and production mechanisms are yet to be understood. We envision a laboratory astrophysics program that will contribute to the understanding of cosmic accelerators with efforts to: (1) test and calibrate UHECR observational techniques, and (2) elucidate the underlying physics of cosmic acceleration through laboratory experiments and computer simulations. Innovative experiments belonging to the first category have already been done at the SLAC FFTB. Results on air fluorescence yields from the FLASH experiment are reviewed. Proposed future accelerator facilities can provided unprecedented high-energy-densities in a regime relevant to cosmic acceleration studies and accessible in a terrestrial environment for the first time. We review recent simulation studies of nonlinear plasma dynamics that could give rise to cosmic acceleration, and discuss prospects for experimental investigation of the underlying mechanisms

  13. Compilation of current high energy physics experiments

    International Nuclear Information System (INIS)

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary of the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche

  14. A Parton Shower for High Energy Jets

    CERN Document Server

    Andersen, Jeppe R; Smillie, Jennifer M

    2011-01-01

    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss in detail the arising description of the soft, collinear and hard regions by examples in pure QCD jet-production.

  15. Bell inequalities in high energy physics

    International Nuclear Information System (INIS)

    Ding Yibing; Li Junli; Qiao Congfeng

    2007-01-01

    We review in this paper the research status on testing the completeness of Quantum mechanics in High Energy Physics, especially on the Bell Inequalities. We briefly introduce the basic idea of Einstein, Podolsky, and Rosen paradox and the results obtained in photon experiments. In the content of testing the Bell inequalities in high energy physics, the early attempts of using spin correlations in particle decays and later on the mixing of neutral mesons used to form the quasi-spin entangled states are covered. The related experimental results in K 0 and B 0 systems are presented and discussed. We introduce the new scheme, which is based on the non-maximally entangled state and proposed to implement in φ factory, in testing the Local Hidden Variable Theory. And, we also discuss about the possibility of realising it to the tau charm factory. (authors)

  16. Origin of the universe and high energy

    International Nuclear Information System (INIS)

    Montoya Z, M.

    1994-01-01

    In this book it is briefly exposed what it is done in the world in relation with the high energy physics. Also, it is presented a brief historical description of the earth evolution, the universe and physics in general. This book counts with eight chapters. The first chapter deals with the relationship of man with science. The second chapter speaks about the origin of universe. The third chapter comments about the stars and galaxies formation. The fourth chapter treats how the scientists and researchers continue to studying the subnuclear world. The fifth chapter deals with subjects and models of nuclear physics. In the sixth chapter it is described the function of the particles accelerator. The seventh chapter comments about the multidisciplinary aspects of the research of elementary particles. Finally, the eighth chapter deals with the advances of high energy physics in the andean region of Latin America. (author)

  17. New Prospects in High Energy Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  18. High energy materials. Propellants, explosives and pyrotechnics

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Jai Prakash

    2010-07-01

    Authored by an insider with over 40 years of high energy materials (HEMs) experience in academia, industry and defence organizations, this handbook and ready reference covers all important HEMs from the 1950s to the present with their respective properties and intended purposes. Written at an attainable level for professionals, engineers and technicians alike, the book provides a comprehensive view of the current status and suggests further directions for research and development. An introductory chapter on the chemical and thermodynamic basics allows the reader to become acquainted with the fundamental features of explosives, before moving on to the important safety aspects in processing, handling, transportation and storage of high energy materials. With its collation of results and formulation strategies hitherto scattered in the literature, this should be on the shelf of every HEM researcher and developer. (orig.)

  19. Very high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Weekes, T.C.

    1988-01-01

    Current interest in gamma-ray astronomy at energies above 100 GeV comes from the identification of Cygnus X-3 and other X-ray binaries as sources. In addition there are reports of emission from radio pulsars and a variety of other objects. The statistical significance of many of the observations is not high and many reported effects await confirmation, but there are a sufficient number of independent reports that very high energy gamma-ray astronomy must now be considered to have an observational basis. The observations are summarized with particular emphasis on those reported since 1980. The techniques used - the detection of small air showers using the secondary photons and particles at ground level - are unusual and are described. Future prospects for the field are discussed in relation to new ground-based experiments, satellite gamma-ray studies and proposed neutrino astronomy experiments. (orig.) With 296 refs

  20. Unparticles: Scales and high energy probes

    International Nuclear Information System (INIS)

    Bander, Myron; Feng, Jonathan L.; Rajaraman, Arvind; Shirman, Yuri

    2007-01-01

    Unparticles from hidden conformal sectors provide qualitatively new possibilities for physics beyond the standard model. In the theoretical framework of minimal models, we clarify the relation between energy scales entering various phenomenological analyses. We show that these relations always counteract the effective field theory intuition that higher dimension operators are more highly suppressed, and that the requirement of a significant conformal window places strong constraints on possible unparticle signals. With these considerations in mind, we examine some of the most robust and sensitive probes and explore novel effects of unparticles on gauge coupling evolution and fermion production at high energy colliders. These constraints are presented both as bounds on four-fermion interaction scales and as constraints on the fundamental parameter space of minimal models

  1. High Energy Vibration for Gas Piping

    Science.gov (United States)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  2. High-energy ion implantation of materials

    International Nuclear Information System (INIS)

    Williams, J.M.

    1991-11-01

    High-energy ion implantation is an extremely flexible type of surface treatment technique, in that it offers the possibility of treating almost any type of target material or product with ions of almost any chemical species, or combinations of chemical species. In addition, ion implantations can be combined with variations in temperature during or after ion implantation. As a result, the possibility of approaching a wide variety of surface-related materials science problems exists with ion implantation. This paper will outline factors pertinent to application of high-energy ion implantation to surface engineering problems. This factors include fundamental advantages and limitations, economic considerations, present and future equipment, and aspects of materials science

  3. ANTARES: A High Energy Neutrino Undersea Telescope

    International Nuclear Information System (INIS)

    Hernandez, J.J.

    1999-01-01

    Neutrinos can reveal a brand new Universe at high energies. The ANTARES collaboration, formed in 1996, works towards the building and deployment of a neutrino telescope. This detector could observe and study high energy astrophysical sources such as X-ray binary systems, young supernova remnants or Active Galactic Nuclei and help to discover or set exclusion limits on some of the elementary particles and objects that have been put forward as candidates to fill the Universe (WIMPS, neutralinos, topological defects, Q-balls, etc.). A neutrino telescope will certainly open a new observational window and can shed light on the most energetic phenomena of the Universe. A review of the progress made by the ANTARES collaboration to achieve this goal is presented. (author)

  4. Power Supplies for High Energy Particle Accelerators

    Science.gov (United States)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  5. High energy physics at UC Riverside

    International Nuclear Information System (INIS)

    1997-01-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given

  6. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  7. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  8. Applications of SSNTD's in high energy physics

    International Nuclear Information System (INIS)

    Otterlund, I.

    1976-09-01

    Different applications of the emulsion technique in high energy physics are given. Investigations of heavy ion and proton-nucleus reactions with the conventional emulsion technique are presented together with a short interpretation of recent results. Methods of using nuclear emulsion with embedded targets will be discussed. Emulsion stacks in hybrid systems with electronic tagging suggest a new and interesting application of the emulsion technique. (Auth.)

  9. High-energy accelerators in medicine

    CERN Document Server

    Mandrillon, Pierre

    1992-05-04

    The treatment of tumours with charged particles, ranging from protons to "light ions" ( Carbon, Oxygen, Neon) has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. The rationale for this new radiotherapy, the high energy accelerators and the beam delivery systems are presented in these two lectures.

  10. An experimental high energy physics program

    International Nuclear Information System (INIS)

    Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.

    1988-01-01

    The theoretical and experimental high energy physics program is reviewed, including particle detectors. Topics discussed include τ and B physics, gamma-ray astronomy, neutrino oscillations in matter with three flavors applied to solar and supernova neutrinos, effective field theories, a possible fifth force, the dynamics of hadrons and superstrings, mathematics of grand unified theories, chiral symmetry breaking, physics at the Fermilab collider, and development of the TOPAZ detector

  11. Perspectives in high energy nuclear collisions

    International Nuclear Information System (INIS)

    Rafelski, J.

    1983-08-01

    This report gives an overview of some aspects of hadronic physics relevant for the conception of a research facility devoted to the study of high energy nuclear collisions. Several concepts to be studied in nuclear collisions are selected, with emphasis placed on the properties and nature of the quark-gluon plasma, the formation of the plasma state in the central region and its anticipated lifetime, and the observability, through strangeness content of this new form of nuclear matter. (orig.)

  12. Particle physics experiments at high energy colliders

    International Nuclear Information System (INIS)

    Hauptman, John

    2011-01-01

    Written by one of the detector developers for the International Linear Collider, this is the first textbook for graduate students dedicated to the complexities and the simplicities of high energy collider detectors. It is intended as a specialized reference for a standard course in particle physics, and as a principal text for a special topics course focused on large collider experiments. Equally useful as a general guide for physicists designing big detectors. (orig.)

  13. UNIX at high energy physics Laboratories

    International Nuclear Information System (INIS)

    Silverman, Alan

    1994-01-01

    With more and more high energy physics Laboratories ''downsizing'' from large central proprietary mainframe computers towards distributed networks, usually involving UNIX operating systems, the need was expressed at the 1991 Computers in HEP (CHEP) Conference to create a group to consider the implications of this trend and perhaps work towards some common solutions to ease the transition for HEP users worldwide

  14. High energy transients: The millisecond domain

    Science.gov (United States)

    Rao, A. R.

    2018-02-01

    The search for high energy transients in the millisecond domain has come to the focus in recent times due to the detection of gravitational wave events and the identification of fast radio bursts as cosmological sources. Here we highlight the sensitivity limitations in the currently operating hard X-ray telescopes and give some details of the search for millisecond events in the AstroSat CZT Imager data.

  15. Quark model and high energy collisions

    International Nuclear Information System (INIS)

    Nyiri, J.; Kobrinsky, M.N.

    1982-06-01

    The aim of the present review is to show that the additive quark model describes well not only the static features of hadrons but also the interaction processes at high energies. Considerations of the hadron-hadron and hadron-nucleus interactions and of the hadron production in multiparticle production processes suggest serious arguments in favour of the nucleus-like hadron structure and show the possibility to apply the rules of quark statistics to the description of the secondary particle production. (author)

  16. Introduction to high energy cosmic ray physics

    International Nuclear Information System (INIS)

    Battistoni, G.; Grillo, A.F.

    1995-01-01

    After a few general qualitative considerations about the characteristics of primary cosmic rays arriving at the top of atmosphere, the fundamental concepts on their propagation and acceleration are discussed. The experimental situation, both from direct and indirect experiments, is presented, followed by a discussion on some concepts on hadronic interactions at high energy which are applied in a simplified and analytical model to the production of secondary particles in atmosphere

  17. High energy irradiation of bacterial membrane vesicles

    International Nuclear Information System (INIS)

    De La Rosa, M.A.M.

    1977-01-01

    The interactions of membrane components and two well-defined transport systems in the E. coli ML 308-225 membrane vesicles with 60 Co gamma radiation were investigated. The results presented show that gamma radiation can monitor membrane components and functions of varying radiosensitivities. The possible application of high-energy radiation as a physical probe of membrane structure and functions is indeed promising

  18. Computer simulation of high energy displacement cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1990-01-01

    A methodology developed for modeling many aspects of high energy displacement cascades with molecular level computer simulations is reviewed. The initial damage state is modeled in the binary collision approximation (using the MARLOWE computer code), and the subsequent disposition of the defects within a cascade is modeled with a Monte Carlo annealing simulation (the ALSOME code). There are few adjustable parameters, and none are set to physically unreasonable values. The basic configurations of the simulated high energy cascades in copper, i.e., the number, size and shape of damage regions, compare well with observations, as do the measured numbers of residual defects and the fractions of freely migrating defects. The success of these simulations is somewhat remarkable, given the relatively simple models of defects and their interactions that are employed. The reason for this success is that the behavior of the defects is very strongly influenced by their initial spatial distributions, which the binary collision approximation adequately models. The MARLOWE/ALSOME system, with input from molecular dynamics and experiments, provides a framework for investigating the influence of high energy cascades on microstructure evolution. (author)

  19. Hadron interactions at high energy in QCD

    International Nuclear Information System (INIS)

    Levin, E.M.; Ryskin, M.G.

    1988-01-01

    Well known the typical hadronic interactions at high energy are soft processes occurring at large distances where the mysterious confinement forces should be essential. Due to this fact, discussing these processes at first sight the authors are to use and really use some models that incorporate their educated guess about the confinement and utilize the QCD degrees of freedom. But really these models use the QCD terminology rather than the explicit form of the QCD interaction. Up to now the multiparticle dynamics had been the dynamics of reggeons with some detailization coming from their hypothesis about confinement. It is the Reggeon Calculus or the reggeon phenomenology that allows them to describe the main properties of exclusive and inclusive reactions at high energy in agreement with experiment. This paper discusses this problem at this Symposium in many details. However, such pure phenomenological understanding cannot satisfy all of us at the moment. The authors would like to understand the multiparticle production and other soft processes at high energy in more microscopic way using directly the form of the QCD Lagrangian

  20. High energy behaviour of nonabelian gauge theories

    International Nuclear Information System (INIS)

    Bartels, J.

    1979-10-01

    The high energy behavior (in the Regge limit) of nonabelian gauge theories is reviewed. After a general remark concerning the question to what extent the Regge limit can be approached within perturbation theory, we first review the reggeization of elementary particles within nonabelian gauge theories. Then the derivation of a unitary high energy description of a massive (= spontaneously broken) nonabelian gauge model is described, which results in a complete reggeon calculus. There is strong evidence that the zero mass limit of this reggeon calculus exists, thus giving rise to the hope that the Regge behavior in pure Yang-Mills theories (QCD) can be reached in this way. In the final part of these lectures two possible strategies for solving this reggeon calculus (both for the massive and the massless case) are outlined. One of them leads to a geometrical picture in which the distribution of the wee partons obeys a diffusion law. The other one makes contact with reggeon field theory and predicts that QCD in the high energy limit is described by critical reggeon field theory. (orig.)

  1. High-energy proton scattering on nuclei

    CERN Document Server

    Klovning, A; Schlüpmann, K

    1973-01-01

    High-energy proton scattering on Be, C, Cu and Pb targets is studied using a single-arm spectrometer. The projectile momenta were 19 and 24 GeV/c, the square of the four-momentum transfer varied from t=0.1 to t =4.4 GeV/sup 2/. Momentum distributions of scattered protons are recorded in the high-momentum range. An application of multiple- scattering theory yielded agreement of calculation and experimental results to within a +or-30% uncertainty of the former. (15 refs).

  2. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Lamb, R.C.; Lewis, D.A.

    1991-01-01

    The Whipple Observatory High Resolution Camera will be used in a vigorous program of observations to search for new sources of very-high-energy gamma rays. In addition, a search for antimatter using the moon-earth system as an ion spectrometer will be begun. The first phase of GRANITE, the new 37-element 11-m camera, will be concluded with first light scheduled for September, 1991. The two cameras will operate in support of the Gamma Ray Observatory mission in the winter of 1991/2

  3. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-05-10

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  4. Embolism of high energy firearm projectile

    Directory of Open Access Journals (Sweden)

    Jaime Álvarez Soler

    2016-12-01

    Full Text Available The embolism of a projectile is very rare and out of the normal context, so the cor-oner in front of a wound projectile firearm must make a very judicious and careful analysis to recover the projectile and/or its fragments. This case presents evidence how modern military high-velocity weapons have a high kinetic energy which is transferred to body tissues, so including their fragments and parts of the projectile can cause serious injury and embolism, requiring a great effort scientific and in-terdisciplinary to give technical support to justice.

  5. High C/O Chemistry and Weak Thermal Inversion in the Extremely Irradiated Atmosphere of Exoplanet WASP-12b

    Science.gov (United States)

    Madhusudhan, Nikku; Harrington, Joseph; Nymeyer, Sarah; Campo, Christopher J.; Wheatley, Peter J.; Deming, Drake; Blecie, Jasmina; Hardy, Ryan A.; Lust, Nate B.; Anderson, David R.; hide

    2010-01-01

    The carbon-to-oxygen ratio (C/O) in a planet provides critical information about its primordial origins and subsequent evolution. A primordial C/O greater than 0.8 causes a carbide-dominated interior as opposed to the silicate-dominated composition as found on Earth; the solar C/O is 0.54. Theory, shows that high C/O leads to a diversity of carbon-rich planets that can have very different interiors and atmospheres from those in the solar system. Here we report the detection of C/O greater than or equal to 1 in a planetary atmosphere. The transiting hot Jupiter WASP-12b has a dayside atmosphere depleted in water vapour and enhanced in methane by over two orders of magnitude compared to a solar-abundance chemical equilibrium model at the expected temperatures. The observed concentrations of the prominent molecules CO, CH4, and H2O are consistent with theoretical expectations for an atmosphere with the observed C/O = 1. The C/O ratios are not known for giant planets in the solar system, although they are expected to equal the solar value. If high C/O ratios are common, then extrasolar planets are likely very different in interior composition, and formed very differently, from expectations based on solar composition, potentially explaining the large diversity in observed radii. We also find that the extremely irradiated atmosphere (greater than 2500 K) of WASP-12b lacks a prominent thermal inversion, or a stratosphere, and has very efficient day-night energy circulation. The absence of a strong thermal inversion is in stark contrast to theoretical predictions for the most highly irradiated hot-Jupiter atmospheres.

  6. Reconstructing weak values without weak measurements

    International Nuclear Information System (INIS)

    Johansen, Lars M.

    2007-01-01

    I propose a scheme for reconstructing the weak value of an observable without the need for weak measurements. The post-selection in weak measurements is replaced by an initial projector measurement. The observable can be measured using any form of interaction, including projective measurements. The reconstruction is effected by measuring the change in the expectation value of the observable due to the projector measurement. The weak value may take nonclassical values if the projector measurement disturbs the expectation value of the observable

  7. Broken flavor symmetries in high energy particle phenomenology

    International Nuclear Information System (INIS)

    Antaramian, A.

    1995-01-01

    Over the past couple of decades, the Standard Model of high energy particle physics has clearly established itself as an invaluable tool in the analysis of high energy particle phenomenon. However, from a field theorists point of view, there are many dissatisfying aspects to the model. One of these, is the large number of free parameters in the theory arising from the Yukawa couplings of the Higgs doublet. In this thesis, we examine various issues relating to the Yukawa coupeng structure of high energy particle field theories. We begin by examining extensions to the Standard Model of particle physics which contain additional scalar fields. By appealing to the flavor structure observed in the fermion mass and Kobayashi-Maskawa matrices, we propose a reasonable phenomenological parameterization of the new Yukawa couplings based on the concept of approximate flavor symmetries. It is shown that such a parameterization eliminates the need for discrete symmetries which limit the allowed couplings of the new scalars. New scalar particles which can mediate exotic flavor changing reactions can have masses as low as the weak scale. Next, we turn to the issue of neutrino mass matrices, where we examine a particular texture which leads to matter independent neutrino oscillation results for solar neutrinos. We, then, examine the basis for extremely strict limits placed on flavor changing interactions which also break lepton- and/or baryon-number. These limits are derived from cosmological considerations. Finally, we embark on an extended analysis of proton decay in supersymmetric SO(10) grand unified theories. In such theories, the dominant decay diagrams involve the Yukawa couplings of a heavy triplet superfield. We argue that past calculations of proton decay which were based on the minimal supersymmetric SU(5) model require reexamination because the Yukawa couplings of that theory are known to be wrong

  8. High energy radiation in cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-10-15

    Certain basic recommendations on the use of supervoltage radiation and radioisotope teletherapy in the treatment of malignant growths have been made by an expert study group which met in Vienna in August this y ear. The group, convened jointly by the International Atomic Energy Agency and the World Health Organization, was composed of 20 radiotherapists and radiation physicists from 12 countries. High energy radiation, used in the treatment of malignant tumours, can be either in the form of gamma- or X-rays or in the form of beams of accelerated electrons. The source of radiation is kept at a certain distance from the patient. The study group was agreed on the value of supervoltage radiotherapy, including gamma-ray and high voltage x-ray therapy as well as electron beam therapy. The required gamma radiation can be obtained from large sources of radioactive materials like cobalt 60 or caesium 137, while electron beams are produced by high voltage accelerators. The experts considered the sources in four broad categories: large supervoltage units, intermediate units, small isotope units and units of electron beams or very high energy x-rays. Each group of source was described including its usage. The experts made it clear that while supervoltage radiation should be a part of an organized radiotherapy department, the radiation facilities at any particular establishment should not be of the supervoltage type alone. The high energy facilities could be fruitfully used only when there was a background of general radiotherapy. The group emphasized that supervoltage radiotherapy, in common with other forms of radiotherapy, should be conducted only by adequately trained and qualified personnel, including radiation physicists, and specified the training and qualifications required of such personnel. It was felt that specialized training was one of the main requirements at the present stage and the training programmes of IAEA and WHO should be utilized extensively for this

  9. High energy radiation in cancer treatment

    International Nuclear Information System (INIS)

    1959-01-01

    Certain basic recommendations on the use of supervoltage radiation and radioisotope teletherapy in the treatment of malignant growths have been made by an expert study group which met in Vienna in August this y ear. The group, convened jointly by the International Atomic Energy Agency and the World Health Organization, was composed of 20 radiotherapists and radiation physicists from 12 countries. High energy radiation, used in the treatment of malignant tumours, can be either in the form of gamma- or X-rays or in the form of beams of accelerated electrons. The source of radiation is kept at a certain distance from the patient. The study group was agreed on the value of supervoltage radiotherapy, including gamma-ray and high voltage x-ray therapy as well as electron beam therapy. The required gamma radiation can be obtained from large sources of radioactive materials like cobalt 60 or caesium 137, while electron beams are produced by high voltage accelerators. The experts considered the sources in four broad categories: large supervoltage units, intermediate units, small isotope units and units of electron beams or very high energy x-rays. Each group of source was described including its usage. The experts made it clear that while supervoltage radiation should be a part of an organized radiotherapy department, the radiation facilities at any particular establishment should not be of the supervoltage type alone. The high energy facilities could be fruitfully used only when there was a background of general radiotherapy. The group emphasized that supervoltage radiotherapy, in common with other forms of radiotherapy, should be conducted only by adequately trained and qualified personnel, including radiation physicists, and specified the training and qualifications required of such personnel. It was felt that specialized training was one of the main requirements at the present stage and the training programmes of IAEA and WHO should be utilized extensively for this

  10. 76 FR 53119 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-08-25

    ... DEPARTMENT OF ENERGY High Energy Physics Advisory Panel AGENCY: Department of Energy. ACTION... hereby given that the High Energy Physics Advisory Panel will be renewed for a two-year period, beginning...-range planning and priorities in the national High Energy Physics program. Additionally, the renewal of...

  11. Prospects for high energy heavy ion accelerators

    International Nuclear Information System (INIS)

    Leemann, C.

    1979-03-01

    The acceleration of heavy ions to relativistic energies (T greater than or equal to 1 GeV/amu) at the beam intensities required for fundamental research falls clearly in the domain of synchrotons. Up to date, such beams have been obtained from machines originally designed as proton acccelerators by means of modified RF-programs, improved vacuum and, most importantly, altered or entirely new injector systems. Similarly, for the future, substantial changes in synchrotron design itself are not foreseen, but rather the judicious application and development of presently known principles and technologies and a choice of parameters optimized with respect to the peculiarities of heavy ions. The low charge to mass ratio, q/A, of very heavy ions demands that superconducting magnets be considered in the interest of the highest energies for a given machine size. Injector brightness will continue to be of highest importance, and although space charge effects such as tune shifts will be increased by a factor q 2 /A compared with protons, advances in linac current and brightness, rather than substantially higher energies are required to best utilize a given synchrotron acceptance. However, high yeilds of fully stripped, very heavy ions demand energies of a few hundred MeV/amu, thus indicating the need for a booster synchrotron, although for entirely different reasons than in proton facilities. Finally, should we consider colliding beams, the high charge of heavy ions will impose severe current limitations and put high demands on system design with regard to such quantities as e.g., wall impedances or the ion induced gas desorption rate, and advanced concepts such as low β insertions with suppressed dispersion and very small crossing angles will be essential to the achievement of useful luminosities

  12. Topics in calorimetry for high energy physics

    International Nuclear Information System (INIS)

    Hollebeek, R.

    1992-01-01

    These lectures focus on a series of topics now of interest or which have been of interest to designes of calorimeters in the past few years. The examples concentrate on calorimeters from DESY because its focus this year is on e-P physics, and on CDF and SDC because they are best known to the author. Calorimeters are, broadly speaking, devices to measure the total energy of particles. In general, no one device will be optimal for all types of particles. The two broadest classes of calorimeters in high energy physics are the electromagnetic calorimeters used primarily for photons and electrons, and the hadronic calorimeters used for most charged mesons and baryons. Most operate by absorbing and thereby measuring a significant amount of the incoming particles energy directly. Some particles may require special devices for their interactions and observation. Modern calorimeters are characterized by energy and position resolution, and cost and size. Calorimeter cost is often a trade-off between performance desired and money available. The optimum cost will require a careful choice of materials, reduction of the overall size of the detector, elimination of labor intensive construction techniques, and careful consideration of the cost of calibration systems. Since at least some of these requirements which optimize cost and resolution are contradictory, the ideal calorimeter in seldom what one ends up building

  13. Precision cosmology with weak gravitational lensing

    Science.gov (United States)

    Hearin, Andrew P.

    In recent years, cosmological science has developed a highly predictive model for the universe on large scales that is in quantitative agreement with a wide range of astronomical observations. While the number and diversity of successes of this model provide great confidence that our general picture of cosmology is correct, numerous puzzles remain. In this dissertation, I analyze the potential of planned and near future galaxy surveys to provide new understanding of several unanswered questions in cosmology, and address some of the leading challenges to this observational program. In particular, I study an emerging technique called cosmic shear, the weak gravitational lensing produced by large scale structure. I focus on developing strategies to optimally use the cosmic shear signal observed in galaxy imaging surveys to uncover the physics of dark energy and the early universe. In chapter 1 I give an overview of a few unsolved mysteries in cosmology and I motivate weak lensing as a cosmological probe. I discuss the use of weak lensing as a test of general relativity in chapter 2 and assess the threat to such tests presented by our uncertainty in the physics of galaxy formation. Interpreting the cosmic shear signal requires knowledge of the redshift distribution of the lensed galaxies. This redshift distribution will be significantly uncertain since it must be determined photometrically. In chapter 3 I investigate the influence of photometric redshift errors on our ability to constrain dark energy models with weak lensing. The ability to study dark energy with cosmic shear is also limited by the imprecision in our understanding of the physics of gravitational collapse. In chapter 4 I present the stringent calibration requirements on this source of uncertainty. I study the potential of weak lensing to resolve a debate over a long-standing anomaly in CMB measurements in chapter 5. Finally, in chapter 6 I summarize my findings and conclude with a brief discussion of my

  14. Theory Summary: Very High Energy Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Sarkar Subir

    2013-06-01

    Full Text Available This is a summary of ISVHECRI 2012 from a theorist’s perspective. A hundred years after their discovery, there is renewed interest in very high energy cosmic raysand their interactions which can provide unique information on new physics well beyond the Standard Model if only we knew how to unambiguously decipher the experimental data. While the observational situation has improved dramatically on the past decade with regard to both improved statistics and better understood systematics, the long standing questions regarding the origin of cosmic rays remain only partially answered, while further questions have been raised by new data. A recent development discussed at this Symposium is the advent of forward physics data from several experiments at the LHC, which have broadly vindicated the air shower simulation Monte Carlos currently in use and reduced their uncertainties further. Nevertheless there is still a major extrapolation required to interpret the highest energy air showers observed which appear to be undergoing a puzzling change in their elemental composition, even casting doubt on whether the much vaunted GZK cutoff has indeedbeen observed. The situation is further compounded by the apparent disagreement between Auger and Telescope Array data. A crucial diagnostic will be provided by the detection of the accompanying ultra-high energy cosmic neutrinos — two intriguing events have recently been recorded by IceCube.

  15. Perspectives on future high energy physics

    International Nuclear Information System (INIS)

    Samios, N.P.

    1996-01-01

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e + e - and μ + μ - colliders. Finally, the international cooperative activities should be strengthened and maintained

  16. Perspectives on future high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Samios, N.P.

    1996-12-31

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e{sup +}e{sup {minus}} and {mu}{sup +}{mu}{sup {minus}} colliders. Finally, the international cooperative activities should be strengthened and maintained.

  17. High energy neutrino astronomy and its telescopes

    International Nuclear Information System (INIS)

    Halzen, F.

    1995-01-01

    Doing astronomy with photons of energies in excess of a GeV has turned out to be extremely challenging. Efforts are underway to develop instruments that may push astronomy to wavelengths smaller than 10 -14 cm by mapping the sky using high energy neutrinos instead. Neutrino astronomy, born with the identification of thermonuclear fusion in the sun and the particle processes controlling the fate of a nearby supernova, will reach outside the galaxy and make measurements relevant to cosmology. The field is immersed in technology in the domains of particle physics to which many of its research goals are intellectually connected. To mind come the search for neutrino mass, cold dark matter (supersymmetric particles?) and the monopoles of the Standard Model. While a variety of collaborations are pioneering complementary methods by building telescopes with effective area in excess of 0.01 km 2 , we show here that the natural scale of a high energy neutrino telescope is 1 km 2 . With several thousand optical modules and a price tag unlikely to exceed 100 million dollars, the scope of a kilometer-scale instrument is similar to that of experiments presently being commissioned such as the SNO neutrino observatory in Canada and the Superkamiokande experiment in Japan

  18. Prompt High Energy Dipole γ Emission

    International Nuclear Information System (INIS)

    Corsi, A.; Giaz, A; Bracco, A.

    2011-01-01

    The study of the collective properties of a nuclear system is a powerful tool to understand the structure which lies inside the nucleus. A successful technique which has been used in this field is the measurement of the γ-decay of the highly collective Giant Dipole Resonance (GDR). In fact, GDR can be used as a probe for the internal structure of hot nuclei and, in addition, constitutes a clock for the thermalization process. Using the fusion-evaporation reaction, it has been recently possible to study (i) the yield of the high-energy γ-ray emission of the Dynamical Dipole which takes place during the fusion process and (ii) the degree of isospin mixing at high temperature in the decay of 80 Zr. In the first case it is important to stress the fact that the predictions of the theoretical models might differ depending on the type of nuclear equation of state (EOS) and on the N-N in-medium cross-section used in the calculations while, in the second physics case, the data are relative to the heaviest N = Z nucleus which has been possible to populate in the I = 0 channel using fusion-evaporation reaction. Both experiments were performed at the Laboratori Nazionali di Legnaro using the HECTOR-GARFIELD array. The high-energy γ-rays were measured in coincidence with light charged particles and fusion-evaporation residues. (author)

  19. Extreme Transients in the High Energy Universe

    Science.gov (United States)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  20. GRID computing for experimental high energy physics

    International Nuclear Information System (INIS)

    Moloney, G.R.; Martin, L.; Seviour, E.; Taylor, G.N.; Moorhead, G.F.

    2002-01-01

    Full text: The Large Hadron Collider (LHC), to be completed at the CERN laboratory in 2006, will generate 11 petabytes of data per year. The processing of this large data stream requires a large, distributed computing infrastructure. A recent innovation in high performance distributed computing, the GRID, has been identified as an important tool in data analysis for the LHC. GRID computing has actual and potential application in many fields which require computationally intensive analysis of large, shared data sets. The Australian experimental High Energy Physics community has formed partnerships with the High Performance Computing community to establish a GRID node at the University of Melbourne. Through Australian membership of the ATLAS experiment at the LHC, Australian researchers have an opportunity to be involved in the European DataGRID project. This presentation will include an introduction to the GRID, and it's application to experimental High Energy Physics. We will present the results of our studies, including participation in the first LHC data challenge