The Biological Effects of Weak Electromagnetic Fields
International Nuclear Information System (INIS)
Algattawi, A.; Elshyrih, H.
2010-01-01
Many studies investigated that weak electromagnetic fields remove calcium ions bound to the membranes of living cells, making them more likely to tear,. There is an enzyme that destroys DNA this enzyme leaking through the membranes of lysosomes explains the fragmentation of DNA. This case was seen in cells exposed to mobile phone signals. When this occurs in the germ line it reduces fertility and predicts genetic damage in future generations. Although leakage of calcium ions into the cytosol (the main part of the cell) accelerates the growth, but it also promotes the growth of tumors. Leakage of calcium ions into neurons (brain cells) makes nerve impulses accounting for pain and other neurological symptoms in electro sensitive. It also reduces the signal to noise ratio of the brain making it less likely to respond. This may be partially responsible for the increased accident rate of drivers using mobile phones. More details for the molecular mechanisms to explain characteristics of electromagnetic exposure are needed, e.g. I) why weak fields are more effective than strong ones, II) why some frequencies such as 16 Hz are especially potent and III) why pulsed fields do more damage
Energy Technology Data Exchange (ETDEWEB)
Rudolph, E [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany)
1975-01-01
As a model for gravitational radiation damping of a planet the electromagnetic radiation damping of an extended charged body moving in an external gravitational field is calculated in harmonic coordinates using a weak field, slowing-motion approximation. Special attention is paid to the case where this gravitational field is a weak Schwarzschild field. Using Green's function methods for this purpose it is shown that in a slow-motion approximation there is a strange connection between the tail part and the sharp part: radiation reaction terms of the tail part can cancel corresponding terms of the sharp part. Due to this cancelling mechanism the lowest order electromagnetic radiation damping force in an external gravitational field in harmonic coordinates remains the flat space Abraham Lorentz force. It is demonstrated in this simplified model that a naive slow-motion approximation may easily lead to divergent higher order terms. It is shown that this difficulty does not arise up to the considered order.
Electromagnetic current in weak interactions
International Nuclear Information System (INIS)
Ma, E.
1983-01-01
In gauge models which unify weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current. The exact nature of such a component can be explored using e + e - experimental data. In recent years, the existence of a new component of the weak interaction has become firmly established, i.e., the neutral-current interaction. As such, it competes with the electromagnetic interaction whenever the particles involved are also charged, but at a very much lower rate because its effective strength is so small. Hence neutrino processes are best for the detection of the neutral-current interaction. However, in any gauge model which unifies weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current
Directory of Open Access Journals (Sweden)
Fatemeh Abdollahi
2012-01-01
Full Text Available Exposure to electromagnetic fields (EMF has become an issue of concern for a great many people and is an active area of research. Phytoplasmas, also known as mycoplasma-like organisms, are wall-less prokaryotes that are pathogens of many plant species throughout the world. Effects of electromagnetic fields on the changes of lipid peroxidation, content of H2O2, proline, protein, and carbohydrates were investigated in leaves of two-year-old trees of lime (Citrus aurantifolia infected by the Candidatus Phytoplasma aurantifoliae. The healthy and infected plants were discontinuously exposed to a 10 KHz quadratic EMF with maximum power of 9 W for 5 days, each 5 h, at 25°C. Fresh and dry weight of leaves, content of MDA, proline, and protein increased in both healthy and infected plants under electromagnetic fields, compared with those of the control plants. Electromagnetic fields decreased hydrogen peroxide and carbohydrates content in both healthy and infected plants compared to those of the controls.
Pregnancy and electromagnetic fields
International Nuclear Information System (INIS)
Bisseriex, Ch.; Laurent, P.; Cabaret, Ph.; Bonnet, C.; Marteau, E.; Le Berre, G.; Tirlemont, S.; Castro, H.; Becker, A.; Demaret, Ph.; Donati, M.; Ganem, Y.; Moureaux, P.
2011-07-01
This document briefly indicates the status of knowledge regarding the effect of magnetic fields on biological tissues and pregnancy, outlines the lack of data on some frequencies and the weakness of studies on long term effects on child development. It evokes the issue of exposure assessment and that of identification of workstations exposed to electromagnetic fields
Effect of weak electromagnetic fields and ionizing radiation on mice sciatic nerve regeneration
International Nuclear Information System (INIS)
Dudkin, A.O.; Zamuraev, I.N.
1998-01-01
Effect of X-ray impulses and electromagnetic (EM) impulses on sciatic nerve regeneration in mice after crush lesion was studied. Limb jerk amplitude at electric stimulation of nerve and postural reflex in thin rod in X + EM and EM groups were restored within 13th days after lesion, in control group within 15 days (p [ru
Electromagnetic weak turbulence theory revisited
Energy Technology Data Exchange (ETDEWEB)
Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); Ziebell, L. F. [Instituto de Fisica, UFRGS, Porto Alegre, RS (Brazil); Gaelzer, R.; Pavan, J. [Instituto de Fisica e Matematica, UFPel, Pelotas, RS (Brazil)
2012-10-15
The statistical mechanical reformulation of weak turbulence theory for unmagnetized plasmas including fully electromagnetic effects was carried out by Yoon [Phys. Plasmas 13, 022302 (2006)]. However, the wave kinetic equation for the transverse wave ignores the nonlinear three-wave interaction that involves two transverse waves and a Langmuir wave, the incoherent analogue of the so-called Raman scattering process, which may account for the third and higher-harmonic plasma emissions. The present paper extends the previous formalism by including such a term.
Unification of electromagnetic, strong and weak interaction
International Nuclear Information System (INIS)
Duong Van Phi; Duong Anh Duc
1993-09-01
The Unification of Electromagnetic, Strong and Weak Interactions is realized in the framework of the Quantum Field Theory, established in an 8-dimensional Unified Space. Two fundamental, spinor and vector field equations are considered. The first of the matter particles and the second is of the gauge particles. Interaction Lagrangians are formed from the external and internal currents and the external and internal vector field operators. Generators of the local gauge transformations are the combinations of the matrices of the first field equation. (author). 15 refs
A possible unification of the electromagnetic and weak interaction with the gravitational field
International Nuclear Information System (INIS)
Tauber, G.E.
1982-01-01
It is suggested that the generators of SL(6,c) containing the Lorentz group SL(2,c) and SU 3 as sub-groups, may be unified with the gravitational field. For that purpose they are combined into a single ''tetrad'' whose completeness relation then yields the gravitational potentials. The appropriate field equations are written down in analogy with previous formulations given by Einstein and others. Upon projecting on the space tetrad the contributions of these internal variables may be isolated and the relevant equations found. (Auth.)
Activation of Signaling Cascades by Weak Extremely Low Frequency Electromagnetic Fields
Directory of Open Access Journals (Sweden)
Einat Kapri-Pardes
2017-10-01
Full Text Available Background/Aims: Results from recent studies suggest that extremely low frequency magnetic fields (ELF-MF interfere with intracellular signaling pathways related to proliferative control. The mitogen-activated protein kinases (MAPKs, central signaling components that regulate essentially all stimulated cellular processes, include the extracellular signal-regulated kinases 1/2 (ERK1/2 that are extremely sensitive to extracellular cues. Anti-phospho-ERK antibodies serve as a readout for ERK1/2 activation and are able to detect minute changes in ERK stimulation. The objective of this study was to explore whether activation of ERK1/2 and other signaling cascades can be used as a readout for responses of a variety of cell types, both transformed and non-transformed, to ELF-MF. Methods: We applied ELF-MF at various field strengths and time periods to eight different cell types with an exposure system housed in a tissue culture incubator and followed the phosphorylation of MAPKs and Akt by western blotting. Results: We found that the phosphorylation of ERK1/2 is increased in response to ELF-MF. However, the phosphorylation of ERK1/2 is likely too low to induce ELF-MF-dependent proliferation or oncogenic transformation. The p38 MAPK was very slightly phosphorylated, but JNK or Akt were not. The effect on ERK1/2 was detected for exposures to ELF-MF strengths as low as 0.15 µT and was maximal at ∼10 µT. We also show that ERK1/2 phosphorylation is blocked by the flavoprotein inhibitor diphenyleneiodonium, indicating that the response to ELF-MF may be exerted via NADP oxidase similar to the phosphorylation of ERK1/2 in response to microwave radiation. Conclusions: Our results further indicate that cells are responsive to ELF-MF at field strengths much lower than previously suspected and that the effect may be mediated by NADP oxidase. However, the small increase in ERK1/2 phosphorylation is probably insufficient to affect proliferation and oncogenic
Gauge theory of weak, electromagnetic and dual electromagnetic interactions
International Nuclear Information System (INIS)
Soln, J.
1980-01-01
An SU 2 x U 1 algebra, in addition to the ordinary electric charge, also establishes the existence of the dual electric charge. This is taken as an indication of the existence of dual electromagnetic interactions in nature. Here, the unification of weak, electromagnetic and dual electromagnetic interactions is performed. The Yang-Mills-type group which contains the electromagnetic, dual electromagnetic and weak currents is SUsub(L,2) x U 1 x U' 1 . The masses of vector mesons are generated through the Higgs-Kibble mechanism. A simple consistency requirement suggests that dual electromagnetism and ordinary electromagnetism have the same strengths, leading the theory to a rather good agreement with experiments. (author)
Theoretical status of weak and electromagnetic interactions
Energy Technology Data Exchange (ETDEWEB)
Pandit, L. K.
1980-07-01
An extended simple version of the Weinberg gauge model is proposed to bring together weak and electromagnetic interactions under one theory. The essential features of the standard SU/sub 2/ (operating on)U/sub 1/ gauge scheme with four leptons and four quark flavours is recalled. Charged-current and neutral current interactions are described. Non-leptonic decays of strange particles are studied. The treatment is extended to 6-leptons and 6-quark flavours. The short comings of this model are discussed. Speculations on the unification of strong, weak and electromagnetic interactions are made.
International Nuclear Information System (INIS)
Mamedov, Z.G.; Rustamova, T.V.
2008-01-01
Investigated effects of unitary influence of weak electromegnetic (EMF) radiations of a range modulated in area alfa of EEG fluctuations on behavior reaction at rats in the test of an open field and conditional reaction. As a source EMF applied the generator of shaking frequency. The results testify to increase of research activity and infringement of processes learning at rats, subjected to influence of EMF directly ahead of updating. The irradiation of animals after procedure of training reflex doe not cause of infringements in behavior during testing. The received data are analyzed from the point of view of infringement under influence of EMF, of an optimum level of emotional making of learning processes, necessary for a correct estimation of the biological importance of unconditional components of activity
Deep inelastic inclusive weak and electromagnetic interactions
International Nuclear Information System (INIS)
Adler, S.L.
1976-01-01
The theory of deep inelastic inclusive interactions is reviewed, emphasizing applications to electromagnetic and weak charged current processes. The following reactions are considered: e + N → e + X, ν + N → μ - + X, anti ν + N → μ + + X where X denotes a summation over all final state hadrons and the ν's are muon neutrinos. After a discussion of scaling, the quark-parton model is invoked to explain the principle experimental features of deep inelastic inclusive reactions
Covariant electromagnetic field lines
Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.
2017-08-01
Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.
Electromagnetic fields and their impacts
Prša, M. A.; Kasaš-Lažetić, K. K.
2018-01-01
The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.
Electromagnetic fields and waves
Iskander, Magdy F
2013-01-01
The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...
Electromagnetic fields in biological systems
National Research Council Canada - National Science Library
Lin, James C
2012-01-01
"Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...
Low frequency electromagnetic field sensor
International Nuclear Information System (INIS)
Zhu Min; Zhou Yan; He Yicheng; Zheng Zhenxing; Liu Sunkun
2000-01-01
The measurement technique of low frequency electromagnetic field is reported. According to this principle, the authors have designed a sensor, which is used to measure the natural electromagnetic field, SLEMP and electromagnetic signals generated by some explosions. The frequency band of this sensor is from 0.08 Hz to 2 MHz
Electromagnetic Fields in Reverberant Environments
Vogt-Ardatjew, Robert Andrzej
2017-01-01
The phenomenon of resonating electromagnetic (EM) fields has been commonly and successfully exploited in reverberation chambers (RC) for the purpose of electromagnetic compatibility (EMC) testing, as well as modeling multipath environments. Although largely successful, the currently used statistical
Casimir apparatuses in a weak gravitational field
DEFF Research Database (Denmark)
Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero
2009-01-01
We review and assess a part of the recent work on Casimir apparatuses in the weak gravitational field of the Earth. For a free, real massless scalar field subject to Dirichlet or Neumann boundary conditions on the parallel plates, the resulting regularized and renormalized energy-momentum tensor...... is covariantly conserved, while the trace anomaly vanishes if the massless field is conformally coupled to gravity. Conformal coupling also ensures a finite Casimir energy and finite values of the pressure upon parallel plates. These results have been extended to an electromagnetic field subject to perfect...... conductor (hence idealized) boundary conditions on parallel plates, by various authors. The regularized and renormalized energy-momentum tensor has beene valuated up to second order in the gravity acceleration. In both the scalar and the electromagnetic case, studied to first order in the gravity...
Electromagnetic fields and life
Presman, A S
1970-01-01
A broad region of the electromagnetic spectrum long assumed to have no influence on living systems under natural conditions has been critically re-examined over the past decade. This spectral region extends from the superhigh radio frequencies, through de creasing frequencies, to and including essentially static electric and magnetic fields. The author of this monograph, A. S. Presman, has reviewed not only the extensive Russian literatur!;"l, but also all most equally comprehensively the non-Russian literature, dealing with biological influences of these fields. Treated also is literature shedding some light on possible theoretical foundations for these phenomena. A substantial, rapidly increasing number of studies in many laboratories and countries has now clearly established bio logical influences which are independent of the theoretically predictable, simple thermal effects. Indeed many of the effects are produced by field strengths very close to those within the natural environment. The author has,...
Electromagnetic fields and cancer
International Nuclear Information System (INIS)
Singh, Neeta; Mathur, R.; Behari, J.
1997-01-01
Several studies in recent years have raised the possibility that exposure to electromagnetic fields (EMFs) may be hazardous to human health, in particular by promotion or initiation of cancer. Recent reports have indicated increased cancer risk from industrial and domestic exposure to environmental ELF fields and to RF fields that are amplitude modulated at ELF. EMF fields have been reported to affect biological systems in various ways, affecting changes in the morphology and or functional behavior of cells, which have been observed in a variety of tissues. Although the mechanism of interaction of EMFs with living cells are not known, it has been proposed that they have multiple effects and can affect cell signalling, including modification of plasma membrane permeability and ion transport. Our findings suggest that EMFs can affect post translational modification of proteins such as poly ADP-ribosylation by epigenetic mechanism and that the effect of EMFs are highly specific regarding both the cell type and the frequency and amplification of the applied field. (author)
Introduction to unification of electromagnetic and weak interactions
International Nuclear Information System (INIS)
Martin, F.
1980-01-01
After reviewing the present status of weak interaction phenomenology we discuss the basic principles of gauge theories. Then we show how Higgs mechanism can give massive quanta of interaction. The so-called 'Weinberg-Salam' model, which unifies electromagnetic and weak interactions, is described. We conclude with a few words on unification with strong interactions and gravity [fr
The classical electromagnetic field
Eyges, Leonard
2010-01-01
This excellent text covers a year's course in advanced theoretical electromagnetism, first introducing theory, then its application. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.
Coherent hybrid electromagnetic field imaging
Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM
2008-08-26
An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.
Electromagnetic Fields Exposure Limits
2018-01-01
Mr. T.P. (Tjerk) KUIPERS Senior Adviser Health Physics Military Healthcare & Occupational Health Expertise Co-ordination Centre Support...Test of Biological Integrity in Dogs Exposed to an Electromagnetic Pulse Environment”, Health Physics 36:159-165, 1979. [11] Baum, S.J., Ekstrom, M.E...Electromagnetic Radiation”, Health Physics 30:161-166, 1976. [12] Baum, S., Skidmore, W. and Ekstrom, M., “Continuous Exposure of Rodents to 108 Pulses
Unifying weak and electromagnetic forces in Weinberg-Salam theory
International Nuclear Information System (INIS)
Savoy, C.A.
1978-01-01
In this introduction to the ideas related to the unified gauge theories of the weak and electromagnetic interactions, we begin with the motivations for its basic principles. Then, the formalism is briefly developed, in particular the so-called Higgs mechanism. The advantages and the consequences of the (non-abelian) gauge invariance are emphasized, together with the experimental tests of the theory [fr
Electromagnetic field sources in radiofrequency
International Nuclear Information System (INIS)
Oliveira, C.; Sebastiao, D.; Ladeira, D.; Antunes, M.; Correia, L.M.
2010-01-01
In the scope of the monIT Project, several measurements were made of electromagnetic fields in Portugal. This paper presents an analysis of the sources operating in the radiofrequency range, resulting from 2429 measurements in 466 locations.
Říhová, Blanka; Etrych, Tomáš; Šírová, Milada; Tomala, Jakub; Ulbrich, Karel; Kovář, Marek
2011-12-01
We have investigated the effects of low-frequency pulsed electromagnetic field (LF-EMF) produced by BEMER device on experimental mouse T-cell lymphoma EL4 growing on conventional and/or athymic (nude) mice. Exposure to EMF-BEMER slowed down the growth of tumor mass and prolonged the survival of experimental animals. The effect was more pronounced in immuno-compromised nude mice compared to conventional ones. Acceleration of tumor growth was never observed. No measurable levels of Hsp 70 or increased levels of specific anti-EL4 antibodies were detected in the serum taken from experimental mice before and at different intervals during the experiment, i.e. before solid tumor appeared, at the time of its aggressive growth, and at the terminal stage of the disease. A significant synergizing antitumor effect was seen when EL4 tumor-bearing mice were simultaneously exposed to EMF-BEMER and treated with suboptimal dose of synthetic HPMA copolymer-based doxorubicin, DOX(HYD)-HPMA. Such a combination may be especially useful for heavily treated patients suffering from advanced tumor and requiring additional aggressive chemotherapy which, however, at that time could represent almost life-threatening way of medication.
Gauge invariant fractional electromagnetic fields
International Nuclear Information System (INIS)
Lazo, Matheus Jatkoske
2011-01-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
Gauge invariant fractional electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Lazo, Matheus Jatkoske, E-mail: matheuslazo@furg.br [Instituto de Matematica, Estatistica e Fisica - FURG, Rio Grande, RS (Brazil)
2011-09-26
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
International Nuclear Information System (INIS)
Castro, J.J.B. de.
1988-12-01
It is presented an investigation of different phenomena that occur in the gyrotron: 1) generation and transport of helical electron beams, 2) interaction of electrons in cyclotron motion with a transverse electric mode in resonant cavities operating near cutoff and 3) electron deposition over the collector active region. An exact ballistic model, which points out the nonlinear attributes of the relativistic equation of electron cyclotron motion and that includes a complex formulation for the longitudinal electric field distribution in weakly irregular waveguides, is used. Physically realizable RF field profiles are studied with the objective of maximizing gyrotron efficiency. For this purpose, an investigation is made of the resonant properties of truncated cones cavities and a new resonator type, with a profile described in terms of a continuous function, is developed. High perpendicular efficiencies (η perpendicular MAX =0.86) have been calculated for interaction at the fundamental 1 cyclotron harmonic and for uniform external magnetic field. A maximum efficiency scaling parameter S has been introduced, by which scaling relations η perpendicular MAX = η perpendicular MAX (S) are applicable to a variety of field profiles. The conceptual design of a 35 GHz gyrotron gives emphasis to selection criteria of operating parameters in compliance with technical constraints and with the requirement of soft self-excited oscillations. The proposed gyrotron operates in the azimuthally symetrical mode TE 021 and is able to produce, with an electronic efficiency of 40%, an output power of 100 kW, in pulses of 20 ms, with a duty factor of 0.04%. (author) [pt
Moving Manifolds in Electromagnetic Fields
Directory of Open Access Journals (Sweden)
David V. Svintradze
2017-08-01
Full Text Available We propose dynamic non-linear equations for moving surfaces in an electromagnetic field. The field is induced by a material body with a boundary of the surface. Correspondingly the potential energy, set by the field at the boundary can be written as an addition of four-potential times four-current to a contraction of the electromagnetic tensor. Proper application of the minimal action principle to the system Lagrangian yields dynamic non-linear equations for moving three dimensional manifolds in electromagnetic fields. The equations in different conditions simplify to Maxwell equations for massless three surfaces, to Euler equations for a dynamic fluid, to magneto-hydrodynamic equations and to the Poisson-Boltzmann equation.
Gauge invariant fractional electromagnetic fields
Lazo, Matheus Jatkoske
2011-09-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.
International symposium on weak and electromagnetic interactions in nuclei
International Nuclear Information System (INIS)
Walecka, J.D.
1989-01-01
The purpose of the symposium is to study the implications of the Standard Model (and its extensions) in the realm of low-energy physics. The atomic nucleus constitutes a laboratory where these questions can be investigated. Low and medium-energy accelerators, reactors and other facilities continue to play an important role in this field. The electroweak sector of the Standard Model has benefited much from these investigations. Weak and electromagnetic interactions are also used to probe nuclear and hadronic structures and also new states of nuclear matter (the strong sector of the Standard Model). These studies cannot be dissociated from the fundamental questions raised in the realm of high-energy physics, astrophysics and cosmology. The symposium is therefore intended to be a meeting ground for low, medium-, and high-energy physicists, astrophysicists and cosmologists, who are tackling common problems in many different ways. That is the summary. By now most of the expert speakers have come, given their talks, and left, I assume that those of you who are still here would like to have some framework in which to put the things you have heard in the last week, and in addition gain some perspective on where we are and where we are going. That is what I am going to try and do in this talk
National Research Council Canada - National Science Library
Bliss, D. F; Holmes, A. M; Wang, X; Ma, N; Iseler, G. W
2005-01-01
...) method utilizing a submerged heater. Electromagnetic stirring can be induced in the gallium-antimonide melt just above the crystal growth interface by applying a weak radial electric current in the melt together with a weak axial magnetic field...
Clinical importance of electromagnetic fields
International Nuclear Information System (INIS)
Ruppe, I.
1993-01-01
The clinical importance of most of the electromagnetic fields is not highly. Mostly they only have thermal effects, produced by energy-absorption. About 1 C increase of whole-body-temperature is valid for tolerable limit. For measuring is used the SAR-Value (Specific Absorption Rate) in W/kg body mass. SAR = 0,8W/kg for the whole body is valid to be safety. For the evaluation of possible other effects of electromagnetic fields the scientific knowledges are till now not sufficient to allow a final statement. That could be impacts of electromagnetic fields to conduction or switch processes in the nerves or brains, in the framwork of cellular regulations, in the genetic reactions are occurig is little, but if is necessary to find it out in scinentific investigations. (orig.) [de
Biological effects of electromagnetic fields
International Nuclear Information System (INIS)
David, E.
1993-01-01
In this generally intelligible article, the author describes at first the physical fundamentals of electromagnetic fields and their basic biological significance and effects for animals and human beings before dealing with the discussion regarding limiting values and dangers. The article treats possible connections with leukaemia as well as ith melatonine production more detailed. (vhe) [de
Electromagnetic Fields and Cancer
... and magnetic fields (1 Hz to 100 kHz) . Health Physics 2010; 99(6):818-36. doi: 10.1097/ ... and health: review of current status of research. Health Physics 2013; 105(6):561-75. [PubMed Abstract] AGNIR. ...
What Are Electromagnetic Fields?
... field causes a compass needle to orient in a North-South direction and is used by birds and fish for navigation. Human-made sources of ... and form the basis of telecommunications as well as radio and television ... In microwaves ovens, we use them to quickly heat food. At ...
Forces in electromagnetic field and gravitational field
Weng, Zihua
2008-01-01
The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in...
Classical field approach to quantum weak measurements.
Dressel, Justin; Bliokh, Konstantin Y; Nori, Franco
2014-03-21
By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that weak measurements probe an effective classical background field that describes the average field configuration in the spacetime region between pre- and postselection boundary conditions. The classical field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion that extremize an effective action. Weak measurements perturb this effective action, producing measurable changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective classical field. This general result explains why these effects appear to be robust for pre- and postselected ensembles, and why they can also be measured using classical field techniques that are not weak for individual excitations of the field.
Electromagnetic Fields and Public Health: Mobile Phones
... waves through a network of fixed antennas called base stations. Radiofrequency waves are electromagnetic fields, and unlike ionizing radiation ... waves through a network of fixed antennas called base stations. Radiofrequency waves are electromagnetic fields, and unlike ionizing radiation ...
A System for Electromagnetic Field Conversion
DEFF Research Database (Denmark)
2003-01-01
A system is provided for conversion of a first electromagnetic field into a desired second electromagnetic field, for example for coupling modes between waveguides or into microstructured waveguides. The system comprises a complex spatial electromagnetic field converter that is positioned...... for reception of at least a part of the first electromagnetic field and that is adapted for conversion of the received field into the desired electromagnetic field, and wherein at least one of the first and second fields matches a mode of a microstructured waveguide. It is an important advantage of the present...
Scalar, electromagnetic, and gravitational fields interaction: Particlelike solutions
International Nuclear Information System (INIS)
Bronnikov, K.A.; Melnikov, V.N.; Shikin, G.N.; Staniukovich, K.P.
1979-01-01
Particlelike static spherically symmetric solutions to massless scalar and electromagnetic field equations combined with gravitational field equations are considered. Two criteria for particlelike solutions are formulated: the strong one (solutions are required to be singularity free) and the weak one (singularities are admitted but the total energy and material field energy should be finite). Exact solutions for the following physical systems are considered with their own gravitational field: (i) linear scalar (minimally coupled or conformal) plus electromagnetic field; (ii) the same fields with a bare mass source in the form of charged incoherent matter distributions; (iii) nonlinear electromagnetic field with an abritrary dependence on the invariant F/sub alphabeta/F/sup alphabeta/; and (iv) directly interacting scalar and electromagnetic fields. Case (i) solutions are not particlelike (except those with horizons, in which static regions formally satisfy the weak criterion). For systems (ii), examples of nonsingular models are constructed, in particular, a model for a particle--antiparticle pair of a Wheeler-handle type, without scalar field and explict electric charges. Besides, a number of limitations upon nonsingular model parameters is indicated. Systems (iii) are proved to violate the strong criterion for any type of nonlinearity but can satisfy the weak criterion (e.g., the Born--Infeld nonlinearity). For systems (iv) some particlelike solutions by the weak criterion are constructed and a regularizing role of gravitation is demonstrated. Finally, an example of a field system satisfying the strong criterion is given
Particle physics in intense electromagnetic fields
International Nuclear Information System (INIS)
Kurilin, A.V.
1999-01-01
The quantum field theory in the presence of classical background electromagnetic field is reviewed giving a pedagogical introduction to the Feynman-Furry method of describing non-perturbative interactions with very strong electromagnetic fields. A particular emphasis is given to the case of the plane-wave electromagnetic field for which the charged particles' wave functions and propagators are presented. Some general features of quantum processes proceeding in the intense electromagnetic background are argued. The possibilities of searching new physics through the investigations of quantum phenomena induced by a strong electromagnetic environment are also discussed
Electromagnetic field induced biological effects in humans.
Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J
2015-01-01
Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF
International Nuclear Information System (INIS)
Tao Fuzhen; He Zhiqiang
1983-01-01
If the effect of gravitational wave on electromagnetic fields is used, and the gravitational wave is detected through the changes in electromagnetic fields, one can expect that the difficulty about the weakness of the signal of mechanical receiver can be avoided. Because of the effect of gravitational wave, the electromagnetic field emits energy, therefore, the energy which is detected will be higher than that by the mechanical receiver. The authors consider the Maxwell equations on the curved spacetime. They give solutions when the detecting fields are a free electromagnetic wave, standing wave and a constant field. (Auth.)
Electromagnetic fields, environment and health
Perrin, Anne
2013-01-01
A good number of false ideas are circulating on the effects of non-ionizing radiations on our health, which can lead to an oversimplification of the issue, to potentially dangerous misconceptions or to misleading data analysis. Health effects may be exaggerated, or on the contrary underplayed. The authors of this work (doctors, engineers and researchers) have endeavored to supply validated and easily understandable scientific information on the electromagnetic fields and their biological and health effects. After a general review of the physics of the waves and a presentation of non-ionizing r
Numerical analysis of electromagnetic fields
Zhou Pei Bai
1993-01-01
Numerical methods for solving boundary value problems have developed rapidly. Knowledge of these methods is important both for engineers and scientists. There are many books published that deal with various approximate methods such as the finite element method, the boundary element method and so on. However, there is no textbook that includes all of these methods. This book is intended to fill this gap. The book is designed to be suitable for graduate students in engineering science, for senior undergraduate students as well as for scientists and engineers who are interested in electromagnetic fields. Objective Numerical calculation is the combination of mathematical methods and field theory. A great number of mathematical concepts, principles and techniques are discussed and many computational techniques are considered in dealing with practical problems. The purpose of this book is to provide students with a solid background in numerical analysis of the field problems. The book emphasizes the basic theories ...
Propagation of electromagnetic waves in a weakly ionized dusty plasma
International Nuclear Information System (INIS)
Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Liu, Yaoze; Gao, Junying; Zhou, Zhongxiang; Sun, Xiudong; Li, Hui; Wu, Jian; Pu, Shaozhi
2015-01-01
Propagation properties of electromagnetic (EM) waves in weakly ionized dusty plasmas are the subject of this study. Dielectric relation for EM waves propagating at a weakly ionized dusty plasma is derived based on the Boltzmann distribution law while considering the collision and charging effects of dust grains. The propagation properties of EM energy in dusty plasma of rocket exhaust are numerically calculated and studied, utilizing the parameters of rocket exhaust plasma. Results indicate that increase of dust radius and density enhance the reflection and absorption coefficient. High dust radius and density make the wave hardly transmit through the dusty plasmas. Interaction enhancements between wave and dusty plasmas are developed through effective collision frequency improvements. Numerical results coincide with observed results by indicating that GHz band wave communication is effected by dusty plasma as the presence of dust grains significantly affect propagation of EM waves in the dusty plasmas. The results are helpful to analyze the effect of dust in plasmas and also provide a theoretical basis for the experiments. (paper)
Electromagnetic field effects in explosives
Tasker, Douglas
2009-06-01
Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.
Electromagnetic fields in stratified media
Li, Kai
2009-01-01
Dealing with an important branch of electromagnetic theory with many useful applications in subsurface communication, radar, and geophysical prospecting and diagnostics, this book introduces electromagnetic theory and wave propagation in complex media.
Electromagnetic fields in cased borehole
International Nuclear Information System (INIS)
Lee, Ki Ha; Kim, Hee Joon; Uchida, Toshihiro
2001-01-01
Borehole electromagnetic (EM) measurements, using fiberglass-cased boreholes, have proven useful in oil field reservoir characterization and process monitoring (Wilt et al., 1995). It has been presumed that these measurements would be impossible in steel-cased wells due to the very large EM attenuation and phase shifts. Recent laboratory and field studies have indicated that detection of EM signals through steel casing should be possible at low frequencies, and that these data provide a reasonable conductivity image at a useful scale. Thus, we see an increased application of this technique to mature oilfields, and an immediate extension to geothermal industry as well. Along with the field experiments numerical model studies have been carried out for analyzing the effect of steel casing to the EM fields. The model used to be an infinitely long uniform casing embedded in a homogeneous whole space. Nevertheless, the results indicated that the formation signal could be accurately recovered if the casing characteristics were independently known (Becker et al., 1998; Lee el al., 1998). Real steel-cased wells are much more complex than the simple laboratory models used in work to date. The purpose of this study is to develop efficient numerical methods for analyzing EM fields in realistic settings, and to evaluate the potential application of EM technologies to cross-borehole and single-hole environment for reservoir characterization and monitoring
Casimir effect of two conducting parallel plates in a general weak gravitational field
Energy Technology Data Exchange (ETDEWEB)
Nazari, Borzoo [University of Tehran, Faculty of Engineering Science, College of Engineering, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)
2015-10-15
We calculate the finite vacuum energy density of the scalar and electromagnetic fields inside a Casimir apparatus made up of two conducting parallel plates in a general weak gravitational field. The metric of the weak gravitational field has a small deviation from flat spacetime inside the apparatus, and we find it by expanding the metric in terms of small parameters of the weak background. We show that the metric found can be transformed via a gauge transformation to the Fermi metric. We solve the Klein-Gordon equation exactly and find mode frequencies in Fermi spacetime. Using the fact that the electromagnetic field can be represented by two scalar fields in the Fermi spacetime, we find general formulas for the energy density and mode frequencies of the electromagnetic field. Some well-known weak backgrounds are examined and consistency of the results with the literature is shown. (orig.)
Biological effects of electromagnetic fields
International Nuclear Information System (INIS)
Gabriel, C.
1996-01-01
The effects of electromagnetic (em) fields on biological systems were first observed and exploited well over a century ago. Concern over the possible health hazards of human exposure to such fields developed much later. It is now well known that excessive exposure to em fields may have in undesirable biological consequences. Standards were introduced to determine what constitute an excessive exposure and how to avoid it. Current concern over the issue of hazards stems mainly from recent epidemiological studies of exposed populations and also from the results of laboratory experiments in which whole animals are exposed in vivo or tissue and cell cultures exposed in vitro to low levels of irradiation. The underlying fear is the possibility of a causal relationship between chronic exposure to low field levels and some forms of cancer. So far the evidence does not add up to a firm statement on the matter. At present it is not known how and at what level, if at all, can these exposure be harmful to human health. This state of affair does not provide a basis for incorporating the outcome of such research in exposure standards. This paper will give a brief overview of the research in this field and how it is evaluated for the purpose of producing scientifically based standards. The emphasis will be on the physical, biophysical and biological mechanisms implicated in the interaction between em fields and biological systems. Understanding such mechanisms leads not only to a more accurate evaluation of their health implications but also to their optimal utilization, under controlled conditions, in biomedical applications. (author)
The Quasi-Static Electromagnetic Approximation for Weakly Conducting Media
Heubrandtner, T
2002-01-01
In a conducting dielectric charge and electric field decay with a time constant tau_R = \\varepsilon/\\sigma. In a weakly conducting medium, as e.g. glass or melamine-phenolic laminate in use in RPC's, this time is about 10^{-3} s; so it is long as compared to the time the charge cloud needs to move through the gap and to the time the signal needs to propagate through a dielectric to the electrode. A quasi-static theory to deal with transient phenomena in weakly conducting media has been developed in Haus and Melcher (1989), Fano, Chu and Adler (1963); it simplifies the analysis considerably since it requires only the solution of a scalar diffusion-type equations in place of the time-dependent Maxwell equations. This little known theory is applied to treat the generation of signals in simple models for chambers with such materials.
Towards weakly constrained double field theory
Directory of Open Access Journals (Sweden)
Kanghoon Lee
2016-08-01
Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.
Medical applications of electromagnetic fields
Lai, Henry C.; Singh, Narendra P.
2010-04-01
In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.
Medical applications of electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Lai, Henry C; Singh, Narendra P, E-mail: hlai@u.washington.ed [Department of Bioengineering, University of Washington, Seattle, WA 98195-5061 (United States)
2010-04-15
In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.
Medical applications of electromagnetic fields
International Nuclear Information System (INIS)
Lai, Henry C; Singh, Narendra P
2010-01-01
In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.
Solution of the Bethe-Salpeter equation in the field of a plane electromagnetic wave
International Nuclear Information System (INIS)
Starostin, V.S.
1988-01-01
A solution is obtained of the Bethe--Salpeter equation for positronium in the field of linearly and circularly polarized plane electromagnetic waves at frequencies much higher than atomic. It is not assumed that the field is weak
Weak field approximation of new general relativity
International Nuclear Information System (INIS)
Fukui, Masayasu; Masukawa, Junnichi
1985-01-01
In the weak field approximation, gravitational field equations of new general relativity with arbitrary parameters are examined. Assuming a conservation law delta sup(μ)T sub(μν) = 0 of the energy-momentum tensor T sub(μν) for matter fields in addition to the usual one delta sup(ν)T sub(μν) = 0, we show that the linearized gravitational field equations are decomposed into equations for a Lorentz scalar field and symmetric and antisymmetric Lorentz tensor fields. (author)
Genetic effects of nonionizing electromagnetic fields
International Nuclear Information System (INIS)
Lai, Henry
2001-01-01
Due to the increased use of electricity and wireless communication devices, there is a concern on whether exposure to nonionizing electromagnetic fields (50/60 Hz fields and radiofrequency radiation) can lead to harmful health effects, particularly, genetic effects and cancer development. This presentation will review recent research on genetic effects of power line frequency and radiofrequency electromagnetic fields. Even though the mechanism of interaction is still unknown, there is increasing evidence that these electromagnetic fields at low intensities can cause genetic damage in cells. There is also evidence suggesting that the effects are caused by oxidative stress. (author)
Interactions between electromagnetic fields and matter
Steiner, Karl-Heinz
2013-01-01
Interactions between Electromagnetic Fields and Matter deals with the principles and methods that can amplify electromagnetic fields from very low levels of signals. This book discusses how electromagnetic fields can be produced, amplified, modulated, or rectified from very low levels to enable these for application in communication systems. This text also describes the properties of matter and some phenomenological considerations to the reactions of matter when an action of external fields results in a polarization of the particle system and changes the bonding forces existing in the matter.
Electromagnetic-gravitational conversion cross sections in external electromagnetic fields
International Nuclear Information System (INIS)
Hoang Ngoc Long; Dang Van Soa; Tuan Tran, A.
1994-09-01
The classical processes: the conversion of photons into gravitons in the static electromagnetic fields are considered by using Feynman perturbation techniques. The differential cross sections are presented for the conversion in the electric field of the flat condenser and the magnetic field of the solenoid. A numerical evaluation shows that the cross sections may have the observable value in the present technical scenario. (author). 11 refs
Nanomechanical electric and electromagnetic field sensor
Datskos, Panagiotis George; Lavrik, Nickolay
2015-03-24
The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.
Biological effects of electromagnetic fields
African Journals Online (AJOL)
2012-02-28
Feb 28, 2012 ... radiofrequency emitting sources are radars, mobile phones and their base stations, ... and industrial applications, could have effect on living organisms. ...... Hazards of Electromagnetic Pollution (Msc Thesis). Department of ...
Electromagnetic Field Theory A Collection of Problems
Mrozynski, Gerd
2013-01-01
After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems. Content Maxwell’s Equations - Electrostatic Fields - Stationary Current Distributions – Magnetic Field of Stationary Currents – Quasi Stationary Fields: Eddy Currents - Electromagnetic Waves Target Groups Advanced Graduate Students in Electrical Engineering, Physics, and related Courses Engineers and Physicists Authors Professor Dr.-Ing. Gerd Mrozynski...
Electromagnetic fields: the new European directive
International Nuclear Information System (INIS)
Moureaux, Patrick
2014-01-01
A European directive is specifying the thresholds for exposure to electromagnetic fields. The risk assessment approach proposed should enable worker health to be taken better into account. An overview of the new provisions. (author)
Electromagnetic field computation by network methods
Felsen, Leopold B; Russer, Peter
2009-01-01
This monograph proposes a systematic and rigorous treatment of electromagnetic field representations in complex structures. The book presents new strong models by combining important computational methods. This is the last book of the late Leopold Felsen.
International Nuclear Information System (INIS)
Tagirov, Eh.A.
1985-01-01
A model of resonance parametric transformation of a gravitational wave to electromagnetic one is considered. Two plane monochromatic waves: a strong electromagnetic and weak gravitational - interacting in a medium generate at difference and sum frequencies an electromagnetic wave in a direction determined with the condition of spatial wave synchronism. Rarefied cold gas or beam of elementary emitters (''molecules'') serve as a medium model. Coefficients of parametric transformation have been determined
Electromagnetically induced transparency with quantized fields in optocavity mechanics
International Nuclear Information System (INIS)
Huang Sumei; Agarwal, G. S.
2011-01-01
We report electromagnetically induced transparency (EIT) using quantized fields in optomechanical systems. The weak probe field is a narrowband squeezed field. We present a homodyne detection of EIT in the output quantum field. We find that the EIT dip exists even though the photon number in the squeezed vacuum is at the single-photon level. The EIT with quantized fields can be seen even at temperatures on the order of 100 mK, thus paving the way for using optomechanical systems as memory elements.
Narrow field electromagnetic sensor system and method
International Nuclear Information System (INIS)
McEwan, T.E.
1996-01-01
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs
Wireless data transmission from inside electromagnetic fields.
Huertas, José Ignacio; Barraza, Roberto; Echeverry, Julian Mauricio
2010-01-01
This paper describes analytical and experimental work developed to evaluate the effects of the electromagnetic fields produced by high-voltage lines (400 kV) on wireless data transmission at the 900MHz band. In this work the source of the data transmission is located inside the electromagnetic field and the reception station is located at different distances from the power lines. Different atmospheric conditions are considered.
Superconductor in a weak static gravitational field
Energy Technology Data Exchange (ETDEWEB)
Ummarino, Giovanni Alberto [Dipartimento DISAT, Politecnico di Torino, Turin (Italy); National Research Nuclear University MEPhI-Moscow Engineering Physics Institute, Moscow (Russian Federation); Gallerati, Antonio [Dipartimento DISAT, Politecnico di Torino, Turin (Italy)
2017-08-15
We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T{sub c} superconductor with a classical low-T{sub c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field. (orig.)
Weak-electromagnetic interference in polarized eD scattering
International Nuclear Information System (INIS)
Prescott, C.Y.
1992-09-01
Observation of parity non-conservation in deep-inelastic scattering of polarized electrons from deuterium was reported in an experiment at SLAC in 1978. The events at SLAC and elsewhere leading to the successful search for parity non-conservation in the electromagnetic processes are described
INVESTIGATION OF ELECTROMAGNETIC FIELDS IN RESIDENTIAL AREAS
Directory of Open Access Journals (Sweden)
Dušan MEDVEĎ
2017-09-01
Full Text Available This article is devoted to investigation of impact of electromagnetic fields around the electrical equipment used in a residential area and their impact on the human body. This paper was based on sets of measurements of magnetic induction B with magnetometer and on computational simulations in ANSYS for particular appliances often used in household. The results from measurements and simulations led to setting out the recommendations for practical action in the form of elimination of harmful electromagnetic radiation.
International Nuclear Information System (INIS)
2009-01-01
The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, X-ray microscope, application to medical and information communication technologies, such as interaction between material and nanometer electromagnetic waves of radiated light and X-ray, interaction between microwaves and particle beams, theory and design of high-frequency waveguides for resonator and accelerator, from January 2003 to December 2005. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and Cherenkov radiation, Kyushu synchrotron light source and its technology, nanometer electromagnetic fields in optical region, process of interaction between evanescent waves and near-field light, orthogonal relation of electromagnetic fields including evanescent waves in dispersive dielectrics, optical amplification using electron beam, nanometer electromagnetic fields in focusing waveguide lens device with curved facets, electromagnetic fields in nanometer photonic crystal waveguide consisting of atoms, X-ray scattering and absorption I bio-material for image diagnosis. (author)
Electromagnetic fields in fractal continua
Energy Technology Data Exchange (ETDEWEB)
Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo “Mecánica Fractal”, Instituto Politécnico Nacional, México D.F., 07738 Mexico (Mexico); Mena, Baltasar [Instituto de Ingeniería, Universidad Nacional Autónoma de México, México D.F. (Mexico); Patiño, Julián [Grupo “Mecánica Fractal”, Instituto Politécnico Nacional, México D.F., 07738 Mexico (Mexico); Morales, Daniel [Instituto Mexicano del Petróleo, México D.F., 07730 Mexico (Mexico)
2013-04-01
Fractal continuum electrodynamics is developed on the basis of a model of three-dimensional continuum Φ{sub D}{sup 3}⊂E{sup 3} with a fractal metric. The generalized forms of Maxwell equations are derived employing the local fractional vector calculus related to the Hausdorff derivative. The difference between the fractal continuum electrodynamics based on the fractal metric of continua with Euclidean topology and the electrodynamics in fractional space F{sup α} accounting the fractal topology of continuum with the Euclidean metric is outlined. Some electromagnetic phenomena in fractal media associated with their fractal time and space metrics are discussed.
Quantum processes in an intense electromagnetic field
International Nuclear Information System (INIS)
Gitman, D.M.
1976-01-01
An approach is proposed to the consideration of processes in an external electromagnetic field which produces real pairs. Interaction with the field is taken into account precisely with the aid of solutions of the Dirac's equation. Processes of arbitrary order with respect to electron-photon interaction are considered
Introduction to gauge theories of the strong, weak, and electromagnetic interactions
International Nuclear Information System (INIS)
Quigg, C.
1980-07-01
The plan of these notes is as follows. Chapter 1 is devoted to a brief evocative review of current beliefs and prejudices that form the context for the discussion to follow. The idea of Gauge Invariance is introduced in Chapter 2, and the connection between conservation laws and symmetries of the Lagrangian is recalled. Non-Abelian gauge field theories are constructed in Chapter 3, by analogy with the familiar case of electromagnetism. The Yang-Mills theory based upon isospin symmetry is constructed explicitly, and the generalization is made to other gauge groups. Chapter 4 is concerned with spontaneous symmetry breaking and the phenomena that occur in the presence or absence of local gauge symmetries. The existence of massless scalar fields (Goldstone particles) and their metamorphosis by means of the Higgs mechanism are illustrated by simple examples. The Weinberg-Salam model is presented in Chapter 5, and a brief resume of applications to experiment is given. Quantum Chromodynamics, the gauge theory of colored quarks and gluons, is developed in Chapter 6. Asymptotic freedom is derived schematically, and a few simple applications of perturbative QCD ae exhibited. Details of the conjectured confinement mechanism are omitted. The strategy of grand unified theories of the strong, weak, and electromagnetic interactions is laid out in Chapter 7. Some properties and consequences of the minimal unifying group SU(5) are presented, and the gauge hierarchy problem is introduced in passing. The final chapter contains an essay on the current outlook: aspirations, unanswered questions, and bold scenarios
Charged particles in external electromagnetic fields
International Nuclear Information System (INIS)
Giovannini, N.P.D.
1976-01-01
The present study contains a general theoretical group analysis of the problem of a charged massive particle moving in an (arbitrary) classical external electromagnetic field. This analysis is essentially based on the space-time symmetry properties of e.m. fields and e.m. field equations, as well as the fact that the considered equations of motion depend on the field via a potential
Differential form representation of stochastic electromagnetic fields
Directory of Open Access Journals (Sweden)
M. Haider
2017-09-01
Full Text Available In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.
Differential form representation of stochastic electromagnetic fields
Haider, Michael; Russer, Johannes A.
2017-09-01
In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.
Electromagnetic multipole fields of neutron stars
International Nuclear Information System (INIS)
Roberts, W.J.
1979-01-01
There is now indisputable evidence that some pulsars possess space velocities so high that internal asymmetries in the dynamics of their formation are strongly implied. We develop in this paper a complete formalism for the calculation of the only such mechanism that has yet been subjected to quantitative analysis: electromagnetic recoil radiation. To make the general problem tractable without doing violence to the physics, we have made the following simplifying assumptions: (1) the magnetic induction B in athin shell enclosing the surface can be satisfactorily approximated by a sum of vacuum multipole fields; (2) the star is spherical, and all parts are in good electrical contact; (3) vertical-bar Ω X r vertical-barvery-much-less-thanc everywhere within the star; and (4) the star is surrounded by a vacuum. Our qualitative conclusions hold even if these assumptions are violated, but corrections to our quantitative results required by a relaxation of our assumptions are not easily computed.Given this simple electrodynamic model of a neutron star, we solve the following problems: (1) What electric multipoles are induced by each magnetic multipole. (2) What is the general formula for the recoil produced by the projection on the rotational axis of a net linear momentum flux produced by the rotation of any two magnetic multipoles. (3) What is the set of centered multipoles that represents the field of an arbitrary off-centered multipole. We use these general results go perform a detailed analysis of the linear momentum radiated by an off-centered dipole. We find a force larger by a factor 6 than that obtained for the special case treated in the best previous calculation. In spite of this considerable increase in the computed strengrh of the effect, we still believe it to be too weak to produce the large space velocities observed for pulsars. For the mechanism to be effective, the pulsar must be born rotating near the breakup velocity
Ke, Yin-Lung; Chang, Fu-Yu; Chen, Ming-Kun; Li, Shun-Lai; Jang, Ling-Sheng
2013-01-01
Energy medicine (EM) provides a new medical choice for patients, and its advantages are the noninvasive detection and nondrug treatment. An electromagnetic signal, a kind of EM, induced from antibiotic coupling with weak, extremely low-frequency pulsed electromagnetic fields (PEMFs) is utilized for investigating the growth speed of Escherichia coli (E. coli). PEMFs are produced by solenoidal coils for coupling the electromagnetic signal of antibiotics (penicillin). The growth retardation rate (GRR) of E. coli is used to investigate the efficacy of the electromagnetic signal of antibiotics. The E. coli is cultivated in the exposure of PEMFs coupling with the electromagnetic signal of antibiotics. The maximum GRR of PEMFs with and without the electromagnetic signal of antibiotics on the growth of E. coli cells in the logarithmic is 17.4 and 9.08%, respectively. The electromagnetic signal of antibiotics is successfully coupled by the electromagnetic signal coupling instrument to affect the growth of E. coli. In addition, the retardation effect on E. coli growth can be improved of by changing the carrier frequency of PEMFs coupling with the electromagnetic signal of antibiotics. GRR caused by the electromagnetic signal of antibiotics can be fixed by a different carrier frequency in a different phase of E. coli growth.
Nonlinear propagation of intense electromagnetic waves in weakly-ionized plasmas
International Nuclear Information System (INIS)
Shukla, P.K.
1993-01-01
The nonlinear propagation of intense electromagnetic waves in weakly-ionized plasmas is considered. Stimulated scattering mechanisms involving electromagnetic and acoustic waves in an unmagnetized plasma are investigated. The growth rate and threshold for three-wave decay interactions as well as modulational and filamentation instabilities are presented. Furthermore, the electromagnetic wave modulation theory is generalized for weakly ionized collisional magnetoplasmas. Here, the radiation envelope is generally governed by a nonlinear Schroedinger equation. Accounting for the dependence of the attachment frequency on the radiation intensity, ponderomotive force, as well as the differential Joule heating nonlinearity, the authors derive the equations for the nonthermal electron density and temperature perturbations. The various nonlinear terms in the electron motion are compared. The problems of self-focusing and wave localization are discussed. The relevance of the investigation to ionospheric modification by powerful electromagnetic waves is pointed out
Atom collisions in a strong electromagnetic field
International Nuclear Information System (INIS)
Smirnov, V.S.; Chaplik, A.V.
1976-01-01
It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed
Beta decay and other processes in strong electromagnetic fields
International Nuclear Information System (INIS)
Akhmedov, E. Kh.
2011-01-01
We consider effects of the fields of strong electromagnetic waves on various characteristics of quantum processes. After a qualitative discussion of the effects of external fields on the energy spectra and angular distributions of the final-state particles as well as on the total probabilities of the processes (such as decay rates and total cross sections), we present a simple method of calculating the total probabilities of processes with production of nonrelativistic charged particles. Using nuclear β decay as an example, we study the weak- and strong-field limits, as well as the field-induced β decay of nuclei stable in the absence of the external fields, both in the tunneling and multiphoton regimes. We also consider the possibility of accelerating forbidden nuclear β decays by lifting the forbiddeness due to the interaction of the parent or daughter nuclei with the field of a strong electromagnetic wave. It is shown that for currently attainable electromagnetic fields all effects on total β-decay rates are unobservably small.
Health protection guidelines for electromagnetic field exposures
International Nuclear Information System (INIS)
Taki, Masao
1999-01-01
In order to protect human health from excessive exposure to electromagnetic fields safety guidelines have been established by national and international organizations. The International Commission on Nonionization Radiation Protection is one of these organizations, whose guidelines are briefly regarded as typical. The activities on this issue in various countries are reviewed. Recent situations and the problems still unsolved are also discussed. (author)
Simple economical stabilizer for electromagnet field
International Nuclear Information System (INIS)
Vas'kov, O.S.; Domanevskij, D.S.; Zinkevich, Yu.V.; Soroka, E.V.; Shavel', N.N.
1988-01-01
Field stabilizer within high-power electromagnet gap at direct current up to 75 A and up to 100 V voltage in the winding is described. 15 parallel-connected KT 945A transistors, operation mode of which allows to do without radiators and forced cooling are used as controlling element of pulsed stabilizer
At the heart of the waves - Electromagnetic fields in question
International Nuclear Information System (INIS)
Ndagijimana, Fabien; Gaudaire, Francois
2013-01-01
This document briefly presents a book in which the author describes what an electromagnetic wave is, the use of electromagnetic waves, how an information is transmitted by means of an electromagnetic wave, what wave modulation is, what multiplexing is, what the characteristics of an antenna are, how waves propagate, how electromagnetic shielding works, what the CEM (electromagnetic compatibility) is, and how a cellular phone network works, in the framework of electromagnetic fields risk assessment
Weak lensing galaxy cluster field reconstruction
Jullo, E.; Pires, S.; Jauzac, M.; Kneib, J.-P.
2014-02-01
In this paper, we compare three methods to reconstruct galaxy cluster density fields with weak lensing data. The first method called FLens integrates an inpainting concept to invert the shear field with possible gaps, and a multi-scale entropy denoising procedure to remove the noise contained in the final reconstruction, that arises mostly from the random intrinsic shape of the galaxies. The second and third methods are based on a model of the density field made of a multi-scale grid of radial basis functions. In one case, the model parameters are computed with a linear inversion involving a singular value decomposition (SVD). In the other case, the model parameters are estimated using a Bayesian Monte Carlo Markov Chain optimization implemented in the lensing software LENSTOOL. Methods are compared on simulated data with varying galaxy density fields. We pay particular attention to the errors estimated with resampling. We find the multi-scale grid model optimized with Monte Carlo Markov Chain to provide the best results, but at high computational cost, especially when considering resampling. The SVD method is much faster but yields noisy maps, although this can be mitigated with resampling. The FLens method is a good compromise with fast computation, high signal-to-noise ratio reconstruction, but lower resolution maps. All three methods are applied to the MACS J0717+3745 galaxy cluster field, and reveal the filamentary structure discovered in Jauzac et al. We conclude that sensitive priors can help to get high signal-to-noise ratio, and unbiased reconstructions.
International Nuclear Information System (INIS)
Muminov, A.T.
2004-01-01
Full text: As it shown in the work [1,2], interaction of electromagnetic wave with rotating cylindrical shell of conductor leads to an interesting phenomenon of energy transmission from rotating body to the wave. We study influence of the gravitational field of the string on the process of interaction of electromagnetic waves with infinitesimally thin conducting cylindrical shell. Since in the outer space and inside the shell electromagnetic field satisfies source free Maxwell equations we start with constructing the most general solutions of this equation. Then we match the fields on the cylinder with account of boundary conditions on it. Matching the fields gives expressions for reflection factors of cylindrical waves for two cases of polarization. The reflection factors for distinct wave polarizations show the ratio of outgoing energy flux to in going one. Curved cylindrical symmetric space-time with weakly gravitating string-like source is described by static metric: δs 2 = f(r)δt 2 - h(r)(δz 2 + δr 2 ) - l(r)δψ 2 ; f(r) = r ε ; h(r) = r -ε ; l(r) = r 2 /f(r). Which corresponds to low line density of mass ε on the string. The metric is particular case of Lewis metric [3,4] with zero angular momentum of the string and its weak gravity. The boundary value problem for electromagnetic waves interaction with thin conducting rotating cylindrical shell in static cylindrical metric with weakly gravitating string has been solved analytically. It is found that character of dependence of the factors on Ω at ω R<<1 and ΩR<<1 approximation remains the same as in flat space-time ε =0. Analysis of expressions for the reflection factors in frames of considered approximation has been done
Electromagnetic fields in an expanding universe
International Nuclear Information System (INIS)
Hogan, P.A.; Ellis, G.F.R.
1989-01-01
The asymptotic form of the electromagnetic field due to a bounded distribution of charge current in an open, expanding Friedmann--Lemaitre--Robertson--Walker universe is studied. The technique used is to first describe a mechanism for passing from a solution of Maxwell's vacuum field equations on Minkowskian space-time to a solution of Maxwell's field equations in a region free of charge current on the cosmological background. This is tested on the field of an accelerating point charge and then applied to the rigorous treatment of the asymptotic electromagnetic field of a bounded charge-current distribution in Minkowskian space-time given by Goldberg and Kerr [J. Math. Phys. 5, 172 (1964)]. A ''peeling expansion'' of the electromagnetic field in the expanding universe is obtained in inverse powers of a parameter that is proportional to the area distance along the generators of future null cones with vertices on the world line of a fundamental observer. The algebraic character of the two leading coefficients in the expansion is the same as that of the two leading coefficients in the Goldberg--Kerr expansion in Minkowskian space-time. In addition, bounds can be calculated, at any instant in the history of a fundamental observer, on all the coefficients in the peeling expansion, as a consequence of the evaluation of such bounds by Goldberg and Kerr in the case treated by them
Electromagnetic fields - introduction to relevant issues
International Nuclear Information System (INIS)
Brueggemeyer, H.; Csicsaky, M.
1993-01-01
This introductory paper surveys potential sources of electric magnetic, and electro-magnetic fields. Various cases are discussed to exemplify the total frequency range: nuclear magnetic resonance tomography, high-voltage transmission lines, transformer stations, effect lighting balls, military transmitters, transmitter towers of the Postal Services and other operators, mobile radiotelephone equipment, large broadcasting transmitters, radar radiation, high-frequency heat therapy. There is evidence suggesting that electric, magnetic and electro-magnetic fields may possibly represent a certain nuisance or health hazard even at field strength occuring in equipment used for every-day-life purposes, with an emphasis on their possible actions and effects in children and adolescents. The author discusses, in conclusion, the aerial equipment ordinance issued by Lower Saxony. (Uhe) [de
Radiofrequency Electromagnetic Field Map of Timisoara
Stefu, N.; Solyom, I.; Arama, A.
2015-12-01
There are many electromagnetic field (EMF) sources nowadays acting simultaneously, especially in urban areas, making the theoretical estimation of electromagnetic power at ground level very difficult. This paper reports on EMF maps built with measurements collected in Timisoara, at various radiofrequencies. A grid of 15×15 squares was built (approximate resolution 400m x 400m) and measurements of the average and maximum values of the electric field E, magnetic field H and total power density S at 0.9, 1.8 and 2.4 GHz were collected in every node of the grid. Positions of the nodes in terms of latitude and longitude were also collected. Maps were built presenting the spatial distribution of the measured quantities over Timisoara. Potential influences of EMF on public health are discussed.
Ionization in a quantized electromagnetic field
International Nuclear Information System (INIS)
Gonoskov, I. A.; Vugalter, G. A.; Mironov, V. A.
2007-01-01
An analytical expression for a matrix element of the transition from a bound state of an electron in an atom to continuum states is obtained by solving the problem of interaction of the electron with a quantized electromagnetic field. This expression is used to derive formulas for the photoelectron spectrum and the rate of ionization of the simplest model atomic system upon absorption of an arbitrary number of photons. The expressions derived are analyzed and compared with the corresponding relationships obtained via other approaches. It is demonstrated that there are differences as compared to the case of the classical field. In particular, the photoelectron spectrum exhibits dips due to the destructive interference of the transition amplitudes in the quantized electromagnetic field
PROBABILISTIC APPROACH OF STABILIZED ELECTROMAGNETIC FIELD EFFECTS
Directory of Open Access Journals (Sweden)
FELEA. I.
2017-09-01
Full Text Available The effects of the omnipresence of the electromagnetic field are certain and recognized. Assessing as accurately as possible these effects, which characterize random phenomena require the use of statistical-probabilistic calculation. This paper aims at assessing the probability of exceeding the admissible values of the characteristic sizes of the electromagnetic field - magnetic induction and electric field strength. The first part justifies the need for concern and specifies how to approach it. The mathematical model of approach and treatment is presented in the second part of the paper and the results obtained with reference to 14 power stations are synthesized in the third part. In the last part, are formulated the conclusions of the evaluations.
Coherent polarization driven by external electromagnetic fields
International Nuclear Information System (INIS)
Apostol, M.; Ganciu, M.
2010-01-01
The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.
Calibration and uncertainty in electromagnetic fields measuring methods
International Nuclear Information System (INIS)
Anglesio, L.; Crotti, G.; Borsero, M.; Vizio, G.
1999-01-01
Calibration and reliability in electromagnetic field measuring methods are assured by calibration of measuring instruments. In this work are illustrated systems for generation of electromagnetic fields at low and high frequency, calibration standard and accuracy [it
Topology optimization of nanoparticles for localized electromagnetic field enhancement
DEFF Research Database (Denmark)
Christiansen, Rasmus Ellebæk; Vester-Petersen, Joakim; Madsen, Søren Peder
2017-01-01
We consider the design of individual and periodic arrangements of metal or semiconductor nanoparticles for localized electromagnetic field enhancement utilizing a topology optimization based numerical framework as the design tool. We aim at maximizing a function of the electromagnetic field...
Critical time delay of the pineal melatonin rhythm in humans due to weak electromagnetic exposure.
Halgamuge, Malka N
2013-08-01
Electromagnetic fields (EMFs) can increase free radicals, activate the stress response and alter enzyme reactions. Intracellular signalling is mediated by free radicals and enzyme kinetics is affected by radical pair recombination rates. The magnetic field component of an external EMF can delay the "recombination rate" of free radical pairs. Magnetic fields thus increase radical life-times in biological systems. Although measured in nanoseconds, this extra time increases the potential to do more damage. Melatonin regulates the body's sleep-wake cycle or circadian rhythm. The World Health Organization (WHO) has confirmed that prolonged alterations in sleep patterns suppress the body's ability to make melatonin. Considerable cancer rates have been attributed to the reduction of melatonin production as a result of jet lag and night shift work. In this study, changes in circadian rhythm and melatonin concentration are observed due to the external perturbation of chemical reaction rates. We further analyze the pineal melatonin rhythm and investigate the critical time delay or maturation time of radical pair recombination rates, exploring the impact of the mRNA degradation rate on the critical time delay. The results show that significant melatonin interruption and changes to the circadian rhythm occur due to the perturbation of chemical reaction rates, as also reported in previous studies. The results also show the influence of the mRNA degradation rate on the circadian rhythm's critical time delay or maturation time. The results support the hypothesis that exposure to weak EMFs via melatonin disruption can adversely affect human health.
Introduction to the gauge theories unifying the electromagnetic and weak interactions
International Nuclear Information System (INIS)
Pham Xuan-Yem.
An elementary introduction to unified gauge theories of electromagnetic and weak interactions is presented. The Goldstone theorem and the Higgs mechanism are discussed. The Weinberg-Salam model as well as the Georgi-Glashow ones are explained in details. One emphasizes on the experimental consequences of the Weinberg-Salam model (neutral current) [fr
International Nuclear Information System (INIS)
Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin
2010-01-01
In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.
Effect of electromagnetic fields on the bacteria bioluminescent activity
International Nuclear Information System (INIS)
Berzhanskaya, L.Yu.; Berzhanskij, V.N.; Beloplotova, O.Yu.
1995-01-01
The effect of electromagnetic field with frequency from 36.2 to 55.9 GHz on bioluminescence activity of bacterium were investigated. Electromagnetic field results in decrease of bioluminescence, which depends from frequency. The electromagnetic field adaptation time is higher of intrinsic time parameters of bioluminescence system. The effect has nonthermal nature. It is suggested that electromagnetic field influence connects with structure rearrangements near cell emitter. 8 refs.; 3 figs
Predictions of baryon form factors for the electromagnetic and weak interaction
International Nuclear Information System (INIS)
Kiehlmann, H.D.
1978-05-01
The electromagnetic and weak form factors of the baryon matrix elements (with B the nucleon or the Λ(1232)-resonance) are determined via sumrules by the experimentally known form factors of the nucleon matrix element for momentum transfers 0 2 2 . The operator Jμ denotes either the electromagnetic current or the weak hypercharge-conserving current of the I. class. The sumrules are derived from the superconvergence of properly chosen reaction amplitudes. The results allow an absolute determination of the cross sections of a series of peripheral reactions. An important and interesting consequence for the considered matrix elements of the weak current is that the properties of CVC of PCAC follow from the sumrules without additional assumptions. Finally the predictions of relativistic SU(6)-models are checked. One gets surprisingly a good confirmation of the essential results of these models, the reliability of which has almost been unknown on account of a series of speculative assumptions. (orig.) [de
Electromagnetic fields with vanishing scalar invariants
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello; Pravda, Vojtěch
2016-01-01
Roč. 33, č. 11 (2016), s. 115010 ISSN 0264-9381 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : electromagnetic fields * n-dimensional spacetime * Einstein-Maxwell equations Subject RIV: BA - General Mathematics Impact factor: 3.119, year: 2016 http://dx.doi.org/10.1088/0264-9381/33/11/115010
Spectrum of absorption of a weak signal by an atom in a strong field
International Nuclear Information System (INIS)
Bakaev, D.S.; Vdovin, Y.A.; Ermachenko, V.M.; Yakovlenko, S.I.
1985-01-01
An analysis is made of the spectrum of absorption of a weak probe electromagnetic field by two-level atoms in a strong resonant laser field, undergoing collision with buffer gas atoms. The analysis is made using an approach that allows for the direct influence of a strong electromagnetic field on the dynamics of an elastic collision between an active atom and a buffer gas atom. Rate equations are analyzed for a combined ''atom--strong electromagnetic field'' system (an atom ''dressed'' by the field) allowing for spontaneous and optical collisional transitions, and also for the interaction with the probe field. In the steady-state case, an expression is derived for the electric susceptibility of the medium at the small-signal frequency. This expression contains the rates of the optical collisional transitions that depend nontrivially on the parameters of the strong electromagnetic field. The phenomenological characteristics of optical collisional transitions generally used are only valid at low intensities and for small frequency detunings of the strong electromagnetic field, i.e., in the impact limit
Electromagnetic fields with vanishing quantum corrections
Ortaggio, Marcello; Pravda, Vojtěch
2018-04-01
We show that a large class of null electromagnetic fields are immune to any modifications of Maxwell's equations in the form of arbitrary powers and derivatives of the field strength. These are thus exact solutions to virtually any generalized classical electrodynamics containing both non-linear terms and higher derivatives, including, e.g., non-linear electrodynamics as well as QED- and string-motivated effective theories. This result holds not only in a flat or (anti-)de Sitter background, but also in a larger subset of Kundt spacetimes, which allow for the presence of aligned gravitational waves and pure radiation.
High range electromagnetic fields. Experimental investigations
International Nuclear Information System (INIS)
Comino, E.; Boccardo, D.; Quaglino, A.
2001-01-01
It has been often discussed on the health effects from the electromagnetic fields, and nowadays this theme is particularly controlled and studied by the research-workers. It needs to know what is the risk connected to the exposure to the electromagnetism during a short or a long quantity of time and what are the health pathologies caused by the continue exposure. On one hand the results from epidemiological research can not still define the effect of the dose, on the other hand the legislative frame is variously fragmented and based on cautious concepts. But in this work, under the collaboration of Energy Resources Laboratory in Lausanne and the Geo resources and Territory Department in Turin University, are presented the early results on the experiments got out on high frequency (950 MHZ) in order to give a contribution to the debate between the scientific community and the public opinion [it
Energy Technology Data Exchange (ETDEWEB)
Guiguet, J.C. [Agence Nationale des Frequences (ANFR), 94 - Maisons Alfort (France); Dodinot, B.; Sadoul, N.; Blangy, H. [Centre Hospitalier Universitaire Nancy-Brabois, Clinique Cardiologique, 54 - Vandoeuvre Brabois (France); Nadi, M.; Hedjiedj, A.; Schmitt, P. [Universite Henri Poincare-Nancy, Lab. d' Instrumentation Electronique de Nancy, Faculte des Sciences, 54 - Vandoeuvre les Nancy (France); Joly, L.; Dodinot, B.; Aliot, E. [Centre Hospitalier Universitaire Nancy-Brabois, Service de Cardiologie, 54 - Vandoeuvre-les-Nancy (France); Silny, J. [Aachen University (Germany); Franck, R.; Himbert, C.; Hidden-Lucet, F.; Petitot, J.C.; Fontaine, G. [Hopital Pitie-Salpetriere, Institut de Cardiologie, Service de Rythmologie, 75 - Paris (France); Souques, M.; Lambrozo, J. [Electricite de France (EDF-Gaz de France), Service des Etudes Medicales, 75 - Paris (France); Magne, I.; Bailly, J.M. [Electricite de France (EDF-Gaz de France), Div. Recherche Developpement, 77 - Moret sur Loing (France); Trigano, J.A. [Centre Hospitalier Universitaire, Hopital Nord, 13 - Marseille (France); Burais, N. [CEGELY, Ecole Centrale de Lyon, 69 - Ecully (France); Gaspard, J.Y. [Magtech, 69 - Ecully (France); Andrivet, Ph. [Societe Medtronic France, 92 - Boulogne-Billancourt (France)
2004-07-01
Presentation of electromagnetic sources constituted by various radio transmitters contributing to different radio communication services in the environment. Results of a measures campaign to assess the electromagnetic field in the close neighbourhood of various stations. Analysis by frequency domains. (author)
Low frequency electromagnetic fields and health problems
International Nuclear Information System (INIS)
Zahedi, A.; Cosic, I.
1996-01-01
Full text: Electromagnetic fields developed around the electric circuits are considered as magnetic pollution and these fields are produced wherever electric appliances or machinery are used at home as well as at workplace. Electric fields and magnetic fields around the home are produced by anything with electric current flowing through it including: the street power lines, the home wiring system, electric ovens, refrigerators, washing machines, electric clothes dryers, vacuum cleaners, television sets, video cassette recorders, toasters, light bulbs, clock radios, electric blankets, mobile phones, etc. In the workplace they would be produced by: nearby power lines, factory machinery, computers/video display units, lights, photocopiers, electrical cabling etc. As one can see, human life is strongly dependent on using-electric appliance. A large number of studies have been undertaken to find out the correlation between electromagnetic fields and health problems. The following significant results have been reported [Lerner E.J., IEEE Spectrum, 57-67, May 1984]: (a) Induction of chromosomal defects in mice spermatogenetic cells following microwave radiation in the Ghz range; (b) Changes in the calcium balance of living cats' brains exposed to microwaves modulated at extremely low frequencies; (c) Alternation of nerve and bone cells exposed to extremely low frequency fields; (d) Decreased activity of the immune cells of mice exposed to modulated microwaves; (e) Apparent increase in deformed foetuses among miniature swine exposed to intense power-line frequency fields. The mostly investigated effect is the effect of electromagnetic irradiation in particular one produced by power lines, and cancer. More than 100 epidemiological studies have been reported but no conclusive result was achieved. A number of studies with laboratory animals were also inconclusive. However, some of these experiments have shown improvements in immune system and tumour suppression when
Low energy constituent quark and pion effective couplings in a weak external magnetic field
Braghin, Fábio L.
2018-03-01
An effective model with pions and constituent quarks in the presence of a weak external background electromagnetic field is derived by starting from a dressed one gluon exchange quark-quark interaction. By applying the auxiliary field and background field methods, the structureless pion limit is considered to extract effective pion and constituent quark couplings in the presence of a weak magnetic field. The leading terms of a large quark and gluon masses expansion are obtained by resolving effective coupling constants which turn out to depend on a weak magnetic field. Two pion field definitions are considered for that. Several relations between the effective coupling constants and parameters can be derived exactly or in the limit of very large quark mass at zero and weak constant magnetic field. Among these ratios, the Gell-Mann-Oakes-Renner and the quark level Goldberger-Treiman relations are obtained. In addition to that, in the pion sector, the leading terms of Chiral Perturbation Theory coupled to the electromagnetic field are recovered. Some numerical estimates are provided for the effective coupling constants and parameters.
Electromagnetic fields and health impact: measurements, monitoring and environmental indicators
International Nuclear Information System (INIS)
Lubritto, C.; Vetromile, C.; Petraglia, A.; Racioppoli, M.; D'Onofrio, A.
2008-01-01
Full text: During the last 10 years there has been a remarkable growth of the attention for problems related to the electromagnetic pollution, motivated by the alert connected to potential risk for the health of persons and due to the increasing diffusion of Bats for mobile telecommunication as EMF sources. Many projects are being realized about the environmental and health impact of electromagnetic field and an important social role is played by specific actions to minimize the risk perception of the population. This study aims to find an innovative approach to these problems through the use of a system of continuous time monitoring of the electromagnetic fields and the individuation of appropriate environmental indicators. The proposed system monitors the electromagnetic fields continuously over time, and is already operating in many southern Italian cities. It works in a very efficient way as a mean for: a) Info to the citizens, thanks to diffusion of daily collected data on Internet Web; b) Control for local administrations and Authorities, due to capability of the system itself to alert when measured values exceed the limits reported by the Italian laws; c) Planning, for the implementation of : 1) New procedures agreed among local environmental control agency, local administrations and mobile Companies for network planning and management of alarm situations; 2) New local guidelines documents concerning the installation and operation of telecommunications apparatus. Moreover, starting from the general principles of the Strategic Environmental Evaluation (VAS), the environmental impacts of EMS field is studied. Based on the model DPSIR (Drivers, Pressure, State, Impacts, Responses), 12 environmental indicators have been chosen providing an immediate and understandable tool to obtain very important information on electromagnetic pollution generated by radio-telecommunication systems. The selected environmental indicators have been applied to 11 cities of the
Electromagnetic fields on a quantum scale. I.
Grimes, Dale M; Grimes, Craig A
2002-10-01
This is the first in a series of two articles, the second of which provides an exact electro-magnetic field description of photon emission, absorption, and radiation pattern. Photon energy exchanges are analyzed and shown to be the triggered, regenerative response of a non-local eigenstate electron. This first article presents a model-based, hidden variable analysis of quantum theory that provides the statistical nature of wave functions. The analysis uses the equations of classical electro-magnetism and conservation of energy while modeling an eigenstate electron as a nonlocal entity. Essential to the analysis are physical properties that were discovered and analyzed only after the historical interpretation of quantum mechanics was established: electron non-locality and the standing electro-magnetic energy that accompanies and encompasses an active, electrically small volume. The standing energy produces a driving radiation reaction force that, under certain circumstances, is many orders of magnitude larger than currently accepted values. These properties provide a sufficient basis for the Schrödinger equation as a descriptor of non-relativistic eigenstate electrons in or near equilibrium. The uncertainty principle follows, as does the exclusion principle. The analysis leads to atomic stability and causality in the sense that the status of physical phenomena at any instant specifies the status an instant later.
Self field electromagnetism and quantum phenomena
Schatten, Kenneth H.
1994-07-01
Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.
Sheiman, I M; Kreshchenko, N D
2010-10-01
The effects of weak electromagnetic irradiation on simple forms of behavior were studied using adult Tenebrio molitor mealworms. The beetles' motor behavior was studied in conditions of different motivations, i.e., positive (food) and negative (avoidance of light), in otherwise identical experimental conditions. The beetles had to navigate a defined space to reach their target - potato or cover from light. Experiments consisted of one trial per day for five days. Target attainment time was measured in groups of beetles. Behavior in both cases developed as follows: an initial orientation reaction appeared and was followed by adaptation to the apparatus. Exposure to weak electromagnetic irradiation led to increases in the response time at the initial stages of the experiments. The effects of irradiation were seasonal in nature and differed in the two types of behavior.
Electromagnetic and weak observables in the context of the shell model
International Nuclear Information System (INIS)
Wildenthal, B.H.
1984-01-01
Wave functions for A = 17-39 nuclei have been obtained from diagonalizations of a single Hamiltonian formulation in the complete sd-shell configuration space for each NTJ system. These wave functions are used to generate the one-body density matrices corresponding to weak and electromagnetic transitions and moments. These densities are combined with different assumptions for the single-particle matrix elements of the weak and electromagnetic operators to produce theoretical matrix elements. The predictions are compared with experiment to determine, in some ''linearly dependent'' fashion, the correctness of the wave functions themselves, the optimum values of the single-particle matrix elements, and the viability of the overall shell-model formulation. (author)
Neutral currents and the gauge group of weak and electromagnetic interactions
International Nuclear Information System (INIS)
Rajpoot, S.
1977-12-01
In considering the question of neutral current parity conversation, models of weak and electromagnetic interactions based on the gauge sub group SU(2)sub(L)xSU(2)sub(R)x(U) 1 are examined. The thesis is presented in the following sections: (1) Introduction. (2) Natural left-right symmetric theory and its neutral current phenomenology. (3) Effects of neutral weak currents in electron-positron annihilation. (4) Dilepton production in pp and anti pp collisions as a probe to the nature of the neutral current interaction. (U.K.)
International Nuclear Information System (INIS)
Egorian, Ed.
1979-01-01
Decay properties of heavy leptons in the SU(2)xSU(2)xU(1) supersymmetric model of weak and electromagnetic interactions are studied. l anti νsub(e)ν leptonic and ν(νsup(c))h semihadronic decays, where l are leptons and h are hadrons, are considered. The partial and total decay rates and the production in p anti p collision of one of them are estimated for various values of its mass
Implications of experiment on gauge theories of the weak and electromagnetic interactions
International Nuclear Information System (INIS)
Barnett, R.M.
1977-06-01
In this review the phenomenology of four new models for gauge theories of the weak and electromagnetic interactions is discussed that are extensions of SU(2) x U(1) models. Included are the neutral-current phenomenology (neutrino-proton deep-inelastic, neutrino-proton elastic, neutrino-electron elastic, and atomic parity violation). The charged-current neutrino scattering includes the y-dependence, the ratio of anti ν to ν cross sections, and di- and trilepton production. 80 references
Child leukaemia and low frequency electromagnetic fields
International Nuclear Information System (INIS)
Clavel, J.
2009-01-01
The author discusses the possible causes of child leukaemia: exposure to natural ionizing radiation (notably radon), to pesticides, and to hydrocarbons emitted by road traffic. Some studies suggested that an inadequate reaction of the immune system to an ordinary infection could result in leukaemia. Other factors are suspected, notably extremely low frequency electromagnetic fields, the influence of which is then discussed by the author. She evokes and discusses results of different investigations on this topic which have been published since the end of the 1970's. It appears that a distance less than 50 meters from high voltage lines or the vicinity of transformation stations may double the risk of child leukaemia
Electromagnetic processes in strong crystalline fields
2007-01-01
We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.
Bats respond to very weak magnetic fields.
Directory of Open Access Journals (Sweden)
Lan-Xiang Tian
Full Text Available How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here, the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT, despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05. Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.
Electromagnetic fields of rotating magnetized NUT stars
International Nuclear Information System (INIS)
Ahmedov, B.J.; Khugaev, A.V.; Ahmedov, B.J.
2004-01-01
Full text: Analytic general relativistic expressions for the electromagnetic fields external to a slowly-rotating magnetized NUT star with nonvanishing gravitomagnetic charge have been presented. Solutions for the electric and magnetic fields have been found after separating the Maxwell equations in the external background spacetime of a slowly rotating NUT star into angular and radial parts in the lowest order approximation. The star is considered isolated and in vacuum, with different models for stellar magnetic field: i) monopolar magnetic field and II) dipolar magnetic field aligned with the axis of rotation. We have shown that the general relativistic corrections due to the dragging of reference frames and gravitomagnetic charge are not present in the form of the magnetic fields but emerge only in the form of the electric fields. In particular, we have shown that the frame-dragging and gravitomagnetic charge provide an additional induced electric field which is analogous to the one introduced by the rotation of the star in the flat spacetime limit
International Nuclear Information System (INIS)
Belvedere, Riccardo; Pugliese, Daniela; Rueda, Jorge A.; Ruffini, Remo; Xue, She-Sheng
2012-01-01
We formulate the equations of equilibrium of neutron stars taking into account strong, weak, electromagnetic, and gravitational interactions within the framework of general relativity. The nuclear interactions are described by the exchange of the σ, ω, and ρ virtual mesons. The equilibrium conditions are given by our recently developed theoretical framework based on the Einstein–Maxwell–Thomas–Fermi equations along with the constancy of the general relativistic Fermi energies of particles, the “Klein potentials”, throughout the configuration. The equations are solved numerically in the case of zero temperatures and for selected parameterizations of the nuclear models. The solutions lead to a new structure of the star: a positively charged core at supranuclear densities surrounded by an electronic distribution of thickness ∼ℏ/(m e c)∼10 2 ℏ/(m π c) of opposite charge, as well as a neutral crust at lower densities. Inside the core there is a Coulomb potential well of depth ∼m π c 2 /e. The constancy of the Klein potentials in the transition from the core to the crust, imposes the presence of an overcritical electric field ∼(m π /m e ) 2 E c , the critical field being E c =m e 2 c 3 /(eℏ). The electron chemical potential and the density decrease, in the boundary interface, until values μ e crust e core and ρ crust core . For each central density, an entire family of core–crust interface boundaries and, correspondingly, an entire family of crusts with different mass and thickness, exist. The configuration with ρ crust =ρ drip ∼4.3×10 11 gcm −3 separates neutron stars with and without inner crust. We present here the novel neutron star mass–radius for the especial case ρ crust =ρ drip and compare and contrast it with the one obtained from the traditional Tolman–Oppenheimer–Volkoff treatment.
Bats Respond to Very Weak Magnetic Fields
Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang
2015-01-01
How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (Preversed tens of times over the past fifty million years. PMID:25922944
International Nuclear Information System (INIS)
Arnold, R.C.
1975-12-01
A systematic calculus of long-range Regge cut effects in multiparticle production is constructed in the form of an infrared-divergent stochastic field theory. Total cross sections and two-body overlap integrals in such a theory may depend very sensitively upon internal quantum-numbers of incident particles, resulting in a strong symmetry breaking at ultra-high energies. Such symmetry violations will influence low energy processes through dispersion relations, and a bootstrap of weak interactions becomes possible. A rough analytic estimate of the scale of thresholds for such effects yields a BCS-type gap equation, which expresses the scale of weak and electromagnetic couplings in terms of purely strong-interaction parameters
On absorption of low frequency electromagnetic fields
International Nuclear Information System (INIS)
Brunner, S.; Vaclavik, J.
1993-03-01
The drift kinetic equation (DKE) is used to establish a formula for power absorption of small amplitude, low frequency electromagnetic (EM) fields in a hot toroidal axisymmetric plasma. The stationary plasma is first considered. Electrons and ions are described by local Maxwellian distributions, alpha particles by a local slowing-down distribution. The fluctuating part of the distribution function for each species is then evaluated from the linearized DKE in terms of the EM fields using a perturbation method. The parameter b p =B p /B o , where B p is the poloidal component of the magnetostatic field B o , and the parameter v d /λω, where v d is the magnetic curvature drift, λ the wavelength perpendicular to B o and ω the frequency of the EM fields, are considered to be small. By integrating the resulting distribution function over velocity space, an explicit formula for the power absorbed by each species is obtained. To obtain an expression suitable for direct implementation in an ideal-MHD code, the electric field component parallel to the magnetostatic field is evaluated using the quasi-neutrality equation. (author) 4 refs
Evaluation of uncertainty in the measurement of environmental electromagnetic fields
International Nuclear Information System (INIS)
Vulevic, B.; Osmokrovic, P.
2010-01-01
With regard to Non-ionising radiation protection, the relationship between human exposure to electromagnetic fields and health is controversial. Electromagnetic fields have become omnipresent in the daily environment. This paper assesses the problem of how to compare a measurement result with a limit fixed by the standard for human exposure to electric, magnetic and electromagnetic fields (0 Hz-300 GHz). The purpose of the paper is an appropriate representation of the basic information about evaluation of measurement uncertainty. (authors)
Quantum Field Theoretic Derivation of the Einstein Weak Equivalence Principle Using Emqg Theory
Ostoma, Tom; Trushyk, Mike
1999-01-01
We provide a quantum field theoretic derivation of Einstein's Weak Equivalence Principle of general relativity using a new quantum gravity theory proposed by the authors called Electro-Magnetic Quantum Gravity or EMQG (ref. 1). EMQG is based on a new theory of inertia (ref. 5) proposed by R. Haisch, A. Rueda, and H. Puthoff (which we modified and called Quantum Inertia). Quantum Inertia states that classical Newtonian Inertia is a property of matter due to the strictly local electrical force ...
The classical theory of fields electromagnetism
Helrich, Carl S
2012-01-01
The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dis...
Open bosonic string in background electromagnetic field
International Nuclear Information System (INIS)
Nesterenko, V.V.
1987-01-01
The classical and quantum dynamics of an open string propagating in the D-dimensional space-time in the presence of a background electromagnetic field is investigated. An important point in this consideration is the use of the generalized light-like gauge. There are considered the strings of two types; the neutral strings with charges at their ends obeying the condition q 1 +q 2 =0 and the charged strings having a net charge q 1 +q 2 ≠ 0. The consistency of theory demands that the background electric field does not exceed its critical value. The distance between the mass levels of the neutral open string decreases (1-e 2 ) times in comparison with the free string, where e is the dimensionless strength of the electric field. The magnetic field does not affect this distance. It is shown that at a classical level the squared mass of the neutral open string has a tachyonic contribution due to the motion of the string as a whole in transverse directions. The tachyonic term disappears if one considers, instead of M 2 , the string energy in a special reference frame where the projection of the total canonical momentum of the string onto the electric field vanishes. The contributions due to zero point fluctuations to the energy spectrum of the neutral string and to the Virasoro operators in the theory of charged string are found
Weakly coupled mean-field game systems
Gomes, Diogo A.; Patrizi, Stefania
2016-01-01
Here, we prove the existence of solutions to first-order mean-field games (MFGs) arising in optimal switching. First, we use the penalization method to construct approximate solutions. Then, we prove uniform estimates for the penalized problem
Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field
Bethe, H. A.
1972-09-01
The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.
A weak magnetic field inhibits hippocampal neurogenesis in SD rats
Zhang, B.; Tian, L.; Cai, Y.; Pan, Y.
2017-12-01
Geomagnetic field is an important barrier that protects life forms on Earth from solar wind and radiation. Paleomagnetic data have well demonstrated that the strength of ancient geomagnetic field was dramatically weakened during a polarity transition. Accumulating evidence has shown that weak magnetic field exposures has serious adverse effects on the metabolism and behaviors in organisms. Hippocampal neurogenesis occurs throughout life in mammals' brains which plays a key role in brain function, and can be influenced by animals' age as well as environmental factors, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we have investigated the weak magnetic field effects on hippocampal neurogenesis of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, a weak magnetic field (≤1.3 μT) and the geomagnetic fields (51 μT).The latter is treated as a control condition. SD rats were exposure to the weak magnetic field up to 6 weeks. We measured the changes of newborn nerve cells' proliferation and survival, immature neurons, neurons and apoptosis in the dentate gyrus (DG) of hippocampus in SD rats. Results showed that, the weak magnetic field (≤1.3 μT) inhibited their neural stem cells proliferation and significantly reduced the survival of newborn nerve cells, immature neurons and neurons after 2 or 4 weeks continuous treatment (i.e. exposure to weak magnetic field). Moreover, apoptosis tests indicated the weak magnetic field can promote apoptosis of nerve cells in the hippocampus after 4 weeks treatment. Together, our new data indicate that weak magnetic field decrease adult hippocampal neurogenesis through inhibiting neural stem cells proliferation and promoting apoptosis, which provides useful experimental constraints on better understanding the mechanism of linkage between life and geomagnetic field.
Electromagnetic field and mechanical stress analysis code
International Nuclear Information System (INIS)
1978-01-01
Analysis TEXMAGST is a two stage linear finite element code for the analysis of static magnetic fields in three dimensional structures and associated mechanical stresses produced by the anti J x anti B forces within these structures. The electromagnetic problem is solved in terms of magnetic vector potential A for a given current density anti J as curl 1/μ curl anti A = anti J considering the magnetic permeability as constant. The Coulombian gauge (div anti A = o) was chosen and was implemented through the use of Lagrange multipliers. The second stage of the problem - the calculation of mechanical stresses in the same three dimensional structure is solved by using the same code with few modifications - through a restart card. Body forces anti J x anti B within each element are calculated from the solution of the first stage run and represent the input to the second stage run which will give the solution for the stress problem
The response of nuclei to electromagnetic fields
International Nuclear Information System (INIS)
Bernstein, A.M.
1987-01-01
The purpose of these lectures is to give a general introduction to intermediate energy electromagnetic physics at the graduate student level. The aim is to convey physical insight, to attempt to explain the motivation for the measurements, what the results are, what has been understood, and what puzzles remain for the future. The author hopes to give a panorama and to convey the present sense of excitement in this very active and developing field. The topics which are treated include: elastic and quasi-elastic electron scattering, electro excitation of the Δ in nuclei, (γ,π) reactions and a brief introduction to hypernuclear production by the (γ,Κ/sup +/) reaction. Time doses not allow the coverage of many important topics such as coincidence reactions, polarization phenomena, and inelastic scattering to discrete nuclear states
Visualizing electromagnetic fields in metals by MRI
Directory of Open Access Journals (Sweden)
Chandrika Sefcikova Chandrashekar
2017-02-01
Full Text Available Based upon Maxwell’s equations, it has long been established that oscillating electromagnetic (EM fields incident upon a metal surface, decay exponentially inside the conductor, leading to a virtual absence of EM fields at sufficient depths. Magnetic resonance imaging (MRI utilizes radiofrequency (r.f. EM fields to produce images. Here we present a visualization of a virtual EM vacuum inside a bulk metal strip by MRI, amongst several findings. At its simplest, an MRI image is an intensity map of density variations across voxels (pixels of identical size (=Δx Δy Δz. By contrast in bulk metal MRI, we uncover that despite uniform density, intensity variations arise from differing effective elemental volumes (voxels from different parts of the bulk metal. Further, we furnish chemical shift imaging (CSI results that discriminate different faces (surfaces of a metal block according to their distinct nuclear magnetic resonance (NMR chemical shifts, which holds much promise for monitoring surface chemical reactions noninvasively. Bulk metals are ubiquitous, and MRI is a premier noninvasive diagnostic tool. Combining the two, the emerging field of bulk metal MRI can be expected to grow in importance. The findings here may impact further development of bulk metal MRI and CSI.
The electromagnetic field equations for moving media
International Nuclear Information System (INIS)
Ivezić, T
2017-01-01
In this paper a formulation of the field equation for moving media is developed by the generalization of an axiomatic geometric formulation of the electromagnetism in vacuum (Ivezić T 2005 Found. Phys. Lett. 18 401). First, the field equations with bivectors F ( x ) and ℳ ( x ) are presented and then these equations are written with the 4D vectors E ( x ), B ( x ), P ( x ) and M ( x ). The latter contain both the 4D velocity vector u of a moving medium and the 4D velocity vector v of the observers who measure E and B fields. They do not appear in previous literature. All these equations are also written in the standard basis and compared with Maxwell’s equations with 3D vectors. In this approach the Ampère-Maxwell law and Gauss’s law are inseparably connected in one law and the same happens with Faraday’s law and the law that expresses the absence of magnetic charge. It is shown that Maxwell’s equations with 3D vectors and the field equations with 4D geometric quantities are not equivalent in 4D spacetime (paper)
International Nuclear Information System (INIS)
Olkhov, O.A.
2001-01-01
We consider interacting electromagnetic and electron-positron fields as a nonmetrized space-time 4-manifold. The Dirac and Maxwell equations is found to be a relationships expressing topological and metric properties of this manifold. A new equation for the weak interaction is proposed that explains geometrical mechanism of CP-violation
Different roles of electromagnetic field experts when giving policy advice : an expert consultation
Spruijt, Pita; Knol, Anne B; Petersen, Arthur C; Lebret, Erik
2015-01-01
BACKGROUND: The overall evidence for adverse health effects of electromagnetic fields (EMF) at levels of exposure normally experienced by the public is generally considered weak. However, whether long-term health effects arise remains uncertain and scientific policy advice is therefore given against
Different roles of electromagnetic field experts when giving policy advice: an expert consultation
Spruijt, P.; Knol, A.B.; Petersen, A.C.; Lebret, E.
2015-01-01
Background: The overall evidence for adverse health effects of electromagnetic fields (EMF) at levels of exposure normally experienced by the public is generally considered weak. However, whether long-term health effects arise remains uncertain and scientific policy advice is therefore given against
Left--right symmetric gauge theories of weak and electromagnetic interactions
International Nuclear Information System (INIS)
Sidhu, D.P.
1978-01-01
We review the recent progress in spontaneously broken left-right symmetric gauge theories of weak and electromagnetic interactions. Recently gauge theories based on the group SU(2)/Sub L/ x SU(2)/sub R/ x U(1) have been proposed as serious candidates for a unified description of the weak and electromagnetic interactions. Such theories have a number of attractive features which are not shared by the standard SU(2) x U(1) theories. Parity violation as well as CP-violation are spontaneous in origin and, therefore, theories are parity conserving before spontaneous breakdown of the symmetry and also afterwards at asymptotic energies. The asymmetry in low energy charged current weak interaction, i.e., predominance of left-handed charged current interactions over the right-handed ones, is a consequence of the symmetry breaking thus leading to a conceptually different picture of weak interaction at low energies. Another appealing feature of these theories is the beauty and richness of the structure of weak neutral current interactions. One can have a parity conserving structure of the neutral currents (one neutral boson (Z/sub V/) has pure vector and the other (Z/sub A/) pure axial vector coupling to quarks and leptons) which is natural in the technical sense of the word. Models of this type provide the most elegant explanation of the failure to find parity violation in atoms at the level predicted on the basis of the Weinberg-Salam model. In spite of manifestly parity conserving neutral current interactions, ν/sub μ/N and anti ν/sub μ/N (also ν/sub μ/e and anti ν/sub μ/e) neutral current cross-sections have to be unequal in these theories because of the definite parity and charge conjugation of the Z-bosons
Weakly coupled mean-field game systems
Gomes, Diogo A.
2016-07-14
Here, we prove the existence of solutions to first-order mean-field games (MFGs) arising in optimal switching. First, we use the penalization method to construct approximate solutions. Then, we prove uniform estimates for the penalized problem. Finally, by a limiting procedure, we obtain solutions to the MFG problem. © 2016 Elsevier Ltd
Method and apparatus for measuring weak magnetic fields
DEFF Research Database (Denmark)
1995-01-01
When measuring weak magnetic fields, a container containing a medium, such as a solution containing a stable radical, is placed in a polarising magnetic field, which is essentially at right angles to the field to be measured. The polarising field is interrupted rapidly, the interruption being...
Motion of charged particles in a knotted electromagnetic field
International Nuclear Information System (INIS)
Arrayas, M; Trueba, J L
2010-01-01
In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.
Motion of charged particles in a knotted electromagnetic field
Energy Technology Data Exchange (ETDEWEB)
Arrayas, M; Trueba, J L, E-mail: joseluis.trueba@urjc.e [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain)
2010-06-11
In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.
Geometrization of the electromagnetic field and dark matter
International Nuclear Information System (INIS)
Pestov, I.B.
2005-01-01
A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized electromagnetic field and a simple solution of the old problem is given to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space-time which describes the interactions of spinor field with dark matter field
The Universal C*-Algebra of the Electromagnetic Field
Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio
2016-02-01
A universal C*-algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of the field such as Maxwell's equations, Poincaré covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwell's equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with focus on vacuum representations, fixing the dynamics of the field.
Electromagnetic field, excited by monodirected X-radiation pulse
International Nuclear Information System (INIS)
Zhemerov, A.V.; Metelkin, E.V.
1994-01-01
Parameters of electromagnetic field, generated in the atmosphere by monodirected pulse source of X radiation located at the altitude of approximately several kilometers have been estimated by the method of delayed potentials. The source radiation is directed towards the Earth surface. The conclusion was made that restricted areas of approximately 1 km with considerable pulse electromagnetic fields can be created on the Earth surface
Coronal rain in magnetic bipolar weak fields
Xia, C.; Keppens, R.; Fang, X.
2017-07-01
Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org
Interacting massless scalar and source-free electromagnetic fields
International Nuclear Information System (INIS)
Ayyangar, B.R.N.; Mohanty, G.
1985-01-01
The relativistic field equations for interacting massless attractive scalar and source-free electromagnetic fields in a cylindrically symmetric spacetime of one degree of freedom with reflection symmetry have been reduced to a first order implicit differential equation depending on time which enables one to generate a class of solution to the field equations. The nature of the scalar and electromagnetic fields is discussed. It is shown that the geometry of the spacetime admits of an irrotational stiff fluid distribution without prejudice to the interacting electromagnetic fields. 10 refs. (author)
Exposure to power frequency electromagnetic fields
International Nuclear Information System (INIS)
Skotte, J.
1993-01-01
The purpose was to asses personal exposure to power frequency electromagnetic fields in Denmark. Exposure to electrical and magnetic 50 Hz fields were measured with personal dosimeters in periods of 24 hours covering both occupational and residential environments. The study included both highly exposed and 'normal' exposed jobs. Measurements were carried out with dosimeters, which sample electrical and magnetic fields every 5 sec. Participants also wore the dosimeter during transportation. The dynamic range of the dosimeters was 0.01-200 μT and 0.6-10000 V/m. The highest average exposure in homes near high power lines was 2.24 μT. In most homes without nearby high power lines the average exposure was below 0.05 μT. Average values of '24-hour-dose' (μT times hours) for the generator facility, transmission line and substation workers were approximately the same as for the people living near high power lines (5 μT x hours). Electric field measurements with personal dosimeters involve several factors of uncertainty, as the body, posture, position of dosimeter etc. influence the results. The highest exposed groups were transmission line workers (GM: 44 V/m) and substation workers (GM: 23 V/m) but there were large variations (GSD: 4.7-4.8). In the work time the exposure level was the same for office workers and workers in the industry groups (GM: 12-13 V/m). In homes near high power lines (GM: 23 V/m) there was a non-significant tendency to higher exposure compared to homes without nearby high power lines. (AB) (11 refs.)
Advances in the measurement of weak magnetic fields
International Nuclear Information System (INIS)
Li Damin; Huang Minzhe.
1992-01-01
The state-of-art and general features of instruments for measuring weak magnetic fields (such as the non-directional magnetometer, induced coil magnetometer, proton magnetometer, optical pumping magnetometer, flux-gate magnetometer and superconducting quantum magnetometer) are briefly described. Emphasis is laid on the development of a novel technique used in the flux-gate magnetometer and the liquid nitrogen SQUID. Typical applications of the measuring techniques for weak magnetic fields are given
Electromagnetic field in higher-dimensional black-hole spacetimes
International Nuclear Information System (INIS)
Krtous, Pavel
2007-01-01
A special test electromagnetic field in the spacetime of the higher-dimensional generally rotating NUT-(anti-)de Sitter black hole is found. It is adjusted to the hidden symmetries of the background represented by the principal Killing-Yano tensor. Such an electromagnetic field generalizes the field of charged black hole in four dimensions. In higher dimensions, however, the gravitational backreaction of such a field cannot be consistently solved
New foundations for applied electromagnetics the spatial structure of fields
Mikki, Said
2016-01-01
This comprehensive new resource focuses on applied electromagnetics and takes readers beyond the conventional theory with the use of contemporary mathematics to improve the practical use of electromagnetics in emerging areas of field communications, wireless power transfer, metamaterials, MIMO and direction-of-arrival systems. The book explores the existing and novel theories and principles of electromagnetics in order to help engineers analyze and design devices for todays applications in wireless power transfers, NFC, and metamaterials.
International Nuclear Information System (INIS)
Nieves, J.F.
1980-01-01
A framework for a systematic study of the weak-electromagnetic interference effects in the production of hadrons in e - e + collisions is presented and, in the case of the inclusive processes, the predictions of the quark-parton model are given. The approach to the calculation of these effects in e - e + H + X, where H is a pseudoscalar meson, a spin-1/2 baryon, or a vector meson, consists of setting down a general formula for the appropriate transition probability in terms of structure functions whose form is delimited by symmetry considerations. The quark-parton model is then used to express the structure functions in terms of the quark couplings and fragmentation probabilities. In this fashion the forward-backward asymmetry A/sub H/ and longitudinal polarization P/sub H/ are calculated in terms of the vector (a/sub q/) and axial-vector (b/sub q/) weak-neutral-current couplings of the quarks composing H, their electric charges Q/sub q/, and their (q → H) fragmentation probabilities. Using a theoretical argument for hadrons containing one heavy c,b,...quark, and SU(3) symmetry for hadrons composed of light u,d,s quarks, A/sub H/ is expressed in terms of b/sub q/ and Q/sub q/ only. In similar fashion, some relations between the various P/sub H/, independent of the fragmentation probabilities, are obtained. The results are discussed in detail for the strange and charmed hadrons.The exclusive processes e - e + → M anti M and e - e + → MV, where M is a pseudoscalar meson and V is a vector meson, are also discussed and the possibility of observing the weak-electromagnetic interference effects when M and V contain the t quark is noted
Exposure of Nurses to Electromagnetic Fields
International Nuclear Information System (INIS)
Zmyslony, M.; Mamrot, P.; Politanski, P.
2004-01-01
Devices that produce electromagnetic fields (EMF) within the range of 0-300 GHz are widely used in surgical and diagnostic procedures. As a result a large number of physicians and other groups of medical personnel may be exposed to EMF. Even if patients' exposure, sometimes quite high, is inevitable or even recommended, medical personnel should be substantially protected against EMF exposure. Evaluation of nurses' exposure to EMF was based on an analysis of EMF magnitudes in the surrounding of magnetic resonance imaging (MRI) and electrosurgical units. These two kinds of apparatus are the strongest EMF sources in health service facilities. The measurements were performed according to the norms and hygiene regulations binding in Poland. Measurements performed by the Nofer Institute of Medicine in Lodz, and data collected by the Central Database on EMF Sources were used in the analysis. The Central Database is run by the Nofer Institute of Medicine at the behest of the Chief Sanitary Inspector. The study showed that nurses' exposure to EMF emitted by MRI and electrosurgical units complies with Polish norms and hygiene regulations and can be classified as negligible or allowable. It was found that work of nurses in exposure to EMF emitted by MRI and electrosurgical units can be regarded as safe, which means that their health should not be endangered by the performed job. (author)
Resonant scattering in the presence of an electromagnetic field
International Nuclear Information System (INIS)
Rosenberg, L.
1983-01-01
The theory of resonant reactions, in the projection-operator formulation of Feshbach, is generalized to account for the presence of an external electromagnetic field. The theory is used as the basis for the construction of low-frequency approximations for the transition amplitude. Results obtained here for scattering in a laser field confirm earlier versions of the low-frequency approximation when the resonances are isolated. However, if there are several closely spaced resonances additional terms must be included (their importance magnified by the appearance of near singularities) which account for the effect of radiative transitions between pairs of nearly degenerate resonant states. The weak-field limit of this result yields a low-frequency approximation for single-photon spontaneous bremsstrahlung which, through the inclusion of correction terms associated with closely spaced resonances, provides an improvement over the Feshbach-Yennie version derived some time ago. A separate treatment is required to deal with the limiting case of a static external field and this is worked out here in the context of a time-dependent formulation of the scattering problem. Linear and quadratic Stark splitting of the resonance positions, and resonance broadening due to the tunneling mechanism, are expected to play a significant role in the static limit and these effects are included in the approximation derived here for the transition amplitude
Experimentation at LEP: weak-electromagnetic interference, QED and two-photon physics
International Nuclear Information System (INIS)
Davier, M.
1979-01-01
The energy range opened by LEP will permit a clean and direct study of the weak interaction. Of particular importance are those effects resulting from the interference between the weak and the electromagnetic (EM) currents: it is shown that they give access to the basic couplings which can be measured unambiguously. The paper is in three parts. The first and major section deals with the weak interaction experiments. Most of the calculations and estimates rely on the Weinberg-Salam model as a realistic guide of what might happen. The second section is devoted to 2γ processes. On one hand they constitute an interesting physics study which has been assessed both from theory and experiment and appears promising. On the other hand, they can generate background to many annihilation channels and this aspect has been studied in detail. The last section presents a brief look at short distance tests of Quantum Electrodynamics (QED) - a restricted, but important area of research at LEP. (Auth.)
[Dynamics of biomacromolecules in coherent electromagnetic radiation field].
Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I
2014-01-01
It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.
Overview on the standardization in the field of electromagnetic compatibility
Goldberg, Georges
1989-04-01
Standardization in the domain of electromagnetic compatibility (EMC) is discussed, with specific reference to the standards of the International Electrotechnical Commission, the Comite International Special des Perturbations Radioelectriques, and the Comite Europeen de Normalisation Electrotechnique. EMC fields considered include radiocommunications, telecommunications, biological effects, and data transmission. Standards are presented for such electromagnetic disturbances as low-frequency, high-frequency, conduction, and radiation phenomena.
A ferromagnetic chain in a random weak field
Avgin, I.
1996-10-01
The harmonic magnon modes in a Heisenberg ferromagnetic chain in a random weak field are studied. The Lyapunov exponent for the uniform ( k = 0) mode is computed using the coherent potential approximation (CPA) in the weak-disorder limit. The CPA results are compared with the numerical and weak-disorder expansions of various random systems. We have found that the inverse localization length and the integrated density of states have anomalous power law behaviour as reported earlier. The CPA also reproduces the dispersion law for the same system, calculated by Pimentel and Stinchcombe using the real space renormalization scaling technique. A brief comment is also made for the uniform weak-field case.
Spin and intrinsic angular momentum; application to the electromagnetic field
International Nuclear Information System (INIS)
Paillere, P.
1993-05-01
Within the framework of the field theory governed by a Lagrangian, function of the tensor quantities and their covariant first derivatives, and starting with the third order intrinsic angular momentum tensor obtained from a variational principle, the intrinsic angular momentum vector of the electromagnetic field in vacuum is determined. This expression leads to spin matrices for the electromagnetic field, with unity as eigenvalue, thus allowing to bridge the gap between continuous physics and quantum physics. 6 refs
Schwinger mechanism in electromagnetic field in de Sitter spacetime
Directory of Open Access Journals (Sweden)
Bavarsad Ehsan
2018-01-01
Full Text Available We investigate Schwinger scalar pair production in a constant electromagnetic field in de Sitter (dS spacetime. We obtain the pair production rate, which agrees with the Hawking radiation in the limit of zero electric field in dS. The result describes how a cosmic magnetic field affects the pair production rate. In addition, using a numerical method we study the effect of the magnetic field on the induced current. We find that in the strong electromagnetic field the current has a linear response to the electric and magnetic fields, while in the infrared regime, is inversely proportional to the electric field and leads to infrared hyperconductivity.
Algebraic structure of general electromagnetic fields and energy flow
International Nuclear Information System (INIS)
Hacyan, Shahen
2011-01-01
Highlights: → Algebraic structure of general electromagnetic fields in stationary spacetime. → Eigenvalues and eigenvectors of the electomagnetic field tensor. → Energy-momentum in terms of eigenvectors and Killing vector. → Explicit form of reference frame with vanishing Poynting vector. → Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.
Introduction to unified theories of weak, electromagnetic and strong interactions - SU(5)
International Nuclear Information System (INIS)
Billoire, Alain; Morel, Andre.
1980-11-01
These notes correspond to a series of lectures given at Salay during winter 1979-1980. They are meant to be an introduction to the so-called grand unified theories of weak, electromagnetic and strong interactions. In a first part, we recall in a very elementary way the standard SU(2) model of electroweak interactions, putting the emphasis on the questions which are left open by this model and which unified theories help to answer. In part II, we explain in a systematic way how unified theories can be constructed, and develop the SU(5) model in great detail. Other models, like SO(10) and E 6 , are not presented, because SU(5) is the simplest one and has been subject to the deepest investigations up to now. Also it appears that most concepts and general results are not specific to any particular symmetry group [fr
Guo, Li-xin; Chen, Wei; Li, Jiang-ting; Ren, Yi; Liu, Song-hua
2018-05-01
The dielectric coefficient of a weakly ionised dusty plasma is used to establish a three-dimensional time and space inhomogeneous dusty plasma sheath. The effects of scattering on electromagnetic (EM) waves in this dusty plasma sheath are investigated using the auxiliary differential equation finite-difference time-domain method. Backward radar cross-sectional values of various parameters, including the dust particle radius, charging frequency of dust particles, dust particle concentration, effective collision frequency, rate of the electron density variation with time, angle of EM wave incidence, and plasma frequency, are analysed within the time and space inhomogeneous plasma sheath. The results show the noticeable effects of dusty plasma parameters on EM waves.
A Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field
Directory of Open Access Journals (Sweden)
Suhendro I.
2008-01-01
Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold S4 via the connection, with the general- ized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.
Directory of Open Access Journals (Sweden)
Suhendro I.
2008-01-01
Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold $S_4$ via the connection, with the generalized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.
Geometrization of the Electromagnetic Field and Dark Matter
Pestov, I B
2005-01-01
A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized lectromagnetic field and a simple solution of the old problem is given to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space--time which des...
Impact of electromagnetic field on the pathogenicity of selected ...
African Journals Online (AJOL)
Rhipicephalus decoloratus) to variable intensities of electromagnetic field for different periods of time was examined on their pathogenicity on tick. Some bacterial isolates from the macerate of tick cadavers were used in the infection of healthy engorged ...
Effect of Mobile Phone Radiofrequency Electromagnetic Fields on ...
African Journals Online (AJOL)
olayemitoyin
Summary: Since cell phones emit radiofrequency electromagnetic fields (EMFs), this study tested the hypothesis that cell phones placed ... mobile phones on autonomic modulation of the heart. ..... Electrocardiogram and Its Technology. J. Am.
Influence of storm electromagnetic field on the aircraft crew
Directory of Open Access Journals (Sweden)
Э. Г. Азнакаев
2000-12-01
Full Text Available Considered is the biophysical influence of alternative electromagnetic fields, caused by electrical discharges in atmosphere. Analyzed are conditions which may provoke inadequate actions and errors of the crew in airplane flight control
On quantization of the electromagnetic field in radiation gauge
International Nuclear Information System (INIS)
Burzynski, A.
1982-01-01
This paper contains a detailed description of quantization of the electromagnetic field (in radiation gauge) and quantization of some basic physical variables connected with radiation field as energy, momentum and spin. The dynamics of the free quantum radiation field and the field interacting with external classical sources is described. The canonical formalism is not used explicity. (author)
The power and beauty of electromagnetic fields
Morgenthaler, Frederic R
2011-01-01
Unique, multi-level textbook is adaptable to introductory, intermediate, and advanced levels This revolutionary textbook takes a unique approach to electromagnetic theory, comparing both conventional and modern theories. It explores both the Maxwell-Poynting representation as well as the Alternate representation, which the author demonstrates is generally simpler and more suitable for analyzing modern electromagnetic environments. Throughout the text, students and researchers have the opportunity to examine both of these theories and discover how each one can be applied to solve problems.
The Electromagnetic Field of Elementary Time-Dependent Toroidal Sources
International Nuclear Information System (INIS)
Afanas'ev, G.N.; Stepanovskij, Yu.P.
1994-01-01
The radiation field of toroidal-like time-dependent current configurations is investigated. Time-dependent charge-current sources are found outside which the electromagnetic strengths disappear but the potentials survive. This can be used to carry out time-dependent Aharonov-Bohm-like experiments and the information transfer. Using the Neumann-Helmholtz parametrization of the current density we present the time-dependent electromagnetic field in a form convenient for applications. 17 refs
Rydberg atoms ionization by microwave field and electromagnetic pulses
International Nuclear Information System (INIS)
Kaulakys, B.; Vilutis, G.
1995-01-01
A simple theory of the Rydberg atoms ionization by electromagnetic pulses and microwave field is presented. The analysis is based on the scale transformation which reduces the number of parameters and reveals the functional dependencies of the processes. It is shown that the observed ionization of Rydberg atoms by subpicosecond electromagnetic pulses scale classically. The threshold electric field required to ionise a Rydberg state may be simply evaluated in the photonic basis approach for the quantum dynamics or from the multiphoton ionization theory
Effect of Weak Magnetic Field on Bacterial Growth
Masood, Samina
Effects of weak magnetic fields are observed on the growth of various bacterial strains. Different sources of a constant magnetic field are used to demonstrate that ion transport in the nutrient broth and bacterial cellular dynamics is perturbed in the presence of weak magnetic field which affects the mobility and absorption of nutrients in cells and hence their doubling rate. The change is obvious after a few hours of exposure and keeps on increasing with time for all the observed species. The growth rate depends on the field strength and the nature of the magnetic field. The field effect varies with the shape and the structure of the bacterial cell wall as well as the concentration of nutrient broth. We closely study the growth of three species Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis with the same initial concentrations at the same temperature in the same laboratory environment. Our results indicate that the weak static field of a few gauss after a few hours gives a measurable change in the growth rates of all bacterial species. This shows that the same magnetic field has different effects on different species in the same environment.
An SU(3)xU(1) theory of weak-electromagnetic interactions with charged boson mixing
International Nuclear Information System (INIS)
Singer, M.
1978-01-01
An SU(3)xU(1) gauge theory of weak electromagnetic interactions is proposed in which the charged bosons mix with each other. The model naturally ensures e-μ and quark-lepton universality in couplings, and the charged boson mixing permits an equal number of leptons and quark flavours. There are no new stable leptons. All the fermions are placed in triplets and singlets and the theory is vector-like and hence free of anomalies. In addition one of the charged bosons can have a mass less than 43 GeV. Discrete symmetries and specific choices for Higgs fields are postulated to obtain the appropriate boson and fermion masses. Calculations for the decay of the tau particle, which is described as a heavy electron, are given. Multimuon events are discussed as are neutrino neutral currents. Calculations are also given for testing asymmetries in e-hadron scattering due to weak electron neutral currents along with other phenomenology of the model
Numerical Analysis of Electromagnetic Fields in Multiscale Model
International Nuclear Information System (INIS)
Ma Ji; Fang Guang-You; Ji Yi-Cai
2015-01-01
Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. (paper)
Pair production of arbitrary spin particles by electromagnetic fields
International Nuclear Information System (INIS)
Kruglov, S.I.
2006-01-01
The exact solutions of the wave equation for arbitrary spin particles in the field of the soliton-like electric impulse were obtained. The differential probability of pair production of particles by electromagnetic fields has been evaluated on the basis of the exact solutions. As a particular case, the particle pair production in the constant and uniform electric field were studied
The motion of a charged black hole in an electromagnetic field
International Nuclear Information System (INIS)
Bicak, J.; Cambridge Univ.
1980-01-01
The motion of a charged black hole in a weak, asymptotically uniform electric field is analysed by using the Hamiltonian formalism for coupled electromagnetic and gravitational perturbations of the Reissner-Nordstrom space-time. The hole is shown to accelerate with respect to a distant inertial observer according to Newton's law. The relation of the approximate solution obtained to the exact solution of Ernst, representing the charged C-metric without nodal singularity, is then clarified. (author)
Directory of Open Access Journals (Sweden)
Sergio Solorio-Meza
2012-02-01
Full Text Available Durante las últimas décadas, el interés por explicar el efecto de la radiación no ionizante, como es el caso de los campos electromagnéticos (CEM sobre sistemas celulares ha aumentado considerablemente. En este artículo se describe la interacción que existe entre los CEM y sistemas biológicos. Se discute el efecto de la estimulación electromagnética a diferentes frecuencias e intensidades en cultivos celulares. Resultados preliminares al estimular células de neuroblastomas SK-NSH con campos electromagnéticos de extra baja frecuencia (CEM-EBF, CEM que van del rango de 3 a 30 Hz, indican que se induce un estrés celularque se refleja en variaciones en la expresión de proteínas respecto al grupo de células no estimuladas. En particular, la expresión de las proteínas muestra que los CEM-EBF producen cambios en las proteínas presentes en condiciones normales o basales en las células, es decir, aparecen nuevas proteínas o existe un aumento en la cantidad de ellas.In the last decades the interest to study the effect of non-ionizing radiation, such as the electromagnetic fields (EMF on cellular systems has increased. In this article the interaction between EMF and biological systems is described. An analysis of the effect of the electromagnetic stimulation at different frequencies and intensities on cell cultures is performed. Preliminary results show that the stimulation with extremely low frequency electromagnetic fields (ELF-EMF, EMF from 3 to 30 Hz, on the cellular line of neuroblastomaSK-NSH induces cellular stress. This is reflected by a variation in the proteins expression in comparison with the group of cells no stimulated. In particular, the proteins expression shows that the ELF-EMF produce changes in the current proteins in normal or basal conditionsin the cells, that is, new proteins appear or there is evidence of an increasing in theamount of them.
Endogenous Cortical Oscillations Constrain Neuromodulation by Weak Electric Fields
Schmidt, Stephen L.; Iyengar, Apoorva K.; Foulser, A. Alban; Boyle, Michael R.; Fröhlich, Flavio
2014-01-01
Background Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation modality that may modulate cognition by enhancing endogenous neocortical oscillations with the application of sine-wave electric fields. Yet, the role of endogenous network activity in enabling and shaping the effects of tACS has remained unclear. Objective We combined optogenetic stimulation and multichannel slice electrophysiology to elucidate how the effect of weak sine-wave electric field depends on the ongoing cortical oscillatory activity. We hypothesized that the structure of the response to stimulation depended on matching the stimulation frequency to the endogenous cortical oscillation. Methods We studied the effect of weak sine-wave electric fields on oscillatory activity in mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in vivo like cortical oscillations for studying the temporal relationship between network activity and sine-wave electric field stimulation. Results Weak electric fields enhanced endogenous oscillations but failed to induce a frequency shift of the ongoing oscillation for stimulation frequencies that were not matched to the endogenous oscillation. This constraint on the effect of electric field stimulation imposed by endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like network dynamics. Together, these results suggest that the key mechanism of tACS may be enhancing but not overriding of intrinsic network dynamics. Conclusion Our results contribute to understanding the inconsistent tACS results from human studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations is key to rational design of non-invasive brain stimulation paradigms. PMID:25129402
[The influence of electromagnetic fields on flora and fauna].
Rochalska, Małgorzata
2009-01-01
This paper presents the influence of natural and artificial electromagnetic fields (EMF) on fauna and flora. The mechanisms of Earth's magnetic field detection and the use of this skill by migratory animals to faultlessly reach the destination of their travel are discussed, as well as the positive effects of electric and magnetic fields on plants relative to their physiology, yielding and health. EMF influence on social insects and animal organisms, including possible DNA damages and DNA repair systems, is presented. The influence of high frequency electromagnetic fields on birds nesting is also discussed.
Electromagnetic waves in optical fibres in a magnetic field
International Nuclear Information System (INIS)
Gorelik, V S; Burdanova, M G
2016-01-01
A new method is reported of recording the secondary radiation of luminescent substances based on the use of capillary fibres of great length. Theoretical analysis of the dispersion curves of electromagnetic radiation in capillary fibres doped with erbium ions Er 3+ has been established. The Lorentz model is used for describing the dispersion properties of electromagnetic waves in a homogeneous medium doped with rare-earth ions. The dispersion dependencies of polariton and axion–polariton waves in erbium nitrate hydrate are determined on the basis of the model of the interaction between electromagnetic waves and the resonance electronic states of erbium ions in the absence and presence of a magnetic field. (paper)
Biological effects from electromagnetic fields: Research progress and exposure measurements
International Nuclear Information System (INIS)
Mauro, F.; Lovisolo, G.A.; Raganella, L.
1992-01-01
Although it is commonly accepted that exposure to high levels of electromagnetic, micro- and radiofrequency waves produces harmful effects to the health of man, the formulation of exposure limits is still an open process and dependent upon the evolving level of knowledge in this field. This paper surveys the current level of knowledge gained through 'in vitro' and 'in vivo' radiological and epidemiological studies on different types of electromagnetic radiation derived effects - chromosomal, mutagenic, carcinogenic. It then reviews efforts by international organizations, e. g., the International Radiation Protection Association, to establish exposure limits for radiofrequency electromagnetic fields. Brief notes are given on the electromagnetic radiation monitoring campaign being performed by public health authorities in the Lazio Region of Italy
Dynamical mass generation in QED with weak magnetic fields
International Nuclear Information System (INIS)
Ayala, A.; Rojas, E.; Bashir, A.; Raya, A.
2006-01-01
We study the dynamical generation of masses for fundamental fermions in quenched quantum electrodynamics in the presence of magnetic fields using Schwinger-Dyson equations. We show that, contrary to the case where the magnetic field is strong, in the weak field limit eB << m(0)2, where m(0) is the value of the dynamically generated mass in the absence of the magnetic field, masses are generated above a critical value of the coupling and that this value is the same as in the case with no magnetic field. We carry out a numerical analysis to study the magnetic field dependence of the mass function above critical coupling and show that in this regime the dynamically generated mass and the chiral condensate for the lowest Landau level increase proportionally to (eB)2
Tunneling Time and Weak Measurement in Strong Field Ionization.
Zimmermann, Tomáš; Mishra, Siddhartha; Doran, Brent R; Gordon, Daniel F; Landsman, Alexandra S
2016-06-10
Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process.
Suppression and control of leakage field in electromagnetic helical microwiggler
Energy Technology Data Exchange (ETDEWEB)
Ohigashi, N. [Kansai Univ., Osaka (Japan); Tsunawaki, Y. [Osaka Sangyo Univ. (Japan); Imasaki, K. [Institute for Laser Technology, Osaka (Japan)] [and others
1995-12-31
Shortening the period of electromagnetic wiggler introduces both the radical increase of the leakage field and the decrease of the field in the gap region. The leakage field is severer problem in planar electromagnetic wiggler than in helical wiggler. Hence, in order to develop a short period electromagnetic wiggler, we have adopted {open_quotes}three poles per period{close_quotes} type electromagnetic helical microwiggler. In this work, we inserted the permanent magnet (PM) blocks with specific magnetized directions in the space between magnetic poles, for suppressing the leakage field flowing out from a pole face to the neighboring pole face. These PM-blocks must have higher intrinsic coersive force than saturation field of pole material. The gap field due to each pole is adjustable by controlling the leakage fields, that is, controlling the position of each iron screw set in each retainer fixing the PM-blocks. At present time, a test wiggler with period 7.8mm, periodical number 10 and gap length 4.6mm has been manufactured. Because the ratio of PM-block aperture to gap length is important parameter to suppress the leakage field, the parameter has been surveyed experimentally for PM-blocks with several dimensions of aperture. The field strength of 3-5kG (K=0.2-0.4) would be expected in the wiggler.
Magnetic fields, special relativity and potential theory elementary electromagnetic theory
Chirgwin, B H; Kilmister, C W
1972-01-01
Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec
Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Jia, Jieshu; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Liu, Sha; Yue, Feng [Shanghai Institute of Spaceflight Control Technology, Shanghai 200233 (China); Wu, Jian [China Research Institute of Radio wave Propagation, Beijing 102206 (China); Li, Hui [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); China Research Institute of Radio wave Propagation, Beijing 102206 (China)
2016-04-15
The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.
Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma
International Nuclear Information System (INIS)
Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang; Liu, Sha; Yue, Feng; Wu, Jian; Li, Hui
2016-01-01
The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.
Reasearch and Evaluation of Electromagnetic Fields of Refrigerators
Directory of Open Access Journals (Sweden)
Pranas Baltrėnas
2013-12-01
Full Text Available The use of refrigerators causes the occurence of electromagnetic fields that are invisible and intangible, which therefore makes difficulties in protecting ourselves from them. A refrigerator is an irreplaceable item in domestic household and thus can be hardly ignored by a modern way of human life. In order to preserve the characteristics of products, the refrigerator must operate continuously (24 hrs a day, regardless of the time of the year. This results in a huge increase in electricity consumption, which leads to energy consumption related pollution of the environment emitting CO2 gas. On these grounds, it is necessary to assess electromagnetic fields created by the refrigerator. Studies on electromagnetic fields produced by refrigerators were conducted in domestic premises where people spent a significant part of the day. For comparison purposes, five different power refrigerators were chosen (1 – 0.20 kW; 2 – 0.25 kW; 3 – 0.30 kW; 4 – 0.35 kW; 5 – 0.40 kW. The obtained results, according to the parameters of their electromagnetic fields, were presented in graphs and charts and showed that the values of electric and magnetic intensity of refrigerators depended on the distance and the power of the refrigerator. The conducted research also disclosed that none of tested refrigerators exceeded the permissible limits of electromagnetic fields.Article in Lithuanian
Multipole interactions of charged particles with the electromagnetic field
International Nuclear Information System (INIS)
Burzynski, A.
1982-01-01
The full multipole expansion for the lagrangian and hamiltonian of a system of point charges interacting with the electromagnetic field is studied in detail. Both classical and quantum theory are described for external and dynamical fields separately. One improvement with respect to the known Fiutak's paper is made. (author)
The U(1) Higgs model in an external electromagnetic field
International Nuclear Information System (INIS)
Damgaard, P.H.; Heller, U.M.
1988-01-01
An external electromagnetic field is coupled to the lattice-regularized U(1) Higgs model. We study the phase diagram of this model by both analytical and numerical techniques for different values of the external field strength tensor. The results are compared with expectations based on the analogy with superconducting systems, as described by the phenomenological Ginzburg-Landau theory. (orig.)
Underwater electric field detection system based on weakly electric fish
Xue, Wei; Wang, Tianyu; Wang, Qi
2018-04-01
Weakly electric fish sense their surroundings in complete darkness by their active electric field detection system. However, due to the insufficient detection capacity of the electric field, the detection distance is not enough, and the detection accuracy is not high. In this paper, a method of underwater detection based on rotating current field theory is proposed to improve the performance of underwater electric field detection system. First of all, we built underwater detection system based on the theory of the spin current field mathematical model with the help of the results of previous researchers. Then we completed the principle prototype and finished the metal objects in the water environment detection experiments, laid the foundation for the further experiments.
Electromagnetic Education in India
Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan
2016-01-01
Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…
Thermodynamic properties of open noncritical string in external electromagnetic field
International Nuclear Information System (INIS)
Lichtzier, I.M.; Odintsov, S.D.; Bytsenko, A.A.
1991-01-01
We investigate the thermodynamics of open noncritical string (charged and neutral) in an external constant magnetic field. The free energy and Hagedorn temperature are calculated. It is shown that Hagedorn temperature is the same as in the absence of constant magnetic field. We present also the expressions for the free energy and Hagedorn temperature of the neutral open noncritical string in an external constant electromagnetic field. In this case Hagedorn temperature depends on the external electric field. (author)
International Nuclear Information System (INIS)
Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo
2011-01-01
Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields. (author)
Hydrodynamic fluctuations from a weakly coupled scalar field
Jackson, G.; Laine, M.
2018-04-01
Studies of non-equilibrium dynamics of first-order cosmological phase transitions may involve a scalar field interacting weakly with the energy-momentum tensor of a thermal plasma. At late times, when the scalar field is approaching equilibrium, it experiences both damping and thermal fluctuations. We show that thermal fluctuations induce a shear viscosity and a gravitational wave production rate, and propose that including this tunable contribution may help in calibrating the measurement of the gravitational wave production rate in hydrodynamic simulations. Furthermore it may enrich their physical scope, permitting in particular for a study of the instability of growing bubbles.
Anisotropic Bianchi II cosmological models with matter and electromagnetic fields
International Nuclear Information System (INIS)
Soares, D.
1978-01-01
A class of solutions of Einstein-Maxwell equations is presented, which corresponds to anisotropic Bianchi II spatially homogeneous cosmological models with perfect fluid and electromagnetic field. A particular model is examined and shown to be unstable for perturbations of the electromagnetic field strength parameter about a particular value. This value defines a limiar unstable case in which the ratio epsilon, of the fluid density to the e.m. energy density is monotonically increasing with a minimum finite value at the singularity. Beyond this limiar, the model has a matter dominated singularity, and a characteristic stage appears where epsilon has a minimum, at a finite time from the singularity. For large times, the models tend to an exact solution for zero electromagnetic field and fluid with p = (1/5)p. Some cosmological features of the models are calculated, as the effect of anisotropy on matter density and expansion time scale factors, as compared to the corresponding Friedmann model [pt
The electromagnetic bio-field: clinical experiments and interferences.
Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L
2012-06-12
One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express.
Nonlinear properties of gated graphene in a strong electromagnetic field
Energy Technology Data Exchange (ETDEWEB)
Avetisyan, A. A., E-mail: artakav@ysu.am; Djotyan, A. P., E-mail: adjotyan@ysu.am [Yerevan State University, Department of Physics (Armenia); Moulopoulos, K., E-mail: cos@ucy.ac.cy [University of Cyprus, Department of Physics (Cyprus)
2017-03-15
We develop a microscopic theory of a strong electromagnetic field interaction with gated bilayer graphene. Quantum kinetic equations for density matrix are obtained using a tight binding approach within second quantized Hamiltonian in an intense laser field. We show that adiabatically changing the gate potentials with time may produce (at resonant photon energy) a full inversion of the electron population with high density between valence and conduction bands. In the linear regime, excitonic absorption of an electromagnetic radiation in a graphene monolayer with opened energy gap is also studied.
Hoenders, B.J.
1975-01-01
It is shown that a weak phase object imaged by an electron microscope within the presence of instabilities of the lense currents and the acceleration voltage, fluctuating electromagnetic field, can be reconstructed from the intensity distribution in the image plane. Perfectly incoherent illumination
International Nuclear Information System (INIS)
Vigdorchik, N.E.
1978-01-01
The voltage tensor expression is obtained for plasma placed in a HF electromagnetic and constant electric fields. The kinetic equations with allowance for collisions are initial. Weakly ionized and completely ionized plasmas are considered. The voltage tensor for completely ionized plasma differs essentially from that for transparent media
TNB high tension overhead cables: is their electromagnetic field hazard real?
International Nuclear Information System (INIS)
Roha Tukimin; Mohd Yusof Mohd Ali; Mohamad Amirul Nizam
2005-01-01
Extremely low frequency electromagnetic fields (ELF, EMF) fall under the category of non-ionising radiation. We live in an electromagnetic environment generated by both natural (earths magnetic field, sunlight) and man-made. One of the man-made sources which produces significant electromagnetic fields (EMF) is the electric power supply system. In modern time, electricity has become an essential part of our lives. Electric power supply system, which includes generation, transmission and distribution of the electricity, produces extremely low frequency electromagnetic fields (ELF EMF) that travel along the overhead cables at 50 cycles per second (50 Hz).They are a form of energy that travels in space as electromagnetic waves. In spite of the fact that ELF EMF are very weak electromagnetic emission, they are believed to be hazardous to human health because of their ability to induce current and to initiate energy deposition in the body, which may eventually lead to increase in body temperature, behavioral changes and perhaps cancer in the long term. Due to their potential of causing such health hazard, several companies have approached and requested MINT to carry out surveys and safety assessments of their land properties, which are located close to the transmission lines. This paper highlights some of the works that had been carried out by MINT based on the requests received. They were performed based on international standard IEEE procedures protocols using properly calibrated portable ELF instruments. The results confirmed that ELF EMF did present at the survey sites but were very much lower than the permissible exposure limit recommended for members of public (1000 m Gauss / 5000 V/m). They were found to vary against measurements locations, which were strongly influenced by vertical and horizontal distances from the cables and by the presence of other objects like building and trees. (Author)
Method for imaging with low frequency electromagnetic fields
Lee, Ki H.; Xie, Gan Q.
1994-01-01
A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.
Energy-momentum tensor for a Casimir apparatus in a weak gravitational field
International Nuclear Information System (INIS)
Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero; Rosa, Luigi
2006-01-01
The influence of the gravity acceleration on the regularized energy-momentum tensor of the quantized electromagnetic field between two plane-parallel conducting plates is derived. We use Fermi coordinates and work to first order in the constant acceleration parameter. A perturbative expansion, to this order, of the Green functions involved and of the energy-momentum tensor is derived by means of the covariant geodesic point-splitting procedure. In correspondence to the Green functions satisfying mixed and gauge-invariant boundary conditions, and Ward identities, the energy-momentum tensor is covariantly conserved and satisfies the expected relation between gauge-breaking and ghost parts, while a new simple formula for the trace anomaly is obtained to first order in the constant acceleration. A more systematic derivation is therefore obtained of the theoretical prediction according to which the Casimir device in a weak gravitational field will experience a tiny push in the upwards direction
Occupational exposure to electromagnetic fields in the Polish Armed Forces.
Sobiech, Jaromir; Kieliszek, Jarosław; Puta, Robert; Bartczak, Dagmara; Stankiewicz, Wanda
2017-06-19
Standard devices used by military personnel that may pose electromagnetic hazard include: radars, missile systems, radio navigation systems and radio transceivers. The aim of this study has been to evaluate the exposure of military personnel to electromagnetic fields. Occupational exposure to electromagnetic fields was analyzed in the work environment of personnel of 204 devices divided into 5 groups (surface-to-air missile system radars, aircraft and helicopters, communication devices, surveillance and height finder radars, airport radars and radio navigation systems). Measurements were carried out at indicators, device terminals, radio panels, above vehicle seats, in vehicle hatches, by cabinets containing high power vacuum tubes and other transmitter components, by transmission lines, connectors, etc. Portable radios emit the electric field strength between 20-80 V/m close to a human head. The manpack radio operator's exposure is 60-120 V/m. Inside vehicles with high frequency/very high frequency (HF/VHF) band radios, the electric field strength is between 7-30 V/m and inside the radar cabin it ranges between 9-20 V/m. Most of the personnel on ships are not exposed to the electromagnetic field from their own radar systems but rather by accidental exposure from the radar systems of other ships. Operators of surface-to-air missile systems are exposed to the electric field strength between 7-15 V/m and the personnel of non-directional radio beacons - 100-150 V/m. In 57% of military devices Polish soldiers work in the occupational protection zones. In 35% of cases, soldiers work in intermediate and hazardous zones and in 22% - only in the intermediate zone. In 43% of devices, military personnel are not exposed to electromagnetic field. Int J Occup Med Environ Health 2017;30(4):565-577. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Occupational exposure to electromagnetic fields in the Polish Armed Forces
Directory of Open Access Journals (Sweden)
Jarosław Kieliszek
2017-08-01
Full Text Available Objectives: Standard devices used by military personnel that may pose electromagnetic hazard include: radars, missile systems, radio navigation systems and radio transceivers. The aim of this study has been to evaluate the exposure of military personnel to electromagnetic fields. Material and Methods: Occupational exposure to electromagnetic fields was analyzed in the work environment of personnel of 204 devices divided into 5 groups (surface-to-air missile system radars, aircraft and helicopters, communication devices, surveillance and height finder radars, airport radars and radio navigation systems. Measurements were carried out at indicators, device terminals, radio panels, above vehicle seats, in vehicle hatches, by cabinets containing high power vacuum tubes and other transmitter components, by transmission lines, connectors, etc. Results: Portable radios emit the electric field strength between 20–80 V/m close to a human head. The manpack radio operator’s exposure is 60–120 V/m. Inside vehicles with high frequency/very high frequency (HF/VHF band radios, the electric field strength is between 7–30 V/m and inside the radar cabin it ranges between 9–20 V/m. Most of the personnel on ships are not exposed to the electromagnetic field from their own radar systems but rather by accidental exposure from the radar systems of other ships. Operators of surface-to-air missile systems are exposed to the electric field strength between 7–15 V/m and the personnel of non-directional radio beacons – 100–150 V/m. Conclusions: In 57% of military devices Polish soldiers work in the occupational protection zones. In 35% of cases, soldiers work in intermediate and hazardous zones and in 22% – only in the intermediate zone. In 43% of devices, military personnel are not exposed to electromagnetic field. Int J Occup Med Environ Health 2017;30(4:565–577
Uniqueness of time-independent electromagnetic fields
DEFF Research Database (Denmark)
Karlsson, Per W.
1974-01-01
As a comment on a recent paper by Steele, a more general uniqueness theorem for time-independent fields is mentioned. ©1974 American Institute of Physics......As a comment on a recent paper by Steele, a more general uniqueness theorem for time-independent fields is mentioned. ©1974 American Institute of Physics...
Electromagnetic fields and Green functions in elliptical vacuum chambers
AUTHOR|(CDS)2084216; Biancacci, Nicolo; Migliorati, Mauro; Palumbo, Luigi; Vaccaro, Vittorio; CERN. Geneva. ATS Department
2017-01-01
In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and the indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be diffe...
A physically motivated quantization of the electromagnetic field
International Nuclear Information System (INIS)
Bennett, Robert; Barlow, Thomas M; Beige, Almut
2016-01-01
The notion that the electromagnetic field is quantized is usually inferred from observations such as the photoelectric effect and the black-body spectrum. However accounts of the quantization of this field are usually mathematically motivated and begin by introducing a vector potential, followed by the imposition of a gauge that allows the manipulation of the solutions of Maxwell’s equations into a form that is amenable for the machinery of canonical quantization. By contrast, here we quantize the electromagnetic field in a less mathematically and more physically motivated way. Starting from a direct description of what one sees in experiments, we show that the usual expressions of the electric and magnetic field observables follow from Heisenberg’s equation of motion. In our treatment, there is no need to invoke the vector potential in a specific gauge and we avoid the commonly used notion of a fictitious cavity that applies boundary conditions to the field. (paper)
Detection of weak electric fields by sharks, rays, and skates.
Adair, Robert K.; Astumian, R. Dean; Weaver, James C.
1998-09-01
The elasmobranchs-sharks, rays, and skates-can detect very weak electric fields in their aqueous environment through a complex sensory system, the ampullae of Lorenzini. The ampullae are conducting tubes that connect the surface of the animal to its interior. In the presence of an electric field, the potential of the surface of the animal will differ from that of the interior and that potential is applied across the apical membrane of the special sensory cells that line the ampullae. The firing rate of the afferent neurons that transmit signals from the ampullae has been shown to vary with that potential. We show that those firing rates can be described quantitatively in terms of synchronous firing of the sensory cells that feed the neurons. We demonstrate that such synchronism follows naturally from a hypothetical weak cell-to-cell interaction that results in a self-organization of the sensory cells. Moreover, the pulse rates of those cells-and the neurons that service the cells-can be expected to vary with the imposed electric fields in accord with measured values through actions of voltage gated transmembrane proteins in the apical sector of the cell membranes that admit Ca(++) ions. We also present a more conjectural model of signal processing at the neuron level that could exploit small differences in firing rates of nerve fibers servicing different ampullae to send an unambiguous signal to the central nervous system of the animal. (c) 1998 American Institute of Physics.
Inner-shell photoionization in weak and strong radiation fields
International Nuclear Information System (INIS)
Southworth, S.H.; Dunford, R.W.; Ederer, D.L.; Kanter, E.P.; Kraessig, B.; Young, L.
2004-01-01
The X-ray beams presently produced at synchrotron-radiation facilities interact weakly with matter, and the observation of double photoionization is due to electron-electron interactions. The intensities of future X-ray free-electron lasers are expected to produce double photoionization by absorption of two photons. The example of double K-shell photoionization of neon is discussed in the one- and two-photon cases. We also describe an experiment in which X rays photoionize the K shell of krypton in the presence of a strong AC field imposed by an optical laser
Novel method for detecting weak magnetic fields at low frequencies
González-Martínez, S.; Castillo-Torres, J.; Mendoza-Santos, J. C.; Zamorano-Ulloa, R.
2005-06-01
A low-level-intensity magnetic field detection system has been designed and developed based on the amplification-selection process of signals. This configuration is also very sensitive to magnetic field changes produced by harmonic-like electrical currents transported in finite-length wires. Experimental and theoretical results of magnetic fields detection as low as 10-9T at 120Hz are also presented with an accuracy of around 13%. The assembled equipment is designed to measure an electromotive force induced in a free-magnetic-core coil in order to recover signals which are previously selected, despite the fact that their intensities are much lower than the environment electromagnetic radiation. The prototype has a signal-to-noise ratio of 60dB. This system also presents the advantage for using it as a portable unit of measurement. The concept and prototype may be applied, for example, as a nondestructive method to analyze any corrosion formation in metallic oil pipelines which are subjected to cathodic protection.
New theory of radiative energy transfer in free electromagnetic fields
International Nuclear Information System (INIS)
Wolf, E.
1976-01-01
A new theory of radiative energy transfer in free, statistically stationary electromagnetic fields is presented. It provides a model for energy transport that is rigorous both within the framework of the stochastic theory of the classical field as well as within the framework of the theory of the quantized field. Unlike the usual phenomenological model of radiative energy transfer that centers around a single scalar quantity (the specific intensity of radiation), our theory brings into evidence the need for characterizing the energy transport by means of two (related) quantities: a scalar and a vector that may be identified, in a well-defined sense, with ''angular components'' of the average electromagnetic energy density and of the average Poynting vector, respectively. Both of them are defined in terms of invariants of certain new electromagnetic correlation tensors. In the special case when the field is statistically homogeneous, our model reduces to the usual one and our angular component of the average electromagnetic energy density, when multiplied by the vacuum speed of light, then acquires all the properties of the specific intensity of radiation. When the field is not statistically homogeneous our model approximates to the usual phenomenological one, provided that the angular correlations between plane wave modes of the field extend over a sufficiently small solid angle of directions about the direction of propagation of each mode. It is tentatively suggested that, when suitably normalized, our angular component of the average electromagnetic energy density may be interpreted as a quasi-probability (general quantum-mechancial phase-space distribution function, such as Wigner's) for the position and the momentum of a photon
Electromagnetic field for an open magnetosphere
International Nuclear Information System (INIS)
Heikkila, W.J.
1984-01-01
The boundary-layer-dominated models of the earth EM field developed by Heikkila (1975, 1978, 1982, and 1983) and Heikkila et al. (1979) to account for deficiencies in the electric-field descriptions of quasi-steady-state magnetic-field-reconnection models (such as that of Cowley, 1980) are characterized, reviewing the arguments and indicating the most important implications. The mechanisms of boundary-layer formation and field direction reversal are explained and illustrated with diagrams, and it is inferred that boundary-layer phenomena rather than magnetic reconnection may be the cause of large-scale magnetospheric circulation, convection, plasma-sheet formation and sunward convection, and auroras, the boundary layer acting basically as a viscous process mediating solar-wind/magnetosphere interactions. 23 references
The electromagnetic field for an open magnetosphere
Heikkila, W. J.
1984-01-01
The boundary-layer-dominated models of the earth EM field developed by Heikkila (1975, 1978, 1982, and 1983) and Heikkila et al. (1979) to account for deficiencies in the electric-field descriptions of quasi-steady-state magnetic-field-reconnection models (such as that of Cowley, 1980) are characterized, reviewing the arguments and indicating the most important implications. The mechanisms of boundary-layer formation and field direction reversal are explained and illustrated with diagrams, and it is inferred that boundary-layer phenomena rather than magnetic reconnection may be the cause of large-scale magnetospheric circulation, convection, plasma-sheet formation and sunward convection, and auroras, the boundary layer acting basically as a viscous process mediating solar-wind/magnetosphere interactions.
Effects of extremely low frequency electromagnetic fields on growth ...
African Journals Online (AJOL)
Electromagnetic fields are an important environmental factor that can influence the growth and development of plants. Exposure to EMFs was performed by a locally designed EMF generator. Our investigations were focused on plants grown from wet pretreated seeds with 3 and 10 mT for a 4 h exposure time and compared ...
Effect of Electromagnetic Fields on Transfer Processes in Heterogeneous Systems
Czech Academy of Sciences Publication Activity Database
Levdansky, V.V.; Kim, H. Y.; Kim, H. C.; Smolík, Jiří; Moravec, Pavel
2001-01-01
Roč. 44, č. 5 (2001), s. 1065-1071 ISSN 0017-9310 Institutional research plan: CEZ:AV0Z4072921 Keywords : electromagnetic field * transfer processes * heterogeneous system Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.240, year: 2001
Electromagnetic fields of ionospheric point dipoles in the earthionosphere waveguide
International Nuclear Information System (INIS)
Rybachek, S.T.
1985-01-01
This paper addresses the problem of excitation of the spherical earth-anisotropic ionosphere waveguide by ionospheric dipole sources. The solution obtained is based on a generalized reciprocity theorem which provides a relationship to the problem of finding electromagnetic fields in the ionosphere created by sources located in the waveguide. Some results of the calculations are presented
Generation of a Desired Three-Dimensional Electromagnetic Field
DEFF Research Database (Denmark)
2005-01-01
The present invention relates to a method and a system for synthesizing a prescribed three-dimensional electromagnetic field based on generalized phase contrast imaging. Such a method and apparatus may be utilized in advanced optical micro and nano-manipulation, such as by provision of a multiple...
Energy conservation law for randomly fluctuating electromagnetic fields
International Nuclear Information System (INIS)
Gbur, G.; Wolf, E.; James, D.
1999-01-01
An energy conservation law is derived for electromagnetic fields generated by any random, statistically stationary, source distribution. It is shown to provide insight into the phenomenon of correlation-induced spectral changes. The results are illustrated by an example. copyright 1999 The American Physical Society
Vacuum energy of the electromagnetic field in a rotating system
International Nuclear Information System (INIS)
Hacyan, S.; Sarmiento, A.
1986-01-01
The vacuum energy of the electromagnetic field is calculated for a uniformly rotating observer. The spectrum of vacuum fluctuations is composed of the zero-point energy with a modified density of states and a contribution due to the rotation which is not thermal. (orig.)
The concept of free electromagnetic field in quantum domain
SHUMOVSKY, Alexander; MÜSTECAPLIOĞLU, Özgür
1999-01-01
By virtue of the consideration of polarization and phase properties of dipole radiation in the quantum domain, it is shown that the concept of free electromagnetic field should be considered as a quite risky approximation in the description of quantum fluctuations of some physical observables.
Effect of Mobile Phone Radiofrequency Electromagnetic Fields on ...
African Journals Online (AJOL)
Summary: Since cell phones emit radiofrequency electromagnetic fields (EMFs), this study tested the hypothesis that cell phones placed near the heart may interfere with the electrical rhythm of the heart or affect the blood pressure. Following informed consent, eighteen randomly selected apparently healthy male volunteers ...
Interaction of strong electromagnetic fields with atoms
International Nuclear Information System (INIS)
Brandi, H.S.; Davidovich, L.; Zagury, N.
1982-06-01
Several non-linear processes involvoing the interaction of atoms with strong laser fields are discussed, with particular emphasis on the ionization problem. Non-perturbative methods which have been proposed to tackle this problem are analysed, and shown to correspond to an expansion in the intra-atomic potential. The relation between tunneling and multiphoton absorption as ionization mechanisms, and the generalization of Einstein's photoelectric equation to the strong-field case are discussed. (Author) [pt
Electromagnetic fields from mobile phone base station - variability analysis.
Bienkowski, Pawel; Zubrzak, Bartlomiej
2015-09-01
The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.
Design of a high field uniformity electromagnet for Penning trap
International Nuclear Information System (INIS)
Itteera, Janvin; Singh, Kumud; Teotia, Vikas; Ukarde, Priti; Malhotra, Sanjay; Taly, Y.K.; Joshi, Manoj; Rao, Pushpa
2013-01-01
An ion trap (Penning trap) facility is being developed at BARC for spectroscopy studies. This requires the design of an iron core electromagnet capable of generating high magnetic fields (∼1.7T) at the centre of an 88 mm long air gap. This electromagnet provides the requisite dipole magnetic field which when superimposed on the electrostatic quadrupoles ensures a stable trapping of ions. To conduct high precision spectroscopy studies, we need to ensure a high degree of magnetic field uniformity ( 3 volume (Trap zone). Various pole shoe profiles were studied and modelled, FEM simulation of the same were conducted to compute the magnetic field intensity and field uniformity. Owing to the large air gap and requirement of high field intensity in the GFR, the exciting coils need to handle high current densities, which require water cooled systems. Double Pan-Cake coil design is selected for powering the magnet. Electrical, thermal and hydraulic designs of the coils are completed and a prototype double pancake coil was fabricated and tested for verifying the electrical and thermal parameter. The spatial field homogeneity is achieved by shimming the pole tip. Temporal stability of magnet requires a highly stable power supply for exciting the coils and its stability class is derived from FEM simulations. This paper discusses the electromagnetic design and development of the penning trap magnet being developed at BARC. (author)
International Nuclear Information System (INIS)
Arrayás, Manuel; Trueba, José L
2015-01-01
An electromagnetic knot is an electromagnetic field in vacuum in which the magnetic lines and the electric lines coincide with the level curves of a pair of complex scalar fields ϕ and θ (see equations (A.1), (A.2)). When electromagnetism is expressed in terms of electromagnetic knots, it includes mechanisms for the topological quantization of the electromagnetic helicity, the electric charge, the electromagnetic energy inside a cavity and the magnetic flux through a superconducting ring. In the case of electromagnetic helicity, its topological quantization depends on the linking number of the field lines, both electric and magnetic. Consequently, to find solutions of the electromagnetic knot equations with nontrivial topology of the field lines has important physical consequences. We study a new class of solutions of Maxwell's equations in vacuum Arrayás and Trueba (2011 arXiv:1106.1122) obtained from complex scalar fields that can be interpreted as maps S 3 →S 2 , in which the topology of the field lines is that of the whole torus-knot set. Thus this class of solutions is built as electromagnetic knots at initial time. We study some properties of those fields and consider if detection based on the energy and momentum observables is possible. (paper)
Electromagnetic field scattering by a triangular aperture.
Harrison, R E; Hyman, E
1979-03-15
The multiple Laplace transform has been applied to analysis and computation of scattering by a double triangular aperture. Results are obtained which match far-field intensity distributions observed in experiments. Arbitrary polarization components, as well as in-phase and quadrature-phase components, may be determined, in the transform domain, as a continuous function of distance from near to far-field for any orientation, aperture, and transformable waveform. Numerical results are obtained by application of numerical multiple inversions of the fully transformed solution.
Design of Electric Field Sensors for Measurement of Electromagnetic Pulse
Directory of Open Access Journals (Sweden)
Hui ZHANG
2014-01-01
Full Text Available In this paper, a D-dot electric field sensor and a fiber-optic transmission electric field sensor are developed for measurement of electromagnetic pulse. The D-dot sensor is a differential model sensor without source and has a simple structure. The fiber-optic transmission sensor is in the type of small dipole antenna, which uses its outside shielding layer as a pair of antennas. Design of the sensor circuit and the test system are introduced in this paper. A calibration system for these pulsed field sensors is established and the test results verified the ability of the developed sensors for measurement of the standard electromagnetic pulse field (the half peak width is 25 ns and the rising time is 2.5 ns.
Electromagnetic Drop Scale Scattering Modelling for Dynamic Statistical Rain Fields
Hipp, Susanne
2015-01-01
This work simulates the scattering of electromagnetic waves by a rain field. The calculations are performed for the individual drops and accumulate to a time signal dependent on the dynamic properties of the rain field. The simulations are based on the analytical Mie scattering model for spherical rain drops and the simulation software considers the rain characteristics drop size (including their distribution in rain), motion, and frequency and temperature dependent permittivity. The performe...
Effects of RF low levels electromagnetic fields on Paramecium primaurelia
International Nuclear Information System (INIS)
Tofani, S.; Testa, B.; Agnesod, G.; Tartagbino, L.; Bonazzola, G.C.
1988-01-01
In the last years many studies have been performed to examine biological effects of prolonged exposure at electric field low levels. This great interest is linked to a specific interaction possibility, also related to the exposure length, between electromagnetic fields and biological systems without remarkable enhancement of organism's temperature. Hence the need to investigate in vitro the possible cellular regulation mechanisms involved in these interactions, varying physical exposure parameters
Classical electromagnetic field theory in the presence of magnetic sources
Chen, Wen-Jun; Li, Kang; Naón, Carlos
2001-01-01
Using two new well defined 4-dimensional potential vectors, we formulate the classical Maxwell's field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources. We set up a consistent Lagrangian for the theory. Then from the action principle we get both Maxwell's equation and the equation of motion of a dyon moving in the electro-magnetic field.
Observation of asymmetric electromagnetic field profiles in chiral metamaterials
Hisamoto, Nobuyuki; Ueda, Tetsuya; Sawada, Kei; Tomita, Satoshi
2018-02-01
We experimentally observe asymmetric electromagnetic field profiles along two-dimensional chiral metamaterials. The asymmetric field profiles depending on the chirality and the operation frequency have been reproduced well by the numerical simulation. Around a chiral meta-atom, distribution of a Poynting vector is found to be shifted asymmetrically. These results are explained in terms of an analogy with the side-jump mechanism in the electronic anomalous Hall systems.
Occupational exposure to electromagnetic fields and chronic diseases
Håkansson, Niclas
2003-01-01
This thesis consider two exposures from the electromagnetic spectrum extremely low-frequency magnetic fields (ELF MF) and ultraviolet (UV) radiation. ELF MF are the lowest and UV radiation ranges among the highest frequencies of non-ionizing radiation. The exposure prevalence of these fields is high in the general population. Most people are exposed daily to either or both types and potential health effects are of great concern. The aim of the thesis was to study occupationa...
On Huygens' principle for Dirac operators associated to electromagnetic fields
Directory of Open Access Journals (Sweden)
CHALUB FABIO A.C.C.
2001-01-01
Full Text Available We study the behavior of massless Dirac particles, i.e., solutions of the Dirac equation with m = 0 in the presence of an electromagnetic field. Our main result (Theorem 1 is that for purely real or imaginary fields any Huygens type (in Hadamard's sense Dirac operators is equivalent to the free Dirac operator, equivalence given by changes of variables and multiplication (right and left by nonzero functions.
Setting research strategy on electromagnetic-field pollution of Ecuador
International Nuclear Information System (INIS)
Becerra, C.A.
1989-01-01
General population and occupational groups are being exposed to electromagnetic field (EMF) nonionizing radiation that come from all electric or electronic equipment that work either with extremely low frequency (ELF) or radiofrequency (RF) fields. This preoccupation has generated research and regulation plans in some countries int he world, in order to set a clear configuration of bioeffects and other environmental implications derived from exposures to ELF/RF EMF
Wormholes, emergent gauge fields, and the weak gravity conjecture
Energy Technology Data Exchange (ETDEWEB)
Harlow, Daniel [Center for the Fundamental Laws of Nature, Physics Department, Harvard University,Cambridge MA, 02138 (United States)
2016-01-20
This paper revisits the question of reconstructing bulk gauge fields as boundary operators in AdS/CFT. In the presence of the wormhole dual to the thermofield double state of two CFTs, the existence of bulk gauge fields is in some tension with the microscopic tensor factorization of the Hilbert space. I explain how this tension can be resolved by splitting the gauge field into charged constituents, and I argue that this leads to a new argument for the “principle of completeness”, which states that the charge lattice of a gauge theory coupled to gravity must be fully populated. I also claim that it leads to a new motivation for (and a clarification of) the “weak gravity conjecture”, which I interpret as a strengthening of this principle. This setup gives a simple example of a situation where describing low-energy bulk physics in CFT language requires knowledge of high-energy bulk physics. This contradicts to some extent the notion of “effective conformal field theory”, but in fact is an expected feature of the resolution of the black hole information problem. An analogous factorization issue exists also for the gravitational field, and I comment on several of its implications for reconstructing black hole interiors and the emergence of spacetime more generally.
Occupational exposure to electromagnetic fields in physiotherapy departments
International Nuclear Information System (INIS)
Macca, I.; Scapellato, M. L.; Carrieri, M.; Di Bisceglie, A. P.; Saia, B.; Bartolucci, G. B.
2008-01-01
To assess occupational exposure to electromagnetic fields, 11 microwave (MW), 4 short-wave diathermy and 15 magneto therapy devices were analysed in eight physiotherapy departments. Measurements taken at consoles and environmental mapping showed values above European Directive 2004/40/EC and ACGIH exposure limits at ∼50 cm from MW applicators (2.45 GHz) and above the Directive magnetic field limit near the diathermy unit (27.12 MHz). Levels in front of MW therapy applicators decreased rapidly with distance and reduction in power; this may not always occur in work environments where nearby metal structures (chairs, couches, etc.) may reflect or perturb electromagnetic fields. Large differences in stray field intensities were found for various MW applicators. Measurements of power density strength around MW electrodes confirmed radiation fields between 30 deg. and 150 deg., with a peak at 90 deg., in front of the cylindrical applicator and maximum values between 30 deg. and 150 deg. over the whole range of 180 deg. for the rectangular parabolic applicator. Our results reveal that although most areas show substantially low levels of occupational exposure to electromagnetic fields in physiotherapy units, certain cases of over-occupational exposure limits do exist. (authors)
Particles in spherical electromagnetic radiation fields
International Nuclear Information System (INIS)
Mitter, H.; Thaller, B.
1984-03-01
If the time-dependence of a Hamiltonian can be compensated by an appropriate symmetry transformation, the corresponding quantum mechanical problem can be reduced to an effectively stationary one. With this result we investigate the behavior of nonrelativistic particles in a spherical radiation field produced by a rotating source. Then the symmetry transformation corresponds to a rotation. We calculate the transition probabilities in Born approximation. The extension to problems involving an additional Coulomb potential is briefly discussed. (Author)
DATA ACQUISITION AND ANALYSIS OF LOW FREQUENCY ELECTROMAGNETIC FIELD
Directory of Open Access Journals (Sweden)
PETRICA POPOV
2016-06-01
Full Text Available In recent years more and more studies have shown that, the low frequency field strength (particularly magnetic, 50 / 60Hz are a major risk factor; according to some specialists - even more important as the radiation field. As a result, the personnel serving equipment and facilities such as: electric generators, synchronous, the motors, the inverters or power transformers is subjected continually to intense fields, in their vicinity, with possible harmful effects in the long term by affecting metabolism cell, espectively, the biological mechanisms.Therefore, finding new methods and tools for measurement and analysis of low frequency electromagnetic fields may lead to improved standards for exposure limits of the human body.
Radiation corrections to quantum processes in an intense electromagnetic field
International Nuclear Information System (INIS)
Narozhny, N.B.
1979-01-01
A derivation of an asymptotic expression for the mass correction of order α to the electron propagator in an intense electromagnetic field is presented. It is used for the calculation of radiation corrections to the electron and photon elastic scattering amplitudes in the α 3 approximation. All proper diagrams contributing to the amplitudes and containing the above-mentioned correction to the propagator were considered, but not those which include vertex corrections. It is shown that the expansion parameter of the perturbation theory of quantum electrodynamics in intense fields grows not more slowly than αchi/sup 1/3/ at least for the electron amplitude, where chi = [(eF/sub μν/p/sub ν/) 2 ] 12 /m 3 , p is a momentum of the electron, and F is the electromagnetic field tensor
Electromagnetic fields mediate efficient cell reprogramming into a pluripotent state.
Baek, Soonbong; Quan, Xiaoyuan; Kim, Soochan; Lengner, Christopher; Park, Jung-Keug; Kim, Jongpil
2014-10-28
Life on Earth is constantly exposed to natural electromagnetic fields (EMFs), and it is generally accepted that EMFs may exert a variety of effects on biological systems. Particularly, extremely low-frequency electromagnetic fields (EL-EMFs) affect biological processes such as cell development and differentiation; however, the fundamental mechanisms by which EMFs influence these processes remain unclear. Here we show that EMF exposure induces epigenetic changes that promote efficient somatic cell reprogramming to pluripotency. These epigenetic changes resulted from EMF-induced activation of the histone lysine methyltransferase Mll2. Remarkably, an EMF-free system that eliminates Earth's naturally occurring magnetic field abrogates these epigenetic changes, resulting in a failure to undergo reprogramming. Therefore, our results reveal that EMF directly regulates dynamic epigenetic changes through Mll2, providing an efficient tool for epigenetic reprogramming including the acquisition of pluripotency.
Instrumentation for electromagnetic field generation in biological measurements
International Nuclear Information System (INIS)
Malaric, K.; Malaric, R.; Tkalec, M.; Lenicek, I.; Sala, A.
2005-01-01
Electromagnetic fields (EMFs) are part of everyday life in modern world. Extremely low-frequency EMFs (50 Hz) are produced by most electric home appliance, electric power transmission and distribution lines. For the last ten years mobile phones have been widely used all around the world. They operate on the EMF frequencies from 400 MHz to 1900 MHz. The effects of EMFs on living organisms have been the subject of debate and research for the last thirty years. The instrumentation for generation of EMFs have been designed at the Faculty of Electrical Engineering and Computing, Zagreb, and can be used for controlled exposure to different EMFs. To study the effect of extremely low-frequency EMF, duckweed (Lemna minor) - the model plant in biological measurement, test setup was made for magnetic field in Helmholtz coil and for electric field between two parallel circle electrodes. For the effect of mobile phones frequencies, test setup with exposition to the electromagnetic field was done with Gigahertz Transversal Electromagnetic Mode (GTEM) cell. The research confirmed that instrumentation used in these experiments is suitable for evaluation of biological effects of EMFs. The effect of different field strengths, exposure times and modulation can be tested with these instrumentation.(author)
An integrated model for interaction of electromagnetic fields with biological systems
International Nuclear Information System (INIS)
Apollonio, F.; Liberti, M.; Cavagnaro, M.; D'Inzeo, G.; Tarricone, L.
1999-01-01
In this work is described a methodology for evaluation of interaction of high frequency electromagnetic field. Biological systems via connection of many macroscopic models. In particular the analysis of neuronal membrane exposed to electromagnetic fields [it
Cellular target of weak magnetic fields: ionic conduction along actin filaments of microvilli.
Gartzke, Joachim; Lange, Klaus
2002-11-01
The interaction of weak electromagnetic fields (EMF) with living cells is a most important but still unresolved biophysical problem. For this interaction, thermal and other types of noise appear to cause severe restrictions in the action of weak signals on relevant components of the cell. A recently presented general concept of regulation of ion and substrate pathways through microvilli provides a possible theoretical basis for the comprehension of physiological effects of even extremely low magnetic fields. The actin-based core of microfilaments in microvilli is proposed to represent a cellular interaction site for magnetic fields. Both the central role of F-actin in Ca2+ signaling and its polyelectrolyte nature eliciting specific ion conduction properties render the microvillar actin filament bundle an ideal interaction site for magnetic and electric fields. Ion channels at the tip of microvilli are connected with the cytoplasm by a bundle of microfilaments forming a diffusion barrier system. Because of its polyelectrolyte nature, the microfilament core of microvilli allows Ca2+ entry into the cytoplasm via nonlinear cable-like cation conduction through arrays of condensed ion clouds. The interaction of ion clouds with periodically applied EMFs and field-induced cation pumping through the cascade of potential barriers on the F-actin polyelectrolyte follows well-known physical principles of ion-magnetic field (MF) interaction and signal discrimination as described by the stochastic resonance and Brownian motor hypotheses. The proposed interaction mechanism is in accord with our present knowledge about Ca2+ signaling as the biological main target of MFs and the postulated extreme sensitivity for coherent excitation by very low field energies within specific amplitude and frequency windows. Microvillar F-actin bundles shielded by a lipid membrane appear to function like electronic integration devices for signal-to-noise enhancement; the influence of coherent signals
International Nuclear Information System (INIS)
Dixit, S.K.; Azif, Z.A.; Gwal, A.K.
1994-01-01
The characteristics of the growth rate of electromagnetic ion cyclotron (EMIC) instability is investigated in a mixture of cold species of ions and warm proton in the presence of weak parallel static electric field. An attempt has been made to explain the excitation of EMIC waves through linear wave-particle (W-P) interaction in the equatorial magnetospheric region. The proton cyclotron instability is modified in presence of weak parallel electric field and the growth rate is computed for equatorial magnetospheric plasma parameters. The results of theoretical investigations of the growth rate are used to explain the excitation mechanism of extremely low frequency/very low frequency (ELF/VLF) waves as observed by satellites. (author). 29 refs., 4 figs
Electromagnetic processes in strong crystalline fields
Uggerhoj, U I; Esberg, J; Knudsen, H; Lund, M; Møller, S P; Sørensen, A H; Thomsen, A H; Uggerhøj, U I; Geissel, H; Scheidenberger, C; Weick, H; Winfield, J; Sona, P; Connell S; Ballestrero, S; Ketel, T; Dizdar, A; Mangiarotti, A
2009-01-01
As an addendum to the NA63 proposal cite{Ande05}, we propose to measure 1) the Landau-Pomeranchuk-Migdal (LPM) effect in low-$Z$ targets, 2) Magnetic suppression of incoherent bremsstrahlung resulting from exposure to an external field during the emission event, and 3) the bremsstrahlung emission from relativistic ($gamma=170$), fully stripped Pb nuclei penetrating various amorphous targets. Concerning the LPM effect, both the 'traditional' Migdal approach and the modern treatment by Baier and Katkov display inaccuracies, i.e. a possible lack of applicability in low-$Z$ targets. Moreover, the LPM effect has been shown to have a significant impact on giant air showers for energies in the EeV range - evidently processes in a low-$Z$ material. A measurement of magnetic suppression is demanding in terms of necessary accuracy (an expected $lesssim$15% effect), but would prove the existence of a basic interplay between coherent and incoherent processes, also believed to be significant in beamstrahlung emission. For...
Designing localized electromagnetic fields in a source-free space
International Nuclear Information System (INIS)
Borzdov, George N.
2002-01-01
An approach to characterizing and designing localized electromagnetic fields, based on the use of differentiable manifolds, differentiable mappings, and the group of rotation, is presented. By way of illustration, novel families of exact time-harmonic solutions to Maxwell's equations in the source-free space - localized fields defined by the rotation group - are obtained. The proposed approach provides a broad spectrum of tools to design localized fields, i.e., to build-in symmetry properties of oscillating electric and magnetic fields, to govern the distributions of their energy densities (both size and form of localization domains), and to set the structure of time-average energy fluxes. It is shown that localized fields can be combined as constructive elements to obtain a complex field structure with desirable properties, such as one-, two-, or three-dimensional field gratings. The proposed approach can be used in designing localized electromagnetic fields to govern motion and state of charged and neutral particles. As an example, motion of relativistic electrons in one-dimensional and three-dimensional field gratings is treated
Studies of exposure of rabbits to electromagnetic pulsed fields
International Nuclear Information System (INIS)
Cleary, S.F.; Nickless, F.; Liu, L.M.; Hoffman, R.
1980-01-01
Dutch rabbits were acutely exposed to electromagnetic pulsed (EMP) fields (pulse duration 0.4 mus, field strengths of 1--2 kV/cm and pulse repetition rates in the range of 10 to 38 Hz) for periods of up to two hours. The dependent variables investigated were pentobarbital-induced sleeping time and serum chemistry (including serum triglycerides, creatine phosphokinase (CPK) isoenzymes, and sodium and potassium). Core temperature measured immediately pre-exposure and postexposure revealed no exposure-related alterations. Over the range of field strengths and pulse durations investigated no consistent, statistically significant alterations were found in the end-points investigated
Steady electric fields and currents elementary electromagnetic theory
Chirgwin, B H; Kilmister, C W
2013-01-01
Steady Electric Fields and Currents, Volume 1 is an introductory text to electromagnetism and potential theory. This book starts with the fields associated with stationary charges and unravels the stationary condition to allow consideration of the flow of steady currents in closed circuits. The opening chapter discusses the experimental results that require mathematical explanation and discussion, particularly those referring to phenomena that question the validity of the simple Newtonian concepts of space and time. The subsequent chapters consider steady-state fields, electrostatics, dielectr
Photoproduction of gravitons and dilatons in an external electromagnetic field
International Nuclear Information System (INIS)
Le Khac Huong; Hoang Ngoc Long.
1990-07-01
An attempt is made to present experimental predictions of the Kaluza-Klein based models. We consider the creation of gravitons and dilatons by photons in an external electromagnetic field, namely in the electric field of a flat condenser and in the static magnetic field. The relation between the cross sections of these two processes is given. A numerical evaluation shows that in the present technical scenario the creation of high frequency gravitons and dilatons may be indirectly observable. (author). 10 refs, 2 figs
Biological effects of electromagnetic fields | Yalçın | African Journal ...
African Journals Online (AJOL)
Recently, the possible effects of extra low frequency electromagnetic fields on the public health have become an interesting subject. Generally, electromagnetic fields occur around the high voltage lines. However, electromagnetic fields also occur with some electrical machines use for fun and TV used routinely at our home ...
Energy-momentum tensor of the electromagnetic field
International Nuclear Information System (INIS)
Horndeski, G.W.; Wainwright, J.
1977-01-01
In this paper we investigate the energy-momentum tensor of the most general second-order vector-tensor theory of gravitation and electromagnetism which has field equations which are (i) derivable from a variational principle, (ii) consistent with the notion of conservation of charge, and (iii) compatible with Maxwell's equations in a flat space. This energy-momentum tensor turns out to be quadratic in the first partial derivatives of the electromagnetic field tensor and depends upon the curvature tensor. The asymptotic behavior of this energy-momentum tensor is examined for solutions to Maxwell's equations in Minkowski space, and it is demonstrated that this energy-momentum tensor predicts regions of negative energy density in the vicinity of point sources
Retraction: Evaluation of Carcinogenic Effects of Electromagnetic Fields (Emf
Directory of Open Access Journals (Sweden)
Bakir Mehic
2010-08-01
Full Text Available This retracts the article "EVALUATION OF CARCINOGENIC EFFECTS OF ELECTROMAGNETIC FIELDS (EMF" on page 245. The Editor-in-chief of the Bosnian Journal ofBasic Medical Sciences has decided to retract the article from Bayazit V et al. [1] entitled as: “Evaluation of carcinogenic effects of electromagnetic fields (EMF” published in Bosn J Basic Med Sci. 2010 Aug;10(3:245-50.After the editorial office was alerted of possible plagiarism in the article, it conducted thorough investigation and concluded that the article apparently represents plagiarized material from two World Health Organization reports, one European Commission report and other sources. Since this is considered scientific plagiarism and scientific misconduct, Editor-in-chief has decided to withdraw the article. The authors have agreed with the editorial office decision.
Assisted of electromagnetic fields in glucose production from cassava stems
Lismeri, Lia; Haryati, Sri; Djoni Bustan, M.; Darni, Yuli
2018-03-01
Decrease in fossil fuel reserves that led to high price has become major problem in many countries around the world. To acquire the sustainability of energy reserves, the renewable energies obtained from plant biomass will therefore have to play an increasing role in fulfilling energy demand throughout the century. Renewable energy source must be explored by innovative techniques which is safe to the environment and low in energy consumptions. This research conducted to produce glucose from cassava stems assisted by electromagnetic field inductions process. The parameters used in this research were pretreatment solvent, concentration, temperature and electrical currents. The electromagnetic field inductions could be applied to increase glucose productivity with the maximum yield of glucose was 47.43%.
Uniform electromagnetic field as viscous medium for moving particles
International Nuclear Information System (INIS)
Amusia, M.Ya.; Baltenkov, A.S.; Felfli, Z.; Msezane, A.Z.; Voitkiv, A.B.
2002-01-01
The mechanism of transverse radiation viscosity acting on free charges, atomic, and small macroscopic particles in uniform electromagnetic fields is analyzed. It is shown that in the process of light scattering by these particles, besides the force accelerating them in the direction of propagation of the radiation, there is a force in the transverse direction slowing them down. The general expression for this force is obtained. It is considered how this force can influence: (i) the motion of ultrarelativistic electrons in transverse photon fluxes; (ii) the behavior of a beam of nonrelativistic electrons moving in a copropagating uniform electromagnetic field; (iii) the transverse motion of atoms under the action of resonant radiation and (iv) the motion of small macroscopic particles
Radiofrequency electromagnetic fields in the Cookridge area of Leeds
Fuller, K; Judd, P M; Lowe, A J; Shaw, J
2002-01-01
On the 8 and 9 May 2002 representatives of the National Radiological Protection Board (NRPB) performed a radiofrequency electromagnetic field survey in the Cookridge area of Leeds in order to assess exposure to radio signals from transmitters mounted on a water tower/a lattice tower and a radio station tower. Guidelines on limiting exposure to radio signals have been published by NRPB and the International Commission on Non-Ionizing Radiation Protection (ICNIRP). These guidelines are designed to prevent established adverse effects on human health. During this survey, the total exposures due to all radio signals from 30 MHz to 18000 MHz (18 GHz) were measured. This frequency range was chosen as it includes mobile phone base station transmissions, which are at around 900 and 1800 MHz and super high frequency (SHF) transmissions from most of the large microwave dish antennas mounted on the towers. In addition, other major sources of radiofrequency electromagnetic fields in the environment such as broadcast radio...
Electromagnetic processes during phase commutation in field regulated reluctance machine
Shishkov, A. N.; Sychev, D. A.; Zemlyansky, A. A.; Krupnova, M. N.; Funk, T. A.; Ishmet'eva, V. D.
2018-03-01
The processes of currents switching in stator windings have been explained by the existence of the electromagnetic torque ripples in the electric drive with the field-regulated reluctance machine. The maximum value of ripples in the open loop control system for the six-phase machine can reach 20 percent from the developed electromagnetic torque. This method allows one to make calculation of ripple spike towards average torque developed by the electromotor for the different number of phases. Application of a trapezoidal form of current at six phases became the solution. In case of a less number of phases than six, a ripple spike considerably increases, which is inadmissible. On the other hand, increasing the number of phases tends to the increase of the semiconductor inverter external dimensions based on the inconspicuous decreasing of a ripple spike. The creation and usage of high-speed control loops of current (HCLC) have been recommended for a reduction of the electromagnetic torque’s ripple level, as well as the appliance of positive current feedback in switching phase currents. This decision allowed one to receive a mean value of the torque more than 10%, compared to system without change, to reduce greatly ripple spike of the electromagnetic torque. The possibility of the electric drive effective operation with FRRM in emergency operation has been shown.
Immune Response to Electromagnetic Fields through Cybernetic Modeling
International Nuclear Information System (INIS)
Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes; Sierra, L. C. Gaitan
2008-01-01
We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen
Immune Response to Electromagnetic Fields through Cybernetic Modeling
Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán
2008-08-01
We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.
Electromagnetic field and the theory of conformal and biholomorphic invariants
International Nuclear Information System (INIS)
Lawrynowicz, J.
1976-01-01
This paper contains sections on: 1. Conformal invariance and variational principles in electrodynamics. 2. The principles of Dirichlet and Thomson as a physical motivation for the methods of conformal capacities and extremal lengths. 3. Extension to pseudoriemannian manifolds. 4. Extension to hermitian manifolds. 5. An extension of Schwarz's lemma for hermitian manifolds and its physical significance. 6. Variation of ''complex'' capacities within the admissible class of plurisubharmonic functions. The author concentrates on motivations and interpretations connected with the electromagnetic field. (author)
Low-frequency electromagnetic field in a Wigner crystal
Stupka, Anton
2016-01-01
Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.
Electron scattering in the presence of an intense electromagnetic field
International Nuclear Information System (INIS)
Mohan, M.; Chand, P.
1977-03-01
The general theory of electron scattering in the presence of an external electromagnetic field, provided by an intense laser beam, accompanied by absorption of n photons, each with energy hω, is discussed. The calculation leads to many summations over intermediate states. A general method for exactly evaluating several sums is described in detail. Numerical results show that the cross-section varies with intensity in a power law fashion
On the geometry of electromagnetic fields of second class
International Nuclear Information System (INIS)
Duggal, K.L.
1983-01-01
The notion of almost contingent manifolds was introduced by the author (1978) with a view to modify the standard Hermitian and Kaehlerian geometry applicable in relativity. The purpose of this paper is to use this extension as a free-way for developing the geometry of electromagnetic fields of second class under the framework of Hlavaty's (1961) classification. A mathematical model of the universe, called D-universe, having constant curvature has been created. (author)
Geiger-Nuttall Law for Nuclei in Strong Electromagnetic Fields
Delion, D. S.; Ghinescu, S. A.
2017-11-01
We investigate the influence of a strong laser electromagnetic field on the α -decay rate by using the Hennenberger frame of reference. We introduce an adimensional parameter D =S0/R0, where R0 is the geometrical nuclear radius and S0˜√{I }/ω2 is a length parameter depending on the laser intensity I and frequency ω . We show that the barrier penetrability has a strong increase for intensities corresponding to D >Dcrit=1 , due to the fact that the resulting Coulomb potential becomes strongly anisotropic even for spherical nuclei. As a consequence, the contribution of the monopole term increases the barrier penetrability by 2 orders of magnitude, while the total contribution has an effect of 6 orders of magnitude at D ˜3 Dcrit. In the case of deformed nuclei, the electromagnetic field increases the penetrability by an additional order of magnitude for a quadrupole deformation β2˜0.3 . The influence of the electromagnetic field can be expressed in terms of a shifted Geiger-Nuttal law by a term depending on S0 and deformation.
Electromagnetic Field Redistribution in Metal Nanoparticle on Graphene.
Li, Keke; Liu, Anping; Wei, Dapeng; Yu, Keke; Sun, Xiaonan; Yan, Sheng; Huang, Yingzhou
2018-04-25
Benefiting from the induced image charge on metal film, the light energy is confined on a film surface under metal nanoparticle dimer, which is called electromagnetic field redistribution. In this work, electromagnetic field distribution of metal nanoparticle monomer or dimer on graphene is investigated through finite-difference time-domain method. The results point out that the electromagnetic field (EM) redistribution occurs in this nanoparticle/graphene hybrid system at infrared region where light energy could also be confined on a monolayer graphene surface. Surface charge distribution was analyzed using finite element analysis, and surface-enhanced Raman spectrum (SERS) was utilized to verify this phenomenon. Furthermore, the data about dielectric nanoparticle on monolayer graphene demonstrate this EM redistribution is attributed to strong coupling between light-excited surface charge on monolayer graphene and graphene plasmon-induced image charge on dielectric nanoparticle surface. Our work extends the knowledge of monolayer graphene plasmon, which has a wide range of applications in monolayer graphene-related film.
Calculation of effective impedance of polycrystals in weak magnetic fields
International Nuclear Information System (INIS)
Kaganova, I.M.
2006-01-01
We present results for the effective surface impedance tensor (EIT) of polycrystals of metals in a weak uniform magnetic field H. The frequency region corresponds to the region in which the local impedance boundary conditions are applicable. We suppose that the resistivity tensor ρ ik (H) of the single crystal grains out of which the polycrystal is composed, is known up to the terms of O(H 2 ). For polycrystals of metals of arbitrary symmetry, the elements of the EIT can be calculated to the same order in H, even if the tensor ρ ik (H) is strongly anisotropic. As examples, we write down the EIT of polycrystals of (i) cubic metals (ii) metals with ellipsoidal Fermi surfaces, and (iii) metals of tetragonal symmetry whose tensor ρ ik (0) is strongly anisotropic. Although polycrystals are metals that are isotropic on average, in the presence of a uniform magnetic field the structure of the EIT is not the same as the structure of the impedance tensor of an isotropic metal with a spherical Fermi surface. The results cannot be improved either by taking into account higher powers of H, or with respect to the anisotropy of the single crystal grains
Cosmological equivalence principle and the weak-field limit
International Nuclear Information System (INIS)
Wiltshire, David L.
2008-01-01
The strong equivalence principle is extended in application to averaged dynamical fields in cosmology to include the role of the average density in the determination of inertial frames. The resulting cosmological equivalence principle is applied to the problem of synchronization of clocks in the observed universe. Once density perturbations grow to give density contrasts of order 1 on scales of tens of megaparsecs, the integrated deceleration of the local background regions of voids relative to galaxies must be accounted for in the relative synchronization of clocks of ideal observers who measure an isotropic cosmic microwave background. The relative deceleration of the background can be expected to represent a scale in which weak-field Newtonian dynamics should be modified to account for dynamical gradients in the Ricci scalar curvature of space. This acceleration scale is estimated using the best-fit nonlinear bubble model of the universe with backreaction. At redshifts z -10 ms -2 , is small, when integrated over the lifetime of the universe it amounts to an accumulated relative difference of 38% in the rate of average clocks in galaxies as compared to volume-average clocks in the emptiness of voids. A number of foundational aspects of the cosmological equivalence principle are also discussed, including its relation to Mach's principle, the Weyl curvature hypothesis, and the initial conditions of the universe.
Electro-Magnetic Fields and Plasma in the Cosmos
International Nuclear Information System (INIS)
Scott, Donald E.
2006-01-01
It is becoming widely recognized that a majority of baryons in the cosmos are in the plasma state. But, fundamental disagreements about the properties and behavior of electro-magnetic fields in these plasmas exist between the science of modern astronomy and the experimentally verified laws of electrical engineering and physics. Some astronomers claim that magnetic fields can be open-ended - that they begin on or beneath the Sun's surface and extend outward to infinity. Astrophysicists have claimed that galactic magnetic fields begin and end on molecular clouds. Electrical engineers, most physicists, and the pioneers in electromagnetic field theory disagree - magnetic fields have no beginning or end. Since these two viewpoints are mutually exclusive, both cannot be correct; one must be completely false. Many astrophysicists claim that magnetic fields are 'frozen into' electric plasma. We also examine the basis for this claim. It has been shown to be incorrect in the laboratory. The hypothetical 'magnetic merging' mechanism is also reviewed in light of both theoretical and experimental investigations. The cause of large-scale filamentation in the cosmos is also simply revealed by experimental results obtained in plasma laboratories
Thermodynamic fluctuations of electromagnetic field in slightly absorbing media
Directory of Open Access Journals (Sweden)
B.A.Veklenko
2004-01-01
Full Text Available A theory of thermodynamic fluctuations of electromagnetic field in slightly absorbing media is developed using the quantum electrodynamics - method of $Gamma$-operators - without phenomenology. The hypothesis offered by Yury L. Klimontovich is under consideration. The necessity of correct consideration of photon-photon correlation functions is shown. The results are compared with the ones obtained with the help of standard theory based upon fluctuation-dissipation theorem (FDT. The latter results are shown to have no field of application at least for the case of thermally excited media of the atoms described with two-level model.
Electromagnetic field properties in the vicinity of a massive wormhole
Energy Technology Data Exchange (ETDEWEB)
Novikov, I. D.; Shatskiy, A. A., E-mail: shatskiy@asc.rssi.ru [Russian Academy of Sciences, Astro Space Centre, Lebedev Physical Institute (Russian Federation)
2011-12-15
It is proved that not only massless but also traversable massive wormholes can have electromagnetic 'hair.' An analysis is also presented of the passage from a traversable wormhole to the limit of a Reissner-Nordstroem black hole, with the corresponding disappearance of 'hair.' A general method is developed for solving stationary axisymmetric Maxwell's equations in the field of a massive, spherically symmetric wormhole. As a particular example of application of the method, a solution is found to the axisymmetric magnetostatic problem for a current loop in the field of the Bronnikov-Ellis-Morris-Thorne wormhole.
Radiation reaction force and unification of electromagnetic and gravitational fields
International Nuclear Information System (INIS)
Lo, C.Y.; Goldstein, G.R.; Napier, A.
1981-04-01
A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics such that the radiation reaction force is accounted for. The analysis leads to a five-dimensional unified theory of five variables. The theory is supported by showing that, for the case of a charged particle moving in a constant magnetic field, the radiation reaction force is indeed included. Moreover, this example shows explicitly that physical changes are associated with the fifth variable. Thus, the notion of a physical five-dimensional space should be seriously taken into consideration
Additional external electromagnetic fields for laser microprocessing of metals.
Schütz, V; Bischoff, K; Brief, S; Koch, J; Suttmann, O; Overmeyer, L
2016-11-14
Ultra-short pulsed laser processing is a potent tool for microstructuring of a lot of materials. At certain laser parameters, particular periodical and/or quasi-periodical µm-size surface structures evolve apparently during processing. With extended plasmonics theory, it is possible to predict the structure formation, and a systematic technology can be derived to alter the surface for laser processing. In this work, we have demonstrated the modification of the laser processing with applying tailored dynamic surface electro-magnetic fields. Possible improvement in applications is seen in the fields of process efficiency of laser ablation and a superior control of the surface topography.
Control of the electromagnetic drag using fluctuating light fields
Pastor, Víctor J. López; Marqués, Manuel I.
2018-05-01
An expression for the electromagnetic drag force experienced by an electric dipole in a light field consisting of a monochromatic plane wave with polarization and phase randomly fluctuating is obtained. The expression explicitly considers the transformations of the field and frequency due to the Doppler shift and the change of the polarizability response of the electric dipole. The conditions to be fulfilled by the polarizability of the dipole in order to obtain a positive, a null, and a negative drag coefficient are analytically determined and checked against numerical simulations for the dynamics of a silver nanoparticle. The theoretically predicted diffusive, superdiffusive, and exponentially accelerated dynamical regimes are numerically confirmed.
Spectrum of classes of point emitters of electromagnetic wave fields.
Castañeda, Román
2016-09-01
The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.
Magnetization reversal in ferromagnetic film through solitons by electromagnetic field
International Nuclear Information System (INIS)
Veerakumar, V.; Daniel, M.
2001-07-01
We study the reversal of magnetization in an isotopic ferromagnetic film free from charges by exposing it to a circularly polarized electromagnetic (EM) field. The magnetization excitations are obtained in the form of line and lump solitons of the completely integrable modified KP-II equation which is derived using a reductive perturbation method from the set of coupled Landau-Lifschitz and Maxwell equations. It is observed that when the polarization of the EM-field is reversed followed by a rotation, for every (π)/2-degrees, the magnetization is reversed. (author)
Spin light of neutrino in matter and electromagnetic fields
International Nuclear Information System (INIS)
Lobanov, A.; Studenikin, A.
2003-01-01
A new type of electromagnetic radiation by a neutrino with non-zero magnetic (and/or electric) moment moving in background matter and electromagnetic field is considered. This radiation originates from the quantum spin flip transitions and we have named it as 'spin light of neutrino' (SLν). The neutrino initially unpolarized beam (equal mixture of ν L and ν R ) can be converted to the totally polarized beam composed of only ν R by the neutrino spin light in matter and electromagnetic fields. The quasi-classical theory of this radiation is developed on the basis of the generalized Bargmann-Michel-Telegdi equation. The considered radiation is important for environments with high effective densities, n, because the total radiation power is proportional to n 4 . The spin light of neutrino, in contrast to the Cherenkov or transition radiation of neutrino in matter, does not vanish in the case of the refractive index of matter is equal to unit. The specific features of this new radiation are: (i) the total power of the radiation is proportional to γ 4 , and (ii) the radiation is beamed within a small angle δθ∼γ -1 , where γ is the neutrino Lorentz factor. Applications of this new type of neutrino radiation to astrophysics, in particular to gamma-ray bursts, and the early universe should be important
Nambu-Jona-Lasinio model in a parallel electromagnetic field
Wang, Lingxiao; Cao, Gaoqing; Huang, Xu-Guang; Zhuang, Pengfei
2018-05-01
We explore the features of the UA (1) and chiral symmetry breaking of the Nambu-Jona-Lasinio model without the Kobayashi-Maskawa-'t Hooft determinant term in the presence of a parallel electromagnetic field. We show that the electromagnetic chiral anomaly can induce both finite neutral pion condensate and isospin-singlet pseudo-scalar η condensate and thus modifies the chiral symmetry breaking pattern. In order to characterize the strength of the UA (1) symmetry breaking, we evaluate the susceptibility associated with the UA (1) charge. The result shows that the susceptibility contributed from the chiral anomaly is consistent with the behavior of the corresponding η condensate. The spectra of the mesonic excitations are also studied.
Seminal magnetic fields from inflato-electromagnetic inflation
Energy Technology Data Exchange (ETDEWEB)
Membiela, Federico Agustin; Bellini, Mauricio [Universidad Nacional de Mar del Plata, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Buenos Aires (Argentina)
2012-10-15
We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive at appreciable magnetic strengths. We also identify a new magnetic tensor field B{sub ij} in this kind of extra dimensional theory. Our results are in very good agreement with observational requirements, in particular from TeV blazars and CMB radiation limits we see that primordial cosmological magnetic fields should be close to scale invariance. (orig.)
Seminal magnetic fields from inflato-electromagnetic inflation
Membiela, Federico Agustín; Bellini, Mauricio
2012-10-01
We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive at appreciable magnetic strengths. We also identify a new magnetic tensor field B ij in this kind of extra dimensional theory. Our results are in very good agreement with observational requirements, in particular from TeV blazars and CMB radiation limits we see that primordial cosmological magnetic fields should be close to scale invariance.
Seminal magnetic fields from inflato-electromagnetic inflation
International Nuclear Information System (INIS)
Membiela, Federico Agustin; Bellini, Mauricio
2012-01-01
We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive at appreciable magnetic strengths. We also identify a new magnetic tensor field B ij in this kind of extra dimensional theory. Our results are in very good agreement with observational requirements, in particular from TeV blazars and CMB radiation limits we see that primordial cosmological magnetic fields should be close to scale invariance. (orig.)
Atom ionization in a nonclassical intense electromagnetic field
International Nuclear Information System (INIS)
Popov, A.M.; Tikhonova, O.V.
2002-01-01
The atoms ionization process in the intense nonclassical electromagnetic field is considered. It is shown that depending on the field quantum state the probability of ionization may essentially change even by one and the same average quantum number in the radiation mode, whereby the difference in the ionization rates is especially significant in the case, when the ionization process is of a multiphoton character. It is demonstrates in particular, that the nonclassical field may be considerably more intensive from the viewpoint of the atoms ionization, than the classical field with the same intensity. The peculiarities of the decay, related to the atomic system state in the strong nonclassical field beyond the perturbation theory frames are studied [ru
Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field
International Nuclear Information System (INIS)
Chajkovskij, I.A.
1974-01-01
A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers
Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio
2017-02-01
Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of "spacelike linearity". Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.
Electromagnetic fields in small systems from a multiphase transport model
Zhao, Xin-Li; Ma, Yu-Gang; Ma, Guo-Liang
2018-02-01
We calculate the electromagnetic fields generated in small systems by using a multiphase transport (AMPT) model. Compared to A +A collisions, we find that the absolute electric and magnetic fields are not small in p +Au and d +Au collisions at energies available at the BNL Relativistic Heavy Ion Collider and in p +Pb collisions at energies available at the CERN Large Hadron Collider. We study the centrality dependencies and the spatial distributions of electromagnetic fields. We further investigate the azimuthal fluctuations of the magnetic field and its correlation with the fluctuating geometry using event-by-event simulations. We find that the azimuthal correlation 〈" close="〉cos(ϕα+ϕβ-2 ΨRP)〉">cos2 (ΨB-Ψ2) between the magnetic field direction and the second-harmonic participant plane is almost zero in small systems with high multiplicities, but not in those with low multiplicities. This indicates that the charge azimuthal correlation is not a valid probe to study the chiral magnetic effect (CME) in small systems with high multiplicities. However, we suggest searching for possible CME effects in small systems with low multiplicities.
Effects of electromagnetic fields on fecundity in the chicken.
Krueger, W F; Giarola, A J; Bradley, J W; Shrekenhamer, A
1975-02-28
Egg production was reduced when young laying hens were kept in contact with metal cages while being continuously exposed to the following cw fields: a vhf field at a frequency of 260 MHz, with an incident power that decreased from 100 to 4mW during the experiment; a uhf field at a frequency of 915 MHz, with an incident power of 800 mW during the first 2.5 weeks, zero during the following week, and 200 mW for the remainder of the experiment; a uhf field at 2.435 GHz, with an incident power of 800 mW; an elf electric field at a frequency of 60 Hz, with a calculated value of field strength of 1600 V/m; an elf magnetic field at 60 Hz, with a value of magnetic flux density of 1.4G. With the exception of the hens exposed to the uhf field at 915 MHz, all other treated groups laid significantly less eggs than the controls (p smaller than or equal to 0.01). This reduction (similar 15% less than the controls) began with the first 4-week production period. The egg production curves for the hens exposed to the vhf field at 260 MHz and to the uhf field at 2.435 GHz were approximately the same beginning with the sixth week of production, and they maintained comparable production levels for the remainder of the experiment. An 8% total drop in production also was experienced in the group of birds exposed to the 915-MHz field, which pulsed because of equipment failure. Egg production rate curves for the birds in the elf electric and magnetic fields were substantially different from those exhibited by birds in the other electromagnetic fields. The birds in the E-field regained a production level comparable to the controls after 11 weeks production, whereas those in the B-field dropped to 31% production, which was approximately 40% poorer than the controls by the twelfth week of production. Fertility of cocks and hens was not affected by continuous low-power vhf and uhf near-zone electromagnetic exposure or elf electric or magnetic field treatment. Fertility was exceptionally good
International Nuclear Information System (INIS)
Qi, Zhipeng; Li, Xiu; Lu, Xushan; Zhang, Yingying; Yao, Weihua
2015-01-01
We introduce a new and potentially useful method for wave field inverse transformation and its application in transient electromagnetic method (TEM) 3D interpretation. The diffusive EM field is known to have a unique integral representation in terms of a fictitious wave field that satisfies a wave equation. The continuous imaging of TEM can be accomplished using the imaging methods in seismic interpretation after the diffusion equation is transformed into a fictitious wave equation. The interpretation method based on the imaging of a fictitious wave field could be used as a fast 3D inversion method. Moreover, the fictitious wave field possesses some wave field features making it possible for the application of a wave field interpretation method in TEM to improve the prospecting resolution.Wave field transformation is a key issue in the migration imaging of a fictitious wave field. The equation in the wave field transformation belongs to the first class Fredholm integration equation, which is a typical ill-posed equation. Additionally, TEM has a large dynamic time range, which also facilitates the weakness of this ill-posed problem. The wave field transformation is implemented by using pre-conditioned regularized conjugate gradient method. The continuous imaging of a fictitious wave field is implemented by using Kirchhoff integration. A synthetic aperture and deconvolution algorithm is also introduced to improve the interpretation resolution. We interpreted field data by the method proposed in this paper, and obtained a satisfying interpretation result. (paper)
Electromagnetic signatures of far-field gravitational radiation in the 1 + 3 approach
International Nuclear Information System (INIS)
Chua, Alvin J K; Cañizares, Priscilla; Gair, Jonathan R
2015-01-01
Gravitational waves (GWs) from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1 + 3 approach to relativity. Linearized equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshteĭn conversion of GWs in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetized pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave–wave resonances previously described in the literature are absent when the electric–magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the GW strength increases towards the gravitational–electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources. (paper)
Quantum kinetic theory of metal clusters in an intense electromagnetic field
Directory of Open Access Journals (Sweden)
M.Bonitz
2004-01-01
Full Text Available A quantum kinetic theory for weakly inhomogeneous charged particle systems is derived within the framework of nonequilibrium Green's functions. The results are of relevance for valence electrons of metal clusters as well as for confined Coulomb systems, such as electrons in quantum dots or ultracold ions in traps and similar systems. To be specific, here we concentrate on the application to metal clusters, but the results are straightforwardly generalized. Therefore, we first give an introduction to the physics of correlated valence electrons of metal clusters in strong electromagnetic fields. After a brief overview on the jellium model and the standard density functional approach to the ground state properties, we focus on the extension of the theory to nonequilibrium. To this end a general gauge-invariant kinetic theory is developed. The results include the equations of motion of the two-time correlation functions, the equation for the Wigner function and an analysis of the spectral function. Here, the concept of an effective quantum potential is introduced which retains the convenient local form of the propagators. This allows us to derive explicit results for the spectral function of electrons in a combined strong electromagnetic field and a weakly inhomogeneous confinement potential.
Rivera, Susana
Throughout the last century, since the last decades of the XIX century, until present day, there had been many attempts to achieve the unification of the Forces of Nature. First unification was done by James Clerk Maxwell, with his Electromagnetic Theory. Then Max Plank developed his Quantum Theory. In 1905, Albert Einstein gave birth to the Special Relativity Theory, and in 1916 he came out with his General Relativity Theory. He noticed that there was an evident parallelism between the Gravitational Force, and the Electromagnetic Force. So, he tried to unify these forces of Nature. But Quantum Theory interposed on his way. On the 1940’s it had been developed the Quantum Electrodynamics (QED), and with it, the unified field theory had an arise interest. On the 60’s and 70’s there was developed the Quantum Chromodynamics (QCD). Along with these theories came the discovery of the strong interaction force and weak interaction force. And though there had been many attempts to unify all these forces of the nature, it could only be achieved the Unification of strong interaction, weak interaction and Electromagnetic Force. On the late 80”s and throughout the last two decades, theories such as “super-string theory”, “or the “M-theory”, among others, groups of Scientists, had been doing grand efforts and finally they came out with the unification of the forces of nature, being the only limitation the use of more than 11 dimensions. Using an ingenious mathematical tool known as the super symmetries, based on the Kaluza - Klein work, they achieve this goal. The strings of these theories are in the rank of 10-33 m. Which make them undetectable. There are many other string theories. The GEUFT theory is based on the existence of concentrated energy lines, which vibrates, expands and contracts, submitting and absorbing energy, matter and antimatter, and which yields a determined geometry, that gives as a result the formation of stars, galaxies, nebulae, clusters
Electromagnetic field of a circular beam of relativistic particles
International Nuclear Information System (INIS)
Vybiral, B.
1978-01-01
The generalized Coulomb law and the generalized Biot-Savart-Laplace law are derived for an element of a beam of charged relativistic particles moving generally irregularly. These laws are utilized for the description of an electromagnetic field of a circular beam of relativistic regularly moving particles. It is shown that in the points on the axis of the beam the intensity of the electric field is given by an expression precisely corresponding to the classical Coulomb law for charges at rest and the induction of the magnetic field corresponds to the classical Biot-Savart-Laplace law for conductive currents. From the numerical solution it follows that in the points outside the axis the induction of the magnetic field rises with the velocity of the particles. For a velocity nearing that of light in vacuum it assumes a definite value (with the exception of the points lying on the beam). (author)
ELECTRON HOLOGRAPHY OF ELECTROMAGNETIC FIELDS - RECENT THEORETICAL ADVANCES.
Energy Technology Data Exchange (ETDEWEB)
BELEGGIA,M.; POZZI, G.; TONOMURA, A.
2007-01-01
It has been shown in this work that the Fourier space approach can be fruitfully applied to the calculation of the fields and the associated electron optical phase shift of several magnetic and electrostatic structures, like superconducting vortices in conventional and high-T{sub c} superconductors, reverse biased p-n junctions, magnetic domains and nanoparticles. In all these cases, this novel approach has led to unexpected but extremely interesting results, very often expressed in analytical form, which allow the quantitative and reliable interpretation of the experimental data collected by means of electron holography or of more conventional Lorentz microscopy techniques. Moreover, it is worth recalling that whenever long-range electromagnetic fields are involved, a physical model of the object under investigation is necessary in order to take into account correctly the perturbation of the reference wave induced by the tail of the field protruding into the vacuum. For these reasons, we believe that the Fourier space approach for phase computations we have introduced and discussed in this chapter will represent an invaluable tool for the investigation of electromagnetic fields at the meso- and nano-scale.
An electromagnetic field measurement protocol for monitoring power lines
International Nuclear Information System (INIS)
Lubritto, C.; Iavazzo, A.; D'Onofrio, A.; Palmieri, A.; Sabbarese, C.; Terrasi, F.
2002-01-01
In the actions aiming to prevent risks related to the exposure to Low Frequencies Non Ionising electromagnetic Radiations (ELF-NIR), always arises the need to perform measurements in order to assess the field level existing in the considered sites. As a matter of fact very often it turns out difficult to predict, on the base of calculations, with sufficient approximation the field levels, due to extended variability of environmental conditions (e.g. coexistence of several sources, ground and building conformation, etc..). The measurement procedures must follow a methodology that could allow to minimise the interferences with the measurement set-up and the systematic and accidental errors. Risks for the operator and damages to the instrument should also be taken into account. One of the goal set for this research program was then the definition of the measurement protocol for electromagnetic field generated by low frequency non ionising radiation sources. In particular sources like power lines will be considered in order to validate the protocol by means of in-field measurements
Stellar explosion in the weak field approximation of the Brans-Dicke theory
International Nuclear Information System (INIS)
Hamity, Victor H; Barraco, Daniel E
2005-01-01
We treat a very crude model of an exploding star, in the weak field approximation of the Brans-Dicke theory, in a scenario that resembles some characteristic data of a type Ia supernova. The most noticeable feature, in the electromagnetic component, is the relationship between the absolute magnitude at maximum brightness of the star and the decline rate in one magnitude from that maximum. This characteristic has become one of the most accurate methods to measure luminosity distances to objects at cosmological distances (Phillips M M 1993 Astrophys. J. 413 L105; see www.all-science-fair-projects.com/ science f air p rojects e ncyclopedia/Supernova, for a brief description of supernovae types). An interesting result is that the active mass associated with the scalar field is totally radiated to infinity, representing a mass loss in the ratio of the 'tensor' component to the scalar component of 1 to (2ω + 3) (ω is the Brans-Dicke parameter), in agreement with a general result of Hawking (1972 Commun. Math. Phys. 25 167). Then, this model shows explicitly, in a dynamical case, the mechanism of the radiation of a scalar field, which is necessary to understand the Hawking result
Biological effects due to weak magnetic fields on plants
Belyavskaya, N.
In the evolution process, living organisms have experienced the action of the Earth's magnetic field (MF) that is a natural component of our environment. It is known that a galactic MF induction does not exceed 0.1 nT, since investigations of weak magnetic field (WMF) effects on biological systems have attracted attention of biologists due to planning long-term space flights to other planets where the magnetizing force is near 10-5 Oe. However, the role of WMF and its influence on organisms' functioning are still insufficiently investigated. A large number of experiments with seedlings of different plant species placed in WMF has found that the growth of their primary roots is inhibited during the early terms of germination in comparison with control. The proliferation activity and cell reproduction are reduced in meristem of plant roots under WMF application. The prolongation of total cell reproductive cycle is registered due to the expansion of G phase in1 different plant species as well as of G phase in flax and lentil roots along with2 relative stability of time parameters of other phases of cell cycle. In plant cells exposed to WMF, the decrease in functional activity of genome at early prereplicate period is shown. WMF causes the intensification in the processes of proteins' synthesis and break-up in plant roots. Qualitative and quantitative changes in protein spectrum in growing and differentiated cells of plant roots exposed to WMF are revealed. At ultrastructural level, there are observed such ultrastructural peculiarities as changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells of pea roots exposed to WMF. Mitochondria are the most sensitive organelle to WMF application: their size and relative volume in cells increase, matrix is electron
Magnetic-field-dependent microwave absorption in HgSe in weak magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Veinger, A. I., E-mail: Anatoly.Veinger@mail.ioffe.ru; Tisnek, T. V.; Kochman, I. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Okulov, V. I. [Russian Academy of Sciences, Ural Branch, Mikheev Institute of Metal Physics (Russian Federation)
2017-02-15
The low-temperature magnetoresistive effect in the semiconductor HgSe:Fe in weak magnetic fields at microwave frequencies is examined. The negative and positive components of magnetoabsorption based on the magnetoresistive effect in the degenerate conduction band are analyzed. The special features of experiments carried out in the investigated frequency range are noted. The momentum and electron-energy relaxation times are determined from the experimental field and temperature dependences.
Weakly nonlinear electromagnetic waves in an electron-ion positron plasma
International Nuclear Information System (INIS)
Rizzato, F.B.; Schneider, R.S.; Dillenburg, D.
1987-01-01
The modulation of a high-frequency electromagnetic wave which is circulary polarized and propagates in a plasma made up of electrons, ions and positrons is investigated. The coefficient of the cubic nonlinear term in the Schroedinger equation may change sign as the relative particle concentrations vary, and consequently a marginal state of modulation instability may exist. To described the system in the neighbourhood of this state an appropriate equation is derived. Particular stationary solutions of this equation are envelope solitary waves, envelope Kinks and envelope hole solitary waves. The dependence of the amplitude of the solutions on the propagation velocity and the particle concentrations is discussed. (author) [pt
Denis, T.; Reijnders, B.; Lee, J.H.H.; Vos, Willem L.; Boller, Klaus J.; van der Slot, Petrus J.M.
2013-01-01
We present a method to map the absolute electromagnetic field strength inside photonic crystals. We demonstrate our method by applying it to map the electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to create a
The Characteristics of Electromagnetic Fields Induced by Different Type Sources
Di, Q.; Fu, C.; Wang, R.; Xu, C.; An, Z.
2011-12-01
Controlled source audio-frequence magnetotelluric (CSAMT) method has played an important role in the shallow exploration (less than 1.5km) in the field of resources, environment and engineering geology. In order to prospect the deeper target, one has to increase the strength of the source and offset. However, the exploration is nearly impossible for the heavy larger power transmitting source used in the deeper prospecting and mountain area. So an EM method using a fixed large power source, such as long bipole current source, two perpendicular "L" shape long bipole current source and large radius circle current source, is beginning to take shape. In order to increase the strength of the source, the length of the transmitting bipole in one direction or in perpendicular directions has to be much larger, such as L=100km, or the radius of the circle current source is much larger. The electric field strength are IL2and IL2/4π separately for long bipole source and circle current source with the same wire length. Just considering the effectiveness of source, the strength of the circle current source is larger than that of long bipole source if is large enough. However, the strength of the electromagnetic signal doesn't totally depend on the transmitting source, the effect of ionosphere on the electromagnetic (EM) field should be considered when observation is carried at a very far (about several thousands kilometers) location away from the source for the long bipole source or the large radius circle current source. We firstly calculate the electromagnetic fields with the traditional controlled source (CSEM) configuration using the integral equation (IE) code developed by our research group for a three layers earth-ionosphere model which consists of ionosphere, atmosphere and earth media. The modeling results agree well with the half space analytical results because the effect of ionosphere for this small scale source can be ignorable, which means the integral equation
The Mathematics of Charged Particles interacting with Electromagnetic Fields
DEFF Research Database (Denmark)
Petersen, Kim
In this thesis, we study the mathematics used to describe systems of charged quantum mechanical particles coupled with their classical self-generated electromagnetic field. We prove the existence of a unique local in time solution to the many-body Maxwell-Schrödinger initial value problem expressed...... in Coulomb gauge and we show that the one-body Maxwell-Schrödinger system as well as the related one-body Maxwell-Pauli system both admit travelling wave solutions....
Delayed consequences of biological action of electromagnetic fields
International Nuclear Information System (INIS)
Grigor'ev, Yu.G.
2000-01-01
Based on available data the real possibility of development of delayed effects in people of long-term electromagnetic fields (EMF) exposure is considered. It is shown that is a relation between long-term EMF-exposure and development of the breast cancer, brain tumors, leukemia and neurodegenerative diseases (Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis). Analysis of up-to-date publications permit to conclude that this problem is urgent and further researches of the conditions promoting the development of delayed effects are required [ru
Clinical update of pulsed electromagnetic fields on osteoporosis
Institute of Scientific and Technical Information of China (English)
HUANG Li-qun; HE Hong-chen; HE Cheng-qi; CHEN Jian; YANG Lin
2008-01-01
Objective To understand the effects of low-frequency pulsed electromagnetic fields (PEMFs) on chronic bony pain,bone mineral density (BMD), bone strength and biochemical markers of bone metabolism in the patients of osteoporosis.Data sources Using the key words "pulsed electromagnetic fields" and "osteoporosis", we searched the PubMed for related studies published in English from January 1996 to December 2007. We also searched the China National Knowledge Infrastructure (CNKI) for studies published in Chinese from January 1996 to December 2007.Study selection Inclusion criteria: (1) all articles which referred to the effects of low-frequency pulsed magnetic fields on osteoporosis either in primary osteoporosis or secondary osteoporosis; (2) either observational studies or randomized controlled studies. Exclusion criteria: (1) articles on experimental studies about osteoporosis; (2) repetitive studies; (3)case reports; (4) meta analysis.Results Totally 111 related articles were collected, 101 of them were published in Chinese, 10 were in English.Thirty-four were included and the remaining 84 were excluded.Conclusions Low-frequency PEMFs relieves the pain of primary osteoporosis quickly and efficiently, enhances bone formation and increases BMD of secondary osteoporosis. But the effects of PEMFs on bone mineral density of primary osteoporosis and bone resorption were controversial.
International Nuclear Information System (INIS)
Jarlskog, C.
1976-07-01
Parity violation experiments in atoms are probing structure of the weak neutral current couplings of the electrons and the quarks in the same range as the neutrino interactions are measuring couplings of neutrinos and quarks. In addition, leptonic neutral currents determine couplings of neutrinos and electrons. Therefore the three type of experiments give complete information and impose strong restrictions on theoretical possibilities. (BJ) [de
Hadron physics studied at TJNAF with the electro-magnetic and weak probes
International Nuclear Information System (INIS)
Kox, S.
2005-01-01
This contribution presents general features of the hadron physics program developed at the Thomas Jefferson Laboratory. This is made using the EM and Weak probes provided by the electron beams of the CEBAF accelerator and address mostly the non-perturbative regime of QCD. (author)
International conference on electromagnetic fields hazard protection of the human being
International Nuclear Information System (INIS)
Grigor'ev, Yu.G.
1999-01-01
The Second International conference concerning the problems of electromagnetic protection of the human being, fundamental and applied studies, normalization of the EMP: philosophy, criteria and harmonization which took place in Moscow in September 1999 is reported. The topics of reports covered both the mechanism of biological action of electromagnetic fields and aspects of impact of electromagnetic fields from various household appliances on the health of practically all modern people (television, radio, energetic, communication). The plenary section on evaluation of hazards of the mobile communication electromagnetic fields and the round table meeting dealing with evaluation of hazards of electromagnetic fields of the cellular communication base stations were conducted in the course of the conference. The plenary meetings were devoted to harmonization of the electromagnetic protection standards of Russia and western countries. The above conference constitutes one of the stages of the WHO international program concerning electromagnetic fields and the human being [ru
The question of health effects from exposure to electromagnetic fields
International Nuclear Information System (INIS)
Grandolfo, M.
1996-01-01
The question of health effects related to exposures from non-ionizing and non-optical electromagnetic fields is currently concentrated in two frequency ranges: extremely low frequency (ELF) electric and magnetic fields, mainly at the overhead high-voltage power line frequencies of 50/60 Hz, and radiofrequency (RF) radiation, encompassing the frequency range from a few kilohertz to 300 GHz. The part between 300 MHz and 300 GHz is also usually named microwaves (MW); from this point of view, microwaves are part of the whole RF spectrum. The following brief overview is aimed at evaluating the state of knowledge regarding the question of health effects associated to exposures to ELF and RF/MW fields
Sensor Interaction as a Source of the Electromagnetic Field Measurement Error
Directory of Open Access Journals (Sweden)
Hartansky R.
2014-12-01
Full Text Available The article deals with analytical calculation and numerical simulation of interactive influence of electromagnetic sensors. Sensors are components of field probe, whereby their interactive influence causes the measuring error. Electromagnetic field probe contains three mutually perpendicular spaced sensors in order to measure the vector of electrical field. Error of sensors is enumerated with dependence on interactive position of sensors. Based on that, proposed were recommendations for electromagnetic field probe construction to minimize the sensor interaction and measuring error.
Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.
Kosionis, Spyridon G; Terzis, Andreas F; Sadeghi, Seyed M; Paspalakis, Emmanuel
2013-01-30
We study optical effects in a hybrid system composed of a semiconductor quantum dot and a spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use modified nonlinear density matrix equations for the description of the optical properties of the system and obtain a closed-form expression for the linear susceptibilities of the quantum dot, the metal nanoparticle, and the total system. We then investigate the dependence of the susceptibility on the interparticle distance as well as on the material parameters of the hybrid system. We find that the susceptibility of the quantum dot exhibits optical transparency for specific frequencies. In addition, we show that there is a range of frequencies of the applied field for which the susceptibility of the semiconductor quantum dot leads to gain. This suggests that in such a hybrid system quantum coherence can reverse the course of energy transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by the presence of the quantum dot.
Semileptonic weak and electromagnetic interactions in nuclei: recoil polarization in muon capture
International Nuclear Information System (INIS)
Rosenfelder, R.
1979-01-01
An analysis of the polarization of the recoiling nucleus following the capture of polarized muons by nuclei is performed. New general expressions for arbitrary nuclear spin are obtained in terms of the same reduced matrix elements which govern inelastic electron scattering and β-decay. As an application the A = 12 system is considered and uncertainties in the nuclear structure are studied by using different sets of one-body density matrices. With the canonical values of the weak form factors (i.e. absence of second-class currents) a fairly good agreement with the experimental data is achieved including the inelastic form factor at high momentum transfers and the recently measured average 12 B polarization. Implications of the new corrected value of the average polarization on weak form factors and nuclear structure are discussed. (Auth.)
Neutral currents and electromagnetic renormalization of the vector part of neutrino weak interaction
International Nuclear Information System (INIS)
Folomeshkin, V.N.
1976-01-01
The nature and properties of neutral currents in neutrino processes at high energies are theoretically investigated. Electronagmetic renormalization of diagonal ((νsub(e)e(νsub(e)e) and (νsub(μ)μ)(νsub(μ)μ)) and nondiagonal ((νsub(e)μ)(νsub(e)μ)) interactions is discussed in terms of the universal fourfermion interaction model. It is shown that electromagnetic renormalization of neutrino vector interaction caused an effective appearance of vector neutral currents with photon isotopic structure. The value for the interaction constant is unambigously defined by the ratio of the total cross-section for electron-positron annihilation into muonic pairs. Interaction (renormalization) constants for neutral currents are pointed out to be always smaller than interaction constants for charge currents
Nonstationary random acoustic and electromagnetic fields as wave diffusion processes
International Nuclear Information System (INIS)
Arnaut, L R
2007-01-01
We investigate the effects of relatively rapid variations of the boundaries of an overmoded cavity on the stochastic properties of its interior acoustic or electromagnetic field. For quasi-static variations, this field can be represented as an ideal incoherent and statistically homogeneous isotropic random scalar or vector field, respectively. A physical model is constructed showing that the field dynamics can be characterized as a generalized diffusion process. The Langevin-It o-hat and Fokker-Planck equations are derived and their associated statistics and distributions for the complex analytic field, its magnitude and energy density are computed. The energy diffusion parameter is found to be proportional to the square of the ratio of the standard deviation of the source field to the characteristic time constant of the dynamic process, but is independent of the initial energy density, to first order. The energy drift vanishes in the asymptotic limit. The time-energy probability distribution is in general not separable, as a result of nonstationarity. A general solution of the Fokker-Planck equation is obtained in integral form, together with explicit closed-form solutions for several asymptotic cases. The findings extend known results on statistics and distributions of quasi-stationary ideal random fields (pure diffusions), which are retrieved as special cases
Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study
Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan
2016-09-01
Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.
Review on Computational Electromagnetics
Directory of Open Access Journals (Sweden)
P. Sumithra
2017-03-01
Full Text Available Computational electromagnetics (CEM is applied to model the interaction of electromagnetic fields with the objects like antenna, waveguides, aircraft and their environment using Maxwell equations. In this paper the strength and weakness of various computational electromagnetic techniques are discussed. Performance of various techniques in terms accuracy, memory and computational time for application specific tasks such as modeling RCS (Radar cross section, space applications, thin wires, antenna arrays are presented in this paper.
MINERAL HORIZONS, ELECTROMAGNETIC FIELDS AND CIRCULAR SHAPES IN THE GRASS
Directory of Open Access Journals (Sweden)
Valentino Straser
2009-12-01
Full Text Available The occasional appearance of circular shapes in meadows and farmland located on slopes usually affected by gravitational phenomena, offered an occasion for verifying the possible relation between the position of the circles in the grass, the gravitational movement of the slope affecting its mineral horizons and the variations of electric and static magnetic fields close to the circular shapes and in the surrounding area. The stress caused by the “creeping” movement in the uderlying ground turned out to be in direct relation with the variation in the electric and magnetic fields caused by piezoelectric and piezomagnetic minerals such as quartz. The onset of the electromagnetic process involves the conversion of electric energy on the surface into an area of spherical shape which is linked with a different growth of herbaceous species compared to the surrounding vegetation.
Interaction of extremely-low-frequency electromagnetic fields with humans
International Nuclear Information System (INIS)
Tenforde, T.S.
1991-07-01
At a macroscopic level, the effects of extremely low frequency (ELF) electromagnetic fields on humans are well understood based on fundamental physical principles, but far less is known about the nature of the interactions at a cellular or molecular level. Current evidence suggests the effects of ELF on cellular biochemistry are due to interactions with the cell membrane. Elucidation of the mechanism that underlies this transmembrane signaling is critical for a molecular-level understanding of ELF field effects. Further research is also required to clarify a possible link between ELF exposure and increased cancer risk, since estimated ELF exposure in occupational or residential settings is much lower that the levels used in laboratory studies. There is a clear need for additional epidemiological research in which qualitative dosimetry is used to characterize ELF exposure and careful attention is given to possible effects of confounding variables. 24 refs
Simple formula for photoprocesses in ultrashort electromagnetic field
International Nuclear Information System (INIS)
Astapenko, V.A.
2010-01-01
Within the framework of the perturbation theory, a simple formula for the probability of a photoprocess for the whole time of action of an ultrashort electromagnetic pulse has been derived, when the concept of spectral intensity of radiation and probability per unit time is inapplicable. In the obtained formula the total probability is expressed in terms of the cross-section of a photoprocess in a monochromatic field and the Fourier transform of electric field strength. The advanced approach is applied for the analysis of photoabsorption of an atom and a metal nanosphere under the action of a subcycle laser pulse with a changeable value of the carrier-envelope phase. The expressions for probability and energy of photoabsorption in the limit of a zero pulse duration have been obtained.
Circadian neuroendocrine physiology and electromagnetic field studies: Precautions and complexities
International Nuclear Information System (INIS)
Warman, G.R.; Tripp, H.M.; Harman, V.L.; Arendt, J.
2003-01-01
The suppression of melatonin by exposure to low frequency electromagnetic fields (EMFs) 'the melatonin hypothesis' has been invoked as a possible mechanism through which exposure to these fields may result in an increased incidence of cancer. While the effect of light on melatonin is well established, data showing a similar effect due to EMF exposure are sparse and, where present, are often poorly controlled. The current review focuses on the complexities associated with using melatonin as a marker and the dynamic nature of normal melatonin regulation by the circadian neuroendocrine axis. These are issues which the authors believe contribute significantly to the lack of consistency of results in the current literature. Recommendations on protocol design are also made which, if followed, should enable researchers to eliminate or control for many of the confounding factors associated with melatonin being an output from the circadian clock. (author)
Circadian neuroendocrine physiology and electromagnetic field studies: Precautions and complexities
Energy Technology Data Exchange (ETDEWEB)
Warman, G.R.; Tripp, H.M.; Harman, V.L.; Arendt, J
2003-07-01
The suppression of melatonin by exposure to low frequency electromagnetic fields (EMFs) 'the melatonin hypothesis' has been invoked as a possible mechanism through which exposure to these fields may result in an increased incidence of cancer. While the effect of light on melatonin is well established, data showing a similar effect due to EMF exposure are sparse and, where present, are often poorly controlled. The current review focuses on the complexities associated with using melatonin as a marker and the dynamic nature of normal melatonin regulation by the circadian neuroendocrine axis. These are issues which the authors believe contribute significantly to the lack of consistency of results in the current literature. Recommendations on protocol design are also made which, if followed, should enable researchers to eliminate or control for many of the confounding factors associated with melatonin being an output from the circadian clock. (author)
Electromagnetic field limits set by the V-Curve.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jorgenson, Roy Eberhardt [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hudson, Howard Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-07-01
When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the electric field at the component location must be kept below a certain level in order to prevent the component from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way to set the electric field limit because it requires minimal information about the problem configuration. In this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases in input impedance when operating in a bounded region, and mismatches dictated by transmission line losses. In addition, we consider mitigating effects resulting from limited antenna sizes.
International Nuclear Information System (INIS)
Cai Xun-Ming
2015-01-01
Electromagnetically induced transparency and absorption of a monochromatic light controlled by a radio frequency field in the cold multi-Zeeman-sublevel atoms are theoretically investigated. These Zeeman sublevels are coupled by a radio frequency (RF) field. Both electromagnetically induced transparency and electromagnetically induced absorption can be obtained by tuning the frequency of RF field for both the linear polarization and elliptical polarization monochromatic lights. When the transfer of coherence via spontaneous emission from the excited state to the ground state is considered, electromagnetically induced absorption can be changed into electromagnetically induced transparency with the change of intensity of radio field. The transparency windows controlled by the RF field can have potential applications in the magnetic-field measurement and quantum information processing. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Continuity equations for bound electromagnetic field and the electromagnetic energy-momentum tensor
International Nuclear Information System (INIS)
Kholmetskii, A L; Missevitch, O V; Yarman, T
2011-01-01
We analyze the application of the Poynting theorem to the bound (velocity-dependent) electromagnetic (EM) field and show that an often-used arbitrary elimination of the term of self-interaction in the product j·E (where j is the current density and E the electric field) represents, in general, an illegitimate operation, which leads to incorrect physical consequences. We propose correct ways of eliminating the terms of self-interaction from the Poynting theorem to transform it into the form that is convenient for problems with bound EM field, which yield the continuity equations for the proper EM energy density, the interaction part of EM energy density and the total EM energy density of bound fields, respectively. These equations indicate the incompleteness of the common EM energy-momentum tensor, and in our analysis, we find a missed term in its structure, which makes its trace non-vanished. Some implications of these results are discussed, in particular, in view of the notion of EM mass of charged particles.
Continuity equations for bound electromagnetic field and the electromagnetic energy-momentum tensor
Energy Technology Data Exchange (ETDEWEB)
Kholmetskii, A L [Department of Physics, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus); Missevitch, O V [Institute for Nuclear Problems, Belarusian State University, 11 Bobruiskaya Street, 220030 Minsk (Belarus); Yarman, T, E-mail: khol123@yahoo.com [Department of Engineering, Okan University, Akfirat, Istanbul, Turkey and Savronik, Eskisehir (Turkey)
2011-05-01
We analyze the application of the Poynting theorem to the bound (velocity-dependent) electromagnetic (EM) field and show that an often-used arbitrary elimination of the term of self-interaction in the product j{center_dot}E (where j is the current density and E the electric field) represents, in general, an illegitimate operation, which leads to incorrect physical consequences. We propose correct ways of eliminating the terms of self-interaction from the Poynting theorem to transform it into the form that is convenient for problems with bound EM field, which yield the continuity equations for the proper EM energy density, the interaction part of EM energy density and the total EM energy density of bound fields, respectively. These equations indicate the incompleteness of the common EM energy-momentum tensor, and in our analysis, we find a missed term in its structure, which makes its trace non-vanished. Some implications of these results are discussed, in particular, in view of the notion of EM mass of charged particles.
The Norwegian public's perception of risk from electromagnetic fields
International Nuclear Information System (INIS)
Maerli, M.B.
1996-01-01
A survey with a representative sample of the adult Norwegian population reveals that the public is concerned about the health effects of electromagnetic fields; almost 2/3 of the population regard health effects as a likely consequence if exposed, the level of exposure is regarded as higher today than previously, and a clear majority now consider the fields to be more dangerous than they formerly believed. Despite this general concern, fewer consider personal effects to be probable; approximately one of six reports concern for personal injuries due to the fields. Further, the reported will to act in situations of known exposure from a (hypothetical) power line nearby is high, either by gathering information or putting up shielding against the fields. More concerned parts of the public also show a more committed engagement, including a higher willingness to make economic sacrifices for limiting the fields. There are special features of risk perception across the sample, and gender differences are particularly prominent. Women regard health effects more probable, and respond more strongly to situations of known exposure. People living near to power lines seem to be more aware of the fields, but at the same time cancer is regarded less probable by this group. (author)
Energy flow in a bound electromagnetic field: resolution of apparent paradoxes
International Nuclear Information System (INIS)
Kholmetskii, A L; Yarman, T
2008-01-01
In this paper, we present a resolution of apparent paradoxes formulated in (Kholmetskii A L 2006 Apparent paradoxes in classical electrodynamics: the energy-momentum conservation law for a bound electromagnetic field Eur. J. Phys. 27 825-38; Kholmetskii A L and Yarman T 2008 Apparent paradoxes in classical electrodynamics: a fluid medium in an electromagnetic field Eur. J. Phys. 29 1127) and dealing with the energy flux in a bound electromagnetic field
ELECTROMAGNETIC SAFETY OF ELECTRIC TRANSPORT SYSTEMS: MAIN SOURCES AND PARAMETERS OF MAGNETIC FIELDS
Directory of Open Access Journals (Sweden)
N. G. Ptitsyna
2013-03-01
Full Text Available Magnetic fields produced by electric drive vehicles may break electromagnetic safety. For electromagnetic safety and electromagnetic compatibility knowledge about characteristics and sources of magnetic fields in the electric transport is necessary. The article deals with analysis of available data about magnetic fields in electric cars and comparison with results of our measurements carried out in the other types of electrified transport systems.
Kinetic electromagnetic instabilities in an ITB plasma with weak magnetic shear
Chen, W.; Yu, D. L.; Ma, R. R.; Shi, P. W.; Li, Y. Y.; Shi, Z. B.; Du, H. R.; Ji, X. Q.; Jiang, M.; Yu, L. M.; Yuan, B. S.; Li, Y. G.; Yang, Z. C.; Zhong, W. L.; Qiu, Z. Y.; Ding, X. T.; Dong, J. Q.; Wang, Z. X.; Wei, H. L.; Cao, J. Y.; Song, S. D.; Song, X. M.; Liu, Yi.; Yang, Q. W.; Xu, M.; Duan, X. R.
2018-05-01
Kinetic Alfvén and pressure gradient driven instabilities are very common in magnetized plasmas, both in space and the laboratory. These instabilities will be easily excited by energetic particles (EPs) and/or pressure gradients in present-day fusion and future burning plasmas. This will not only cause the loss and redistribution of the EPs, but also affect plasma confinement and transport. Alfvénic ion temperature gradient (AITG) instabilities with the frequency ω_BAE<ω<ω_TAE and the toroidal mode numbers n=2{-}8 are found to be unstable in NBI internal transport barrier plasmas with weak shear and low pressure gradients, where ω_BAE and ω_TAE are the frequencies of the beta- and toroidicity-induced Alfvén eigenmodes, respectively. The measured results are consistent with the general fishbone-like dispersion relation and kinetic ballooning mode equation, and the modes become more unstable the smaller the magnetic shear is in low pressure gradient regions. The interaction between AITG activity and EPs also needs to be investigated with greater attention in fusion plasmas, such as ITER (Tomabechi and The ITER Team 1991 Nucl. Fusion 31 1135), since these fluctuations can be enhanced by weak magnetic shear and EPs.
Electromagnetic and neutral-weak response functions of 4He and 12C
Lovato, A.; Gandolfi, S.; Carlson, J.; Pieper, Steven C.; Schiavilla, R.
2015-06-01
Background: A major goal of nuclear theory is to understand the strong interaction in nuclei as it manifests itself in terms of two- and many-body forces among the nuclear constituents, the protons and neutrons, and the interactions of these constituents with external electroweak probes via one- and many-body currents. Purpose: The objective of the present work is to calculate the quasielastic electroweak response functions in light nuclei within the realistic dynamical framework outlined above. These response functions determine the inclusive cross section as function of the lepton momentum and energy transfers. Methods: Their ab initio calculation is a very challenging quantum many-body problem, since it requires summation over the entire excitation spectrum of the nucleus and inclusion in the electroweak currents of one- and many-body terms. Green's functions Monte Carlo methods allow one to circumvent both difficulties by computing the response in imaginary time (the so-called Euclidean response) and hence summing implicitly over the bound and continuum states of the nucleus, and by implementing specific algorithms designed to deal with the complicated spin-isospin structure of nuclear many-body operators. Results: Theoretical predictions for 4He and 12C, confirmed by experiment in the electromagnetic case, show that two-body currents generate excess transverse strength from threshold to the quasielastic to the dip region and beyond. Conclusions: These results challenge the conventional picture of quasielastic inclusive scattering as being largely dominated by single-nucleon knockout processes.
Effects of extremely low frequency electromagnetic fields on human beings
International Nuclear Information System (INIS)
Lilien, J.L.; Dular, P.; Sabariego, R.; Beauvois, V.; Barbier, P.P.; Lorphevre, R.
2010-01-01
Since the early seventies, potential health risks from ELF (Extremely Low frequency electromagnetic Fields) exposure (50 Hz) have been extensively treated in the literature (more than 1000 references registered by WHO (World Health Organisation), 2007). After 30 years of worldwide research, the major epidemiological output is the possible modest increased risk (by a factor 2) of childhood leukaemia in case of a long exposure to an ambient magnetic flux density (B-field) higher than 0.4 μT. However, this fact has not been confirmed by in vivo and in vitro studies. Moreover it has not been validated by any adverse health biological mechanisms neither for adults nor for children. International recommendations (ICNIRP, International Commission on Non-Ionising Radiation Protection) are currently, for general public, not to exceed a B-field of 100 μT (50 Hz) and an E-field of 5 kV/m (50 Hz). Herein, a rough overview of typical values of ELF fields will be presented followed by a brief literature survey on childhood leukaemia and ELF The potential carcinogenic effect of ELF would be linked to electrical disturbances in cell behaviour. The major concern linking child-hood leukaemia and ELF is thus to determine the response of bone marrow cells under ELF fields. With that purpose, transmembrane potential will be targeted and linked to the E-field at that level. This paper is three-folded: (1) the electric interactions between ambient ELF fields and the body are studied both qualitatively and quantitatively. Different sources of internal E-field are analysed and classified according to their potential risk; (2) the hypothesis of contact current is detailed; (3) key actions to undertake are highlighted. Based on the current state of the art and some authors' own developments, this paper proposes simple low cost enhancements of private electrical installations in order to annihilate the major source of potential effects of ELF. (authors)
International Nuclear Information System (INIS)
Galilo, Bogdan V.; Nedelko, Sergei N.
2011-01-01
The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.
Numerical modelling of GPR electromagnetic fields for locating burial sites
Directory of Open Access Journals (Sweden)
Carcione José M.
2017-01-01
Full Text Available Ground-penetrating radar (GPR is commonly used for locating burial sites. In this article, we acquired radargrams at a site where a domestic pig cadaver was buried. The measurements were conducted with the ProEx System GPR manufactured by the Swedish company Mala Geoscience with an antenna of 500MHz. The event corresponding to the pig can be clearly seen in the measurements. In order to improve the interpretation, the electromagnetic field is compared to numerical simulations computed with the pseudo-spectral Fourier method. A geological model has been defined on the basis of assumed electromagnetic properties (permittivity, conductivity and magnetic permeability. The results, when compared with the GPR measurements, show a dissimilar amplitude behaviour, with a stronger reflection event from the bottom of the pit. We have therefore performed another simulation by decreasing the electrical conductivity of the body very close to that of air. The comparison improved, showing more reflections, which could be an indication that the body contains air or has been degraded to a certain extent that the electrical resistivity has greatly increased.
Probing intergalactic magnetic fields with simulations of electromagnetic cascades
Energy Technology Data Exchange (ETDEWEB)
Alves Batista, Rafael [Oxford Univ. (United Kingdom). Dept. of Physics and Astrophysics; Saveliev, Andrey [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Russian Academy of Sciences, Moscow (Russian Federation). Keldysh Inst. of Applied Mathematics; Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Vachaspati, Tanmay [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics
2016-12-15
We determine the effect of intergalactic magnetic fields on the distribution of high energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called ''Large Sphere Observer'' method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the Q-statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the S-statistics. Both methods provide a quantative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths B>or similar 10{sup -15} G and magnetic coherence lengths L{sub c}>or similar 100 Mpc. We show that the S-statistics has a better performance than the Q-statistics when assessing magnetic helicity from the simulated halos.
Probing intergalactic magnetic fields with simulations of electromagnetic cascades
International Nuclear Information System (INIS)
Alves Batista, Rafael; Saveliev, Andrey; Russian Academy of Sciences, Moscow; Sigl, Guenter; Vachaspati, Tanmay
2016-12-01
We determine the effect of intergalactic magnetic fields on the distribution of high energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called ''Large Sphere Observer'' method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the Q-statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the S-statistics. Both methods provide a quantative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths B>or similar 10"-"1"5 G and magnetic coherence lengths L_c>or similar 100 Mpc. We show that the S-statistics has a better performance than the Q-statistics when assessing magnetic helicity from the simulated halos.
Effective field theory and weak non-leptonic interactions
International Nuclear Information System (INIS)
Miller, R.D.C.
1982-06-01
The techniques of Ovrut and Schnitzer (1981) are used to calculate the finite decoupling renormalisation constants resulting from heavy fermion decoupling in a non-abelian gauge theory exhibiting broken flavour symmetry. The results of this calculation are applied to realistic, massive QCD. The decoupling information may be absorbed into renormalisation group (R.G.) invariants. Working in the Landau gauge R.G. invariants are derived for the running coupling constants and running quark masses of effective QCD in the modified minimal subtraction scheme (for effective QCD with 3 to 8 flavours). This work is then applied to the major part of the thesis; a complete derivation of the effective weak non-leptonic sector of the standard model (SU(3)/sub c/ x SU(2) x U(1)), that is the construction of all effective weak non-leptonic Hamiltonians resulting from the standard model when all quark generations above the third along with the W and Z are explicitily decoupled. The form of decoupling in the work of Gilman and Wise (1979) has been adopted. The weak non-leptonic sector naturally decomposes into flavour changing and flavour conserving sectors relative to anomalous dimension calculations. The flavour changing sector further decomposes into penguin free and penguin generating sectors. Individual analyses of these three sectors are given. All sectors are analysed uniformly, based upon a standard model with n generations
International Nuclear Information System (INIS)
Nelson, E.M.
1993-12-01
Some two-dimensional finite element electromagnetic field solvers are described and tested. For TE and TM modes in homogeneous cylindrical waveguides and monopole modes in homogeneous axisymmetric structures, the solvers find approximate solutions to a weak formulation of the wave equation. Second-order isoparametric lagrangian triangular elements represent the field. For multipole modes in axisymmetric structures, the solver finds approximate solutions to a weak form of the curl-curl formulation of Maxwell's equations. Second-order triangular edge elements represent the radial (ρ) and axial (z) components of the field, while a second-order lagrangian basis represents the azimuthal (φ) component of the field weighted by the radius ρ. A reduced set of basis functions is employed for elements touching the axis. With this basis the spurious modes of the curl-curl formulation have zero frequency, so spurious modes are easily distinguished from non-static physical modes. Tests on an annular ring, a pillbox and a sphere indicate the solutions converge rapidly as the mesh is refined. Computed eigenvalues with relative errors of less than a few parts per million are obtained. Boundary conditions for symmetric, periodic and symmetric-periodic structures are discussed and included in the field solver. Boundary conditions for structures with inversion symmetry are also discussed. Special corner elements are described and employed to improve the accuracy of cylindrical waveguide and monopole modes with singular fields at sharp corners. The field solver is applied to three problems: (1) cross-field amplifier slow-wave circuits, (2) a detuned disk-loaded waveguide linear accelerator structure and (3) a 90 degrees overmoded waveguide bend. The detuned accelerator structure is a critical application of this high accuracy field solver. To maintain low long-range wakefields, tight design and manufacturing tolerances are required
International Nuclear Information System (INIS)
Hanssen, A.; Mjolhus, E.
1993-01-01
In ionospheric radio modification experiments, manifestations of excited Langmuir turbulence are observed by means of VHF or UHF radars. Such experiments are performed in Arecibo, Puerto Rico, and at Tromso, Northern Norway. A weak turbulence theory involving parametric cascade of Langmuir waves, has earlier dominated the theoretical understanding of these experiments. This has recently been challenged, both from a theoretical and an experimental point of view, and a theory of strong Langmuir turbulence, involving a large number of nucleation collapse burnout cycles has been advocated. A version of the Zakharov model including damping and parametric driving, contains both of these scenarios, the crucial parameter being ΔΩ = ω-ω pe where ω is the applied frequency and ω pe the plasma frequency. This model allows the construction of a weak turbulence wave kinetic equation. In the present work spectra obtained from full wave solutions of the one dimensional Zakharov model are compared with saturation spectra of the wave kinetic model. The results can be described as follows: (i) for large values of ΔΩ, cascades are formed, and the number of cascades increases with the strength of the driver E 0 ; (ii) the number of cascades found in the full wave solution is smaller than that obtained from the wave kinetic equation; (iii) when E 0 becomes sufficiently large, the narrowly peaked cascade structure of the full wave spectrum breaks down, and a broad spectrum comes instead; (iv) this breakdown comes far before the cascade sequence has reached the Langmuir condensate; thus the Langmuir condensate plays no role in this process. At smaller values of ΔΩ, the turbulence is characterized by caviton nucleation resulting in broad wave number spectra. Also a coexistence range is found at intermediate values of ΔΩ, in which a few cascade lines ride upon a broad cavitation type spectrum
Electron acceleration by electromagnetic irradiation of a weakly-collisional plasma
International Nuclear Information System (INIS)
Karfidov, D.M.; Lukina, N.A.; Sergeychev, K.F.
1989-01-01
In this paper, electron acceleration is investigated experimentally in both a homogeneous and an inhomogeneous plasma. In the first case acceleration is produced by development of a parametric instability, while in the second case acceleration in a plasma resonance field is used. It is demonstrated that multiple electron passes through a resonant field will produce and accelerated electron energy spectrum characterized by the effective temperature. It is established that the electron replacement current flowing in the interaction region between the plasma and a spatially-limited microwave field excites ion-acoustic turbulence in plasma and also produces an anomalously low thermal conductivity and an anomalously high resistivity
Motionally-induced electromagnetic fields generated by idealized ocean currents
Tyler, R. H.; Mysak, L. A.
Using the induction equation, we investigate the generation of electromagnetic fields by the motional electromagnetic induction due to ocean currents. In this paper, solutions are presented for a linear induction equation for the magnetic flux density vector which contains prescribed time-independent ocean current and conductivity fields. Once the magnetic flux density is known, the electric field and electric current density are easily obtained by differentiation. Solutions are given for several examples of idealized flow which include: 1) Vertically and horizontally sheared plane-parallel flow with depth-dependent conductivity; 2) A simple Stommel circulation gyre; and 3) Symmetric gyres. The results indicate that typical ocean current features induce magnetic fields with magnitudes reaching 100's of nT within the water and about 1-10 outside of the water. For the case of a field of gyres, the ocean-induced magnetic fields decay away from the ocean on spatial scales set by the horizontal scale of the ocean feature. At the altitudes of magnetic field satellite surveys, ocean-induced magnetic fields may retain values of a few nT, which are strong enough to be detected. Thus it is concluded that satellite observations of the earth's main magnetic field and, in particular, the observed temporal variations, could be affected by the ocean circulation. Summary and discussion In Section 3, we found exact solutions to the induction equation for idealized flows. The results gave magnitudes of about tens to hundreds of nT for the magnetic fields bH, about 10-5 V/m for the electric fields E, and about 10-5 A/m2 for the electric current density J induced by the ocean currents. These figures are in general agreement with the calculations of Lilley et al. (1993). In Section 4.2 we obtained solutions for the magnetic field above the ocean surface for the case of a Stommel gyre and a field of symmetric gyres. It was found in the last case that ocean gyres with a total transport
Retraction: Evaluation of carcinogenic effects of electromagnetic fields (EMF).
Mehic, Bakir
2010-11-01
The Editor-in-chief of the Bosnian Journal of Basic Medical Sciences has decided to retract the article from Bayazit V et al. [1] entitled as: "Evaluation of carcinogenic effects of electromagnetic fields (EMF)" published in Bosn J Basic Med Sci. 2010 Aug;10(3):245-50. After the editorial office was alerted of possible plagiarism in the article, it conducted thorough investigation and concluded that the article apparently represents plagiarized material from two World Health Organization reports, one European Commission report and other sources. Since this is considered scientific plagiarism and scientific misconduct, Editor-in-chief has decided to withdraw the article. The authors have agreed with the editorial office decision.
The generalized canonical formalism for the electromagnetic field
Constantinescu, R
2001-01-01
The possibility of the Hamiltonian description of the electromagnetic field as a constrained dynamical system is analyzed. We use the BRST technique and we study the consequences of the implementation of a third order symmetry, that is a symmetry related to the symplectic group sp(3). The connection between this larger symmetry and the standard BRST one is also discussed. The following results are underlined: building a generalized BRST symmetry appears as possible; the standard and the sp(2) theories prove themselves as the first two stages of this global theory. By it, a more extended symmetry asks for a larger ghost spectrum and, so, more nonminimal terms can be employed in the gauge fixing procedure. (authors)
Quantizing the electromagnetic field near two-sided semitransparent mirrors
Furtak-Wells, Nicholas; Clark, Lewis A.; Purdy, Robert; Beige, Almut
2018-04-01
This paper models light scattering through flat surfaces with finite transmission, reflection, and absorption rates, with wave packets approaching the mirror from both sides. While using the same notion of photons as in free space, our model also accounts for the presence of mirror images and the possible exchange of energy between the electromagnetic field and the mirror surface. To test our model, we derive the spontaneous decay rate and the level shift of an atom in front of a semitransparent mirror as a function of its transmission and reflection rates. When considering limiting cases and using standard approximations, our approach reproduces well-known results but it also paves the way for the modeling of more complex scenarios.
Electromagnetic field pretreatment of Sinapis alba seeds improved cadmium phytoextraction.
Bulak, Piotr; Lata, Lesia; Plak, Andrzej; Wiącek, Dariusz; Strobel, Wacław; Walkiewicz, Anna; Pietruszewski, Stanisław; Bieganowski, Andrzej
2018-03-21
It was hypothesized that electromagnetic field (EMF) pretreatment of white mustard (Sinapis alba L.) seeds could increase the accumulation of non-essential, pollutant heavy metals such as cadmium (Cd) in shoots. Seeds of white mustard were treated with either 60 or 120 mT of alternating EMF (50 Hz) for 1 minute and then grown in a Petri dish in the presence of Cd, in comparison to the control (seeds grown without EMF pretreatment). Biomass production and content of calcium (Ca) and Cd in seedling shoots were measured. The Cd content in shoots from the EMF-treated seeds was higher in both variants than in the control (by 73% and 78%, respectively; p phytoextraction, but more research is needed.
Electromagnetic field theory. Solely theories with plasma in focus
International Nuclear Information System (INIS)
Stenstrom, L.
1979-01-01
The Institute of Electromagnetic Field Theory at Chalmers Technical University is concerned with purely theoretical work on plasma physics for nuclear fusion. The team concerned is looking at nonlinear effects in the plasma energy exchange mechanism. Both inertia restricted and magnetically enclosed plasma are considered. Analytic and computer methods are used upon the model equations of the plasma. The Institute has associations with Euratom and with work in Maryland and in Grenoble. Work on particle paths is of interst. It also is associated with the construction at Sundsvik of an accelerator to give zero keV negative ions. A problem is to find staff of a sufficiently high quality for such complex work. The difficulties are not economic, but mainly that the desired practical results appear to be so far into the future. (G.P.)
Fast propagation of electromagnetic fields through graded-index media.
Zhong, Huiying; Zhang, Site; Shi, Rui; Hellmann, Christian; Wyrowski, Frank
2018-04-01
Graded-index (GRIN) media are widely used for modeling different situations: some components are designed considering GRIN modulation, e.g., multi-mode fibers, optical lenses, or acousto-optical modulators; on the other hand, there are other components where the refractive-index variation is undesired due to, e.g., stress or heating; and finally, some effects in nature are characterized by a GRIN variation, like turbulence in air or biological tissues. Modeling electromagnetic fields propagating in GRIN media is then of high importance for optical simulation and design. Though ray tracing can be used to evaluate some basic effects in GRIN media, the field properties are not considered and evaluated. The general physical optics techniques, like finite element method or finite difference time domain, can be used to calculate fields in GRIN media, but they need great numerical effort or may even be impractical for large-scale components. Therefore, there still exists a demand for a fast physical optics model of field propagation through GRIN media on a large scale, which will be explored in this paper.
Weak decays of stable particles
International Nuclear Information System (INIS)
Brown, R.M.
1988-09-01
In this article we review recent advances in the field of weak decays and consider their implications for quantum chromodynamics (the theory of strong interactions) and electroweak theory (the combined theory of electromagnetic and weak interactions), which together form the ''Standard Model'' of elementary particles. (author)
Electromagnetically induced transparency in the case of elliptic polarization of interacting fields
Parshkov, Oleg M.
2018-04-01
The theoretical investigation results of disintegration effect of elliptic polarized shot probe pulses of electromagnetically induced transparency in the counterintuitive superposed elliptic polarized control field and in weak probe field approximation are presented. It is shown that this disintegration occurs because the probe field in the medium is the sum of two normal modes, which correspond to elliptic polarized pulses with different speeds of propagation. The polarization ellipses of normal modes have equal eccentricities and mutually perpendicular major axes. Major axis of polarization ellipse of one normal mode is parallel to polarization ellipse major axis of control field, and electric vector of this mode rotates in the opposite direction, than electric vector of the control field. The electric vector other normal mode rotates in the same direction that the control field electric vector. The normal mode speed of the first type aforementioned is less than that of the second type. The polarization characteristics of the normal mode depend uniquely on the polarization characteristics of elliptic polarized control field and remain changeless in the propagation process. The theoretical investigation is performed for Λ-scheme of degenerated quantum transitions between 3P0, 3P10 and 3P2 energy levels of 208Pb isotope.
International Nuclear Information System (INIS)
Ritus, V.I.
1987-01-01
This chapter gives methods of formulating the Lagrangian function of an intense field and its asymptotic properties are investigated. Section 2 gives a derivation of the correction pounds to the Lagrangian function resulting from the change in the radiation interaction of the vacuum electrons induced by a constant external field. Section 3 is devoted to the renormalization of the external field as well as the charge and mass of the electron. Like charge renormalization, mass renormalization is performed within the scope of the calculation of the Lagrangian function of the electromagnetic field (without separate consideration of the mass operator or the position of the pole of the Green function of the electron) using a general physical renormalization principle requiring vanishing of the radiation corrections to the observed charge and mass when the field is switched off. This calculation process is performed explicitly in Section 4 where the imaginary part of the Lagrangian function is calculated for weak and strong fields. Here it is noted that the asymptotic behavior of the Lagrangian function with large fields coincides with logarithmic accuracy to the asymptotic behavior of a polarized function with large momenta
Radiofrequency electromagnetic fields in the Cookridge area of Leeds
International Nuclear Information System (INIS)
Fuller, K.; Gulson, A.D.; Judd, P.M.; Lowe, A.J.; Shaw, J.
2002-01-01
On the 8 and 9 May 2002 representatives of the National Radiological Protection Board (NRPB) performed a radiofrequency electromagnetic field survey in the Cookridge area of Leeds in order to assess exposure to radio signals from transmitters mounted on a water tower/a lattice tower and a radio station tower. Guidelines on limiting exposure to radio signals have been published by NRPB and the International Commission on Non-Ionizing Radiation Protection (ICNIRP). These guidelines are designed to prevent established adverse effects on human health. During this survey, the total exposures due to all radio signals from 30 MHz to 18000 MHz (18 GHz) were measured. This frequency range was chosen as it includes mobile phone base station transmissions, which are at around 900 and 1800 MHz and super high frequency (SHF) transmissions from most of the large microwave dish antennas mounted on the towers. In addition, other major sources of radiofrequency electromagnetic fields in the environment such as broadcast radio and television transmissions are included in this range. Measurements of power density were made at eight locations in the vicinity of the transmitter sites. Comparison of the measurements with the guidelines showed that the total exposure from radio signals measured between 30 MHz and 18 GHz ranged from 0.26 millionths (0.000026%) to 190 millionths (0.019%) of the NRPB investigation level and from 1.6 millionths (0.00016%) to 1400 millionths (0.14%) of the ICNIRP reference level for exposure of the general public. All the measured exposures are therefore many times below guideline levels and are not considered hazardous. (author)
High Frequency Electromagnetic Field Induces Lipocalin 2 Expression in
Directory of Open Access Journals (Sweden)
Amaneh Mohammadi Roushandeh
2010-06-01
Full Text Available Objective(sNeutrophil gelatinase-associated lipocalin (NGAL/Lcn2, comprise a group of small extracellular proteins with a common β-sheet-dominated 3-dimensional structure. In the past, it was assumed that the predominant role of lipocalin was acting as transport proteins. Recently it has been found that oxidative stress induces Lcn2 expression. It has been also proved that electromagnetic field (EMF produces reactive oxygen species (ROS in different tissues. Expression of Lcn2 following exposure to electromagnetic field has been investigated in this study. Materials and MethodsBalb/c mice (8 weeks old were exposed to 3 mT, 50 HZ EMF for 2 months, 4 hr/day. Afterwards, the mice were sacrificed by cervical dislocation and livers were removed. The liver specimens were stained with Haematoxylin- Eosin (H&E and analyzed under an optical microscope. Total RNA was extracted from liver and reverse transcription was performed by SuperScript III reverse transcriptase with 1 µg of total RNA. Assessment of Lcn2 expression was performed by semiquantitative and real time- PCR.ResultsThe light microscopic studies revealed that the number of lymphocyte cells was increased compared to control and dilation of sinosoids was observed in the liver. Lcn2 was up-regulated in the mice exposed to EMF both in mRNA and protein levels.ConclusionTo the extent of our knowledge, this is the first report dealing with up-regulation of Lcn2 in liver after exposure to EMF. The up-regulation might be a compensatory response that involves cell defense pathways and protective effects against ROS. However, further and complementary studies are required in this regards.
On axionic field ranges, loopholes and the weak gravity conjecture
International Nuclear Information System (INIS)
Brown, Jon; Cottrell, William; Shiu, Gary; Soler, Pablo
2016-01-01
In this short note we clarify some aspects of the impact that the Weak Gravity Conjecture has on models of (generalized) natural inflation. We address in particular certain technical and conceptual concerns recently raised regarding the stringent constraints and conclusions found in our previous work http://dx.doi.org/10.1007/JHEP10(2015)023. We also point out the difficulties faced by attempts to evade these constraints. These new considerations improve the understanding of the quantum gravity constraints we found and further support the conclusion that it remains challenging for axions to drive natural inflation.
Aspects of the flipped unification of strong, weak and electromagnetic interactions
Energy Technology Data Exchange (ETDEWEB)
Ellis, J.; Hagelin, J.S.; Kelley, S.; Nanopoulos, D.V.
1988-12-19
We explore phenomenological aspects of a recently proposed flipped SU(5) x U(1) supersymmetric GUT which incorporates an economical and natural mechanism for splitting Higgs doublets and triplets, and can be derived from string theory. Using experimental values of sin/sup 2/theta/sub W/ and the strong QCD coupling, we estimate the grand unification scale M/sub G/, where the strong and weak coupling strengths are equal, and the superunification scale M/sub SU/, where all couplings are equal. We find typical values of M/sub G/ approx. = 10/sup 15/ to 10/sup 17/ GeV, with M/sub SU/ somewhat higher and close to the value suggested by string models. We discuss different mechanisms for baryon decay, finding that the dominant one is gauge-boson exchange giving rise to p -> e/sup +/ /sup 0/, anti /sup +/ and n -> e/sup +/ /sup -/, anti /sup 0/ with partial lifetimes approx. = 10/sup 35+-2/ y. We show that a large GUT symmetry-breaking scale M/sub G/ is naturally generated by radiative corrections to the effective potential if a small amount approx. = m/sub W/ of soft supersymmetry breaking is generated dynamically at a large scale. We analyze the low-energy effective theory obtained using the renormalization group equations, demonstrating that electroweak symmetry breaking is obtained if m/sub t/ approx. = 60 to 90 GeV. We analyze the spectrum of sparticles, with particular attention to neutralinos.
Reformulation of the Salam-Weinberg unified theory of weak and electromagnetic interactions
International Nuclear Information System (INIS)
Khan, I.
1981-01-01
It is shown that the various fields (gauge potentials, etc.) in the Salam-Weinberg unified theory can be redefined such that i) the redefined fields are invariant under the SU 2 gauge transformations, ii) the original Lagrangian can be expressed entirely in terms of the redefined fields. The reformulated version of the Salam-Weinberg model has two first-class and six second-class constraints in contrast with the original version which has eight first-class constraints. This has the consequence that in the reformulated version the SU 2 x U 1 symmetry, which seems to be reduced to U 1 at the Lagrangian stage, is recovered for the algebra of charges when their Dirac brackets are identified with the commutators. It is suggested that the Salam-Weinberg model may be looked upon as an example of confined dichromatism. (author)
International Nuclear Information System (INIS)
Braginsky, V.B.; Kardashev, N.S.; Polnarev, A.G.; Novikov, I.D.
1989-12-01
Propagation of an electromagnetic wave in the field of gravitational waves is considered. Attention is given to the principal difference between the electromagnetic wave propagation in the field of random gravitational waves and the electromagnetic wave propagation in a medium with a randomly-inhomogeneous refraction index. It is shown that in the case of the gravitation wave field the phase shift of an electromagnetic wave does not increase with distance. The capability of space radio interferometry to detect relic gravitational waves as well as gravitational wave bursts of non cosmological origin are analyzed. (author). 64 refs, 2 figs
Current Understanding of the Health Effects of Electromagnetic Fields.
Miah, Tayaba; Kamat, Deepak
2017-04-01
There has been an exponential increase in the use of electronic devices over the past few decades. This has led to increased exposure to electromagnetic fields (EMF). Electric fields result from differences in voltage, whereas magnetic fields result from the flow of electric current. Higher-frequency waves of EMF have more energy than lower-frequency waves, and thus generally tend to be more harmful. An EMF activates cellular stress response and also causes breaks in DNA strands. There are many methodological barriers to effectively measuring the associations of EMF and childhood cancers. The consensus from multiple studies is that there is no causal role of extremely low-frequency EMFs in childhood cancers, including brain cancer. A recent study showed a link between EMF radiation and the development of malignant tumors in rats. In light of that study, the American Academy of Pediatrics set out new recommendations to decrease the adverse effects of cellphone exposure on children. [Pediatr Ann. 2017;46(4):e172-e174.]. Copyright 2017, SLACK Incorporated.
Multiphoton processes for atoms in intense electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Collins, L.A.; Abdallah, J.; Csanak, G.
1995-12-31
Lasers from table-top to giant ICF facilities that produce intense electromagnetic fields (10{sup 14}-10{sup 21} W/cm{sup 2}) have become important tools in probing the intricate nature of matter-radiation interactions. At such intensities, the laser field equals or exceeds that which binds electrons to an atom or molecule, and a new realm of physics opens in which perturbation theory may no longer suffice. We are developing several sophisticated techniques for treating atoms in such a regime, concentrating on two-photon X-ray absorption in intermediate-weight atoms and on laser-assisted electron-atom collisions. We perform most calculations in a time-independent frame in which field-free scattering formalisms can be invoked. We also investigate time-dependent methods in order to study transient effects. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).
Teleportation of atomic states with a weak coherent cavity field
Institute of Scientific and Technical Information of China (English)
Zheng Shi-Biao
2005-01-01
A scheme is proposed for the teleportation of an unknown atomic state. The scheme is based on the resonant interaction of atoms with a coherent cavity field. The mean photon-number of the cavity field is much smaller than one and thus the cavity decay can be effectively suppressed. Another adwntage of the scheme is that only one cavity is required.
Introduction to weak interactions
International Nuclear Information System (INIS)
Leite Lopes, J.
An account is first given of the electromagnetic interactions of complex, scalar, vector and spinor fields. It is shown that the electromagnetic field may be considered as a gauge field. Yang-Mills fields and the field theory invariant with respect to the non-Abelian gauge transformation group are then described. The construction, owing to this invariance principle, of conserved isospin currents associated with gauge fields is also demonstrated. This is followed by a historical survey of the development of the weak interaction theory, established at first to describe beta disintegration processes by analogy with electrodynamics. The various stages are mentioned from the discovery of principles and rules and violation of principles, such as those of invariance with respect to spatial reflection and charge conjugation to the formulation of the effective current-current Lagrangian and research on the structure of weak currents [fr
Three-dimensional electromagnetic strong turbulence. I. Scalings, spectra, and field statistics
International Nuclear Information System (INIS)
Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.
2011-01-01
The first fully three-dimensional (3D) simulations of large-scale electromagnetic strong turbulence (EMST) are performed by numerically solving the electromagnetic Zakharov equations for electron thermal speeds ν e with ν e /c≥0.025. The results of these simulations are presented, focusing on scaling behavior, energy density spectra, and field statistics of the Langmuir (longitudinal) and transverse components of the electric fields during steady-state strong turbulence, where multiple wave packets collapse simultaneously and the system is approximately statistically steady in time. It is shown that for ν e /c > or approx. 0.17 strong turbulence is approximately electrostatic and can be explained using the electrostatic two-component model. For v e /c > or approx. 0.17 the power-law behaviors of the scalings, spectra, and field statistics differ from the electrostatic predictions and results because ν e /c is sufficiently high to allow transverse modes to become trapped in density wells. The results are compared with those of past 3D electrostatic strong turbulence (ESST) simulations and 2D EMST simulations. For number density perturbations, the scaling behavior, spectra, and field statistics are shown to be only weakly dependent on ν e /c, whereas the Langmuir and transverse scalings, spectra, and field statistics are shown to be strongly dependent on ν e /c. Three-dimensional EMST is shown to have features in common with 2D EMST, such as a two-component structure and trapping of transverse modes which are dependent on ν e /c.
Occupational exposure to electromagnetic fields and sex-differential risk of uveal melanoma
DEFF Research Database (Denmark)
Behrens, Thomas Flensted; Lynge, Elsebeth; Cree, Ian
2010-01-01
The association between occupational exposure to electromagnetic fields (EMF) and the risk of uveal melanoma was investigated in a case-control study in nine European countries.......The association between occupational exposure to electromagnetic fields (EMF) and the risk of uveal melanoma was investigated in a case-control study in nine European countries....
Bianchi type-I model with conformally invariant scalar and electromagnetic field
International Nuclear Information System (INIS)
Accioly, A.J.; Vaidya, A.N.; Som, M.M.
1983-01-01
A Bianchi type-I exact solution of the Einstein theory representing the homogeneous anisotropic models with the electromagnetic field and the conformally invariant scalar field is studied. The solution contains Kasner model, pure electromagnetic and pure scalar models as special cases. It is found that the models evolve from an initial Kasner type to a final open Friedmann type universe. (Author) [pt
Schaller, A.M.; Hunziker, J.W.; Streich, R.; Drijkoningen, G.G.
2014-01-01
We investigate potential benefits of measuring the vertical electric field component in addition to the routinely measured horizontal electric field components in onshore time-lapse controlled-source electromagnetics. Synthetic electromagnetic data based on a model of the Schoonebeek onshore oil
International Nuclear Information System (INIS)
Kieback, D.
1996-01-01
The present brochure of the Professional Association for Fine Mechanics and Electrical Engineering gives a selective account on the effects of electromagnetic fields on human beings. The second part deals with regulations for safety and health protection at working places exposed to electromagnetic fields. (VHE) [de
International Nuclear Information System (INIS)
Anon.
2008-01-01
This new meta-analysis found a slight increase in the risk of brain cancer and of leukemia in populations occupationally exposed to electromagnetic fields. it does not, however, support the hypothesis that electromagnetic fields have an effect on these cancers. (author)
Gravity as a dynamical consequence of the strong, weak, and electromagnetic interactions
International Nuclear Information System (INIS)
Zee, A.
1983-01-01
In this paper it is argued that Newton's gravitational constant G is calculable, and a specific calculation of G for a class of gauge theories is given. A brief review of past studies of G, especially its scale invariance, scalar fields, and the quantization of gravity, is given. A formula for G that expresses in precise terms the author's philosophy that gravity is induced as a result of quantum fluctuations, as well as a Feynam diagram representing the formula, is derived. Finally, such a calculation of G in the real world, though not yet possible, is anticipated
Assessment of occupational exposure to radio frequency electromagnetic fields
Directory of Open Access Journals (Sweden)
Halina Aniołczyk
2015-06-01
Full Text Available Background: European Union Directive 2013/35/UE provides for the implementation of EU regulations into national legislation. Our aim is to assess actual health hazards from radiofrequency electromagnetic field (RF EMF (range: 100 kHz – 300 GHz and indicate workplaces with the highest risk to employee health. Material and Methods: Data from measurements of RF EMF performed by the Laboratory of Electromagnetic Hazards in Nofer Institute of Occupational Medicine (Łódź, Poland were analyzed. The analysis covered the results of electric field intensity (E for over 450 selected items. The ranges of protection zones and the extent to which maximum admissible intensity (MAI values were also analyzed. The determinations and measurements of EMF in the work environment met the requirements of Polish Standard, while Polish regulations on the MAI values were used as the criterion for the assessment of the exposure. Results: The highest values of E field intensity at workplaces were measured for: electrosurgery, to 400 V/m, and short-wave diathermy units, to 220 V/m, dielectric welders to 240 V/m, within the FM radio antenna systems, to 180 V/m. The widest protection zones were noted for prototype research instruments, short-wave diathermy units, and dielectric welders. The most excessive (up to 12-fold MAI values were recorded for dielectric welders, short-wave diathermy units (up to 11-fold and microwave diathermy units (up to 8-fold. Conclusions: Our results have confirmed the high RF EMF values for physiotherapists, operators of dielectric welders, and mast maintenance workers in radio communication facilities (especially radio and TV broadcasting stations. Med Pr 2015;66(2:199–212
Optical Emissions of Sprite Streamers in Weak Electric Fields
Liu, N.; Pasko, V. P.
2004-12-01
Sprites commonly consist of large numbers of needle-shaped filaments of ionization [e.g., Gerken and Inan, JASTP, 65, 567, 2003] and typically initiate at altitudes 70-75 km in a form of upward and downward propagating streamers [Stanley et al., GRL, 26, 3201, 1999; Stenbaek-Nielsen et al., GRL, 27, 3829, 2000; McHarg et al., JGR, 107, 1364, 2002; Moudry et al., JASTP, 65, 509, 2003]. The strong electric fields E exceeding the conventional breakdown threshold field Ek are needed for initiation of sprite streamers from single electron avalanches and recent modeling studies indicate that streamers propagating in fields E>Ek experience strong acceleration and expansion in good agreement with the above cited observations [Liu and Pasko, JGR, 109, A04301, 2004]. The initiated streamers are capable of propagating in fields substantially lower than Ek [Allen and Ghaffar, J. Phys. D: Appl. Phys., 28, 331, 1995] and it is expected that a significant part of sprite optical output comes from regions with EEk). Additionally, the values of electric fields inside of the streamer channel are always well below Ek and since the excitation coefficients for optical emissions are very sensitive to the driving electric field magnitude most of the optical luminosity of streamers in this case arises from streamer tips, indicating that observed streamer filaments in many cases may be produced by time averaging of optical luminosity coming from localized regions around streamer tips as streamers move through an instrument's field of view. We will discuss pressure dependent differences of optical emissions at different sprite altitudes, and important similarities between observed sprite streamers and recent time resolved (van Veldhuizen et al., IEEE Trans. Plasma Sci., 30, 162, 2002; Yi and Williams, J. Phys. D. Appl. Phys., 35, 205, 2002].
Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.
Niu, D; Zhu, F; Qiu, R; Niu, Q
2016-01-01
High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.
Hyperthermic effect of magnetic nanoparticles under electromagnetic field
Directory of Open Access Journals (Sweden)
Giovanni Baldi
2009-06-01
Full Text Available Magnetic nanoparticles have attracted increasingly attention due to their potential applications in many industrial fields, even extending their use in biomedical applications. In the latter contest the main features of magnetic nanoparticles are the possibility to be driven by external magnetic fields, the ability to pass through capillaries without occluding them and to absorb and convert electromagnetic radiation in to heat (Magnetic Fluid Hyperthermia. The main challenges of the current works on hyperthermia deal with the achievement of highly efficiency magnetic nanoparticles, the surface grafting with ligands able to facilitate their specific internalisation in tumour cells and the design of stealth nanocomposites able to circulate in the blood compartment for a long time. This article presents the synthesis of cobalt ferrite nanoparticles dispersed in diethylene glycol via the so called polyol strategy and the crystal size control through successive synthesis steps. Preliminary heat dissipation evaluations on the prepared samples were carried out and the question of how particles sizes affect their magnetic and hyperthermic properties was addressed as well. Furthermore we will present how surface chemistry can be modified in order to change the dispersity of the product without affecting magnetic and hyperthermic properties.
Vacuum in the presence of electromagnetic fields and rotating boundaries
International Nuclear Information System (INIS)
Manogue, C.A.
1984-01-01
Two investigations of the properties of the vacuum are made. The first is a reconsideration of the classic Klein paradox, particle creation due to the presence of very strong external electromagnetic potentials. Expectation values of the current, momentum, and number operators, each of which is a measure of particle creation, are calculated for both massive spin zero and massive spin one half fields. The relationship between super-radiance and pair creation is explained. A review of past work by other authors is included and common conceptual errors are pointed out. The second investigation concerns the rotation of the vacuum caused by the rotation of boundaries. Just as the presence of boundaries can create a change in the vacuum expectation value of the energy density (the Casimir effect), the rotation of such boundaries can create changes in the vacuum expectation value of the momentum density. Calculations of the Casimir effect are made for a massless scalar field confined to an infinitely long square box. The change in the vacuum expectation value of the momentum density is calculated if this same box is rotating around its long central axis. In contrast, it is shown that for an infinitely long circular cylinder there is no change in the momentum density
Electromagnetically induced transparency resonances inverted in magnetic field
Energy Technology Data Exchange (ETDEWEB)
Sargsyan, A.; Sarkisyan, D., E-mail: davsark@yahoo.com, E-mail: david@ipr.sci.am [National Academy of Sciences of Armenia, Institute for Physical Research (Armenia); Pashayan-Leroy, Y.; Leroy, C. [Université de Bourgogne-Dijon, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS (France); Cartaleva, S. [Bulgarian Academy of Sciences, Institute of Electronics (Bulgaria); Wilson-Gordon, A. D. [Bar-Ilan University Ramat Gan, Department of Chemistry (Israel); Auzinsh, M. [University of Latvia, Department of Physics (Latvia)
2015-12-15
The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.
Bray–Liebhafsky oscillatory reaction in the radiofrequency electromagnetic field
Energy Technology Data Exchange (ETDEWEB)
Stanisavljev, Dragomir R., E-mail: dragisa@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 473, 11001 Belgrade (Serbia); Velikić, Zoran [Institute of Physics, University of Belgrade, Pregrevica 118, Zemun (Serbia); Veselinović, Dragan S.; Jacić, Nevena V.; Milenković, Maja C. [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 473, 11001 Belgrade (Serbia)
2014-09-30
Highlights: • Oscillatory Bray–Liebhafsky reaction is coupled with the radiofrequency radiation. • The effects of radiofrequency field on oscillatory parameters are investigated. • Radiofrequency power of up to the 0.2 W did not produced observable changes. • The explanation related with dissipative and capacitive effects is given. • Open the possibility of investigations of reactive effects on biological systems. - Abstract: Oscillatory Bray–Liebhafsky (BL) reaction is capacitively coupled with the electromagnetic radiation in the frequency range 60–110 MHz. Because of the specific reaction dynamics characterized by several characteristic parameters (induction period, period between chemical oscillations and their amplitude) it served as a good model system for the investigation of the effects of radiofrequent (RF) radiation. RF power of up to 0.2 W did not produce observable changes of the BL reaction parameters in the limit of the experiment reproductivity. Results indicate that, under the given experimental conditions, both dissipative and reactive properties of the solution are not considerably coupled with the RF electrical field.
High current density toroidal pinch discharges with weak toroidal fields
International Nuclear Information System (INIS)
Brunsell, P.; Brzozowski, J.; Drake, J.R.; Hellblom, G.; Kaellne, E.; Mazur, S.; Nordlund, P.
1990-01-01
Toroidal discharges in the ultralow q regime (ULQ) have been studied in the rebuilt Extrap TI device. ULQ discharges are sustained for pulse lengths exceeding 1 ms, which corresponds to more than 10 resistiv shell times. Values for the safety factor at the vacuum vessel wall are between rational values: 1/(n+1) -2 . The magnetic fluctuation level increases during the transition between rational values of q(a). For very low values of q(a), the loop voltage increases and the toroidal field development in the discharge exhibits the characteristic behaviour of the setting-up phase of a field reversed pinch. (author) 1 ref., 2 figs., 1 tab
Jankowski, Wojciech; Henrykowska, Gabriela; Smigielski, Janusz; Pacholski, Krzysztof; Dziedziczak-Buczyńska, Maria; Kałka, Krzysztof; Buczyński, Andrzej
2008-06-01
Being a natural environmental factor, an electromagnetic field exists from the beginning of the life on Earth and it has an influence on maintenance of life processes. Natural electromagnetic fields affect day and year rhythms of plants, animals and humans. As a result of an electromagnetic field's activity, there occurs a disorder of blood platelets' function, which may, in consequence, lead to acute and chronic conditions dangerous to health and life. The aim of this work was to assess the influence, which a shape of an electromagnetic field of low frequency has on generating free radicals and enzymatic activity of superoxide dismutase in human blood platelets. Suspension of human blood platelets was subjected to activity of electromagnetic field of different shapes, frequency of 50 Hz and induction of 10 mT for 15 and 30 minutes. An electromagnetic field was generated with Helmholtz coils arranged on a bracket, inside of which test tubes with the blood platelets' suspension were put. Next, they were subjected to an activity of a specific electromagnetic field. The measurement of free radicals generation indicated an increase, in comparison with the initial values, after 15 minutes as well as 30 minutes of exposition, regardless of the electromagnetic field's shape, whereas the enzymatic activity of superoxide dismutase decreased, in comparison with the initial values, after 15 minutes as well as 30 minutes of exposition, regardless of the applied electromagnetic field's shape. Basing on obtained results, it may be stated that the level of generating free radicals as well as the level of enzymatic activity of superoxide dismutase in tested blood cells indicates significant dependence on an electromagnetic field's shape. The greatest changes have been observed during the activity of a rectangular and triangular pulse.
Measurements of weak localization of graphene in inhomogeneous magnetic fields
DEFF Research Database (Denmark)
Lindvall, N.; Shivayogimath, Abhay; Yurgens, A.
2015-01-01
attribute this to the inhomogeneous field caused by vortices in the superconductor. The deviation, which depends on the carrier concentration in graphene, can be tuned by the gate voltage. In addition, collective vortex motion, known as vortex avalanches, is observed through magnetoresistance measurements...
Non-ionizing electromagnetic fields on offshore installations
International Nuclear Information System (INIS)
Stark, G.M.; Heaton, B.
1996-01-01
The concern over the effects of occupational exposure to non-ionizing electromagnetic fields (EMF) has greatly increased in recent years. A great deal of knowledge is known about the thermal effects of radiofrequency EMF's and at the moment, many epidemiological and laboratory studies are being performed on extremely low frequency (ELF) and very low frequency (VLF) EMF's. Some studies have reported an increased risk of leukaemia and other cancers in children living close to overhead power cables and power industry electrical workers. Wertheimer and Leeper reported cancer links in children residing near overhead power cables as early as 1979 and many subsequent studies have continued to make similar associations. These studies suggest that prolonged exposure to higher than normal magnetic fields increases the occurrence of certain cancers in both children and adults. The most common associations are between EMF's and leukaemia, other haematopoetic cancers, brain cancers, central nervous system cancers or melanomas. Studies of adults living near overhead lines by Youngson et al. and working in the electricity industry by Armstrong et al. and Savitz and Loomis have also shown associations with certain cancers. The epidemiological studies are incomplete in several areas and many have been openly criticized. As yet, there is no conclusive laboratory evidence but studies are ongoing. The Hendee and Boteler study suggested that 'EMF's might be cancer promoters but are unlikely to be cancer initiators'. In addition to ELF studies, there have been many reports investigating exposure to EMF's from visual display units with equivocal results. Laboratory studies have reported conflicting results and as yet the hazard, if any, is still uncertain. Reports have also recorded exposure levels of operators in broadcast radio stations showing a variety of levels dependent on the occupation. In December 1992, the Commission of the European Communities proposed a council Directive on
Investigation of Condensed Media in Weak Fields by the Method of Nuclear Magnetic Resonance
Davydov, V. V.; Myazin, N. S.; Dudkin, V. I.; Velichko, E. N.
2018-05-01
A compact design of a rapid-response nuclear magnetic spectrometer for investigation of condensed media in weak fields is reported. As a result of investigation of different condensed media, special features of recording a nuclear magnetic resonance (NMR) signal in a weak magnetic field from a small volume of the medium under study are established. For the first time the NMR absorption spectra of condensed media in a weak field are collected. Based on the results of experimental studies, the potential of using a compact NMR-spectrometer for condensed media monitoring in a rapid response mode is determined.
Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.
Bozeman, Steven Paul
The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in
Electromagnetic field effects on Υ-meson dissociation in PbPb collisions at LHC energies
Energy Technology Data Exchange (ETDEWEB)
Hoelck, J.; Wolschin, G. [Institut fuer Theoretische Physik der Universitaet Heidelberg (Germany)
2017-12-15
We investigate the effect of the electromagnetic field generated in relativistic heavy-ion collisions on the dissociation of Υ mesons. The electromagnetic field is calculated using a simple model which characterizes the emerging quark-gluon plasma (QGP) by its conductivity only. A numerical estimate of the field strength experienced by Υ mesons embedded in the expanding QGP and its consequences on the Υ dissociation is made. The electromagnetic field effects prove to be negligible compared to the established strong-interaction suppression mechanisms. (orig.)
Quaternion analysis of generalized electromagnetic fields in chiral media
International Nuclear Information System (INIS)
Bisht, P. S. . Email. ps_bisht123@rediffmail.com
2007-01-01
The time dependent Maxwell's equations in presence of electric and magnetic charges has been developed in chiral media and the solutions for the classical problem are obtained in unique, simple and consistent manner. The quaternionic reformulation of generalized electromagnetic fields in chiral media has also been developed in compact and consistent way. Simulation of neutron backscattering process applied to organic material detection. Forero Martinez, Nancy Carolina; Cristancho, Fernando (Nuclear Physics Group, Universidad Nacional de Colombia, Bogota D.C. (Colombia)) Abstract Atomic and nuclear physics based sensors might offer new possibilities in de-mining. There is a particular interest in the possibility of using neutrons for the non-intrusive detection of hidden contraband, explosives or illicit drugs. The Neutron Backscattering Technique, based on the detection of the produced thermal neutrons, is known to be a useful tool to detect hidden explosives which present an elevated concentration of light elements (H, C, N, O). In this way we present the simulated results using the program package Geant4. Different variables were modified including the soil composition and the studied materials. (Author)
Neurovegetative disturbances in workers exposed to 50 Hz electromagnetic fields
International Nuclear Information System (INIS)
Bortkiewicz, A.; Gadzicka, E.; Zmyslony, M.; Szymczak, W.
2006-01-01
Since the circulatory and nervous systems are composed of of electrically excitable tissues, it is plausible that they can be stimulated by electromagnetic fields (EMF). No clinical studies have as been carried out to explain whether and how occupational exposure to 50 Hz EMF can influence the neurovegetative regulation of the cardiovascular function. The present project was undertaken to assess the the autonomic function in workers occupationally exposed to 50 Hz EMF, by analyzing the heart rate variability. The study group comprised 63 workers of switchyard substations, aged 22-67 years (39.2±10.0 years), and the control group 42 workers of radio link stations, aged 20-68 years (40.7±9.2 years), employed at workposts free from EMF exposure. The age range and employment duration in both groups did not differ significantly. To assess the neurovegetative regulation of the cardiac function, heart rate variability HRV) analysis was made based on 512 normal heart beats recorded at rest. The analysis, performed using fast Fourier transformation, concerned the time - and frequency-domain HRV parameters. Power spectrum in the very low (VLF), low (LF) and high (HF) frequency bands was determined. The relative risk of decreased HRV (STD R-R ) was significantly higher in the study group than in control (65% vs. 47%). It was concluded that occupational exposure to 50 Hz EMF could influence the neurovegetative regulation of the cardiovascular system. (author)
Study of extremely low frequency electromagnetic fields in infant incubators.
Cermáková, Eleonora
2003-01-01
The aim of the work was to present the results of measurements of extremely low frequency electromagnetic fields (ELF EMF), namely the magnetic flux density, inside infant incubators, and to compare these results with the data published by other authors who point out to a possible association between leukemia or other diseases observed in newborns kept in incubators after the birth and the ELF EMF exposure in the incubator. The measured magnetic flux densities were compared with the reference values for this frequency range indicated in the European Union (EU) recommendations. The repeated measurements in incubators were made with a calibrated magnetometer EFA 300 in the frequency range of 5-30 kHz. Effective values of magnetic flux densities of ELF EMF were determined taking account of the reference values. The results of many repeated measurements showing the values of magnetic flux density in modern incubators with plastic supporting frame, were compared with those obtained in old type incubators with iron skeleton. A power frequency of 50 Hz was detected in the incubator and the ELF EMF values were by over two orders lower than the EU reference values. The paper emphasizes the need to take a special care of newborns kept in incubators even if only the sub-reference values are detected. The EU reference values are intended for the adult human population. A baby in an incubator has much smaller dimensions, higher electric conductivity and maybe trigger another mechanism of response to ELF EMF than that indicated in this paper.
Effect of electromagnetic field on Kordylewski clouds formation
Salnikova, Tatiana; Stepanov, Sergey
2018-05-01
In previous papers the authors suggest a clarification of the phenomenon of appearance-disappearance of Kordylewski clouds - accumulation of cosmic dust mass in the vicinity of the triangle libration points of the Earth-Moon system. Under gravi-tational and light perturbation of the Sun the triangle libration points aren't the points of relative equilibrium. However, there exist the stable periodic motion of the particles, surrounding every of the triangle libration points. Due to this fact we can consider a probabilistic model of the dust clouds formation. These clouds move along the periodical orbits in small vicinity of the point of periodical orbit. To continue this research we suggest a mathematical model to investigate also the electromagnetic influences, arising under consideration of the charged dust particles in the vicinity of the triangle libration points of the Earth-Moon system. In this model we take under consideration the self-unduced force field within the set of charged particles, the probability distribution density evolves according to the Vlasov equation.
Classical particles with spin in electromagnetic and gravitational fields
International Nuclear Information System (INIS)
Amorim, R.M. de.
1977-02-01
Following a review of several problems connected with classical particles with intrinsic angular momentum are reproduced the Frenkel equations (with the condition S sup(μν)U sub(ν)=0) by means of a holonomic variational principle, and have related them to Bargann, Michel and Tededgie equations. The treatment is then generalized to the case in wich S sup(μν)U sub(ν)=0 and the resulting equation coincide in the linearized limit with those obtained by Suttorp and de Groot. Also, by using variational principles, the generalizations to Frenkel equations are obtained, as well as to those of Suttorp and de Groot when electromagnetic and gravitational interactions are considered. Finally, those equations are analysed according to a scheme proposed by Oliveira and Tiommo where the gravitational interactions are described by gravielectric and gravimagnetic fields. The analogies in these equations of motion between the gravitational and eletromagnetic interactions, in the case in which the particle has a giromagnetic factor g=1, are shown. The last results complete a previous study by wald. (Author) [pt
Non-Hermitian wave packet approximation for coupled two-level systems in weak and intense fields
Energy Technology Data Exchange (ETDEWEB)
Puthumpally-Joseph, Raiju; Charron, Eric [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Sukharev, Maxim [Science and Mathematics Faculty, College of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States)
2016-04-21
We introduce a non-Hermitian Schrödinger-type approximation of optical Bloch equations for two-level systems. This approximation provides a complete and accurate description of the coherence and decoherence dynamics in both weak and strong laser fields at the cost of losing accuracy in the description of populations. In this approach, it is sufficient to propagate the wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing are taken into account via automatically adjusted time-dependent gain and decay rates. The developed formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer comprised of interacting two-level emitters.
Grobbe, N.
2016-01-01
In this thesis, I study coupled poroelastic waves and electromagnetic fields in layered media. The focus is two-fold:
1. Increase the theoretical and physical understanding of the seismo-electromagnetic phenomenon by analytically-based numerical modeling.
2. Investigate the potential of
Near-Field Spectral Effects due to Electromagnetic Surface Excitations
Shchegrov , Andrei ,; Joulain , Karl; Carminati , Rémi; Greffet , Jean-Jacques
2000-01-01
International audience; We demonstrate theoretically that the spectra of electromagnetic emission of surface systems can display remarkable differences in the near and the far zones. The spectral changes occur due to the loss of evanescent modes and are especially pronounced for systems which support surface waves. PACS numbers: 78.20. – e, 05.40. – a, 44.40. + a, 87.64.Xx Spectroscopy of electromagnetic radiation is perhaps the most powerful exploration tool employed in natural sciences: ast...
Two-photon cooperative emission in the presence of athermal electromagnetic field
International Nuclear Information System (INIS)
Enaki, N.A.; Mihalache, D.
1997-01-01
The possibility of cooperative spontaneous two-photon emission of an extended radiators system and the influence of the external thermal electromagnetic field on the spontaneous emission rate, in such a system, are investigated. It is concluded that, in an external electromagnetic field, the two-photon cooperative emission rate increases significantly. The importance of this effect on the emission of gamma rays from inverted long-lived isomers triggered by X-ray thermal fields, is emphasized
Relations between focusing power of space-charge lenses and external electromagnetic fields
International Nuclear Information System (INIS)
Yu Qingchang; Qiu Hong; Huang Jiachang
1991-01-01
Under different external electromagnetic fields, the electron densities of the electron cloud in a self-sustaning spece-charge lens are measured with the radio-frequency method and the energy distributions of the ions produced in ionization are measured with the stopping field method. From them the relations between the focusing power of space-charge lenses and the external electromagnetic fields are determined. The available region of the Lebedev-Morozov formula is discussed
Czech Academy of Sciences Publication Activity Database
Jelínek, František; Pokorný, Jiří; Šaroch, Jaroslav; Trkal, Viktor; Hašek, Jiří; Palán, B.
1999-01-01
Roč. 48, č. 2 (1999), s. 261-266 ISSN 0302-4598. [Electromagnetic Fields in Biological Systems. Prague, 13.09.1998-16.09.1998] R&D Projects: GA ČR GA102/97/0867 Grant - others:EU COST (XE) OC 244B.40 Institutional research plan: CEZ:AV0Z2067918 Keywords : electromagnetic fields * cellular biophysics * field strength measurement Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.085, year: 1999
International Nuclear Information System (INIS)
Cadena, M. S. Reyes; Chapul, L. Sanchez; Perez, Javier; Garcia, M. N. Jimenez; Lopez, M. A. Jimenez; Espindola, M. E. Sanchez; Perez, R. Paniagua; Hernandez, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodriguez
2008-01-01
We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-β) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor
International Nuclear Information System (INIS)
Qiong-gui Lin; Department of Physics, Zhongshan University, Guangzhou 510275
1999-01-01
Neutral fermions of spin-1/2 with magnetic moment can interact with electromagnetic fields through nonminimal coupling. In 2 + 1 dimensions the electromagnetic field strength plays the same role to the magnetic moment as the vector potential to the electric charge. This duality enables one to obtain physical results for neutral particles from known ones for charged particles. We give the probability of neutral particle-antiparticle pair creation in a vacuum by non-uniform electromagnetic fields produced by constant uniform charge and current densities. (author)
Radiofrequency-electromagnetic field exposures in kindergarten children.
Bhatt, Chhavi Raj; Redmayne, Mary; Billah, Baki; Abramson, Michael J; Benke, Geza
2017-09-01
The aim of this study was to assess environmental and personal radiofrequency-electromagnetic field (RF-EMF) exposures in kindergarten children. Ten children and 20 kindergartens in Melbourne, Australia participated in personal and environmental exposure measurements, respectively. Order statistics of RF-EMF exposures were computed for 16 frequency bands between 88 MHz and 5.8 GHz. Of the 16 bands, the three highest sources of environmental RF-EMF exposures were: Global System for Mobile Communications (GSM) 900 MHz downlink (82 mV/m); Universal Mobile Telecommunications System (UMTS) 2100MHz downlink (51 mV/m); and GSM 900 MHz uplink (45 mV/m). Similarly, the three highest personal exposure sources were: GSM 900 MHz downlink (50 mV/m); UMTS 2100 MHz downlink, GSM 900 MHz uplink and GSM 1800 MHz downlink (20 mV/m); and Frequency Modulation radio, Wi-Fi 2.4 GHz and Digital Video Broadcasting-Terrestrial (10 mV/m). The median environmental exposures were: 179 mV/m (total all bands), 123 mV/m (total mobile phone base station downlinks), 46 mV/m (total mobile phone base station uplinks), and 16 mV/m (Wi-Fi 2.4 GHz). Similarly, the median personal exposures were: 81 mV/m (total all bands), 62 mV/m (total mobile phone base station downlinks), 21 mV/m (total mobile phone base station uplinks), and 9 mV/m (Wi-Fi 2.4 GHz). The measurements showed that environmental RF-EMF exposure levels exceeded the personal RF-EMF exposure levels at kindergartens.
Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents.
Roser, Katharina; Schoeni, Anna; Struchen, Benjamin; Zahner, Marco; Eeftens, Marloes; Fröhlich, Jürg; Röösli, Martin
2017-02-01
Adolescents belong to the heaviest users of wireless communication devices, but little is known about their personal exposure to radiofrequency electromagnetic fields (RF-EMF). The aim of this paper is to describe personal RF-EMF exposure of Swiss adolescents and evaluate exposure relevant factors. Furthermore, personal measurements were used to estimate average contributions of various sources to the total absorbed RF-EMF dose of the brain and the whole body. Personal exposure was measured using a portable RF-EMF measurement device (ExpoM-RF) measuring 13 frequency bands ranging from 470 to 3600MHz. The participants carried the device for three consecutive days and kept a time-activity diary. In total, 90 adolescents aged 13 to 17years participated in the study conducted between May 2013 and April 2014. In addition, personal measurement values were combined with dose calculations for the use of wireless communication devices to quantify the contribution of various RF-EMF sources to the daily RF-EMF dose of adolescents. Main contributors to the total personal RF-EMF measurements of 63.2μW/m 2 (0.15V/m) were exposures from mobile phones (67.2%) and from mobile phone base stations (19.8%). WLAN at school and at home had little impact on the personal measurements (WLAN accounted for 3.5% of total personal measurements). According to the dose calculations, exposure from environmental sources (broadcast transmitters, mobile phone base stations, cordless phone base stations, WLAN access points, and mobile phones in the surroundings) contributed on average 6.0% to the brain dose and 9.0% to the whole-body dose. RF-EMF exposure of adolescents is dominated by their own mobile phone use. Environmental sources such as mobile phone base stations play a minor role. Copyright © 2016 Elsevier Ltd. All rights reserved.
Grant, Ian S
1990-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient
International Nuclear Information System (INIS)
Kim, Se Yun
2009-01-01
This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.
Effects of 1.84 GHz radio-frequency electromagnetic field on sperm ...
African Journals Online (AJOL)
sunny t
found that, compared with sham group, the sperm morphology and ... harmful effects of electromagnetic fields emitted from ... RF-EMF, which are widely selected for mobile ... Laboratory Animal Centre, the Fourth Military Medical University,.
National Research Council Canada - National Science Library
Jones, D
1995-01-01
.... Pulsing electromagnetic fields (PEMFs)have been shown to speed the healing of non-union fractures and we have used them successfully to treat stress fractures in the lower limbs. All women at Ft...
Peculiarities of natural electromagnetic field variations in the interval of periods of 60-240 min
International Nuclear Information System (INIS)
Kovtun, A.A.; Smirnov, M.Yu.
1996-01-01
Intensification of the oscillation amplitude of the natural electromagnetic field within 60-240 min period interval at practically all the latitudes was observed during the Earth re-entry to plasma high-speed flow
Effect of electromagnetic fields on the chondrogenic differentiation under microgravity conditions
National Aeronautics and Space Administration — A combination therapy of electromagnetic fields (EMF) and simulated microgravity (SMG) has not been examined in regenerative medicine of cartilage. In the present...
Effect of radio frequency waves of electromagnetic field on the tubulin.
Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-Zarchi
2013-09-01
Microtubules (MTs) are macromolecular structures consisting of tubulin heterodimers and present in almost every eukaryotic cell. MTs fulfill all conditions for generation of electromagnetic field and are electrically polar due to the electrical polarity of a tubulin heterodimer. The calculated static electric dipole moment of about 1000 Debye makes them capable of being aligned parallel to the applied electromagnetic field direction. In the present study, the tubulin heterodimers were extracted and purified from the rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules were adsorbed in the absence and in the presence of electromagnetic fields with radio frequency of 900 Hz. Our results demonstrate the effect of electromagnetic field with 900 Hz frequency to change the structure of MTs. In this paper, a related patent was used that will help to better understand the studied subject.
Niessen, E.M.J.; Niessen, E.M.J.; Zandbergen, P.J.
1993-01-01
Analytical results are presented concerning the electromagnetic response of a composite superconducting wire in fields parallel to the wire axis, using the Maxwell equations supplemented with constitutive equations. The problem is nonlinear due to the nonlinearity in the constitutive equation
Extremely low frequency electromagnetic field in combination with Î² ...
African Journals Online (AJOL)
Fatemeh Sanie-Jahromi
Extremely low frequency (<300 Hz) electromagnetic field (EMF) is shown to decrease ... Production and hosting by Elsevier B.V. This is an open access article under ..... mouse liver induced by morphine and protected by antioxidants.
Conversion of photons into spinless particles in periodic external electromagnetic field
International Nuclear Information System (INIS)
Hoang Ngoc Long; Dang Van Soa
1996-08-01
The conversion of photons into axions and dilatons in a periodic external electromagnetic field, namely in the TE 10 mode, are considered in detail. The differential cross sections are given. (author). 16 refs
National Research Council Canada - National Science Library
Steenman, Daryl
1999-01-01
.... In the far-field of these tested objects, actual sources of high reflectivity or "Hot Spots" on the tested objects can be isolated to within only one half the wavelength of the electromagnetic wave used for testing...
High energy pair production in arbitrary configuration of intense electromagnetic fields
International Nuclear Information System (INIS)
Ayasli, S.; Hacinliyan, A.
1978-01-01
The photon attenuation coefficient for pair production in intense electric and magnetic fields of arbitrary confiquration is derived. The results are applied to a cascade calculation of electromagnetic processes in pulsars. (author)
The effect of extreme-low-frequency electromagnetic field on air ...
African Journals Online (AJOL)
Electromagnetic fields produce alternating electric fields and modify static electric fields in the vicinity. These electric fields, if large enough, can alter the concentration or transport of airborne particles (including particles harmful to health). In this study, the concentration of radioactive materials (gamma radiation) was ...
Modeling microwave electromagnetic field absorption in muscle tissues
Felbacq, D.; Clerjon, S.; Damez, J. L.; Zolla, F.
2002-07-01
Absorption of electromagnetic energy in human tissues is an important issue with respect to the safety of low-level exposure. Simulation is a way to a better understanding of electromagnetic dosimetry. This letter presents a comparison between results obtained from a numerical simulation and experimental data of absorbed energy by a muscle. Simulation was done using a bidimensional double-scale homogenization scheme leading to the effective permittivity tensor. Experimental measurements were performed at 10 GHz on bovine muscle, 30 hours after slaughter, thanks to the open-ended rectangular waveguide method. Results show a good agreement between measurements and simulated data.
Hearing aids' electromagnetic immunity to environmental RF fields
International Nuclear Information System (INIS)
Facta, S.; Benedetto, A.; Anglesio, L.; D'Amore, G.
2004-01-01
In this work, the electromagnetic interference on hearing aids was evaluated. Electromagnetic (EM) immunity tests on different types of hearing aids were carried out, using signals of intensity and modulation comparable to those present in the environment. The purpose of this work is to characterise the interference, establishing the immunity threshold for different frequencies and finding out which types of hearing aids are more susceptible, and in which frequency range. The tests were carried out in a GTEM cell on seven hearing aids, using AM and GSM signals in the radiofrequency (RF) range. (authors)
International Nuclear Information System (INIS)
Denisov, V.I.; Krivchenkov, I.V.; Denisov, I.P.
2002-01-01
The study on the electromagnetic waves propagation in the neutron star magnetic dipole and gravitation fields, taking place according to the vacuum nonlinear electrodynamics laws, is carried out. It is shown that depending on the polarization the electromagnetic signals in this field propagate by different beams and with various velocities. The law on these signals motion by beams is established. The calculation of differences in the times of the electromagnetic signals propagation, having the same source up to the detector, is presented. It is shown that this difference in some cases may reach enough measurable value of 1 μs [ru
International Nuclear Information System (INIS)
Li Hanyu; Zhou Haijing; Dong Zhiwei; Liao Cheng; Chang Lei; Cao Xiaolin; Xiao Li
2010-01-01
A large-scale parallel electromagnetic field simulation program JEMS-FDTD(J Electromagnetic Solver-Finite Difference Time Domain) is designed and implemented on JASMIN (J parallel Adaptive Structured Mesh applications INfrastructure). This program can simulate propagation, radiation, couple of electromagnetic field by solving Maxwell equations on structured mesh explicitly with FDTD method. JEMS-FDTD is able to simulate billion-mesh-scale problems on thousands of processors. In this article, the program is verified by simulating the radiation of an electric dipole. A beam waveguide is simulated to demonstrate the capability of large scale parallel computation. A parallel performance test indicates that a high parallel efficiency is obtained. (authors)
Evaluation Of Electromagnetic Fields For Frequencies 900 MHz-1 800 MHz In Tirana
Kuqi Dhurata; Malkaj Partizan; Kuka Shklqim; Kuqali Margarita; Hoxha Adhurim; Mulaj Tatjana; Goga Marjola; Dokuzi Hazbi
2015-01-01
Abstract The massive use of mobile phone as a communication tool nowadays is accompanied the ever increasing interest of the public and researchers for the possibly impact on human health as a result of exposure to the electromagnetic fields that accompany these devices. Therefore knowing the level of exposure electromagnetic fields of this electronic equipment has been and will be in the future interest object to the public and the subject of study for the researchers. In this paper are pres...
Combination transition radiation in a medium excited by an electromagnetic field
International Nuclear Information System (INIS)
Kalashnikova, Yu.S.
1976-01-01
The radiation emitted by a uniformly moving charged particle in a medium excited by an electromagnetic field is considered by taking into account the interaction between the electromagnetic waves and optical phonon wave. The frequencies are found, in the vicinity of which the two-wave approximation should be applied in order to determine the radiation field. It is shown that in the vicinity of these frequencies the radiation considerably differs from the Cherenkov radiation
Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter
2009-03-31
AFRL-RV-HA-TR-2009-1055 Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter ...m (or even 500 m) at mid to high latitudes . At low latitudes , the FDTD model exhibits variations that make it difficult to determine a reliable...Scientific, Final 3. DATES COVERED (From - To) 02-08-2006 – 31-12-2008 4. TITLE AND SUBTITLE Accurate Modeling of Ionospheric Electromagnetic Fields
Wake-Field Wave Resonant Excitation in Magnetized Plasmas by Electromagnetic Pulse
International Nuclear Information System (INIS)
Milant'ev, V.P.; Turikov, V.A.
2006-01-01
In this paper the space charge wave excitation process at electromagnetic pulse propagation along external magnetic field in vicinity of electron cyclotron resonance. In hydrodynamic approach it is obtained an equation for plasma density under ponderomotive force action. With help of this equation we investigated a wake-field wave amplitude dependence from resonance detuning. The numerical simulation using a PIC method electromagnetic pulse propagation process in the resonant conditions was done
Nuclear β decay with a massive neutrino in an external electromagnetic field
International Nuclear Information System (INIS)
Ternov, I.M.; Rodionov, V.N.; Zhulego, V.G.; Lobanov, A.E.; Pavlova, O.S.; Dorofeev, O.F.
1986-01-01
Beta decay in the presence of an external electromagnetic field is investigated, taking into account the non-zero neutrino rest mass. The spectrum of electrons and polarisation effects of different orientations of nuclear spin are considered. It is shown that the electromagnetic wave substantially modifies the boundaries of the spectrum of β electrons. The results, which include an analysis of the total decay probability in intense magnetic fields, may have various astrophysical implications. (author)
Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A
2009-12-01
Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.
The views of primary care physicians on health risks from electromagnetic fields
DEFF Research Database (Denmark)
Berg-Beckhoff, Gabi; Heyer, Kristina; Kowall, Bernd
2010-01-01
The aim of this study was to find out what primary care physicians in Germany think about the possible health risks of electromagnetic fields (EMF) and how they deal with this topic in discussions with patients.......The aim of this study was to find out what primary care physicians in Germany think about the possible health risks of electromagnetic fields (EMF) and how they deal with this topic in discussions with patients....
Lazetić, Bogosav
2003-01-01
The biosphere consists of all ecosystems of earth and is characterized by electromagnetic fields of different frequencies. Physics and natural sciences and disciplines are focused on their origin and characteristics. NATURAL ELECTROMAGNETIC FIELDS: There is a well defined idea that natural electromagnetic activity of the Earth's atmosphere throughout evolution led to appearance of electromagnetic homeostasis, i.e. maintenance of inner electromagnetic mileu. It can be supposed that during the evolution of living organisms natural electromagnetic fields were associated with biochemical processes and as a result of natural selection became an important information system and obligatory component of life. The results presented here show that there is no reason to doubt that natural electromagnetic fields are an important ecologic factor. On the contrary, we have to emphasize that natural electromagnetic environment is necessary for life on the Earth. Today intensity of artificial electromagnetic fields is ten to hundred times higher than of natural electromagnetic fields. Danger from electromagnetic fields is an acute and actual problem which increases knowing that there won't be a spot without artificial electromagnetic field on our planet.
Coupled dilaton and electromagnetic field in cylindrically symmetric ...
Indian Academy of Sciences (India)
An exact solution is obtained for coupled dilaton and electromagnetic ﬁeld in a cylindrically symmetric spacetime where an axial magnetic ﬁeld as well as a radial electric ﬁeld both are present. Depending on the choice of the arbitrary constants our solution reduces either to dilatonic gravity with pure electric ﬁeld or to that ...
Electromagnetically Driven Plasma-Field Dynamics in Modified Ionosphere
Kochetov, Andrey; Terina, Galina
Under sounding of an artificial ionospheric turbulence by short probing radio pulses of ordinary polarization the two types of scattered signals were observed: a "caviton" signal (CS) and a "plasma" signal (PS), which appeared with the heating transmitter switching on and disap-peared after its switching off (G.I. Terina J. Atm. Terr. Phys, 57, 1995, 273, Izv. VUZov, Radiofizika, 39, 1998, 203). The scattered signal of PS type was revealed also after the heating switching off. It was called an "aftereffect plasma signal" (AEPS) (G.I. Terina Izv .VUZov, Radiofizika, 43, 2000, 958). This signal had large time and spatial delays and appeared mostly when corresponding PS had envelope fluctuations. The aftereffect phenomenon was expressed at time on CS by amplitude increasing at once after the heating transmitter turning off. The theoretical model of this phenomenon is proposed in and some peculiarities of the aftereffect phenomena of the scattered signals in modified ionospheric plasma are considered and discussed. For theoretical interpretation of the characteristics of CS and AEPS the numerical solution of nonlinear Shrüdinger equation (NSE) with driven extension were carried out in inhomogeneous plasma layer with linear electron density profile (A.V. Kochetov, V.A. Mironov, G.I. Terina, Adv. Space Reseacrh, 29, 2002, 1369) and for the one with prescribed density depletion (and A.V. Kochetov, G.I. Terina, Adv. Space Reseacrh, 38, 2006, 2490). The simulation results obtained for linear inhomogeneous plasma layer and for plasma one with density depletion al-low us to interpret the aftereffect of CS and PS qualitatively. The field amplitude increase at relaxation stage displayed at calculations allows us to interpret of CS aftereffect. The large time delays of AEPS can be explained as a result of powerful radio waves trapping in the forming at the plasma resonance regions density depletions (E. Mjøhus, J. Geophys. Res. 103, 1998, 14711; B. Eliasson and L. Stenflo, J
Low-frequency electromagnetic radiation field interaction with cerebral nervous MT
International Nuclear Information System (INIS)
Gao Feng; Zhou Yi; Xiao Detao; Zhang Dengyu
2009-01-01
We investigate the interaction characteristics and mechanism of electromagnetic radiation field and cerebral nervous system. When the electromagnetic radiation is non-ionization low-frequency electromagnetic field, the two-state physical system in the cytoskeletal microtubule (MT) can be quantized. The state of information bits in cerebral neurons system is described by density matrix, and the system dynamics equation is established and solved. It indicates that when the brain is exposed to non-ionization low-frequency electromagnetic field, the density matrix non-opposite angle element of cerebral nervous qubit will never be zero, its quantum coherence characteristic can keep well, and the brain function will also be not damaged. (authors)
Electromagnetic field measurements in ULF-ELF-VLF [0.001 Hz─100 KHz] bands
Directory of Open Access Journals (Sweden)
C. Di Lorenzo
2008-01-01
Full Text Available We are reporting the technological and scientific objectives of the MEM project. The MEM project has been activated in the INGV Observatory of L'Aquila to create in Central Italy a network of observatories in order to monitoring the electromagnetic signals in the frequency band [0.001 Hz–100 kHz]. Some examples of the instrumentation developed in the frame of the project are reported. An innovative technique, based on the wide band interferometry is proposed to obtain detailed information concerning the several detected electromagnetic sources. Moreover, data from each station will be elaborated to investigate different sectors as the structure of ground electric conductibility, the electromagnetic phenomena connected with seismic activity, the separation of the electromagnetic fields originated in the Earth's interior and the electromagnetic phenomena originated in the magnetosphere, in the ionosphere and in the Earth-ionosphere cavity.
An analysis of the electromagnetic field in multi-polar linear induction system
International Nuclear Information System (INIS)
Chervenkova, Todorka; Chervenkov, Atanas
2002-01-01
In this paper a new method for determination of the electromagnetic field vectors in a multi-polar linear induction system (LIS) is described. The analysis of the electromagnetic field has been done by four dimensional electromagnetic potentials in conjunction with theory of the magnetic loops . The electromagnetic field vectors are determined in the Minkovski's space as elements of the Maxwell's tensor. The results obtained are compared with those got from the analysis made by the finite elements method (FEM).With the method represented in this paper one can determine the electromagnetic field vectors in the multi-polar linear induction system using four-dimensional potential. A priority of this method is the obtaining of analytical results for the electromagnetic field vectors. These results are also valid for linear media. The dependencies are valid also at high speeds of movement. The results of the investigated linear induction system are comparable to those got by the finite elements method. The investigations may be continued in the determination of other characteristics such as drag force, levitation force, etc. The method proposed in this paper for an analysis of linear induction system can be used for optimization calculations. (Author)
Żak, Arkadiusz
2014-01-01
One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields. PMID:25136557
On the dynamics of excited atoms in time dependent electromagnetic fields
International Nuclear Information System (INIS)
Foerre, Morten
2004-06-01
This thesis is composed of seven scientific publications written in the period 2001-2004. The focus has been set on Rydberg atoms of hydrogen and lithium in relatively weak electromagnetic fields. Such atoms have been studied extensively during many years, both experimentally and theoretically, They are relatively easy to handle in the laboratory. Their willingness to react to conventional field sources and their long lifetimes, are two reasons for this. Much new insight into fundamental quantum mechanics has been extracted from such studies. By exciting a non-hydrogenic ground state atom or molecule into a highly excited state, many properties of atomic hydrogen are adopted. In many cases the dynamics of such systems can be accurately described by the hydrogenic theory, or alternatively by some slightly modified version like quantum defect theory. In such theories the Rydberg electron(s) of the non-hydrogenic Rydberg system is treated like it is confined in a modified Coulomb potential, which arises from the non-hydrogenic core. defined by the non-excited electrons and the nucleus. The more heavily bound core electrons are less influenced from external perturbations than the excited electrons, giving rise to the so-called frozen-core approximation. where the total effect of the core electrons is put into a modified Coulomb potential. A major part of this thesis has been allocated to the study of core effects in highly excited states of lithium. In collaboration with time experimental group of Erik Horsdal-Pedersen at Aarhus University, we have considered several hydrogenic and non-hydrogenic aspects of such states, when exposed to weak slowly varying electromagnetic fields. The dynamics was restricted to one principal shell (intrashell). Two general features were observed, either the hydrogenic theory applied or alternatively, in case of massive deviation, the dynamics was accurately described by quantum defect theory, clearly demonstrating the usefulness of such
On the dynamics of excited atoms in time dependent electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Foerre, Morten
2004-06-01
This thesis is composed of seven scientific publications written in the period 2001-2004. The focus has been set on Rydberg atoms of hydrogen and lithium in relatively weak electromagnetic fields. Such atoms have been studied extensively during many years, both experimentally and theoretically, They are relatively easy to handle in the laboratory. Their willingness to react to conventional field sources and their long lifetimes, are two reasons for this. Much new insight into fundamental quantum mechanics has been extracted from such studies. By exciting a non-hydrogenic ground state atom or molecule into a highly excited state, many properties of atomic hydrogen are adopted. In many cases the dynamics of such systems can be accurately described by the hydrogenic theory, or alternatively by some slightly modified version like quantum defect theory. In such theories the Rydberg electron(s) of the non-hydrogenic Rydberg system is treated like it is confined in a modified Coulomb potential, which arises from the non-hydrogenic core. defined by the non-excited electrons and the nucleus. The more heavily bound core electrons are less influenced from external perturbations than the excited electrons, giving rise to the so-called frozen-core approximation. where the total effect of the core electrons is put into a modified Coulomb potential. A major part of this thesis has been allocated to the study of core effects in highly excited states of lithium. In collaboration with time experimental group of Erik Horsdal-Pedersen at Aarhus University, we have considered several hydrogenic and non-hydrogenic aspects of such states, when exposed to weak slowly varying electromagnetic fields. The dynamics was restricted to one principal shell (intrashell). Two general features were observed, either the hydrogenic theory applied or alternatively, in case of massive deviation, the dynamics was accurately described by quantum defect theory, clearly demonstrating the usefulness of such
Extremely weak magnetic field exposure may inhibit hippocampal neurogenesis of Sprague Dawley rats
Zhang, B.; Tian, L.; Cai, Y.; Xu, H.; Pan, Y.
2016-12-01
Hippocampal neurogenesis occurs throughout life in mammals brains and can be influenced by animals' age as well as environmental factors. Lines of evidences have shown that the magnetic field is an important physics environmental factor influencing many animals' growth and development, and extremely weak magnetic field exposures have been proved having serious adverse effects on the metabolism and behaviors in some animals, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we experimentally examined the extremely weak magnetic field effects on neurogenesis of the dentate gyrus (DG) of hippocampus of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, an extremely weak magnetic field (≤ 0.5μT) and the geomagnetic fields (strength 31-58μT) as controls. Thirty-two SD rats (3-weeks old) were used in this study. New cell survival in hippocampus was assessed at 0, 14, 28, and 42 days after a 7-day intraperitoneal injections of 5-bromo-2'-deoxyuridine (BrdU). Meanwhile, the amounts of immature neurons and mature neurons which are both related to hippocampal neurogenesis, as documented by labeling with doublecortin (DCX) and neuron (NeuN), respectively, were also analyzed at 0, 14, 28, and 42 days. Compared with geomagnetic field exposure groups, numbers of BrdU-, DCX-positive cells of DG of hippocampus in tested rats reduces monotonously and more rapidly after 14 days, and NeuN-positive cells significantly decreases after 28days when exposed in the extremely weak magnetic field condition. Our data suggest that the exposure to an extremely weak magnetic field may suppress the neurogenesis in DG of SD rats.
Lee, T. D.
1970-07-01
While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.
[The effect of electromagnetic fields on living organisms: plants, birds and animals].
Rochalska, Małgorzata
2007-01-01
Electromagnetic fields, constant and alternating, are a static element of the environment. They originate from both natural and man-made sources. Depending on the type of the field, its intensity and time of activity, they exert different effects on the natural world (plants and animals). Some animals utilize magnetic field of the earth for their own purposes.
Effects of electromagnetic field of 33 and 275 kv influences on ...
African Journals Online (AJOL)
user
2012-08-16
Aug 16, 2012 ... vacant land beneath high voltage transmission lines to grow leaf ... Studies on suitability of vegetables beneath power lines ... analysis. Electromagnetic field strength measurement. Electric field (kV/m) and magnetic field (mT) reading were taken at ..... faint extra band at Rf 0.09 in lanes 4 (30 m), 5 (40 m), 6.
Electromagnetic-field equations in the six-dimensional space-time R6
International Nuclear Information System (INIS)
Teli, M.T.; Palaskar, D.
1984-01-01
Maxwell's equations (without monopoles) for electromagnetic fields are obtained in six-dimensional space-time. The equations possess structural symmetry in space and time, field and source densities. Space-time-symmetric conservation laws and field solutions are obtained. The results are successfully correlated with their four-dimensional space-time counterparts
Simulation of Heat Transfer and Electromagnetic Fields of Protected Microcomputers
Directory of Open Access Journals (Sweden)
Josef Lakatos
2006-01-01
Full Text Available The paper presents results of collaboration between Department of mechatronics and electronics at University of Žilina and VÚVT Engineering a.s. Žilina in area of heat transfer simulations and disturbing electromagnetic radiation simulations in computer construction. The simulations results were used in development of protected microcomputer prototypes in frame of applied research at both of workplaces.
Electromagnetic Near Field Measurements of Two Critical Assemblies
Energy Technology Data Exchange (ETDEWEB)
Goettee, Jeffrey David
2015-11-03
The reactors employed, Godiva IV and WSMR Fast Burst Reactor, are described first. Then the point reactor kinetics model, electromagnetic potential, and the measurement of kinetics quantities are successively discussed. In summary, reactor power produces measurable electric energy. The electric signal mimics power curve for prompt burst operations - features in logarithmic derivatives match. The electric signature should be dependent on the power and not the derivative; therefore, steady-state modes should be measurable.
Relativistic kinematics of the electromagnetic fields of a guided mode
International Nuclear Information System (INIS)
Rivlin, Lev A
2000-01-01
It is shown that during the observation of a wave in a waveguide from a comoving reference system travelling at a velocity equal to the group velocity of the wave, the wave propagation is halted and the electromagnetic energy contained in the waveguide proves to be stationary. The nonzero rest mass of the photons in the waveguide is equivalent to this rest energy and is identical with the rest mass measured in dynamic experiments. (laser applications and other topics in quantum electronics)
Influence of Weak External Magnetic Field on Amorphous and Nanocrystalline Fe-based Alloys
Degmová, J.; Sitek, J.
2010-07-01
Nanoperm, Hitperm and Finamet amorphous and nanocrystalline alloys were measured by Mössbauer spectrometry in a weak external magnetic field of 0.5 T. It was shown that the most sensitive parameters of Mössbauer spectra are the intensities of the 2nd and the 5th lines. Rather small changes were observed also in the case of internal magnetic field values. The spectrum of nanocrystalline Nanoperm showed the increase in A23 parameter (ratio of line intensities) from 2.4 to 3.7 and decrease of internal magnetic field from 20 to 19 T for amorphous subspectrum under the influence of magnetic field. Spectrum of nanocrystalline Finemet shown decrease in A23 parameter from 3.5 to 2.6 almost without a change in the internal magnetic field value. In the case of amorphous Nanoperm and Finemet samples, the changes are almost negligible. Hitperm alloy showed the highest sensitivity to the weak magnetic field, when the A23 parameter increased from 0.4 to 2.5 in the external magnetic fields. The A23 parameter of crystalline subspectrum increased from 2.7 to 3.8 and the value of internal magnetic field corresponding to amorphous subspectrum increased from 22 to 24 T. The behavior of nanocrystalline alloys under weak external magnetic field was analyzed within the three-level relaxation model of magnetic dynamics in an assembly of single-domain particles.
Claudia Marcelloni
2008-01-01
Signature of the CERN GoldenBook at CERN by Peters Higgs British theoretical physicist - He worked on proposals to unify the weak and the electromagnetic forces into a single electroweak theory, The Boson of Higgs.
Mona Schweizer
2008-01-01
Visit of Peters Higgs at Point 2 ALICE Experiment - British theoretical physicist, He worked on proposals to unify the weak and the electromagnetic forces into a single electroweak theory, The Boson of Higgs.
Occupational medicine and electromagnetic fields; Medecine du travail et champs electromagnetiques
Energy Technology Data Exchange (ETDEWEB)
Seze, R. de [Institut National de l' Environnement Industriel et des Risques, 60 - Verneuil en Halatte (INERIS) (France)
2001-07-01
Numerous industrial areas are concerned by electromagnetic fields exposures. The most intense sources are constituted by high frequencies. The most known are the relay antenna for cellular radio communications (type GSM). The principal sources of electromagnetic fields are given and the levels fields susceptible to be encountered at working posts. The interaction mechanisms of fields are given in function of frequencies, then the biological effects are studied. The results of epidemiological studies are synthesised. The recommendations in France and in Europe are presented as well the standardisation organisms. (N.C.)
Theory of Weak Bipolar Fields and Electron Holes with Applications to Space Plasmas
International Nuclear Information System (INIS)
Goldman, Martin V.; Newman, David L.; Mangeney, Andre
2007-01-01
A theoretical model of weak electron phase-space holes is used to interpret bipolar field structures observed in space. In the limit eφ max /T e max sech 4 (x/α), where φ max depends on the derivative of the trapped distribution at the separatrix, while α depends only on a screening integral over the untrapped distribution. Idealized trapped and passing electron distributions are inferred from the speed, amplitude, and shape of satellite waveform measurements of weak bipolar field structures
Possible health hazards for cardiac pacemaker wearers from exposure to electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
1988-03-01
Cardiac pacemakers are used to provide electrical stimulation to the heart when the heart's natural rhythm is interrupted. This study shows that they can be susceptible to electromagnetic fields. Pacemakers are well protected against common electromagnetic fields, such as those from household appliances. But intense electomagnetic fields, such as those found in some industrial settings, could affect the functioning of the pacemaker. Such interference may cause the pacemaker wearer to feel dizzy or experience an accelerated heartbeat. While this is not fatal, the pacemaker wearer should try to move away from the source of the interfering field and avoid situations in which interference could arise. After experiencing any of these symptoms, the pacemaker wearer should contact a physician. Potential sources of electromagnetic interference should be identified and characterized to determine if there could be an interference hazard. Exposure to interfering electomagnetic fields should be minimized. 7 refs., 1 fig.
International Nuclear Information System (INIS)
2014-01-01
This note states the opinion the French Institute for Health Survey (Institut de Veille Sanitaire, InVS) on the effect of electromagnetic fields (used in mobile phones, television and radio broadcasting, radar and satellite communication, or microwave ovens) on health. While distinguishing extremely low frequency and radio-frequency electromagnetic fields, it proposes an overview of acquired knowledge and commonly acknowledged elements on risks for health. It discusses what is supposed or claimed for these both types of fields in terms of carcinogenic and non carcinogenic effects, and also in the particular case of idiopathic environmental intolerance to electromagnetic fields. A third part presents actions undertaken by the InVS (epidemiological survey and field studies), actions to be pursued or supported
International Nuclear Information System (INIS)
Tanaka, Masahiro; Uda, Tatsuhiko; Takami, Shigeyuki; Wang, Jianqing; Fujiwara, Osamu
2010-01-01
A remote, continuous environmental electromagnetic field monitoring system for use in magnetic confinement fusion test facilities is developed. Using this system, both the static magnetic field and the high frequency electromagnetic field could be measured. The required frequency range of the measurement system is from 25 to 100 MHz for the ICRF (Ion Cyclotron Range of Frequencies) heating system. The outputs from the measurement instruments are measured simultaneously by custom-built software using a laptop-type personal computer connected to a local area network. In this way, the electromagnetic field strength could be monitored from a control room located about 200 m from the fusion device building. Examples of measurement data from the vicinity of a high-frequency generator and amplifier and the leakage static magnetic field from a fusion test device are presented. (author)
Scalar and electromagnetic fields in the Kazner metric. Interaction as a mechanism of isotronization
International Nuclear Information System (INIS)
Krechet, V.G.; Shikin, G.N.
1981-01-01
Within the framework of the Willer-de Vitt superspatial quantization the quantum anisotropic cosmological model with interacting, scalar and electromagnetic fields is considered. It is shown that as a result of direct interaction of the scalar and electromagnetic fields isotropization of the model occurs as in the classical case. While comparing the classical and quantum approaches the conclusion is made that in the quantum approach there are states without initial singularity, that fails in the classical approach; both in the quantum and classical approaches there is isotropization of evolution of the interacting field system (in the quantum approach in α, and β), and in both approaches this process is a consequence of direct interaction of the scalar and electromagnetic fields; in the quantum approach, unlike the classical one, there exists isotropization of the considered model at an infinite growth of the scalar field [ru
International Nuclear Information System (INIS)
Milic, B.S.; Gajic, D.Z.
1994-01-01
Quasi-perpendicular electromagnetic ion-cyclotron (QPEMIC) modes and instabilities are studied, on the ground of linear theory of perturbations and kinetic equations with BGK collision integrals, in weakly ionized, low-β and moderately non-isothermal plasmas placed in non-parallel electric and magnetic fields. The magnetization is assumed to be sufficiently high to cut off the perpendicular steady-state current. Special attention is given to evaluation of magnitudes of the threshold drifts required for the onset of instabilities. It is found that these drifts are smaller than those for the corresponding quasi-perpendicular electrostatic ion-cyclotron (QPESIC) instabilities studied previously for the same type of plasmas. Both QPEMIC and QPESIC threshold drifts exhibit the same behavioural pattern if the order of harmonic, magnetization, non-isothermality or the angle between the fields are varied. An increase of the angle between the fields lowers the threshold drifts, which means that the presence of u perpendicular to (or E perpendicular to ) facilitates the excitation of both QPEMIC and QPESIC instabilities. The QPEMIC threshold drifts are found to depend on the overall gas pressure, and to decrease as the pressure is lowered, which is a feature not found in the QPESIC case. The discrepancies between the QPEMIC and QPESIC threshold drifts increase if the pressure decreases, or if magnetization, degree of ionization or ion charge number increase. (orig.)
Effect of three common sources of electromagnetic fields on health
Energy Technology Data Exchange (ETDEWEB)
Mortazavi, S M.J.; Ahmadi, J; Behnejad, B [Rafsanjan Univ. of Medical Sciences, Rafsanjan (Iran, Islamic Republic of)
2006-07-01
Background And Aims: The number of people complaining about different symptoms that may be associated with exposure to electromagnetic fields (E.M.F.) has increased rapidly during the past years. Students use both mobile phones and video display terminals frequently. The purpose of this study was to investigate the association of mobile phone use and E.M.F. health hazards. Methods: Basic demographic data and self-reported symptoms were sought using a questionnaire administered to all apparently healthy students at Rafsanjan University of Medical Sciences (R.U.M.S.) and Vali-e-Asr University (V.A.U.). Questions ab out some major confounding factors such as age, gender, amount of video display terminal work were also included. All symptoms were self reported and there was no medical examination. Exact Fisher Test was used for data analysis. Results: 518 complete responses were collected. The responders comprised 317 Vali-e-Asr students (61.2%) and 201 R.U.M.S. students (38.8%). The gender distribution was male 175 33.8%), and female 343 (66.2 %). Thirty percent of the students had been using mobile phones (26% in female students and 38.2% in males, P<0.01). There was a significant difference between the frequency of mobile phone users in medical/par a medical (41.3%) and non-medical (23%) students (P<0. 001). Thirty six percent of the students had been using cord-less phones (no statistically significant gender difference). 56.3% used cathode ray tubes (C.R.T.) as computer monitors (47.1% in female students and 74.3% in males, P<0.001). Regarding self-reported symptoms, headache (52%), fatigue (35%), difficulties in concentration (31.7%), vertigo/dizziness (30%), attention disorders (28.8%), nervousness (28.1%), palpitation (14.7%), low back pain (14.3%), myalgia (12.3%), and tinnitus (10%) were the main self-reported symptoms. There were significantly more women with headache, dizziness, myalgia, and nervousness than men (in each case P<0.001). No significant
Effect of three common sources of electromagnetic fields on health
International Nuclear Information System (INIS)
Mortazavi, S.M.J.; Ahmadi, J.; Behnejad, B.
2006-01-01
Background And Aims: The number of people complaining about different symptoms that may be associated with exposure to electromagnetic fields (E.M.F.) has increased rapidly during the past years. Students use both mobile phones and video display terminals frequently. The purpose of this study was to investigate the association of mobile phone use and E.M.F. health hazards. Methods: Basic demographic data and self-reported symptoms were sought using a questionnaire administered to all apparently healthy students at Rafsanjan University of Medical Sciences (R.U.M.S.) and Vali-e-Asr University (V.A.U.). Questions ab out some major confounding factors such as age, gender, amount of video display terminal work were also included. All symptoms were self reported and there was no medical examination. Exact Fisher Test was used for data analysis. Results: 518 complete responses were collected. The responders comprised 317 Vali-e-Asr students (61.2%) and 201 R.U.M.S. students (38.8%). The gender distribution was male 175 33.8%), and female 343 (66.2 %). Thirty percent of the students had been using mobile phones (26% in female students and 38.2% in males, P<0.01). There was a significant difference between the frequency of mobile phone users in medical/par a medical (41.3%) and non-medical (23%) students (P<0. 001). Thirty six percent of the students had been using cord-less phones (no statistically significant gender difference). 56.3% used cathode ray tubes (C.R.T.) as computer monitors (47.1% in female students and 74.3% in males, P<0.001). Regarding self-reported symptoms, headache (52%), fatigue (35%), difficulties in concentration (31.7%), vertigo/dizziness (30%), attention disorders (28.8%), nervousness (28.1%), palpitation (14.7%), low back pain (14.3%), myalgia (12.3%), and tinnitus (10%) were the main self-reported symptoms. There were significantly more women with headache, dizziness, myalgia, and nervousness than men (in each case P<0.001). No significant
Energy Technology Data Exchange (ETDEWEB)
Suzuki, M.
1988-04-01
Dynamical mechanism of composite W and Z is studied in a 1/N field theory model with four-fermion interactions in which global weak SU(2) symmetry is broken explicitly by electromagnetic interaction. Issues involved in such a model are discussed in detail. Deviation from gauge coupling due to compositeness and higher order loop corrections are examined to show that this class of models are consistent not only theoretically but also experimentally.
International Nuclear Information System (INIS)
Mercouris, Theodoros; Nicolaides, Cleanthes A
2005-01-01
Multiphoton detachment rates for the H - 1 S ground state irradiated by a weak trichromatic ac field consisting of the fundamental frequency ω 0.272 eV and its second, third or fourth higher harmonics were computed from first principles. The weak intensities are in the range of 10 7 -10 8 W cm -2 . The calculations incorporated systematically electronic structure and electron correlation effects. They were done by implementing a time-independent, nonperturbative many-electron, many-photon theory (MEMPT) which obtains cycle-averaged complex eigenvalues, whose real part gives the field-induced energy shift, Δ, and the imaginary part is the multiphoton ionization rate, Γ. Through analysis, plausible arguments and computation, we show that when the intensities are weak the dependence of Γ on phase differences is simple. Specifically, Γs are depicted in the form of plane surfaces, with minor ripples due to higher order ionization paths, in terms of trigonometric functions of the phase differences. This dependence is likely to be applicable to other atomic systems as well, and to provide a definition of the weak field regime in the trichromatic case. When the field intensities are such that higher order ionization paths become important, these dependences break down and we reach the strong field regime
International Nuclear Information System (INIS)
Rajput, B.S.
1977-01-01
Using the reduced expansions of second quantized electromagnetic vector potential operator in terms of irreducible representations of Pioncare group in the interaction Hamiltonian, the exact matrix elements of interaction of electromagnetic field with a hydrogenic atom have been derived and the contributions of transitions for different combinations of angular momentum quantum numbers to the transition probabilities of various lines in Lyman-, Balmer-, and Paschen-series have been computed. (author)
Analysis of the fields emitted by mobile communication systems in terms of electromagnetic security
International Nuclear Information System (INIS)
Kerimov, E.A.; Abdullayeva, T.M.; Bayramova, Sh.A.; Mardakhayev, A.V.; Khidirov, A.Sh.
2009-01-01
The main technical characteristics of digital communication systems of cellular bond are analyzed in this paper.The peculiarities of the electromagnetic fields near the antenna of digital communication systems of cellular bond with frequency, time and code interleaving of subscriber channels.It is shown that it is necessary to pay attention to relative broadbandness of digital signal spectrum on antenna radiation characteristics at carrying out of works on electromagnetic monitoring
International Nuclear Information System (INIS)
Hong, Liu; He, X.T.; Chen, S.G.; Zhang, W.Y.; He, X.T.; Hong, Liu
2004-01-01
We propose a new particle acceleration mechanism. Electrons can be accelerated to relativistic energy within a few electromagnetic wave cycles through the mechanism which is named electromagnetic and magnetic field resonance acceleration (EMRA). We find that the electron acceleration depends not only on the electromagnetic wave intensity, but also on the ratio between electron Larmor frequency and electromagnetic wave frequency. As the ratio approaches to unity, a clear resonance peak is observed, corresponding to the EMRA. Near the resonance regime, the strong magnetic fields still affect the electron acceleration dramatically. We derive an approximate analytical solution of the relativistic electron energy in adiabatic limit, which provides a full understanding of this phenomenon. In typical parameters of pulsar magnetospheres, the mechanism allows particles to increase their energies through the resonance of high magnetic field and high frequency electromagnetic wave in each electromagnetic wave period. The energy spectra of the accelerated particles exhibit the synchrotron radiation behavior. These can help to understand the remaining emission of high energy electron from radio pulsar within supernova remnant. The other potential application of our theory in fast ignition scheme of inertial confinement fusion is also discussed. (authors)
Pineal melatonin level disruption in humans due to electromagnetic fields and ICNIRP limits
International Nuclear Information System (INIS)
Halgamuge, Malka N.
2013-01-01
The International Agency for Research on Cancer (IARC) classifies electromagnetic fields (EMFs) as 'possibly carcinogenic' to humans that might transform normal cells into cancer cells. Owing to high utilisation of electricity in day-to-day life, exposure to power-frequency (50 or 60 Hz) EMFs is unavoidable. Melatonin is a natural hormone produced by pineal gland activity in the brain that regulates the body's sleep-wake cycle. How man-made EMFs may influence the pineal gland is still unsolved. The pineal gland is likely to sense EMFs as light but, as a consequence, may decrease the melatonin production. In this study, more than one hundred experimental data of human and animal studies of changes in melatonin levels due to power-frequency electric and magnetic fields exposure were analysed. Then, the results of this study were compared with the International Committee of Non-Ionizing Radiation Protection (ICNIRP) limit and also with the existing experimental results in the literature for the biological effect of magnetic fields, in order to quantify the effects. The results show that this comparison does not seem to be consistent despite the fact that it offers an advantage of drawing attention to the importance of the exposure limits to weak EMFs. In addition to those inconsistent results, the following were also observed from this work: (i) the ICNIRP recommendations are meant for the well-known acute effects, because effects of the exposure duration cannot be considered and (ii) the significance of not replicating the existing experimental studies is another limitation in the power-frequency EMFs. Regardless of these issues, the above observation agrees with our earlier study in which it was confirmed that it is not a reliable method to characterise biological effects by observing only the ratio of AC magnetic field strength to frequency. This is because exposure duration does not include the ICNIRP limit. Furthermore, the results show the significance of
Broadband Control of Topological Nodes in Electromagnetic Fields
Song, Alex Y.; Catrysse, Peter B.; Fan, Shanhui
2018-05-01
We study topological nodes (phase singularities) in electromagnetic wave interactions with structures. We show that, when the nodes exist, it is possible to bind certain nodes to a specific plane in the structure by a combination of mirror and time-reversal symmetry. Such binding does not rely on any resonances in the structure. As a result, the nodes persist on the plane over a wide wavelength range. As an implication of such broadband binding, we demonstrate that the topological nodes can be used for hiding of metallic objects over a broad wavelength range.
Theory of charged vector mesons interacting with the electromagnetic field
International Nuclear Information System (INIS)
Lee, T.D.; Yang, C.N.
1983-01-01
It is shown that starting from the usual canonical formalism for the electromagnetic interaction of a charged vector meson with arbitrary magnetic moment one is led to a set of rules for Feynman diagrams, which appears to contain terms that are both infinite and noncovariant. These difficulties, however, can be circumvented by introducing a xi-limiting process which depends on a dimensionless positive parameter xi → 0. Furthermore, by using the mathematical artifice of a negative metric the theory becomes renormalizable (for xi > 0)
Induced polarization and electromagnetic field surveys of sedimentary uranium deposits
International Nuclear Information System (INIS)
Campbell, D.L.; Smith, B.D.
1985-01-01
Induced polarization (IP) and electromagnetic (EM) geophysical surveys were made over three areas of sedimentary uranium deposits in the western United States. The EM techniques were sometimes useful for investigating general structural settings, but not for finding uranium deposits per se. IP techniques were useful to help pinpoint zones of disseminated pyrite associated with the uranium deposits. In one case no clear differences were seen between the IP signatures of oxidized and reduced ground. Spectral (multi-frequency) IP showed no particular advantages over conventional IP for exploration applications. A sediment mineralization factor is introduced comparable to the ''metal factor'' used to detect porphyry copper mineralization. (author)
Electromagnetic holographic sensitivity field of two-phase flow in horizontal wells
Zhang, Kuo; Wu, Xi-Ling; Yan, Jing-Fu; Cai, Jia-Tie
2017-03-01
Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.
Coherent Control of Photofragment Distributions Using Laser Phase Modulation in the Weak-Field Limit
DEFF Research Database (Denmark)
Garcia-Vela, Alberto; Henriksen, Niels Engholm
2015-01-01
The possibility of quantum interference control of the final state distributions of photodissociation fragments by means of pure phase modulation of the pump laser pulse in the weak-field regime is demonstrated theoretically for the first time. The specific application involves realistic wave pac...
International Nuclear Information System (INIS)
Shapiro, B.Y.
1992-01-01
The behavior of a superconductor in time-independent electric field perpendicular to the surface and in the external electromagnetic wave is theoretically investigated. A new type of the resonance interaction between superconducting domains localized along the magnetic field (if the superconducting phase transition takes place in the external magnetic field perpendicular to the surface) and electromagnetic waves is predicted. The surface impedance of the superconductor with domains is calculated. It is shown that the real part of the impedance has a saturation if the skin length equals the domain size. (orig.)
Design and numerical simulation of the electromagnetic field of linear anode layer ion source
International Nuclear Information System (INIS)
Wang Lisheng; Tang Deli; Cheng Changming
2006-01-01
The principle of anode layer ion source for etching, pre-cleaning and ion beam assisted deposition was described. The influence of the magnetic field on the performance of anode layer ion source was analyzed. Design of the magnetic loop for the linear anode layer ion source was given. The electromagnetic field distribution of the ion source was simulated by means of ANSYS code and the simulation results were in agreement with experimental ones. The numerical simulation results of the electromagnetic field are useful for improving the anode layer ion source. (authors)
The nonextensive parameter for nonequilibrium electron gas in an electromagnetic field
International Nuclear Information System (INIS)
Yu, Haining; Du, Jiulin
2014-01-01
The nonextensive parameter for nonequilibrium electron gas of the plasma in an electromagnetic field is studied. We exactly obtained an expression of the q-parameter based on Boltzmann kinetic theories for plasmas, where Coulombian interactions and Lorentz forces play dominant roles. We show that the q-parameter different from unity is related by an equation to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the gas. The effect of the magnetic field on the q-parameter depends on the overall bulk velocity. Thus the q-parameter for the electron gas in an electromagnetic field represents the nonequilibrium nature or nonisothermal configurations of the plasma with electromagnetic interactions. - Highlights: • An expression of the q-parameter is obtained for nonequilibrium plasma with electromagnetic interactions. • The q-parameter is related to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the plasma. • The q-parameter represents the nonequilibrium nature of the complex plasma with electromagnetic interactions
The nonextensive parameter for nonequilibrium electron gas in an electromagnetic field
Energy Technology Data Exchange (ETDEWEB)
Yu, Haining; Du, Jiulin, E-mail: jldu@tju.edu.cn
2014-11-15
The nonextensive parameter for nonequilibrium electron gas of the plasma in an electromagnetic field is studied. We exactly obtained an expression of the q-parameter based on Boltzmann kinetic theories for plasmas, where Coulombian interactions and Lorentz forces play dominant roles. We show that the q-parameter different from unity is related by an equation to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the gas. The effect of the magnetic field on the q-parameter depends on the overall bulk velocity. Thus the q-parameter for the electron gas in an electromagnetic field represents the nonequilibrium nature or nonisothermal configurations of the plasma with electromagnetic interactions. - Highlights: • An expression of the q-parameter is obtained for nonequilibrium plasma with electromagnetic interactions. • The q-parameter is related to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the plasma. • The q-parameter represents the nonequilibrium nature of the complex plasma with electromagnetic interactions.
Helical magnetic axis configuration combined with l = 1 and weak l = -1 torsatron fields
International Nuclear Information System (INIS)
Kikuchi, Hitoshi; Saito, Katsunori; Gesso, Hirokazu; Shiina, Shoichi
1989-01-01
The superposition of a relatively weak l = -1 torsatron field on a main l = 1 torsatron field leads to the improvement of the confinement properties due to the formation of a local magnetic well, which results from the local curvature of the helical magnetic axis with a larger excursion in the major radius direction. This l±1 helical magnetic axis system has a comparatively simple, compact coil structure. Here the vacuum configuration properties of l = ±1 system are described. (author)
Radio-frequency surface resistance of tunmgsten in weak magnetic fields
International Nuclear Information System (INIS)
Bojko, V.V.; Toniya, V.A.
1988-01-01
The surface impedance of single crystal tungsten specimens under anomalous skin effect in a magnetic field H is investigated experimentally. It is found that in magnetic fields ranging from 0 to 1 kOe the surface resistance R of tungsten varies in a nonmonotonous manner and experiences several extrema. The position of the latter with respect to magnetic field strength depends on the conduction electron mean free path l, on the roughness of the specimen surface and frequency of the irradiating electromagnetic wave. It is found that such behavior of R(H) is due to variation of the nature of the conduction electron scattering at the metal-external medium interface with increasing H. The geometrical dimensions of the surface roughnesses are determined at which diffuse scattering of the current occurs. The results are compared with the theoretical calculations, and a number of contradictions between the theory and experiments are noted. The effect of the magnetic field of the electromagnetic wave H ∼ on the conductivity of tungsten in the absence of H is studied
Directory of Open Access Journals (Sweden)
Xu Li
2015-06-01
Full Text Available A Ni-based superalloy CMSX-6 was directionally solidified at various drawing speeds (5–20 μm·s−1 and diameters (4 mm, 12 mm under a 0.5 T weak transverse magnetic field. The results show that the application of a weak transverse magnetic field significantly modified the solidification microstructure. It was found that if the drawing speed was lower than 10 μm·s−1, the magnetic field caused extensive macro-segregation in the mushy zone, and a change in the mushy zone length. The magnetic field significantly decreases the size of γ’ and the content of γ-γ’ eutectic. The formation of macro-segregation under a weak magnetic field was attributed to the interdendritic solute transport driven by the thermoelectric magnetic convection (TEMC. The γ’ phase refinement could be attributed to a decrease in nucleation activation energy owing to the magnetic field during solid phase transformation. The change of element segregation is responsible for the content decrease of γ-γ’ eutectic.
International Nuclear Information System (INIS)
Leeuwen-Segarceanu, Elena M. van; Dorresteijn, Lucille D.A.; Pillen, Sigrid; Biesma, Douwe H.; Vogels, Oscar J.M.; Alfen, Nens van
2012-01-01
Purpose: To describe the damage to the muscles and propose a pathophysiologic mechanism for muscle atrophy and weakness after mantle field radiotherapy in Hodgkin lymphoma (HL) survivors. Methods and Materials: We examined 12 patients treated by mantle field radiotherapy between 1969 and 1998. Besides evaluation of their symptoms, the following tests were performed: dynamometry; ultrasound of the sternocleidomastoid, biceps, and antebrachial flexor muscles; and needle electromyography of the neck, deltoid, and ultrasonographically affected arm muscles. Results: Ten patients (83%) experienced neck complaints, mostly pain and muscle weakness. On clinical examination, neck flexors were more often affected than neck extensors. On ultrasound, the sternocleidomastoid was severely atrophic in 8 patients, but abnormal echo intensity was seen in only 3 patients. Electromyography of the neck muscles showed mostly myogenic changes, whereas the deltoid, biceps, and antebrachial flexor muscles seemed to have mostly neurogenic damage. Conclusions: Many patients previously treated by mantle field radiotherapy develop severe atrophy and weakness of the neck muscles. Neck muscles within the radiation field show mostly myogenic damage, and muscles outside the mantle field show mostly neurogenic damage. The discrepancy between echo intensity and atrophy suggests that muscle damage is most likely caused by an extrinsic factor such as progressive microvascular fibrosis. This is also presumed to cause damage to nerves within the radiated field, resulting in neurogenic damage of the deltoid and arm muscles.
Effects of electromagnetic field of 33 and 275 kV influences on ...
African Journals Online (AJOL)
The effects of electromagnetic fields (EMF) from 33 and 275 kV high voltage transmission line on biochemical and antioxidant system changes in mustard leaf (Brassica chinensis) were investigated under field condition. Mustard leaves were exposed to EMF from power lines at distances of 0, 3, 6, 9, 10, 12, 15, 18, 20, 21, ...
Dosimetry of Exposure to Electromagnetic Fields in Daily Life and Medical Applications
J.F. Bakker (Jurriaan)
2012-01-01
textabstractElectromagnetic fields (EMF) are present everywhere in our environment but are usually invisible to the human eye. EMF for example generated by mobile phones and 50Hz power lines, can cause electric fields, currents and tissue heating in the human body. In the past, exposure limits were
Method to map individual electromagnetic field components inside a photonic crystal
Denis, T.; Reijnders, B.; Lee, J.H.H.; van der Slot, Petrus J.M.; Vos, Willem L.; Boller, Klaus J.
2012-01-01
We present a method to map the absolute electromagnetic field strength inside photonic crystals. We apply the method to map the dominant electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to select Bloch standing
Higgs boson decay into two photons in an electromagnetic background field
DEFF Research Database (Denmark)
Nielsen, N. K.
2014-01-01
The amplitude for Higgs boson decay into two photons in a homogeneous and time-independent magnetic field is investigated by proper-time regularization in a gauge-invariant manner and is found to be singular at large field values. The singularity is caused by the component of the charged vector...... boson field that is tachyonic in a strong magnetic field. Also, tools for the computation of the amplitude in a more general electromagnetic background are developed....
International Nuclear Information System (INIS)
Rybakov, Yu.P.; Chakrabarti, S.
1981-01-01
Stability by the form of scalar charged solitons with account of electromagnetic field is studied by the Lyapunov method. Conditions of stability for the Sing model are investigated. The model is shown to admit the existence of pointless spherically-symmetric solitons in the absence of the electromagnetic field. Perturbation theory by a non-dimensional parameter is applied for evaluating the effect of electromagnetic field on the stability of pointless solitons [ru
Existence of weak solutions to first-order stationary mean-field games with Dirichlet conditions
Ferreira, Rita; Gomes, Diogo A.; Tada, Teruo
2018-01-01
In this paper, we study first-order stationary monotone mean-field games (MFGs) with Dirichlet boundary conditions. While for Hamilton--Jacobi equations Dirichlet conditions may not be satisfied, here, we establish the existence of solutions of MFGs that satisfy those conditions. To construct these solutions, we introduce a monotone regularized problem. Applying Schaefer's fixed-point theorem and using the monotonicity of the MFG, we verify that there exists a unique weak solution to the regularized problem. Finally, we take the limit of the solutions of the regularized problem and using Minty's method, we show the existence of weak solutions to the original MFG.
Existence of weak solutions to first-order stationary mean-field games with Dirichlet conditions
Ferreira, Rita
2018-04-19
In this paper, we study first-order stationary monotone mean-field games (MFGs) with Dirichlet boundary conditions. While for Hamilton--Jacobi equations Dirichlet conditions may not be satisfied, here, we establish the existence of solutions of MFGs that satisfy those conditions. To construct these solutions, we introduce a monotone regularized problem. Applying Schaefer\\'s fixed-point theorem and using the monotonicity of the MFG, we verify that there exists a unique weak solution to the regularized problem. Finally, we take the limit of the solutions of the regularized problem and using Minty\\'s method, we show the existence of weak solutions to the original MFG.
Solutions for the motion of an electron in electromagnetic fields
International Nuclear Information System (INIS)
Bagrov, V.G.; Gitman, D.M.; Jushin, A.V.
1975-01-01
New exact solutions of the Lorentz, Hamilton--Jacobi, Klein--Gordon, and Dirac equations for an electron moving in the field of a plane wave and in electric and magnetic fields were found. The electric and magnetic fields are parallel to the direction of propagation of the plane wave. The magnetic field is constant and the electric field is an arbitrary function of the combination ct-z
International Nuclear Information System (INIS)
Shizuhiko, Deji; Kunihide, Nishizawa
2002-01-01
High frequency electromagnetic fields emitted from digital cellular telephones (cell phones) occasionally cause abnormally high values (wrong dosages) on electronic pocket dosimeters (EPD). Electric field strength distribution around the cell phone transmitting 1.5GHz band with a maximum power of 0.8 W was analyzed by using an isotropic probe with tri-axial dipole antennas. Five kinds of EPDs were exposed to the fields for 50s under four kinds of configurations relative to the cell phone. The electric field distribution expanded around the antenna and had a maximum strength level of 36.5 ± 0.30 V/m. The cell phone gave rise to a wrong dosage of four EPDs out of five. The electromagnetic susceptibility of the EPD was higher in the section where the semiconductor detector or electric circuit boards were implanted. The maximum value of wrong dosage was 1283μ Sv. The distance preventing electromagnetic interference differed in each EPD and ranged from 2.0cm to 21.0cm. The electromagnetic immunity levels of the EPDs were distributed from 9.2V/m to a value greater than 35V/m. The EPDs displayed wrong dosage during exposure, while they recovered their normal performance after the cell phone ceased transmitting. The electromagnetic immunity levels of the EPDs were either equal to or greater than the IEC-standard. The immunity levels should be enhanced greater than the IEC-standard from the standpoint of radiation protection
Energy Technology Data Exchange (ETDEWEB)
Shizuhiko, Deji; Kunihide, Nishizawa [Nagoya Univ., Nagoya (Japan)
2002-07-01
High frequency electromagnetic fields emitted from digital cellular telephones (cell phones) occasionally cause abnormally high values (wrong dosages) on electronic pocket dosimeters (EPD). Electric field strength distribution around the cell phone transmitting 1.5GHz band with a maximum power of 0.8 W was analyzed by using an isotropic probe with tri-axial dipole antennas. Five kinds of EPDs were exposed to the fields for 50s under four kinds of configurations relative to the cell phone. The electric field distribution expanded around the antenna and had a maximum strength level of 36.5 {+-} 0.30 V/m. The cell phone gave rise to a wrong dosage of four EPDs out of five. The electromagnetic susceptibility of the EPD was higher in the section where the semiconductor detector or electric circuit boards were implanted. The maximum value of wrong dosage was 1283{mu} Sv. The distance preventing electromagnetic interference differed in each EPD and ranged from 2.0cm to 21.0cm. The electromagnetic immunity levels of the EPDs were distributed from 9.2V/m to a value greater than 35V/m. The EPDs displayed wrong dosage during exposure, while they recovered their normal performance after the cell phone ceased transmitting. The electromagnetic immunity levels of the EPDs were either equal to or greater than the IEC-standard. The immunity levels should be enhanced greater than the IEC-standard from the standpoint of radiation protection.
Evaluation Of Electromagnetic Fields For Frequencies 900 MHz-1 800 MHz In Tirana
Directory of Open Access Journals (Sweden)
Kuqi Dhurata
2015-07-01
Full Text Available Abstract The massive use of mobile phone as a communication tool nowadays is accompanied the ever increasing interest of the public and researchers for the possibly impact on human health as a result of exposure to the electromagnetic fields that accompany these devices. Therefore knowing the level of exposure electromagnetic fields of this electronic equipment has been and will be in the future interest object to the public and the subject of study for the researchers. In this paper are presents the results of measurements of electromagnetic fields for the frequencies 900 MHz - 1800 MHz used in mobile telephone in Tirana. These frequencies are included in the area radio frequency RF and Microwave MW 300 Hz - 300 GHz in the spectrum of electromagnetic waves and belong to non-ionizing radiation. The measurements were performed in different areas of Tirana. The purpose is to assess the level of exposure electromagnetic fields especially near areas where mobile antennas are mounted construction of dynamic digital mapping and comparison with the permitted levels of the exposure defined by the International Commission of Non Ionizing Radiation Protection ICNIRP. Through this publication the aim of the authors is to provide real information and reliable for the population.
Numerical simulation of electro-magnetic and flow fields of TiAl melt under electric field
Directory of Open Access Journals (Sweden)
Zhang Yong
2010-08-01
Full Text Available This article aims at building an electromagnetic and fluid model, based on the Maxwell equations and Navier-Stokes equations, in TiAl melt under two electric fields. FEM (Finite Element Method and APDL (ANSYS Parametric Design Language were employed to perform the simulation, model setup, loading and problem solving. The melt in molds of same cross section area with different flakiness ratio (i.e. width/depth under the load of sinusoidal current or pulse current was analyzed to obtain the distribution of electromagnetic field and flow field. The results show that the induced magnetic field occupies sufficiently the domain of the melt in the mold with a flakiness ratio of 5:1. The melt is driven bipolarly from the center in each electric field. It is also found that the pulse electric field actuates the TiAl melt to flow stronger than what the sinusoidal electric field does.
Research and Evaluation of the Energy Flux Density of the Mobile Phone Electromagnetic Field
Directory of Open Access Journals (Sweden)
Pranas Baltrėnas
2012-12-01
Full Text Available The article analyses variations in the energy flux density of the electromagnetic field of 10 mobile phones depending on distance. The studies have been conducted using three modes: sending a text message, receiving a text message and connecting a mobile phone to the Internet. When text messages are received or sent from a mobile phone, the values of the energy flux density of the mobile phone electromagnetic field exceed the safe allowable limit and make 10 μW / cm². A distance of 10, 20 and 30 cm from a mobile phone is effective protection against the energy flux density of the electromagnetic field when writing texts, receiving messages or connecting to the mobile Internet.Article in Lithuanian
DEFF Research Database (Denmark)
Morberg, Bo Mohr; Malling, Anne Sofie; Jensen, Bente Rona
2018-01-01
BACKGROUND: Pulsed electromagnetic fields induce a protective and anti-inflammatory effect in the nervous system primarily due to growth factor up regulation that possibly abates neurodegeneration in Parkinson's disease. This study investigated treatment effects of transcranial pulsed......:3 to either active (n=49) or placebo treatment (n=48). Treatment with transcranial pulsed electromagnetic fields entailed one daily 30-minute home treatment for eight consecutive weeks. The 39-item Parkinson's Disease Questionnaire was assessed at baseline and at endpoint. Profiling adverse events a special...... PDQ-39 dimensions no between group differences were found. There were no between group difference in adverse events. Treatment compliance was 97.9%. CONCLUSION: Treatment with transcranial pulsed electromagnetic fields improved mobility and ADL scores for clinical effect size only in the active group...
Evaluation of the electromagnetic field level emitted by medium frequency AM broadcast stations
International Nuclear Information System (INIS)
Licitra, G.; Bambini, S.; Barellini, A.; Monorchio, A.; Rogovich, A.
2004-01-01
In order to estimate the level of the electromagnetic field produced by telecommunication systems, different computational techniques can be employed whose complexity depends on the accuracy of the final results. In this paper, we present the validation of a code based on the method of moments that allows us to analyse the electromagnetic field emitted by radio-communication systems operating at medium frequencies. The method is able to provide an accurate estimate of the levels of electromagnetic field produced by this type of device and, consequently, it can be used as a method for verifying the compliance of the system with the safe exposure level regulations and population protection laws. Some numerical and experimental results are shown relevant to an amplitude modulated (AM) radio transmitter, together with the results of a forthcoming system that will be operative in the near future. (authors)
Particle Production in Strong Electromagnetic Fields in Relativistic Heavy-Ion Collisions
Directory of Open Access Journals (Sweden)
Kirill Tuchin
2013-01-01
Full Text Available I review the origin and properties of electromagnetic fields produced in heavy-ion collisions. The field strength immediately after a collision is proportional to the collision energy and reaches ~mπ2 at RHIC and ~10mπ2 at LHC. I demonstrate by explicit analytical calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and lasts for as long as quark-gluon plasma lives as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks spherical symmetry in the direction perpendicular to the reaction plane, and therefore all kinetic coefficients are anisotropic. I examine viscosity of QGP and show that magnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidate J/ψ dissociation via Lorentz ionization mechanism, and examine electromagnetic radiation by plasma. I conclude that all processes in QGP are affected by strong electromagnetic field and call for experimental investigation.
Novikov, V V; Sheĭman, I M; Iablokova, E V; Fesenko, E E
2014-01-01
It is shown that an exposure of pupae of the mealworm beetle Tenebrio molitor to the combined static (42 μT) and very weak alternating (250 nT) magnetic fields exerts different influence, depending on the frequency of the alternating magnetic field, on duration of metamorphosis processes in these insects. For instance, an exposure of pupae to weak combined magnetic fields, adjusted to the frequency of ion cyclotron resonance for glutaminic acid (4,4 Hz), stimulates metamorphosis process--a transitional stage from pupae to imago lasts shorter. An inhibiting effect was observed when adjusted to the frequency of ion cyclotron resonance for Ca2 (32,2 Hz). At some frequencies this effect is not seen. For instance, an exposure at a frequency of ion cyclotron resonance for K+ (16,5 Hz) exerts no noticeable effect on the duration of the pupal metamorphosis stage.
To a physical interpretation of a weak gravitational field in GRT
International Nuclear Information System (INIS)
Pavlov, N.V.
1981-01-01
The problem of separation of Newton components of weak vacuum gravitational fields is discussed. Chronometric- invariant (CI) characteristics of space-time and the corresponding Newton values are compared in the fixed systems of reference. Attention is paid to the following facts. ''Weak'' sources of weak gravitational fields do not interact gravitationally. If the CI characteristics of vacuum space- time permit series expansion in 1/c powers then the coefficients at odd 1/c powers are connected with the presence of non-gravitational material fields inside the sources. Masses producing gravitational field may not be the sources of gravitational waves in the form of which this field manifests itself. Perspectives of detecting laboratory gravitational waves are discussed: the simplest metrics of plane wave is considered in the quasi-inertial reference system; the flowsheet of the generator of this wave is suggested; relativistic oscillation of a test massive particle is calculated in the postnewtonian approximation. The numerical evaluations show that attempts of mechanical detection of laboratory gravitational waves are hopeless [ru
Eason, Kwaku
There is strong interest in the use of small low-cost highly sensitive magnetic field sensors for applications (e.g. biomedical devices) requiring weak field measurements. Among weak-field sensors, the magneto-impedance (MI) sensor has demonstrated an absolute resolution of 10-11 T. The MI effect is a sensitive realignment of a periodic magnetization in response to an external field in small ferromagnets. However, design of MI sensors has relied primarily on trial and error experimental methods along with decoupled models describing the MI effect. To offer a basis for more cost-effective designs, this thesis research begins with a general formulation describing MI sensors, which relaxes assumptions commonly made for decoupling. The coupled set of nonlinear equations is solved numerically using an efficient meshless method in a point collocation formulation. For the problem considered, the chosen method is shown to offer advantages over alternative methods including the finite element method. Projection methods are used to stabilize the time discretization while quasi-Newton methods (nonlinear solver) are shown to be more computationally efficient, as well. Specifically, solutions for two MI sensor element geometries are presented, which were validated against published experimental data. While the examples illustrated here are for MI sensors, the approach presented can also be extended to other weak-field sensors like fluxgate and Hall effect sensors.
Localization from near-source quasi-static electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Mosher, John Compton [Univ. of Southern California, Los Angeles, CA (United States)
1993-09-01
A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.
[Patient exposure to electromagnetic fields in magnetic resonance scanners: a review].
Guibelalde del Castillo, E
2013-12-01
The use of non-ionizing electromagnetic fields in the low frequency end of the electromagnetic spectrum and static fields, radiofrequencies (RF), and microwaves is fundamental both in modern communication systems and in diagnostic medical imaging techniques like magnetic resonance imaging (MRI). The proliferation of these applications in recent decades has led to intense activity in developing regulations to guarantee their safety and to the establishment of guidelines and legal recommendations for the public, workers, and patients. In April 2012 it was foreseen that the European Parliament and Council would approve and publish a directive on the minimum health and safety requirements regarding the exposure of workers to the risks arising from electromagnetic fields, which would modify Directive 2004/40/EC. New studies related to the exposure to electromagnetic radiation and its impact on health published in recent years have led to a new postponement, and it is now foreseen that the directive will come into effect in October 2013. One of the most noteworthy aspects of the new version of the directive is the exclusion of the limits of occupational exposure to electromagnetic fields in the clinical use of MRI. In exchange for this exception, physicians and experts in protection against non-ionizing radiation are asked to make additional efforts to train workers exposed to non-ionizing radiation and to establish mechanisms to guarantee the correct application of non-ionizing electromagnetic fields in patients, along similar lines to the principles of justification and optimization established for ionizing radiation. On the basis of the most recently published studies, this article reviews some safety-related aspects to take into account when examining patients with MRI with high magnetic fields. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.
Weak cosmic censorship, dyonic Kerr–Newman black holes and Dirac fields
International Nuclear Information System (INIS)
Tóth, Gábor Zsolt
2016-01-01
It was investigated recently, with the aim of testing the weak cosmic censorship conjecture, whether an extremal Kerr black hole can be converted into a naked singularity by interaction with a massless classical Dirac test field, and it was found that this is possible. We generalize this result to electrically and magnetically charged rotating extremal black holes (i.e. extremal dyonic Kerr–Newman black holes) and massive Dirac test fields, allowing magnetically or electrically uncharged or nonrotating black holes and the massless Dirac field as special cases. We show that the possibility of the conversion is a direct consequence of the fact that the Einstein–Hilbert energy-momentum tensor of the classical Dirac field does not satisfy the null energy condition, and is therefore not in contradiction with the weak cosmic censorship conjecture. We give a derivation of the absence of superradiance of the Dirac field without making use of the complete separability of the Dirac equation in the dyonic Kerr–Newman background, and we determine the range of superradiant frequencies of the scalar field. The range of frequencies of the Dirac field that can be used to convert a black hole into a naked singularity partially coincides with the superradiant range of the scalar field. We apply horizon-penetrating coordinates, as our arguments involve calculating quantities at the event horizon. We describe the separation of variables for the Dirac equation in these coordinates, although we mostly avoid using it. (paper)
International Nuclear Information System (INIS)
Kharita, M. H.; Abo Kasem, I.; Kattab, A.
2008-01-01
This work has special importance as it aims at the investigation of the electromagnetic radiation from the Sabborah radio broadcasting station. The report includes general introduction to the physics of the electromagnetic fields and the biological effects of these fields and consequently its health effects. The bases of the recommended exposure limits according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) have been discussed in addition to the theoretical and practical investigations. This report summarizes the results of this study and the final recommendations. (author)
Electromagnetic microwaves in metal films with electron-phonon interaction and a dc magnetic field
DEFF Research Database (Denmark)
Hasselberg, L.E.
1976-01-01
A quantum-mechanical treatment of electromagnetic microwaves is performed for a metal film. The directions of the exterior ac and dc fields are taken to be arbitrary and boundary conditions for the electrons are assumed to be specular. The relation between the current and the electromagnetic field...... in the transmission spectrum can perhaps be obtained by assuming a finite Debye temperature and specular reflections of the electrons at the boundary surfaces. A sharp peak entirely caused by the finite electron-phonon interaction is also discussed....
International Nuclear Information System (INIS)
Barellini, A.; Bogi, L.; Licitra, G.; Silvi, A. M.; Zari, A.
2009-01-01
Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar. (authors)
Extinction of photoemission of Mn-Doped ZnS nanofluid in weak magnetic field
Vu, Anh-Tuan; Bui, Hong-Van; Pham, Van-Ben; Le, Van-Hong; Hoang, Nam-Nhat
2016-08-01
The observation of extinction of photoluminescence of Mn-doped ZnS nanofluid under applying of weak magnetic field is reported. At a constant field of 270 Gauss and above, the exponential decays of photoluminescent intensity was observed in disregard of field direction. About 50% extinction was achieved after 30 minute magnetization and a total extinction after 1 hour. The memory effect preserved for more than 2 hours at room temperature. This extinction was observed in a system with no clear ferromagnetic behavior.