Tate form and weak coupling limits in F-theory
Esole, Mboyo; Savelli, Raffaele
2013-06-01
We consider the weak coupling limit of F-theory in the presence of non-Abelian gauge groups implemented using the traditional ansatz coming from Tate's algorithm. We classify the types of singularities that could appear in the weak coupling limit and explain their resolution. In particular, the weak coupling limit of SU( n) gauge groups leads to an orientifold theory which suffers from conifold singulaties that do not admit a crepant resolution compatible with the orientifold involution. We present a simple resolution to this problem by introducing a new weak coupling regime that admits singularities compatible with both a crepant resolution and an orientifold symmetry. We also comment on possible applications of the new limit to model building. We finally discuss other unexpected phenomena as for example the existence of several non-equivalent directions to flow from strong to weak coupling leading to different gauge groups.
Tate Form and Weak Coupling Limits in F-theory
Esole, Mboyo
2012-01-01
We consider the weak coupling limit of F-theory in the presence of non-Abelian gauge groups implemented using the traditional ansatz coming from Tate's algorithm. We classify the types of singularities that could appear in the weak coupling limit and explain their resolution. In particular, the weak coupling limit of SU(n) gauge groups leads to an orientifold theory which suffers from conifold singulaties that do not admit a crepant resolution compatible with the orientifold involution. We present a simple resolution to this problem by introducing a new weak coupling regime that admits singularities compatible with both a crepant resolution and an orientifold symmetry. We also comment on possible applications of the new limit to model building. We finally discuss other unexpected phenomena as for example the existence of several non-equivalent directions to flow from strong to weak coupling leading to different gauge groups.
Limit on right hand weak coupling parameters from inelastic neutrino interactions
Abramowicz, H; De Groot, J G H; Dydak, F; Eisele, F; Flottmann, T; Geweniger, C; Guyot, C; He, J T; Klasen, H P; Kleinknecht, K; Knobloch, J; Królikowski, J; May, J; Merlo, J P; Palazzi, P; Para, A; Peyaud, B; Pszola, B; Rander, J; Ranjard, F; Renk, B; Rothberg, J E; Ruan, T Z; Schlatter, W D; Schuller, J P; Steinberger, J; Taureg, H; Tittel, K; Turlay, René; von Rüden, Wolfgang; Wahl, H; Willutzki, H J; Wotschack, J; Wu, W M
1982-01-01
Right handed weak quark current coupled to the usual left handed weak lepton current would be seen in inclusive antineutrino scattering on nuclei as a contribution at large y with the quark (not antiquark) structure function. The authors do not see such a term, and can therefore put an upper limit on the relative strengths of such right handed currents: rho /sup 2/= sigma /sub R// sigma /sub L/ <0.009, 90% confidence. This measurement puts limits on the mixing angle of left- right symmetric models. In distinction to similar limits derived from muon decay or beta decay, our limits are also valid if the right handed neutrino is heavy.
Longitudinal singular response of dusty plasma medium in weak and strong coupling limits
Energy Technology Data Exchange (ETDEWEB)
Kumar Tiwari, Sanat; Das, Amita; Kaw, Predhiman; Sen, Abhijit [Institute for Plasma Research, Bhat, Gandhinagar - 382428 (India)
2012-01-15
The longitudinal response of a dusty plasma medium in both weak and strong coupling limits has been investigated in detail using analytic as well as numerical techniques. In particular, studies on singular response of the medium have been specifically investigated here. A proper Galilean invariant form of the generalized hydrodynamic fluid model has been adopted for the description of the dusty plasma medium. For weak non-linear response, analytic reductive perturbative approach has been adopted. It is well known that in the weak coupling regime for the dusty plasma medium, such an analysis leads to the Korteweg-de Vries equation (KdV) equation and predicts the existence of localized smooth soliton solutions. We show that the strongly coupled dust fluid with the correct Galilean invariant form does not follow the KdV paradigm. Instead, it reduces to the form of Hunter-Saxton equation, which does not permit soliton solutions. The system in this case displays singular response with both conservative as well as dissipative attributes. At arbitrary high amplitudes, the existence and spontaneous formation of sharply peaked cusp structures in both weak and strong coupling regimes has been demonstrated numerically.
Rigorous derivation of the Landau equation in the weak coupling limit
Kirkpatrick, Kay
2009-01-01
We examine a family of microscopic models of plasmas, with a parameter $\\alpha$ comparing the typical distance between collisions to the strength of the grazing collisions. These microscopic models converge in distribution, in the weak coupling limit, to a velocity diffusion described by the linear Landau equation (also known as the Fokker-Planck equation). The present work extends and unifies previous results that handled the extremes of the parameter $\\alpha$, for the whole range (0, 1/2], by showing that clusters of overlapping obstacles are negligible in the limit. Additionally, we study the diffusion coefficient of the Landau equation and show it to be independent of the parameter.
Nonthermal Fixed Points in Quantum Field Theory Beyond the Weak-Coupling Limit
Berges, Jürgen
2016-01-01
Quantum systems in extreme conditions can exhibit universal behavior far from equilibrium associated to nonthermal fixed points, with a wide range of topical applications from early-universe inflaton dynamics and heavy-ion collisions to strong quenches in ultracold quantum gases. So far, most studies rely on a mapping of the quantum dynamics onto a classical-statistical theory that can be simulated on a computer. However, the mapping is based on a weak-coupling limit while phenomenological applications often require moderate values of couplings. We report on the observation of nonthermal fixed points directly in quantum field theory beyond the weak-coupling limit. For the example of a relativistic scalar \\mathrm{O}(N) symmetric quantum field theory, we numerically solve the nonequilibrium dynamics employing a 1/N expansion to next-to-leading order, which does not rely on a small coupling parameter. Starting from two different sets of (a) over-occupied and (b) strong-field initial conditions, we find that nont...
Amplitude equations for coupled electrostatic waves in the limit of weak instability
Crawford, J D; Crawford, John David; Knobloch, Edgar
1997-01-01
We consider the simplest instabilities involving multiple unstable electrostatic plasma waves corresponding to four-dimensional systems of mode amplitude equations. In each case the coupled amplitude equations are derived up to third order terms. The nonlinear coefficients are singular in the limit in which the linear growth rates vanish together. These singularities are analyzed using techniques developed in previous studies of a single unstable wave. In addition to the singularities familiar from the one mode problem, there are new singularities in coefficients coupling the modes. The new singularities are most severe when the two waves have the same linear phase velocity and satisfy the spatial resonance condition $k_2=2k_1$. As a result the short wave mode saturates at a dramatically smaller amplitude than that predicted for the weak growth rate regime on the basis of single mode theory. In contrast the long wave mode retains the single mode scaling. If these resonance conditions are not satisfied both mo...
Four point function of R-currents in N=4 SYM in the Regge limit at weak coupling
Energy Technology Data Exchange (ETDEWEB)
Bartels, J.; Mischler, A.M.; Salvadore, M. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2008-04-15
We compute, in N = 4 super Yang-Mills, the four point correlation function of R-currents in the Regge limit in the leading logarithmic approximation at weak coupling. Such a correlator is the closest analog to photon-photon scattering within QCD, and there is a well defined procedure to perform the analogous computation at strong coupling via AdS/CFT. The main result of this paper is, on the gauge theory side, the proof of Regge factorization and the explicit computation of the R-current impact factors. (orig.)
N=1 Super-Yang-Mills on the Lattice Weak and Strong Coupling Limits
Gabrielli, E
1999-01-01
We present a general review about the N=1 supersymmetric SU(Nc) Yang-Mills on the lattice focusing our attention on the quenched approximation in supersymmetry. Finally we analyse and discuss the recent results obtained at strong coupling and large Nc for the mesonic and fermionic propagators and spectrum.
Buchanan, Evan G.; Walsh, Patrick S.; Plusquellic, David F.; Zwier, Timothy S.
2013-05-01
Vibrationally and rotationally resolved electronic spectra of 1,2-diphenoxyethane (C6H5-O-CH2-CH2-O-C6H5, DPOE) are reported for the isolated molecule under jet-cooled conditions. The spectra demonstrate that the two excited surfaces are within a few cm-1 of one another over significant regions of the torsional potential energy surfaces that modulate the position and orientation of the two aromatic rings with respect to one another. Two-color resonant two-photon ionization (2C-R2PI) and laser-induced fluorescence excitation spectra were recorded in the near-ultraviolet in the region of the close-lying S0-S1 and S0-S2 states (36 400-36 750 cm-1). In previous work, double resonance spectroscopy in the ultraviolet and alkyl CH stretch regions of the infrared was used to identify and assign transitions to two conformational isomers differing primarily in the central C-C dihedral angle, a tgt conformation with C2 symmetry and a ttt conformation with C2h symmetry [E. G. Buchanan, E. L. Sibert, and T. S. Zwier, J. Phys. Chem. A 117, 2800 (2013)], 10.1021/jp400691a. Comparison of 2C-R2PI spectra recorded in the m/z 214 (all 12C) and m/z 215 (one 13C) mass channels demonstrate the close proximity of the S1 and S2 excited states for both conformations, with an upper bound of 4 cm-1 between them. High resolution spectra of the origin band of the tgt conformer reveal it to consist of two transitions at 36 422.91 and 36 423.93 cm-1, with transition dipole moments perpendicular to one another. These are assigned to the S0-S1 and S0-S2 origin transitions with excited states of A and B symmetry, respectively, and an excitonic splitting of only 1.02 cm-1. The excited state rotational constants and transition dipole coupling model directions prove that the electronic excitation is delocalized over the two rings. The ttt conformer has only one dipole-allowed electronic transition (Ag→Bu) giving rise to a pure b-type band at 36 508.77 cm-1. Here, the asymmetry induced by a single 13
Milton, Kimball A; Wagner, Jef
2008-01-01
In earlier papers we have applied multiple scattering techniques to calculate Casimir forces due to scalar fields between different bodies described by delta function potentials. When the coupling to the potentials became weak, closed-form results were obtained. We simplify this weak-coupling technique and apply it to the case of tenuous dielectric bodies, in which case the method involves the summation of van der Waals (Casimir-Polder) interactions. Once again exact results for finite bodies can be obtained. We present closed formulas describing the interaction between spheres and between cylinders, and between an infinite plate and a retangular slab of finite size. For such a slab, we consider the torque acting on it, and find non-trivial equilibrium points can occur.
Casimir torque in weak coupling
Milton, Kimball A; Long, William
2013-01-01
In this paper, dedicated to Johan H{\\o}ye on the occasion of his 70th birthday, we examine manifestations of Casimir torque in the weak-coupling approximation, which allows exact calculations so that comparison with the universally applicable, but generally uncontrolled, proximity force approximation may be made. In particular, we examine Casimir energies between planar objects characterized by $\\delta$-function potentials, and consider the torque that arises when angles between the objects are changed. The results agree very well with the proximity force approximation when the separation distance between the objects is small compared with their sizes. In the opposite limit, where the size of one object is comparable to the separation distance, the shape dependence starts becoming irrelevant. These calculations are illustrative of what to expect for the torques between, for example, conducting planar objects, which eventually should be amenable to both improved theoretical calculation and experimental verific...
Ouraou, Ahmimed; The ATLAS collaboration
2016-01-01
Latest results on the measurement of gauge boson couplings, from ATLAS and CMS at the LHC, are presented. This review starts with an introduction to boson couplings, then the measurements of Triple and Quartic Couplings are described. And finally, limits on anomalous couplings are summarized.
Thingna, Juzar; Zhou, Hangbo; Wang, Jian-Sheng
2014-11-21
We present a general theory to calculate the steady-state heat and electronic currents for nonlinear systems using a perturbative expansion in the system-bath coupling. We explicitly demonstrate that using the truncated Dyson-series leads to divergences in the steady-state limit, thus making it impossible to be used for actual applications. In order to resolve the divergences, we propose a unique choice of initial condition for the reduced density matrix, which removes the divergences at each order. Our approach not only allows us to use the truncated Dyson-series, with a reasonable choice of initial condition, but also gives the expected result that the steady-state solutions should be independent of initial preparations. Using our improved Dyson series we evaluate the heat and electronic currents up to fourth-order in system-bath coupling, a considerable improvement over the standard quantum master equation techniques. We then numerically corroborate our theory for archetypal settings of linear systems using the exact nonequilibrium Green's function approach. Finally, to demonstrate the advantage of our approach, we deal with the nonlinear spin-boson model to evaluate heat current up to fourth-order and find signatures of cotunnelling process.
Energy Technology Data Exchange (ETDEWEB)
Thingna, Juzar [Institute of Physics, University of Augsburg, Universitätsstrasse 1 D-86135 Augsburg (Germany); Nanosystems Initiative Munich, Schellingrstrasse 4, D-80799 München (Germany); Zhou, Hangbo [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117551 (Singapore); NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore); Wang, Jian-Sheng, E-mail: phywjs@nus.edu.sg [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117551 (Singapore)
2014-11-21
We present a general theory to calculate the steady-state heat and electronic currents for nonlinear systems using a perturbative expansion in the system-bath coupling. We explicitly demonstrate that using the truncated Dyson-series leads to divergences in the steady-state limit, thus making it impossible to be used for actual applications. In order to resolve the divergences, we propose a unique choice of initial condition for the reduced density matrix, which removes the divergences at each order. Our approach not only allows us to use the truncated Dyson-series, with a reasonable choice of initial condition, but also gives the expected result that the steady-state solutions should be independent of initial preparations. Using our improved Dyson series we evaluate the heat and electronic currents up to fourth-order in system-bath coupling, a considerable improvement over the standard quantum master equation techniques. We then numerically corroborate our theory for archetypal settings of linear systems using the exact nonequilibrium Green's function approach. Finally, to demonstrate the advantage of our approach, we deal with the nonlinear spin-boson model to evaluate heat current up to fourth-order and find signatures of cotunnelling process.
Weak KAM theory for a weakly coupled system of Hamilton–Jacobi equations
Figalli, Alessio
2016-06-23
Here, we extend the weak KAM and Aubry–Mather theories to optimal switching problems. We consider three issues: the analysis of the calculus of variations problem, the study of a generalized weak KAM theorem for solutions of weakly coupled systems of Hamilton–Jacobi equations, and the long-time behavior of time-dependent systems. We prove the existence and regularity of action minimizers, obtain necessary conditions for minimality, extend Fathi’s weak KAM theorem, and describe the asymptotic limit of the generalized Lax–Oleinik semigroup. © 2016, Springer-Verlag Berlin Heidelberg.
Many-body chaos at weak coupling
Stanford, Douglas
2016-10-01
The strength of chaos in large N quantum systems can be quantified using λ L , the rate of growth of certain out-of-time-order four point functions. We calculate λ L to leading order in a weakly coupled matrix Φ4 theory by numerically diagonalizing a ladder kernel. The computation reduces to an essentially classical problem.
Lifetime Effects in Color Superconductivity at Weak Coupling
Manuel, C
2000-01-01
Present computations of the gap of color superconductivity in weak coupling assume that the quarks which participate in the condensation process are infinitely long-lived. However, the quasiparticles in a plasma are characterized by having a finite lifetime. In this article we take into account this fact to evaluate its effect in the computation of the color gap. By first considering the Schwinger-Dyson equations in weak coupling, when one-loop self-energy corrections are included, a general gap equation is written in terms of the spectral densities of the quasiparticles. To evaluate lifetime effects, we then model the spectral density by a Lorentzian function. We argue that the decay of the quasiparticles limits their efficiency to condense. The value of the gap at the Fermi surface is then reduced. To leading order, these lifetime effects can be taken into account by replacing the coupling constant of the gap equation by a reduced effective one.
Entanglement in Weakly Coupled Lattice Gauge Theories
Radicevic, Djordje
2015-01-01
We present a direct lattice gauge theory computation that, without using dualities, demonstrates that the entanglement entropy of Yang-Mills theories with arbitrary gauge group $G$ contains a generic logarithmic term at sufficiently weak coupling $e$. In two spatial dimensions, for a region of linear size $r$, this term equals $\\frac{1}{2} \\dim(G) \\log\\left(e^2 r\\right)$ and it dominates the universal part of the entanglement entropy. Such logarithmic terms arise from the entanglement of the softest mode in the entangling region with the environment. For Maxwell theory in two spatial dimensions, our results agree with those obtained by dualizing to a compact scalar with spontaneous symmetry breaking.
From strong to weak coupling in holographic models of thermalization
Energy Technology Data Exchange (ETDEWEB)
Grozdanov, Sašo; Kaplis, Nikolaos [Instituut-Lorentz for Theoretical Physics, Leiden University,Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Starinets, Andrei O. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)
2016-07-29
We investigate the analytic structure of thermal energy-momentum tensor correlators at large but finite coupling in quantum field theories with gravity duals. We compute corrections to the quasinormal spectra of black branes due to the presence of higher derivative R{sup 2} and R{sup 4} terms in the action, focusing on the dual to N=4 SYM theory and Gauss-Bonnet gravity. We observe the appearance of new poles in the complex frequency plane at finite coupling. The new poles interfere with hydrodynamic poles of the correlators leading to the breakdown of hydrodynamic description at a coupling-dependent critical value of the wave-vector. The dependence of the critical wave vector on the coupling implies that the range of validity of the hydrodynamic description increases monotonically with the coupling. The behavior of the quasinormal spectrum at large but finite coupling may be contrasted with the known properties of the hierarchy of relaxation times determined by the spectrum of a linearized kinetic operator at weak coupling. We find that the ratio of a transport coefficient such as viscosity to the relaxation time determined by the fundamental non-hydrodynamic quasinormal frequency changes rapidly in the vicinity of infinite coupling but flattens out for weaker coupling, suggesting an extrapolation from strong coupling to the kinetic theory result. We note that the behavior of the quasinormal spectrum is qualitatively different depending on whether the ratio of shear viscosity to entropy density is greater or less than the universal, infinite coupling value of ℏ/4πk{sub B}. In the former case, the density of poles increases, indicating a formation of branch cuts in the weak coupling limit, and the spectral function shows the appearance of narrow peaks. We also discuss the relation of the viscosity-entropy ratio to conjectured bounds on relaxation time in quantum systems.
Autoresonance versus localization in weakly coupled oscillators
Kovaleva, Agnessa; Manevitch, Leonid I.
2016-04-01
We study formation of autoresonance (AR) in a two-degree of freedom oscillator array including a nonlinear (Duffing) oscillator (the actuator) weakly coupled to a linear attachment. Two classes of systems are studied. In the first class of systems, a periodic force with constant (resonance) frequency is applied to a nonlinear oscillator (actuator) with slowly time-decreasing stiffness. In the systems of the second class a nonlinear time-invariant oscillator is subjected to an excitation with slowly increasing frequency. In both cases, the attached linear oscillator and linear coupling are time-invariant, and the system is initially engaged in resonance. This paper demonstrates that in the systems of the first type AR in the nonlinear actuator entails oscillations with growing amplitudes in the linear attachment while in the system of the second type energy transfer from the nonlinear actuator is insufficient to excite high-energy oscillations of the attachment. It is also shown that a slow change of stiffness may enhance the response of the actuator and make it sufficient to support oscillations with growing energy in the attachment even beyond the linear resonance. Explicit asymptotic approximations of the solutions are obtained. Close proximity of the derived approximations to exact (numerical) results is demonstrated.
Perspective: Coulomb fluids—Weak coupling, strong coupling, in between and beyond
Naji, Ali; Kanduč, Matej; Forsman, Jan; Podgornik, Rudolf
2013-10-01
We present a personal view on the current state of statistical mechanics of Coulomb fluids with special emphasis on the interactions between macromolecular surfaces, concentrating on the weak and the strong coupling limits. Both are introduced for a (primitive) counterion-only system in the presence of macroscopic, uniformly charged boundaries, where they can be derived systematically. Later we show how this formalism can be generalized to the cases with additional characteristic length scales that introduce new coupling parameters into the problem. These cases most notably include asymmetric ionic mixtures with mono- and multivalent ions that couple differently to charged surfaces, ions with internal charge (multipolar) structure and finite static polarizability, where weak and strong coupling limits can be constructed by analogy with the counterion-only case and lead to important new insights into their properties that cannot be derived by any other means.
Buividovich, P V
2015-01-01
We discuss the feasibility of applying Diagrammatic Monte-Carlo algorithms to the weak-coupling expansions of asymptotically free quantum field theories, taking the large-$N$ limit of the $O(N)$ sigma-model as the simplest example where exact results are available. We use stereographic mapping from the sphere to the real plane to set up the perturbation theory, which results in a small bare mass term proportional to the coupling $\\lambda$. Counting the powers of coupling associated with higher-order interaction vertices, we arrive at the double-series representation for the dynamically generated mass gap in powers of both $\\lambda$ and $\\log(\\lambda)$, which converges quite quickly to the exact non-perturbative answer. We also demonstrate that it is feasible to obtain the coefficients of these double series by a Monte-Carlo sampling in the space of Feynman diagrams. In particular, the sign problem of such sampling becomes milder at small $\\lambda$, that is, close to the continuum limit.
Information flow between weakly interacting lattices of coupled maps
Energy Technology Data Exchange (ETDEWEB)
Dobyns, York [PEAR, Princeton University, Princeton, NJ 08544-5263 (United States); Atmanspacher, Harald [Institut fuer Grenzgebiete der Psychologie und Psychohygiene, Wilhelmstr. 3a, 79098 Freiburg (Germany)]. E-mail: haa@igpp.de
2006-05-15
Weakly interacting lattices of coupled maps can be modeled as ordinary coupled map lattices separated from each other by boundary regions with small coupling parameters. We demonstrate that such weakly interacting lattices can nevertheless have unexpected and striking effects on each other. Under specific conditions, particular stability properties of the lattices are significantly influenced by their weak mutual interaction. This observation is tantamount to an efficacious information flow across the boundary.
The Weak Parity-Violating Pion-Nucleon Coupling (Revised)
Henley, E M; Kisslinger, L S
2009-01-01
We use QCD sum rules to obtain the weak parity-violating pion-nucleon coupling constant $f_{\\pi NN}$. We find that $f_{\\pi NN}\\approx 2\\times 10^{-8}$, about an order of magnitude smaller than the ``best estimates'' based on quark models. This result follows from the cancellation between perturbative and nonperturbative QCD processes not found in quark models, but explicit in the QCD sum rule method. Our result is consistent with the experimental upper limit found from $^{18}$F parity-violating measurements.
Bunched soliton states in weakly coupled sine-Gordon systems
DEFF Research Database (Denmark)
Grønbech-Jensen, N.; Samuelsen, Mogens Rugholm; Lomdahl, P. S.
1990-01-01
The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results.......The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results....
Weak Coupling Electron-Phonon for High Tc Superconductors
Labbe, J.
1989-01-01
Our opinion is that, in the high Tc copper oxides, the electronic correlations are not large enough to allow the localization of the electrons of the half-filled d-p sub-band. Thus, we treat them as itinerant electrons, in a bidimensional structure. And we show that, contrary to a widely held opinion, the electron-phonon interaction can induce high Tc superconductivity in these compounds, even in the weak coupling limit. This is due to the fact that, because of the bidimensionality, the electronic density of states is sharply peaked in the neighbourhood of the Fermi energy. A small coupling between nearest neighbouring CuO2 planes is sufficient to prevent a very large reduction of Tc by the critical fluctuations. The calculated isotope effect is much smaller than usually in the BCS theory. And, in our weak coupling theory, the antiferromagnetic (AF) phase is much more rapidly destabilized by dopping or internal charge transfer than the superconducting phase, which takes place when the AF phase has vanished.
Weak Coupling, Degeneration and Log Calabi-Yau Spaces
Donagi, R; Wijnholt, M
2012-01-01
We establish a new weak coupling limit in F-theory. The new limit may be thought of as the process in which a local model bubbles off from the rest of the Calabi-Yau. The construction comes with a small deformation parameter $t$ such that computations in the local model become exact as $t \\to 0$. More generally, we advocate a modular approach where compact Calabi-Yau geometries are obtained by gluing together local pieces (log Calabi-Yau spaces) into a normal crossing variety and smoothing, in analogy with a similar cutting and gluing approach to topological field theories. We further argue for a holographic relation between F-theory on a degenerate Calabi-Yau and a dual theory on its boundary, which fits nicely with the gluing construction.
Three-point function of semiclassical states at weak coupling
Kostov, Ivan
2012-01-01
We give the derivation of the previously announced analytic expression for the correlation function of three heavy non-BPS operators in N=4 super-Yang-Mills theory at weak coupling. The three operators belong to three different su(2) sectors and are dual to three classical strings moving on the sphere. Our computation is based on the reformulation of the problem in terms of the Bethe Ansatz for periodic XXX spin-1/2 chains. In these terms the three operators are described by long-wave-length excitations over the ferromagnetic vacuum, for which the number of the overturned spins is a finite fraction of the length of the chain, and the classical limit is known as the Sutherland limit. Technically our main result is a factorized operator expression for the scalar product of two Bethe states. The derivation is based on a fermionic representation of Slavnov's determinant formula, and a subsequent bosonisation.
Bunched soliton states in weakly coupled sine-Gordon systems
Energy Technology Data Exchange (ETDEWEB)
Gronbech-Jensen, N.; Samuelsen, M.R. (Physics Laboratory I, The Technical University of Denmark, DK-2800 Lyngby (Denmark)); Lomdahl, P.S. (Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (USA)); Blackburn, J.A. (Department of Physics and Computing, Wilfrid Laurier University, Waterloo, Ontario (Canada))
1990-09-01
The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results.
Phenomena in Coupled Superconducting Weak Links.
Neumann, Lawrence George
Interactions between two independently biasable coupled superconducting microbridges were studied. Some bridges were fabricated within 2 (mu)m of each other. Quasiparticles from one bridge affect the other. In a second type of sample, the microbridges were separated by 10 (mu)m and coupled via a resistive shunt. The interaction results from the current flowing through the shunt. Similar effects are seen in both types of samples. In opposed biased bridges, the effective critical current is decreased because of the interaction. For series biased bridges, the effective critical current of one bridge is decreased or increased, depending on the voltage across the other bridge. These interactions lead to voltage steps in the I-V curves where, for opposed biased bridges, both voltages increase; for series bias, one voltage increases, the other decreases. Experimental results are in reasonable agreement with a second-order perturbation calculation and with an analog simulation. Voltage locking is found for both biasing configurations in both types of samples. Locking can occur simultaneously with a voltage step, resulting in nascent voltage locking which can also occur in conjunction with hysteresis. The effect of a voltage in the pad between the two proximity coupled bridges is to vary the voltage at which locking occurs, which in turn alters the shape of the locking curve. Locking range is calculated in two models for comparison with the two types of samples. The first explicitly considers the time delay for propagation of the charge -imbalance wave from one bridge to the other. The second model considers the current flowing in the resistive/inductive coupling shunt. A deviation of the critical current of planar microbridges from a linear temperature dependence can be explained as an effective length effect. Variable thickness bridges show a linear temperature dependence except very near T(,c), where fluctuations are important. The critical current of the one
Weakly coupled mean-field game systems
Gomes, Diogo A.
2016-07-14
Here, we prove the existence of solutions to first-order mean-field games (MFGs) arising in optimal switching. First, we use the penalization method to construct approximate solutions. Then, we prove uniform estimates for the penalized problem. Finally, by a limiting procedure, we obtain solutions to the MFG problem. © 2016 Elsevier Ltd
Bremsstrahlung function, leading Luscher correction at weak coupling and localization
Bonini, Marisa; Preti, Michelangelo; Seminara, Domenico
2015-01-01
We discuss the near BPS expansion of the generalized cusp anomalous dimension with L units of R-charge. Integrability provides an exact solution, obtained by solving a general TBA equation in the appropriate limit: we propose here an alternative method based on supersymmetric localization.The basic idea is to relate the computation to the vacuum expectation value of certain 1/8 BPS Wilson loops with local operator insertions along the contour. These observables localize on a two-dimensional gauge theory on S^2, opening the possibility of exact calculations. As a test of our proposal, we reproduce the leading Luscher correction at weak coupling to the generalized cusp anomalous dimension. This result is also checked against a genuine Feynman diagram approach in N=4 Super Yang-Mills theory.
RHEOLOGY OF CONFINED POLYMER MELTS UNDER SHEAR-FLOW - WEAK ADSORPTION LIMIT : Weak Adsorption Limit
Subbotin, A.V.; Semenov, A.N.; Hadziioannou, G; ten Brinke, G.
1995-01-01
The dynamics of a confined polymer melt between weakly adsorbing surfaces is considered theoretically. The finite chain extensibility is taken into account explicitly, and the tangential stress and the first and the second normal-stress differences are calculated as functions of shear rate gamma.
Phenomenology and cosmology of weakly coupled string theory
Energy Technology Data Exchange (ETDEWEB)
Gaillard, Mary K.
1998-05-18
The weakly coupled vacuum of E{sub 8} {circle_times} E{sub 8} heterotic string theory remains an attractive scenario for phenomenology and cosmology. The particle spectrum is reviewed and the issues of gauge coupling unification, dilaton stabilization and modular cosmology are discussed. A specific model for condensation and supersymmetry breaking, that respects known constraints from string theory and is phenomenologically viable, is described.
Weinberg, S. H.
2017-09-01
Electrical conduction in cardiac tissue is usually considered to be primarily facilitated by gap junctions, providing a pathway between the intracellular spaces of neighboring cells. However, recent studies have highlighted the role of coupling via extracellular electric fields, also known as ephaptic coupling, particularly in the setting of reduced gap junction expression. Further, in the setting of reduced gap junctional coupling, voltage-dependent gating of gap junctions, an oft-neglected biophysical property in computational studies, produces a positive feedback that promotes conduction failure. We hypothesized that ephaptic coupling can break the positive feedback loop and rescue conduction failure in weakly coupled cardiac tissue. In a computational tissue model incorporating voltage-gated gap junctions and ephaptic coupling, we demonstrate that ephaptic coupling can rescue conduction failure in weakly coupled tissue. Further, ephaptic coupling increased conduction velocity in weakly coupled tissue, and importantly, reduced the minimum gap junctional coupling necessary for conduction, most prominently at fast pacing rates. Finally, we find that, although neglecting gap junction voltage-gating results in negligible differences in well coupled tissue, more significant differences occur in weakly coupled tissue, greatly underestimating the minimal gap junctional coupling that can maintain conduction. Our study suggests that ephaptic coupling plays a conduction-preserving role, particularly at rapid heart rates.
Weak Coupling Casimir Energies for Finite Plate Configurations
Wagner, Jef; Parashar, Prachi
2008-01-01
We derive and use an extremely simplified formula for the interaction Casimir energy for two separate bodies in the weak coupling regime for massless scalar fields. We derive closed form solutions for a general arrangement of two $\\delta$-function plates finite in one direction and infinite in another. We examine the situation of two parallel plates finite in both transverse directions.
Analytical solutions of weakly coupled map lattices using recurrence relations
Energy Technology Data Exchange (ETDEWEB)
Sotelo Herrera, Dolores, E-mail: dsh@dfmf.uned.e [Applied Maths, EUITI, UPM, Ronda de Valencia, 3-28012 Madrid (Spain); San Martin, Jesus [Applied Maths, EUITI, UPM, Ronda de Valencia, 3-28012 Madrid (Spain); Dep. Fisica Matematica y de Fluidos, UNED, Senda del Rey 9-28040 Madrid (Spain)
2009-07-20
By using asymptotic methods recurrence relations are found that rule weakly CML evolution, with both global and diffusive coupling. The solutions obtained from these relations are very general because they do not hold restrictions about boundary conditions, initial conditions and number of oscilators in the CML. Furthermore, oscillators are ruled by an arbitraty C{sup 2} function.
Dark Sectors and New, Light, Weakly-Coupled Particles
Essig, R; Wester, W; Adrian, P Hansson; Andreas, S; Averett, T; Baker, O; Batell, B; Battaglieri, M; Beacham, J; Beranek, T; Bjorken, J D; Bossi, F; Boyce, J R; Cates, G D; Celentano, A; Chou, A S; Cowan, R; Curciarello, F; Davoudiasl, H; deNiverville, P; De Vita, R; Denig, A; Dharmapalan, R; Dongwi, B; Döbrich, B; Echenard, B; Espriu, D; Fegan, S; Fisher, P; Franklin, G B; Gasparian, A; Gershtein, Y; Graham, M; Graham, P W; Haas, A; Hatzikoutelis, A; Holtrop, M; Irastorza, I; Izaguirre, E; Jaeckel, J; Kahn, Y; Kalantarians, N; Kohl, M; Krnjaic, G; Kubarovsky, V; Lee, H-S; Lindner, A; Lobanov, A; Marciano, W J; Marsh, D J E; Maruyama, T; McKeen, D; Merkel, H; Moffeit, K; Monaghan, P; Mueller, G; Nelson, T K; Neil, G R; Oriunno, M; Pavlovic, Z; Phillips, S K; Pivovaroff, M J; Poltis, R; Pospelov, M; Rajendran, S; Redondo, J; Ringwald, A; Ritz, A; Ruz, J; Saenboonruang, K; Schuster, P; Shinn, M; Slatyer, T R; Steffen, J H; Stepanyan, S; Tanner, D B; Thaler, J; Tobar, M E; Toro, N; Upadye, A; Van de Water, R; Vlahovic, B; Vogel, J K; Walker, D; Weltman, A; Wojtsekhowski, B; Zhang, S; Zioutas, K
2013-01-01
Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly compelling possibility for new physics. Nature may contain numerous dark sectors, each with their own beautiful structure, distinct particles, and forces. This review summarizes the physics motivation for dark sectors and the exciting opportunities for experimental exploration. It is the summary of the Intensity Frontier subgroup "New, Light, Weakly-coupled Particles" of the Community Summer Study 2013 (Snowmass). We discuss axions, which solve the strong CP problem and are an excellent dark matter candidate, and their generalization to axion-like particles. We also review dark photons and other dark-sector particles, including sub-GeV dark matter, which are theoretically natural, provide for dark matter candidates or new dark matter interactions, and could resolve outstanding puzzles in particle and astro-particle physics. In many cases, the explorat...
Weak and strong coupling equilibration in nonabelian gauge theories
Keegan, Liam; Romatschke, Paul; van der Schee, Wilke; Zhu, Yan
2016-01-01
We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.
Nonconventional synchronization and energy localization in weakly coupled autogenerators
Kovaleva, Margarita; Pilipchuk, Valery; Manevitch, Leonid
2016-09-01
The present work follows our previous study dealing with a new type of synchronization in a system of two weakly coupled generalized van der Pol-Duffing autogenerators. The essence of the effect revealed is that the synchronized oscillations are not stationary but accompanied by the most intensive energy exchange between the oscillators. The phase shift between the generators remains constant most of the time, except for vanishingly small transitional intervals. The current analysis deals with a generalized model in order to clarify the frequency detuning effect. We found that varying the frequency detuning, nonlinearity, and dissipation parameters can lead to structural changes in phase diagrams of the energy exchange dynamics, with important transitions from the intensive energy exchange to its localization on one of the two oscillators. The main conclusion is that stationary and nonstationary synchronizations associate with nonlinear normal and local modes, respectively. The analysis uses phase plane diagrams, including the concept of limiting phase trajectories, whose role in nonstationary synchronization appears to be similar to the role of nonlinear normal modes in conventional stationary states.
Induced pseudoscalar coupling of the proton weak interaction
Gorringe, T P; Gorringe, Tim; Fearing, Harold W.
2004-01-01
The induced pseudoscalar coupling $g_p$ is the least well known of the weak coupling constants of the proton's charged--current interaction. Its size is dictated by chiral symmetry arguments, and its measurement represents an important test of quantum chromodynamics at low energies. During the past decade a large body of new data relevant to the coupling $g_p$ has been accumulated. This data includes measurements of radiative and non radiative muon capture on targets ranging from hydrogen and few--nucleon systems to complex nuclei. Herein the authors review the theoretical underpinnings of $g_p$, the experimental studies of $g_p$, and the procedures and uncertainties in extracting the coupling from data. Current puzzles are highlighted and future opportunities are discussed.
Scaling, topological tunneling and actions for weak coupling DWF calculations
McGlynn, Greg
2013-01-01
We present results from a 2+1 flavor DWF calculation at 1/a = 3 GeV and discuss strategies for similar calculations at finer lattice spacings which will target charm physics. At weak coupling the autocorrelation time of the global topological charge becomes very long because the HMC algorithm has trouble moving between topological sectors. We report the results of simulations that test two ideas for reducing the autocorrelation time of topological charge. In weak coupling quenched simulations we find that the open boundary conditions suggested by L\\"uscher and Schaefer do not prevent the appearance of extremely long autocorrelation times for topological observables. We discuss the idea of a "dislocation-enhancing determinant" and show that it can produce an increase in topological tunneling.
Variational Study of Weakly Coupled Triply Heavy Baryons
Jia, Y
2006-01-01
Baryons made of three heavy quarks become weakly coupled, when all the quarks are sufficiently heavy such that the typical momentum transfer is much larger than Lambda_QCD. We use variational method to estimate masses of the lowest-lying bcc, ccc, bbb and bbc states by assuming they are Coulomb bound states. Our predictions for these states are systematically lower than those made long ago by Bjorken.
Effective Supergravity from the Weakly Coupled HeteroticString
Energy Technology Data Exchange (ETDEWEB)
Gaillard, Mary K.
2005-05-01
The motivation for Calabi-Yau-like compactifications of the weakly coupled E{sub 8} {circle_times} E{sub 8} heterotic string theory, its particle spectrum and the issue of dilaton stabilization are briefly reviewed. Modular invariant models for hidden sector condensation and supersymmetry breaking are described at the quantum level of the effective field theory. Their phenomenological and cosmological implications, including a possible origin for R-parity, are discussed.
Weak lensing at the limit of the sky background noise
Mellier, Y
1996-01-01
Recent weak lensing observations have pushed the use of 4 meter-class telescopes to the limits of their capabilities with exposure times exceeding several hours. The leading idea is that the surface density of faint galaxies up to very faint magnitude ($B > 28-30$) raises continuously thus potentially offering a dense template of distant sources whose intensity contrast is at the sky noise level. In complement to the Peter Schneider's presentation on dark matter search from weak lensing (this conference), we review some of these recent advances in weak lensing analysis based on this extreme faint population of galaxies in order to explore: the dark matter distribution on large scales, the redshift ditribution of lensed sources at very large distance, and eventually the values of cosmological parameters. For each observational topic we will briefly discuss these new methods as compare to more classical lensing studies as well as the possible VLT scientific impact in the domain.
Travelling waves associated with saddle-node bifurcation in weakly coupled CML
Energy Technology Data Exchange (ETDEWEB)
Sotelo Herrera, Ma Dolores, E-mail: dsh@dfmf.uned.e [Departamento de Matematica Aplicada, E.U.I.T.I., Universidad Politecnica de Madrid, Ronda de Valencia 3, 28012 Madrid (Spain); San Martin, Jesus, E-mail: jsm@dfmf.uned.e [Departamento de Matematica Aplicada, E.U.I.T.I., Universidad Politecnica de Madrid, Ronda de Valencia 3, 28012 Madrid (Spain); Departamento de Fisica Matematica y de Fluidos, U.N.E.D., Senda del Rey 9, 28040 Madrid (Spain)
2010-07-19
Weakly coupled CML can be analytically solved by using perturbative methods. This technique has been recently used to deduce analytical expressions for travelling waves. Nonetheless, the results were limited for periodic solutions far away from saddle-node bifurcation. In this Letter, this problem is solved and periodic solutions, arising from the individual dynamics, are totally characterised.
Dark Sectors and New, Light, Weakly-Coupled Particles
Energy Technology Data Exchange (ETDEWEB)
Essig, Rouven [YITP, Stony Brook; Jaros, John A. [SLAC; Wester, William [Fermilab
1900-01-01
Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly compelling possibility for new physics. Nature may contain numerous dark sectors, each with their own beautiful structure, distinct particles, and forces. This review summarizes the physics motivation for dark sectors and the exciting opportunities for experimental exploration. It is the summary of the Intensity Frontier subgroup \\New, Light, Weakly-coupled Particles" of the Community Summer Study 2013 (Snowmass). We discuss axions, which solve the strong CP problem and are an excellent dark matter candidate, and their generalization to axion-like particles. We also review dark photons and other dark-sector particles, including sub-GeV dark matter, which are theoretically natural, provide for dark matter candidates or new dark matter interactions, and could resolve outstanding puzzles in particle and astro-particle physics. In many cases, the exploration of dark sectors can proceed with existing facilities and comparatively modest experiments. A rich, diverse, and lowcost experimental program has been identied that has the potential for one or more game-changing discoveries. These physics opportunities should be vigorously pursued in the US and elsewhere.
Classical integrability for three-point functions: cognate structure at weak and strong couplings
Energy Technology Data Exchange (ETDEWEB)
Kazama, Yoichi [Research Center for Mathematical Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Quantum Hadron Physics Laboratory, RIKEN Nishina Center, Wako 351-0198 (Japan); Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Nishimura, Takuya [Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)
2016-10-10
In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the N=4 super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical behaviors were not known before. In addition, the new analyticity argument applied to the strong coupling analysis leads to a modification of the integration contour, producing the results consistent with the recent hexagon bootstrap approach. This modification also makes the Frolov-Tseytlin limit perfectly agree with the weak coupling form.
Weak diffusion limits of dynamic conditional correlation models
DEFF Research Database (Denmark)
Hafner, Christian M.; Laurent, Sebastien; Violante, Francesco
The properties of dynamic conditional correlation (DCC) models are still not entirely understood. This paper fills one of the gaps by deriving weak diffusion limits of a modified version of the classical DCC model. The limiting system of stochastic differential equations is characterized by a dif......The properties of dynamic conditional correlation (DCC) models are still not entirely understood. This paper fills one of the gaps by deriving weak diffusion limits of a modified version of the classical DCC model. The limiting system of stochastic differential equations is characterized...... by a diffusion matrix of reduced rank. The degeneracy is due to perfect collinearity between the innovations of the volatility and correlation dynamics. For the special case of constant conditional correlations, a non-degenerate diffusion limit can be obtained. Alternative sets of conditions are considered...... for the rate of convergence of the parameters, obtaining time-varying but deterministic variances and/or correlations. A Monte Carlo experiment confirms that the quasi approximate maximum likelihood (QAML) method to estimate the diffusion parameters is inconsistent for any fixed frequency, but that it may...
Isotropization and hydrodynamization in weakly coupled heavy-ion collisions
Kurkela, Aleksi
2015-01-01
We numerically solve 2+1D effective kinetic theory of weak coupling QCD under longitudinal expansion relevant for early stages of heavy-ion collisions. We find agreement with viscous hydrodynamics and classical Yang-Mills simulations in the regimes where they are applicable. By choosing initial conditions that are motivated by color-glass-condensate framework we find that for Q=2GeV and $\\alpha_s$=0.3 the system is approximately described by viscous hydrodynamics well before $\\tau \\lesssim 1.0$ fm/c.
Weakly coupled oscillators in a slowly varying world.
Park, Youngmin; Ermentrout, Bard
2016-06-01
We extend the theory of weakly coupled oscillators to incorporate slowly varying inputs and parameters. We employ a combination of regular perturbation and an adiabatic approximation to derive equations for the phase-difference between a pair of oscillators. We apply this to the simple Hopf oscillator and then to a biophysical model. The latter represents the behavior of a neuron that is subject to slow modulation of a muscarinic current such as would occur during transient attention through cholinergic activation. Our method extends and simplifies the recent work of Kurebayashi (Physical Review Letters, 111, 214101, 2013) to include coupling. We apply the method to an all-to-all network and show that there is a waxing and waning of synchrony of modulated neurons.
Weak value amplification in a shot-noise limited interferometer
Nishizawa, Atsushi; Fujimoto, Masa-Katsu
2012-01-01
We study the weak-value amplification (WVA) in a phase measurement with an optical interferometer in which shot noise limits the sensitivity. We compute the signal and the shot noise including the full-order interaction terms of the WVA, and show that the shot-noise contribution to a phase shift in a pointer variable is always larger than the final variance of the pointer variable. To clarify an advantage for practical uses of the WVA, we discuss signal-to-noise ratio and its optimization in the presence of the shot noise.
Weakly-Coupled Higgs Bosons and Precision Electroweak Physics
Energy Technology Data Exchange (ETDEWEB)
Rowson, Peter C.
2003-06-02
We examine the prospects for discovering and elucidating the weakly-coupled Higgs sector at future collider experiments. The Higgs search consists of three phases: (i) discovery of a Higgs candidate, (ii) verification of the Higgs interpretation of the signal, and (iii) precision measurements of Higgs sector properties. The discovery of one Higgs boson with Standard Model properties is not sufficient to expose the underlying structure of the electroweak symmetry breaking dynamics. It is critical to search for evidence for a non-minimal Higgs sector and/or new physics associated with electroweak symmetry breaking dynamics. An improvement in precision electroweak data at future colliders can play a useful role in confirming the theoretical interpretation of the Higgs search results.
Kaon-nucleon couplings for weak decays of hypernuclei
Savage, M J
1995-01-01
We investigate the weak kaon-nucleon (NNK) S-wave and P-wave interactions using heavy baryon chiral perturbation theory. The leading 1-loop SU(3) breaking contributions to the ppK, pnK, and nnK couplings are computed. We find that they suppress all NNK amplitudes by 30\\% to 50\\%. The ratio of neutron-induced to proton-induced hypernuclear decay widths is sensitive to such reductions. It has been argued that the discrepancy between the predicted and observed P-wave amplitudes in \\Delta s=1 hyperon decay results from an accidental cancellation between tree-level amplitudes, and is not a fundamental problem for chiral perturbation theory. Agreement between experimentally determined NNK P-wave amplitudes and our estimates would support this explanation.
Anomaly induced transport coefficients, from weak to strong coupling
Pena-Benitez, Francisco
2013-01-01
The existence of new transport phenomena associated to the presence of quantum anomalies has atracted very recently the attention of theorist. These transport coefficient have very interesting properties, for example, they do not renormalize. The most famous case of anomaly induced transport phenomena is the Chiral Magnetic Effect, in which an electric current is produced by a magnetic field if the system has a different number of right handed fermions respect the left handed one. In this thesis we have studied those transport coefficients from Kubo formulas at weak and strong coupling. To finish a fluid/gravity approach is used to compute all the second order anomalous coefficients in an anomalous conformal fluid.
The Weak Field Limit of Higher Order Gravity
Stabile, Arturo
2008-01-01
The Higher Order Theories of Gravity - $f(R, R_{\\alpha\\beta}R^{\\alpha\\beta})$ - theory, where $R$ is the Ricci scalar, $R_{\\alpha\\beta}$ is the Ricci tensor and $f$ is any analytic function - have recently attracted a lot of interest as alternative candidates to explain the observed cosmic acceleration, the flatness of the rotation curves of spiral galaxies and other relevant astrophysical phenomena. It is a crucial point testing these alternative theories in the so called weak field and newtonian limit of a $f(R, R_{\\alpha\\beta}R^{\\alpha\\beta})$ - theory. With this "perturbation technique" it is possible to find spherically symmetric solutions and compare them with the ones of General Relativity. On both approaches we found a modification of General Relativity: the behaviour of gravitational potential presents a modification Yukawa - like in the newtonian case and a massive propagation in the weak field case. When the modification of the theory is removed (i.e. $f(R, R_{\\alpha\\beta}R^{\\alpha\\beta}) = R$, Hil...
Dynamics in Two Periodically Driven and Weakly Coupled Bose-Einstein Condensates
Institute of Scientific and Technical Information of China (English)
陈付广; 黄德斌; 郭荣伟
2005-01-01
In this paper, dynamics in the oscillations of the relative atomic population in two periodically driven and weakly coupled Bose-Einstein eondensates (BECs) was qualitatively studied. Using the well-known Melnikov method, the conditions of existence of the periodic and chaotic coherent atomic tunnellings were given in the model. Our results indicate the typical route from bifurcation of the limited circles to chaos, and are in agreement with the previous numerical results.
Observations of General Relativity at strong and weak limits
Byrd, Gene; Teerikorpi, Pekka; Valtonen, Mauri
2014-01-01
Einstein's General Relativity theory has been tested in many ways during the last hundred years as reviewed in this chapter. Two tests are discussed in detail in this article: the concept of a zero gravity surface, the roots of which go back to J\\"arnefelt, Einstein and Straus, and the no-hair theorem of black holes, first proposed by Israel, Carter and Hawking. The former tests the necessity of the cosmological constant Lambda, the latter the concept of a spinning black hole. The zero gravity surface is manifested most prominently in the motions of dwarf galaxies around the Local Group of galaxies. The no-hair theorem is testable for the first time in the binary black hole system OJ287. These represent stringent tests at the limit of weak and strong gravitational fields, respectively. In this article we discuss the current observational situation and future possibilities.
Thermal DBI action for the D3-brane at weak and strong coupling
Energy Technology Data Exchange (ETDEWEB)
Grignani, Gianluca [Dipartimento di Fisica, Università di Perugia, I.N.F.N. Sezione di Perugia,Via Pascoli, I-06123 Perugia (Italy); Harmark, Troels [The Niels Bohr Institute, Copenhagen University Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Marini, Andrea [Dipartimento di Fisica, Università di Perugia, I.N.F.N. Sezione di Perugia,Via Pascoli, I-06123 Perugia (Italy); Orselli, Marta [Dipartimento di Fisica, Università di Perugia, I.N.F.N. Sezione di Perugia,Via Pascoli, I-06123 Perugia (Italy); The Niels Bohr Institute, Copenhagen University Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi Piazza del Viminale 1, I-00184 Rome (Italy)
2014-03-25
We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading T{sup 4} correction for the thermal DBI action at weak and strong coupling we find that the 3/4 factor well-known from the AdS/CFT correspondence extends to the case of arbitrary electric and magnetic fields on the D3-brane. We investigate the reason for this by taking the decoupling limit in both the open and the closed string descriptions thus showing that the AdS/CFT correspondence extends to the case of arbitrary constant electric and magnetic fields on the D3-brane.
Thermal DBI action for the D3-brane at weak and strong coupling
Grignani, Gianluca; Marini, Andrea; Orselli, Marta
2013-01-01
We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading $T^4$ correction for the thermal DBI action at weak and strong coupling we find that the $3/4$ factor well-known from the AdS/CFT correspondence extends to the case of arbitrary electric and magnetic fields on the D3-brane. We investigate the reason for this by taking the decoupling limit in both the open and the closed string descriptions thus showing that the AdS/CFT correspondence extends to the case of arbitrary constant electric and magnetic fields on the D3-brane.
The weakly coupled Pfaffian as a type I quantum hall liquid
Energy Technology Data Exchange (ETDEWEB)
Parameswaran, S.A., E-mail: spivak@u.washington.edu [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Kivelson, S.A. [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Sondhi, S.L. [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Spivak, B.Z. [Department of Physics, University of Washington, Seattle, WA 98195 (United States)
2012-06-01
The Pfaffian phase of electrons in the proximity of a half-filled Landau level is understood to be a p+ip superconductor of composite fermions. We consider the properties of this paired quantum Hall phase when the pairing scale is small, i.e. in the weak coupling, BCS, limit, where the coherence length is much larger than the charge screening length. We find that, as in a Type I superconductor, vortices attract so that, upon varying the magnetic field from its magic value at {nu}=5/2, the system exhibits Coulomb frustrated phase separation. We propose that the weakly and strongly coupled Pfaffian states exemplify a general dichotomy between Type I and Type II quantum Hall fluids.
Institute of Scientific and Technical Information of China (English)
SONG Guangshi
2003-01-01
Strong and weak limits as well as strong and weak differentials of multi-variable indeterminate forms are discussed based on the thorough exploration of differentiation to solve the strong and weak limits and differentials of unitary indeterminate forms. The fruit of this work is going to be reported in three parts. The first part presents the standard analysis on this subject which supplements, systematizes and advances L. Hospital's principles on differential calculus by applying special ,general, and limit guaranteeing theories together with K(t) and XhKo theories. The combination of theoretical analysis and geometricsignification makes the derivation intuitional, visual and easy to perceive.
Faithful conditional quantum state transfer between weakly coupled qubits
Miková, M.; Straka, I.; Mičuda, M.; Krčmarský, V.; Dušek, M.; Ježek, M.; Fiurášek, J.; Filip, R.
2016-08-01
One of the strengths of quantum information theory is that it can treat quantum states without referring to their particular physical representation. In principle, quantum states can be therefore fully swapped between various quantum systems by their mutual interaction and this quantum state transfer is crucial for many quantum communication and information processing tasks. In practice, however, the achievable interaction time and strength are often limited by decoherence. Here we propose and experimentally demonstrate a procedure for faithful quantum state transfer between two weakly interacting qubits. Our scheme enables a probabilistic yet perfect unidirectional transfer of an arbitrary unknown state of a source qubit onto a target qubit prepared initially in a known state. The transfer is achieved by a combination of a suitable measurement of the source qubit and quantum filtering on the target qubit depending on the outcome of measurement on the source qubit. We experimentally verify feasibility and robustness of the transfer using a linear optical setup with qubits encoded into polarization states of single photons.
Directory of Open Access Journals (Sweden)
Helge Holden
2003-04-01
Full Text Available We prove existence and uniqueness of entropy solutions for the Cauchy problem of weakly coupled systems of nonlinear degenerate parabolic equations. We prove existence of an entropy solution by demonstrating that the Engquist-Osher finite difference scheme is convergent and that any limit function satisfies the entropy condition. The convergence proof is based on deriving a series of a priori estimates and using a general $L^p$ compactness criterion. The uniqueness proof is an adaption of Kruzkov's ``doubling of variables'' proof. We also present a numerical example motivated by biodegradation in porous media.
Global weak solutions for coupled transport processes in concrete walls at high temperatures
Beneš, Michal
2012-01-01
We consider an initial-boundary value problem for a fully nonlinear coupled parabolic system with nonlinear boundary conditions modelling hygro-thermal behavior of concrete at high temperatures. We prove a global existence of a weak solution to this system on an arbitrary time interval. The main result is proved by an approximation procedure. This consists in proving the existence of solutions to mollified problems using the Leray-Schauder theorem, for which a priori estimates are obtained. The limit then provides a weak solution for the original problem. A practical example illustrates a performance of the model for a problem of a concrete segment exposed to transient heating according to three different fire scenarios. Here, the focus is on the short-term pore pressure build up, which can lead to explosive spalling of concrete and catastrophic failures of concrete structures.
Thermal DBI action for the D3-brane at weak and strong coupling
DEFF Research Database (Denmark)
Grignani, Gianluca; Harmark, Troels; Marini, Andrea
2014-01-01
We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading T4 correction for the thermal DBI action at weak and strong coupling we find that the 3/4 ...
Thermal DBI action for the D3-brane at weak and strong coupling
DEFF Research Database (Denmark)
Grignani, Gianluca; Harmark, Troels; Marini, Andrea
2014-01-01
We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading T4 correction for the thermal DBI action at weak and strong coupling we find that the 3/4 ...
Limits on anomalous WWγ and WWZ couplings
Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Babukhadia, L.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Bartlett, J. F.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goldschmidt, A.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kuleshov, S.; Kunori, S.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oliveira, E.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhou, Z.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.
1998-08-01
Limits on the anomalous WWγ and WWZ couplings are presented from a simultaneous fit to the data samples of three gauge boson pair final states in pp¯ collisions at s=1.8 TeV: Wγ production with the W boson decaying to eν or μν, W boson pair production with both of the W bosons decaying to eν or μν, and WW or WZ production with one W boson decaying to eν and the other W boson or the Z boson decaying to two jets. Assuming identical WWγ and WWZ couplings, 95% C.L. limits on the anomalous couplings of -0.30<Δκ<0.43 (λ=0) and -0.20<λ<0.20 (Δκ=0) are obtained using a form factor scale Λ=2.0 TeV. Limits found under other assumptions on the relationship between the WWγ and WWZ couplings are also presented.
The Weak-Coupling of Bose-Einstein Condensates
Institute of Scientific and Technical Information of China (English)
ZHOU Xiao-Ji; MA Zao-Yuan; CHEN Xu-Zong; WANG Yi-Qiu
2003-01-01
The coherent characteristics of four trapped Bose-Einstein condensates (BEC) conjunct one by one in aring shape which is divided by two far off-resonant lasers, are studied. Four coupled Gross-Pitaevskii equations are usedto describe the dynamics of the system. Two kinds of self-trapping effects are discussed in the coupled BECs, and thephase diagrams for different initial conditions and different coupling strengths are discussed. This study can be used todetermine interaction parameters between atoms in BEC.
Continuum Coupling and Pair Correlation in Weakly Bound Deformed Nuclei
Oba, Hiroshi
2009-01-01
We formulate a new Hartree-Fock-Bogoliubov method applicable to weakly bound deformed nuclei using the coordinate-space Green's function technique. An emphasis is put on treatment of quasiparticle states in the continuum, on which we impose the correct boundary condition of the asymptotic out-going wave. We illustrate this method with numerical examples.
Weak Coupling Chambers in N=2 BPS Quiver Theory
Saidi, E H
2012-01-01
Using recent results on BPS quiver theory, we develop a group theoretical method to describe the quiver mutations encoding the quantum mechanical duality relating the spectra of distinct quivers. We illustrate the method by computing the BPS spectrum of the infinite weak chamber of some examples of N=2 supersymmetric gauge models without and with quark hypermultiplets.
Weak coupling chambers in N=2 BPS quiver theory
Saidi, El Hassan
2012-11-01
Using recent results on BPS quiver theory, we develop a group theoretical method to describe the quiver mutations encoding the quantum mechanical duality relating the spectra of distinct quivers. We illustrate the method by computing the BPS spectrum of the infinite weak chamber of some examples of N=2 supersymmetric gauge models without and with quark hypermultiplets.
Light weakly coupled axial forces: models, constraints, and projections
Kahn, Yonatan; Krnjaic, Gordan; Mishra-Sharma, Siddharth; Tait, Tim M. P.
2017-05-01
We investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the effects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a dark photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, briefly commenting on the relevance of the allowed parameter space to low-energy anomalies in π0 and 8Be∗ decay.
Light Weakly Coupled Axial Forces: Models, Constraints, and Projections
Kahn, Yonatan; Mishra-Sharma, Siddharth; Tait, Tim M P
2016-01-01
We investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the effects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a dark photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, briefly commenting on the relevan...
Light Weakly Coupled Axial Forces: Models, Constraints, and Projections
Energy Technology Data Exchange (ETDEWEB)
Kahn, Yonatan [Princeton U.; Krnjaic, Gordan [Fermilab; Mishra-Sharma, Siddharth [Princeton U.; Tait, Tim P. [UC, Irvine
2016-09-28
We investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the effects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a dark photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, briefly commenting on the relevance of the allowed parameter space to low-energy anomalies in pi^0 and 8-Be* decay.
Spin Polarized Photons from Axially Charged Plasma at Weak Coupling: Complete Leading Order
Mamo, Kiminad A
2015-01-01
In the presence of (approximately conserved) axial charge in the QCD plasma at finite temperature, the emitted photons are spin-aligned, which is a unique P- and CP-odd signature of axial charge in the photon emission observables. We compute this "P-odd photon emission rate" in weak coupling regime at high temperature limit to complete leading order in the QCD coupling constant: the leading log as well as the constant under the log. As in the P-even total emission rate in the literature, the computation of P-odd emission rate at leading order consists of three parts: 1) Compton and Pair Annihilation processes with hard momentum exchange, 2) soft t- and u-channel contributions with Hard Thermal Loop re-summation, 3) Landau-Pomeranchuk-Migdal (LPM) re-summation of collinear Bremstrahlung and Pair Annihilation. We present analytical and numerical evaluations of these contributions to our P-odd photon emission rate observable.
Shi, L; Rekola, H T; Martikainen, J -P; Moerland, R J; Törmä, P
2014-01-01
We study spatial coherence properties of a system composed of periodic silver nanoparticle arrays covered with a fluorescent organic molecule (DiD) film. The evolution of spatial coherence of this composite structure from the weak to the strong coupling regime is investigated by systematically varying the coupling strength between the localized DiD excitons and the collective, delocalized modes of the nanoparticle array known as surface lattice resonances. A gradual evolution of coherence from the weak to the strong coupling regime is observed, with the strong coupling features clearly visible in interference fringes. A high degree of spatial coherence is demonstrated in the strong coupling regime, even when the mode is very excitonlike (80%), in contrast to the purely localized nature of molecular excitons. We show that coherence appears in proportion to the weight of the plasmonic component of the mode throughout the weak-to-strong coupling crossover, providing evidence for the hybrid nature of the normal m...
Limits On Weak Annihilation In Inclusive Charmless Semileptonic B Decays
Meyer, T O
2005-01-01
Theoretical predictions for the weak decay b → u ℓ ν are subject to the contributions of higher-order terms that must be neglected in making practical phenomenological calculations. One such term that arises at order (Λ/MB) 3 in the non-perturbative expansion describes “weak annihilation” (WA). While the contribution of this term to the total rate is expected to be small, it is predicted to have a non-trivial distribution across phase space, concentrated near the maximal value of q2. The significance of WA relative to the leading-order rate in this restricted region is thus greatly enhanced, and values for the CKM element | Vub| extracted from inclusive measurements of b → u ℓ ν made in the high q2 regime are subject to a corresponding but unknown correction from WA. In this thesis, we analyze 9.7 fb−1 of eXe−collision data collected by the CLEO detector at CESR during a running period from 1990–199...
Quantum Weak Values and Logic: An Uneasy Couple
Svensson, Bengt E. Y.
2017-03-01
Quantum mechanical weak values of projection operators have been used to answer which-way questions, e. g. to trace which arms in a multiple Mach-Zehnder setup a particle may have traversed from a given initial to a prescribed final state. I show that this procedure might lead to logical inconsistencies in the sense that different methods used to answer composite questions, like "Has the particle traversed the way X or the way Y?", may result in different answers depending on which methods are used to find the answer. I illustrate the problem by considering some examples: the "quantum pigeonhole" framework of Aharonov et al., the three-box problem, and Hardy's paradox. To prepare the ground for my main conclusion on the incompatibility in certain cases of weak values and logic, I study the corresponding situation for strong/projective measurements. In this case, no logical inconsistencies occur provided one is always careful in specifying exactly to which ensemble or sample space one refers. My results cast doubts on the utility of quantum weak values in treating cases like the examples mentioned.
Effect of Ionic Advection on Electroosmosis over Charge Surfaces: Beyond the Weak Field Limit
Ghosh, Uddipta
2015-01-01
The present study deals with the effect of ionic advection on electroosmotic flow over charge modulated surfaces in a generalized paradigm when the classically restrictive "weak field" limit may be relaxed. Going beyond the commonly portrayed weak field limit (i.e, the externally applied electric field is over-weighed by the surface-induced electrical potential, towards charge distribution in an electrified wall-adhering layer) for electroosmotic transport, we numerically solve the coupled full set of Poisson-Nernst-Planck (PNP) and Navier-Stokes equations, in a semi-infinite domain, bounded at the bottom by a charged wall. Further, in an effort to obtain deeper physical insight, we solve the simplified forms of the relevant governing equations for low surface potential in two separate asymptotic limits: (i) a regular perturbation solution for Low Ionic Peclet number (Pe), where Pe is employed as the gauge function and (ii) a matched asymptotic solution for O(1) Pe in the Thin Electric Double Layer (EDL) limi...
A Hybrid Strong/Weak Coupling Approach to Jet Quenching
Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2014-01-01
We propose and explore a new hybrid approach to jet quenching in a strongly coupled medium. The basis of this phenomenological approach is to treat physics processes at different energy scales differently. The high-$Q^2$ processes associated with the QCD evolution of the jet from production as a single hard parton through its fragmentation, up to but not including hadronization, are treated perturbatively. The interactions between the partons in the shower and the deconfined matter within which they find themselves lead to energy loss. The momentum scales associated with the medium (of the order of the temperature) and with typical interactions between partons in the shower and the medium are sufficiently soft that strongly coupled physics plays an important role in energy loss. We model these interactions using qualitative insights from holographic calculations of the energy loss of energetic light quarks and gluons in a strongly coupled plasma, obtained via gauge/gravity duality. We embed this hybrid model ...
Thermoelectric properties of a weakly coupled quantum dot: enhanced thermoelectric efficiency
Energy Technology Data Exchange (ETDEWEB)
Tsaousidou, M [Materials Science Department, University of Patras, Patras 26504 (Greece); Triberis, G P, E-mail: rtsaous@upatras.g [Physics Department, Solid State Section, University of Athens, Panepistimiopolis, 15784, Zografos, Athens (Greece)
2010-09-08
We study the thermoelectric coefficients of a multi-level quantum dot (QD) weakly coupled to two electron reservoirs in the Coulomb blockade regime. Detailed calculations and analytical expressions of the power factor and the figure of merit are presented. We restrict our interest to the limit where the energy separation between successive energy levels is much larger than the thermal energy (i.e., the quantum limit) and we report a giant enhancement of the figure of merit due to the violation of the Wiedemann-Franz law when phonons are frozen. We point out the similarity of the electronic and the phonon contribution to the thermal conductance for zero-dimensional electrons and phonons. Both contributions show an activated behavior. Our findings suggest that the control of the electron and phonon confinement effects can lead to nanostructures with improved thermoelectric properties.
A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network
Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien
2017-01-01
With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices’ non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing. PMID:28322262
A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network
Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien
2017-03-01
With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices’ non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing.
The Weak Field Limit of Fourth Order Gravity
Capozziello, Salvatore
2010-01-01
We discuss Newtonian and the post-Newtonian limits of Fourth Order Gravity Theories pointing out, in details, their resemblances and differences with respect to General Relativity. Particular emphasis is placed on the exact solutions and methods used to obtain them.
The Weak Field Limit of Fourth Order Gravity
Capozziello, Salvatore; Stabile, Arturo
2010-01-01
We discuss Newtonian and the post-Newtonian limits of Fourth Order Gravity Theories pointing out, in details, their resemblances and differences with respect to General Relativity. Particular emphasis is placed on the exact solutions and methods used to obtain them.
Narrative production weakness in Russian dyslexics: Linguistic or procedural limitations?
Directory of Open Access Journals (Sweden)
Aleksandr N. Kornev
2015-04-01
Full Text Available The study deals with the impact of non-linguistic factors on narrative production in Russian-speaking dyslexic children. The experimental group consisted of 12 children (age 9–10 with dyslexia and the control group comprised 12 peers without any developmental disorders. The sample was counterbalanced from the perspective of narrative mode, story complexity, and task order. One of the classic methodologies for narrative analysis, i.e. story grammar, was extended in our study by a novel dynamic approach, enabling us to evaluate procedural features of narrative production. The results of our study highlight limitations in dyslexic narrative language underlined by two different causes. The first one can be defined as inefficiency in developing logical (temporal/causal relationships between events; the other is difficulties in structuring an episode description. The high flexibility and dynamic changes in the episode structure in dyslexics anticipated the evidence that limitations in dyslexic narrative language are related to the deficit in procedural functions rather than to the primary language limitations; however, linguistic shortcomings in dyslexic narrative production still remain. Our experience with the dynamic approach to narrative assessment lends support to its value as a research tool. The novel dynamic approach to episode completeness analysis proved to be an effective and informative method that might highlight new mechanisms of narration and thus extend the classic narrative analysis by the addition of qualitative information.
Transport in weakly-coupled superlattices: A quantitative approach for photon-assisted tunneling
DEFF Research Database (Denmark)
Wacker, Andreas; Jauho, Antti-Pekka
1997-01-01
Photon-assisted tunneling is studied in weakly-coupled semiconductor superlattices under THz irradiation. Using a microscopic transport model we find excellent quantitative agreement with experimental data for two different samples without using any fitting parameters.......Photon-assisted tunneling is studied in weakly-coupled semiconductor superlattices under THz irradiation. Using a microscopic transport model we find excellent quantitative agreement with experimental data for two different samples without using any fitting parameters....
Limitations for shapelet-based weak-lensing measurements
Melchior, P; Lombardi, M; Bartelmann, M
2009-01-01
We seek to understand the impact on shape estimators obtained from circular and elliptical shapelet models under two realistic conditions: (a) only a limited number of shapelet modes is available for the model, and (b) the intrinsic galactic shapes are not restricted to shapelet models. We create a set of simplistic simulations, in which the galactic shapes follow a Sersic profile. By varying the Sersic index and applied shear, we quantify the amount of bias on shear estimates which arises from insufficient modeling. Additional complications due to PSF convolution, pixelation and pixel noise are also discussed. Steep and highly elliptical galaxy shapes cannot be accurately modeled within the circular shapelet basis system and are biased towards shallower and less elongated shapes. This problem can be cured partially by allowing elliptical basis functions, but for steep profiles elliptical shapelet models still depend critically on accurate ellipticity priors. As a result, shear estimates are typically biased ...
Weak limits for exploratory plots in the analysis of extremes
Das, Bikramjit
2010-01-01
Exploratory plotting tools have been devised aplenty in order to diagnose the goodness-of-fit of data sets to a hypothesized distribution. Some of them have found extensive use in diverse areas of finance, telecommunication, environmental science, etc. in order to detect sub-exponential or heavy-tailed behavior in observed data. In this paper we concentrate on two such plotting methodologies: the Quantile-Quantile plots for heavy-tails and the Mean Excess plots. Under the assumption of heavy-tailed behavior of the underlying sample the convergence in probability of these plots to a fixed set in a suitable topology of closed sets of $\\R^2$ has been studied in \\cite{das:resnick:2008} and \\cite{ghosh:resnick:2009}. These results give theoretical justifications for using the plots to test the null hypothesis that the underlying distribution is heavy-tailed by checking if the observed plot is ``close'' to the limit under the null hypothesis. In practice though one set of observations would lead to only one plot of...
Superconductivity enhanced by d-density wave: A weak-coupling theory
Ha, Kim; Subok, Ri; Ilmyong, Ri; Cheongsong, Kim; Yuling, Feng
2011-04-01
Making a revision of mistakes in Ref. [19], we present a detailed study of the competition and interplay between the d-density wave (DDW) and d-wave superconductivity (DSC) within the fluctuation-exchange (FLEX) approximation for the two-dimensional (2D) Hubbard model. In order to stabilize the DDW state with respect to phase separation at lower dopings a small nearest-neighbor Coulomb repulsion is included within the Hartree-Fock approximation. We solve the coupled gap equations for the DDW, DSC, and π-pairing as the possible order parameters, which are caused by exchange of spin fluctuations, together with calculating the spin fluctuation pairing interaction self-consistently within the FLEX approximation. We show that even when nesting of the Fermi surface is perfect, as in a square lattice with only nearest-neighbor hopping, there is coexistence of DSC and DDW in a large region of dopings close to the quantum critical point (QCP) at which the DDW state vanishes. In particular, we find that in the presence of DDW order the superconducting transition temperature Tc can be much higher compared to pure superconductivity, since the pairing interaction is strongly enhanced due to the feedback effect on spin fluctuations of the DDW gap. π-pairing appears generically in the coexistence region, but its feedback on the other order parameters is very small. In the present work, we have developed a weak-coupling theory of the competition between DDW and DSC in 2D Hubbard model, using the static spin fluctuation obtained within FLEX approximation and ignoring the self-energy effect of spin fluctuations. For our model calculations in the weak-coupling limit we have taken U/ t=3.4, since the antiferromagnetic instability occurs for higher values of U/ t.
Atoms and Molecules in Cavities: From Weak to Strong Coupling in QED Chemistry
Flick, Johannes; Appel, Heiko; Rubio, Angel
2016-01-01
In this work, we provide an overview of how well-established concepts in the fields of quantum chemistry and material sciences have to be adapted when the quantum nature of light becomes important in correlated matter-photon problems. Therefore, we analyze model systems in optical cavities, where the matter-photon interaction is considered from the weak- to the strong coupling limit and for individual photon modes as well as for the multi-mode case. We identify fundamental changes in Born-Oppenheimer surfaces, spectroscopic quantities, conical intersections and efficiency for quantum control. We conclude by applying our novel recently developed quantum-electrodynamical density-functional theory to single-photon emission and show how a straightforward approximation accurately describes the correlated electron-photon dynamics. This paves the road to describe matter-photon interactions from first-principles and addresses the emergence of new states of matter in chemistry and material science.
Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel
2017-03-21
In this work, we provide an overview of how well-established concepts in the fields of quantum chemistry and material sciences have to be adapted when the quantum nature of light becomes important in correlated matter-photon problems. We analyze model systems in optical cavities, where the matter-photon interaction is considered from the weak- to the strong-coupling limit and for individual photon modes as well as for the multimode case. We identify fundamental changes in Born-Oppenheimer surfaces, spectroscopic quantities, conical intersections, and efficiency for quantum control. We conclude by applying our recently developed quantum-electrodynamical density-functional theory to spontaneous emission and show how a straightforward approximation accurately describes the correlated electron-photon dynamics. This work paves the way to describe matter-photon interactions from first principles and addresses the emergence of new states of matter in chemistry and material science.
From weak to strong coupling in ABJM theory
Drukker, Nadav; Putrov, Pavel
2011-01-01
The partition function of N=6 supersymmetric Chern-Simons-matter theory (known as ABJM theory) on S^3, as well as certain Wilson loop observables, are captured by a zero dimensional super-matrix model. This super-matrix model is closely related to a matrix model describing topological Chern-Simons theory on a lens space. We explore further these recent observations and extract more exact results in ABJM theory from the matrix model. In particular we calculate the planar free energy, which matches at strong coupling the classical IIA supergravity action on AdS_4 x CP^3 and gives the correct N^{3/2} scaling for the number of degrees of freedom of the M2 brane theory. Furthermore we find contributions coming from world-sheet instanton corrections in CP^3. We also calculate non-planar corrections, both to the free energy and to the Wilson loop expectation values. This matrix model appears also in the study of topological strings on a toric Calabi-Yau manifold, and an intriguing connection arises between the space...
Quantized Brans Dicke Theory: Phase Transition and Strong Coupling Limit
Pal, Sridip
2016-01-01
We show that Friedmann-Robertson-Walker (FRW) geometry with flat spatial section in quantized (Wheeler deWitt quantization) Brans Dicke (BD) theory reveals a rich phase structure owing to anomalous breaking of a classical symmetry, which maps the scale factor $a\\mapsto\\lambda a$ for some constant $\\lambda$. In the weak coupling ($\\omega$) limit, the theory goes from a symmetry preserving phase to a broken phase. The existence of phase boundary is an obstruction to another classical symmetry [arXiv:gr-qc/9902083] (which relates two BD theory with different coupling) admitted by BD theory with scale invariant matter content i.e $T^{\\mu}{}_{\\mu}=0$. Classically, this prohibits the BD theory to reduce to General Relativity (GR) for scale invariant matter content. We show that strong coupling limit of BD and GR both preserves the symmetry involving scale factor. We also show that with a scale invariant matter content (radiation i.e $P=\\frac{1}{3}\\rho$), the quantized BD theory does reduce to GR as $\\omega\\rightarr...
D-brane physics. From weak to strong coupling
Energy Technology Data Exchange (ETDEWEB)
Vieira Lopes, Daniel Ordine
2013-01-10
In this thesis we discuss two aspects of branes relevant to high-energy phenomenology. First, we consider a single D6-brane wrapping a special Lagrangian cycle and the background space compactified in a Calabi-Yau orientifold the conditions needed to obtain a four-dimensional N=1 supersymmetric theory. We calculate the bosonic part of the effective action by performing a Kaluza-Klein reduction of the brane seven-dimensional action, and obtain the N=1 characteristic data. To discuss the moduli, we first fix the moduli from deformations of the background Calabi-Yau and study the D-brane deformation moduli space. We next allow for Calabi-Yau deformations, and show that the moduli space for complex structure deformations is corrected by the fields living on the D6-brane. We also calculate the scalar potential from D- and F-terms generated from brane and background configurations that would break the supersymmetry condition. We then, via Mirror Symmetry, relate the spectrum obtained in our work to the spectrum in Type IIB effective theory with D3- D5- and D7-branes, and we propose a Kaehler potential for the moduli space of brane deformations in Type IIB theories. In the second part of the thesis we discuss effects of brane intersections when the string coupling can become strong, and we work in the framework of F-theory. After reviewing the basics of F-theory constructions and a particular SU(5) model already discussed in the literature, we construct a model which contains a point of E{sub 8} singularity, and curves of E{sub 6} singularity. By explicitly resolving the space, we show that the resolution requires the introduction of higher dimensional fibers, and argue how we can circumvent this problem for the E{sub 6} curve, leading to the expected resolution that generate an E{sub 6} group, while at the E{sub 8} point we cannot make the resolution lead to an expected E{sub 8} structure.
Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling
Xiong, Wen; Bromberg, Yaron; Redding, Brandon; Rotter, Stefan; Cao, Hui
2016-01-01
We present experimental and numerical studies on principal modes in a multimode fiber with mode coupling. By applying external stress to the fiber and gradually adjusting the stress, we have realized a transition from weak to strong mode coupling, which corresponds to the transition from single scattering to multiple scattering in mode space. Our experiments show that principal modes have distinct spatial and spectral characteristic in the weak and strong mode coupling regimes. We also investigate the bandwidth of the principal modes, in particular, the dependence of the bandwidth on the delay time, and the effects of the mode-dependent loss. By analyzing the path-length distributions, we discover two distinct mechanisms that are responsible for the bandwidth of principal modes in weak and strong mode coupling regimes. Taking into account the mode-dependent loss in the fiber, our numerical results are in good agreement with our experimental observations. Our study paves the way for exploring potential applica...
Weakly dynamic dark energy via metric-scalar couplings with torsion
Sur, Sourav
2016-01-01
We study the dynamical aspects of dark energy in the context of a non-minimally coupled scalar field with curvature and torsion. Whereas the scalar field acts as the source of the trace mode of torsion, a suitable constraint on the pseudo-trace of the latter provides a mass term for the scalar field in the effective action. In the equivalent scalar-tensor framework, we find explicit cosmological solutions suitable for describing dark energy in both Einstein and Jordan frames. We demand the dynamical evolution of the dark energy to be weak enough, so that the present-day values of the cosmological parameters could be estimated keeping them within the confidence limits set for the standard $\\L$CDM model from recent observations. For such estimates, we examine the variations of the effective matter density and the dark energy equation of state over different redshift ranges. In spite of being weakly dynamic, the dark energy component here differs significantly from the cosmological constant, both in characterist...
Uniqueness of Limit Cycle for the Quadratic Systems with Weak Saddle and Focus
Institute of Scientific and Technical Information of China (English)
Shen Qi ZHAO; Ping Guang ZHANG
2004-01-01
It is proved that the quadratic system with a weak saddle has at most one limit cycle, and that if this system has a separatrix cycle passing through the weak saddle, then the stability of the separatrix cycle is contrary to that of the singular point surrounded by it.
Continuous Choreographies as Limiting Solutions of N-body Type Problems with Weak Interaction
Castaneira, Reynaldo; Padilla, Pablo; Sánchez-Morgado, Héctor
2016-10-01
We consider the limit Nto +∞ of N-body type problems with weak interaction, equal masses and -σ-homogeneous potential, 0absolute minimizer of the action functional among zero mean (travelling wave) loops of class H^1.
Limitations of Hall MHD as a model for turbulence in weakly collisional plasmas
Directory of Open Access Journals (Sweden)
G. G. Howes
2009-03-01
Full Text Available The limitations of Hall MHD as a model for turbulence in weakly collisional plasmas are explored using quantitative comparisons to Vlasov-Maxwell kinetic theory over a wide range of parameter space. The validity of Hall MHD in the cold ion limit is shown, but spurious undamped wave modes exist in Hall MHD when the ion temperature is finite. It is argued that turbulence in the dissipation range of the solar wind must be one, or a mixture, of three electromagnetic wave modes: the parallel whistler, oblique whistler, or kinetic Alfvén waves. These modes are generally well described by Hall MHD. Determining the applicability of linear kinetic damping rates in turbulent plasmas requires a suite of fluid and kinetic nonlinear numerical simulations. Contrasting fluid and kinetic simulations will also shed light on whether the presence of spurious wave modes alters the nonlinear couplings inherent in turbulence and will illuminate the turbulent dynamics and energy transfer in the regime of the characteristic ion kinetic scales.
Coupling, convergence rates of Markov processes and weak Poincaré inequalities
Institute of Scientific and Technical Information of China (English)
WANG; Fengyu(王凤雨)
2002-01-01
Some analytic and probabilistic properties of the weak Poincaré inequality are obtained. In particular, for strong Feller Markov processes the existence of this inequality is equivalent to each of the following: (i)the Liouville property (or the irreducibility); (ii) the existence of successful couplings (or shift-couplings); (iii)the convergence of the Markov process in total variation norm; (iv) the triviality of the tail (or the invariant)σ-field; (v) the convergence of the density. Estimates of the convergence rate in total variation norm of Markov processes are obtained using the weak Poincaré inequality.
Zanotto, Simone
2015-01-01
In this article we discuss a model describing key features concerning the lineshapes and the coherent absorption conditions in Fano-resonant dissipative coupled oscillators. The model treats on the same footing the weak and strong coupling regimes, and includes the critical coupling concept, which is of great relevance in numerous applications; in addition, the role of asymmetry is thoroughly analyzed. Due to the wide generality of the model, which can be adapted to various frameworks like nanophotonics, plasmonics, and optomechanics, we envisage that the analytical formulas presented here will be crucial to effectively design devices and to interpret experimental results.
Coupling-induced ferromagnetic transitions in ferroelectromagnets of weak antiferromagnetic order
Institute of Scientific and Technical Information of China (English)
LI Qichang; LIU Junming
2006-01-01
A Monte-Carlo simulation on phase transitions in ferroelectromagnets (FEMs) in which a weak antiferromagnetic ordering occurs at the Neel point TN far below the ferroelectric ordering point TE was performed. It is revealed that an intrinsic coupling between spins and electric-dipoles ( mp -coupling) does result in a weak ferromagnetic transition from the paramagnetic state at a temperature far above TN, as long as the coupling is strong enough. The magnetoelectric properties as a function of temperature, mp -coupling strength and external electric and magnetic fields were investigated. A mean-field calculation based on the Heisenberg model was performed and a rough consistency between the simulated and calculated ferromagnetic transitions was shown.
Towards a hybrid strong/weak coupling approach to jet quenching
Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2014-01-01
We explore a novel hybrid model containing both strong and weak coupling physics for high energy jets traversing a deconfined medium. This model is based on supplementing a perturbative DGLAP shower with strongly coupled energy loss rate. We embed this system into a realistic hydrodynamic evolution of hot QCD plasma. We confront our results with LHC data, obtaining good agreement for jet RAARAA, dijet imbalance AJAJ and fragmentation functions.
Weak-Coupling Theory for Low-Frequency Periodically Driven Two-Level Systems
Institute of Scientific and Technical Information of China (English)
CHEN Ai-Xi; HUANG Ke-Lin; WANG Zhi-Ping
2008-01-01
We generalize the Wu-Yang strong-coupling theory to solve analytically periodically driven two-level systems in the weak-coupling and low-frequency regimes for single- and multi-period periodic driving of continuous-wave-type and pulse-type including ultrashort pulses of a few cycles. We also derive a general formula of the AC Stark shift suitable for such diverse situations.
Modulation properties of spatial three-waveguide system using weakly coupled mode theory
Institute of Scientific and Technical Information of China (English)
Yiling Sun; Jianxia Pan
2007-01-01
Based on the weakly coupled mode theory, the modulation properties of three-waveguide system are analyzed in general. We examine the modulation behavior for two cases that a voltage is applied on the beamlaunched waveguide or non-beam-launched waveguide. The analytical intensity distributions in both cases are given. Applications of the spatial multi-waveguide coupling systems include spatial light modulators,optical switches, optical interconnection, and spatial optical signal processing.
Hyun, Chang Ho; Lee, Hee-Jung
2016-01-01
We investigate the parity-violating pion-nucleon-nucleon coupling constant $h^1_{\\pi NN}$, based on the chiral quark-soliton model. We employ an effective weak Hamiltonian that takes into account the next-to-leading order corrections from QCD to the weak interactions at the quark level. Using the gradient expansion, we derive the leading-order effective weak chiral Lagrangian with the low-energy constants determined. The effective weak chiral Lagrangian is incorporated in the chiral quark-soliton model to calculate the parity-violating $\\pi NN$ constant $h^1_{\\pi NN}$. We obtain a value of about $10^{-7}$ at the leading order. The corrections from the next-to-leading order reduce the leading order result by about 20~\\%.
The strong-weak coupling symmetry in 2D Φ4 field models
Directory of Open Access Journals (Sweden)
B.N.Shalaev
2005-01-01
Full Text Available It is found that the exact beta-function β(g of the continuous 2D gΦ4 model possesses two types of dual symmetries, these being the Kramers-Wannier (KW duality symmetry and the strong-weak (SW coupling symmetry f(g, or S-duality. All these transformations are explicitly constructed. The S-duality transformation f(g is shown to connect domains of weak and strong couplings, i.e. above and below g*. Basically it means that there is a tempting possibility to compute multiloop Feynman diagrams for the β-function using high-temperature lattice expansions. The regular scheme developed is found to be strongly unstable. Approximate values of the renormalized coupling constant g* found from duality symmetry equations are in an agreement with available numerical results.
Detecting weak coupling in mesoscopic systems with a nonequilibrium Fano resonance
Xiao, S.; Yoon, Y.; Lee, Y.-H.; Bird, J. P.; Ochiai, Y.; Aoki, N.; Reno, J. L.; Fransson, J.
2016-04-01
A critical aspect of quantum mechanics is the nonlocal nature of the wave function, a characteristic that may yield unexpected coupling of nominally isolated systems. The capacity to detect this coupling can be vital in many situations, especially those in which its strength is weak. In this work, we address this problem in the context of mesoscopic physics, by implementing an electron-wave realization of a Fano interferometer using pairs of coupled quantum point contacts (QPCs). Within this scheme, the discrete level required for a Fano resonance is provided by pinching off one of the QPCs, thereby inducing the formation of a quasibound state at the center of its self-consistent potential barrier. Using this system, we demonstrate a form of nonequilibrium Fano resonance (NEFR), in which nonlinear electrical biasing of the interferometer gives rise to pronounced distortions of its Fano resonance. Our experimental results are captured well by a quantitative theoretical model, which considers a system in which a standard two-path Fano interferometer is coupled to an additional, intruder, continuum. According to this theory, the observed distortions in the Fano resonance arise only in the presence of coupling to the intruder, indicating that the NEFR provides a sensitive means to infer the presence of weak coupling between mesoscopic systems.
Classical Integrability for Three-point Functions: Cognate Structure at Weak and Strong Couplings
Kazama, Y; Nishimura, T
2016-01-01
In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the $\\mathcal{N}=4$ super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical...
A weak limit theorem for numerical approximation of Brownian semi-stationary processes
DEFF Research Database (Denmark)
Podolskij, Mark; Thamrongrat, Nopporn
In this paper we present a weak limit theorem for a numerical approximation of Brownian semi-stationary processes studied in [14]. In the original work of [14] the authors propose to use Fourier transformation to embed a given one dimensional (Levy) Brownian semi-stationary process into a two......-parameter stochastic field. For the latter they use a simple iteration procedure and study the strong approximation error of the resulting numerical scheme given that the volatility process is fully observed. In this work we present the corresponding weak limit theorem for the setting, where the volatility....../drift process needs to be numerically simulated. In particular, weak approximation errors for smooth test functions can be obtained from our asymptotic theory....
Renormalization and Central limit theorem for critical dynamical systems with weak external noise
Diaz-Espinosa, O
2006-01-01
We study of the effect of weak noise on critical one dimensional maps; that is, maps with a renormalization theory. We establish a one dimensional central limit theorem for weak noises and obtain Berry--Esseen estimates for the rate of this convergence. We analyze in detail maps at the accumulation of period doubling and critical circle maps with golden mean rotation number. Using renormalization group methods, we derive scaling relations for several features of the effective noise after long times. We use these scaling relations to show that the central limit theorem for weak noise holds in both examples. We note that, for the results presented here, it is essential that the maps have parabolic behavior. They are false for hyperbolic orbits.
Energy Technology Data Exchange (ETDEWEB)
Holden, Helge; Karlsen, Kenneth H.; Risebro, Nils H.
2002-04-01
We prove uniqueness and existence of entropy solutions for the Cauchy problem of weakly coupled systems of nonlinear degenerate parabolic equations. The uniqueness proof is an adaption of Kruzkov's ''doubling of variables'' proof. We prove existence of an entropy solution by demonstrating that the Engquist-Osher finite difference scheme is convergent and that any limit function satisfies the entropy condition. The convergence proof is based on deriving a series of a priori estimates and using a general L{sup p} compactness criterion. We also present a numerical example motivated by biodegradation in porous media.
Laser-pulse-shape control of photofragmentation in the weak-field limit
DEFF Research Database (Denmark)
Tiwari, Ashwani Kumar; Dey, Diptesh; Henriksen, Niels Engholm
2014-01-01
We demonstrate theoretically that laser-induced coherent quantum interference control of asymptotic states of dissociating molecules is possible even in the (one-photon) weak-field limit starting from a single vibrational eigenstate. Thus, phase dependence in the interaction with a fixed energy...
Resonance width distribution in RMT: Weak-coupling regime beyond Porter-Thomas
Fyodorov, Yan V.; Savin, Dmitry V.
2015-05-01
We employ the random matrix theory (RMT) framework to revisit the distribution of resonance widths in quantum chaotic systems weakly coupled to the continuum via a finite number M of open channels. In contrast to the standard first-order perturbation theory treatment we do not a priori assume the resonance widths being small compared to the mean level spacing. We show that to the leading order in weak coupling the perturbative χ^2M distribution of the resonance widths (in particular, the Porter-Thomas distribution at M = 1) should be corrected by a factor related to a certain average of the ratio of square roots of the characteristic polynomial (“spectral determinant”) of the underlying RMT Hamiltonian. A simple single-channel expression is obtained that properly approximates the width distribution also at large resonance overlap, where the Porter-Thomas result is no longer applicable.
Angular Structure of Jet Quenching Within a Hybrid Strong/Weak Coupling Model
Casalderrey-Solana, Jorge; Milhano, Guilherme; Pablos, Daniel; Rajagopal, Krishna
2017-01-01
Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter $K\\equiv \\hat q/T^3$ that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when $K\
Persistent Spin Current in a Quantum Wire with Weak Rashba Spin-Orbit Coupling
Institute of Scientific and Technical Information of China (English)
WANG Yi; SHENG Wei; ZHOU Guang-Hui
2006-01-01
@@ We theoretically investigate the spin current for a parabolically confined semiconductor heterojunction quantum wire with weak Rashba spin-orbit coupling by means of the perturbation method. By analytical calculation, it is found that only two components off spin current density is non-zero in the equilibrium case. Numerical examples have demonstrated that the spin current of electron transverse motion is 10-3 times that off electron longitudinal motion. However, the former one is much more sensitive to the strength of Rashba spin-orbit coupling. These results may suggest an approach to the spin storage device and to the measurement of spin current through its induced electric field.
Weak Coupling Phase Structureof the Abelian Higgs Model at Finite Temperature
Jakovác, A
1993-01-01
Using the 1-loop reduced 3D action of the Abelian Higgs-model we discuss the order of its finite temperature phase transition. A two-variable saddle point approximation is proposed for the evaluation of the effective potential. The strength of the first order case scales like \\sim e^{3-6}. Analytic asymptotic weak coupling and numerical small coupling solutions are compared with special emphasis on the cancellation of divergences. (Figures are not included, can be sent upon request from jako@hercules.elte.hu .)
Angular Structure of Jet Quenching Within a Hybrid Strong/Weak Coupling Model
Casalderrey-Solana, Jorge; Milhano, Guilherme; Pablos, Daniel; Rajagopal, Krishna
2016-01-01
Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter $K\\equiv \\hat q/T^3$ that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when $K\
Large time behavior of weakly coupled systems of first-order Hamilton-Jacobi equations
Camilli, Fabio; Loreti, Paola; Nguyen, Vinh Duc
2011-01-01
We show a large time behavior result for class of weakly coupled systems of first-order Hamilton-Jacobi equations in the periodic setting. We use a PDE approach to extend the convergence result proved by Namah and Roquejoffre (1999) in the scalar case. Our proof is based on new comparison, existence and regularity results for systems. An interpretation of the solution of the system in terms of an optimal control problem with switching is given.
Fick's Law for the Lorentz Model in a weak coupling regime
Nota, Alessia
2014-01-01
In this paper we deal with further recent developments, strictly connected to the recent result obtained by Basile, Nota, Pezzotti and Pulvirenti. We consider the Lorentz gas out of equilibrium in a weak coupling regime. Each obstacle of the Lorentz gas generates a smooth radially symmetric potential with compact support. We prove that the macroscopic current in the stationary state is given by the Fick's law of diffusion. The diffusion coefficient is given by the Green-Kubo formula associate...
Lee, D S; Ng, Y J; Shovkovy, I A
1999-01-01
The effective potential for the composite fields responsible for chiral symmetry breaking in weakly coupled QED in a magnetic field is derived. The global minimum of the effective potential is found to acquire a non-vanishing expectation value of the composite fields that leads to generating the dynamical fermion mass by an external magnetic field. The results are compared with those for the Nambu-Jona-Lasinio model.
Initial conditions for hydrodynamics from weakly coupled pre-equilibrium evolution
Keegan, Liam; Mazeliauskas, Aleksas; Teaney, Derek
2016-01-01
We use effective kinetic theory, accurate at weak coupling, to simulate the pre-equilibrium evolution of transverse energy and flow perturbations in heavy-ion collisions. We provide a Green function which propagates the initial perturbations to the energy-momentum tensor at a time when hydrodynamics becomes applicable. With this map, the complete pre-thermal evolution from saturated nuclei to hydrodynamics can be modelled in a perturbatively controlled way.
The limits of weak selection and large population size in evolutionary game theory.
Sample, Christine; Allen, Benjamin
2017-03-28
Evolutionary game theory is a mathematical approach to studying how social behaviors evolve. In many recent works, evolutionary competition between strategies is modeled as a stochastic process in a finite population. In this context, two limits are both mathematically convenient and biologically relevant: weak selection and large population size. These limits can be combined in different ways, leading to potentially different results. We consider two orderings: the [Formula: see text] limit, in which weak selection is applied before the large population limit, and the [Formula: see text] limit, in which the order is reversed. Formal mathematical definitions of the [Formula: see text] and [Formula: see text] limits are provided. Applying these definitions to the Moran process of evolutionary game theory, we obtain asymptotic expressions for fixation probability and conditions for success in these limits. We find that the asymptotic expressions for fixation probability, and the conditions for a strategy to be favored over a neutral mutation, are different in the [Formula: see text] and [Formula: see text] limits. However, the ordering of limits does not affect the conditions for one strategy to be favored over another.
Energy Technology Data Exchange (ETDEWEB)
Kanduc, M; Podgornik, R [Department of Theoretical Physics, J Stefan Institute, SI-1000 Ljubljana (Slovenia); Naji, A [Department of Physics, Department of Chemistry and Biochemistry, Materials Research Laboratory, University of California, Santa Barbara, CA 93106 (United States); Jho, Y S; Pincus, P A [Materials Research Laboratory, University of California, Santa Barbara, CA 93106 (United States)
2009-10-21
We present general arguments for the importance, or lack thereof, of structure in the charge distribution of counterions for counterion-mediated interactions between bounding symmetrically charged surfaces. We show that on the mean field or weak coupling level, the charge quadrupole contributes the lowest order modification to the contact value theorem and thus to the intersurface electrostatic interactions. The image effects are non-existent on the mean field level even with multipoles. On the strong coupling level the quadrupoles and higher order multipoles contribute additional terms to the interaction free energy only in the presence of dielectric inhomogeneities. Without them, the monopole is the only multipole that contributes to the strong coupling electrostatics. We explore the consequences of these statements in all their generality.
Resonant enhanced parallel-T topology for weak coupling wireless power transfer pickup applications
Directory of Open Access Journals (Sweden)
Yao Guo
2015-07-01
Full Text Available For the wireless power transfer (WPT system, the transfer performance and the coupling coefficient are contradictory. In this paper, a novel parallel-T resonant topology consists of a traditional parallel circuit and a T-matching network for secondary side is proposed. With this method, a boosted voltage can be output to the load, since this topology has a resonant enhancement effect, and high Q value can be obtained at a low resonant frequency and low coil inductance. This feature makes it more suitable for weak coupling WPT applications. Besides, the proposed topology shows good frequency stability and adaptability to variations of load. Experimental results show that the output voltage gain improves by 757% compared with traditional series circuit, and reaches 85% total efficiency when the coupling coefficient is 0.046.
Zheng, A S; Chen, H; Mei, T; Liu, J
2016-01-01
We propose an alternative scheme for nonreciprocal light propagation in two coupled cavities system, in which a two-level quantum emitter is coupled to one of the optical microcavities. For the case of parity-time (\\textrm{PT}) system (i.e., active-passive coupled cavities system), the cavity gain can significantly enhance the optical nonlinearity induced by the interaction between a quantum emitter and cavity field beyond weak-excitation approximation. The giant optical nonlinearity results in the non-lossy nonreciprocal light propagation with high isolation ratio in proper parameters range. In addition, our calculations show that nonreciprocal light propagation will not be affected by the unstable output field intensity caused by optical bistability and we can even switch directions of nonreciprocal light propagation by appropriately adjusting the system parameters.
García-Morales, Vladimir; Manzanares, José A.; Mafe, Salvador
2017-04-01
We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according to local rules that are modulated by a parameter κ . This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate external agents. The emergent spatiotemporal maps of single-cell states should be of significance for positional information processes as well as for intercellular communication in tumorigenesis, where the collective normalization of abnormal single-cell states by a predominantly normal neighborhood may be crucial.
Top-quark mass coupling and classification of weakly coupled heterotic superstring vacua
Energy Technology Data Exchange (ETDEWEB)
Rizos, J. [University of Ioannina, Physics Department, Ioannina (Greece)
2014-06-15
The quest for the Standard Model among the huge number of string vacua is usually based on a set of phenomenological criteria related to the massless spectrum of string models. In this work we study criteria associated with interactions in the effective low energy theory and in particular with the presence of the coupling that provides mass to the top quark. Working in the context of the free-fermionic formulation of the heterotic superstring, we demonstrate that, in a big class of phenomenologically promising Z{sub 2} x Z{sub 2} compactifications, these criteria can be expressed entirely in terms of the generalised GSO projection coefficients entering the definition of the models. They are shown to be very efficient in identifying phenomenologically viable vacua, especially in the framework of computer-based search, as they are met by approximately one every 10{sup 4} models. We apply our results in the investigation of a class of supersymmetric Pati-Salam vacua, comprising 10{sup 16} configurations, and we show that when combined with other phenomenological requirements they lead to a relatively small set of about 10{sup 7} Standard Model compatible models that can be fully classified. (orig.)
WEAK LIMITS OF EMPIRICAL MEASURES FOR A FAMILY OF DIFFUSION PROCESSES
Institute of Scientific and Technical Information of China (English)
席福宝; 赵丽琴
2004-01-01
This paper considers diffusion processes {Xε(t)} on R2, which are perturbations of dynamical system {X(t)} (dX(t) = b(X(t))dt) on R2. By means of weak convergence of probability measures, the authors characterize the limit behavior for empirical measures of {Xε(t)} in a neighborhood domain of saddle point of the dynamical system as the perturbations tend to zero.
Electrically tunable single-dot nanocavities in the weak and strong coupling regimes
DEFF Research Database (Denmark)
Laucht, Arne; Hofbauer, Felix; Angele, Jacob
2008-01-01
We report the design, fabrication and optical investigation of electrically tunable single quantum dot - photonic crystal defect nanocavities [1] operating in both the weak and strong coupling regimes of the light matter interaction. Unlike previous studies, where the dot-cavity spectral detuning...... electrical readout of the strongly coupled dot-cavity system using photocurrent methods will be discussed. This work is financially supported by the DFG via SFB 631 and by the German Excellence Initiative via the “Nanosystems Initiative Munich (NIM)”.......We report the design, fabrication and optical investigation of electrically tunable single quantum dot - photonic crystal defect nanocavities [1] operating in both the weak and strong coupling regimes of the light matter interaction. Unlike previous studies, where the dot-cavity spectral detuning......~120μeV are observed for the highest-Q cavities with Q~10500, much larger than the linewidths of either the decoupled exciton (γ30 linewidths. The devices fabricated allow studies of cavity-QED phenomena in a system that can be tuned in-situ, at low temperatures. Furthermore, prospects for direct...
Hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit
Suárez, Abril
2015-01-01
Using a generalization of the Madelung transformation, we derive the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit. We consider a complex self-interacting scalar field with an arbitrary potential of the form $V(|\\varphi|^2)$. We compare the results with simplified models in which the gravitational potential is introduced by hand in the Klein-Gordon equation, and assumed to satisfy a (generalized) Poisson equation. Nonrelativistic hydrodynamic equations based on the Schr\\"odinger-Poisson equations or on the Gross-Pitaevskii-Poisson equations are recovered in the limit $c\\rightarrow +\\infty$.
Hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit
Suárez, Abril; Chavanis, Pierre-Henri
2015-11-01
Using a generalization of the Madelung transformation, we derive the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit. We consider a complex self-interacting scalar field with an arbitrary potential of the form V(|ϕ|2). We compare the results with simplified models in which the gravitational potential is introduced by hand in the Klein-Gordon equation, and assumed to satisfy a (generalized) Poisson equation. Nonrelativistic hydrodynamic equations based on the Schrodinger-Poisson equations or on the Gross-Pitaevskii-Poisson equations are recovered in the limit c → +∞.
Spectral and Quantum Dynamical Properties of the Weakly Coupled Fibonacci Hamiltonian
Damanik, David; Gorodetski, Anton
2010-01-01
We consider the spectrum of the Fibonacci Hamiltonian for small values of the coupling constant. It is known that this set is a Cantor set of zero Lebesgue measure. Here we study the limit, as the value of the coupling constant approaches zero, of its thickness and its Hausdorff dimension. We prove that the thickness tends to infinity and, consequently, the Hausdorff dimension of the spectrum tends to one. We also show that at small coupling, all gaps allowed by the gap labeling theorem are o...
Weak low-energy couplings from topological zero-mode wavefunctions
Hernández, P; Peña, C; Torro, E; Wennekers, J; Wittig, H
2007-01-01
We discuss a new method to determine the low-energy couplings of the $\\Delta S=1$ weak Hamiltonian in the $\\epsilon$-regime. It relies on a matching of the topological poles in $1/m^2$ of three-point functions of two pseudoscalar densities and a four-fermion operator computed in lattice QCD, to the same observables in the Chiral Effective Theory. We present the results of a NLO computation in chiral perturbation theory of these correlation functions together with some preliminary numerical results.
The QCD static potential in 2+1 dimensions at weak coupling
Stahlhofen, Maximilian
2010-01-01
Using the effective theory pNRQCD we determine the potential energy of a color singlet quark-antiquark pair with (fixed) distance r in three space-time dimensions at weak coupling (alpha r << 1). The precision of our result reaches O(alpha^3 r^2), i.e. NNLO in the multipole expansion, and NNLL in a alpha/DeltaV expansion, where Delta V ~ alpha ln(alpha r). We even include all logarithmic terms up to N^4LL order and compare the outcome to existing lattice data.
Determination of the Axial-Vector Weak Coupling Constant with Polarized Ultracold Neutrons
Liu, J; Holley, A T; Back, H O; Bowles, T J; Broussard, L J; Carr, R; Clayton, S; Currie, S; Filippone, B W; Garcia, A; Geltenbort, P; Hickerson, K P; Hoagland, J; Hogan, G E; Hona, B; Ito, T M; Liu, C -Y; Makela, M; Mammei, R R; Martin, J W; Melconian, D; Morris, C L; Pattie, R W; Galvan, A Perez; Pitt, M L; Plaster, B; Ramsey, J C; Rios, R; Russell, R; Saunders, A; Seestrom, S; Sondheim, W E; Tatar, E; Vogelaar, R B; VornDick, B; Wrede, C; Yan, H; Young, A R
2010-01-01
A precise measurement of the neutron decay $\\beta$-asymmetry $A_0$ has been carried out using polarized ultracold neutrons (UCN) from the pulsed spallation UCN source at the Los Alamos Neutron Science Center (LANSCE). Combining data obtained in 2008 and 2009, we report $A_0 = -0.11966 \\pm 0.00089 _{-0.00140}^{+0.00123}$, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon $g_A/g_V = -1.27590 _{-0.00445}^{+0.00409}$.
Energy Technology Data Exchange (ETDEWEB)
Berges, J. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik]|[California Univ., Santa Barbara, CA (United States). Inst. for Theoretical Physics; Rothkopf, A. [Tokyo Univ. (Japan). Dept. of Physics; Schmidt, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2008-02-15
Strongly correlated systems far from equilibrium can exhibit scaling solutions with a dynamically generated weak coupling. We show this by investigating isolated systems described by relativistic quantum field theories for initial conditions leading to nonequilibrium instabilities, such as parametric resonance or spinodal decomposition. The non-thermal fixed points prevent fast thermalization if classical-statistical fluctuations dominate over quantum fluctuations. We comment on the possible significance of these results for the heating of the early universe after inflation and the question of fast thermalization in heavy-ion collision experiments. (orig.)
Quantum criticality in the 2D Hubbard: from weak to strong coupling
Galanakis, Dimitrios; Mikelsons, Karlis; Khatami, Ehsan; Zhang, Peng; Xu, Zhaoxin; Moreno, Juana; Jarrell, Mark
2010-03-01
We study the phase diagram of the two-dimensional Hubbard model in the vicinity of the quantum critical point which separates the fermi liquid from the pseudogap region. We use the Dynamical Cluster Approximation (DCA) in conjunction with the weak-coupling continuous time quantum Monte Carlo (CTQMC) cluster solver. We measure the filling nc and the density of states at the critical point as a function of the Coulomb interaction U. We observe a change in behavior when the Coulomb interaction is of the order of the bandwidth. We also evaluate the temperature range in which the system is under the influence of the quantum critical point and compare it with the effective spin coupling Jeff. We discuss the consistency of these results with various mechanisms of quantum criticality. This research is supported by NSF DMR-0706379 and OISE-0952300.
Reactive Coupling Effects on Amplitude Death of Coupled Limit-Cycle Systems
Institute of Scientific and Technical Information of China (English)
WANG Jin-Hua; LI Xiao-Wen
2009-01-01
Amplitude death in coupled limit-cycle systems induced by the reactive coupling is studied. The presence of reactive coupling parameter changes the amplitude death process of the system,and increases the critical coupling strength for the emergence of amplitude death.When the systems are in the state of complete or partial amplitude death,increasing the reactive coupling will increase the number of partial synchronization groups,implying the increase of disorder of the system.Increasing the reactive coupling makes the elimination of the amplitude death of the systems harder.
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling
Directory of Open Access Journals (Sweden)
Chen Gong
2017-06-01
Full Text Available The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC and wireless power transfer (WPT. However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically, since the NFC signal (especially for the uplink from the in-body part to the out-body part could be too weak to be detected. Traditional load shift keying (LSK requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK modulation, its downlink data are modulated on the power carrier (2 MHz, while its uplink data are modulated on another carrier (125 kHz. The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10 - 7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications.
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling.
Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min
2017-06-11
The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10 - 7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications.
Weak-limit quasiparticle scattering via microwave spectroscopy of a high temperature superconductor
Energy Technology Data Exchange (ETDEWEB)
Hardy, W.N.; Turner, P.J.; Harris, R.; Kamal, Saeid; Broun, D.M.; Mullins, G.K.; Liang, Ruixing; Bonn, D.A
2004-08-01
Recent progress in the measurement and interpretation of the low temperature microwave electrodynamics of YBa{sub 2}Cu{sub 3}O{sub 6+x} is reviewed. Using a broadband bolometric technique, we have been able to measure the microwave conductivity of YBa{sub 2}Cu{sub 3}O{sub 6.50} and YBa{sub 2}Cu{sub 3}O{sub 6.99} from 0.6 to 21 GHz. For the first time, the cusp-shaped conductivity spectra characteristic of weak-impurity scattering in a d-wave superconductor have been observed. Surprisingly, weak-limit scattering is seen from 1 to over 7 K in the underdoped sample, but develops in the fully oxygen-doped sample only below about 2.5 K. Preliminary ideas to explain this difference in terms of intermediate scattering phase shifts are presented.
Institute of Scientific and Technical Information of China (English)
Yan-Mei Kang; Mei Wang; Yong Xie
2012-01-01
With coupled weakly-damped periodically driven bistable oscillators subjected to additive and multiplicative noises under concern,the objective of this paper is to check to what extent the resonant point predicted by the Gaussian distribution assumption can approximate the simulated one.The investigation based on the dynamical mean-field approximation and the direct simulation demonstrates that the predicted resonant point and the simulated one are basically coincident for the case of pure additive noise,but for the case including multiplicative noise the situation becomes somewhat complex.Specifically speaking,when stochastic resonance (SR) is observed by changing the additive noise intensity,the predicted resonant point is lower than the simulated one; nevertheless,when SR is observed by changing the multiplicative noise intensity,the predicted resonant point is higher than the simulated one.Our observations imply that the Gaussian distribution assumption can not exactly describe the actual situation,but it is useful to some extent in predicting the low-frequency stochastic resonance of the coupled weakly-damped bistable oscillator.
Lectures On AdS-CFT At Weak 't Hooft Coupling At Finite Temperature
Furuuchi, K
2006-01-01
This is an introductory lecture note aiming at providing an overview of the AdS-CFT correspondence at weak 't Hooft coupling at finite temperature. The first aim of this note is to describe the equivalence of three interesting thermodynamical phenomena in theoretical physics, namely, Hawking-Page transition to black hole geometry, deconfinement transition in gauge theories, and vortex condensation on string worldsheets. The Hawking-Page transition and the deconfinement transition in weakly coupled gauge theories are briefly reviewed. Emphasis is on the study of 't Hooft-Feynman diagrams in the large $N$ gauge theories, which are supposed to describe closed string worldsheets and probe the above equivalence. Nature of the 't Hooft-Feynman diagrams at finite temperature is analyzed, both in the Euclidean signature (the imaginary time formalism) and in the Lorentzian signature (the real time formalism). The second aim of this note is to give an introduction to the real time formalism applied to AdS-CFT.
Phase diagram of the t U2 Hamiltonian of the weak coupling Hubbard model
Yanagisawa, Takashi
2008-02-01
We determine the symmetry of Cooper pairs, on the basis of the perturbation theory in terms of the Coulomb interaction U, for the two-dimensional Hubbard model on the square lattice. The phase diagram is investigated in detail. The Hubbard model for small U is mapped on to an effective Hamiltonian with the attractive interaction using the canonical transformation: Heff = eSHe-S. The gap equation of the weak coupling formulation is solved without numerical ambiguity to determine the symmetry of Cooper pairs. The superconducting gap crucially depends on the position of the van Hove singularity. We show the phase diagram in the plane of the electron filling ne and the next nearest-neighbor transfer t'. The d-wave pairing is dominant for the square lattice in a wide range of ne and t'. The d-wave pairing is also stable for the square lattice with anisotropic t'. The three-band d-p model is also investigated, for which the d-wave pairing is stable in a wide range of ne and tpp (the transfer between neighboring oxygen atoms). In the weak coupling analysis, the second-neighbor transfer parameter -t' could not be so large so that the optimum doping rate is in the range of 0.8 < ne < 0.85.
DEFF Research Database (Denmark)
Shu, Chuan-Cun; Henriksen, Niels Engholm
2011-01-01
We demonstrate theoretically that laser-induced coherent quantum interference control of asymptotic states of dissociating molecules is possible - even in the (one-photon) weak-field limit starting from a single vibrational eigenstate - when resonances are in play. This is illustrated for the Na......I molecule, where it is shown that the probability of observing atomic fragments as well as the distribution of their relative momenta can be changed by a phase modulated pulse with a fixed bandwidth. This type of control is restricted to finite times during the indirect fragmentation. (C) 2011 American...
Coupling limit order books and branching random walks
2014-01-01
We consider a model for a one-sided limit order book proposed by Lakner, Reed and Stoikov (2013). We show that it can be coupled with a branching random walk and use this coupling to answer a nontrivial question about the long-term behavior of the price. The coupling relies on a classical idea of enriching the state space by artificially creating a filiation, in this context between orders of the book, which we believe has the potential of being useful for a broader class of...
Electrical and thermal transport in the quasiatomic limit of coupled Luttinger liquids
Szasz, Aaron; Ilan, Roni; Moore, Joel E.
2017-02-01
We introduce a new model for quasi-one-dimensional materials, motivated by intriguing but not yet well-understood experiments that have shown two-dimensional polymer films to be promising materials for thermoelectric devices. We consider a two-dimensional material consisting of many one-dimensional systems, each treated as a Luttinger liquid, with weak (incoherent) coupling between them. This approximation of strong interactions within each one-dimensional chain and weak coupling between them is the "quasiatomic limit." We find integral expressions for the (interchain) transport coefficients, including the electrical and thermal conductivities and the thermopower, and we extract their power law dependencies on temperature. Luttinger liquid physics is manifested in a violation of the Wiedemann-Franz law; the Lorenz number is larger than the Fermi liquid value by a factor between γ2 and γ4, where γ ≥1 is a measure of the electron-electron interaction strength in the system.
Chaotic dynamics dependence on doping density in weakly coupled GaAs/AlAs superlattices
Gui, Yang; Yuanhong, Li; Fengying, Zhang; Yuqi, Li
2012-09-01
A discrete sequential tunneling model is used for studying the influence of the doping density on the dynamical behaviors in weakly coupled GaAs/AlAs superlattices. Driven by the DC bias, the system exhibits self-sustained current oscillations induced by the period motion of the unstable electric field domain, and an electrical hysteresis in the loop of current density voltage curve is deduced. It is found that the hysteresis range strongly depends on the doping density, and the width of the hysteresis loop increases with increasing the doping density. By adding an external driving ac voltage, more complicated nonlinear behaviors are observed including quasiperiodicity, period-3, and the route of an inverse period-doubling to chaos when the driving frequency changes.
Chaotic dynamics dependence on doping density in weakly coupled GaAs/AlAs superlattices
Institute of Scientific and Technical Information of China (English)
Yang Gui; Li Yuanhong; Zhang Fengying; Li Yuqi
2012-01-01
A discrete sequential tunneling model is used for studying the influence of the doping density on the dynamical behaviors in weakly coupled GaAs/AlAs superlattices.Driven by the DC bias,the system exhibits selfsustained current oscillations induced by the period motion of the unstable electric field domain,and an electrical hysteresis in the loop of current density voltage curve is deduced.It is found that the hysteresis range strongly depends on the doping density,and the width of the hysteresis loop increases with increasing the doping density.By adding an external driving ac voltage,more complicated nonlinear behaviors are observed including quasiperiodicity,period-3,and the route of an inverse period-doubling to chaos when the driving frequency changes.
Implication of Two-Coupled Differential Van der Pol Duffing Oscillator in Weak Signal Detection
Peng, Hang-hang; Xu, Xue-mei; Yang, Bing-chu; Yin, Lin-zi
2016-04-01
The principle of the Van der Pol Duffing oscillator for state transition and for determining critical value is described, which has been studied to indicate that the application of the Van der Pol Duffing oscillator in weak signal detection is feasible. On the basis of this principle, an improved two-coupled differential Van der Pol Duffing oscillator is proposed which can identify signals under any frequency and ameliorate signal-to-noise ratio (SNR). The analytical methods of the proposed model and the construction of the proposed oscillator are introduced in detail. Numerical experiments on the properties of the proposed oscillator compared with those of the Van der Pol Duffing oscillator are carried out. Our numerical simulations have confirmed the analytical treatment. The results demonstrate that this novel oscillator has better detection performance than the Van der Pol Duffing oscillator.
Institute of Scientific and Technical Information of China (English)
MA Lv-zhong; GUO Zong-he; YANG Qi-zhi; YIN Xiao-qin; HAN Ya-li; SHEN Hui-ping
2006-01-01
This paper analyzes the precision of the dissymmetrical parallel mechanism of 3-RRRP(4R) with three translational degrees of freedom (DOF).The parallel mechanism has weakly-coupled,decoupled and real-time characteristics,thus error compensation can be done using control software.Based on topology structure analysis,the inverse and forward solutions are analyzed and the precision is studied using complete differential method.The influencing factors of the manipulator's precision are studied carefully and the means to enhance the precision are also discussed.It is found that the position errors of the moving platform have nonlinear relation with the position of the mechanism.The δθ3 error has the biggest influence on the nonlinear errors of the position.Otherwise,the original errors of the mechanism are the main reason leading to more errors.Thus enhancing machining and assembling precision is an important method to enhance the precision of the mechanism.
Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling.
Wang, Chen; Ren, Jie; Cao, Jianshu
2015-07-08
Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices.
Conductance for a Quantum Wire with Weak Rashba Spin-Orbit Coupling
Institute of Scientific and Technical Information of China (English)
LIU Gen-Hua; ZHOU Guang-Hui
2005-01-01
@@ We theoretically study the low temperature electron transport properties of a weak Rashba spin-orbit coupling (SOC) semiconductor quantum wire connected nonadiabatically to two electrode leads without SOC. The wire and the leads are defined by a parabolic confining potential, and the influence of both the wire-lead connection and the Rashba SOC on the electron transport is treated analytically by means of scattering matrix within effective free-electron approximation. From analytical analysis and numerical examples, we find that the system shows some fractional quantum conductance behaviour, and for some particular wire width a pure spin polarized current exists. Our result may imply a simple method for the design of a spin filter without involving any magnetic materials or magnetic fields.
Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots
Institute of Scientific and Technical Information of China (English)
亓丽梅; 李超; 方广有; 李士超
2015-01-01
A dual-band terahertz (THz) filter consisting of two different cross slots is designed and fabricated in a single molyb-denum layer. Experimental verification by THz time-domain spectroscopy indicates good agreement with the simulation results. Owing to the weak coupling between the two neighboring cross slots in the unit cell, good selectivity performance can be easily achieved, both in the lower and higher bands, by tuning the dimensions of the two crosses. The physical mechanisms of the dual-band resonant are clarified by using three differently configured filters and electric field distribu-tion diagrams. Owing to the rotational symmetry of the cross-shaped filter, the radiation at normal incidence is insensitive to polarization. Compared with the THz dual-band filters that were reported earlier, these filters also have the advantages of easy fabrication and low cost, which would find applications in dual-band sensors, THz communication systems, and emerging THz technologies.
The weak psuedoscalar coupling of the free and the bound protons
Energy Technology Data Exchange (ETDEWEB)
Gorringe, T.P. [Univ. of Kentucky, Lexington, KY (United States)
1995-10-01
The proton`s weak pseudoscalar coupling, g{sub p} is induced by the effects of its strong interaction on its weak interaction. In the Partially Conserved Axial Current hypothesis g{sub p} is due to single pion exchange between the leptonic and nucleonic currents in semi-leptonic weak processes. It predicts g{sub p} = 8.4 {plus_minus} 0.2 for the free proton but modifications of g{sub p}for the bound proton, due to modifications of the pion field of the bound proton, are possible. We will review the available data on g{sub p} for both the free and the bound proton. In the case of the free proton g{sub p} has been determined from measurements of ordinary (OMC) and radiative muon capture (RMC) on hydrogen. We will discuss the extraction of g{sub p} from the data, the importance of various {mu}-atomic and molecular processes in extracting g{sub p }and compare the results obtained from the OMC and RMC data and experiments in gaseous and liquid H{sub 2}. In the case of the bound proton we will discuss the measurements of ordinary and radiative {mu}{sup -} capture on complex nuclei and the extraction of g{sub p} from these data. The comparison of inclusive RMC and OMC rates on nuclei has led to speculations of a large enhancement of g{sub p} in light nuclei and a large quenching of g{sub p} in heavy nuclei. We will discuss the evidence for and against the renormalization, of g{sub p}in nuclei and the problems of extracting g{sub p} from the nuclear RMC and OMC data.
Role of nuclear couplings in the inelastic excitation of weakly-bound neutron-rich nuclei
Energy Technology Data Exchange (ETDEWEB)
Dasso, C.H. [Niels Bohr Institute, Copenhagen (Denmark); Lenzi, S.M.; Vitturi, A. [Universita di Padova (Italy)
1996-12-31
Much effort is presently devoted to the study of nuclear systems far from the stability line. Particular emphasis has been placed in light systems such as {sup 11}Li, {sup 8}B and others, where the very small binding energy of the last particles causes their density distribution to extend considerably outside of the remaining nuclear core. Some of the properties associated with this feature are expected to characterize also heavier systems in the vicinity of the proton or neutron drip lines. It is by now well established that low-lying concentrations of multipole strength arise from pure configurations in which a peculiar matching between the wavelength of the continuum wavefunction of the particles and the range of the weakly-bound hole states occurs. To this end the authors consider the break-up of a weakly-bound system in a heavy-ion collision and focus attention in the inelastic excitation of the low-lying part of the continuum. They make use of the fact that previous investigations have shown that the multipole response in this region is not of a collective nature and describe their excited states as pure particle-hole configurations. Since the relevant parameter determining the strength distributions is the binding energy of the last bound orbital they find it most convenient to use single-particle wavefunctions generated by a sperical square-well potential with characteristic nuclear dimensions and whose depth has been adjusted to give rise to a situation in which the last occupied neutron orbital is loosely-bound. Spin-orbit couplings are, for the present purpose, ignored. The results of this investigation clearly indicate that nuclear couplings have the predominant role in causing projectile dissociation in many circumstances, even at bombarding energies remarkably below the Coulomb barrier.
Quantum Key Distribution Based on a Weak-Coupling Cavity QED Regime
Institute of Scientific and Technical Information of China (English)
李春燕; 李岩松
2011-01-01
We present a quantum key distribution scheme using a weak-coupling cavity QED regime based on quantum dense coding.Hybrid entanglement states of photons and electrons are used to distribute information.We just need to transmit photons without storing them in the scheme.The electron confined in a quantum dot,which is embedded in a microcavity,is held by one of the legitimate users throughout the whole communication process.Only the polarization of a single photon and spin of electron measurements are applied in this protocol,which are easier to perform than collective-Bell state measurements.Linear optical apparatus,such as a special polarizing beam splitter in a circular basis and single photon operations,make it more flexible to realize under current technology.Its efficiency will approach 100％ in the ideal case.The security of the scheme is also discussed.%We present a quantum key distribution scheme using a weak-coupling cavity QED regime based on quantum dense coding. Hybrid entanglement states of photons and electrons are used to distribute information. We just need to transmit photons without storing them in the scheme. The electron confined in a quantum dot, which is embedded in a microcavity, is held by one of the legitimate users throughout the whole communication process. Only the polarization of a single photon and spin of electron measurements are applied in this protocol, which are easier to perform than collective-Bell state measurements. Linear optical apparatus, such as a speciai polarizing beam splitter in a circular basis and single photon operations, make it more flexible to realize under current technology. Its efficiency will approach 100% in the ideal case. The security of the scheme is also discussed.
Institute of Scientific and Technical Information of China (English)
SONG Guangshi
2004-01-01
Supplementary annotations on special forms 1to 4, discussion on the general characteristics of K(t) and K(t, t'), and analyses on two noticeable limits are presented in this part. It is demonstrated that strong and weak parabolic transforms can be employed to change the standard form of a multi-variable indeterminate form into xmK type, hence to derive the standard formulae of the limit and the differential.
Bresch, D.; Huang, X.
2011-08-01
This paper mainly concerns the mathematical justification of a viscous compressible multi-fluid model linked to the Baer-Nunziato model used by engineers, see for instance I shii (Thermo-fluid dynamic theory of two-phase flow, Eyrolles, Paris, 1975), under a "stratification" assumption. More precisely, we show that some approximate finite-energy weak solutions of the isentropic compressible Navier-Stokes equations converge, on a short time interval, to the strong solution of this viscous compressible multi-fluid model, provided the initial density sequence is uniformly bounded with corresponding Young measures which are linear convex combinations of m Dirac measures. To the authors' knowledge, this provides, in the multidimensional in space case, a first positive answer to an open question, see H illairet (J Math Fluid Mech 9:343-376, 2007), with a stratification assumption. The proof is based on the weak solutions constructed by D esjardins (Commun Partial Differ Equ 22(5-6):977-1008, 1997) and on the existence and uniqueness of a local strong solution for the multi-fluid model established by H illairet assuming initial density to be far from vacuum. In a first step, adapting the ideas from H off and S antos (Arch Ration Mech Anal 188:509-543, 2008), we prove that the sequence of weak solutions built by D esjardins has extra regularity linked to the divergence of the velocity without any relation assumption between λ and μ. Coupled with the uniform bound of the density property, this allows us to use appropriate defect measures and their nice properties introduced and proved by H illairet (Aspects interactifs de la m'ecanique des fluides, PhD Thesis, ENS Lyon, 2005) in order to prove that the Young measure associated to the weak limit is the convex combination of m Dirac measures. Finally, under a non-degeneracy assumption of this combination ("stratification" assumption), this provides a multi-fluid system. Using a weak-strong uniqueness argument, we prove that
Neutron Limit on the Strongly-Coupled Chameleon Field
Li, K; Cory, D G; Haun, R; Heacock, B; Huber, M G; Nsofini, J; Pushin, D A; Saggu, P; Sarenac, D; Shahi, C B; Skavysh, V; Snow, W M; Young, A R
2016-01-01
The physical origin of the dark energy that causes the accelerated expansion rate of the universe is one of the major open questions of cosmology. One set of theories postulates the existence of a self-interacting scalar field for dark energy coupling to matter. In the chameleon dark energy theory, this coupling induces a screening mechanism such that the field amplitude is nonzero in empty space but is greatly suppressed in regions of terrestrial matter density. However measurements performed under appropriate vacuum conditions can enable the chameleon field to appear in the apparatus, where it can be subjected to laboratory experiments. Here we report the most stringent upper bound on the free neutron-chameleon coupling in the strongly-coupled limit of the chameleon theory using neutron interferometric techniques. Our experiment sought the chameleon field through the relative phase shift it would induce along one of the neutron paths inside a perfect crystal neutron interferometer. The amplitude of the cham...
Chaoticity threshold in magnetized plasmas: Numerical results in the weak coupling regime
Energy Technology Data Exchange (ETDEWEB)
Carati, A., E-mail: andrea.carati@unimi.it; Benfenati, F.; Maiocchi, A.; Galgani, L. [Università degli Studi di Milano, Milano (Italy); Zuin, M., E-mail: matteo.zuin@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Padova (Italy)
2014-03-15
The present paper is a numerical counterpart to the theoretical work [Carati et al., Chaos 22, 033124 (2012)]. We are concerned with the transition from order to chaos in a one-component plasma (a system of point electrons with mutual Coulomb interactions, in a uniform neutralizing background), the plasma being immersed in a uniform stationary magnetic field. In the paper [Carati et al., Chaos 22, 033124 (2012)], it was predicted that a transition should take place when the electron density is increased or the field decreased in such a way that the ratio ω{sub p}/ω{sub c} between plasma and cyclotron frequencies becomes of order 1, irrespective of the value of the so-called Coulomb coupling parameter Γ. Here, we perform numerical computations for a first principles model of N point electrons in a periodic box, with mutual Coulomb interactions, using as a probe for chaoticity the time-autocorrelation function of magnetization. We consider two values of Γ (0.04 and 0.016) in the weak coupling regime Γ ≪ 1, with N up to 512. A transition is found to occur for ω{sub p}/ω{sub c} in the range between 0.25 and 2, in fairly good agreement with the theoretical prediction. These results might be of interest for the problem of the breakdown of plasma confinement in fusion machines.
Weak-noise limit of a piecewise-smooth stochastic differential equation.
Chen, Yaming; Baule, Adrian; Touchette, Hugo; Just, Wolfram
2013-11-01
We investigate the validity and accuracy of weak-noise (saddle-point or instanton) approximations for piecewise-smooth stochastic differential equations (SDEs), taking as an illustrative example a piecewise-constant SDE, which serves as a simple model of Brownian motion with solid friction. For this model, we show that the weak-noise approximation of the path integral correctly reproduces the known propagator of the SDE at lowest order in the noise power, as well as the main features of the exact propagator with higher-order corrections, provided the singularity of the path integral associated with the nonsmooth SDE is treated with some heuristics. We also show that, as in the case of smooth SDEs, the deterministic paths of the noiseless system correctly describe the behavior of the nonsmooth SDE in the low-noise limit. Finally, we consider a smooth regularization of the piecewise-constant SDE and study to what extent this regularization can rectify some of the problems encountered when dealing with discontinuous drifts and singularities in SDEs.
Collective dynamics of delay-coupled limit cycle oscillators
Indian Academy of Sciences (India)
Abhijit Sen; Ramana Dodla; George L Johnston
2005-04-01
Coupled limit cycle oscillators with instantaneous mutual coupling offer a useful but idealized mathematical paradigm for the study of collective behavior in a wide variety of biological, physical and chemical systems. In most real-life systems however the interaction is not instantaneous but is delayed due to finite propagation times of signals, reaction times of chemicals, individual neuron firing periods in neural networks etc. We present a brief overview of the effect of time-delayed coupling on the collective dynamics of such coupled systems. Simple model equations describing two oscillators with a discrete time-delayed coupling as well as those describing linear arrays of a large number of oscillators with time-delayed global or local couplings are studied. Analytic and numerical results pertaining to time delay induced changes in the onset and stability of amplitude death and phase-locked states are discussed. A number of recent experimental and theoretical studies reveal interesting new directions of research in this field and suggest exciting future areas of exploration and applications.
Molecules Designed to Contain Two Weakly Coupled Spins with a Photoswitchable Spacer.
Uber, Jorge Salinas; Estrader, Marta; Garcia, Jordi; Lloyd-Williams, Paul; Sadurní, Anna; Dengler, Dominik; van Slageren, Joris; Chilton, Nicholas F; Roubeau, Olivier; Teat, Simon J; Ribas-Ariño, Jordi; Aromí, Guillem
2017-10-04
Controlling the charges and spins of molecules lies at the heart of spintronics. A photoswitchable molecule consisting of two independent spins separated by a photoswitchable moiety was designed in the form of new ligand H4 L, which features a dithienylethene photochromic unit and two lateral coordinating moieties, and yields molecules with [MM⋅⋅⋅MM] topology. Compounds [M4 L2 (py)6 ] (M=Cu, 1; Co, 2; Ni, 3; Zn, 4) were prepared and studied by single-crystal X-ray diffraction (SCXRD). Different metal centers can be selectively distributed among the two chemically distinct sites of the ligand, and this enables the preparation of many double-spin systems. Heterometallic [MM'⋅⋅⋅M'M] analogues with formulas [Cu2 Ni2 L2 (py)6 ] (5), [Co2 Ni2 L2 (py)6 ] (6), [Co2 Cu2 L2 (py)6 ] (7), [Cu2 Zn2 L2 (py)6 ] (8), and [Ni2 Zn2 L2 (py)6 ] (9) were prepared and analyzed by SCXRD. Their composition was established unambiguously. All complexes exhibit two weakly interacting [MM'] moieties, some of which embody two-level quantum systems. Compounds 5 and 8 each exhibit a pair of weakly coupled S=1/2 spins that show quantum coherence in pulsed Q-band EPR spectroscopy, as required for quantum computing, with good phase memory times (TM =3.59 and 6.03 μs at 7 K). Reversible photoswitching of all the molecules was confirmed in solution. DFT calculations on 5 indicate that the interaction between the two spins of the molecule can be switched on and off on photocyclization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hernández, P; Peña, C; Torro, E; Wennekers, J; Wittig, H
2008-01-01
A new method to determine the low-energy couplings of the $\\Delta S=1$ weak Hamiltonian is presented. It relies on a matching of the topological poles in $1/m^2$ of three-point correlators of two pseudoscalar densities and a four-fermion operator, measured in lattice QCD, to the same observables computed in the $\\epsilon$-regime of chiral perturbation theory. We test this method in a theory with a light charm quark, i.e. with an SU(4) flavour symmetry. Quenched numerical measurements are performed in a 2 fm box, and chiral perturbation theory predictions are worked out up to next-to-leading order. The matching of the two sides allows to determine the weak low-energy couplings in the SU(4) limit. We compare the results with a previous determination, based on three-point correlators containing two left-handed currents, and discuss the merits and drawbacks of the two procedures.
Indirect quantum sensors: Improving the sensitivity in characterizing very weakly coupled spins
Greiner, Johannes N; Neumann, Philipp; Wrachtrup, Jörg
2015-01-01
We propose a scheme to increase the sensitivity and thus the detection volume of nanoscale single molecule magnetic resonance imaging. The proposal aims to surpass the T1 limited detection of the sensor by taking advantage of a long-lived ancilla nuclear spin to which the sensor is coupled. We show how this nuclear spin takes over the role of the sensor spin, keeping the characteristic time-scales of detection on the same order but with a longer life-time allowing it to detect a larger volume of the sample which is not possible by the sensor alone.
Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bradley, A.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; de Viveiros, L.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Ott, R. A.; Palladino, K. J.; Pangilinan, M.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration
2016-04-01
We present constraints on weakly interacting massive particles (WIMP)-nucleus scattering from the 2013 data of the Large Underground Xenon dark matter experiment, including 1.4 ×104 kg day of search exposure. This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium β source and from kinematically constrained nuclear recoils down to 1.1 keV. Sensitivity, especially to low-mass WIMPs, is enhanced compared to our previous results which modeled the signal only above a 3 keV minimum energy. Under standard dark matter halo assumptions and in the mass range above 4 GeV c-2 , these new results give the most stringent direct limits on the spin-independent WIMP-nucleon cross section. The 90% C.L. upper limit has a minimum of 0.6 zb at 33 GeV c-2 WIMP mass.
Energy Technology Data Exchange (ETDEWEB)
Lafranceschina, Jacopo, E-mail: jlafranceschina@alaska.edu; Wackerbauer, Renate, E-mail: rawackerbauer@alaska.edu [Department of Physics, University of Alaska, Fairbanks, Alaska 99775-5920 (United States)
2015-01-15
Spatiotemporal chaos collapses to either a rest state or a propagating pulse solution in a ring network of diffusively coupled, excitable Morris-Lecar neurons. Weak excitatory synapses can increase the Lyapunov exponent, expedite the collapse, and promote the collapse to the rest state rather than the pulse state. A single traveling pulse solution may no longer be asymptotic for certain combinations of network topology and (weak) coupling strengths, and initiate spatiotemporal chaos. Multiple pulses can cause chaos initiation due to diffusive and synaptic pulse-pulse interaction. In the presence of chaos initiation, intermittent spatiotemporal chaos exists until typically a collapse to the rest state.
Transport zonation limits coupled nitrification-denitrification in permeable sediments
DEFF Research Database (Denmark)
Kessler, Adam John; Glud, R.N.; Cardenas, M.B.
2013-01-01
Measurement of biogeochemical processes in permeable sediments (including the hyporheic zone) is difficult because of complex multidimensional advective transport. This is especially the case for nitrogen cycling, which involves several coupled redox-sensitive reactions. To provide detailed insig......- and N-15-N-2 gas. The measured two-dimensional profiles correlate with computational model simulations, showing a deep pool of N-2 gas forming, and being advected to the surface below ripple peaks. Further isotope pairing calculations on these data indicate that coupled nitrification......-denitrification is severely limited in permeable sediments because the flow and transport field limits interaction between oxic and anoxic pore water. The approach allowed for new detailed insight into subsurface denitrification zones in complex permeable sediments....
Forbidden nonunique β decays and effective values of weak coupling constants
Haaranen, M.; Srivastava, P. C.; Suhonen, J.
2016-03-01
Forbidden nonunique β decays feature shape functions that are complicated combinations of different nuclear matrix elements and phase-space factors. Furthermore, they depend in a very nontrivial way on the values of the weak coupling constants, gV for the vector part and gA for the axial-vector part. In this work we include also the usually omitted second-order terms in the shape functions to see their effect on the computed decay half-lives and electron spectra (β spectra). As examples we study the fourth-forbidden nonunique ground-state-to-ground-state β- decay branches of 113Cd and 115In using the microscopic quasiparticle-phonon model and the nuclear shell model. A striking new feature that is reported in this paper is that the calculated shape of the β spectrum is quite sensitive to the values of gV and gA and hence comparison of the calculated with the measured spectrum shape opens a way to determine the values of these coupling constants. This article is designed to show the power of this comparison, coined spectrum-shape method (SSM), by studying the two exemplary β transitions within two different nuclear-structure frameworks. While the SSM seems to confine the gV values close to the canonical value gV=1.0 , the values of gA extracted from the half-life data and by the SSM emerge contradictory in the present calculations. This calls for improved nuclear-structure calculations and more measured data to systematically employ SSM for determination of the effective value of gA in the future.
The thin string limit of Cosmic Strings coupled to gravity
Sjodin, K R P
2001-01-01
The thin string limit of Cosmic Strings is investigated using a description in terms of Colombeau's theory of nonlinear generalised functions. It is shown that in this description the energy-momentum tensor has a well defined thin string limit. Furthermore the deficit angle of the conical spacetime that one obtains in the limit may be given in terms of the distributional energy-momentum tensor. On the other hand it is only in the special case of critical coupling that the energy-momentum tensor defined in the Colombeau algebra is associated to a conventional distribution. The asymptotics of both the matter and gravitational field are investigated in the thin string limit and it is shown how this leads to the `conical approximation' which is valid outside the inner core of the string.
Debye mass of massless \\phi^4-theory to order g^6 at weak coupling
Khan, Rashid
2015-01-01
We calculate the Debye mass of massless \\phi^4-theory to order g^6 at weak coupling. The contributions to the Debye mass arise from the hard momentum scale of order T and the soft momentum scale of order gT. Effective field theory methods and dimensional reduction are used to separate the contributions from the two momentum scales. The hard contribution can be calculated as a power series in g^2 using naive perturbation theory with bare propagators. The soft contribution is calculated using an effective theory in three dimensions, whose coefficients are power series in g^2. This contribution is a power series in g starting at order g^3. The calculation of the hard part to order g^6. The calculation of the soft part requires calculating the mass parameter in the effective theory to order g^6 and the evaluation of four-loop self-energy diagrams in three dimensions. This gives the Debye mass correct up to order g^6. We discuss the convergence of the perturbative series as well as the loop expansion in three dime...
2017-01-01
This work focuses on the design of transmitting coils in weakly coupled magnetic induction communication systems. We propose several optimization methods that reduce the active, reactive and apparent power consumption of the coil. These problems are formulated as minimization problems, in which the power consumed by the transmitting coil is minimized, under the constraint of providing a required magnetic field at the receiver location. We develop efficient numeric and analytic methods to solve the resulting problems, which are of high dimension, and in certain cases non-convex. For the objective of minimal reactive power an analytic solution for the optimal current distribution in flat disc transmitting coils is provided. This problem is extended to general three-dimensional coils, for which we develop an expression for the optimal current distribution. Considering the objective of minimal apparent power, a method is developed to reduce the computational complexity of the problem by transforming it to an equivalent problem of lower dimension, allowing a quick and accurate numeric solution. These results are verified experimentally by testing a number of coil geometries. The results obtained allow reduced power consumption and increased performances in magnetic induction communication systems. Specifically, for wideband systems, an optimal design of the transmitter coil reduces the peak instantaneous power provided by the transmitter circuitry, and thus reduces its size, complexity and cost. PMID:28192463
Controlling cooperativity of a metastable open system coupled weakly to a noisy environment
Institute of Scientific and Technical Information of China (English)
赵阳
2015-01-01
The notion of cooperativity comprises a specific characteristic of a multipartite system concerning its ability to demon-strate a sigmoidal-type response of varying sensitivities to input stimuli in transitions between states under controlled con-ditions. From a statistical physics viewpoint, in this work we attempt to describe the cooperativity by the stability of a metastable open system with respect to irreversibility. To treat the evolution of a system weakly coupled to the environment in a kinetic framework, we consider two fluctuating energy levels of different dimensionalities, initial population of one level, reversible transitions of population between the levels, and irreversible depopulation of another level. An average is made over level fluctuations and environment vibrations so that inter-level transition rate can be obtained accounting for the influences of external control on level position and dimensionality. It is found that the cooperativity of the two-level system is bounded approximately between 0.736 and unity, with the lower bound indicating worsening system stability.
Controlling cooperativity of a metastable open system coupled weakly to a noisy environment
Victor, I. Teslenko; Oleksiy, L. Kapitanchuk; Zhao, Yang
2015-02-01
The notion of cooperativity comprises a specific characteristic of a multipartite system concerning its ability to demonstrate a sigmoidal-type response of varying sensitivities to input stimuli in transitions between states under controlled conditions. From a statistical physics viewpoint, in this work we attempt to describe the cooperativity by the stability of a metastable open system with respect to irreversibility. To treat the evolution of a system weakly coupled to the environment in a kinetic framework, we consider two fluctuating energy levels of different dimensionalities, initial population of one level, reversible transitions of population between the levels, and irreversible depopulation of another level. An average is made over level fluctuations and environment vibrations so that an inter-level transition rate can be obtained accounting for the influences of external control on level position and dimensionality. It is found that the cooperativity of the two-level system is bounded approximately between 0.736 and unity, with the lower bound indicating worsening system stability. Project supported by the National Academy of Sciences of Ukraine (Grant No. 0110U007542) and the National Research Foundation of Singapore through the Competitive Research Programme (Grant No. NRF-CRP5-2009-04).
A weakly coupled semiconductor superlattice as a harmonic hypersonic-electrical transducer
Poyser, C. L.; Akimov, A. V.; Balanov, A. G.; Campion, R. P.; Kent, A. J.
2015-08-01
We study experimentally and theoretically the effects of high-frequency strain pulse trains on the charge transport in a weakly coupled semiconductor superlattice. In a frequency range of the order of 100 GHz such excitation may be considered as single harmonic hypersonic excitation. While travelling along the axis of the SL, the hypersonic acoustic wavepacket affects the electron tunnelling, and thus governs the electrical current through the device. We reveal how the change of current depends on the parameters of the hypersonic excitation and on the bias applied to the superlattice. We have found that the changes in the transport properties of the superlattices caused by the acoustic excitation can be largely explained using the current-voltage relation of the unperturbed system. Our experimental measurements show multiple peaks in the dependence of the transferred charge on the repetition rate of the strain pulses in the train. We demonstrate that these resonances can be understood in terms of the spectrum of the applied acoustic perturbation after taking into account the multiple reflections in the metal film serving as a generator of hypersonic excitation. Our findings suggest an application of the semiconductor superlattice as a hypersonic-electrical transducer, which can be used in various microwave devices.
Neutron limit on the strongly-coupled chameleon field
Li, K.; Arif, M.; Cory, D. G.; Haun, R.; Heacock, B.; Huber, M. G.; Nsofini, J.; Pushin, D. A.; Saggu, P.; Sarenac, D.; Shahi, C. B.; Skavysh, V.; Snow, W. M.; Young, A. R.; Index Collaboration
2016-03-01
The physical origin of the dark energy that causes the accelerated expansion rate of the Universe is one of the major open questions of cosmology. One set of theories postulates the existence of a self-interacting scalar field for dark energy coupling to matter. In the chameleon dark energy theory, this coupling induces a screening mechanism such that the field amplitude is nonzero in empty space but is greatly suppressed in regions of terrestrial matter density. However measurements performed under appropriate vacuum conditions can enable the chameleon field to appear in the apparatus, where it can be subjected to laboratory experiments. Here we report the most stringent upper bound on the free neutron-chameleon coupling in the strongly coupled limit of the chameleon theory using neutron interferometric techniques. Our experiment sought the chameleon field through the relative phase shift it would induce along one of the neutron paths inside a perfect crystal neutron interferometer. The amplitude of the chameleon field was actively modulated by varying the millibar pressures inside a dual-chamber aluminum cell. We report a 95% confidence level upper bound on the neutron-chameleon coupling β ranging from β <4.7 ×106 for a Ratra-Peebles index of n =1 in the nonlinear scalar field potential to β <2.4 ×107 for n =6 , one order of magnitude more sensitive than the most recent free neutron limit for intermediate n . Similar experiments can explore the full parameter range for chameleon dark energy in the foreseeable future.
Quantized Brans-Dicke theory: Phase transition, strong coupling limit, and general relativity
Pal, Sridip
2016-10-01
We show that Friedmann-Robertson-Walker geometry with a flat spatial section in quantized (Wheeler deWitt quantization) Brans-Dicke (BD) theory reveals a rich phase structure owing to anomalous breaking of a classical symmetry, which maps the scale factor a ↦λ a for some constant λ . In the weak coupling (ω ) limit, the theory goes from a symmetry preserving phase to a broken phase. The existence of a phase boundary is an obstruction to another classical symmetry [see V. Faraoni, Phys. Rev. D 59, 084021 (1999).] (which relates two BD theories with different couplings) admitted by BD theory with scale invariant matter content, i.e., Tμμ=0 . Classically, this prohibits the BD theory from reducing to general relativity (GR) for scale invariant matter content. We show that a strong coupling limit of both BD and GR preserves the symmetry involving the scale factor. We also show that with scale invariant matter content (radiation, i.e., P =1/3 ρ ), the quantized BD theory does reduce to GR as ω →∞ , which is in sharp contrast to classical behavior. This is a first known illustration of a scenario where quantized BD theory provides an example of anomalous symmetry breaking and resulting binary phase structure. We make a conjecture regarding the strong coupling limit of the BD theory in a generic scenario.
STATIONARY STRUCTURES FOR A WEAKLY COUPLED ELLIPTIC SYSTEM ARISING IN TWO-PREDATOR, TWO-PREY MODELS
Institute of Scientific and Technical Information of China (English)
严平; 林支桂
2001-01-01
Weakly-coupled elliptic system arising in the two-predator, two-prey model is discussed. It is proved that there is no non-constant solution if diffusions or inter-specific competitions are strong, or if the intrinsic growths of the prey are slow and the intrinsic drop rates of predator are fast.
Coupling light into optical fibres near the diffraction limit
Horton, A J; Horton, Anthony J.; Bland-Hawthorn, Joss
2006-01-01
The burgeoning field of astrophotonics explores the interface between astronomy and photonics. Important applications include photonic OH suppression at near-infrared wavelengths, and integrated photonic spectroscopy. These new photonic mechanisms are not well matched to conventional multi-mode fibres and are best fed with single or few-mode fibres. We envisage the largest gains in astrophotonics will come from instruments that operate with single or few-mode fibres in the diffraction limited or near diffraction limited regimes. While astronomical instruments have largely solved the problem of coupling light into multi-mode fibres this is largely unexplored territory for few-mode and single-mode fibres. Here we describe a project to explore this topic in detail, and present initial results on coupling light into single and few-mode fibres at the diffraction limit. We find that fibres with as few as ~5 guided modes have qualitatively different behaviour to single-mode fibres and share a number of the beneficia...
Caridad, José M.; Winters, Sinéad; McCloskey, David; Duesberg, Georg S.; Donegan, John F.; Krstić, Vojislav
2017-01-01
Reproducible and enhanced optical detection of molecules in low concentrations demands simultaneously intense and homogeneous electric fields acting as robust signal amplifiers. To generate such sophisticated optical near-fields, different plasmonic nanostructures were investigated in recent years. These, however, exhibit either high enhancement factor (EF) or spatial homogeneity but not both. Small interparticle gaps or sharp nanostructures show enormous EFs but no near-field homogeneity. Meanwhile, approaches using rounded and separated monomers create uniform near-fields with moderate EFs. Here, guided by numerical simulations, we show how arrays of weakly-coupled Ag nanohelices achieve both homogeneous and strong near-field enhancements, reaching even the limit forreproducible detection of individual molecules. The unique near-field distribution of a single nanohelix consists of broad hot-spots, merging with those from neighbouring nanohelices in specific array configurations and generating a wide and uniform detection zone (“hot-volume”). We experimentally assessed these nanostructures via surface-enhanced Raman spectroscopy, obtaining a corresponding EF of ~107 and a relative standard deviation <10%. These values demonstrate arrays of nanohelices as state-of-the-art substrates for reproducible optical detection as well as compelling nanostructures for related fields such as near-field imaging. PMID:28358022
Caridad, José M; Winters, Sinéad; McCloskey, David; Duesberg, Georg S; Donegan, John F; Krstić, Vojislav
2017-03-30
Reproducible and enhanced optical detection of molecules in low concentrations demands simultaneously intense and homogeneous electric fields acting as robust signal amplifiers. To generate such sophisticated optical near-fields, different plasmonic nanostructures were investigated in recent years. These, however, exhibit either high enhancement factor (EF) or spatial homogeneity but not both. Small interparticle gaps or sharp nanostructures show enormous EFs but no near-field homogeneity. Meanwhile, approaches using rounded and separated monomers create uniform near-fields with moderate EFs. Here, guided by numerical simulations, we show how arrays of weakly-coupled Ag nanohelices achieve both homogeneous and strong near-field enhancements, reaching even the limit forreproducible detection of individual molecules. The unique near-field distribution of a single nanohelix consists of broad hot-spots, merging with those from neighbouring nanohelices in specific array configurations and generating a wide and uniform detection zone ("hot-volume"). We experimentally assessed these nanostructures via surface-enhanced Raman spectroscopy, obtaining a corresponding EF of ~10(7) and a relative standard deviation <10%. These values demonstrate arrays of nanohelices as state-of-the-art substrates for reproducible optical detection as well as compelling nanostructures for related fields such as near-field imaging.
Fu, Changbo; Cui, Xiangyi; Zhou, Xiaopeng; Chen, Xun; Chen, Yunhua; Fang, Deqing; Giboni, Karl; Giuliani, Franco; Han, Ke; Huang, Xingtao; Ji, Xiangdong; Ju, Yonglin; Lei, Siao; Li, Shaoli; Liu, Huaxuan; Liu, Jianglai; Ma, Yugang; Mao, Yajun; Ren, Xiangxiang; Tan, Andi; Wang, Hongwei; Wang, Jiming; Wang, Meng; Wang, Qiuhong; Wang, Siguang; Wang, Xuming; Wang, Zhou; Wu, Shiyong; Xiao, Mengjiao; Xie, Pengwei; Yan, Binbin; Yang, Yong; Yue, Jianfeng; Zhang, Hongguang; Zhang, Tao; Zhao, Li; Zhou, Ning; PandaX-II Collaboration
2017-02-01
New constraints are presented on the spin-dependent weakly-interacting-massive-particle- (WIMP-)nucleon interaction from the PandaX-II experiment, using a data set corresponding to a total exposure of 3.3 ×104 kg day . Assuming a standard axial-vector spin-dependent WIMP interaction with Xe 129 and Xe 131 nuclei, the most stringent upper limits on WIMP-neutron cross sections for WIMPs with masses above 10 GeV /c2 are set in all dark matter direct detection experiments. The minimum upper limit of 4.1 ×10-41 cm2 at 90% confidence level is obtained for a WIMP mass of 40 GeV /c2 . This represents more than a factor of 2 improvement on the best available limits at this and higher masses. These improved cross-section limits provide more stringent constraints on the effective WIMP-proton and WIMP-neutron couplings.
Spin-lattice coupling induced weak dynamical magnetism in EuTiO3 at high temperatures
Guguchia, Z.; Keller, H.; Kremer, R. K.; Köhler, J.; Luetkens, H.; Goko, T.; Amato, A.; Bussmann-Holder, A.
2014-08-01
EuTiO3, which is a G-type antiferromagnet below TN=5.5 K, has some fascinating properties at high temperatures, suggesting that macroscopically hidden dynamically fluctuating weak magnetism exists at high temperatures. This conjecture is substantiated by magnetic field dependent magnetization measurements, which exhibit pronounced anomalies below 200 K becoming more distinctive with increasing magnetic field strength. Additional results from muon spin rotation experiments provide evidence for weak fluctuating bulk magnetism induced by spin-lattice coupling which is strongly supported in increasing magnetic field.
Snyder, Jeff; Hanstock, Chris C.; Wilman, Alan H.
2009-10-01
A general in vivo magnetic resonance spectroscopy editing technique is presented to detect weakly coupled spin systems through subtraction, while preserving singlets through addition, and is applied to the specific brain metabolite γ-aminobutyric acid (GABA) at 4.7 T. The new method uses double spin echo localization (PRESS) and is based on a constant echo time difference spectroscopy approach employing subtraction of two asymmetric echo timings, which is normally only applicable to strongly coupled spin systems. By utilizing flip angle reduction of one of the two refocusing pulses in the PRESS sequence, we demonstrate that this difference method may be extended to weakly coupled systems, thereby providing a very simple yet effective editing process. The difference method is first illustrated analytically using a simple two spin weakly coupled spin system. The technique was then demonstrated for the 3.01 ppm resonance of GABA, which is obscured by the strong singlet peak of creatine in vivo. Full numerical simulations, as well as phantom and in vivo experiments were performed. The difference method used two asymmetric PRESS timings with a constant total echo time of 131 ms and a reduced 120° final pulse, providing 25% GABA yield upon subtraction compared to two short echo standard PRESS experiments. Phantom and in vivo results from human brain demonstrate efficacy of this method in agreement with numerical simulations.
Energy Technology Data Exchange (ETDEWEB)
Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States); Ishizaki, Akihito [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan)
2015-08-14
Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.
Nan, Guangjun; Wang, Linjun; Yang, Xiaodi; Shuai, Zhigang; Zhao, Yi
2009-01-14
Semiclassical Marcus electron transfer theory is often employed to investigate the charge transport properties of organic semiconductors. However, quite often the electronic couplings vary several orders of magnitude in organic crystals, which goes beyond the application scope of semiclassical Marcus theory with the first-order perturbative nature. In this work, we employ a generalized nonadiabatic transition state theory (GNTST) [Zhao et al., J. Phys. Chem. A 110, 8204 (2004)], which can evaluate the charge transfer rates from weak to strong couplings, to study charge transport properties in prototypical organic semiconductors: quaterthiophene and sexithiophene single crystals. By comparing with GNTST results, we find that the semiclassical Marcus theory is valid for the case of the coupling semiconductors with general electronic coupling terms. Taking oligothiophenes as examples, we find that our GNTST-calculated hole mobility is about three times as large as that from the semiclassical Marcus theory. The difference arises from the quantum nuclear tunneling and the nonperturbative effects.
Heavy Quark Diffusion in Strong Magnetic Fields at Weak Coupling and Implication to Elliptic Flow
Fukushima, Kenji; Yee, Ho-Ung; Yin, Yi
2015-01-01
We compute the momentum diffusion coefficients of heavy quarks, $\\kappa_\\parallel$ and $\\kappa_\\perp$, in a strong magnetic field $B$ along the directions parallel and perpendicular to $B$, respectively, at the leading order in QCD coupling constant $\\alpha_s$. We consider a regime relevant for the relativistic heavy ion collisions, $\\alpha_s eB\\ll T^2\\ll eB$, so that thermal excitations of light quarks are restricted to the lowest Landau level (LLL) states. In the vanishing light-quark mass limit, we find $\\kappa_\\perp^{\\rm LO}\\propto \\alpha_s^2 T eB$ in the leading order that arises from screened Coulomb scatterings with (1+1)-dimensional LLL quarks, while $\\kappa_\\parallel$ gets no contribution from the scatterings with LLL quarks due to kinematic restrictions. We show that the first non-zero leading order contributions to $\\kappa_\\parallel^{\\rm LO}$ come from the two separate effects: 1) the screened Coulomb scatterings with thermal gluons, and 2) a finite light-quark mass $m_q$. The former leads to $\\kap...
Institute of Scientific and Technical Information of China (English)
YANG Ling'e; GUO Boling
2006-01-01
By the uniform a priori estimate of solution about parameters, we prove the existence of global solution and inviscid limit to a generalized Ginzburg-Landau equations in two dimensions. We also prove that the solution to the Ginzburg-Landau equations converges to the weak solution to the derivative nonlinear Schrodinger equations.
Directory of Open Access Journals (Sweden)
M.V. Tkach
2015-09-01
Full Text Available The partial summing of infinite range of diagrams for the two-phonon mass operator of polaron described by Frohlich Hamiltonian is performed using the Feynman-Pines diagram technique. The renormalized spectral parameters of ground and first excited (phonon repeat polaron state are accurately calculated for the weak electron-phonon coupling at T=0 K. It is shown that the stronger electron-phonon interaction shifts the energy of both states into low-energy region of the spectra. The ground state stays stationary and the excited one - decays at bigger coupling constant.
Coherent Control of Photofragment Distributions Using Laser Phase Modulation in the Weak-Field Limit
DEFF Research Database (Denmark)
Garcia-Vela, Alberto; Henriksen, Niels Engholm
2015-01-01
The possibility of quantum interference control of the final state distributions of photodissociation fragments by means of pure phase modulation of the pump laser pulse in the weak-field regime is demonstrated theoretically for the first time. The specific application involves realistic wave pac...
Limits from Weak Gravity Conjecture on Chaplygin-Gas-Type Models
Institute of Scientific and Technical Information of China (English)
WU Xing; ZHU Zong-Hong
2008-01-01
@@ The weak gravity conjecture is proposed as a criterion to distinguish the landscape from the swampland in string theory. As an application in cosmology of this conjecture, we use it to impose theoretical constraint on parameters of the Chaplygin-gas-type models. Our analysis indicates that the Chaplygin-gas-type models realized in quintessence field are in the swampland.
Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S. R.
1999-01-01
We discuss the coherent atomic oscillations between two weakly coupled Bose-Einstein condensates. The weak link is provided by a laser barrier in a (possibly asymmetric) double-well trap or by Raman coupling between two condensates in different hyperfine levels. The boson Josephson junction (BJJ) dynamics is described by the two-mode nonlinear Gross-Pitaevskii equation that is solved analytically in terms of elliptic functions. The BJJ, being a neutral, isolated system, allows the investigations of dynamical regimes for the phase difference across the junction and for the population imbalance that are not accessible with superconductor Josephson junctions (SJJ's). These include oscillations with either or both of the following properties: (i) the time-averaged value of the phase is equal to π (π-phase oscillations); (ii) the average population imbalance is nonzero, in states with macroscopic quantum self-trapping. The (nonsinusoidal) generalization of the SJJ ac and plasma oscillations and the Shapiro resonance can also be observed. We predict the collapse of experimental data (corresponding to different trap geometries and the total number of condensate atoms) onto a single universal curve for the inverse period of oscillations. Analogies with Josephson oscillations between two weakly coupled reservoirs of 3He-B and the internal Josephson effect in 3He-A are also discussed.
Xu, Dazhi; Cao, Jianshu
2016-08-01
The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.
Coupled Fixed Point Theorems for Weak Contraction Mappings under F-Invariant Set
Directory of Open Access Journals (Sweden)
Wutiphol Sintunavarat
2012-01-01
Full Text Available We extend the recent results of the coupled fixed point theorems of Cho et al. (2012 by weakening the concept of the mixed monotone property. We also give some examples of a nonlinear contraction mapping, which is not applied to the existence of the coupled fixed point by the results of Cho et al. but can be applied to our results. The main results extend and unify the results of Cho et al. and many results of the coupled fixed point theorems.
Transportation dynamic on coupled networks with limited bandwidth
Li, Ming; Wang, Bing-Hong
2016-01-01
The communication networks in real world often couple with each other to save costs, which results in any network does not have a stand-alone function and efficiency. To investigate this, in this paper we propose a transportation model on two coupled networks with bandwidth sharing. We find that the free-flow state and the congestion state can coexist in the two coupled networks, and the free-flow path and congestion path can coexist in each network. Considering three bandwidth-sharing mechanisms, random, assortative and disassortative couplings, we also find that the transportation capacity of the network only depends on the coupling mechanism, and the fraction of coupled links only affects the performance of the system in the congestion state, such as the traveling time. In addition, with assortative coupling, the traffic capacity of the system will decrease significantly. However, the disassortative coupling has little influence on the transportation capacity of the system, which provides a good strategy t...
Su, Ying; Wang, C.; Avishai, Y.; Meir, Yigal; Wang, X. R.
2016-09-01
The one-parameter scaling theory of localization predicts that all states in a disordered two-dimensional system with broken time reversal symmetry are localized even in the presence of strong spin-orbit coupling. While at constant strong magnetic fields this paradigm fails (recall the quantum Hall effect), it is believed to hold at weak magnetic fields. Here we explore the nature of quantum states at weak magnetic field and strongly fluctuating spin-orbit coupling, employing highly accurate numerical procedure based on level spacing distribution and transfer matrix technique combined with one parameter finite-size scaling hypothesis. Remarkably, the metallic phase, (known to exist at zero magnetic field), persists also at finite (albeit weak) magnetic fields, and eventually crosses over into a critical phase, which has already been confirmed at high magnetic fields. A schematic phase diagram drawn in the energy-magnetic field plane elucidates the occurrence of localized, metallic and critical phases. In addition, it is shown that nearest-level statistics is determined solely by the symmetry parameter β and follows the Wigner surmise irrespective of whether states are metallic or critical.
Phase reduction of weakly perturbed limit cycle oscillations in time-delay systems
Novičenko, V.; Pyragas, K.
2012-06-01
The phase reduction method is applied to a general class of weakly perturbed time-delay systems exhibiting periodic oscillations. The adjoint equation with an appropriate initial condition for the infinitesimal phase response curve of a time-delay system is derived. The method is demonstrated numerically for the Mackey-Glass equation as well as for a chaotic Rössler system subject to a delayed feedback control (DFC). We show that the profile of the phase response curve of a periodic orbit stabilized by the DFC algorithm does not depend on the control matrix. This property is universal and holds for any dynamical system subject to the DFC.
Directory of Open Access Journals (Sweden)
Buonaguro Franco M
2009-06-01
Full Text Available Abstract Virtually all cases of cervical cancer are caused by persistent infections with a restricted set of human papillomaviruses (HPV. Some HPV types, like HPV16 and HPV18, are clear and powerful carcinogens. However, the categorization of the most weakly carcinogenic HPV types is extremely challenging. The decisions are important for screening test and vaccine development. This article describes for open discussion an approach recently taken by a World Health Organization International Agency for Research on Cancer (IARC Monographs Working Group to re-assess the carcinogenicity of different HPV types.
Sterile neutrino dark matter: A tale of weak interactions in the strong coupling epoch
Venumadhav, Tejaswi; Abazajian, Kevork N; Hirata, Christopher M
2015-01-01
We perform a detailed study of the weak interactions of standard model neutrinos with the primordial plasma and their effect on the resonant production of sterile neutrino dark matter. Motivated by issues in cosmological structure formation on small scales, and reported X-ray signals that could be due to sterile neutrino decay, we consider $7$ keV-scale sterile neutrinos. Oscillation-driven production of such sterile neutrinos occurs at temperatures $T \\gtrsim 100$ MeV, where we study two significant effects of weakly charged species in the primordial plasma: (1) the redistribution of an input lepton asymmetry; (2) the opacity for active neutrinos. We calculate the redistribution analytically above and below the quark-hadron transition, and match with lattice QCD calculations through the transition. We estimate opacities due to tree level processes involving leptons and quarks above the quark-hadron transition, and the most important mesons below the transition. We report final sterile neutrino dark matter ph...
Rice, Anne M; Mahling, Ryan; Fealey, Michael E; Rannikko, Anika; Dunleavy, Katie; Hendrickson, Troy; Lohese, K Jean; Kruggel, Spencer; Heiling, Hillary; Harren, Daniel; Sutton, R Bryan; Pastor, John; Hinderliter, Anne
2014-09-01
Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Mandelbaum, R; Mandelbaum, Rachel; Seljak, Uros
2007-01-01
Cluster abundance measurements are among the most sensitive probes of the amplitude of matter fluctuations in the universe, which in turn can help constrain other cosmological parameters, like the dark energy equation of state or neutrino mass. However, difficulties in calibrating the relation between the cluster observable and halo mass, and the lack of completeness information, make this technique particularly susceptible to systematic errors. Here we argue that a cluster abundance analysis using statistical weak lensing on the stacked clusters leads to a robust lower limit on the amplitude of fluctuations. The method compares the average weak lensing signal measured around the whole cluster sample to a theoretical prediction, assuming that the clusters occupy the centers of all of the most massive halos above some minimum mass threshold. If the amplitude of fluctuations is below a certain limiting value, there are too few massive clusters in this model and the theoretical prediction falls below the observa...
Accurate covariance estimation of galaxy-galaxy weak lensing: limitations of jackknife covariance
Shirasaki, Masato; Miyatake, Hironao; Takahashi, Ryuichi; Hamana, Takashi; Nishimichi, Takahiro; Murata, Ryoma
2016-01-01
We develop a method to simulate galaxy-galaxy weak lensing by utilizing all-sky, light-cone simulations. We populate a real catalog of source galaxies into a light-cone simulation realization, simulate the lensing effect on each galaxy, and then identify lensing halos that are considered to host galaxies or clusters of interest. We use the mock catalog to study the error covariance matrix of galaxy-galaxy weak lensing and find that the super-sample covariance (SSC), which arises from density fluctuations with length scales comparable with or greater than a size of survey area, gives a dominant source of the sample variance. We then compare the full covariance with the jackknife (JK) covariance, the method that estimates the covariance from the resamples of the data itself. We show that, although the JK method gives an unbiased estimator of the covariance in the shot noise or Gaussian regime, it always over-estimates the true covariance in the sample variance regime, because the JK covariance turns out to be a...
Zemlyanaya, E. V.; Bashashin, M. V.; Rahmonov, I. R.; Shukrinov, Yu. M.; Atanasova, P. Kh.; Volokhova, A. V.
2016-10-01
We consider a model of system of long Josephson junctions (LJJ) with inductive and capacitive coupling. Corresponding system of nonlinear partial differential equations is solved by means of the standard three-point finite-difference approximation in the spatial coordinate and utilizing the Runge-Kutta method for solution of the resulting Cauchy problem. A parallel algorithm is developed and implemented on a basis of the MPI (Message Passing Interface) technology. Effect of the coupling between the JJs on the properties of LJJ system is demonstrated. Numerical results are discussed from the viewpoint of effectiveness of parallel implementation.
Random matrix theory for closed quantum dots with weak spin-orbit coupling.
Held, K; Eisenberg, E; Altshuler, B L
2003-03-14
To lowest order in the coupling strength, the spin-orbit coupling in quantum dots results in a spin-dependent Aharonov-Bohm flux. This flux decouples the spin-up and spin-down random matrix theory ensembles of the quantum dot. We employ this ensemble and find significant changes in the distribution of the Coulomb blockade peak height, in particular, a decrease of the width of the distribution. The puzzling disagreement between standard random matrix theory and the experimental distributions by Patel et al. [Phys. Rev. Lett. 81, 5900 (1998)
Persistent spin current in a quantum wire with weak Dresselhaus spin-orbit coupling
Institute of Scientific and Technical Information of China (English)
Sheng Wei; Wang Yi; Zhou Guang-Hui
2007-01-01
The spin current in a parabolically confined semiconductor heterojunction quantum wire with Dresselhaus spinorbit coupling is theoretically studied by using the perturbation method. The formulae of the elements for linear and angular spin current densities are derived by using the recent definition for spin current based on spin continuity equation. It is found that the spin current in this Dresselhaus spin-orbit coupling quantum wire is antisymmetrical,which is different from that in R ashba model due to the difference in symmetry between these two models. Some numerical examples for the result are also demonstrated and discussed.
Bekenstein entropy bound for weakly-coupled field theories on a 3-sphere
Myers, Joyce C.
2012-01-01
We calculate the high temperature partition functions for SU(N-c) orU(N-c) gauge theories in the deconfined phase on 51 x 53, with scalars, vectors, and/or fermions in an at representation, at zero 't Hooft coupling and large N-c, using, analytical methods. We compare these with numerical results wh
Weakly coupled heat bath models for Gibbs-like invariant states in nonlinear wave equations
J. Bajars (Janis); J.E. Frank (Jason); B.J. Leimkuhler (Ben)
2013-01-01
textabstractThermal bath coupling mechanisms as utilized in molecular dynamics are applied to partial differential equation models. Working from a semi-discrete (Fourier mode) formulation for the Burgers–Hopf or Korteweg–de Vries equation, we introduce auxiliary variables and stochastic
Calvo, Rafael; Santana, Vinicius T.; Nascimento, Otaciro R.
2017-08-01
We report a variation with temperature T of the effective interdimeric interaction Jeff' in the antiferromagnetic (AFM) copper dimeric organic compound Cu2[TzTs] 4 (N -thiazol-2-yl-toluenesulfonamidate CuII). This T dependence was obtained from measurements of the effects in the electron paramagnetic resonance (EPR) spectra of the proposed quantum phase transition associated with the exchange-narrowing processes. Cu2[TzTs] 4 contains exchange-coupled pairs of CuII spins SA and SB (S =1 /2 ), with intradimeric AFM exchange coupling J0=(-115 ±1 ) cm-1 (Hex=-J0SA.SB ). The variation of the EPR linewidth of single crystals with field orientation around a "magic angle" where the transitions intersect and the integrated signal intensity of the so-called U peak of the powder spectrum were measured as a function of T . Modeling these data using arguments of exchange narrowing in the adiabatic regime considering the angular variation of the single-crystal spectra and a geometric description, we find that the effective interdimeric coupling | Jeff'| associated with the exchange frequency ωex is negligible for T ≪| J0/kB| when the units are uncoupled and | Jeff'|=(0.080 ±0.005 ) cm-1 (| Jeff'/J0|=7.0 × 10-4 ) at 298 K. Within this T interval, two ranges of | Jeff'| with linear temperature variation but different slopes, with a kink at ˜80 K, are observed and discussed. This T dependence arises from the growing population of the triplet state, and its relevance to the properties of various arrays of dimeric units is discussed. Our experimental procedures and results are compared with those of previous works in ion radical salts and dimeric metal compounds. The relation between the effective coupling | Jeff'| and the real interdimeric exchange coupling | J'| related to the chemical paths connecting neighbor units is discussed.
Thermodynamics of weakly coupled Falicov-Kimball chains from renormalization-group theory
Sznajd, Jozef
2015-06-01
The linear perturbation renormalization group is used to study spinless two-band fermion chains at half-filling. The model consists of two species of spinless fermions, namely localized f and extended p , and it takes into account the following: the kinetic energy of fermions p , the on-site Coulomb repulsion V between p and f fermions, chemical potentials μp and μf adjusted in such a way that the average of the site occupation + =1 , and a weak interchain hopping tx. The average occupation number, the specific heat, and the correlation functions are studied as functions of temperature. For a single chain the occupation number is a smooth function of T and the specific heat displays two maxima. The weak interchain hopping triggers a discontinuity in the occupation number of fermions as a function of temperature. A long-standing controversy on whether the Falicov-Kimball model can describe a discontinuous transition of nf is also addressed.
Ekşioğlu, Yasa; Güven, Kaan
2011-01-01
We propose that a weakly-coupled nonlinear dielectric waveguide -- surface-plasmon system can be formulated as a new type of Josephson junction. Such a system can be realized along a metal - dielectric interface where the dielectric medium hosts a nonlinear waveguide (e.g. fiber) for soliton propagation. We demonstrate that the system is in close analogy to the bosonic Josephson-Junction (BJJ) of atomic condensates at very low temperatures, yet exhibits different dynamical features. In particular, the inherently dynamic coupling parameter between soliton and surface-plasmon generates self-trapped oscillatory states at nonzero fractional populations with zero and $\\pi$ time averaged phase difference. The salient features of the dynamics are presented in the phase space.
Casalderrey-Solana, Jorge; Milhano, Jose Guilherme; Pablos, Daniel; Rajagopal, Krishna
2015-01-01
We confront a hybrid strong/weak coupling model for jet quenching to data from LHC heavy ion collisions. The model combines the perturbative QCD physics at high momentum transfer and the strongly coupled dynamics of non- abelian gauge theories plasmas in a phenomenological way. By performing a full Monte Carlo simulation, and after fitting one single parameter, we successfully describe several jet observables at the LHC, including dijet and photon jet measurements. Within current theoretical and experimental uncertainties, we find that such observables show little sensitivity to the specifics of the microscopic energy loss mechanism. We also present a new observable, the ratio of the fragmentation function of inclusive jets to that of the associated jets in dijet pairs, which can discriminate among different medium models. Finally, we discuss the importance of plasma response to jet passage in jet shapes.
Damped driven coupled oscillators: entanglement, decoherence and the classical limit
Energy Technology Data Exchange (ETDEWEB)
Mancilla, R D Guerrero; Rey-Gonzalez, R R; Fonseca-Romero, K M [Grupo de Optica e Informacion Cuantica, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)], E-mail: rdguerrerom@unal.edu.co, E-mail: rrreyg@unal.edu.co, E-mail: kmfonsecar@unal.edu.co
2009-03-13
We investigate the quantum-classical border, the entanglement and decoherence of an analytically solvable model, comprising a first subsystem (a harmonic oscillator) coupled to a driven and damped second subsystem (another harmonic oscillator). We choose initial states whose dynamics is confined to a couple of two-level systems, and show that the maximum value of entanglement between the two subsystems, as measured by concurrence, depends on the dissipation rate to the coupling-constant ratio and the initial state. While in a related model the entropy of the first subsystem (a two-level system) never grows appreciably (for large dissipation rates), in our model it reaches a maximum before decreasing. Although both models predict small values of entanglement and dissipation, for fixed times of the order of the inverse of the coupling constant and large dissipation rates, these quantities decrease faster, as a function of the ratio of the dissipation rate to the coupling constant, in our model.
Cotton, Stephen J.; Miller, William H.
2016-10-01
Previous work has shown how a symmetrical quasi-classical (SQC) windowing procedure can be used to quantize the initial and final electronic degrees of freedom in the Meyer-Miller (MM) classical vibronic (i.e, nuclear + electronic) Hamiltonian, and that the approach provides a very good description of electronically non-adiabatic processes within a standard classical molecular dynamics framework for a number of benchmark problems. This paper explores application of the SQC/MM approach to the case of very weak non-adiabatic coupling between the electronic states, showing (as anticipated) how the standard SQC/MM approach used to date fails in this limit, and then devises a new SQC windowing scheme to deal with it. Application of this new SQC model to a variety of realistic benchmark systems shows that the new model not only treats the weak coupling case extremely well, but it is also seen to describe the "normal" regime (of electronic transition probabilities ≳ 0.1) even more accurately than the previous "standard" model.
Four-Hair Relations for Differentially Rotating Neutron Stars in the Weak-Field Limit
Bretz, Joseph; Yunes, Nicolas
2015-01-01
The opportunity to study physics at supra-nuclear densities through X-ray observations of neutron stars has led to in-depth investigations of certain approximately universal relations that can remove degeneracies in pulse profile models. One such set of relations determines all of the multipole moments of a neutron star just from the first three (the mass monopole, the current dipole and the mass quadrupole moment) approximately independently of the equation of state. These three-hair relations were found to hold in neutron stars that rotate rigidly, as is the case in old pulsars, but neutron stars can also rotate differentially, as is the case for proto-neutron stars and hypermassive transient remnants of binary mergers. We here extend the three-hair relations to differentially rotating stars for the first time with a generic rotation law using two approximations: a weak-field scheme (an expansion in powers of the neutron star compactness) and a perturbative differential rotation scheme (an expansion about r...
Information about the state of a charge qubit gained by a weakly coupled quantum point contact
Energy Technology Data Exchange (ETDEWEB)
Ashhab, S; You, J Q; Nori, Franco [Advanced Science Institute, Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198 (Japan)], E-mail: ashhab@riken.jp
2009-12-15
We analyze the information that one can learn about the state of a quantum two-level system, i.e. a qubit, when probed weakly by a nearby detector. We consider the general case where the qubit Hamiltonian and the qubit's operator probed by the detector do not commute. Because the qubit's state keeps evolving while being probed and the measurement data is mixed with a detector-related background noise, one might expect the detector to fail in this case. We show, however, that under suitable conditions and by proper analysis of the measurement data, useful information about the initial state of the qubit can be extracted. Our approach complements the usual master-equation and quantum-trajectory approaches, which describe the evolution of the qubit's quantum state during the measurement process but do not keep track of the acquired measurement information.
Energy Technology Data Exchange (ETDEWEB)
Casalderrey-Solana, Jorge [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Gulhan, Doga Can [Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Physics Department, Theory Unit, CERN, CH-1211 Genève 23 (Switzerland); Pablos, Daniel [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2016-12-15
Within a hybrid strong/weak coupling model for jets in strongly coupled plasma, we explore jet modifications in ultra-relativistic heavy ion collisions. Our approach merges the perturbative dynamics of hard jet evolution with the strongly coupled dynamics which dominates the soft exchanges between the fast partons in the jet shower and the strongly coupled plasma itself. We implement this approach in a Monte Carlo, which supplements the DGLAP shower with the energy loss dynamics as dictated by holographic computations, up to a single free parameter that we fit to data. We then augment the model by incorporating the transverse momentum picked up by each parton in the shower as it propagates through the medium, at the expense of adding a second free parameter. We use this model to discuss the influence of the transverse broadening of the partons in a jet on intra-jet observables. In addition, we explore the sensitivity of such observables to the back-reaction of the plasma to the passage of the jet.
Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2016-12-01
Within a hybrid strong/weak coupling model for jets in strongly coupled plasma, we explore jet modifications in ultra-relativistic heavy ion collisions. Our approach merges the perturbative dynamics of hard jet evolution with the strongly coupled dynamics which dominates the soft exchanges between the fast partons in the jet shower and the strongly coupled plasma itself. We implement this approach in a Monte Carlo, which supplements the DGLAP shower with the energy loss dynamics as dictated by holographic computations, up to a single free parameter that we fit to data. We then augment the model by incorporating the transverse momentum picked up by each parton in the shower as it propagates through the medium, at the expense of adding a second free parameter. We use this model to discuss the influence of the transverse broadening of the partons in a jet on intra-jet observables. In addition, we explore the sensitivity of such observables to the back-reaction of the plasma to the passage of the jet.
Institute of Scientific and Technical Information of China (English)
额尔敦朝鲁; 乌云其木格; 肖欣; 韩超; 辛伟
2012-01-01
Based on the Huybrechts＇ linear-combination operator, effects of thermal lattice vibration on the effective potential of weak-coupling bipolaron in semiconductor quantum dots are studied by using the LLP variational method and quantum statistical theory. The results show that the absolute value of the induced potential of the bipolaron increases with increasing the electron-phonon coupling strength, but decreases with increasing the temperature and the distance of electrons, respectively; the absolute value of the effective potential increases with increasing the radius of the quantum dot, electron-phonon coupling strength and the distance of electrons, respectively, but decreases with increasing the temperature; the temperature and electron-phonon interaction have the important influence on the formation and state properties of the bipolaron： the bipolarons in the bound state are closer and more stable when the electron-phonon coupling strength is larger or the temperature is lower; the confinement potential and coulomb repulsive potential between electrons are unfavorable to the formation of bipolarons in the bound state.
El-Khatib, Fatima; Cahier, Benjamin; López-Jordà, Maurici; Guillot, Régis; Rivière, Eric; Hafez, Hala; Saad, Zeinab; Girerd, Jean-Jacques; Guihéry, Nathalie; Mallah, Talal
2017-09-05
The preparation of a binuclear Ni(II) complex with a pentacoordinate environment using a cryptand organic ligand and the imidazolate bridge is reported. The coordination sphere is close to trigonal bipyramidal (tbp) for one Ni(II) and to square pyramidal (spy) for the other. The use of the imidazolate bridge that undergoes π-π stacking with two benzene rings of the chelating ligand induces steric hindrance that stabilizes the pentacoordinate environment. Magnetic measurements together with theoretical studies of the spin states energy levels allow fitting the data and reveal a large Ising-type anisotropy and a weak anti-ferromagnetic exchange coupling between the metal ions. The magnitude and the nature of the magnetic anisotropy and the difference in anisotropy between the two metal ions are rationalized using wave-function-based calculations. We show that a slight distortion of the coordination sphere of Ni(II) from spy to tbp leads to an Ising-type anisotropy. Broken-symmetry density functional calculations rationalize the weak anti-ferromagnetic exchange coupling through the imidazolate bridge.
Fujii, K; Kato, R; Wada, Y; Fujii, Kazuyuki; Higashida, Kyoko; Kato, Ryosuke; Wada, Yukako
2005-01-01
In this paper we treat a cavity QED quantum computation. Namely, we consider a model of quantum computation based on n atoms of laser-cooled and trapped linearly in a cavity and realize it as the n atoms Tavis-Cummings Hamiltonian interacting with n external (laser) fields. We solve the Schr{\\" o}dinger equation of the model in the weak coupling regime to construct the controlled NOT gate in the case of n=2, and to construct the controlled-controlled NOT gate in the case of n=3 by making use of several resonance conditions and rotating wave approximation associated to them. We also present an idea to construct general quantum circuits. The approach is more sophisticated than that of the paper [K. Fujii, Higashida, Kato and Wada, Cavity QED and Quantum Computation in the Weak Coupling Regime, J. Opt. B : Quantum Semiclass. Opt. {\\bf 6} (2004), 502]. Our method is not heuristic but completely mathematical, and the significant feature is based on a consistent use of Rabi oscillations.
DEFF Research Database (Denmark)
Jacobsen, Jens Christian Brings; Aalkjær, Christian; Matchkov, Vladimir
2008-01-01
Vascular smooth muscle cells (SMCs) exhibit different types of calcium dynamics. Static vascular tone is associated with unsynchronized calcium waves and the developed force depends on the number of recruited cells. Global calcium transients synchronized among a large number of cells cause rhythmic...... are enrolled into synchronized oscillation.Simulations of coupled SMCs show that the experimentally observed cellular recruitment, the presence of quiescent cells and the variation in oscillation frequency may arise if the cell population is phenotypically heterogeneous. In this case, quiescent cells can...
Jacobsen, Jens Christian Brings; Aalkjaer, Christian; Matchkov, Vladimir V; Nilsson, Holger; Freiberg, Jacob J; Holstein-Rathlou, Niels-Henrik
2008-10-13
Vascular smooth muscle cells (SMCs) exhibit different types of calcium dynamics. Static vascular tone is associated with unsynchronized calcium waves and the developed force depends on the number of recruited cells. Global calcium transients synchronized among a large number of cells cause rhythmic development of force known as vasomotion. We present experimental data showing a considerable heterogeneity in cellular calcium dynamics in the vascular wall. In stimulated vessels, some SMCs remain quiescent, whereas others display waves of variable frequency. At the onset of vasomotion, all SMCs are enrolled into synchronized oscillation. Simulations of coupled SMCs show that the experimentally observed cellular recruitment, the presence of quiescent cells and the variation in oscillation frequency may arise if the cell population is phenotypically heterogeneous. In this case, quiescent cells can be entrained at the onset of vasomotion by the collective driving force from the synchronized oscillations in the membrane potential of the surrounding cells. Partial synchronization arises with an increase in the concentration of cyclic guanosine monophosphate, but in a heterogeneous cell population complete synchronization also requires a high-conductance pathway that provides strong coupling between the cells.
Corrado, Cesare; Gerbeau, Jean-Frédéric; Moireau, Philippe
2015-02-01
This work addresses the inverse problem of electrocardiography from a new perspective, by combining electrical and mechanical measurements. Our strategy relies on the definition of a model of the electromechanical contraction which is registered on ECG data but also on measured mechanical displacements of the heart tissue typically extracted from medical images. In this respect, we establish in this work the convergence of a sequential estimator which combines for such coupled problems various state of the art sequential data assimilation methods in a unified consistent and efficient framework. Indeed, we aggregate a Luenberger observer for the mechanical state and a Reduced-Order Unscented Kalman Filter applied on the parameters to be identified and a POD projection of the electrical state. Then using synthetic data we show the benefits of our approach for the estimation of the electrical state of the ventricles along the heart beat compared with more classical strategies which only consider an electrophysiological model with ECG measurements. Our numerical results actually show that the mechanical measurements improve the identifiability of the electrical problem allowing to reconstruct the electrical state of the coupled system more precisely. Therefore, this work is intended to be a first proof of concept, with theoretical justifications and numerical investigations, of the advantage of using available multi-modal observations for the estimation and identification of an electromechanical model of the heart.
The information about the state of a qubit gained by a weakly coupled detector
Energy Technology Data Exchange (ETDEWEB)
Ashhab, S; You, J Q; Nori, Franco [Advanced Science Institute, Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198 (Japan)], E-mail: ashab@riken.jp
2009-08-15
We analyze the information that one can learn about the state of a quantum two-level system, i.e. a qubit, when probed weakly by a nearby detector. In particular, we focus on the case when the qubit Hamiltonian and the qubit's operator being probed by the detector do not commute. Because the qubit's state keeps evolving while being probed and because the measurement data is mixed with detector-related background noise, one might expect the detector to fail in this case. We show, however, that under suitable conditions and by proper analysis of the measurement data useful information about the state of the qubit can be extracted. It turns out that the measurement basis is stochastically determined every time the experiment is repeated. We analyze in detail the probability distributions that govern the choice of measurement bases. We also analyze the information acquisition rate and show that it is largely unaffected by the apparent conflict between the measurement and intrinsic qubit dynamics. We discuss the relation between our analysis and the stochastic master equation that describes the evolution of the qubit's state under the influence of measurement and decoherence. In particular, we write down a stochastic equation that encompasses the usual stochastic master equation for the evolution of the qubit's density matrix and additionally contains the measurement information that can be extracted from the observed signal.
An integrable coupling system of lattice hierarchy and its continuous limits
Energy Technology Data Exchange (ETDEWEB)
Yu Fajun [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)], E-mail: yfajun@163.com; Li Li [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)
2009-04-13
In [E.G. Fan, Phys. Lett. A 372 (2008) 6368], Fan present a lattice hierarchy and its continuous limits. In this Letter, we extend this method, by introducing a complex discrete spectral problem, a coupling lattice hierarchy is derived. It is shown that a new sequence of combinations of complex lattice spectral problem converges to the integrable coupling couplings of soliton equation hierarchy, which has the integrable coupling system of AKNS hierarchy as a continuous limit.
Continuous limits for an integrable coupling system of Toda equation hierarchy
Energy Technology Data Exchange (ETDEWEB)
Li Li [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China); Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)
2009-09-21
In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.
Collapse of the wave field in a one-dimensional system of weakly coupled light guides
Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.
2016-12-01
The analytical and numerical study of the radiation self-action in a system of coupled light guides is fulfilled on the basis of the discrete nonlinear Schrödinger equation (DNSE). We develop a variational method for qualitative study of DNSE and classify self-action modes. We show that the diffraction of narrow (in grating scale) wave beams weakens in discrete media and, consequently, the "collapse" of the one-dimensional wave field with power exceeding the critical value occurs. This results in the ability to self-channel radiation in the central fiber. Qualitative analytical results were confirmed by numerical simulation of DNSE, which also shows the stability of the collapse mode.
Jet-Medium Interactions at NLO in a Weakly-Coupled Quark-Gluon Plasma
Ghiglieri, Jacopo; Teaney, Derek
2015-01-01
We present an extension to next-to-leading order in the strong coupling constant $g$ of the AMY effective kinetic approach to the energy loss of high momentum particles in the quark-gluon plasma. At leading order, the transport of jet-like particles is determined by elastic scattering with the thermal constituents, and by inelastic collinear splittings induced by the medium. We reorganize this description into collinear splittings, high-momentum-transfer scatterings, drag and diffusion, and particle conversions (momentum-preserving identity-changing processes). We show that this reorganized description remains valid to NLO in $g$, and compute the appropriate modifications of the drag, diffusion, particle conversion, and inelastic splitting coefficients. In addition, a new kinematic regime opens at NLO for wider-angle collinear bremsstrahlung. These semi-collinear emissions smoothly interpolate between the leading order high-momentum-transfer scatterings and collinear splittings. To organize the calculation, w...
Trottier, H D; Lepage, G P; MacKenzie, P B
2002-01-01
Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from $3^4$ to $16^4$) and couplings (from $\\beta \\approx 9$ to $\\beta \\approx 60$). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.
Light trapping in solar cells at the extreme coupling limit
Naqavi, Ali; Battaglia, Corsin; Herzig, Hans Peter; Ballif, Christophe
2012-01-01
We calculate the maximal absorption enhancement obtainable by guided mode excitation in a weakly absorbing dielectric slab over wide wavelength ranges. The slab mimics thin film silicon solar cells in the low absorption regime. We consider simultaneously wavelength-scale periodicity of the texture, small thickness of the film, modal properties of the guided waves and their confinement to the film. Also we investigate the effect of the incident angle on the absorption enhancement. Our calculations provide tighter bounds for the absorption enhancement but still significant improvement is possible. Our explanation of the absorption enhancement can help better exploitation of the guided modes in thin film devices.
Directory of Open Access Journals (Sweden)
Sean P Parsons
2016-02-01
Full Text Available Pacemaker activities generated by networks of interstitial cells of Cajal (ICC, in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e. spatial noise with a long-tailed distribution, plateau steps occurred at points of low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency.
Parsons, Sean P.; Huizinga, Jan D.
2016-01-01
Pacemaker activities generated by networks of interstitial cells of Cajal (ICC), in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP) in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude) was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave) activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e., spatial noise) with a long-tailed distribution, plateau steps occurred at pointsof low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency. PMID:26869875
Parsons, Sean P; Huizinga, Jan D
2016-01-01
Pacemaker activities generated by networks of interstitial cells of Cajal (ICC), in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP) in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude) was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave) activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e., spatial noise) with a long-tailed distribution, plateau steps occurred at pointsof low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency.
Abney, Drew H; Paxton, Alexandra; Dale, Rick; Kello, Christopher T
2015-11-01
Successful interaction requires complex coordination of body movements. Previous research has suggested a functional role for coordination and especially synchronization (i.e., time-locked movement across individuals) in different types of human interaction contexts. Although such coordination has been shown to be nearly ubiquitous in human interaction, less is known about its function. One proposal is that synchrony supports and facilitates communication (Topics Cogn Sci 1:305-319, 2009). However, questions still remain about what the properties of coordination for optimizing communication might look like. In the present study, dyads worked together to construct towers from uncooked spaghetti and marshmallows. Using cross-recurrence quantification analysis, we found that dyads with loosely coupled gross body movements performed better, supporting recent work suggesting that simple synchrony may not be the key to effective performance (Riley et al. 2011). We also found evidence that leader-follower dynamics-when sensitive to the specific role structure of the interaction-impact task performance. We discuss our results with respect to the functional role of coordination in human interaction.
Suárez, Abril
2015-01-01
Using a generalization of the Madelung transformation, we derive the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit. We consider a complex self-interacting scalar field with a $\\lambda|\\varphi|^4$ potential. We study the evolution of the homogeneous background in the fluid representation and derive the linearized equations describing the evolution of small perturbations in a static and in an expanding universe. We compare the results with simplified models in which the gravitational potential is introduced by hand in the Klein-Gordon equation, and assumed to satisfy a (generalized) Poisson equation. We study the evolution of the perturbations in the matter era using the nonrelativistic limit of our formalism. Perturbations whose wavelength is below the Jeans length oscillate in time while pertubations whose wavelength is above the Jeans length grow linearly with the scale factor as in the cold dark matter model. The growth of perturbations in the scalar field model ...
Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Guesmia, A.
2015-12-01
In this paper, we consider coupled wave-wave, Petrovsky-Petrovsky and wave-Petrovsky systems in N-dimensional open bounded domain with complementary frictional damping and infinite memory acting on the first equation. We prove that these systems are well-posed in the sense of semigroups theory and provide a weak stability estimate of solutions, where the decay rate is given in terms of the general growth of the convolution kernel at infinity and the arbitrary regularity of the initial data. We finish our paper by considering the uncoupled wave and Petrovsky equations with complementary frictional damping and infinite memory, and showing a strong stability estimate depending only on the general growth of the convolution kernel at infinity.
Institute of Scientific and Technical Information of China (English)
FU Xi; ZHOU Guang-Hui
2009-01-01
We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors.Both the quantum wire and conductors are described by a hard-wall confining potential.Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density jTs,xi and jTs,yi(I = x, y, z).We lind that the elements jTs,xx and jTs,yy have a antisymmetrical relation and the element jTs,yz has the same amount level jTs,xx and jTs,yy.We also find a net linear spin current density, which has peaks at the center of quantum wire.The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.
Many-polaron description of impurities in a Bose-Einstein condensate in the weak-coupling regime
Energy Technology Data Exchange (ETDEWEB)
Casteels, W.; Devreese, J. T. [TQC, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Tempere, J. [TQC, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States)
2011-12-15
The weak-coupling many-polaron formalism is applied to the case of the polaronic system consisting of impurities in a Bose-Einstein condensate. This allows investigating the ground-state properties and the response of the system to Bragg spectroscopy. Then, this theory is applied to the system of spin-polarized fermionic lithium-6 impurities in a sodium condensate. The Bragg spectrum reveals a peak that corresponds to the emission of Bogoliubov excitations. Both the ground-state properties and the response spectrum show that the polaronic effect vanishes at high densities. We also look at two possibilities to define the polaronic effective mass and observe that this results in a different quantitative behavior if multiple impurities are involved.
Liu, Jie; Herbert, John M.
2015-07-01
A novel formulation of time-dependent density functional theory (TDDFT) is derived, based on non-orthogonal, absolutely-localized molecular orbitals (ALMOs). We call this approach TDDFT(MI), in reference to ALMO-based methods for describing molecular interactions (MI) that have been developed for ground-state applications. TDDFT(MI) is intended for efficient excited-state calculations in systems composed of multiple, weakly interacting chromophores. The efficiency is based upon (1) a local excitation approximation; (2) monomer-based, singly-excited basis states; (3) an efficient localization procedure; and (4) a one-step Davidson method to solve the TDDFT(MI) working equation. We apply this methodology to study molecular dimers, water clusters, solvated chromophores, and aggregates of naphthalene diimide that form the building blocks of self-assembling organic nanotubes. Absolute errors of 0.1-0.3 eV with respect to supersystem methods are achievable for these systems, especially for cases involving an excited chromophore that is weakly coupled to several explicit solvent molecules. Excited-state calculations in an aggregate of nine naphthalene diimide monomers are ˜40 times faster than traditional TDDFT calculations.
Cannon, Jonathan
2017-01-01
Mutual information is a commonly used measure of communication between neurons, but little theory exists describing the relationship between mutual information and the parameters of the underlying neuronal interaction. Such a theory could help us understand how specific physiological changes affect the capacity of neurons to synaptically communicate, and, in particular, they could help us characterize the mechanisms by which neuronal dynamics gate the flow of information in the brain. Here we study a pair of linear-nonlinear-Poisson neurons coupled by a weak synapse. We derive an analytical expression describing the mutual information between their spike trains in terms of synapse strength, neuronal activation function, the time course of postsynaptic currents, and the time course of the background input received by the two neurons. This expression allows mutual information calculations that would otherwise be computationally intractable. We use this expression to analytically explore the interaction of excitation, information transmission, and the convexity of the activation function. Then, using this expression to quantify mutual information in simulations, we illustrate the information-gating effects of neural oscillations and oscillatory coherence, which may either increase or decrease the mutual information across the synapse depending on parameters. Finally, we show analytically that our results can quantitatively describe the selection of one information pathway over another when multiple sending neurons project weakly to a single receiving neuron.
Kim, S C; Choi, J H; Kang, W G; Kim, B H; Kim, H J; Kim, K W; Kim, S K; Kim, Y D; Lee, J; Lee, J H; Lee, J K; Lee, M J; Lee, S J; Li, J; Li, J; Li, X R; Li, Y J; Myung, S S; Olsen, S L; Ryu, S; Seong, I S; So, J H; Yue, Q
2012-01-01
New limits are presented on the cross section for Weakly Interacting Massive Particle (WIMP) nucleon scattering in the KIMS CsI(T) detector array at the Yangyang Underground Laboratory. The exposure used for these results is 24524.3 kg\\cdotdays. Nuclei recoiling from WIMP interactions are identified by a pulse shape discrimination method. A low energy background due to alpha emitters on the crystal surfaces is identified and taken into account in the analysis. The detected numbers of nuclear recoils are consistent with zero and 90% confidence level upper limits on the WIMP interaction rates are set for electron equivalent energies from 3 keV to 11 keV. The 90% upper limit of NR event rate for 3.6-5.8 keV corresponding to 2-4 keV in NaI(T) is 0.0098 counts/kg/keV/day which is below the annual modulation amplitude reported by DAMA. This is incompatible with interpretations that enhance the modulation amplitude such as inelastic dark matter models. We establish the most stringent cross section limits on spin-dep...
Li, Jiahua; Yu, Rong; Ding, Chunling; Wu, Ying
2014-06-16
We explore optical bistability and degenerate four-wave mixing of a hybrid optical system composed of a photonic crystal nanocavity, a single nitrogen-vacancy center embedded in the cavity, and a nearby photonic waveguide serving for in- and outcoupling of light into the cavity in the weak-coupling regime. Here the hybrid system is coherently driven by a continuous-wave bichromatic laser field consisting of a strong control field and a weak probe field. We take account of the nonlinear nature of the nitrogen-vacancy center in the Heisenberg-Langevin equations and give an effective perturbation method to deal with such problems in the continuous-wave-operation regime. The results clearly show that the bistability region of the population inversion and the intensity of the generated four-wave mixing field can be well controlled by properly adjusting the system practical parameters. The nanophotonic platform can be used to implement our proposal. This investigation may be useful for gaining further insight into the properties of solid-state cavity quantum electrodynamics system and find applications in all-optical wavelength converter and switch in a photonic crystal platform.
Chen, Xi; Bansal, Dipanshu; Sullivan, Sean; Abernathy, Douglas L.; Aczel, Adam A.; Zhou, Jianshi; Delaire, Olivier; Shi, Li
2016-10-01
Intriguing lattice dynamics have been predicted for aperiodic crystals that contain incommensurate substructures. Here we report inelastic neutron scattering measurements of phonon and magnon dispersions in S r14C u24O41 , which contains incommensurate one-dimensional (1D) chain and two-dimensional (2D) ladder substructures. Two distinct pseudoacoustic phonon modes, corresponding to the sliding motion of one sublattice against the other, are observed for atomic motions polarized along the incommensurate axis. In the long wavelength limit, it is found that the sliding mode shows a remarkably small energy gap of 1.7-1.9 meV, indicating very weak interactions between the two incommensurate sublattices. The measurements also reveal a gapped and steep linear magnon dispersion of the ladder sublattice. The high group velocity of this magnon branch and weak coupling with acoustic and pseudoacoustic phonons can explain the large magnon thermal conductivity in S r14C u24O41 crystals. In addition, the magnon specific heat is determined from the measured total specific heat and phonon density of states and exhibits a Schottky anomaly due to gapped magnon modes of the spin chains. These findings offer new insights into the phonon and magnon dynamics and thermal transport properties of incommensurate magnetic crystals that contain low-dimensional substructures.
Institute of Scientific and Technical Information of China (English)
陈付广; 黄德斌; 郭荣伟
2005-01-01
In this paper, dynamics in the oscillations of the relative atomic population in two periodically driven and weakly coupled Bose-Einstein condensates (BECs) was qualitatively studied. Using the well-known Melnikov method, the conditions of existence of the periodic and chaotic coherent atomic tunnellings were given in the model. Our results indicate the typical route from bifurcation of the limited circles to chaos, and are in agreement with the previous numerical results.
Physical limitations in ferromagnetic inductively coupled plasma sources
Bliokh, Yury P; Slutsker, Yakov Z
2012-01-01
The Ferromagnetic Inductively Coupled Plasma (FICP) source, which is a version of the common inductively coupled plasma sources, has a number of well known advantages such as high efficiency, high level of ionization, low minimal gas pressure, very low required driver frequency, and even a possibility to be driven by single current pulses. We present an experimental study of such an FICP source which showed that above a certain value of the driving pulse power the properties of this device changed rather drastically. Namely, the plasma became non-stationary and non-uniform contrary to the stationary and uniform plasmas typical for this kind of plasma sources. In this case the plasma appeared as a narrow dense spike which was short compared to the driving pulse. The local plasma density could exceed the neutral atoms density by a few orders of magnitude. When that happened, the afterglow plasma decay time after the end of the pulse was long compared to an ordinary case with no plasma spike. Experiments were pe...
Energy Technology Data Exchange (ETDEWEB)
Tiwari, Ashwani K., E-mail: ashwani@iiserkol.ac.in [Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246 (India); Henriksen, Niels E., E-mail: neh@kemi.dtu.dk [Department of Chemistry, Technical University of Denmark, Building 207, DK-2800 Kongens Lyngby (Denmark)
2016-01-07
We demonstrate theoretically that laser-induced coherent quantum interference control of asymptotic states of dissociating molecules is possible, starting from a single vibrational eigenstate, after the interaction with two laser pulses—at a fixed time delay—both operating in the weak-field limit. Thus, phase dependence in the interaction with the second fixed-energy phase-modulated pulse persists after the pulse is over. This is illustrated for the nonadiabatic process: I + Br{sup *}←IBr → I + Br, where the relative yield of excited Br{sup *} can be changed by pure phase modulation. Furthermore, a strong frequency dependence of the branching ratio is observed and related to the re-crossing dynamics of the avoided crossing in the above-mentioned process.
Suárez, Abril; Chavanis, Pierre-Henri
2015-07-01
Using a generalization of the Madelung transformation, we derive the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit. We consider a complex self-interacting scalar field with a λ |φ |4 potential. We study the evolution of the spatially homogeneous background in the fluid representation and derive the linearized equations describing the evolution of small perturbations in a static and in an expanding Universe. We compare the results with simplified models in which the gravitational potential is introduced by hand in the Klein-Gordon equation, and assumed to satisfy a (generalized) Poisson equation. Nonrelativistic hydrodynamic equations based on the Schrödinger-Poisson equations or on the Gross-Pitaevskii-Poisson equations are recovered in the limit c →+∞. We study the evolution of the perturbations in the matter era using the nonrelativistic limit of our formalism. Perturbations whose wavelength is below the Jeans length oscillate in time while perturbations whose wavelength is above the Jeans length grow linearly with the scale factor as in the cold dark matter model. The growth of perturbations in the scalar field model is substantially faster than in the cold dark matter model. When the wavelength of the perturbations approaches the cosmological horizon (Hubble length), a relativistic treatment is mandatory. In that case, we find that relativistic effects attenuate or even prevent the growth of perturbations. This paper exposes the general formalism and provides illustrations in simple cases. Other applications of our formalism will be considered in companion papers.
Energy Technology Data Exchange (ETDEWEB)
Woodard, A.E., E-mail: awoodard@nd.edu [Laboratorio Tandar, Comision Nacional de Energia Atomica, B1650KNA San Martin, Buenos Aires (Argentina); Figueira, J.M. [Laboratorio Tandar, Comision Nacional de Energia Atomica, B1650KNA San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, C1033AAJ Ciudad de Buenos Aires (Argentina); Otomar, D.R. [Instituto de Fisica, Universidade Federal Fluminense, Gragoata, Niteroi, R. J., 24210-340 (Brazil); Fernandez Niello, J.O. [Laboratorio Tandar, Comision Nacional de Energia Atomica, B1650KNA San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, C1033AAJ Ciudad de Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, Universidad de San Martin, B1650BWA San Martin, Buenos Aires (Argentina); Lubian, J. [Instituto de Fisica, Universidade Federal Fluminense, Gragoata, Niteroi, R. J., 24210-340 (Brazil)
2012-01-01
Angular distributions for the inelastic scattering of the weakly bound {sup 6}Li nucleus from a {sup 144}Sm target (associated with the contributions of both the 2{sub 1}{sup +} and 3{sub 1}{sup -144}Sm excited states together) were measured at bombarding energies close to the Coulomb barrier. The experimental data were compared with expected results based on continuum discretized coupled-channel (CDCC) calculations. The results confirm that it is essential to include continuum-continuum couplings to reproduce the experimental data. The analysis demonstrates that inelastic scattering data can be a critical tool in testing full CDCC calculations involving weakly bound nuclei.
DEFF Research Database (Denmark)
Kaiser, W.; Bach, L.; Reithmaier, J. P.;
2003-01-01
37 GHz direct-modulation bandwidth could be obtained by a multi-section design with an integrated weakly coupled DBR grating. The laser shows side mode suppression ratios of 45 dB and output powers exceeding 20 mW.......37 GHz direct-modulation bandwidth could be obtained by a multi-section design with an integrated weakly coupled DBR grating. The laser shows side mode suppression ratios of 45 dB and output powers exceeding 20 mW....
Hausmaninger, Thomas; Silander, Isak; Ma, Weiguang; Axner, Ove
2016-01-01
Doppler-broadened (Db) noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) is normally described by an expression, here termed the conventional (CONV) description, that is restricted to the conventional cavity-limited weak absorption condition (CCLWA), i.e. when the single pass absorbance is significantly smaller than the empty cavity losses, i.e. when α0 L verification and assessment of the validity of these, performed in the Doppler limit for a set of Fα0 L / π values (up to 3.5); it is shown under which conditions the various descriptions are valid. It is concluded that for samples with Fα0 L / π up to 0.01, all descriptions replicate the data well. It is shown that the CONV description is adequate and provides accurate assessments of the signal strength (and thereby the analyte concentration) up to Fα0 L / π of around 0.1, while the ELET is accurate for Fα0 L / π up to around 0.3. The ELFT description mimics the Db NICE-OHMS signal well for Fα0 L / π up to around unity, while the FULL description is adequate for all Fα0 L / π values investigated. Access to these descriptions both increases considerably the dynamic range of the technique and facilitates calibration using certified reference gases, which thereby significantly broadens the applicability of the Db NICE-OHMS technique.
Beavis, A D; Lehninger, A L
1986-07-15
A rationale is formulated for the design of experiments to determine the upper and lower limits of the mechanistic stoichiometry of any two incompletely coupled fluxes J1 and J2. Incomplete coupling results when there is a branch at some point in the sequence of reactions or processes coupling the two fluxes. The upper limit of the mechanistic stoichiometry is given by the minimum value of dJ2/dJ1 obtained when the fluxes are systematically varied by changes in steps after the branch point. The lower limit is given by the maximum value of dJ2/dJ1 obtained when the fluxes are varied by changes in steps prior to the branch point. The rationale for determining these limits is developed from both a simple kinetic model and from a linear nonequilibrium thermodynamic treatment of coupled fluxes, using the mechanistic approach [Westerhoff, H. V. & van Dam, K. (1979) Curr. Top. Bioenerg. 9, 1-62]. The phenomenological stoichiometry, the flux ratio at level flow and the affinity ratio at static head of incompletely coupled fluxes are defined in terms of mechanistic conductances and their relationship to the mechanistic stoichiometry is discussed. From the rationale developed, experimental approaches to determine the mechanistic stoichiometry of mitochondrial oxidative phosphorylation are outlined. The principles employed do not require knowledge of the pathway or the rate of transmembrane leaks or slippage and may also be applied to analysis of the stoichiometry of other incompletely coupled systems, including vectorial H+/O and K+/O translocation coupled to mitochondrial electron transport.
Coupled effects of aging and weak magnetic fields on sequestration of selenite by zero-valent iron.
Liang, Liping; Guan, Xiaohong; Shi, Zhong; Li, Jialing; Wu, Yinan; Tratnyek, Paul G
2014-06-03
The sequestration of Se(IV) by zero-valent iron (ZVI) is strongly influenced by the coupled effects of aging ZVI and the presence of a weak magnetic field (WMF). ZVI aged at pH 6.0 with MES as buffer between 6 and 60 h gave nearly constant rates of Se(IV) removal with WMF but with rate constants that are 10- to 100-fold greater than without. XANES analysis showed that applying WMF changes the mechanism of Se(IV) removal by ZVI aged for 6-60 h from adsorption followed by reduction to direct reduction. The strong correlation between Se(IV) removal and Fe2+ release suggests direct reduction of Se(IV) to Se(0) by Fe0, in agreement with the XANES analysis. The numerical simulation of ZVI magnetization revealed that the WMF influence on Se(IV) sequestration is associated mainly with the ferromagnetism of ZVI and the paramagnetism of Fe2+. In the presence of the WMF, the Lorentz force gives rise to convection in the solution, which narrows the diffusion layer, and the field gradient force, which tends to move paramagnetic ions (esp. Fe2+) along the higher field gradient at the ZVI particle surface, thereby inducing nonuniform depassivation and eventually localized corrosion of the ZVI surface.
Ground state energy of the δ-Bose and Fermi gas at weak coupling from double extrapolation
Prolhac, Sylvain
2017-04-01
We consider the ground state energy of the Lieb–Liniger gas with δ interaction in the weak coupling regime γ \\to 0 . For bosons with repulsive interaction, previous studies gave the expansion {{e}\\text{B}}≤ft(γ \\right)≃ γ -4{γ3/2}/3π +≤ft(1/6-1/{π2}\\right){γ2} . Using a numerical solution of the Lieb–Liniger integral equation discretized with M points and finite strength γ of the interaction, we obtain very accurate numerics for the next orders after extrapolation on M and γ. The coefficient of {γ5/2} in the expansion is found to be approximately equal to -0.001 587 699 865 505 944 989 29 , accurate within all digits shown. This value is supported by a numerical solution of the Bethe equations with N particles, followed by extrapolation on N and γ. It was identified as ≤ft(3\\zeta (3)/8-1/2\\right)/{π3} by G Lang. The next two coefficients are also guessed from the numerics. For balanced spin 1/2 fermions with attractive interaction, the best result so far for the ground state energy has been {{e}\\text{F}}≤ft(γ \\right)≃ {π2}/12-γ /2+{γ2}/6 . An analogue double extrapolation scheme leads to the value -\\zeta (3)/{π4} for the coefficient of {γ3} .
Directory of Open Access Journals (Sweden)
Rasha Galal Daabis
2016-03-01
Conclusion: Hypogonadism is highly prevalent in clinically stable COPD patients and is particularly related to the severity of the airway obstruction. Systemic inflammation is present in stable COPD patients and its intensity is related to the severity of the underlying disease and it predisposes to skeletal muscle weakness and exercise intolerance. However, we failed to find a significant association between hypogonadism and muscle weakness or systemic inflammation.
Nutrient limitation and physiology mediate the fine-scale (de)coupling of biogeochemical cycles.
Appling, Alison P; Heffernan, James B
2014-09-01
Nutrients in the environment are coupled over broad timescales (days to seasons) when organisms add or withdraw multiple nutrients simultaneously and in ratios that are roughly constant. But at finer timescales (seconds to days), nutrients become decoupled if physiological traits such as nutrient storage limits, circadian rhythms, or enzyme kinetics cause one nutrient to be processed faster than another. To explore the interactions among these coupling and decoupling mechanisms, we introduce a model in which organisms process resources via uptake, excretion, growth, respiration, and mortality according to adjustable trait parameters. The model predicts that uptake can couple the input of one nutrient to the export of another in a ratio reflecting biological demand stoichiometry, but coupling occurs only when the input nutrient is limiting. Temporal nutrient coupling may, therefore, be a useful indicator of ecosystem limitation status. Fine-scale patterns of nutrient coupling are further modulated by, and potentially diagnostic of, physiological traits governing growth, uptake, and internal nutrient storage. Together, limitation status and physiological traits create a complex and informative relationship between nutrient inputs and exports. Understanding the mechanisms behind that relationship could enrich interpretations of fine-scale time-series data such as those now emerging from in situ solute sensors.
Institute of Scientific and Technical Information of China (English)
LI Zhong-Hua; LI Yuan; DOU Ya-Fang; GAO Jiang-Rui; ZHANG Jun-Xiang
2012-01-01
The output amplitude noises of one squeezed probe light which is at resonance throughout different optical depths media in strong- and weak-coupling-Seld regimes are investigated theoretically. By comparing the output quantum noises for different Rabi frequencies of coupling field and also for different optical depths, it is found that the optimal squeezing preservation of the probe light occurs in an optically thin medium with strong-coupling-field, where we can obtain the output squeezing ciose to the input one at nonzero detection frequency.%The output amplitude noises of one squeezed probe light which is at resonance throughout different optical depths media in strong- and weak-coupling-field regimes are investigated theoretically.By comparing the output quantum noises for different Rabi frequencies of coupling field and also for different optical depths,it is found that the optimal squeezing preservation of the probe light occurs in an optically thin medium with strong-coupling-field,where we can obtain the output squeezing close to the input one at nonzero detection frequency.
Time Delay Effects on Coupled Limit Cycle Oscillators at Hopf Bifurcation
Reddy, D V R; Johnston, G L
1998-01-01
We present a detailed study of the effect of time delay on the collective dynamics of coupled limit cycle oscillators at Hopf bifurcation. For a simple model consisting of just two oscillators with a time delayed coupling, the bifurcation diagram obtained by numerical and analytical solutions shows significant changes in the stability boundaries of the amplitude death, phase locked and incoherent regions. A novel result is the occurrence of amplitude death even in the absence of a frequency mismatch between the two oscillators. Similar results are obtained for an array of N oscillators with a delayed mean field coupling and the regions of such amplitude death in the parameter space of the coupling strength and time delay are quantified. Some general analytic results for the N tending to infinity (thermodynamic) limit are also obtained and the implications of the time delay effects for physical applications are discussed.
Studies of WW and WZ production and limits on anomalous WWγ and WWZ couplings
Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Akimov, V.; Alves, G. A.; Amos, N.; Anderson, E. W.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Baden, A.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Breedon, R.; Briskin, G.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chekulaev, S. V.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Coppage, D.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evans, H.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Gobbi, B.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J. A.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hays, C.; Hebert, C.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Tong; Ito, A. S.; Jerger, S. A.; Jesik, R.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Ko, W.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kubantsev, M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Landry, F.; Landsberg, G.; Leflat, A.; Li, J.; Li, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lucotte, A.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Martin, R. D.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; Mostafa, M.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Parashar, N.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Reay, N. W.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sosebee, M.; Sotnikova, N.; Souza, M.; Stanton, N. R.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Toback, D.; Trippe, T. G.; Tuts, P. M.; Vaniev, V.; Varelas, N.; Varnes, E. W.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Wood, D. R.; Yamada, R.; Yamin, P.; Yasuda, T.
1999-10-01
Evidence of anomalous WW and WZ production was sought in pp¯ collisions at a center-of-mass energy of s=1.8 TeV. The final states WW(WZ)-->μν jet jet+X, WZ-->μνee+X and WZ-->eνee+X were studied using a data sample corresponding to an integrated luminosity of approximately 90 pb-1. No evidence of anomalous diboson production was found. Limits were set on anomalous WWγ and WWZ couplings and were combined with our previous results. The combined 95% confidence level anomalous coupling limits for Λ=2 TeV are -0.25<=Δκ<=0.39 (λ=0) and -0.18<=λ<=0.19 (Δκ=0), assuming the WWγ couplings are equal to the WWZ couplings.
Studies of WW and WZ Production and Limits on Anomalous WW$\\gamma$ and WWZ Couplings
Abbott, B; Abramov, V; Acharya, B S; Adam, I; Adams, D L; Adams, M; Ahn, S; Akimov, V; Alves, G A; Amos, N; Anderson, E W; Baarmand, M M; Babintsev, V V; Babukhadia, L; Baden, A; Baldin, B Yu; Banerjee, S; Bantly, J; Barberis, E; Baringer, P; Bartlett, J F; Belyaev, A; Beri, S B; Bertram, I; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Biswas, N; Blazey, G; Blessing, S; Bloom, P; Böhnlein, A; Bozhko, N; Borcherding, F; Boswell, C; Brandt, A; Breedon, R; Briskin, G; Brock, R; Bross, A; Buchholz, D; Burtovoi, V S; Butler, J M; Carvalho, W; Casey, D; Casilum, Z; Castilla-Valdez, H; Chakraborty, D; Chekulaev, S V; Chen, W; Choi, S; Chopra, S; Choudhary, B C; Christenson, J H; Chung, M; Claes, D; Clark, A R; Cobau, W G; Cochran, J; Coney, L; Cooper, W E; Coppage, D; Cretsinger, C; Cullen-Vidal, D E; Cummings, M A C; Cutts, D; Dahl, O I; Davis, K; De, K; Del Signore, K; Demarteau, M; Denisov, D; Denisov, S P; Diehl, H T; Diesburg, M; DiLoreto, G; Draper, P; Ducros, Y; Dudko, L V; Dugad, S R; Dyshkant, A; Edmunds, D; Ellison, J; Elvira, V D; Engelmann, R; Eno, S; Eppley, G; Ermolov, P; Eroshin, O V; Evans, H; Evdokimov, V N; Fahland, T; Fatyga, M K; Fehér, S; Fein, D; Ferbel, T; Fisk, H E; Fisyak, Yu; Flattum, E; Forden, G E; Fortner, M; Frame, K C; Fuess, S; Gallas, E; Galjaev, A N; Gartung, P; Gavrilov, V; Geld, T L; Genik, R J; Genser, K; Gerber, C E; Gershtein, Yu; Gibbard, B; Gobbi, B; Gómez, B; Gómez, G; Goncharov, P I; González-Solis, J L; Gordon, H; Goss, L T; Gounder, K; Goussiou, A; Graf, N; Grannis, P D; Green, D R; Green, J A; Greenlee, H; Grinstein, S; Grudberg, P; Grünendahl, S; Guglielmo, G; Guida, J A; Guida, J M; Sen-Gupta, A; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Hadley, N J; Haggerty, H; Hagopian, S; Hagopian, V; Hahn, K S; Hall, R E; Hanlet, P; Hansen, S; Hauptman, J M; Hays, C; Hebert, C; Hedin, D; Heinson, A P; Heintz, U; Hernández-Montoya, R; Heuring, T C; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoftun, J S; Hsieh, F; Hu, Tong; Ito, A S; Jerger, S A; Jesik, R; Joffe-Minor, T M; Johns, K; Johnson, M; Jonckheere, A; Jones, M; Jöstlein, H; Jun, S Y; Jung, C K; Kahn, S; Karmanov, D; Karmgard, D; Kehoe, R; Kim, S K; Klima, B; Klopfenstein, C; Ko, W; Kohli, J M; Koltick, D; Kostritskii, A V; Kotcher, J; Kotwal, A V; Kozelov, A V; Kozlovskii, E A; Krane, J; Krishnaswamy, M R; Krzywdzinski, S; Kubantsev, M A; Kuleshov, S; Kulik, Y; Kunori, S; Landry, F; Landsberg, G L; Leflat, A; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J; Lipton, R; Lucotte, A; Lueking, L; Lyon, A L; Maciel, A K A; Madaras, R J; Madden, R; Magana-Mendoza, L; Manankov, V; Mani, S; Mao, H S; Markeloff, R; Marshall, T; Martin, M I; Martin, R D; Mauritz, K M; May, B; Mayorov, A A; McCarthy, R; McDonald, J; McKibben, T; McKinley, J; McMahon, T; Melanson, H L; Merkin, M; Merritt, K W; Miao, C; Miettinen, H; Mincer, A; Mishra, C S; Mokhov, N V; Mondal, N K; Montgomery, H E; Mooney, P; Mostafa, M; Da Motta, H; Murphy, C; Nang, F; Narain, M; Narasimham, V S; Narayanan, A; Neal, H A; Negret, J P; Némethy, P; Norman, D; Oesch, L; Oguri, V; Oshima, N; Owen, D; Padley, P; Para, A; Parashar, N; Park, Y M; Partridge, R; Parua, N; Paterno, M; Pawlik, B; Perkins, J; Peters, M; Piegaia, R; Piekarz, H; Pishchalnikov, Yu M; Pope, B G; Prosper, H B; Protopopescu, S D; Qian, J; Quintas, P Z; Raja, R; Rajagopalan, S; Ramírez, O; Reay, N W; Reucroft, S; Rijssenbeek, M; Rockwell, T; Roco, M T; Rubinov, P; Ruchti, R; Rutherfoord, J; Sánchez-Hernández, A; Santoro, A F S; Sawyer, L; Schamberger, R D; Schellman, H; Sculli, J; Shabalina, E; Shaffer, C; Shankar, H C; Shivpuri, R K; Shpakov, D; Shupe, M; Sidwell, R A; Singh, H; Singh, J B; Sirotenko, V I; Smith, E; Smith, R P; Snihur, R; Snow, G R; Snow, J; Snyder, S; Solomon, J; Sosebee, M; Sotnikova, N; Souza, M; Stanton, N R; Steinbruck, G; Stephens, R W; Stevenson, M L; Stichelbaut, F; Stoker, D; Stolin, V; Stoyanova, D A; Strauss, M; Streets, K; Strovink, M; Sznajder, A; Tamburello, P; Tarazi, J; Tartaglia, M; Thomas, T L T; Thompson, J; Toback, D; Trippe, T G; Tuts, P M; Vaniev, V; Varelas, N; Varnes, E W; Volkov, A A; Vorobev, A P; Wahl, H D; Wang, G; Warchol, J; Watts, G; Wayne, M; Weerts, H; White, A; White, J T; Wightman, J A; Willis, S; Wimpenny, S J; Wirjawan, J V D; Womersley, J; Wood, D R; Yamada, R; Yamin, P; Yasuda, T; Yepes, P; Yip, K; Yoshikawa, C; Youssef, S; Yu, J; Yu, Y; Zhang, B; Zhou, Z; Zhu, Z H; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; Zylberstejn, A
1999-01-01
Evidence of anomalous WW and WZ production was sought in pbar{p} collisions at a center-of-mass energy of sqrt(s) = 1.8 TeV. The final states $WW (WZ) to mu-nu-jet-jet + X, WZ to mu-nu-e-e + X and WZ to e-nu-e-e + X were studied using a data sample corresponding to an integrated luminosity of approximately 90 pb-1. No evidence of anomalous diboson production was found. Limits were set on anomalous WWgamma and WWZ couplings and were combined with our previous results. The combined 95% confidence level anomalous coupling limits for Lambda=2 TeV are -0.25 LE Delta-kappa LE 0.39 (lambda=0) and -0.18 LE lambda LE 0.19 (Delta \\kappa = 0), assuming the WWgamma couplings are equal to the WWZ couplings.
Point-coupling models from mesonic hyper massive limit and mean-field approaches
Energy Technology Data Exchange (ETDEWEB)
Lourenco, O.; Dutra, M., E-mail: odilon@ita.br [Departamento de Fisica, Instituto Tecnologico da Aeronautica - CTA, Sao Jose dos Campos, SP (Brazil); Delfino, Antonio, E-mail: delfino@if.uff.br [Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ (Brazil); Amaral, R.L.P.G. [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA (United States)
2012-08-15
t In this work, we show how nonlinear point coupling models, described by a Lagrangian density containing only terms up to fourth order in the fermion condensate ({Psi}-bar{Psi}), are derived from a modified meson exchange nonlinear Walecka model. We present two methods of derivation, namely the hyper massive meson limit within a functional integral approach and the mean-field approximation, in which equations of state at zero temperature of the nonlinear point-coupling models are directly obtained. (author)
Limits on the electromagnetic and weak dipole moments of the tau-lepton in a 331 model
Energy Technology Data Exchange (ETDEWEB)
Gutiérrez-Rodríguez, A. [Facultad de Física, Universidad Autónoma de Zacatecas Apartado, Postal C-580, 98060 Zacatecas, México (Mexico); Hernández-Ruíz, M.A. [Facultad de Ciencias Químicas, Universidad Autónoma de Zacatecas Apartado, Postal 585, 98060 Zacatecas, México (Mexico); Castañeda-Almanza, C.P.; Espinoza-Garrido, A.; Chubykalo, A. [Facultad de Física, Universidad Autónoma de Zacatecas Apartado, Postal C-580, 98060 Zacatecas, México (Mexico)
2014-08-15
Using as an input the data obtained by the L3 and OPAL Collaborations for the reaction e{sup +}e{sup −}→τ{sup +}τ{sup −}γ at the Z{sub 1}-pole, we obtained bounds on the electromagnetic and weak dipole moments of the tau-lepton in the context of a 331 model. Our bounds on the electromagnetic moments are consistent with the bounds obtained by the L3 and OPAL Collaborations for the reaction e{sup +}e{sup −}→τ{sup +}τ{sup −}γ. We also obtained bounds on the tau weak dipole moments which are consistent with the bounds obtained recently by the DELPHI, ALEPH and BELLE Collaborations from the reaction e{sup +}e{sup −}→τ{sup +}τ{sup −}. Our work complements other studies on the electromagnetic and weak dipole moments of the tau-lepton.
DEFF Research Database (Denmark)
Shu, Chuan-Cun; Henriksen, Niels E.
2012-01-01
We implement phase-only shaped laser pulses within quantum optimal control theory for laser-molecule interaction. This approach is applied to the indirect photofragmentation dynamics of NaI in the weak-field limit. It is shown that optimized phase-modulated pulses with a fixed frequency...
Another mean field treatment in the strong coupling limit of lattice QCD
Ohnishi, Akira; Miura, Kohtaroh; Nakano, Takashi Z.
2011-01-01
We discuss the QCD phase diagram in the strong coupling limit of lattice QCD by using a new type of mean field coming from the next-to-leading order of the large dimensional expansion. The QCD phase diagram in the strong coupling limit recently obtained by using the monomer-dimer-polymer (MDP) algorithm has some differences in the phase boundary shape from that in the mean field results. As one of the origin to explain the difference, we consider another type of auxiliary field, which corresp...
The Hintermann-Merlini-Baxter-Wu and the infinite-coupling-limit Ashkin-Teller models
Energy Technology Data Exchange (ETDEWEB)
Huang Yuan, E-mail: huangy22@mail.ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Deng Youjin, E-mail: yjdeng@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Jacobsen, Jesper Lykke, E-mail: jacobsen@lpt.ens.fr [Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris (France); Salas, Jesus, E-mail: jsalas@math.uc3m.es [Grupo de Modelizacion, Simulacion Numerica y Matematica Industrial, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes (Spain); Grupo de Teorias de Campos y Fisica Estadistica, Instituto Gregorio Millan, Universidad Carlos III de Madrid, Unidad asociada al IEM-CSIC, Madrid (Spain)
2013-03-11
We show how the Hintermann-Merlini-Baxter-Wu model (which is a generalization of the well-known Baxter-Wu model to a general Eulerian triangulation) can be mapped onto a particular infinite-coupling-limit of the Ashkin-Teller model. We work out some mappings among these models, also including the standard and mixed Ashkin-Teller models. Finally, we compute the phase diagram of the infinite-coupling-limit Ashkin-Teller model on the square, triangular, hexagonal, and kagome lattices.
Rankin, Richard; Seddon, Elaine A.; Teuben, Jan H.; Jonkman-Beuker, Anneke H.; Boer, Dirk K.G. de
1981-01-01
It is possible to extract values for the transfer energy, t, and the Coulomb interaction, U, in hydrogen-like systems from a combination of photoelectron and magnetic data, as both the form of the photoelectron spectrum and the exchange splitting are determined by these quantities. This procedure is used to evaluate the ground-state wavefunction for the two weakly coupled Ti 3d electrons in (C10H8)(C5H5)2Ti2Cl2.
Directory of Open Access Journals (Sweden)
Beat Vögeli
2015-12-01
Full Text Available We compiled an NMR data set consisting of exact nuclear Overhauser enhancement (eNOE distance limits, residual dipolar couplings (RDCs and scalar (J couplings for GB3, which forms one of the largest and most diverse data set for structural characterization of a protein to date. All data have small experimental errors, which are carefully estimated. We use the data in the research article Vogeli et al., 2015, Complementarity and congruence between exact NOEs and traditional NMR probes for spatial decoding of protein dynamics, J. Struct. Biol., 191, 3, 306–317, doi:10.1016/j.jsb.2015.07.008 [1] for cross-validation in multiple-state structural ensemble calculation. We advocate this set to be an ideal test case for molecular dynamics simulations and structure calculations.
Vögeli, Beat; Olsson, Simon; Riek, Roland; Güntert, Peter
2015-12-01
We compiled an NMR data set consisting of exact nuclear Overhauser enhancement (eNOE) distance limits, residual dipolar couplings (RDCs) and scalar (J) couplings for GB3, which forms one of the largest and most diverse data set for structural characterization of a protein to date. All data have small experimental errors, which are carefully estimated. We use the data in the research article Vogeli et al., 2015, Complementarity and congruence between exact NOEs and traditional NMR probes for spatial decoding of protein dynamics, J. Struct. Biol., 191, 3, 306-317, doi:10.1016/j.jsb.2015.07.008 [1] for cross-validation in multiple-state structural ensemble calculation. We advocate this set to be an ideal test case for molecular dynamics simulations and structure calculations.
Information-Theoretic Limits on Broadband Multi-Antenna Systems in the Presence of Mutual Coupling
Taluja, Pawandeep Singh
2011-12-01
Multiple-input, multiple-output (MIMO) systems have received considerable attention over the last decade due to their ability to provide high throughputs and mitigate multipath fading effects. While most of these benefits are obtained for ideal arrays with large separation between the antennas, practical devices are often constrained in physical dimensions. With smaller inter-element spacings, signal correlation and mutual coupling between the antennas start to degrade the system performance, thereby limiting the deployment of a large number of antennas. Various studies have proposed transceiver designs based on optimal matching networks to compensate for this loss. However, such networks are considered impractical due to their multiport structure and sensitivity to the RF bandwidth of the system. In this dissertation, we investigate two aspects of compact transceiver design. First, we consider simpler architectures that exploit coupling between the antennas, and second, we establish information-theoretic limits of broadband communication systems with closely-spaced antennas. We begin with a receiver model of a diversity antenna selection system and propose novel strategies that make use of inactive elements by virtue of mutual coupling. We then examine the limits on the matching efficiency of a single antenna system using broadband matching theory. Next, we present an extension to this theory for coupled MIMO systems to elucidate the impact of coupling on the RF bandwidth of the system, and derive optimal transceiver designs. Lastly, we summarize the main findings of this dissertation and suggest open problems for future work.
Directory of Open Access Journals (Sweden)
Lijun Sun
Full Text Available Many HIV serodiscordant couples have a strong desire to have their own biological children. Natural conception may be the only choice in some resource limited settings but data about natural conception is limited. Here, we reported our findings of natural conception in HIV serodiscordant couples. Between January 2008 and June 2014, we retrospectively collected data on 91 HIV serodiscordant couples presenting to Beijing Youan Hospital with childbearing desires. HIV counseling, effective ART on HIV infected partners, pre-exposure prophylaxis (PrEP and post-exposure prophylaxis (PEP in negative female partners and timed intercourse were used to maximally reduce the risk of HIV transmission. Of the 91 HIV serodiscordant couples, 43 were positive in male partners and 48 were positive in female partners. There were 196 unprotected vaginal intercourses, 100 natural conception and 97 newborns. There were no cases of HIV seroconversion in uninfected sexual partners. Natural conception may be an acceptable option in HIV-serodiscordant couples in resource limited settings if HIV-positive individuals have undetectable viremia on HAART, combined with HIV counseling, PrEP, PEP and timed intercourse.
Sun, Lijun; Wang, Fang; Liu, An; Xin, Ruolei; Zhu, Yunxia; Li, Jianwei; Shao, Ying; Ye, Jiangzhu; Chen, Danqing; Li, Zaicun
2015-01-01
Many HIV serodiscordant couples have a strong desire to have their own biological children. Natural conception may be the only choice in some resource limited settings but data about natural conception is limited. Here, we reported our findings of natural conception in HIV serodiscordant couples. Between January 2008 and June 2014, we retrospectively collected data on 91 HIV serodiscordant couples presenting to Beijing Youan Hospital with childbearing desires. HIV counseling, effective ART on HIV infected partners, pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) in negative female partners and timed intercourse were used to maximally reduce the risk of HIV transmission. Of the 91 HIV serodiscordant couples, 43 were positive in male partners and 48 were positive in female partners. There were 196 unprotected vaginal intercourses, 100 natural conception and 97 newborns. There were no cases of HIV seroconversion in uninfected sexual partners. Natural conception may be an acceptable option in HIV-serodiscordant couples in resource limited settings if HIV-positive individuals have undetectable viremia on HAART, combined with HIV counseling, PrEP, PEP and timed intercourse.
Limits on anomalous WWγ and WWZ couplings from WW/WZ-->eνjj production
Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adams, D. L.; Adams, M.; Ahn, S.; Akimov, V.; Alves, G. A.; Amos, N.; Anderson, E. W.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Baden, A.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Belyaev, A.; Beri, S. B.; Bernardi, G.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Blazey, G.; Blessing, S.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Brandt, A.; Breedon, R.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchholz, D.; Buescher, V.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chan, K. M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Cho, D. K.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Connolly, B.; Cooper, W. E.; Coppage, D.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, H.; Evdokimov, V. N.; Fahland, T.; Feher, S.; Fein, D.; Ferbel, T.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Fleuret, F.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Gilmartin, R.; Ginther, G.; Gobbi, B.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J. A.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hays, C.; Hebert, C.; Hedin, D.; Heinson, A. P.; Heintz, U.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Ito, A. S.; Jerger, S. A.; Jesik, R.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Kahn, S.; Kajfasz, E.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Knuteson, B.; Ko, W.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kubantsev, M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Landsberg, G.; Leflat, A.; Lehner, F.; Li, J.; Li, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lu, J. G.; Lucotte, A.; Lueking, L.; Lundstedt, C.; Maciel, A. K.; Madaras, R. J.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Martin, R. D.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mostafa, M.; da Motta, H.; Nagy, E.; Nang, F.; Narain, M.; Narasimham, V. S.; Neal, H. A.; Negret, J. P.; Negroni, S.; Norman, D.; Oesch, L.; Oguri, V.; Olivier, B.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Parashar, N.; Partridge, R.; Parua, N.; Paterno, M.; Patwa, A.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Popkov, E.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Reay, N. W.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schwartzman, A.; Sculli, J.; Sen, N.; Shabalina, E.; Shankar, H. C.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Singh, H.; Singh, J. B.; Sirotenko, V.; Slattery, P.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Song, X. F.; Sorín, V.; Sosebee, M.; Sotnikova, N.; Souza, M.; Stanton, N. R.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Stutte, L.; Sznajder, A.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Toback, D.; Trippe, T. G.; Turcot, A. S.; Tuts, P. M.; van Gemmeren, P.; Vaniev, V.; Varelas, N.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Wood, D. R.; Yamada, R.; Yamin, P.; Yasuda, T.; Yip, K.; Youssef, S.; Yu, J.; Yu, Y.; Zanabria, M.; Zheng, H.; Zhou, Z.; Zhu, Z. H.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zutshi, V.; Zverev, E. G.; Zylberstejn, A.
2000-09-01
Limits on anomalous WWγ and WWZ couplings are presented from a study of WW/WZ-->eνjj events produced in pp¯ collisions at s=1.8 TeV. Results from the analysis of data collected using the DØ detector during the 1993-1995 Tevatron collider run at Fermilab are combined with those of an earlier study from the 1992-1993 run. A fit to the transverse momentum spectrum of the W boson yields direct limits on anomalous WWγ and WWZ couplings. With the assumption that the WWγ and WWZ couplings are equal, we obtain -0.34<λ<0.36 (with Δκ=0) and -0.43<Δκ<0.59 (with λ=0) at the 95% confidence level for a form-factor scale Λ=2.0 TeV.
Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2016-01-01
We have previously introduced a hybrid strong/weak coupling model for jet quenching in heavy ion collisions that describes the production and fragmentation of jets at weak coupling, using PYTHIA, and describes the rate at which each parton in the jet shower loses energy as it propagates through the strongly coupled plasma, dE/dx, using an expression computed holographically at strong coupling. The model has a single free parameter that we fit to a single experimental measurement. We then confront our model with experimental data on many other jet observables, focusing here on boson-jet observables, finding that it provides a good description of present jet data. Next, we provide the predictions of our hybrid model for many measurements to come, including those for inclusive jet, dijet, photon-jet and Z-jet observables in heavy ion collisions with energy $\\sqrt{s}=5.02$ ATeV coming soon at the LHC. As the statistical uncertainties on near-future measurements of photon-jet observables are expected to be much sm...
Institute of Scientific and Technical Information of China (English)
杨东升; 李乐; 杨珺; 汪刚
2012-01-01
针对微弱信号检测的难点问题,提出了一种应用于未知频率微弱信号的分段测频检测方法.利用双耦合Duffing系统相轨迹状态的跃迁对于输入微弱信号的敏感特性实现了对淹没在强噪声中的微弱信号的检测,同时利用分段测频方法实现了对微弱信号的频率测量,有效地解决了单Duffing振子的微弱信号检测方法易受噪声影响产生误判的问题,突破了现有微弱信号混沌振子检测方法只能进行已知频率信号检测的局限性.仿真实验结果证明该方法确实能够较为准确地检测出输入微弱周期信号的频率,使微弱信号检测技术得到进一步完善.%A sub-frequency measurement method for weak signals with unknown frequency was presented. Due to the sensitivity of the state transitions of the phase trajectories of the coupled Duffing system to the weak signal input, the detection for a weak signal submerged in strong noises was implemented to solve the difficult problems of weak signal detection. Based on the proposed method, the problem on misjudgment of weak signal detection method based on single Duffing oscillator under the influence of noise effectively was solved. And the limitation had been broken that the existing detection methods of weak signal based on chaotic oscillator could only detect the weak signal with known frequency. Simulation results showed that the method could indeed detect the frequency of weak periodic input signal more accurately, resulting in improvement of the weak signal detection techniques.
Directory of Open Access Journals (Sweden)
W. Dorn
2012-03-01
Full Text Available The effects of internal model variability on the simulation of Arctic sea-ice extent and volume have been examined with the aid of a seven-member ensemble with a coupled regional climate model for the period 1948–2008. Beyond general weaknesses related to insufficient representation of feedback processes, it is found that the model's ability to reproduce observed summer sea-ice retreat depends mainly on two factors: the correct simulation of the atmospheric circulation during the summer months and the sea-ice volume at the beginning of the melting period. Since internal model variability shows its maximum during the summer months, the ability to reproduce the observed atmospheric summer circulation is limited. In addition, the atmospheric circulation during summer also significantly affects the sea-ice volume over the years, leading to a limited ability to start with reasonable sea-ice volume into the melting period. Furthermore, the sea-ice volume pathway shows notable decadal variability which amplitude varies among the ensemble members. The scatter is particularly large in periods when the ice volume increases, indicating limited skill in reproducing high-ice years.
Directory of Open Access Journals (Sweden)
Xinsong Yang
2013-01-01
Full Text Available This paper investigates global synchronization in an array of coupled neural networks with time-varying delays and unbounded distributed delays. In the coupled neural networks, limited transmission efficiency between coupled nodes, which makes the model more practical, is considered. Based on a novel integral inequality and the Lyapunov functional method, sufficient synchronization criteria are derived. The derived synchronization criteria are formulated by linear matrix inequalities (LMIs and can be easily verified by using Matlab LMI Toolbox. It is displayed that, when some of the transmission efficiencies are limited, the dynamics of the synchronized state are different from those of the isolated node. Furthermore, the transmission efficiency and inner coupling matrices between nodes play important roles in the final synchronized state. The derivative of the time-varying delay can be any given value, and the time-varying delay can be unbounded. The outer-coupling matrices can be symmetric or asymmetric. Numerical simulations are finally given to demonstrate the effectiveness of the theoretical results.
Limits on variations in protein backbone dynamics from precise measurements of scalar couplings.
Vögeli, Beat; Ying, Jinfa; Grishaev, Alexander; Bax, Ad
2007-08-01
3JHN,Halpha, 3JHN,Cbeta, and 3JHN,C' couplings, all related to the backbone torsion angle phi, were measured for the third immunoglobulin binding domain of protein G, or GB3. Measurements were carried out using both previously published methods and novel sequences based on the multiple-quantum principle, which limit attenuation of experimental couplings caused by finite lifetimes of the spin states of passive spins. High reproducibility between the multiple-quantum and conventional approaches confirms the accuracy of the measurements. With few exceptions, close agreement between 3JHN,Halpha, 3JHN,Cbeta, and 3JHN,C' and values predicted by their respective Karplus equations is observed. For the three types of couplings, up to 20% better agreement is obtained when fitting the experimental couplings to a dynamic ensemble NMR structure, which has a phi angle root-mean-square spread of 9 +/- 4 degrees and was previously calculated on the basis of a very extensive set of residual dipolar couplings, than for any single static NMR structure. Fits of 3J couplings to a 1.1-A X-ray structure, with hydrogens added in idealized positions, are 40-90% worse. Approximately half of the improvement when fitting to the NMR structures relates to the amide proton deviating from its idealized, in-peptide-plane position, indicating that the positioning of hydrogens relative to the backbone atoms is one of the factors limiting the accuracy at which the backbone torsion angle phi can be extracted from 3J couplings. Introducing an additional, residue-specific variable for the amplitude of phi angle fluctuations does not yield a statistically significant improvement when fitting to a set of dynamic Karplus curves, pointing to a homogeneous behavior of these amplitudes.
2007-01-01
We present our femtosecond optical pump-probe studies of proximized ferromagnet-superconductor nanobilayers. The weak ferromagnetic nature of a thin NiCu film makes it possible to observe the dynamics of the nonequilibrium carriers through the near-surface optical reflectivity change measurements. The subpicosecond biexponential reflectivity decay has been identified as electron-phonon Debye and acoustic phonon relaxation times, and the decay of Debye phonons versus temperature dependence was...
New coupling limits, dynamical symmetries and microscopic operators of IBM/TQM
Paar, V.
1985-01-01
A new particle-core basis having approximate supersymmetric (SUSY) features associated with SU(3) dynamical symmetry is introduced. The SUSY and CO-SUSY limits of IBFM/PTQM appear for the characteristic intermediate coupling strengths Γ/δ=±(Γ/δ)SUSY. The CO-SUSY limit is a truncated analog of the Stephens rotation-aligned scheme. A paradox was found in the relation of the SUSY and truncated strong coupling (TSC) limits to the strong coupling limit of the Bohr-Mottelson model. Microscopic dyson and Holstein-Primakoff realizations of RPA collective quadrupole phonon operators are explicitly constructed. Employing this mapping procedure in conjunction with the leading RPA diagrams, various operators of IBM/TQM, IBFM/PTQM have been derived in the particle-hole channel: E2 operator, one-particle transfer operator, two-particle transfer operator etc. In addition to the standard terms, this derivation gives in the same diagrammatic order the additional terms also. A new model was introduced for the odd-odd nuclei in the framework of IBM/TQM. For the SU(3) core the truncated analog of Gallagher-Moszkowski bands appears as the approximate SUSY pattern, of the same intrinsic structure as in the odd-even system. The idea of boson-fermion dynamical symmetry and supersymmetry is extended to odd-odd nuclei and hypernuclei.
Shu, Chuan-Cun; Henriksen, Niels E
2012-01-28
We implement phase-only shaped laser pulses within quantum optimal control theory for laser-molecule interaction. This approach is applied to the indirect photofragmentation dynamics of NaI in the weak-field limit. It is shown that optimized phase-modulated pulses with a fixed frequency distribution can substantially modify transient dissociation probabilities as well as the momentum distribution associated with the relative motion of Na and I.
Directory of Open Access Journals (Sweden)
Sunny Chauhan
2013-11-01
Full Text Available In this paper, we utilize the notion of common limit range property in Non-Archimedean Menger PM-spaces and prove some fixed point theorems for two pairs of weakly compatible mappings. Some illustrative examples are furnished to support our results. As an application to our main result, we present a common fixed point theorem for four finite families of self mappings. Our results improve and extend several known results existing in the literature.
Nobili, Anna M.
2016-12-01
The universality of free fall and the weak equivalence principle, which are at the basis of general relativity, have been confirmed to 1 part in 1 013. Space experiments with macroscopic test masses of different composition orbiting Earth inside a low altitude satellite aim to improve this precision by 2 orders of magnitude (with the Microscope satellite launched on April 25, 2016) and up to 4 orders of magnitude (with the Galileo Galilei satellite). At such a high precision, many tiny effects must be taken into account in order to be ruled out as the source of a spurious violation signal. In this work, we investigate the general relativistic effects, including those which involve the rotation of both Earth and the test masses, and show that they are by far too small to be considered even in the most challenging experiment.
Nobili, Anna M
2016-01-01
The Universality of Free Fall and the Weak Equivalence Principle, which are at the basis of General Relativity, have been confirmed to 1 part in 10^13. Space experiments with macroscopic test masses of different composition orbiting the Earth inside a low altitude satellite aim at improving this precision by two orders of magnitude (with the Microscope satellite, launched on 25 April 2016) and up to four orders of magnitude (with the 'Galileo Galilei' - GG satellite). At such a high precision many tiny effects must be taken into account in order to be ruled out as the source of a spurious violation signal. In this work we investigate the general relativistic effects, including those which involve the rotation of both the source body and the test masses, and show that they are by far too small to be considered even in the most challenging experiment.
Non-Hermitian wave packet approximation for coupled two-level systems in weak and intense fields
Puthumpally-joseph, Raiju; Charron, Eric
2016-01-01
We introduce an accurate non-Hermitian Schr\\"odinger-type approximation of Bloch optical equations for two-level systems. This approximation provides a complete description of the excitation, relaxation and decoherence dynamics in both weak and strong laser fields. In this approach, it is sufficient to propagate the wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing are taken into account via automatically-adjusted time-dependent gain and decay rates. The developed formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer comprised of interacting two-level emitters.
Energy Technology Data Exchange (ETDEWEB)
Macias-Diaz, J.E. [Departamento de Matematicas y Fisica, Universidad Autonoma de Aguascalientes, Aguascalientes, Ags. 20100 (Mexico) and Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)]. E-mail: jemacias@correo.uaa.mx; Puri, A. [Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)]. E-mail: apuri@uno.edu
2007-07-02
In the present Letter, we simulate the propagation of binary signals in semi-infinite, mechanical chains of coupled oscillators harmonically driven at the end, by making use of the recently discovered process of nonlinear supratransmission. Our numerical results-which are based on a brand-new computational technique with energy-invariant properties-show an efficient and reliable transmission of information.
Strong Coupling Limits and Quantum Isomorphisms of the Gauged Thirring Model
Bufalo, R.; Casana, R.; Pimentel, B. M.
We have studied the quantum equivalence in the respective strong coupling limits of the bidimensional gauged Thirring model with both Schwinger and Thirring models. It is achieved following a nonperturbative quantization of the gauged Thirring model into the path-integral approach. First, we have established the constraint structure via the Dirac's formalism for constrained systems and defined the correct vacuum-vacuum transition amplitude by using the Faddeev-Senjanovic method. Next, we have computed exactly the relevant Green's functions and shown the Ward-Takahashi identities. Afterwards, we have established the quantum isomorphisms between gauged Thirring model and both Schwinger and Thirring models by analyzing the respective Green's functions in the strong coupling limits, respectively. A special attention is necessary to establish the quantum isomorphism between the gauged Thirring model and the Thirring model.
Limits on WWγ and WWZ couplings from W boson pair production
Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Babukhadia, L.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Bartlett, J. F.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goldschmidt, A.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johari, H.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kuleshov, S.; Kunori, S.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oliveira, E.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhou, Z.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.
1998-09-01
The results of a search for W boson pair production in pp¯ collisions at s=1.8 TeV with subsequent decay to eμ, ee, and μμ channels are presented. Five candidate events are observed with an expected background of 3.1+/-0.4 events for an integrated luminosity of approximately 97 pb-1. Limits on the anomalous couplings are obtained from a maximum likelihood fit of the ET spectra of the leptons in the candidate events. Assuming identical WWγ and WWZ couplings, the 95% C.L. limits are -0.62<Δκ<0.77 (λ=0) and -0.53<λ <0.56 (Δκ=0) for a form factor scale Λ=1.5 TeV.
Suppression and revival of oscillation in indirectly coupled limit cycle oscillators
Energy Technology Data Exchange (ETDEWEB)
Sharma, P.R.; Kamal, N.K.; Verma, U.K. [Department of Physics, Central University of Rajasthan, Ajmer 305 817, Rajasthan (India); Suresh, K. [Department of Physics, Anjalai Ammal-Engineering College, Koyilvenni 614 403, Tamil Nadu (India); Thamilmaran, K. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India); Shrimali, M.D., E-mail: shrimali@curaj.ac.in [Department of Physics, Central University of Rajasthan, Ajmer 305 817, Rajasthan (India)
2016-09-16
Highlights: • The phenomena of suppression and revival of oscillations are studied in indirectly coupled nonlinear oscillators. • The decay parameter and a feedback factor play a crucial role in emergent dynamical behavior of oscillators. • The critical curves for different dynamical regions are obtained analytically using linear stability analysis. • Electronic circuit experiments demonstrate these emergent dynamical states. - Abstract: We study the phenomena of suppression and revival of oscillations in a system of limit cycle oscillators coupled indirectly via a dynamic local environment. The dynamics of the environment is assumed to decay exponentially with time. We show that for appropriate coupling strength, the decay parameter of the environment plays a crucial role in the emergent dynamics such as amplitude death (AD) and oscillation death (OD). We also show that introducing a feedback factor in the diffusion term revives the oscillations in this system. The critical curves for the regions of different emergent states as a function of coupling strength, decay parameter of the environment and feedback factor in the coupling are obtained analytically using linear stability analysis. These results are found to be consistent with the numerics and are also observed experimentally.
Improving the Mass-Limited Performance of Routine NMR Probes using Coupled Coils
Marsden, Brian; Lim, Victor; Taber, Bob; Zens, Albert
2016-07-01
We report a method to convert, on demand, a general use dual-broadband probe to a high performance mass-limited probe for both high band and low band nuclei. This technology uses magnetic coupling of inductors to achieve this capability. The method offers a cost effective way of increasing the performance of routine NMR probes without having to change probes or increase the overall foot print of the spectrometer.
Limits on the variability of coupling constants from the Oklo natural reactor
Irvine, J. M.
1983-12-01
The theoretical basis of prehistoric natural nuclear reactors is summarized and the natural reactor at Oklo in Gabon is discussed. An analysis of isotopic abundances at the Oklo site suggests that the extremely narrow neutron capture resonance in Sm-149 has moved by less than 0.01 eV in the past two billion years. This result is used to place limits on the variability of coupling constants over this period.
On Limiting Behavior of Contaminant Transport Models in Coupled Surface and Groundwater Flows
Directory of Open Access Journals (Sweden)
Vincent J. Ervin
2015-11-01
Full Text Available There has been a surge of work on models for coupling surface-water with groundwater flows which is at its core the Stokes-Darcy problem. The resulting (Stokes-Darcy fluid velocity is important because the flow transports contaminants. The analysis of models including the transport of contaminants has, however, focused on a quasi-static Stokes-Darcy model. Herein we consider the fully evolutionary system including contaminant transport and analyze its quasi-static limits.
Quark Mass Dependence of the QCD Critical End Point in the Strong Coupling Limit
Kim, Jangho
2016-01-01
Strong coupling lattice QCD in the dual representation allows to study the full $\\mu$-$T$ phase diagram, due to the mildness of the finite density sign problem. Such simulations have been performed in the chiral limit, both at finite $N_t$ and in the continuous time limit. Here we extend the phase diagram to finite quark masses, with an emphasis on the low temperature first order transition. We present our results on the quark mass dependence of the critical end point and the first order line obtained by Monte Carlo via the worm algorithm.
Energy Technology Data Exchange (ETDEWEB)
Lim, Sung Hun [Dept. of Electrical Engineering, Soongsil University, Seoul (Korea, Republic of); Han, Tae Hee [Dept. of Aero Materials Engineering, Jungwon University, Goesan (Korea, Republic of)
2017-06-15
In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding.
Inotani, Daisuke; van Wyk, Pieter; Ohashi, Yoji
2016-12-01
We investigate the specific heat CV at constant volume in the normal state of a p-wave interacting Fermi gas. Including p-wave pairing fluctuations within the strong-coupling theory developed by Nozières and Schmitt-Rink, we show that, in the weak-coupling side, CV exhibits a dip-hump behavior as a function of the temperature. While the dip is associated with the pseudogap phenomenon near Tc, the hump structure is found to come from the suppression of Fermi quasiparticle scattering into a p-wave molecular state in the Fermi degenerate regime. Since the latter phenomenon does not occur in the ordinary s-wave interacting Fermi gas, it may be viewed as a characteristic phenomenon associated with a p-wave pairing interaction.
Energy Technology Data Exchange (ETDEWEB)
Beck, C. [Institut Pluridisciplinaire Hubert Curien, UMR 7178, IN2P3-CNRS et Universite Louis Pasteur (Strasbourg I), 23 rue du Loess - BP28, F-67037 Strasbourg Cedex 2 (France); Keeley, N. [DSM/DAPNIA/SPhN CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Diaz-Torres, A. [Department of Nuclear Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200 (Australia)
2007-03-15
The influence on fusion of coupling to the breakup process is investigated for reactions where at least one of the colliding nuclei has a sufficiently low binding energy for breakup to become an important process. Elastic scattering, excitation functions for sub-and near-barrier fusion cross sections, and breakup yields are analyzed for {sup 6,7}Li+{sup 59}Co. Continuum-Discretized Coupled-Channels (CDCC) calculations describe well the data at and above the barrier. Elastic scattering with {sup 6}Li (as compared to {sup 7}Li) indicates the significant role of breakup for weakly bound projectiles. A study of {sup 4,6}He induced fusion reactions with a three-body CDCC method for the {sup 6}He halo nucleus is presented. The relative importance of breakup and bound-state structure effects on total fusion is discussed. (authors)
Wei, Ruihan; Parsons, Sean P; Huizinga, Jan D
2017-03-01
What is the central question of this study? What are the effects of interstitial cells of Cajal (ICC) network perturbations on intestinal pacemaker activity and motor patterns? What is the main finding and its importance? Two-dimensional modelling of the ICC pacemaker activity according to a phase model of weakly coupled oscillators showed that network properties (coupling strength between oscillators, frequency gradient and frequency noise) strongly influence pacemaker network activity and subsequent motor patterns. The model explains motor patterns observed in physiological conditions and provides predictions and testable hypotheses for effects of ICC loss and frequency modulation on the motor patterns. Interstitial cells of Cajal (ICC) are the pacemaker cells of gut motility and are associated with motility disorders. Interstitial cells of Cajal form a network, but the contributions of its network properties to gut physiology and dysfunction are poorly understood. We modelled an ICC network as a two-dimensional network of weakly coupled oscillators with a frequency gradient and showed changes over time in video and graphical formats. Model parameters were obtained from slow-wave-driven contraction patterns in the mouse intestine and pacemaker slow-wave activities from the cat intestine. Marked changes in propagating oscillation patterns (including changes from propagation to non-propagating) were observed by changing network parameters (coupling strength between oscillators, the frequency gradient and frequency noise), which affected synchronization, propagation velocity and occurrence of dislocations (termination of an oscillation). Complete uncoupling of a circumferential ring of oscillators caused the proximal and distal section to desynchronize, but complete synchronization was maintained with only a single oscillator connecting the sections with high enough coupling. The network of oscillators could withstand loss; even with 40% of oscillators lost randomly
Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Barria, P.; Bartos, P.; Bauce, M.; Bauer, G.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Bland, K.R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Brigliadori, L.; Brisuda, A.; Bromberg, C.; Brucken, E.; Bucciantonio, M.; Budagov, J.; Budd, H.S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y.C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J.P.; Chung, W.H.; Chung, Y.S.; Ciobanu, C.I.; Ciocci, M.A.; Clark, A.; Compostella, G.; Convery, M.E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C.A.; Cox, D.J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; De Cecco, S.; De Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J.R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H.C.; Farrington, S.; Feindt, M.; Fernandez, J.P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M.J.; Franklin, M.; Freeman, J.C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garcia, J.E.; Garfinkel, A.F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C.M.; Giokaris, N.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Gonzalez, O.; Gorelov, I.; Goshaw, A.T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R.C.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, S.R.; Halkiadakis, E.; Hamaguchi, A.; Han, J.Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R.F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hidas, D.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R.E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E.J.; Jha, M.K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K.K.; Jun, S.Y.; Junk, T.R.; Kamon, T.; Karchin, P.E.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D.H.; Kim, H.S.; Kim, H.W.; Kim, J.E.; Kim, M.J.; Kim, S.B.; Kim, S.H.; Kim, Y.K.; Kimura, N.; Kirby, M.; Klimenko, S.; Kondo, K.; Kong, D.J.; Konigsberg, J.; Kotwal, A.V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A.T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R.L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H.S.; Lee, J.S.; Lee, S.W.; Leo, S.; Leone, S.; Lewis, J.D.; Limosani, A.; Lin, C.J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D.O.; Liu, C.; Liu, Q.; Liu, T.; Lockwitz, S.; Lockyer, N.S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maksimovic, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martinez, M.; Martinez-Ballarin, R.; Mastrandrea, P.; Mathis, M.; Mattson, M.E.; Mazzanti, P.; McFarland, K.S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M.N.; Moon, C.S.; Moore, R.; Morello, M.J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M.S.; Nielsen, J.; Nodulman, L.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S.H.; Oh, Y.D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Griso, S.Pagan; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A.A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D.E.; Penzo, A.; Phillips, T.J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Potamianos, K.; Poukhov, O.; Prokoshin, F.; Pronko, A.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Rao, K.; Redondo, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rubbo, F.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W.K.; Sakurai, Y.; Santi, L.; Sartori, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E.E.; Schmidt, M.P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Sfyrla, A.; Shalhout, S.Z.; Shears, T.; Shepard, P.F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shreyber, I.; Simonenko, A.; Sinervo, P.; Sissakian, A.; Sliwa, K.; Smith, J.R.; Snider, F.D.; Soha, A.; Somalwar, S.; Sorin, V.; Squillacioti, P.; Stancari, M.; Stanitzki, M.; Denis, R.St.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G.L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P.K.; Thom, J.; Thome, J.; Thompson, G.A.; Thomson, E.; Ttito-Guzman, P.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tu, Y.; Ukegawa, F.; Uozumi, S.; Varganov, A.; Vazquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vizan, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner, R.L.; Wakisaka, T.; Wallny, R.; Wang, S.M.; Warburton, A.; Waters, D.; Weinberger, M.; Wester, W.C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A.B.; Wicklund, E.; Wilbur, S.; Wick, F.; Williams, H.H.; Wilson, J.S.; Wilson, P.; Winer, B.L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamaoka, J.; Yang, T.; Yang, U.K.; Yang, Y.C.; Yao, W.M.; Yeh, G.P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G.B.; Yu, I.; Yu, S.S.; Yun, J.C.; Zanetti, A.; Zeng, Y.; Zucchelli, S.
2011-01-01
Using Zgamma candidate events collected by the CDF detector at the Tevatron Collider, we search for potential anomalous (non-standard-model) couplings between the Z boson and the photon. At the hard scatter energies typical of the Tevatron, standard model Zgamma couplings are too weak to be detected by current experiments; hence any evidence of couplings indicates new physics. Measurements are performed using data corresponding to an integrated luminosity of 4.9 /fb in the Z -> nunubar decay channel and 5.1 /fb in the Z -> l^+l^- (l=mu, e) decay channels. The combination of these measurements provides the most stringent limits to date on Zgamma trilinear gauge couplings. Using an energy scale of Lambda = 1.5 TeV to allow for a direct comparison with previous measurements, we find limits on the CP-conserving parameters that describe Zgamma couplings to be |h_3^{\\gamma,Z}| < 0.017 and |h_4^{\\gamma,Z}| < 0.0006. These results are consistent with standard model predictions.
Institute of Scientific and Technical Information of China (English)
Marcin DUDZI(N)SKI; Przemyslaw G(O)RKA
2013-01-01
We prove the almost sure central limit theorems for the maxima of partial sums of r.v.'s under a general condition of dependence due to Doukhan and Louhichi.We will separately consider the centered sequences and the sequences with positive expected values.
Zeng, Kuanhong; Wang, Denglong; She, Yanchao; Luo, Xiaoqin
2013-11-01
We study analytically the properties of the optical absorption and the spatial weak-light solitons in a quantum dot molecule system with the interdot tunneling coupling (ITC). It is shown that, for the linear case, there exists tunneling induced transparency (TIT) in the context of a weak ITC, while the TIT can be replaced by Autler-Townes splitting in the presence of a strong ITC. For the nonlinear case, it is probable to realize the spatial optical solitons even under weak light intensity. Interestingly, we find that there appears transformation behavior between the bright and dark solitons by properly turning both the ITC strength and the detuning of the probe field. Meanwhile, the transformation condition of the bright and dark solitons is obtained. Additionally it is also found that the amplitude of the solitons first descends and then rises with the increasing of ITC strength. Our results may have potential applications for nonlinear optical experiments and optical telecommunication engineering in solid systems.
Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam
2017-02-01
The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.
Samarin, V. V.
2016-05-01
The time-dependent Schrödinger equation and the coupled channel approach based on the method of perturbed stationary two-center states are used to describe nucleon transfers and fusion in low-energy nuclear reactions. Results of the cross sections calculation for the formation of the 198Au and fusion in the 6He+197Au reaction and for the formation of the 65Zn in 6He+64Zn reaction agree satisfactorily with the experimental data near the barrier. The Feynman's continual integrals calculations for a few-body systems were used for the proposal of the new form of the shell model mean field for helium isotopes.
Photon mass new limits from strong photon-torsion coupling generation of primordial magnetic fields
de Andrade, Garcia
2011-01-01
Recently Adelberger et al [Phys Rev Lett 98: 010402, (2007)] have placed a limit to photon mass by investigating the primordial magnetic fields. Earlier Bertolami et al [Phys Lett \\textbf{B} 455, 96(1999)] showed that massive photons in a spontaneous Lorentz breaking may generate primordial magnetic fields consistent with galactic dynamo seeds. Torsion coupling constant of order $10^{-5}$, much higher than the previously obtained by de Sabbata and Sivaram of $10^{-24}$, leads to strong amplification of magnetic field able to seed galactic dynamo at recombination era contrary to what happens in general relativistic dynamos. This results in $B\\sim{10^{-5}{\\beta}G}$ where ${\\beta}$ is the massive photon-torsion coupling. Thus in order to obtain the observed galaxy field of $B_{G}\\sim{{\\mu}G}$ one should have a coupling $\\beta\\sim{10^{-1}}$, never observed in the universe. Thus we may conclude that the weaker couplings for torsion to e.m fields shall only produce magnetic fields without dynamos starting from extr...
Energy Technology Data Exchange (ETDEWEB)
Blaga, Robert, E-mail: robert.blaga90@e-uvt.ro [Faculty of Physics, West University of Timişoara V. Pârvan Ave. 4, RO-300223 Timişoara (Romania)
2015-12-07
We investigate the energy radiated by an inertial scalar charge evolving in the expanding Poincaré patch of de Sitter spacetime, in the framework of scalar QED perturbation theory. We approximate the transition amplitude in the small expansion parameter limit and show that the leading contribution to the radiated energy has the form of the energy radiated by an accelerated particle in Minkowski space.
Enhanced paramagnetic Cu²⁺ ions removal by coupling a weak magnetic field with zero valent iron.
Jiang, Xiao; Qiao, Junlian; Lo, Irene M C; Wang, Lei; Guan, Xiaohong; Lu, Zhanpeng; Zhou, Gongming; Xu, Chunhua
2015-01-01
A weak magnetic field (WMF) was proposed to enhance paramagnetic Cu(2+) ions removal by zero valent iron (ZVI). The rate constants of Cu(2+) removal by ZVI with WMF at pH 3.0-6.0 were -10.8 to -383.7 fold greater than those without WMF. XRD and XPS analyses revealed that applying a WMF enhanced both the Cu(2+) adsorption to the ZVI surface and the transformation of Cu(2+) to Cu(0) by ZVI. The enhanced Cu(2+) sequestration by ZVI with WMF was accompanied with expedited ZVI corrosion and solution ORP drop. The uneven distribution of paramagnetic Cu(2+) along an iron wire in an inhomogeneous MF verified that the magnetic field gradient force would accelerate the paramagnetic Cu(2+) transportation toward the ZVI surface due to the WMF-induced sharp decay of magnetic flux intensity from ZVI surface to bulk Cu(2+) solution. The paramagnetic Fe(2+) ions generated by ZVI corrosion would also accumulate at the position with the highest magnetic flux intensity on the ZVI surface, causing uneven distribution of Fe(2+), and facilitate the local galvanic corrosion of ZVI, and thus, Cu(2+) reduction by ZVI. The electrochemical analysis verified that the accelerated ZVI corrosion in the presence of WMF partly arose from the Lorentz force-enhanced mass transfer.
Sullivan, S. Mažeika P.; Boaz, Lindsey E.; Hossler, Katie
2016-04-01
Although mercury (Hg) contamination is common in stream ecosystems, mechanisms governing bioavailability and bioaccumulation in fluvial systems remain poorly resolved as compared to lentic systems. In particular, streams in urbanized catchments are subject to fluvial geomorphic alterations that may contribute to Hg distribution, bioaccumulation, and export across the aquatic-to-terrestrial boundary. In 12 streams of urban Columbus, Ohio, we investigated the influence of fluvial geomorphic characteristics related to channel geometry, streamflow, and sediment size and distribution on (1) Hg concentrations in sediment and body burdens in benthic larval and adult emergent aquatic insects and (2) aquatic-to-terrestrial contaminant transfer to common riparian spiders of the families Pisauridae and Tetragnathidae via changes in aquatic insect Hg body burdens as well as in aquatic insect density and community composition. Hydrogeomorphic characteristics were weakly related to Hg body burdens in emergent insects (channel geometry) and tetragnathid spiders (streamflow), but not to Hg concentrations in sediment or benthic insects. Streamflow characteristics were also related to emergent insect density, while wider channels were associated with benthic insect community shifts toward smaller-bodied and more tolerant taxa (e.g., Chironomidae). Thus, our results provide initial evidence that fluvial geomorphology may influence aquatic-to-terrestrial contaminant Hg transfer through the collective effects on emergent insect body burdens as well as on aquatic insect community composition and abundance.
Limiting Phase Trajectories and Resonance Energy Transfer in a System of Two Coupled Oscillators
Directory of Open Access Journals (Sweden)
L. I. Manevitch
2010-01-01
Full Text Available We study a problem of energy exchange in a system of two coupled oscillators subject to 1 : 1 resonance. Our results exploit the concept of limiting phase trajectories (LPTs. The LPT, associated with full energy transfer, is, in certain sense, an alternative to nonlinear normal modes characterized by conservation of energy. We consider two benchmark examples. As a first example, we construct an LPT and examine the convergence to stationary oscillations for a Duffing oscillator subjected to resonance harmonic excitation. As a second example, we treat resonance oscillations in a system of two nonlinearly coupled oscillators. We demonstrate the reduction of the equations of motion to an equation of a single oscillator. It is shown that the most intense energy exchange and beating arise when motion of the equivalent oscillator is close to an LPT. Damped beating and the convergence to rest in a system with dissipation are demonstrated.
Forming limits in the hole-flanging process by coupled and uncoupled damage models
Kacem, A.; Jégat, A.; Krichen, A.; Manach, P. Y.
2013-12-01
The aim of this work is to identify the limits of the hole-flanging process under different conditions. A 3D finite element model was developed to predict failure in hole-flanging process for sheet aluminium alloys. The Gurson-Tvergaard-Needleman (GTN) coupled damage model and the Bao-Wierzbicki (BW) uncoupled damage model were used. The parameters of both coupled and uncoupled models were identified by inverse analysis based on uniaxial tensile test. Experiments were conducted to analyse the types of failure that appear during the process. Numerical results were compared with experimental datas to check the validity of both models in predicting failure during the hole-flanging process. The comparative study showed that the GTN model predicts more accurately almost all types of failure while fracture occurrence can be only predicted by the BW model.
Wei, Jun-Jie; Wu, Xue-Feng; Gao, He; Mészáros, Peter
2016-01-01
Five TeV neutrino events weakly correlated with five gamma-ray bursts (GRBs) were detected recently by IceCube. This work is an attempt to show that if the GRB identifications are verified, the observed time delays between the TeV neutrinos and gamma-ray photons from GRBs provide attractive candidates for testing fundamental physics with high accuracy. Based on the assumed associations between the TeV neutrinos and GRBs, we find that the limiting velocity of the neutrinos is equal to that of ...
Directory of Open Access Journals (Sweden)
Renata Costa Caiafa
2016-04-01
Full Text Available ABSTRACT HTLV-1-associated myelopathy is a progressive disabling disease associated with gait abnormalities. Objective To identify and quantify the main muscles affected by weakness and spasticity, their impact on gait, functional capacity and on quality of life of HTLV-1-associated myelopathy patients. Method We evaluated lower limbs muscular strength according to the Medical Research Council scale, spasticity according to the modified Ashworth scale, daily activities according to the Barthel Index and quality of life according to the Short-Form Health Survey-36 of 26 HTLV-1-associated myelopathy patients. Results The muscles most affected by weakness included the dorsal flexors and knee flexors. Spasticity predominated in the hip adductor muscles and in plantar flexors. Assistance for locomotion, minimal dependence in daily activities, limitations in functional capacity and physical aspects were the most common findings. Conclusion The impairment of gait, functional dependence and quality of life were predominantly a consequence of intense muscle weakness in HTLV-1-associated myelopathy patients.
Coupled-cluster theory of a gas of strongly-interacting electrons in the dilute limit
Energy Technology Data Exchange (ETDEWEB)
Mihaila, Bodgan [Los Alamos National Laboratory; Cardenas, Andres L [Los Alamos National Laboratory
2008-01-01
We study the ground-state properties of a dilute gas of strongly-interacting fermions in the framework of the coupled-cluster expansion (CCE). We demonstrate that properties such as universality, opening of a gap in the excitation spectrum and applicability of s-wave approximations appear naturally in the CCE approach. In the zero-density limit, we show that the ground-state energy density depends on only one parameter which in turn may depend at most on the spatial dimensionality of the system.
Sensitivity and detection limit of dual-waveguide coupled microring resonator biosensors
Institute of Scientific and Technical Information of China (English)
Zhixuan Xia; Huaxiang Yi; Yao Chen; Zhiping Zhou
2009-01-01
We show that a linear relation exists between the device sensitivity and the quality (Q) factor of a dual-waveguide coupled microring resonator optical biosensor when the optimal conditions are satisfied. We also show that the detection limit depends on the loss coefficient and signal-to-nosie ratio (SNR) of the overall system, rather than the circumference of the ring. For a microring resonator sensor whose Q factor is 20000, the detection limit is found to be about 10-7 with 30-dB SNR, which is in good agreement with reported experimental data. These results indicate that loss reduction is the top priority in the design and fabrication of highly sensitive microring resonator optical biosensors.
Another mean field treatment in the strong coupling limit of lattice QCD
Ohnishi, Akira; Nakano, Takashi Z
2010-01-01
We discuss the QCD phase diagram in the strong coupling limit of lattice QCD by using a new type of mean field coming from the next-to-leading order of the large dimensional expansion. The QCD phase diagram in the strong coupling limit recently obtained by using the monomer-dimer-polymer (MDP) algorithm has some differences in the phase boundary shape from that in the mean field results. As one of the origin to explain the difference, we consider another type of auxiliary field, which corresponds to the point-splitting mesonic composite. Fermion determinant with this mean field under the anti-periodic boundary condition gives rise to a term which interpolates the effective potentials in the previously proposed zero and finite temperature mean field treatments. While the shift of the transition temperature at zero chemical potential is in the desirable direction and the phase boundary shape is improved, we find that the effects are too large to be compatible with the MDP simulation results.
Directory of Open Access Journals (Sweden)
Hongjun Li
2012-01-01
Full Text Available This paper proposes a modified particle swarm optimization algorithm coupled with the finite element limit equilibrium method (FELEM for the minimum factor of safety and the location of associated noncircular critical failure surfaces for various geotechnical practices. During the search process, the stress compatibility constraints coupled with the geometrical and kinematical compatibility constraints are firstly established based on the features of slope geometry and stress distribution to guarantee realistic slip surfaces from being unreasonable. Furthermore, in the FELEM, based on rigorous theoretical analyses and derivation, it is noted that the physical meaning of the factor of safety can be formulated on the basis of strength reserving theory rather than the overloading theory. Consequently, compared with the limit equilibrium method (LEM and the shear strength reduction method (SSRM through several numerical examples, the FELEM in conjunction with the improved search strategy is proved to be an effective and efficient approach to routine analysis and design in geotechnical practices with a high level of confidence.
Intercomparisons of land-surface parameterizations coupled to a limited area forecast model
Timbal, B.; Henderson-Sellers, A.
1998-12-01
The goal of the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) is to improve the understanding of the interactions between the atmosphere and the continental surface in climate and weather forecast models. In PILPS Phase 4(b), selected schemes are coupled to the Limited Area Prediction System (LAPS) developed by the Australian Bureau of Meteorology. To facilitate the comparison of PILPS schemes' behavior within LAPS, a single mode of coupling is selected: explicit coupling. This type of coupling is more flexible and avoids most of the problems raised when interchanging the surface schemes. Exploratory tests are conducted. Initially, experiments are run in which the land-surface schemes use the same parameters as in their original host models. Then, in other runs, the most important surface parameters are set constant in an attempt to reduce the scatter amongst the schemes' results. In order to understand the impact of initialisation of soil moisture on the schemes' results some extreme cases (wet and dry) are performed. The partitioning between surface fluxes is studied as well as the soil moisture budget. Both regional and local results are analysed. Sensitivity between LSS is found in the precipitation field with rainfall over the Australian continent altering by about 20%, but no significant change is found in the net radiation. The scatter in the surface energy fluxes amongst the schemes is large (up to 300 W m -2 locally, during the daytime peak) but is seldom affected by the choice of surface parameters. The dynamical range of flux partitioning between extremely dry and wet initialisation varies strongly amongst the schemes. Some major shortcoming with the BUCKET approach are seen in the re-evaporation of convective precipitation over dry land, in the very large evaporation from wet surfaces and the diurnal cycle of surface temperature.
Wei, Jun-Jie; Wu, Xue-Feng; Gao, He; Mészáros, Peter
2016-08-01
Five TeV neutrino events weakly correlated with five gamma-ray bursts (GRBs) were detected recently by IceCube. This work is an attempt to show that if the GRB identifications are verified, the observed time delays between the TeV neutrinos and gamma-ray photons from GRBs provide attractive candidates for testing fundamental physics with high accuracy. Based on the assumed associations between the TeV neutrinos and GRBs, we find that the limiting velocity of the neutrinos is equal to that of photons to an accuracy of ~ 1.9 × 10-15 - 2.5 × 10-18, which is about 104 - 107 times better than the constraint obtained with the neutrino possibly from a blazar flare. In addition, we set the most stringent limits up to date on the energy scale of quantum gravity for both the linear and quadratic violations of Lorentz invariance, namely EQG, 1 > 6.3 × 1018 - 1.5 × 1021 GeV and EQG, 2 > 2.0 × 1011 - 4.2 × 1012 GeV, which are essentially as good as or are an improvement of one order of magnitude over the results previously obtained by the GeV photons of GRB 090510 and the PeV neutrino from a blazar flare. Assuming that the Shapiro time delay is caused by the gravitational potential of the Laniakea supercluster of galaxies, we also place the tightest limits to date on Einstein's weak equivalence principle through the relative differential variations of the parameterized post-Newtonian parameter γ values for two different species of particles (i.e., neutrinos and photons), yielding Δγ ~ 10-11 - 10-13. However, it should be emphasized again that these limits here obtained are at best forecast of what could be achieved if the GRB/neutrino correlations would be finally confirmed.
Laurent, Sébastien; Pierce, Matthieu; Delehaye, Marion; Yefsah, Tarik; Chevy, Frédéric; Salomon, Christophe
2017-03-10
We study three-body recombination in an ultracold Bose-Fermi mixture. We first show theoretically that, for weak interspecies coupling, the loss rate is proportional to Tan's contact. Second, using a ^{7}Li/^{6}Li mixture we probe the recombination rate in both the thermal and dual superfluid regimes. We find excellent agreement with our model in the BEC-BCS crossover. At unitarity where the fermion-fermion scattering length diverges, we show that the loss rate is proportional to n_{f}^{4/3}, where n_{f} is the fermionic density. This unusual exponent signals nontrivial two-body correlations in the system. Our results demonstrate that few-body losses can be used as a quantitative probe of quantum correlations in many-body ensembles.
Neuman, Nicolás I; Winkler, Elín; Peña, Octavio; Passeggi, Mario C G; Rizzi, Alberto C; Brondino, Carlos D
2014-03-01
We report single-crystal X-band EPR and magnetic measurements of the coordination polymer catena-(trans-(μ2-fumarato)tetraaquacobalt(II)), 1, and the Co(II)-doped Zn(II) analogue, 2, in different Zn:Co ratios. 1 presents two magnetically inequivalent high spin S = 3/2 Co(II) ions per unit cell, named A and B, in a distorted octahedral environment coordinated to four water oxygen atoms and trans coordinated to two carboxylic oxygen atoms from the fumarate anions, in which the Co(II) ions are linked by hydrogen bonds and fumarate molecules. Magnetic susceptibility and magnetization measurements of 1 indicate weak antiferromagnetic exchange interactions between the S = 3/2 spins of the Co(II) ions in the crystal lattice. Oriented single crystal EPR experiments of 1 and 2 were used to evaluate the molecular g-tensor and the different exchange coupling constants between the Co(II) ions, assuming an effective spin S′= 1/2. Unexpectedly, the eigenvectors of the molecular g-tensor were not lying along any preferential bond direction, indicating that, in high spin Co(II) ions in roughly octahedral geometry with approximately axial EPR signals, the presence of molecular pseudo axes in the metal site does not determine preferential directions for the molecular g-tensor. The EPR experiment and magnetic measurements, together with a theoretical analysis relating the coupling constants obtained from both techniques, allowed us to evaluate selectively the exchange coupling constant associated with hydrogen bonds that connect magnetically inequivalent Co(II) ions (|JAB(1/2)| = 0.055(2) cm(–1)) and the exchange coupling constant associated with a fumarate bridge connecting equivalent Co(II) ions (|JAA(1/2)| ≈ 0.25 (1) cm(–1)), in good agreement with the average J(3/2) value determined from magnetic measurements.
Wgamma production and limits on anomalous WWgamma couplings in ppbar collisions
Abazov, V M; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Altona, A; Alverson, G; Alves, G A; Aoki, M; Arov, M; Askew, A; Asman, B; Atkins, S; Atramentov, O; Augsten, K; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bazterra, V; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besan?con, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brandt, O; Brock, R; Brooijmans, G; Bross, A; Brown, D; Brown, J; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdinb, S; Burnett, T H; Buszello, C P; Calpas, B; Camacho-Pŕez, E; Carrasco-Lizarraga, M A; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapon, E; Chen, G; Chevalier-Thery, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M -C; Croc, A; Cutts, D; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garcia-Bellido, A; García-Guerrac, G A; Gavrilov, V; Gay, P; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J -F; Grohsjean, A; Grunendahl, S; Grunewald, M W; Guillemin, T; Gutierrez, G; Gutierrez, P; Haasd, A; Hagopian, S; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; La Cruz, I Heredia-De; Herner, K; Heskethe, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Ito, A S; Jabeen, S; Jaffre, M; Jamin, D; Jayasinghe, A; Jesik, R; Jiang, P; Johns, K; Johnson, M; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kohli, J M; Kozelov, A V; Kraus, J; Kulikov, S; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Lobodenko, A; Lokajicek, M; de Sa, R Lopes; Lubatti, H J; Luna-Garciaf, R; Lyon, A L; Maciel, A K A; Mackin, D; Madar, R; Magana-Villalba, R; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Muanza, G S; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Novaes, S F; Nunnemann, T; Obrant, G; Orduna, J; Osman, N; Osta, J; Garzon, G J Otero y; Padilla, M; Pal, A; Parashar, N; Parihar, V; Park, S K; Parsons, J; Partridged, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Petridis, K; Petrillo, G; Petroff, P; Piegaia, R; Pleier, M -A; Podesta-Lermag, P L M; Podstavkov, V M; Polozov, P; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Salcido, P; Sanchez-Hernandez, A; Sanders, M P; Sanghi, B; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwienhorst, C Schwanenberger R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, K J; Snow, G R; Snow, J; Snyder, S; Soldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stolin, V; Stoyanova, D A; Strauss, M; Strom, D; Stutte, L; Suter, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Titov, M; Tokmenin, V V; Tsai, Y -T; Tschann-Grimm, K; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weberh, M; Welty-Rieger, L; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, S; Yang, W -C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Youn, S W; Yu, J; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L
2011-01-01
We measure the cross section and the difference in rapidities between photons and charged leptons for inclusive W -> lnu+gamma production in egamma and mugamma final states. Using data corresponding to an integrated luminosity of 4.2 fb-1 collected with the D0 detector at the Fermilab Tevatron Collider, the cross section multiplied by the branching fraction for the process ppbar -> Wgamma+X -> lnugamma+X, measured to be 15.8 +/- 0.8 (stat.) +/- 1.2 (syst.) pb, and the distribution of the charge-signed photon-lepton rapidity difference are found to be in agreement with the standard model. These results provide the most stringent limits on anomalous WWgamma couplings for data from hadron colliders: -0.4 < Delta kappa_gamma < 0.4 and -0.08 < lambda_gamma < 0.07 at the 95% C.L.
Coupling sample paths to the partial thermodynamic limit in stochastic chemical reaction networks
Levien, Ethan
2016-01-01
We present a new technique for reducing the variance in Monte Carlo estimators of stochastic chemical reaction networks. Our method makes use of the fact that many stochastic reaction networks converge to piecewise deterministic Markov processes in the large system-size limit. The statistics of the piecewise deterministic process can be obtained much more efficiently than those of the exact process. By coupling sample paths of the exact model to the piecewise deterministic process we are able to reduce the variance, and hence the computational complexity of the Monte Carlo estimator. In addition to rigorous results concerning the asymptotic behavior of our method, numerical simulations are performed on some simple biological models suggesting that significant computational gains are made for even moderate system-sizes.
He, Xiangming; Pu, Weihua; Han, Jingli; Chen, Jian; Lu, Jiufang; Jiang, Changyin; Wan, Chunrong
2005-12-15
A method is proposed based on mode coupling theory in which the ion transference number is introduced into the theory. The ionic limiting molar conductivities of LiPF6, LiClO4, LiBF4, LiCF3SO3, Li(CF3SO3)2N, LiC4F9SO3, and LiAsF6 in PC(propylene carbonate), GBL(gamma-butyrolactone), PC(propylene carbonate)/EMC(ethylmethyl carbonate), and PC(propylene carbonate)/DME(dimethoxyethane) are calculated based on this method, which does not involve any adjustable parameter. The results fit well to the literature data which are calculated by an empirically adjusted formula. This presents a potential way to calculate the conductivities of Li-ion battery electrolytes.
Chiou, Dah-Wei; Chen, Tsung-Wei
2016-11-01
We apply the method of direct perturbation theory for the Foldy-Wouthuysen (FW) transformation upon the Dirac-Pauli Hamiltonian subject to external electromagnetic fields. The exact FW transformations exist and agree with those obtained by Eriksen's method for two special cases. In the weak-field limit of static and homogeneous electromagnetic fields, by mathematical induction on the orders of 1 /c in the power series, we rigorously prove the long-held speculation: the FW transformed Dirac-Pauli Hamiltonian is in full agreement with the classical counterpart, which is the sum of the orbital Hamiltonian for the Lorentz force equation and the spin Hamiltonian for the Thomas-Bargmann-Michel-Telegdi equation.
Ultra-weak sector, Higgs boson mass, and the dilaton
Allison, Kyle; Ross, Graham G
2014-01-01
The Higgs boson mass may arise from a portal coupling to a singlet field $\\sigma$ which has a very large VEV $f \\gg m_\\text{Higgs}$. This requires a sector of "ultra-weak" couplings $\\zeta_i$, where $\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $\\sigma$ in the $\\zeta_i \\rightarrow 0$ limit. The singlet field $\\sigma$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.
ZZ Production and Limits on Anomalous Triple Gauge Couplings with the ATLAS experiment at the LHC
Buttinger, Will; Thomson, Mark
This thesis presents an analysis of ZZ production in proton-proton collisions at √s = 7 TeV using data collected in 2011, corresponding to 4.6 fb−1 of integrated luminosity, recorded by the ATLAS experiment at the Large Hadron Collider. Events in the ZZ → l+l − ν ν ( = e, μ) channel are selected and the pp → ZZ →l+l-ν ν cross-section is measured in a restricted phase space. A total ZZ production cross-section is measured for a phase space where both Z bosons are produced in the mass range 66 to 116 GeV, σ(pp → ZZ) = 5.5+/-1.3 (stat.) +1.2_{-1.5} (syst.) +0.4_{-0.3} (lumi.) pb, consistent with the next-to-leading order standard model prediction of 5.81+0.22_{-0.18} pb. Observed event yields in three bins of the transverse momentum of the visible Z are used to set 95% CLs limits on anomalous neutral triple gauge boson coupling parameters f^{V}i0 (V=γ,Z) (i = 4, 5), which parameterize an effective VZZ vertex with both Z bosons on-shell, and which vanish in the standard model. The limits obta...
Anomalous transport at weak coupling
Chowdhury, Subham Dutta
2015-01-01
We evaluate the contribution of chiral fermions in $d=2, 4, 6$, chiral bosons, a chiral gravitino like theory in $d=2$ and chiral gravitinos in $d=6$ to all the leading parity odd transport coefficients at one loop. This is done by using finite temperature field theory to evaluate the relevant Kubo formulae. For chiral fermions and chiral bosons the relation between the parity odd transport coefficient and the microscopic anomalies including gravitational anomalies agree with that found by using the general methods of hydrodynamics and the argument involving the consistency of the Euclidean vacuum. For the gravitino like theory in $d=2$ and chiral gravitinos in $d=6$, we show that relation between the pure gravitational anomaly and parity odd transport breaks down. From the perturbative calculation we clearly identify the terms that contribute to the anomaly polynomial, but not to the transport coefficient for gravitinos. We also develop a simple method for evaluating the angular integrals in the one loop dia...
The Statics Dielectric Function and Interaction Potential In Strong Coupling With AdS/CFT
Liu, Lian; Liu, Hui
2013-01-01
In this paper, we studied the static dielectric function and interaction potential in strong coupling limit with AdS/CFT correspondence. The dielectric function is depressed compared with that in weak coupling. The interaction potential then presents a weaker screening characteristics in strong coupling, which indicates a smaller Debye mass compared with weak coupling.
Chen, Jiunn-Wei; Song, Yu-Kun; Wang, Qun
2012-01-01
We calculate the shear (eta) and bulk (zeta) viscosities of a weakly coupled quark gluon plasma at the leading-log order with finite temperature T and quark chemical potential mu. We find that the shear viscosity to entropy density ratio eta/s increases monotonically with mu and eventually scales as (mu/T)^2 at large mu. In contrary, zeta/s is insensitive to mu. Both eta/s and zeta/s are monotonically decreasing functions of the quark flavor number N_f when N_f \\geq 2. This property is also observed in pion gas systems. Our perturbative calculation suggests that QCD becomes the most perfect (i.e. with the smallest eta/s) at mu=0 and N_f = 16 (the maximum N_f with asymptotic freedom). It would be interesting to test whether the currently smallest eta/s computed close to the phase transition with mu=0 and N_f = 0 can be further reduced by increasing N_f.
Nozaki, Daijiro; Lücke, Andreas; Schmidt, Wolf Gero
2017-02-16
Destructive quantum interference (QI) in molecular junctions has attracted much attention in recent years. It can tune the conductance of molecular devices dramatically, which implies numerous potential applications in thermoelectric and switching applications. There are several schemes that address and rationalize QI in single molecular devices. Dimers play a particular role in this respect because the QI signal may disappear, depending on the dislocation of monomers. We derive a simple rule that governs the occurrence of QI in weakly coupled dimer stacks of both alternant and nonalternant polyaromatic hydrocarbons (PAHs) and extends the Tada-Yoshizawa scheme. Starting from the Green's function formalism combined with the molecular orbital expansion approach, it is shown that QI-induced antiresonances and their energies can be predicted from the amplitudes of the respective monomer terminal molecular orbitals. The condition is illustrated for a toy model consisting of two hydrogen molecules and applied within density functional calculations to alternant dimers of oligo(phenylene-ethynylene) and nonalternant PAHs. Minimal dimer structure modifications that require only a few millielectronvolts and lead to an energy crossing of the essentially preserved monomer orbitals are shown to result in giant conductance switching ratios.
Weak interference in the high-signal regime.
Torres, Juan P; Puentes, Graciana; Hermosa, Nathaniel; Salazar-Serrano, Luis Jose
2012-08-13
Weak amplification is a signal enhancement technique which is used to measure tiny changes that otherwise cannot be determined because of technical limitations. It is based on: a) the existence of a weak interaction which couples a property of a system (the system) with a separate degree of freedom (the pointer), and b) the measurement of an anomalously large mean value of the pointer state (weak mean value), after appropriate pre-and post-selection of the state of the system. Unfortunately, the weak amplification process is generally accompanied by severe losses of the detected signal, which limits its applicability. However, we will show here that since weak amplification is essentially the result of an interference phenomena, it should be possible to use the degree of interference (weak interference) to get relevant information about the physical system under study in a more general scenario, where the signal is not severely depleted (high-signal regime).
Kore, Nitin; Pazdera, Pavel
2016-12-22
A method for preparation of a new stable Cu(I) catalyst supported on weakly acidic polyacrylate resin without additional stabilizing ligands is described. A simple and efficient methodology for Ullmann Cu(I) catalyzed C-N cross coupling reactions using this original catalyst is reported. Coupling reactions of 4-chloropyridinium chloride with anilines containing electron donating (EDG) or electron withdrawing (EWG) groups, naphthalen-2-amine and piperazine, respectively, are successfully demonstrated.
Directory of Open Access Journals (Sweden)
Nitin Kore
2016-12-01
Full Text Available A method for preparation of a new stable Cu(I catalyst supported on weakly acidic polyacrylate resin without additional stabilizing ligands is described. A simple and efficient methodology for Ullmann Cu(I catalyzed C-N cross coupling reactions using this original catalyst is reported. Coupling reactions of 4-chloropyridinium chloride with anilines containing electron donating (EDG or electron withdrawing (EWG groups, naphthalen-2-amine and piperazine, respectively, are successfully demonstrated.
Weak Convergence and Weak Convergence
Directory of Open Access Journals (Sweden)
Narita Keiko
2015-09-01
Full Text Available In this article, we deal with weak convergence on sequences in real normed spaces, and weak* convergence on sequences in dual spaces of real normed spaces. In the first section, we proved some topological properties of dual spaces of real normed spaces. We used these theorems for proofs of Section 3. In Section 2, we defined weak convergence and weak* convergence, and proved some properties. By RNS_Real Mizar functor, real normed spaces as real number spaces already defined in the article [18], we regarded sequences of real numbers as sequences of RNS_Real. So we proved the last theorem in this section using the theorem (8 from [25]. In Section 3, we defined weak sequential compactness of real normed spaces. We showed some lemmas for the proof and proved the theorem of weak sequential compactness of reflexive real Banach spaces. We referred to [36], [23], [24] and [3] in the formalization.
Power harvesting by electromagnetic coupling from wind-induced limit cycle oscillations
Boccalero, G.; Olivieri, S.; Mazzino, A.; Boragno, C.
2017-09-01
Recent developments of low-power microprocessors open to new applications such as wireless sensor networks (WSN) with the consequent problem of autonomous powering. For this purpose, a possible strategy is represented by energy harvesting from wind or other flows exploiting fluid-structure interactions. In this work, we present an updated picture of a flutter-based device characterized by fully passive dynamics and a simple constructive layout, where limit cycle oscillations are undergone by an elastically bounded wing. In this case, the conversion from mechanical to electrical energy is performed by means of an electromagnetic coupling between a pair of coils and magnets. A centimetric-size prototype is shown to harvest energy from low wind velocities (between 2 and 4 m s-1), reaching a power peak of 14 mW, representing a valuable amount for applications related to WSN. A mathematical description of the nonlinear dynamics is then provided by a quasi-steady phenomenological model, revealing satisfactory agreement with the experimental framework within a certain parametric range and representing a useful tool for future optimizations.
Taubert, Richard; Dregely, Daniel; Stroucken, Tineke; Christ, Andre; Giessen, Harald
2012-02-21
Radiative coupling between oscillators is one of the most fundamental subjects of research in optics, where particularly a Bragg-type arrangement is of interest and has already been applied to atoms and excitons in quantum wells. Here we explore this arrangement in a plasmonic structure. We observe the emergence of an octave-wide photonic band gap in the optical regime. Compared with atomic or excitonic systems, the coupling efficiency of the particle plasmons utilized here is several orders of magnitude larger and widely tunable by changing the size and geometry of the plasmonic nanowires. We are thus able to explore the regime where the coupling distance is even limited by the large radiative decay rate of the oscillators. This Bragg-stacked coupling scheme will open a new route for future plasmonic applications such as far-field coupling to quantum emitters without quenching, plasmonic cavity structures and plasmonic distributed gain schemes for spasers.
Institute of Scientific and Technical Information of China (English)
时培明; 孙彦龙; 韩东颖
2016-01-01
以双耦合 Duffing 混沌振子为研究对象，提出了一种基于双耦合 Duffing 混沌振子与变尺度相结合的微弱信号检测新方法。分析了双耦合 Duffing 混沌振子检测微弱周期信号的原理。利用变尺度方法，克服了 Duffing振子检测微弱周期信号受频率限制的缺陷。通过双耦合 Duffing 混沌振子系统与单 Duffing 混沌振子系统进行比较，表明双耦合 Duffing 混沌振子系统具有明显的优越性。该方法用于检测任意多频微弱信号具有明显优势。%With two coupled Duffing oscillator as the research object,a new method of weak signal detection is proposed based on two coupled Duffing oscillator and variable scale. The detect principle of weak periodic signal based on two coupled Duffing oscillator is analyzed. With the variable scale method,the defect of the Duffing oscillator to detect weak periodic signal by frequency limit is overcomed . Through the comparison of two coupled Duffing oscillator system with single Duffing oscillator system,the advantages of the two coupled Duffing oscillator system are shown. The method used to detect multi-frequency weak signal has obvious advantages.
Limits on anomalous trilinear gauge couplings at the CMS with 7TeV Large Hadron Collider data
Indian Academy of Sciences (India)
Bhawana Gomber
2012-10-01
Diboson production in proton–proton collisions presents an opportunity to study the self-interaction between gauge bosons via anomalous trilinear gauge couplings (aTGC). The values of these couplings are fully fixed in the SM by the gauge structure. Thus, any deviation of the observed strength of the TGC from the SM prediction would indicate new physics. This paper presents the limits on anomalous , and trilinear gauge couplings in proton–proton collisions at the centre of mass energy of 7 TeV with the CMS detector.
Demaeyer, Jonathan
2016-01-01
A stochastic subgrid-scale parameterization based on the Ruelle's response theory and proposed in Wouters and Lucarini (2012) is tested in the context of a low-order coupled ocean-atmosphere model for which a part of the atmospheric modes are considered as unresolved. A natural separation of the phase-space into an invariant set and its complement allows for an analytical derivation of the different terms involved in the parameterization, namely the average, the fluctuation and the long memory terms. In this case, the fluctuation term is an additive stochastic noise. Its application to the low-order system reveals that a considerable correction of the low-frequency variability along the invariant subset can be obtained, provided that the coupling is sufficiently weak. This new approach of scale separation opens new avenues of subgrid-scale parameterizations in multiscale systems used for climate forecasts.
Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.
1984-10-19
A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.
Asymptotic theory of weakly dependent random processes
Rio, Emmanuel
2017-01-01
Presenting tools to aid understanding of asymptotic theory and weakly dependent processes, this book is devoted to inequalities and limit theorems for sequences of random variables that are strongly mixing in the sense of Rosenblatt, or absolutely regular. The first chapter introduces covariance inequalities under strong mixing or absolute regularity. These covariance inequalities are applied in Chapters 2, 3 and 4 to moment inequalities, rates of convergence in the strong law, and central limit theorems. Chapter 5 concerns coupling. In Chapter 6 new deviation inequalities and new moment inequalities for partial sums via the coupling lemmas of Chapter 5 are derived and applied to the bounded law of the iterated logarithm. Chapters 7 and 8 deal with the theory of empirical processes under weak dependence. Lastly, Chapter 9 describes links between ergodicity, return times and rates of mixing in the case of irreducible Markov chains. Each chapter ends with a set of exercises. The book is an updated and extended ...
The Study of Wγ production at D0: Anomalous Coupling Limits and the Radiation Amplitude Zero
Energy Technology Data Exchange (ETDEWEB)
Pawloski, Gregory J. [Rice Univ., Houston, TX (United States)
2007-06-01
Wγ production is analyzed in the electron and muon decay channels with approximately 1 fb^{-1} of data from p$\\bar{p}$ collisions that were produced at a center-of-mass energy of √s = 1.96 TeV and that were collected by the D0 detector at the Fermilab Tevatron collider. The inclusive p$\\bar{p}$ → ℓvγ cross section is measured in both channels and is found to be consistent with the Standard Model expectation of 2.08 ± 0.05_{PDF} pb for events with a photon E_{T} > 11 GeV, ΔR_{ℓ}_{γ} > 0.7, and ℓvγ transverse mass greater than 90 GeV . The observed cross section is measured to be 2.05 ± 0.18_{stat} ± 0.10_{sys} ± 0.13_{lumi} pb and a.72 ± 0.19_{stat} ± 0.15_{sys} ± 0.10_{lumi} pb for the electron and muon channels respectively. The photon E_{T} spectrum is examined for indications of anomalous WWγ couplings. No evidence is found, and the following one-dimensional limits are set at a 95% confidence level: -0.18 < λ < 0.18 and 0.16 < κ < 1.84. The observed charge-signed photon-lepton rapidity difference is consistent with the Standard Model prediction and is indicative of the theoretically expected radiation amplitude zero. The distribution exhibits a bimodal structure which is expected from the destructive interference, with the unimodal hypothesis being ruled out at the 94% confidence level.
Real-time Dynamic Coupling of GPC-enhanced Diffraction-limited Focal Spots
DEFF Research Database (Denmark)
Villangca, Mark Jayson; Bañas, Andrew Rafael; Kopylov, Oleksii
2015-01-01
We have previously demonstrated on-demand dynamic coupling of an optically manipulated wave-guided optical waveguide (WOW) using diffractive techniques on a “point and shoot” approach. In this work, the generation of the coupling focal spots is done in real-time following the position of the WOW...
Cavity-mediated coupling of mechanical oscillators limited by quantum backaction
Spethmann, Nicolas; Schreppler, Sydney; Buchmann, Lukas; Stamper-Kurn, Dan M
2015-01-01
A complex quantum system can be constructed by coupling simple quantum elements to one another. For example, trapped-ion or superconducting quantum bits may be coupled by Coulomb interactions, mediated by the exchange of virtual photons. Alternatively quantum objects can be coupled by the exchange of real photons, particularly when driven within resonators that amplify interactions with a single electro-magnetic mode. However, in such an open system, the capacity of a coupling channel to convey quantum information or generate entanglement may be compromised. Here, we realize phase-coherent interactions between two spatially separated, near-ground-state mechanical oscillators within a driven optical cavity. We observe also the noise imparted by the optical coupling, which results in correlated mechanical fluctuations of the two oscillators. Achieving the quantum backaction dominated regime opens the door to numerous applications of cavity optomechanics with a complex mechanical system. Our results thereby illu...
Institute of Scientific and Technical Information of China (English)
黄思训; 项杰; 韩威
2004-01-01
The troposphere and ocean mixed layer were considered as two components of a dynamic system operated by solar radiation as the constant source of energy, where upon an air-sea coupling selfexited coupling oscillation model was based with the aid of a locally averaged thermodynamic climate model, resulting mathematically in a closed self-governed dynamic system, a so-called El Nino-Southern Oscillation (ENSO) system. With the limit cycle solution of the system. It is shown that the essential physics of the coupled system can be described by the ENSO system. Compared with the observations, the theoretical limit cycle orbit matches the observed phase loop qualitatively. The ENSO system provides a useful theoretical framework for study of interannual variation of the tropical climate system.
Siebert, Julien; Alonso, Sergio; Bär, Markus; Schöll, Eckehard
2014-05-01
A one-component bistable reaction-diffusion system with asymmetric nonlocal coupling is derived as a limiting case of a two-component activator-inhibitor reaction-diffusion model with differential advection. The effects of asymmetric nonlocal couplings in such a bistable reaction-diffusion system are then compared to the previously studied case of a system with symmetric nonlocal coupling. We carry out a linear stability analysis of the spatially homogeneous steady states of the model and numerical simulations of the model to show how the asymmetric nonlocal coupling controls and alters the steady states and the front dynamics in the system. In a second step, a third fast reaction-diffusion equation is included which induces the formation of more complex patterns. A linear stability analysis predicts traveling waves for asymmetric nonlocal coupling, in contrast to a stationary Turing patterns for a system with symmetric nonlocal coupling. These findings are verified by direct numerical integration of the full equations with nonlocal coupling.
New Experimental limit on Optical Photon Coupling to Neutral, Scalar Bosons
Afanasev, A; Beard, K B; Biallas, G; Boyce, J; Minarni, M; Ramdon, R; Shinn, M; Slocum, P
2008-01-01
We report on the first results of a sensitive search for scalar coupling of photons to a light neutral boson in the mass range of approximately 1.0 milli-electron volts and coupling strength greater than 10$^-6$ GeV$^-1$ using optical photons. This was a photon regeneration experiment using the "light shining through a wall" technique in which laser light was passed through a strong magnetic field upstream of an optical beam dump; regenerated laser light was then searched for downstream of a second magnetic field region optically shielded from the former. Our results show no evidence for scalar coupling in this region of parameter space.
Without the weak force, the sun wouldn't shine. The weak force causes beta decay, a form of radioactivity that triggers nuclear fusion in the heart of the sun. The weak force is unlike other forces: it is characterised by disintegration. In beta decay, a down quark transforms into an up quark and an electron is emitted. Some materials are more radioactive than others because the delicate balance between the strong force and the weak force varies depending on the number of particles in the atomic nucleus. We live in the midst of a natural radioactive background that varies from region to region. For example, in Cornwall where there is a lot of granite, levels of background radiation are much higher than in the Geneva region. Text for the interactive: Move the Geiger counter to find out which samples are radioactive - you may be surprised. It is the weak force that is responsible for the Beta radioactivity here. The electrons emitted do not cross the plastic cover. Why do you think there is some detected radioa...
Chen, Ming-Xue; Cao, Zhao-Yun; Jiang, Yan; Zhu, Zhi-Wei
2013-01-11
A novel method was developed for the direct, sensitive, and rapid determination of glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), in fruit and vegetable samples by mixed-mode hydrophilic interaction/weak anion-exchange liquid chromatography (HILIC/WAX) coupled with electrospray tandem mass spectrometry (ESI-MS/MS). Homogenized samples were extracted with water, without derivatization or further clean-up, and the extracts were injected directly onto the Asahipak NH2P-50 4E column (250 mm × 4.6 mm i.d., 5 μm). The best results were obtained when the column was operated under mixed-mode HILIC/WAX elution conditions. An initial 10-min washing step with acetonitrile/water (10:90, v/v) in HILIC mode was used to remove potentially interfering compounds, and then the analytes were eluted in WAX mode with acetonitrile and water containing 0.1 molL(-1) ammonium hydroxide under gradient elution for the ESI analysis in negative ion mode. Limits of quantification of glyphosate and AMPA were 5 μgkg(-1) and 50 μgkg(-1), respectively, with limits of detection as low as 1.2 μgkg(-1) for glyphosate and 15 μgkg(-1) for AMPA. The linearity was satisfactory, with correlation coefficients (r)>0.9966. Recovery studies were carried out on spiked matrices (6 vegetables, 3 fruits) with glyphosate at four concentrations and AMPA at three concentrations. The mean recoveries for glyphosate and AMPA were 75.3-110% and 76.1-110%, respectively, with relative standard deviations in the range of 1.1-13.8%. The intra-day precision (n=7) for glyphosate and AMPA in vegetable and fruit samples spiked at an intermediate level between 5.9% and 7.5%, and the inter-day precision over 11 days (n=11) was between 7.0% and 13%.
Weak decays. [Lectures, phenomenology
Energy Technology Data Exchange (ETDEWEB)
Wojcicki, S.
1978-11-01
Lectures are given on weak decays from a phenomenological point of view, emphasizing new results and ideas and the relation of recent results to the new standard theoretical model. The general framework within which the weak decay is viewed and relevant fundamental questions, weak decays of noncharmed hadrons, decays of muons and the tau, and the decays of charmed particles are covered. Limitation is made to the discussion of those topics that either have received recent experimental attention or are relevant to the new physics. (JFP) 178 references
Kiselev, Egor I.; Scheurer, Mathias S.; Wölfle, Peter; Schmalian, Jörg
2017-03-01
An ordered state in the spin sector that breaks parity without breaking time-reversal symmetry, i.e., that can be considered dynamically generated spin-orbit coupling, was proposed to explain puzzling observations in a range of different systems. Here, we derive severe restrictions for such a state that follow from a Ward identity related to spin conservation. It is shown that l =1 spin-Pomeranchuk instabilities are not possible in nonrelativistic systems since the response of spin-current fluctuations is entirely incoherent and nonsingular. This rules out relativistic spin-orbit coupling as an emergent low-energy phenomenon. We illustrate the exotic physical properties of the remaining higher-angular-momentum analogs of spin-orbit coupling and derive a geometric constraint for spin-orbit vectors in lattice systems.
Energy Technology Data Exchange (ETDEWEB)
Vinegar, Harold J. (Bellaire, TX); Sandberg, Chester Ledlie (Palo Alto, CA)
2010-11-09
A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.
Lagging/Leading Coupled Continuous Time Random Walks, Renewal Times and their Joint Limits
Straka, Peter
2010-01-01
Subordinating a random walk to a renewal process yields a continuous time random walk (CTRW) model for diffusion, including the possibility of anomalous diffusion. Transition densities of scaling limits of power law CTRWs have been shown to solve fractional Fokker-Planck equations. We consider limits of sequences of CTRWs which arise when both waiting times and jumps are taken from an infinitesimal triangular array. We identify two different limit processes $X_t$ and $Y_t$ when waiting times precede or follow jumps, respectively. In the limiting procedure, we keep track of the renewal times of the CTRWs and hence find two more limit processes. Finally, we calculate the joint law of all four limit processes evaluated at a fixed time $t$.
Energy Technology Data Exchange (ETDEWEB)
Grinstein, S.; Mostafa, M.; Piegaia, R. [Universidad de Buenos Aires, Buenos Aires (Argentina); Alves, G.A.; Carvalho, W.; da Motta, H.; Santoro, A. [LAFEX, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro (Brazil); Lima, J.G.; Oguri, V. [Universidade do Estado do Rio de Janeiro, Rio de Janeiro (Brazil); Mao, H.S. [Inst. of High Energy Physics, Beijing, Peoples Republic of (China); Gomez, B.; Mooney, P.; Negret, J.P. [Universidad de los Andes, Bogota (Colombia); Hoeneisen, B. [Universidad San Francisco de Quito, Quito (Ecuador); Parua, N. [Institut des Sciences Nucleaires, IN2P3-CNRS, Universite de Grenoble 1, Grenoble (France); Ducros, Y. [DAPNIA/Service de Physique des Particules, CEA, Saclay (France); Beri, S.B.; Bhatnagar, V.; Kohli, J.M.; Singh, J.B. [Panjab Unv., Chandigarh (India); Shivpuri, R.K. [Delhi Unv., Delhi (India); Acharya, B.S.; Banerjee, S.; Dugad, S.R.; Gupta, A.; Krishnaswamy, M.R.; Mondal, N.K.; Narasimham, V.S.; Shankar, H.C. [Tata Inst. of Fundamental Research, Mumbai (India); Park, Y.M. [Kyungsung University, Pusan (Korea); Choi, S.; Kim, S.K. [Seoul National Unv., Seoul (Korea); Castilla-Valdez, H.; Gonzalez Solis, J.L.; Hernandez-Montoya, R.; Magana-Mendoza, L.; Sanchez-Hernandez, A. [CINVESTAV, Mexico City (Mexico); Pawlik, B. [Institute of Nuclear Physics, Krakow (Poland); Akimov, V.; Gavrilov, V.; Kuleshov, S. [Institute for Theoretical and Experimental Physics, Moscow (Russia); Belyaev, A.; Dudko, L.V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Manankov, V.; Merkin, M.; Shabalina, E. [Moscow State University, Moscow (Russia); Abramov, V.; Babintsev, V.V.; Bezzubov, V.A.; Bojko, N.I.; Burtovoi, V.S.; Chekulaev, S.V.; Denisov, S.P.; Dyshkant, A.; Eroshin, O.V.; Evdokimov, V.N.; Galyaev, A.N.; Goncharov, P.I.; Gurzhiev, S.N.; Kostritskiy, A.V.; Kozelov, A.V.; Kozlovsky, E.A.; Mayorov, A.A. [Inst. for High Energy Physics, Protvino (Russia); Bertram, I. [Lancaster Unv., (United States)
1999-10-01
Evidence of anomalous WW and WZ production was sought in p{bar p} collisions at a center-of-mass energy of {radical} (s) =1.8&hthinsp;TeV. The final states WW(WZ){r_arrow}{mu}{nu} jet jet+X, WZ{r_arrow}{mu}{nu}ee+X and WZ{r_arrow}e{nu}ee+X were studied using a data sample corresponding to an integrated luminosity of approximately 90&hthinsp;pb{sup {minus}1}. No evidence of anomalous diboson production was found. Limits were set on anomalous WW{gamma} and WWZ couplings and were combined with our previous results. The combined 95{percent} confidence level anomalous coupling limits for {Lambda}=2&hthinsp;TeV are {minus}0.25{le}{Delta}{kappa}{le}0.39 ({lambda}=0) and {minus}0.18{le}{lambda}{le}0.19 ({Delta}{kappa}=0), assuming the WW{gamma} couplings are equal to the WWZ couplings. {copyright} {ital 1999} {ital The American Physical Society}
Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M
2004-01-01
The process e^+e^- --> Z gamma, where the Z boson decays into hadrons or neutrinos, is studied with data collected with the L3 detector at LEP at centre-of-mass energies from 189 GeV up to 209 GeV. The cross sections are measured and found to be in agreement with the Standard Model predictions. Limits on triple neutral-gauge-boson couplings, forbidden in the Standard Model at tree level, are derived. Limits on the energy scales at which the anomalous couplings could be manifest are set. They range from 0.3 TeV to 2.3 TeV depending on the new physics effect under consideration.
Application of Enzyme Coupling Reactions to Shift Thermodynamically Limited Biocatalytic Reactions
DEFF Research Database (Denmark)
Abu, Rohana; Woodley, John M.
2015-01-01
shift the equilibrium of otherwise thermodynamically unfavourable reactions to give a higher conversion of the target product. By coupling an energetically unfavourable reaction with a more favourable one, the multi-enzyme cascade mimics the approach taken in nature in metabolic pathways. Nevertheless......, it can be challenging to combine several engineered enzymes in vitro for the conversion of non-natural substrates. In this mini-review we focus on enzyme coupling reactions as a tool to alleviate thermodynamic constraints in synthetically useful biocatalytic reactions. The implications of thermodynamic...... parameters such as the equilibrium constant on the multienzyme cascades and the conventional methods of equilibrium shifting are also discussed in addition to methods used to estimate such values....
Selleri, Franco
2015-01-01
Weak Relativity is an equivalent theory to Special Relativity according to Reichenbach’s definition, where the parameter epsilon equals to 0. It formulates a Neo-Lorentzian approach by replacing the Lorentz transformations with a new set named “Inertial Transformations”, thus explaining the Sagnac effect, the twin paradox and the trip from the future to the past in an easy and elegant way. The cosmic microwave background is suggested as a possible privileged reference system. Most importantly, being a theory based on experimental proofs, rather than mutual consensus, it offers a physical description of reality independent of the human observation.
Energy Technology Data Exchange (ETDEWEB)
Suzuki, M.
1988-04-01
Dynamical mechanism of composite W and Z is studied in a 1/N field theory model with four-fermion interactions in which global weak SU(2) symmetry is broken explicitly by electromagnetic interaction. Issues involved in such a model are discussed in detail. Deviation from gauge coupling due to compositeness and higher order loop corrections are examined to show that this class of models are consistent not only theoretically but also experimentally.
Institute of Scientific and Technical Information of China (English)
孙清文; 张金锋
2012-01-01
The traditional weak signal detection theory based on single Duffing chaotic oscillator system is described. In the traditional method based on chaos theory for detection of weak signals in strong noise environment, there prone to be instability in the phase change of system and the anti-noise should also be further enhanced. For solving the problems, the method of detecting the weak signal in strong noise environment based on double Duffing coupled improved oscillator system is proposed, and the weak sinusoidal signal detection in strong noise environment is finished the simulation by using this method. By simulation, the result is that based on the system of two-coupled improved chaotic oscillator, the weak signals in the strong noise environment can be better detected and the noise is better suppressed.%介绍传统的单Duffing混沌振子系统检测微弱信号的原理.传统混沌检测弱信号方法中,在强噪声环境下检测弱信号时系统易出现相位变化不稳定、抗噪性需进一步增强等问题.针对这些问题,本文提出基于双Duffing耦合改进型振子系统来对强噪声环境下的弱信号进行检测的方法,并用此方法对强噪声下的微弱正弦信号进行检测仿真.通过仿真得出双耦合改进型混沌振子系统能够更好地检测强噪声环境下的弱信号,对噪声有着更好的抑制作用.
Hahn, Noemi; Snedeker, Jesse; Rabagliati, Hugh
2015-12-01
Individuals with autism spectrum disorders (ASD) have often been reported to have difficulty integrating information into its broader context, which has motivated the Weak Central Coherence theory of ASD. In the linguistic domain, evidence for this difficulty comes from reports of impaired use of linguistic context to resolve ambiguous words. However, recent work has suggested that impaired use of linguistic context may not be characteristic of ASD, and is instead better explained by co-occurring language impairments. Here, we provide a strong test of these claims, using the visual world eye tracking paradigm to examine the online mechanisms by which children with autism resolve linguistic ambiguity. To address concerns about both language impairments and compensatory strategies, we used a sample whose verbal skills were strong and whose average age (7; 6) was lower than previous work on lexical ambiguity resolution in ASD. Participants (40 with autism and 40 controls) heard sentences with ambiguous words in contexts that either strongly supported one reading or were consistent with both (John fed/saw the bat). We measured activation of the unintended meaning through implicit semantic priming of an associate (looks to a depicted baseball glove). Contrary to the predictions of weak central coherence, children with ASD, like controls, quickly used context to resolve ambiguity, selecting appropriate meanings within a second. We discuss how these results constrain the generality of weak central coherence.
Aurière, M; Silvester, J; Lignières, F; Bagnulo, S; Bale, K; Dintrans, B; Donati, J F; Folsom, C P; Gruberbauer, M; Hoa, A Hui Bon; Jeffers, S; Johnson, N; Landstreet, J D; Lebre, A; Lüftinger, T; Marsden, S; Mouillet, D; Naseri, S; Paletou, F; Petit, P; Power, J; Rincon, F; Strasser, S; Toque, N
2007-01-01
We have investigated a sample of 28 well-known spectroscopically-identified magnetic Ap/Bp stars, with weak, poorly-determined or previously undetected magnetic fields, with the aim of exploring the weak part of the magnetic field distribution of Ap/Bp stars. Using the MuSiCoS and NARVAL spectropolarimeters we have obtained 282 LSD Stokes V signatures of our 28 sample stars. All stars were detected, showing clearly that when observed with sufficient precision, all firmly classified Ap/Bp stars show detectable surface magnetic fields. To better characterise the surface magnetic field intensities and geometries of the sample, we have inferred the dipolar field intensity and the magnetic obliquity. The distribution of derived dipole strengths for these stars exhibits a plateau at about 1 kG, falling off to larger and smaller field strengths. Remarkably, in this sample of stars selected for their presumably weak magnetic fields, we find only 2 stars for which the derived dipole strength is weaker than 300 G. We i...
Weak chaos and Poincare recurrences for area preserving maps
Buric, N; Turchetti, G; Vaienti, S
2003-01-01
The spectrum F(t) of Poincare recurrence times for the standard map exhibits two distinct limits: an integrable weak-coupling limit with an inverse power law and a chaotic strong-coupling limit with exponential decay. In the domain where chaotic regions coexist with integrable structures, the spectrum F(t) exhibits a superposition of exponential and power law decay. Such a law can be proved to occur in a model of area-preserving map at the boundary of the mixing and integrable components. (letter to the editor)
Weak chaos and Poincare recurrences for area preserving maps
Energy Technology Data Exchange (ETDEWEB)
Buric, N [Dipartimento di Fisica, Universita di Bologna and INFN Sezione di Bologna (Italy); Rampioni, A [Dipartimento di Fisica, Universita di Bologna and INFN Sezione di Bologna (Italy); Turchetti, G [Dipartimento di Fisica, Universita di Bologna and INFN Sezione di Bologna (Italy); Vaienti, S [Dipartimento di Fisica, Universita di Bologna and INFN Sezione di Bologna (Italy)
2003-04-11
The spectrum F(t) of Poincare recurrence times for the standard map exhibits two distinct limits: an integrable weak-coupling limit with an inverse power law and a chaotic strong-coupling limit with exponential decay. In the domain where chaotic regions coexist with integrable structures, the spectrum F(t) exhibits a superposition of exponential and power law decay. Such a law can be proved to occur in a model of area-preserving map at the boundary of the mixing and integrable components. (letter to the editor)
Upper Limit to the Transverse to Longitudinal Motion Coupling of a Waveguide Mirror
Leavey, S; Bell, A S; Kley, E-B; Gordon, N; Gräf, C; Hild, S; Huttner, S H; Kroker, S; Macarthur, J; Messenger, C; Pitkin, M; Sorazu, B; Strain, K; Tünnermann, A
2014-01-01
Waveguide mirrors possess nano-structured surfaces which can potentially provide a significant reduction in thermal noise over conventional dielectric mirrors. To avoid introducing additional phase noise from motion of the mirror transverse to the reflected light, however, they must possess a mechanism to suppress the phase effects associated with the incident light translating across the nano-structured surface. It has been shown that with carefully chosen parameters this additional phase noise can be suppressed. We present an experimental measurement of the coupling of transverse to longitudinal displacements in such a waveguide mirror designed for 1064 nm light. We bound the level of measured transverse to longitudinal motion between one part in fifty two thousand five hundred and one part in eight thousand seven hundred with 95% confidence, representing a significant improvement over a previously measured grating mirror.
Directory of Open Access Journals (Sweden)
Victoria Cabrera García
2014-01-01
Full Text Available The explanation of marital satisfaction and stability in trajectories of couple relationships has been the central interest in different studies (Karney, Bradbury. & Johnson, 1999; Sabatelli & Ripoll, 2004; Schoebi, Karney & Bradbury, 2012. However, there are still several questions and unknown aspects surrounding the topic. Within this context, the present reflection seeks to analyze whether the principles of Evolutionary Theory suffice to explain three marital trajectories in terms of satisfaction and stability. With this in mind, we have included other explanations proposed by the Psychosocial Theory that Evolutionary Theory does not refer to in order to better understand mating behavior. Moreover, other factors that could account for satisfied and stable relationships were analyzed. Suggestions for future investigations include the analysis of other marital trajectories that may or may not end in separation or divorce but are not included in this article.
Benthic Foraminifera, Food in the Deep Sea, and Limits to Bentho-Pelagic Coupling
Thomas, E.; Boscolo-Galazzo, F.; Arreguin-Rodrigu, G. J.; Ortiz, S.; Alegret, L.
2015-12-01
The deep-sea is the largest habitat on Earth, contains highly diverse biota, but is very little known. Many of its abundant benthic biota (e.g., nematodes) are not preserved in the fossil record. Calcareous and agglutinated benthic foraminifera (unicellular eukaryotes, Rhizaria; efficient dispersers) and ostracodes (Animalia, Crustacea; non-efficient dispersers) are the most common organisms providing a fossil record of deep-sea environments. Very little food is supplied to the deep-sea, because organic matter produced by photosynthesis is largely degraded before it arrives at the seafloor. Only a few % of organic matter is carried to the ocean bottom by 'marine snow', with its particle size and behavior in the water column controlled by surface ecosystem structure, including type of dominant primary producers (diatoms, cyanobacteria). Food supply and its seasonality are generally seen as the dominant control on benthic assemblages (combined with oxygenation), providing bentho-pelagic coupling between primary and benthic productivity. Benthic foraminiferal assemblages (composition and density) thus are used widely to estimate past productivity, especially during episodes of global climate change, ocean acidification, and mass extinction of primary producers. We show that some environmental circumstances may result in interrupting bentho-pelagic coupling, e.g. through lateral supply of organic matter along continental margins (adding more refractory organic matter), through trophic focusing and/or fine particle winnowing on seamounts (giving an advantage to suspension feeders), and through carbonate undersaturation (giving advantage to infaunal over epifaunal calcifyers). In addition, increased remineralization of organic matter combined with increased metabolic rates may cause assemblages to reflect more oligotrophic conditions at stable primary productivity during periods of global warming. As a result, benthic foraminiferal accumulation rates must be carefully
Lan, Dongchen; Green, Martin A.
2016-09-01
Recent work proposed up-conversion of sunlight through low-band-gap solar cells in combination with a large-band-gap light-emitting diode (LED), with one possibility being the use of a GaAs/Ge tandem photovoltaic device to drive a GaInP LED. One-sun limiting efficiencies for a GaInP bifacial solar cell with such an up-converter attached to its rear are reported for varying band-gap of GaInP junctions, both when there are radiative couplings between cells in the rear up-converter and when there are not. With a maximum theoretical efficiency of 44%, it is shown that the top cell's band-gap is a trade-off and radiative coupling in the rear up-converter reduces the efficiency, where physical reasons are given as is insight into the practice.
Hundertmark-Zaušková, A.; Lukáčová-Medviďová, M.; Nečasová, Š. (Šárka)
2016-01-01
We study the existence of weak solution for unsteady fluid-structure interaction problem for shear-thickening flow. The time dependent domain has at one part a flexible elastic wall. The evolution of fluid domain is governed by the generalized string equation with action of the fluid forces. The power-law viscosity model is applied to describe shear-dependent non-Newtonian fluids.
Rule of 100: An inherent limitation or performance measure in oxidative coupling of methane?
Institute of Scientific and Technical Information of China (English)
Saeed Sahebdelfar; Maryam Takht Ravanchi; Mahtab Gharibi; Marzieh Hamidzadeh
2012-01-01
The oxidative coupling of methane over La2O3/CaO type-catalyst in a fixed-bed reactor is studied under a wide range of operating conditions (973＜T＜ 1103 K,55＜ Ptotal ＜220 kPa,and 3.7＜ mcat/VSTP ＜50 kg·s/m3).A ten-step kinetic model incorporating all main products was used to predict the behavior of the system.Methane conversions and C2 selectivities were calculated by varying methane to oxygen ratios in the feed under different operating conditions which were also compared with the rule of 100.The results show that deviation from this rule depends on the operating conditions.Within the range studied,an increase in pressure,temperature and contact time results in smaller deviation from the rule.This rule is best approximated when the catalyst operates near its optimal performance.For negative deviations,common to the most catalysts,it is found that the optimal performance should occur at methane conversion levels lower than 50％.A plot of selectivity versus conversion for high-yield reported performance data of a large variety of catalysts shows that data points concentrated roughly in 20％-50％ methane conversion region,confirning the generality and prediction of modeling.
Chutjian, A.; Alajajian, S. H.
1987-01-01
Dissociative electron attachment to F2 has been observed in the energy range 0-140 meV, at a resolution of 6 meV (full width at half maximum). Results show conclusively a sharp, resolution-limited threshold behavior consistent with an s-wave cross section varying as sq rt of epsilon. Two accurate theoretical calculations predict only p-wave behavior varying as the sq rt of epsilon. Several nonadiabatic coupling effects leading to s-wave behavior are outlined.
Study of the $W^+ W^- \\gamma$ Process and Limits on Anomalous Quartic Gauge Boson Couplings at LEP
Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Buijs, A; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Van Dierendonck, D N; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Duinker, P; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levchenko, P M; Li Chuan; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Violini, P; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M
2002-01-01
The process e+e- --> W+ W- \\gamma is studied using the data collected by the L3 detector at LEP. New results, corresponding to an integrated luminosity of 427.4 pb-1 at centre-of-mass energies from 192~GeV to 207~GeV, are presented. The W+W-\\gamma cross sections are measured to be in agreement with Standard Model expectations. No hints of anomalous quartic gauge boson couplings are observed. Limits at 95\\% confidence level are derived using also the process e+e- --> \
Bose-Einstein Condensation in Strong-Coupling Quark Color Superconductor near Flavor SU(3) Limit
Institute of Scientific and Technical Information of China (English)
ZHANG Xiao-Bing; REN Chun-Fu; ZHANG Yi
2011-01-01
Near the flavor SU(3) limit, we propose an analytical description for color-flavor-locked-type Bardeen-Cooper-Schrieffer (BCS) phase in the Nambu Jona-Lasinio (NJL) model. The diquark behaviors in light-flavor and strange-flavor-involved channels and Bose-Einstein condensation (BEC) of bound diquark states are studied. When the attractive interaction between quarks is strong enough, a BCS-BEC crossover is predicted in the environment with color-flavor-locked pairing pattern. The resulting Bose-Einstein condensed phase is found to be an intergrade phase before the emergence of the previous-predicted BEC phase in two-flavor quark superconductor.
Zalian, Cyrus
2016-01-01
Context. The Blazhko effect, in RR Lyrae type stars, is a century old mystery. Dozens of theory exists, but none have been able to entirely reproduce the observational facts associated to this modulation phenomenon. Existing theory all rely on the usual continuous modelization of the star. Aims. We present a new paradigm which will not only explain the Blazhko effect, but at the same time, will give us alternative explanations to the red limit of the instability strip, the synchronization of layers, the mode selection and the existence of a limit cycle for radially pulsating stars. Methods. We describe the RR Lyrae type pulsating stars as a system of coupled nonlinear oscillators. Considering a spatial discretisation of the star, supposing a spherical symmetry, we develop the equation of motion and energy up to the third order in the radial and adiabatic case. Then, we include the influence of the ionization region as a relaxation oscillator by including elements from synchronisation theory. Results. This dis...
Geirsson, Halldor; LaFemina, Peter C.; DeMets, Charles; Hernandez, Douglas Antonio; Mattioli, Glen S.; Rogers, Robert; Rodriguez, Manuel; Marroquin, Griselda; Tenorio, Virginia
2015-09-01
Subduction zones exhibit variable degrees of interseismic coupling as resolved by inversions of geodetic data and analyses of seismic energy release. The degree to which a plate boundary fault is coupled can have profound effects on its seismogenic behaviour. Here we use GPS measurements to estimate co- and post-seismic deformation from the 2012 August 27, Mw7.3 megathrust earthquake offshore El Salvador, which was a tsunami earthquake. Inversions of estimated coseismic displacements are in agreement with published seismically derived source models, which indicate shallow (El Salvador-Nicaragua segment of the Central American margin and may be a characteristic of margins hosting tsunami earthquakes.
Al Kaissi, Ali; Ryabykh, Sergey; Ochirova, Polina; Kenis, Vladimir; Hofstätter, Jochen G.; Grill, Franz; Ganger, Rudolf; Kircher, Susanne Gerit
2017-01-01
Marked ligamentous hyperlaxity and muscle weakness/wasting associated with awkward gait are the main deficits confused with the diagnosis of myopathy. Seven children (6 boys and 1 girl with an average age of 8 years) were referred to our department because of diverse forms of skeletal abnormalities. No definitive diagnosis was made, and all underwent a series of sophisticated investigations in other institutes in favor of myopathy. We applied our methodology through the clinical and radiographic phenotypes followed by targeted genotypic confirmation. Three children (2 boys and 1 girl) were compatible with the diagnosis of progressive pseudorheumatoid chondrodysplasia. The genetic mutation was correlated with the WISP 3 gene actively expressed by articular chondrocytes and located on chromosome 6. Klinefelter syndrome was the diagnosis in 2 boys. Karyotyping confirmed 47,XXY (aneuploidy of Klinefelter syndrome). And 2 boys were finally diagnosed with Morquio syndrome (MPS type IV A) as both showed missense mutations in the N-acetylgalactosamine-sulfate sulfatase gene. Misdiagnosis can lead to the initiation of a long list of sophisticated investigations. PMID:28210640
Kawamoto, N; Ohnishi, A; Ohnuma, T
2005-01-01
We study the phase diagram of quark matter at finite temperature (T) and finite chemical potential (mu) in the strong coupling limit of lattice QCD for color SU(3). We derive an analytical expression of the effective free energy as a function of T and mu, including baryon effects. The finite temperature effects are evaluated by integrating over the temporal link variable exactly in the Polyakov gauge with anti-periodic boundary condition for fermions. The obtained phase diagram shows the first order phase transition at low temperatures and the second order phase transition at high temperatures separated by the tri-critical point in the chiral limit. Baryon has effects to reduce the effective free energy and to extend the hadron phase to a larger mu direction at low temperatures.
Coupled Spin and Shape Evolution of Small Rubble-Pile Asteroids: Self-Limitation of the YORP Effect
Cotto-Figueroa, Desireé; Richardson, Derek C; Tanga, Paolo
2014-01-01
We present the first self-consistent simulations of the coupled spin and shape evolutions of small gravitational aggregates under the influence of the YORP effect. Because of YORP sensitivity to detailed surface topography, even small centrifugally driven reconfigurations of an aggregate can alter the YORP torque dramatically, resulting in spin evolution that is, in most cases, qualitatively different from the rigid-body prediction. A third of objects simulated follow a simple evolution that can be described as a modified YORP cycle. Two-thirds exhibit one or more of three distinct behaviors -stochastic YORP, self-governed YORP, and stagnating YORP-which together result in YORP self-limitation. Self-limitation confines the rotation rates of evolving aggregates to far narrower ranges than would be expected in the classical YORP cycle, and greatly prolonging the times over which objects can preserve their sense of rotation. The asteroids are initially randomly packed, disordered aggregates of identical spheres ...
Yue, Q.; Zhao, W.; Kang, K. J.; Cheng, J. P.; Li, Y. J.; Lin, S. T.; Chang, J. P.; Chen, N.; Chen, Q. H.; Chen, Y. H.; Chuang, Y. C.; Deng, Z.; Du, Q.; Gong, H.; Hao, X. Q.; He, H. J.; He, Q. J.; Huang, H. X.; Huang, T. R.; Jiang, H.; Li, H. B.; Li, J. M.; Li, J.; Li, J.; Li, X.; Li, X. Y.; Li, Y. L.; Liao, H. Y.; Lin, F. K.; Liu, S. K.; Lü, L. C.; Ma, H.; Mao, S. J.; Qin, J. Q.; Ren, J.; Ren, J.; Ruan, X. C.; Shen, M. B.; Singh, L.; Singh, M. K.; Soma, A. K.; Su, J.; Tang, C. J.; Tseng, C. H.; Wang, J. M.; Wang, L.; Wang, Q.; Wong, H. T.; Wu, S. Y.; Wu, Y. C.; Wu, Y. C.; Xianyu, Z. Z.; Xiao, R. Q.; Xing, H. Y.; Xu, F. Z.; Xu, Y.; Xu, X. J.; Xue, T.; Yang, L. T.; Yang, S. W.; Yi, N.; Yu, C. X.; Yu, H.; Yu, X. Z.; Zeng, X. H.; Zeng, Z.; Zhang, L.; Zhang, Y. H.; Zhao, M. G.; Zhou, Z. Y.; Zhu, J. J.; Zhu, W. B.; Zhu, X. Z.; Zhu, Z. H.; CDEX Collaboration
2014-11-01
We report results of a search for light dark matter weakly interacting massive particles (WIMPs) with CDEX-1 experiment at the China Jinping Underground Laboratory, based on 53.9 kg-days of data from a p -type point-contact germanium detector enclosed by a NaI(Tl) crystal scintillator as anti-Compton detector. The event rate and spectrum above the analysis threshold of 475 eVee are consistent with the understood background model. Part of the allowed regions for WIMP-nucleus coherent elastic scattering at WIMP mass of 6-20 GeV are probed and excluded. Independent of interaction channels, this result contradicts the interpretation that the anomalous excesses of the CoGeNT experiment are induced by dark matter, since identical detector techniques are used in both experiments.
Chen, Lei; Zheng, Feng; Deng, Changhong; Li, Shichun; Li, Miao; Liu, Hui; Zhu, Lin; Guo, Fang
2015-11-01
Concerning the application and development of a micro-grid system which is designed to accommodate high penetration of intermittent renewable resources, one of the main issues is related to an increase in the fault-current level. It is crucial to ensure the micro-grid's operational stability and service reliability when a fault occurs in the main network. In this paper, our research group suggests a modified flux-coupling type superconducting fault current limiter (SFCL) to enhance the transient performance of a typical micro-grid system. The SFCL is installed at the point of common coupling (PCC) between the main network and the micro-grid, and it is expected to actively improve the micro-grid's fault ride-through capability. And for some specific faults, the micro-grid should disconnect from the main network, and the SFCL's contribution is to make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. Related theory derivation, technical discussion and simulation analysis are performed. From the demonstrated results, applying the SFCL can effectively limit the fault current, maintain the power balance, and enhance the voltage and frequency stability of the micro-grid.
Energy Technology Data Exchange (ETDEWEB)
Chen, Lei, E-mail: stclchen1982@163.com [School of Electrical Engineering, Wuhan University, Wuhan 430072 (China); Zheng, Feng; Deng, Changhong; Li, Shichun; Li, Miao; Liu, Hui [School of Electrical Engineering, Wuhan University, Wuhan 430072 (China); Zhu, Lin [Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville 37996 (United States); Guo, Fang [Department of Substation, Guang Dong Electric Power Design Institute, Guangzhou 510663 (China)
2015-11-15
Highlights: • A modified flux-coupling type SFCL is suggested to enhance the transient performance of a micro-grid. • The SFCL’s main contribution is to improve the micro-grid’s fault ride-through capability. • The SFCL also can make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. • The simulations show that the SFCL can availably strengthen the micro-grid’s voltage and frequency stability. - Abstract: Concerning the application and development of a micro-grid system which is designed to accommodate high penetration of intermittent renewable resources, one of the main issues is related to an increase in the fault-current level. It is crucial to ensure the micro-grid’s operational stability and service reliability when a fault occurs in the main network. In this paper, our research group suggests a modified flux-coupling type superconducting fault current limiter (SFCL) to enhance the transient performance of a typical micro-grid system. The SFCL is installed at the point of common coupling (PCC) between the main network and the micro-grid, and it is expected to actively improve the micro-grid’s fault ride-through capability. And for some specific faults, the micro-grid should disconnect from the main network, and the SFCL’s contribution is to make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. Related theory derivation, technical discussion and simulation analysis are performed. From the demonstrated results, applying the SFCL can effectively limit the fault current, maintain the power balance, and enhance the voltage and frequency stability of the micro-grid.
Sydorenko, D; Kaganovich, I; Raitses, Y; Smolyakov, A
2009-10-02
A new regime of plasma-wall interaction is identified in particle-in-cell simulations of a hot plasma bounded by walls with secondary electron emission. Such a plasma has a strongly non-Maxwellian electron velocity distribution function and consists of bulk plasma electrons and beams of secondary electrons. In the new regime, the plasma sheath is not in a steady space charge limited state even though the secondary electron emission produced by the plasma bulk electrons is so intense that the corresponding partial emission coefficient exceeds unity. Instead, the plasma-sheath system performs relaxation oscillations by switching quasiperiodically between the space charge limited and non-space-charge limited states.
Yermolaev, Yu. G.; Yatskih, A. A.; Kosinov, A. D.; Semionov, N. V.; Kolosov, G. L.; Panina, A. V.
2016-10-01
An experiment on a swept cylinder with 68°-sweep angle at Mach number M = 2.5 is described. The flow attachment line was disturbed by two weak shock waves. Shock waves were generated by a two-dimensional surface inhomogeneity on the wall of the test section of wind tunnel. It was found that the laminar-turbulent transition on the attachment-line of the cylinder is accompanied by an uneven growth of pulsations. Influence of Mach waves on the transition when their fall on the cylinder far away from domain of measuring is not observed. The laminar-turbulent transition occurs at a much lower unit Reynolds numbers in the case when a pair of waves falling on the attachment-line near the measurement field.
Institute of Scientific and Technical Information of China (English)
吴勇峰; 张世平
2011-01-01
Considering the huge computation and long time calculation in phase transition identification of weak signal detection based on single Duffing oscillator,a unidirectional driving nonlinear coupled Duffing oscillator system is established.System synchronization state from chaotic state to large-scale periodic state is analyzed according to transverse Lyapunov exponent,and a novel method for phase transition identification based on synchronization error is proposed.Experiment simulation shows that this coupled Duffing oscillator system can quickly detect weak signal in strong noise.%针对单个Duffing振子检测微弱信号时相交判别计算量大、时间长、不易把握等问题,建立了一个单向驱动非线性耦合Duffing振子系统.根据横向Lyapunov指数分析了系统在混沌态到大尺度周期态时振子间运动轨迹的同步演化特性,提出了利用同步误差来判别相变的新方法.实验仿真表明,在强噪声背景下该耦合系统仍能够正确快速地检测出微弱信号.
Weakly broken galileon symmetry
Energy Technology Data Exchange (ETDEWEB)
Pirtskhalava, David [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Santoni, Luca; Trincherini, Enrico [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); INFN, Sezione di Pisa, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Vernizzi, Filippo [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, Gif-sur-Yvette cédex, F-91191 (France)
2015-09-01
Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.
Spin effects in the weak interaction
Energy Technology Data Exchange (ETDEWEB)
Freedman, S.J. (Argonne National Lab., IL (USA) Chicago Univ., IL (USA). Dept. of Physics Chicago Univ., IL (USA). Enrico Fermi Inst.)
1990-01-01
Modern experiments investigating the beta decay of the neutron and light nuclei are still providing important constraints on the theory of the weak interaction. Beta decay experiments are yielding more precise values for allowed and induced weak coupling constants and putting constraints on possible extensions to the standard electroweak model. Here we emphasize the implications of recent experiments to pin down the strengths of the weak vector and axial vector couplings of the nucleon.
Sloan, J. V.; Hotz, M.; Boutan, C.; Bradley, R.; Carosi, G.; Carter, D.; Clarke, J.; Crisosto, N.; Daw, E. J.; Gleason, J.; Hoskins, J.; Khatiwada, R.; Lyapustin, D.; Malagon, A.; O'Kelley, S.; Ottens, R. S.; Rosenberg, L. J.; Rybka, G.; Stern, I.; Sullivan, N. S.; Tanner, D. B.; van Bibber, K.; Wagner, A.; Will, D.
2016-12-01
The μeV-scale axion is a compelling cold dark matter candidate. The Axion Dark Matter eXperiment (ADMX) searches for axions by stimulating the decay of galactic dark matter halo axions into detectable microwave photons by their conversion in a resonant cavity permeated by a strong, static magnetic field. The signal depends on properties of the Milky Way's dark matter halo; the choice of halo model has significant implications for the sensitivity of direct detection searches, e.g., ADMX. This paper explores the sensitivity of the data taken by ADMX from 2008 to 2010 to various dark matter halo models. New models for the phase-space distribution of local axions are considered; the analysis demonstrates that certain assumptions about the dark matter halo improve limits on axion-photon coupling. In addition, new ADMX data covering 860-892 MHz are included in the analysis.
Limits on Anomalous Triple Gauge Couplings in ppbar Collisions at sqrt{s}=1.96 TeV
Aaltonen, T; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, Yu A; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca-Almenar, C; Cuevas-Maestro, J; Culbertson, R; Cully, J C; Da Ronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; De Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, Mauro; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dorr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; García, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimarães da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Höcker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Mäki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martinez-Ballarin, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtälä, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla-Fernández, P A; Mülmenstädt, J; Mukherjee, A; Müller, T; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Österberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P B; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakian, A; Sjölin, J; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Söderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Saint-Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; Van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobuev, I P; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S
2007-01-01
We present a search for anomalous triple gauge couplings (ATGC) in WW and WZ boson production. The boson pairs are produced in ppbar collisions at sqrt{s}=1.96 TeV, and the data sample corresponds to 350 pb-1 of integrated luminosity collected with the CDF II detector at the Fermilab Tevatron. In this search one W decays to leptons, and the other boson (W or Z) decays hadronically. Combining with a previously published CDF measurement of Wgamma boson production yields ATGC limits of -0.18 < lambda < 0.17 and -0.46 < Delta kappa < 0.39 at the 95% confidence level, using a cut-off scale Lambda=1.5 TeV.
Guan, Xiaohong; Jiang, Xiao; Qiao, Junlian; Zhou, Gongming
2015-12-30
The feasibility of EDTA-chelated Cu(II) (Cu(II)-EDTA) removal by zero-valent iron (Fe(0)) in the presence of a weak magnetic field (WMF) and the involved mechanisms were systematically investigated. Fe(0) combined with WMF (Fe(0)/WMF) was very effective for removing Cu(II)-EDTA at pH 4.0-6.0 with the rate constants ranging from 0.1190 min(-1) to 0.0704 min(-1). Little passivation of Fe(0) was observed during Cu(II)-EDTA removal by Fe(0)/WMF in 8 consecutive runs when 10.0 mg L(-1) Cu(II)-EDTA was dosed before the initiation of each run. The evidences presented in this study verified that Cu(II)-EDTA was removed by decomplexation followed by reduction/adsorption. In brief, Fe(II) released from Fe(0) corrosion was rapidly oxidized by oxygen to Fe(III) to chelate with EDTA and release free Cu(II), and the detached Cu(II) ions were subsequently reduced/removed by Fe(0)/Fe(II) and co-precipitated by the generated iron (hydr)-oxides. To advance the application of Fe(0)/WMF technology in real practice, a magnetic propeller agitator was designed to offer WMF inside the reactor, which could greatly improve Cu(II)-EDTA removal by Fe(0) and be easily amplified.
Santanello, J. A., Jr.; Schaefer, A.
2016-12-01
There is an established need for improved PBL remote sounding over land for hydrology, land-atmosphere (L-A), PBL, cloud/convection, pollution/chemistry studies and associated model evaluation and development. Most notably, the connection of surface hydrology (through soil moisture) to clouds and precipitation relies on proper quantification of water's transport through the coupled system, which is modulated strongly by PBL structure, growth, and feedback processes such as entrainment. In-situ (ground-based or radiosonde) measurements will be spatially limited to small field campaigns for the foreseeable future, so satellite data is a must in order to understand these processes globally. The scales of these applications require diurnal resolution (e.g. 3-hourly or finer) at PBL coupling and water and energy cycles at their native scales. Today's satellite sensors (e.g. advanced IR, GEO, lidar, GPS-RO) do not reach close to these targets in terms of accuracy or resolution, and each of these sensors has some advantages but even more limitations that make them impractical for PBL and L-A studies. Unfortunately, there is very little attention or planning (short or long-term) in place for improving lower tropospheric sounding over land, and as a result PBL and L-A interactions have been identified as `gaps' in current programmatic focal areas. It is therefore timely to assess how these technologies can be leveraged, combined, or evolved in order to form a dedicated mission or sub-mission to routinely monitor the PBL on diurnal timescales. In addition, improved PBL monitoring from space needs to be addressed in the next Decadal Survey. In this talk, the importance of PBL information (structure, evolution) for L-A coupling diagnostics and model development will be summarized. The current array of PBL retrieval methods and products from space will then be assessed in terms of meeting the needs of these models, diagnostics, and scales, with a look forward as to how this can
Mund, D; Deissenroth, M; Krempel, J; Schumann, M; Abele, H; Petoukhov, A; Soldner, T
2012-01-01
We report on a new measurement of the neutron beta-asymmetry parameter $A$ with the instrument \\perkeo. Main advancements are the high neutron polarization of $P = 99.7(1)%$ from a novel arrangement of super mirror polarizers and reduced background from improvements in beam line and shielding. Leading corrections were thus reduced by a factor of 4, pushing them below the level of statistical error and resulting in a significant reduction of systematic uncertainty compared to our previous experiments. From the result $A_0 = -0.11996(58)$, we derive the ratio of the axial-vector to the vector coupling constant $\\lambda = g_\\mathrm{A}/g_\\mathrm{V} = -1.2767(16)$
Energy Technology Data Exchange (ETDEWEB)
Johnson, B.L.; Gorringe, T.P.; Armstrong, D.S.; Bauer, J.; Hasinoff, M.D.; Kovash, M.A.; Measday, D.F.; Moftah, B.A.; Porter, R.; Wright, D.H. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506 (United States)]|[Department of Physics, College of William and Mary, Williamsburg, Virginia 23187 (United States)]|[Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 (CANADA)]|[TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 (CANADA)
1996-11-01
We report measurements of capture rates and hyperfine dependences in muon capture on {sup 23}Na to various states in Ne and F isotopes. We also report comparisons of the capture rates and hyperfine dependences for six {sup 23}Na {r_arrow} {sup 23}Ne transitions with the 1{ital s}-0{ital d} shell model with the empirical effective interaction of Brown and Wildenthal and the realistic effective interaction of Kuo and Brown. Fits to the data with the Brown and Wildenthal interaction yield an effective coupling {ital {tilde g}}{sub {ital a}} = {minus}1.01 {plus_minus} 0.07 and an effective coupling ratio {ital {tilde g}}{sub {ital p}}/{ital {tilde g}}{sub {ital a}} = 6.5 {plus_minus} 2.4. The value of {ital {tilde g}}{sub {ital a}} is consistent with values of {ital {tilde g}}{sub {ital a}} extracted from {beta}{sup +}/{beta}{sup {minus}} decay and ({ital p},{ital n})/({ital n},{ital p}) charge exchange data, and the value of {ital {tilde g}}{sub {ital p}}/{ital {tilde g}}{sub {ital a}} is consistent with the predictions of PCAC and pion-pole dominance. We evaluate the nuclear model dependence of these values of {ital {tilde g}}{sub {ital a}} and {ital {tilde g}}{sub {ital p}}/{ital {tilde g}}{sub {ital a}} and examine the role of the Gamow-Teller and other matrix elements in the {sup 23}Na {r_arrow} {sup 23}Ne transitions. {copyright} {ital 1996 The American Physical Society.}
González, Pablo J; Barrera, Guillermo I; Rizzi, Alberto C; Moura, José J G; Passeggi, Mario C G; Brondino, Carlos D
2009-10-01
Electron transfer proteins and redox enzymes containing paramagnetic redox centers with different relaxation rates are widespread in nature. Despite both the long distances and chemical paths connecting these centers, they can present weak magnetic couplings produced by spin-spin interactions such as dipolar and isotropic exchange. We present here a theoretical model based on the Bloch-Wangsness-Redfield theory to analyze the dependence with temperature of EPR spectra of interacting pairs of spin 1/2 centers having different relaxation rates, as is the case of the molybdenum-containing enzyme aldehyde oxidoreductase from Desulfovibrio gigas. We analyze the changes of the EPR spectra of the slow relaxing center (Mo(V)) induced by the faster relaxing center (FeS center). At high temperatures, when the relaxation time T(1) of the fast relaxing center is very short, the magnetic coupling between centers is averaged to zero. Conversely, at low temperatures when T(1) is longer, no modulation of the coupling between metal centers can be detected.
Kaplan, L
1998-01-01
We examine the consequences of classical ergodicity for the localization properties of individual quantum eigenstates in the classical limit. We note that the well known Schnirelman result is a weaker form of quantum ergodicity than the one implied by random matrix theory. This suggests the possibility of systems with non-gaussian random eigenstates which are nonetheless ergodic in the sense of Schnirelman and lead to ergodic transport in the classical limit. These we call "weakly quantum ergodic.'' Indeed for a class of "slow ergodic" classical systems, it is found that each eigenstate becomes localized to an ever decreasing fraction of the available state space, in the semiclassical limit. Nevertheless, each eigenstate in this limit covers phase space evenly on any classical scale, and long-time transport properties betwen individual quantum states remain ergodic due to the diffractive effects which dominate quantum phase space exploration.
Energy Technology Data Exchange (ETDEWEB)
Rafiee, Ezzat, E-mail: ezzat_rafiee@yahoo.com [Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah 67149 (Iran, Islamic Republic of); Institute of Nano Science and Nano Technology, Razi University, Kermanshah 67149 (Iran, Islamic Republic of); Joshaghani, Mohammad [Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah 67149 (Iran, Islamic Republic of); Institute of Nano Science and Nano Technology, Razi University, Kermanshah 67149 (Iran, Islamic Republic of); Abadi, Parvaneh Ghaderi-Shekhi [Institute of Nano Science and Nano Technology, Razi University, Kermanshah 67149 (Iran, Islamic Republic of)
2016-06-15
The wicker-like Pd-PVP-Fe (palladium-poly(N-vinylpyrrolidone)-iron) was synthesized by the external magnetic field (EMF). The Pd-based catalyst with nano and the face-centered cubic (fcc) structure was obtained at room temperature without using any additive. The resulting composite was characterized. The results show that EMF has a great influence on morphology, particle size, and crystalline structure of the Pd-PVP-Fe composite. The resulting composite (Pd-PVP-Fe), was found to be an effective catalyst for the Mizoroki–Heck reaction while is exposed to EMF with the intensity at 486 µT. The reused catalyst for at least five repeating cycles, shows excellent activity. - Highlights: • The wicker-like Pd-PVP-Fe nanocatalyst was synthesized via external magnetic field. • The resulting catalyst composite was characterized. • The C–C coupling reaction was carried out at magnetic field and room temperature. • Magnetic field affects on the morphology and size of the catalyst. • The catalyst could be reused without significant degradation in activity.
DEFF Research Database (Denmark)
Sorrell, B.K.; Hawes, I.; Safi, K.
2013-01-01
The nature of nutrient limitation and coupling of planktonic primary and secondary production were investigated in meltwater ponds of the Ross Ice Shelf, Antarctica, using regression tree analysis and multiple regression. Phytoplankton were primaril N-limited but inorganic carbon apparently co...
Navarrete, Sergio A.; Wieters, Evie A.; Broitman, Bernardo R.; Castilla, Juan Carlos
2005-01-01
Large and usually unpredictable variation in species interaction strength has been a major roadblock to applying local experimental results to large-scale management and conservation issues. Recent studies explicitly considering benthic-pelagic coupling are starting to shed light on, and find regularities in, the causes of such large-scale variation in coastal ecosystems. Here, we evaluate the effects of variation in wind-driven upwelling on community regulation along 900 km of coastline of the southeastern Pacific, between 29°S and 35°S during 72 months. Variability in the intensity of upwelling occurring over tens of km produced predictable variation in recruitment of intertidal mussels, but not barnacles, and did not affect patterns of community structure. In contrast, sharp discontinuities in upwelling regimes produced abrupt and persistent breaks in the dynamics of benthic and pelagic communities over hundreds of km (regional) scales. Rates of mussel and barnacle recruitment changed sharply at ≈32°-33°S, determining a geographic break in adult abundance of these competitively dominant species. Analysis of satellite images demonstrates that regional-scale discontinuities in oceanographic regimes can couple benthic and pelagic systems, as evidenced by coincident breaks in dynamics and concentration of offshore surface chlorophyll-a. Field experiments showed that the paradigm of top-down control of intertidal benthic communities holds only south of the discontinuity. To the north, populations seem recruitment-limited, and predators have negligible effects, despite attaining similarly high abundances and potential predation effects across the region. Thus, geographically discontinuous oceanographic regimes set bounds to the strength of species interactions and define distinct regions for the design and implementation of sustainable management and conservation policies. PMID:16332959
Navarrete, Sergio A; Wieters, Evie A; Broitman, Bernardo R; Castilla, Juan Carlos
2005-12-13
Large and usually unpredictable variation in species interaction strength has been a major roadblock to applying local experimental results to large-scale management and conservation issues. Recent studies explicitly considering benthic-pelagic coupling are starting to shed light on, and find regularities in, the causes of such large-scale variation in coastal ecosystems. Here, we evaluate the effects of variation in wind-driven upwelling on community regulation along 900 km of coastline of the southeastern Pacific, between 29 degrees S and 35 degrees S during 72 months. Variability in the intensity of upwelling occurring over tens of km produced predictable variation in recruitment of intertidal mussels, but not barnacles, and did not affect patterns of community structure. In contrast, sharp discontinuities in upwelling regimes produced abrupt and persistent breaks in the dynamics of benthic and pelagic communities over hundreds of km (regional) scales. Rates of mussel and barnacle recruitment changed sharply at approximately 32 degrees -33 degrees S, determining a geographic break in adult abundance of these competitively dominant species. Analysis of satellite images demonstrates that regional-scale discontinuities in oceanographic regimes can couple benthic and pelagic systems, as evidenced by coincident breaks in dynamics and concentration of offshore surface chlorophyll-a. Field experiments showed that the paradigm of top-down control of intertidal benthic communities holds only south of the discontinuity. To the north, populations seem recruitment-limited, and predators have negligible effects, despite attaining similarly high abundances and potential predation effects across the region. Thus, geographically discontinuous oceanographic regimes set bounds to the strength of species interactions and define distinct regions for the design and implementation of sustainable management and conservation policies.
Weak interference in the high-signal regime
Torres, Juan P; Hermosa, Nathaniel; Salazar-Serrano, Luis Jose
2012-01-01
Weak amplification is a signal enhancement technique which is used to measure tiny changes that otherwise cannot be determined because of technical limitations. It is based on the existence of a special type of interaction which couples a property of a system, i.e., polarization or which-path information, with a separate degree of freedom, i.e., transverse position or frequency. Unfortunately, the weak amplification process is generally accompanied by severe losses of the detected signal, which limits the applicability of the weak amplification concept. However, we will show here that since the weak measurement concept is essentially an interference phenomena, it should be possible to use the degree of interference to get relevant information about the physical system under study in a more general scenario, where the signal is not severely depleted (high-signal regime). This can widen the range of systems where the weak measurement concept can be applied. In this scenario, which can be called generally weak i...
Weak Galois and Weak Cocleft Coextensions
Institute of Scientific and Technical Information of China (English)
J.N. Alonso (A)lvarez; J.M. Fernández Vilaboa; R. González Rodríguez; A.B. Rodríguez Raposo
2007-01-01
For a weak entwining structure (A, C,ψ) living in a braided monoidal category with equalizers and coequalizers, we formulate the notion of weak A-Galois coextension with normal basis and we show that these Galois coextensions are equivalent to the weak A-cocleft coextensions introduced by the authors.
Abe, F; Amendolia, S R; Amidei, D; Antos, J; Anway-Wiese, C; Apollinari, G; Areti, H; Atac, M; Auchincloss, P S; Azfar, F; Azzi, P; Bacchetta, N; Badgett, W; Bailey, M W; Bao, J; De Barbaro, P; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartalini, P; Bauer, G; Baumann, T; Bedeschi, F; Behrends, S; Belforte, S; Bellettini, G; Bellinger, J; Benjamin, D; Benlloch, J M; Bensinger, J; Benton, D; Beretvas, A; Bergé, J P; Bertolucci, Sergio; Bhatti, A A; Biery, K; Binkley, M; Bird, F; Bisello, D; Blair, R E; Blocker, C; Bodek, A; Bokhari, W; Bolognesi, V; Bortoletto, D; Boswell, C; Boulos, T; Brandenburg, G; Bromberg, C; Buckley-Geer, E; Budd, H S; Burkett, K; Busetto, G; Byon-Wagner, A; Byrum, K L; Cammerata, J; Campagnari, C; Campbell, M; Caner, A; Carithers, W; Carlsmith, D; Castro, A; Cen, Y; Cervelli, F; Chao, H Y; Chapman, J; Cheng, M T; Chiarelli, G; Chikamatsu, T; Chiou, C N; Christofek, L; Cihangir, S; Clark, A G; Cobal, M; Contreras, M; Conway, J; Cooper, J; Cordelli, M; Couyoumtzelis, C; Crane, D; Cunningham, J D; Daniels, T; De Jongh, F; Delchamps, S; Dell'Agnello, S; Dell'Orso, Mauro; Demortier, L; Denby, B; Deninno, M; Derwent, P F; Devlin, T; Dickson, M; Dittmann, J R; Donati, S; Drucker, R B; Dunn, A; Einsweiler, Kevin F; Elias, J E; Ely, R; Engels, E; Eno, S; Errede, D; Errede, S; Fan, Q; Farhat, B; Fiori, I; Flaugher, B; Foster, G W; Franklin, M; Frautschi, M; Freeman, J; Friedman, J; Frisch, H; Fry, A; Fuess, T A; Fukui, Y; Funaki, S; Gagliardi, G; Galeotti, S; Gallinaro, M; Garfinkel, A F; Geer, S; Gerdes, D W; Giannetti, P; Giokaris, N; Giromini, P; Gladney, L; Glenzinski, D A; Gold, M; González, J; Gordon, A; Goshaw, A T; Goulianos, K; Grassmann, H; Grewal, A; Groer, L; Grosso-Pilcher, C; Haber, C; Hahn, S R; Hamilton, R; Handler, R; Hans, R M; Hara, K; Harral, B; Harris, R M; Hauger, S A; Hauser, J; Hawk, C; Heinrich, J; Cronin-Hennessy, D; Hollebeek, R; Holloway, L; Hölscher, A; Hong, S; Houk, G; Hu, P; Huffman, B T; Hughes, R; Hurst, P; Huston, J; Huth, J; Hylen, J; Incagli, M; Incandela, J R; Iso, H; Jensen, H; Jessop, C P; Joshi, U; Kadel, R W; Kajfasz, E; Kamon, T; Kaneko, T; Kardelis, D A; Kasha, H; Kato, Y; Keeble, L; Kennedy, R D; Kephart, R; Kesten, P; Kestenbaum, David S; Keup, R M; Keutelian, H; Keyvan, F; Kim, D H; Kim, H S; Kim, S B; Kim, S H; Kim, Y K; Kirsch, L; Koehn, P; Kondo, K; Konigsberg, J; Kopp, S; Kordas, K; Koska, W; Kovács, E; Kowald, W; Krasberg, M; Kroll, J; Kruse, M; Kuhlmann, S E; Kuns, E; Laasanen, A T; Labanca, N; Lammel, S; Lamoureux, J I; LeCompte, T; Leone, S; Lewis, J D; Limon, P; Lindgren, M; Liss, T M; Lockyer, N; Loomis, C; Long, O; Loreti, M; Low, E H; Lü, J; Lucchesi, D; Luchini, C B; Lukens, P; Lys, J; Maas, P; Maeshima, K; Maghakian, A; Maksimovic, P; Mangano, Michelangelo L; Mansour, J; Mariotti, M; Marriner, J P; Martin, A; Matthews, J A J; Mattingly, R; McIntyre, P; Mélèse, P; Menzione, A; Meschi, E; Michail, G; Mikamo, S; Miller, M; Miller, R; Mimashi, T; Miscetti, S; Mishina, M; Mitsushio, H; Miyashita, S; Morita, Y; Moulding, S; Müller, J; Mukherjee, A; Müller, T; Musgrave, P; Nakae, L F; Nakano, I; Nelson, C; Neuberger, D; Newman-Holmes, C; Nodulman, L; Ogawa, S; Oh, S H; Ohl, K E; Oishi, R; Okusawa, T; Pagliarone, C; Paoletti, R; Papadimitriou, V; Park, S; Patrick, J; Pauletta, G; Paulini, M; Pescara, L; Peters, M D; Phillips, T J; Piacentino, G; Pillai, M; Plunkett, R; Pondrom, L; Produit, N; Proudfoot, J; Ptohos, F; Punzi, G; Ragan, K; Rimondi, F; Ristori, L; Roach-Bellino, M; Robertson, W J; Rodrigo, T; Romano, J; Rosenson, L; Sakumoto, W K; Saltzberg, D; Sansoni, A; Scarpine, V; Schindler, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schneider, O; Sciacca, G F; Scribano, A; Segler, S; Seidel, S; Seiya, Y; Sganos, G; Sgolacchia, A; Shapiro, M; Shaw, N M; Shen, Q; Shepard, P F; Shimojima, M; Shochet, M; Siegrist, J; Sill, A; Sinervo, P; Singh, P; Skarha, J E; Sliwa, K; Smith, D A; Snider, F D; Song, L; Song, T; Spalding, J; Spiegel, L; Sphicas, Paris; Spies, A; Stanco, L; Steele, J; Stefanini, A; Strahl, K; Strait, J; Stuart, D; Sullivan, G; Sumorok, K; Swartz, R L; Takahashi, T; Takikawa, K; Tartarelli, F; Taylor, W; Teng, P K; Teramoto, Y; Tether, S; Theriot, D; Thomas, J; Thomas, T L; Thun, R; Timko, M; Tipton, P; Titov, A; Tkaczyk, S; Tollefson, K; Tollestrup, Alvin V; Tonnison, J; De Trocóniz, J F; Tseng, J; Turcotte, M; Turini, N; Uemura, N; Ukegawa, F; Unal, G; van den Brink, S C; Vejcik, S; Vidal, R; Vondracek, M; Vucinic, D; Wagner, R G; Wagner, R L; Wainer, N; Walker, R C; Wang, C; Wang, C H; Wang, G; Wang, J; Wang, M J; Wang, Q F; Warburton, A; Watts, G; Watts, T; Webb, R; Wei, C; Wendt, C; Wenzel, H; Wester, W C; Westhusing, T; Wicklund, A B; Wicklund, E; Wilkinson, R; Williams, H H; Wilson, P; Winer, B L; Wolinski, J; Wu, D Y; Wu, X; Wyss, J; Yagil, A; Yao, W; Yasuoka, K; Ye, Y; Yeh, G P; Yeh, P; Yin, M; Yoh, J; Yosef, C; Yoshida, T; Yovanovitch, D; Yu, I; Yun, J C; Zanetti, A; Zetti, F; Zhang, L; Zhang, S; Zhang, W; Zucchelli, S
1995-01-01
Direct limits are set on WWZ and WW\\gamma three-boson couplings in a search for WW and WZ production with high transverse momentum in p\\overline{p} collisions at \\sqrt{s} = 1.8 TeV, using the Collider Detector at Fermilab. The results are in agreement with the SU(2) \\times U(1) model of electroweak interactions. Assuming Standard Model WW\\gamma coupling, the the limits are interpreted as direct evidence for a non-zero WWZ coupling at subprocess energies near 500 GeV. Alternatively, assumiong identical WWZ and WW\\gamma couplings, bounds -0.11 < \\kappa < 2.27 and -0.81 < \\lambda < 0.84 are obtained at 95\\% CL for a form factor scale 1000 GeV.
Limits on the Anomalous ZZγ and Zγγ Couplings in pp¯ Collisions at s = 1.8 TeV
Abachi, S.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alitti, J.; Álvarez, G.; Alves, G. A.; Amidi, E.; Amos, N.; Anderson, E. W.; Aronson, S. H.; Astur, R.; Avery, R. E.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Bantly, J.; Bartlett, J. F.; Bazizi, K.; Bendich, J.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Bischoff, A.; Biswas, N.; Blazey, G.; Blessing, S.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Borders, J.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Casey, D.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Chevalier, L.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M.; Cutts, D.; Dahl, O. I.; de, K.; Demarteau, M.; Demina, R.; Denisenko, K.; Denisenko, N.; Denisov, D.; Denisov, S. P.; Dharmaratna, W.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Dixon, R.; Draper, P.; Drinkard, J.; Ducros, Y.; Dugad, S. R.; Durston-Johnson, S.; Edmunds, D.; Efimov, A. O.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahey, S.; Fahland, T.; Fatyga, M.; Fatyga, M. K.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Yu.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Franzini, P.; Fredriksen, S.; Fuess, S.; Galjaev, A. N.; Gallas, E.; Gao, C. S.; Gao, S.; Geld, T. L.; Genik, R. J., II; Genser, K.; Gerber, C. E.; Gibbard, B.; Glebov, V.; Glenn, S.; Gobbi, B.; Goforth, M.; Goldschmidt, A.; Gomez, B.; Goncharov, P. I.; Gordon, H.; Goss, L. T.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Griffin, G.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Guida, J. A.; Guida, J. M.; Guryn, W.; Gurzhiev, S. N.; Gutnikov, Y. E.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hansen, S.; Hatcher, R.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Igarashi, S.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johari, H.; Johns, K.; Johnson, M.; Johnstad, H.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kang, J. S.; Kehoe, R.; Kelly, M.; Kernan, A.; Kerth, L.; Kim, C. L.; Kim, S. K.; Klatchko, A.; Klima, B.; Klochkov, B. I.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Landsberg, G.; Lanou, R. E.; Lebrat, J.-F.; Leflat, A.; Li, H.; Li, J.; Li, Y. K.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Mandrichenko, I. V.; Mangeot, Ph.; Mani, S.; Mansoulié, B.; Mao, H. S.; Margulies, S.; Markeloff, R.; Markosky, L.; Marshall, T.; Martin, M. I.; Marx, M.; May, B.; Mayorov, A. A.; McCarthy, R.; McKibben, T.; McKinley, J.; Melanson, H. L.; de Mello Neto, J. R.; Merritt, K. W.; Miettinen, H.; Milder, A.; Milner, C.; Mincer, A.; de Miranda, J. M.; Mishra, C. S.; Mohammadi-Baarmand, M.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; Mudan, M.; Murphy, C.; Murphy, C. T.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Neis, E.; Nemethy, P.; NešiĆ, D.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Pang, M.; Para, A.; Park, C. H.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Perkins, J.; Peryshkin, A.; Peters, M.; Piekarz, H.; Pischalnikov, Y.; Pluquet, A.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Pušeljić, D.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rao, M. V.; Rapidis, P. A.; Rasmussen, L.; Read, A. L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roe, N. A.; Roldan, J. M.; Rubinov, P.; Ruchti, R.; Rusin, S.; Rutherfoord, J.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schmid, D.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, A.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Souza, M.; Spadafora, A. L.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stocker, F.; Stoianova, D. A.; Stoker, D.; Streets, K.; Strovink, M.; Taketani, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Taylor, T. L.; Teiger, J.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Virador, P. R.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, J.; Wang, L. Z.; Warchol, J.; Wayne, M.; Weerts, H.; Wenzel, W. A.; White, A.; White, J. T.; Wightman, J. A.; Wilcox, J.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Wolf, Z.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yanagisawa, C.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhang, Y.; Zhou, Y. H.; Zhu, Q.; Zhu, Y. S.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zinchenko, A.; Zylberstejn, A.
1995-08-01
We performed a direct search for the anomalous ZZγ and Zγγ couplings by studying pp¯-->llγ+X \\(l = e,μ\\) events at s = 1.8 TeV with the D0 detector at the Fermilab Tevatron Collider. A fit to the transverse energy spectrum of the photon in the signal events, based on the data set corresponding to an integrated luminosity of 14.3 pb-1 ( 13.7 pb-1) for the electron (muon) channel, yields the following 95% confidence level limits on the anomalous CP-conserving ZZγ couplings: \\|hZ30\\|<1.8 ( hZ40 = 0) and \\|hZ40\\|<0.5 ( hZ30 = 0), for a form-factor scale Λ = 500 GeV. Limits for the Zγγ couplings and CP-violating couplings are also discussed.
Limits on WWZ and WWγ Couplings from pp¯ --> eνjjX Events at s } = 1.8 TeV
Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amidi, E.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Bartlett, J. F.; Bazizi, K.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Borders, J.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M.; Fatyga, M. K.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goforth, M.; Goldschmidt, A.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Grim, G.; Grinstein, S.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, P.; Gutnikov, Y. E.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klatchko, A.; Klima, B.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Lan, H.; Lander, R.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Q.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Mani, S.; Mao, H. S.; Markeloff, R.; Markosky, L.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; de Miranda, J. M.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Nicola, M.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Pang, M.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roe, N. A.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, A.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stoianova, D. A.; Stoker, D.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yanagisawa, C.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.
1997-08-01
We present limits on anomalous WWZ and WWγ couplings from a search for WW and WZ production in pp¯ collisions at s = 1.8 TeV. We use pp¯-->eνjjX events recorded with the D0 detector at the Fermilab Tevatron Collider during the 1992-1995 run. The data sample corresponds to an integrated luminosity of 96.0+/-5.1 pb-1. Assuming identical WWZ and WWγ coupling parameters, the 95% C.L. limits on the CP-conserving couplings are -0.33<λ<0.36 \\(Δκ = 0\\) and -0.43<Δκ<0.59 \\(λ = 0\\), for a form factor scale Λ = 2.0 TeV. Limits based on other assumptions are also presented.
Pionic dispersion relations in presence of weak magnetic field
Adhya, Souvik Priyam; Biswas, Subhrajyoti; Roy, Pradip K
2016-01-01
In this work, dispersion relations of $\\pi^0$ and $\\pi^{\\pm}$ have been studied in vacuum in the limit of weak external magnetic field using a phenomenological pion-nucleon $(\\pi N)$ Lagrangian. For our purpose, we have calculated the results up to one loop order in self energy diagrams with the pseudoscalar $(PS)$ and pseudovector $(PV)$ pion-nucleon interactions. By assuming weak external magnetic field it is seen that the effective mass of pion gets explicit magnetic field dependence and it is modified significantly for the case of PS coupling. However, for the PV coupling, only a modest increase in the effective mass is observed. These modified dispersion relations due to the presence of the external field can have substantial influence in the phenomenological aspect of the mesons both in the context of neutron stars as well as relativistic heavy ion collisions.
Time Scales, Coherency, and Weak Coupling.
1980-10-01
1979. 37. U. Di Caprio , R. Marconato, "Structural Coherency Conditions in Multimachine Power Systems," Presented at the 8th IFAC World Congress...1 1 M ici + Di W = Pm i-Pgi N P E v vB sin(6 -6) + v i1,2. ,n (3.2) gi j=l ij ij i iii j i N 2 P E v v B .sin(6i-6) + v.G i=n+l,. .. ,N (3.3)P.i j 1...is r Di E D . (4.10)ij=l ij j#i The total interconnection of the system is r D = iE D.. (4.11)q T i=1 i Assuming that the cos terms in k are
The spectrum of weakly coupled map lattices
DEFF Research Database (Denmark)
Baladi, Viviane; Degli Esposti, Mirko; Isola, Stefano
1998-01-01
This paper proposes a way of framing the study of ‘noncommunicable diseases’ within the more general area of chronic conditions. Focusing on Africa, it takes as points of departure the situation in Uganda, and the approach to health issues developed by a group of European and African colleagues o...
Weak interaction studies with an on-line Penning trap mass spectrometer
Savard, G; Buchinger, F; Crawford, J E; Feng, X; Gulick, S; Hackman, G; Hardy, J C; Lee, J K P; Moore, R B; Sharma, K S; Uusitalo, J
1999-01-01
Superallowed beta-decays are a sensitive probe of the fundamental aspects of the weak interaction. Such decays are used to stringently test the CVC hypothesis, deduce a precise value of the weak vector coupling constant, test the unitarity of the CKM matrix and look for deviation from the V-A structure for the weak interaction. The ability to efficiently capture and store short-lived superallowed beta-emitters in ion traps will help to elucidate discrepancies in the most precise unitarity test of the CKM matrix and tighten the present limits on interactions outside the standard V-A form.
Institute of Scientific and Technical Information of China (English)
Yong Hua LI; Hai Bin KAN; Bing Jun YU
2004-01-01
In this paper, a special kind of partial algebras called projective partial groupoids is defined.It is proved that the inverse image of all projections of a fundamental weak regular *-semigroup under the homomorphism induced by the maximum idempotent-separating congruence of a weak regular *-semigroup has a projective partial groupoid structure. Moreover, a weak regular *-product which connects a fundamental weak regular *-semigroup with corresponding projective partial groupoid is defined and characterized. It is finally proved that every weak regular *-product is in fact a weak regular *-semigroup and any weak regular *-semigroup is constructed in this way.
Weak disorder in Fibonacci sequences
Energy Technology Data Exchange (ETDEWEB)
Ben-Naim, E [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Krapivsky, P L [Department of Physics and Center for Molecular Cybernetics, Boston University, Boston, MA 02215 (United States)
2006-05-19
We study how weak disorder affects the growth of the Fibonacci series. We introduce a family of stochastic sequences that grow by the normal Fibonacci recursion with probability 1 - {epsilon}, but follow a different recursion rule with a small probability {epsilon}. We focus on the weak disorder limit and obtain the Lyapunov exponent that characterizes the typical growth of the sequence elements, using perturbation theory. The limiting distribution for the ratio of consecutive sequence elements is obtained as well. A number of variations to the basic Fibonacci recursion including shift, doubling and copying are considered. (letter to the editor)
Precision Metrology Using Weak Measurements
Zhang, Lijian; Datta, Animesh; Walmsley, Ian A.
2015-05-01
Weak values and measurements have been proposed as a means to achieve dramatic enhancements in metrology based on the greatly increased range of possible measurement outcomes. Unfortunately, the very large values of measurement outcomes occur with highly suppressed probabilities. This raises three vital questions in weak-measurement-based metrology. Namely, (Q1) Does postselection enhance the measurement precision? (Q2) Does weak measurement offer better precision than strong measurement? (Q3) Is it possible to beat the standard quantum limit or to achieve the Heisenberg limit with weak measurement using only classical resources? We analyze these questions for two prototypical, and generic, measurement protocols and show that while the answers to the first two questions are negative for both protocols, the answer to the last is affirmative for measurements with phase-space interactions, and negative for configuration space interactions. Our results, particularly the ability of weak measurements to perform at par with strong measurements in some cases, are instructive for the design of weak-measurement-based protocols for quantum metrology.
Precision metrology using weak measurements.
Zhang, Lijian; Datta, Animesh; Walmsley, Ian A
2015-05-29
Weak values and measurements have been proposed as a means to achieve dramatic enhancements in metrology based on the greatly increased range of possible measurement outcomes. Unfortunately, the very large values of measurement outcomes occur with highly suppressed probabilities. This raises three vital questions in weak-measurement-based metrology. Namely, (Q1) Does postselection enhance the measurement precision? (Q2) Does weak measurement offer better precision than strong measurement? (Q3) Is it possible to beat the standard quantum limit or to achieve the Heisenberg limit with weak measurement using only classical resources? We analyze these questions for two prototypical, and generic, measurement protocols and show that while the answers to the first two questions are negative for both protocols, the answer to the last is affirmative for measurements with phase-space interactions, and negative for configuration space interactions. Our results, particularly the ability of weak measurements to perform at par with strong measurements in some cases, are instructive for the design of weak-measurement-based protocols for quantum metrology.
Limits on anomalous trilinear gauge couplings in Zγ events from pp¯ collisions at √s=1.96 TeV.
Aaltonen, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bauer, G; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Brisuda, A; Bromberg, C; Brucken, E; Bucciantonio, M; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; De Cecco, S; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hidas, D; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirby, M; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, Q; Liu, T; Lockwitz, S; Lockyer, N S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rubbo, F; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sartori, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shreyber, I; Simonenko, A; Sinervo, P; Sissakian, A; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stancari, M; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tu, Y; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamaoka, J; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zucchelli, S
2011-07-29
Using Zγ candidate events collected by the CDF detector at the Tevatron Collider, we search for potential anomalous (non-standard-model) couplings between the Z boson and the photon. Zγ couplings vanish at tree level and are heavily suppressed at higher orders; hence any evidence of couplings indicates new physics. Measurements are performed using data corresponding to an integrated luminosity of 4.9 fb(-1) in the Z→νν¯ decay channel and 5.1 fb(-1) in the Z→l(+)l(-) (l=μ, e) decay channels. The combination of these measurements provides the most stringent limits to date on Zγ trilinear gauge couplings. Using an energy scale of Λ=1.5 TeV to allow for a direct comparison with previous measurements, we find limits on the CP-conserving parameters that describe Zγ couplings to be |h(3)(γ,Z)|<0.022 and |h(4)(γ,Z)|<0.0009. These results are consistent with standard model predictions.
WEAK CONVERGENCE OF HENSTOCK INTEGRABLE SEQUENCES
Institute of Scientific and Technical Information of China (English)
LuisaDiPiazza
1994-01-01
Some relationships between pointwise and weak convergence of a sequence of Henstock integrable functions are studied, In particular it is provided an example of a sequence of Henstock integrable functions whose pointwise limit is different from the weak one. By introducing an asymptotic version of the Henstock equiintegrability notion it is given a necessary and sufficient condition in order that a pointwisely convergent sequence of Henstock integrable functions is weakly convergent to its pointwise limit.
Statistics of Lyapunov exponent spectrum in randomly coupled Kuramoto oscillators.
Patra, Soumen K; Ghosh, Anandamohan
2016-03-01
Characterization of spatiotemporal dynamics of coupled oscillatory systems can be done by computing the Lyapunov exponents. We study the spatiotemporal dynamics of randomly coupled network of Kuramoto oscillators and find that the spectral statistics obtained from the Lyapunov exponent spectrum show interesting sensitivity to the coupling matrix. Our results indicate that in the weak coupling limit the gap distribution of the Lyapunov spectrum is Poissonian, while in the limit of strong coupling the gap distribution shows level repulsion. Moreover, the oscillators settle to an inhomogeneous oscillatory state, and it is also possible to infer the random network properties from the Lyapunov exponent spectrum.
Smirnov, D A; Velazquez, J L P; Wennberg, R A; Bezruchko, B P
2005-01-01
We demonstrate in numerical experiments that estimators of strength and directionality of coupling between oscillators based on modeling of their phase dynamics [D.A. Smirnov and B.P. Bezruchko, Phys. Rev. E 68, 046209 (2003)] are widely applicable. Namely, although the expressions for the estimators and their confidence bands are derived for linear uncoupled oscillators under the influence of independent sources of Gaussian white noise, they turn out to allow reliable characterization of coupling from relatively short time series for different properties of noise, significant phase nonlinearity of the oscillators, and non-vanishing coupling between them. We apply the estimators to analyze a two-channel human intracranial epileptic electroencephalogram (EEG) recording with the purpose of epileptic focus localization.
Szpunar, Joanna; McSheehy, Shona; Połeć, Kasia; Vacchina, Véronique; Mounicou, Sandra; Rodriguez, Isaac; Łobiński, Ryszard
2000-07-01
Recent advances in the coupling of gas chromatography (GC) and high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP MS) and their role in trace element speciation analysis of environmental materials are presented. The discussion is illustrated with three research examples concerning the following topics: (i) development and coupling of multicapillary microcolumn GC with ICP MS for speciation of organotin in sediment and biological tissue samples; (ii) speciation of arsenic in marine algae by size-exclusion-anion-exchange HPLC-ICP MS; and (iii) speciation of cadmium in plant cell cultures by size-exclusion HPLC-ICP MS. Particular attention is paid to the problem of signal identification in ICP MS chromatograms; the potential of electrospray MS/MS for this purpose is highlighted.
Weak measurements with a qubit meter
DEFF Research Database (Denmark)
Wu, Shengjun; Mølmer, Klaus
2009-01-01
We derive schemes to measure the so-called weak values of quantum system observables by coupling of the system to a qubit meter system. We highlight, in particular, the meaning of the imaginary part of the weak values, and show how it can be measured directly on equal footing with the real part...... of the weak value. We present compact expressions for the weak value of single qubit observables and of product observables on qubit pairs. Experimental studies of the results are suggested with cold trapped ions....
Second threshold in weak interactions
Veltman, M.J.G.
1977-01-01
The point of view that weak interactions must have a second threshold below 300 – 600 GeV is developed. Above this threshold new physics must come in. This new physics may be the Higgs system, or some other nonperturbative system possibly having some similarities to the Higgs system. The limit of la
Weak measurements and supraluminal communication
Belinsky, A V
2016-01-01
There is suggested a version of the experiment with a correlated pair of particles in the entangled state. The experiment demonstrates that, in the case of weak and/or non-demolition measurements of one of the particles, it is possible to transmit information with a speed not limited by velocity of light.
Diffusion in Energy Conserving Coupled Maps
Bricmont, Jean
2011-01-01
We consider a dynamical system consisting of subsystems indexed by a lattice. Each subsystem has one conserved degree of freedom ("energy") the rest being uniformly hyperbolic. The subsystems are weakly coupled together so that the sum of the subsystem energies remains conserved. We prove that the subsystem energies satisfy the diffusion equation in a suitable scaling limit.
Cofinitely weak supplemented modules
Alizade, Rafail; Büyükaşık, Engin
2003-01-01
We prove that a module M is cofinitely weak supplemented or briefly cws (i.e., every submodule N of M with M/N finitely generated, has a weak supplement) if and only if every maximal submodule has a weak supplement. If M is a cws-module then every M-generated module is a cws-module. Every module is cws if and only if the ring is semilocal. We study also modules, whose finitely generated submodules have weak supplements.
Institute of Scientific and Technical Information of China (English)
丁夏畦; 罗佩珠
2004-01-01
In this paper the authors introduce some new ideas on generalized numbers and generalized weak functions. They prove that the product of any two weak functions is a generalized weak function. So in particular they solve the problem of the multiplication of two generalized functions.
Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier
2017-07-28
This paper presents the extended results of measurements of $W^{\\pm}W^{\\pm}jj$ production and limits on anomalous quartic gauge couplings using 20.3 fb$^{-1}$ of proton--proton collision data at $\\sqrt{s}=8$ TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with two leptons ($e$ or $\\mu$) with the same electric charge and at least two jets are analyzed. Production cross-sections are determined in two fiducial regions, with different sensitivities to the electroweak and strong production mechanisms. An additional fiducial region, particularly sensitive to anomalous quartic gauge coupling parameters $\\alpha_4$ and $\\alpha_5$, is introduced, which allows more stringent limits on these parameters compared to the previous ATLAS measurement.
Anelli, Christopher Ryan
Present the measurement of a rare Standard Model processes, pp →W±γγ for the leptonic decays of the W±. The measurement is made with 19.4 fb−1 of 8 TeV data collected in 2012 by the CMS experiment. The measured cross section is consistent with the Standard Model prediction and has a significance of 2.9σ. Limits are placed on dimension-8 Effective Field Theories of anomalous Quartic Gauge Couplings. The analysis has particularly sensitivity to the fT,0 coupling and a 95% confidence limit is placed at −35.9 < fT,0/Λ4< 36.7 TeV−4. Studies of the pp →Zγγ process are also presented. The Zγγ signal is in strict agreement with the Standard Model and has a significance of 5.9σ.
Limits on Anomalous WWγ Couplings from pp¯-->Wγ + X Events at √s = 1.8 TeV
Abachi, S.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Álvarez, G.; Alves, G. A.; Amidi, E.; Amos, N.; Anderson, E. W.; Aronson, S. H.; Astur, R.; Baarmand, M. M.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Bartlett, J. F.; Bazizi, K.; Belyaev, A.; Bendich, J.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Bischoff, A.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Borders, J.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Drinkard, J.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahey, S.; Fahland, T.; Fatyga, M.; Fatyga, M. K.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Franzini, P.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Geld, T. L.; Genik, R. J., II; Genser, K.; Gerber, C. E.; Gibbard, B.; Glebov, V.; Glenn, S.; Gobbi, B.; Goforth, M.; Goldschmidt, A.; Gómez, B.; Gomez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Griffin, G.; Grim, G.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Guryn, W.; Gurzhiev, S. N.; Gutierrez, P.; Gutnikov, Y. E.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Kehoe, R.; Kelly, M. L.; Kerth, L.; Kim, C. L.; Kim, S. K.; Klatchko, A.; Klima, B.; Klochkov, B. I.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Lan, H.; Landsberg, G.; Lauer, B.; Lebrat, J.-F.; Leflat, A.; Li, H.; Li, J.; Li, Y. K.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Q.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Mani, S.; Mao, H. S.; Markeloff, R.; Markosky, L.; Marshall, T.; Martin, M. I.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merritt, K. W.; Miettinen, H.; Mincer, A.; de Miranda, J. M.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Mudan, M.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Nes̆iĆ, D.; Nicola, M.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Pang, M.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Perkins, J.; Peters, M.; Piekarz, H.; Pischalnikov, Y.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Pus̆eljić, D.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rapidis, P. A.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roe, N. A.; Robinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, A.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stoianova, D. A.; Stoker, D.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yanagisawa, C.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhu, Q.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.
1997-05-01
We have measured the WWγ gauge boson coupling parameters using pp¯-->lνγ+X ( l = e,μ) events at s = 1.8 TeV. The data, corresponding to an integrated luminosity of 92.8 pb-1, were collected using the DØ detector at the Fermilab Tevatron Collider. The measured cross section times branching ratio for pp¯-->Wγ+X with pγT>10 GeV/c and Rlγ>0.7 is 11.3+1.7-1.5+/-1.5 pb, in agreement with the standard model prediction. The 1 degree of freedom 95% confidence level limits on individual CP-conserving parameters are -0.93<Δκ<0.94 and -0.31<λ<0.29. Similar limits are set on the CP-violating coupling parameters.
Weak interactions and photoinitiated unimolecular decomposition
Mikhaylichenko, K.; Wittig, C.
1998-04-01
Numerical studies have been carried out to examine the applicability of the density of states measured just below dissociation threshold to transition state rate theory. The model system consists of two weakly interacting manifolds of levels, one of which is optically accessible. Both manifolds are coupled to dissociative continua. These studies demonstrate that immediately above reaction threshold, coupling to continua is relatively slow on the time scale of inter-manifold coupling, and it is the mixed manifolds which decay. At higher energies, couplings to continua exceed inter-manifold couplings, and it is the photoexcited bright states which undergo unimolecular decomposition.
Directory of Open Access Journals (Sweden)
Jonathan A Hare
Full Text Available We couple a species range limit hypothesis with the output of an ensemble of general circulation models to project the poleward range limit of gray snapper. Using laboratory-derived thermal limits and statistical downscaling from IPCC AR4 general circulation models, we project that gray snapper will shift northwards; the magnitude of this shift is dependent on the magnitude of climate change. We also evaluate the uncertainty in our projection and find that statistical uncertainty associated with the experimentally-derived thermal limits is the largest contributor (∼ 65% to overall quantified uncertainty. This finding argues for more experimental work aimed at understanding and parameterizing the effects of climate change and variability on marine species.
Gartung, P E
1998-01-01
A search for WZ production through the study of the reaction pp→ lnee+X l=e, m at s=1.8 TeV using the DØ detector at Fermilab is presented. In a data sample corresponding to an integrated luminosity of 92.3 ± 5.0 pb − 1, 1 candidate event was identified. The Standard Model prediction is 0.245 ± 0.002 (stat) ± 0.015 (syst) events, with an estimated background of 0.498 ± 0.072 (stat) ± 0.125 (syst) events. The 95donfidence level limit on the WZ production cross section is 48.3 pb. Limits on the WWZ anomalous coupling parameters are obtained from a likelihood fit to the number of observed events. Assuming a form factor scale of 1.0 TeV, the 95onfidence level limits on the WWZ couplings are lZ< 1.42 and Dg1Z < 1.63 when the other coupling parameters are constrained to their Standard Model values.
Scalar coupling limits and diphoton Higgs decay from LHC in an $U(1)'$ model with scalar dark matter
R. Martinez; Nisperuza, J.; Ochoa, F.; Rubio, J. P.; Sierra, C.F.
2014-01-01
In the context of an nonuniversal $U(1)'$ extension of the standard model free from anomalies, we introduce a complex scalar singlet candidate to be dark matter. In addition, an extra scalar doublet and a heavy scalar singlet are required to provide masses to all fermions and to break spontaneously the symmetries. From unitarity and stability of the Higgs potential, we find the full set of bounds and order relations for the scalar coupling constants. Using recent data from the CERN-LHC collid...
Liu, Yu; Yu, Xiping
2016-09-01
A coupled phase-field and volume-of-fluid method is developed to study the sensitive behavior of water waves during breaking. The THINC model is employed to solve the volume-of-fluid function over the entire domain covered by a relatively coarse grid while the phase-field model based on Allen-Cahn equation is applied over the fine grid. A special algorithm that takes into account the sharpness of the diffuse-interface is introduced to correlate the order parameter obtained on the fine grid and the volume-of-fluid function obtained on the coarse grid. The coupled model is then applied to the study of water waves generated by moving pressures on the free surface. The deformation process of the wave crest during the initial stage of breaking is discussed in details. It is shown that there is a significant variation of the free nappe developed at the front side of the wave crest as the wave steepness differs. It is of a plunging type at large wave steepness while of a spilling type at small wave steepness. The numerical results also indicate that breaking occurs later and the duration of breaking is shorter for waves of smaller steepness and vice versa. Neglecting the capillary effect leads to wave breaking with a sharper nappe and a more dynamic plunging process. The surface tension also has an effect to prevent the formation of a free nappe at the front side of the wave crest in some cases.
Tuan, P. H.; Liang, H. C.; Tung, J. C.; Chiang, P. Y.; Huang, K. F.; Chen, Y. F.
2015-12-01
The coupling interaction between the driving source and the RLC network is explored and characterized as the effective impedance. The mathematical form of the derived effective impedance is verified to be identical to the meromorphic function of the singular billiards with a truncated basis. By using the derived impedance function, the resonant modes of the RLC network can be divided into the open-circuit and short-circuit states to manifest the evolution of eigenvalues and eigenstates from closed quantum billiards to the singular billiards with a truncated basis in the strongly coupled limit. The substantial differences of the wave patterns between the uncoupled and strongly coupled eigenmodes in the two-dimensional wave systems can be clearly revealed with the RLC network. Finally, the short-circuit resonant states are exploited to confirm that the experimental Chladni nodal-line patterns in the vibrating plate are the resonant modes subject to the strong coupling between the oscillation system and the driving source.
Liu, H.; Banville, D. L.; Basus, V. J.; James, T. L.
A method (termed CARNIVAL) for accurately determining distances from proton homonuclear rotating-frame Overhauser effect spectroscopy (ROESY) is described. The method entails an iterative calculation of the relaxation matrix using methodology introduced with the MARDIGRAS algorithm for analysis of two-dimensional nuclear Overhauser effect spectra (B. A. Borgias and T. L. James, J. Magn. Reson.87, 475, 1990). The situation is complicated in the case of ROESY as spectral peak intensities are influenced by resonance offset and contributions from homonuclear Hartmann-Hahn (HOHAHA) transfer if the nuclear spins are related by scalar coupling. The effects of spin-locking field strength on distance determinations and the ensuing distance errors incurred when HOHAHA corrections are made with limited knowledge of scalar ( J) coupling information have been evaluated using simulated ROESY intensities with a model peptide structure. It has been demonstrated that accurate distances can be obtained with little or no explicit knowledge of the homonuclear coupling constants over a moderate range of spin-locking field strengths. The CARNIVAL algorithm has been utilized to determine distances in a decapeptide using experimental ROESY data without measured coupling constants.
Byrd, Jason N; Jin, Yifan; Ranasinghe, Duminda S; Montgomery, John A; Perera, Ajith; Duan, Xiaofeng F; Burggraf, Larry W; Sanders, Beverly A; Bartlett, Rodney J
2016-01-01
The accurate determination of the preferred ${\\rm Si}_{12}{\\rm C}_{12}$ isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC$_3$ to ${\\rm Si}_{12}{\\rm C}_{12}$. It is found that post-MBPT(2) correlation energy plays a significant role in obtaining converged relative isomer energies, suggesting that predictions using low rung density functional methods will not have adequate accuracy. Utilizing the best composite coupled-cluster energy that is still computationally feasible, entailing a 3-4 SCF and CCSD extrapolation wit...
Energy Technology Data Exchange (ETDEWEB)
Zheng, Liange; Rutqvist, Jonny; Xu, Hao; Kim, Kunwhi; Voltolini, Marco; Cao, Xiaoyuan
2017-07-03
The focus of research within the Spent Fuel and Waste Science and Technology (SFWST) (formerly called Used Fuel Disposal) Campaign is on repository-induced interactions that may affect the key safety characteristics of EBS bentonite and an argillaceous rock. These include thermal-hydrologicalmechanical- chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer materials and petrophysical characteristics, particularly the impacts of temperature rise caused by waste heat. This report documents the following research activities. Section 2 presents THM model developments and validation, including modeling of underground heater experiments at Mont Terri and Bure underground research laboratories (URLs). The heater experiments modeled are the Mont Terri FE (Full-scale Emplacement) Experiment, conducted as part of the Mont Terri Project, and the TED in heater test conducted in Callovo-Oxfordian claystone (COx) at the Meuse/Haute-Marne (MHM) underground research laboratory in France. The modeling of the TED heater test is one of the Tasks of the DEvelopment of COupled Models and their VAlidation against EXperiments (DECOVALEX)-2019 project. Section 3 presents the development and application of thermal-hydrological-mechanical-chemical (THMC) modeling to evaluate EBS bentonite and argillite rock responses under different temperatures (100 °C and 200 °C). Model results are presented to help to understand the impact of high temperatures on the properties and behavior of bentonite and argillite rock. Eventually the process model will support a robust GDSA model for repository performance assessments. Section 4 presents coupled THMC modeling for an in situ test conducted at Grimsel underground laboratory in Switzerland in the Full
Johnson, Christian; The ATLAS collaboration
2017-01-01
Measurements of the cross sections of the production of three electroweak gauge bosons and of vector-boson scattering processes at the LHC constitute stringent tests of the electroweak sector of the Standard Model and provide a model-independent means to search for new physics at the TeV scale. The ATLAS collaboration searched for the production of three W bosons or of a W boson and a photon together with a Z or W boson at a center of mass energy of 8 TeV. ATLAS has also searched for the electroweak production of a heavy boson and a photon together with two jets. Evidence has been found for the exclusive production of W boson pairs. All results have been used to constrain anomalous quartic gauge couplings and have been compared to the latest theory predictions.
Li, Bing; The ATLAS collaboration
2017-01-01
Measurements of the cross sections of the production of three electroweak gauge bosons and of vector-boson scattering processes at the LHC constitute stringent tests of the electroweak sector of the Standard Model and provide a model-independent means to search for new physics at the TeV scale. The ATLAS collaboration has recently searched for the production of three W bosons or of a W boson and a photon together with a Z or W boson at a center of mass energy of 8 TeV. We also present searches for the electroweak production of a Z boson and a photon together with two jets. The results are compared to state-of-the art theory predictions and have been used to constrain anomalous quartic gauge couplings.
Li, Bing; The ATLAS collaboration
2017-01-01
Measurements of the cross sections of the production of three electroweak gauge bosons and of vector-boson scattering processes at the LHC constitute stringent tests of the electroweak sector of the Standard Model and provide a model-independent means to search for new physics at the TeV scale. The ATLAS collaboration has recently searched for the production of three $W$ bosons or of a $W$ boson and a photon together with a $Z$ or $W$ boson at a center of mass energy of 8 TeV. We also present searches for the electroweak production of a $Z$ boson and a photon together with two jets. The results are compared to state-of-the art theory predictions and have been used to constrain anomalous quartic gauge couplings.
On Weakly Semicommutative Rings*
Institute of Scientific and Technical Information of China (English)
CHEN WEI-XING; CUI SHU-YING
2011-01-01
A ring R is said to be weakly scmicommutative if for any a, b ∈ R,ab = 0 implies aRb C_ Nil(R), where Nil(R) is the set of all nilpotcnt elements in R.In this note, we clarify the relationship between weakly semicommutative rings and NI-rings by proving that the notion of a weakly semicommutative ring is a proper generalization of NI-rings. We say that a ring R is weakly 2-primal if the set of nilpotent elements in R coincides with its Levitzki radical, and prove that if R is a weakly 2-primal ring which satisfies oα-condition for an endomorphism α of R (that is, ab = 0 （←→） aα(b) ＝ 0 where a, b ∈ R) then the skew polynomial ring R[π; αα]is a weakly 2-primal ring, and that if R is a ring and I is an ideal of R such that I and R/I are both weakly semicommutative then R is weakly semicommutative.Those extend the main results of Liang et al. 2007 (Taiwanese J. Math., 11(5)(2007),1359-1368) considerably. Moreover, several new results about weakly semicommutative rings and NI-rings are included.
Excited hexagon Wilson loops for strongly coupled N=4 SYM
Energy Technology Data Exchange (ETDEWEB)
Bartels, J.; Kotanski, J. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics and Astronomy
2010-10-15
This work is devoted to the six-gluon scattering amplitude in strongly coupled N=4 supersymmetric Yang-Mills theory. At weak coupling, an appropriate high energy limit of the so-called remainder function, i.e. of the deviation from the BDS formula, may be understood in terms of the lowest eigenvalue of the BFKL hamiltonian. According to Alday et al., amplitudes in the strongly coupled theory can be constructed through an auxiliary 1-dimensional quantum system. We argue that certain excitations of this quantum system determine the Regge limit of the remainder function at strong coupling and we compute its precise value. (orig.)
Neutrino energy transport in weak decoupling and big bang nucleosynthesis
Grohs, E; Kishimoto, C T; Paris, M W; Vlasenko, A
2015-01-01
We calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multi-energy group Boltzmann neutrino energy transport scheme. Such an approach allows a detailed accounting of the evolution of the $\
Liu, X; Katukuri, Vamshi M; Hozoi, L; Yin, Wei-Guo; Dean, M P M; Upton, M H; Kim, Jungho; Casa, D; Said, A; Gog, T; Qi, T F; Cao, G; Tsvelik, A M; van den Brink, Jeroen; Hill, J P
2012-10-12
The electronic structure of Sr3CuIrO6, a model system for the 5d Ir ion in an octahedral environment, is studied through a combination of resonant inelastic x-ray scattering and theoretical calculations. Resonant inelastic x-ray scattering spectra at the Ir L3 edge reveal an Ir t(2g) manifold that is split into three levels, in contrast to the expectations of the strong spin-orbit-coupling limit. Effective Hamiltonian and ab inito quantum chemistry calculations find a strikingly large noncubic crystal field splitting comparable to the spin-orbit coupling, which results in a strong mixing of the j(eff)=1/2 and j(eff)=3/2 states and modifies the isotropic wave functions on which many theoretical models are based.
Abazov, V M; Abdesselam, A; Abolins, M; Abramov, V; Acharya, B S; Adams, D L; Adams, M; Ahmed, S N; Alexeev, G D; Alton, A; Alves, G A; Arnoud, Y; Avila, C; Babintsev, V V; Babukhadia, L; Bacon, Trevor C; Baden, A; Baffioni, S; Baldin, B Yu; Balm, P W; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beaudette, F; Begel, M; Belyaev, A; Beri, S B; Bernardi, G; Bertram, I; Besson, A; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Blazey, G; Blekman, F; Blessing, S; Böhnlein, A; Bozhko, N; Bolton, T A; Borcherding, F; Bos, K; Bose, T; Brandt, A; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchholz, D; Bühler, M; Büscher, V; Burtovoi, V S; Butler, J M; Canelli, F; Carvalho, W; Casey, D; Castilla-Valdez, H; Chakraborty, D; Chan, K M; Chekulaev, S V; Cho, D K; Choi, S; Chopra, S; Claes, D; Clark, A R; Connolly, B; Cooper, W E; Coppage, D; Crepe-Renaudin, S; Cummings, M A C; Cutts, D; Da Motta, H; Davis, G A; De, K; De Jong, S J; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doulas, S; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dyshkant, A; Edmunds, D; Ellison, J; Eltzroth, J T; Elvira, V D; Engelmann, R; Eno, S; Eppley, G; Ermolov, P; Eroshin, O V; Estrada, J; Evans, H; Evdokimov, V N; Ferbel, T; Filthaut, F; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gallas, E; Galjaev, A N; Gao, M; Gavrilov, V; Genik, R J; Genser, K; Gerber, C E; Gershtein, Yu; Ginther, G; Gómez, B; Goncharov, P I; Gounder, K; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Grinstein, S; Groer, L; Grünendahl, S; Grünewald, M W; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Hadley, N J; Haggerty, H; Hagopian, S; Hagopian, V; Hall, R E; Han, C; Hansen, S; Hauptman, J M; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Huang, J; Huang, Y; Iashvili, I; Illingworth, R; Ito, A S; Jaffré, M; Jain, S; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jöstlein, H; Juste, A; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Karmanov, D; Karmgard, D; Kehoe, R; Kesisoglou, S; Khanov, A; Kharchilava, A I; Klima, B; Kohli, J M; Kostritskii, A V; Kotcher, J; Kothari, B; Kozelov, A V; Kozlovskii, E A; Krane, J; Krishnaswamy, M R; Krivkova, P; Krzywdzinski, S; Kubantsev, M A; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kuznetsov, V E; Landsberg, G L; Lee, W M; Leflat, A; Lehner, F; Leonidopoulos, C; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J; Lipton, R; Lucotte, A; Lueking, L; Lundstedt, C; Luo, C; Maciel, A K A; Madaras, R J; Malyshev, V L; Manankov, V; Mao, H S; Marshall, T; Martin, M I; Mattingly, S E K; Mayorov, A A; McCarthy, R; McMahon, T; Melanson, H L; Melnitchouk, A S; Merkin, M; Merritt, K W; Miao, C; Miettinen, H; Mihalcea, D; Mokhov, N V; Mondal, N K; Montgomery, H E; Moore, R W; Mutaf, Y D; Nagy, E; Narain, M; Narasimham, V S; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Nomerotski, A; Nunnemann, T; O'Neil, D; Oguri, V; Oshima, N; Padley, P; Papageorgiou, K; Parashar, N; Partridge, R; Parua, N; Patwa, A; Peters, O; Petroff, P; Piegaia, R; Pope, B G; Prosper, H B; Protopopescu, Serban D; Przybycien, M B; Qian, J; Rajagopalan, S; Rapidis, P A; Reay, N W; Reucroft, S; Ridel, M; Rijssenbeek, M; Rizatdinova, F K; Rockwell, T; Royon, C; Rubinov, P; Ruchti, R; Sabirov, B M; Sajot, G; Santoro, A F S; Sawyer, L; Schamberger, R D; Schellman, H; Schwartzman, A; Shabalina, E; Shivpuri, R K; Shpakov, D; Shupe, M; Sidwell, R A; Simák, V; Sirotenko, V I; Slattery, P F; Smith, R P; Snow, G R; Snow, J; Snyder, S; Solomon, J; Song, Y; Sorin, V; Sosebee, M; Sotnikova, N; Soustruznik, K; Souza, M; Stanton, N R; Steinbruck, G; Stoker, D; Stolin, V; Stone, A; Stoyanova, D A; Strang, M A; Strauss, M; Strovink, M; Stutte, L; Sznajder, A; Talby, M; Taylor, W; Tentindo-Repond, S; Trippe, T G; Turcot, A S; Tuts, P M; Van Kooten, R; Vaniev, V; Varelas, N; Villeneuve-Séguier, F; Volkov, A A; Vorobev, A P; Wahl, H D; Wang, Z M; Warchol, J; Watts, G; Wayne, M; Weerts, H; White, A; Whiteson, D; Wijngaarden, D A; Willis, S; Wimpenny, S J; Womersley, J; Wood, D R; Xu, Q; Yamada, R; Yasuda, T; Yatsunenko, Y A; Yip, K; Yu, J; Zanabria, M; Zhang, X; Zhou, B; Zhou, Z; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; Zylberstejn, A
2005-01-01
The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at $\\sqrt{s}$ = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.
Quantum Butterfly Effect in Weakly Interacting Diffusive Metals
Patel, Aavishkar A.; Chowdhury, Debanjan; Sachdev, Subir; Swingle, Brian
2017-07-01
We study scrambling, an avatar of chaos, in a weakly interacting metal in the presence of random potential disorder. It is well known that charge and heat spread via diffusion in such an interacting disordered metal. In contrast, we show within perturbation theory that chaos spreads in a ballistic fashion. The squared anticommutator of the electron-field operators inherits a light-cone-like growth, arising from an interplay of a growth (Lyapunov) exponent that scales as the inelastic electron scattering rate and a diffusive piece due to the presence of disorder. In two spatial dimensions, the Lyapunov exponent is universally related at weak coupling to the sheet resistivity. We are able to define an effective temperature-dependent butterfly velocity, a speed limit for the propagation of quantum information that is much slower than microscopic velocities such as the Fermi velocity and that is qualitatively similar to that of a quantum critical system with a dynamical critical exponent z >1 .
Weak Gravity Conjecture in AdS/CFT
Nakayama, Yu
2015-01-01
We study implications of the weak gravity conjecture in the AdS/CFT correspondence. Unlike in Minkowski spacetime, AdS spacetime has a physical length scale, so that the conjecture must be generalized with an additional parameter. We discuss possible generalizations and translate them into the language of dual CFTs, which take the form of inequalities involving the dimension and charge of an operator as well as the current and energy-momentum tensor central charges. We then test these inequalities against various CFTs to see if they are universally obeyed by all the CFTs. We find that certain CFTs, such as supersymmetric QCDs, do not satisfy them even in the large $N$ limit. This does not contradict the conjecture in AdS spacetime because the theories violating them are either unlikely or unclear to have weakly coupled gravitational descriptions, but it suggests that the CFT inequalities obtained here by naive translations do not apply beyond the regime in which weakly coupled gravitational descriptions are a...
Idiopathic isolated orbicularis weakness
MacVie, O P; Majid, M A; Husssin, H M; Ung, T; Manners, R M; Ormerod, I; Pawade, J; Harrad, R A
2012-01-01
Purpose Orbicularis weakness is commonly associated with seventh nerve palsy or neuromuscular and myopathic conditions such as myotonic dystrophy and myasethenia gravis. We report four cases of idiopathic isolated orbicularis weakness. Methods All four cases were female and the presenting symptoms of ocular irritation and epiphora had been present for over 7 years in three patients. All patients had lagophthalmos and three had ectropion. Three patients underwent full investigations which excluded known causes of orbicularis weakness. Two patients underwent oribularis oculi muscle biopsy and histological confirmation of orbicularis atrophy. Results All patients underwent surgery to specifically address the orbicularis weakness with satisfactory outcomes and alleviation of symptoms in all cases. Isolated orbicularis weakness may be a relatively common entity that is frequently overlooked. Conclusion Early recognition of this condition may lead to better management and prevent patients undergoing unnecessary surgical procedures. PMID:22322997
Weak values obtained from mass-energy equivalence
Zhang, Miao
2017-01-01
Quantum weak measurement, measuring some observable quantities within the selected subensemble of the entire quantum ensemble, can produce many interesting results such as the superluminal phenomena. An outcome of such a measurement is the weak value which has been applied to amplify some weak signals of quantum interactions in lots of previous references. Here, we apply the weak measurement to the system of relativistic cold atoms. According to mass-energy equivalence, the internal energy of an atom will contribute its rest mass and consequently the external momentum of center of mass. This implies a weak coupling between the internal and external degrees of freedom of atoms moving in the free space. After a duration of this coupling, a weak value can be obtained by post-selecting an internal state of atoms. We show that the weak value can change the momentum uncertainty of atoms and consequently help us to experimentally measure the weak effects arising from mass-energy equivalence.
Directory of Open Access Journals (Sweden)
G. G. R. Iovine
2010-11-01
Full Text Available On 28 January 2009, a large debris slide was triggered by prolonged rainfalls at the southern suburbs of San Benedetto Ullano (Northern Calabria. The slope movement affected fractured and weathered migmatitic gneiss and biotitic schist, and included a pre-existing landslide. A detailed geomorphologic field survey, carried out during the whole phase of mobilization, allowed to recognize the evolution of the phenomenon. A set of datum points was located along the borders of the landslide and frequent hand-made measurements of surface displacements were performed. Since 11 February, a basic real-time monitoring system of meteoric parameters and of surface displacements, measured by means of high-precision extensometers, was also implemented.
Based on the data gained through the monitoring system, and on field surveying, a basic support system for emergency management could be defined since the first phases of activation of the phenomenon. The evolution of the landslide was monitored during the following months: as a consequence, evidence of retrogressive distribution could be recognized, with initial activation in the middle sector of the slope, where new temporary springs were observed. During early May, the activity reduced to displacements of a few millimetres per month and the geo-hydrological crisis seemed to be concluded.
Afterwards, the geological scheme of the slope was refined based on the data collected through a set of explorative boreholes, equipped with inclinometers and piezometers: according to the stratigraphic and inclinometric data, the depth of the mobilized body resulted in varying between 15 and 35 m along a longitudinal section. A parametric limit equilibrium analysis was carried out to explore the stability conditions of the slope affected by the landslide as well as to quantify the role of the water table in destabilizing the slope. The interpretation of the process based on field observations was confirmed
Zγ production in pp¯ collisions at s=1.8 TeV and limits on anomalous ZZγ and Zγγ couplings
Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amidi, E.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Bartlett, J. F.; Bazizi, K.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goforth, M.; Goldschmidt, A.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Grim, G.; Grinstein, S.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, P.; Gutnikov, Y. E.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Karmgard, D.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klatchko, A.; Klima, B.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Lan, H.; Lander, R.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Pang, M.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roe, N. A.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoianova, D. A.; Stoker, D.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.
1998-04-01
We present a study of Zγ+X production in pp¯ collisions at s=1.8 TeV from 97 (87) pb-1 of data collected in the eeγ (μμγ) decay channel with the D0 detector at Fermilab. The event yield and kinematic characteristics are consistent with the standard model predictions. We obtain limits on anomalous ZZγ and Zγγ couplings for form factor scales Λ=500 GeV and Λ=750 GeV. Combining this analysis with our previous results yields 95% C.L. limits \\|hZ30\\|<0.36, \\|hZ40\\|<0.05, \\|hγ30\\|<0.37, and \\|hγ40\\|<0.05 for a form factor scale Λ=750 GeV.
Abazov, V M; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguiló, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; sman, B; Assis-Jesus, A C S; Atramentov, O; Avila, C; Ay, C; Badaud, F; Baden, AA; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benítez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Böhnlein, A; Boline, D; Bolton, T A; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Bunichev, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M C; Crepe-Renaudin, S; Cutts, D; Cwiok, M; Da Motta, H; Das, A; Davies, G; De, K; De Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Dliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, e H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; García, C; García-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gel, D; Gerber, C E; Gershtein, Yu; Gillberg, D; Ginther, G; Gollub, N; Gmez, B; Goussiou, A; Grannis, P D; Greenlee, o H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, P; Grivaz, J F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutíerrez, G; Gutíerrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, e R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Kalinin, A M; Kalk, J M; Kappler, S; Karmanov, D; Kasper, P A; Katsanos, I; Kau, D; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Yu M; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J P; Korablev, V M; Kozelov, A V; Kraus, J; Krop, D; Kühl, T; Kumar, A; Kupco, A; Kura, T; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Lévêque, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajícek, M; Love, P; Lubatti, H J; Luna, R; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osman, N; Osta, J; Otec, R; Oteroy-Garzon, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M E; Polozov, P; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rieger, J; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, A D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simák, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Tamburello, P; Tanasijczuk, A; Taylor, W; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; vanden Berg, P J; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Séguier, F; Vint, P; Vokac, P; Von Törne, E; Voutilainen, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zatserklyaniy, A; Zeitnitz, C; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G
2008-01-01
We present results from a study of p-pbar -> W(gamma) + X events utilizing data corresponding to 0.7 fb^{-1} of integrated luminosity at $\\sqrt{s}$ = 1.96 TeV collected by the D0 detector at the Fermilab Tevatron Collider. We set limits on anomalous WWgamma couplings at the 95% C.L. The one dimensional 95% C.L. limits are 0.49 < kappa_{gamma} < 1.51 and -0.12 < lambda_{gamma} < 0.13. We make the first study of the charge-signed rapidity difference between the lepton and the photon and find it to be indicative of the standard model radiation-amplitude zero in the Wgamma system.
Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Kalinin, A M; Kalk, J M; Kappler, S; Karmanov, D; Kasper, P A; Katsanos, I; Kau, D; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Korablev, V M; Kozelov, A V; Kraus, J; Krop, D; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Leveque, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna, R; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osman, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rieger, J; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Tamburello, P; Tanasijczuk, A; Taylor, W; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vokac, P; Von Toerne, E; Voutilainen, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zatserklyaniy, A; Zeitnitz, C; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G
2008-06-20
We present results from a study of pp-->Wgamma+X events utilizing data corresponding to 0.7 fb{-1} of integrated luminosity at sqrt[s]=1.96 TeV collected by the D0 detector at the Fermilab Tevatron Collider. We set limits on anomalous WWgamma couplings at the 95% C.L. The one-dimensional 95% C.L. limits are 0.49
Byrd, Jason N.; Lutz, Jesse J.; Jin, Yifan; Ranasinghe, Duminda S.; Montgomery, John A.; Perera, Ajith; Duan, Xiaofeng F.; Burggraf, Larry W.; Sanders, Beverly A.; Bartlett, Rodney J.
2016-07-01
The accurate determination of the preferred Si12C12 isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for the opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies, and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC3 to Si12C12. It is found that post-MBPT(2) correlation energy plays a significant role in obtaining converged relative isomer energies, suggesting that predictions using low rung density functional methods will not have adequate accuracy. Utilizing the best composite coupled-cluster energy that is still computationally feasible, entailing a 3-4 SCF and coupled-cluster theory with singles and doubles extrapolation with triple-ζ (T) correlation, the closo Si12C12 isomer is identified to be the preferred isomer in the support of previous calculations [X. F. Duan and L. W. Burggraf, J. Chem. Phys. 142, 034303 (2015)]. Additionally we have investigated more pragmatic approaches to obtaining accurate silicon carbide isomer energies, including the use of frozen natural orbital coupled-cluster theory and several rungs of standard and double-hybrid density functional theory. Frozen natural orbitals as a way to compute post-MBPT(2) correlation energy are found to be an excellent balance between efficiency and accuracy.
Weakly asymptotically hyperbolic manifolds
Allen, Paul T; Lee, John M; Allen, Iva Stavrov
2015-01-01
We introduce a class of "weakly asymptotically hyperbolic" geometries whose sectional curvatures tend to $-1$ and are $C^0$, but are not necessarily $C^1$, conformally compact. We subsequently investigate the rate at which curvature invariants decay at infinity, identifying a conformally invariant tensor which serves as an obstruction to "higher order decay" of the Riemann curvature operator. Finally, we establish Fredholm results for geometric elliptic operators, extending the work of Rafe Mazzeo and John M. Lee to this setting. As an application, we show that any weakly asymptotically hyperbolic metric is conformally related to a weakly asymptotically hyperbolic metric of constant negative curvature.
Energy Technology Data Exchange (ETDEWEB)
Moreno-Lopez, Deywis
2014-06-24
Measurements of the self coupling between bosons are important to test the electroweak sector of the Standard Model (SM). The production of pairs of Z bosons through the s-channel is forbidden in the SM. The presence of physics, beyond the SM, could lead to a deviation of the expected production cross section of pairs of Z bosons due to the so called anomalous Triple Gauge Couplings (aTGC). Proton-proton data collisions at the Large Hadron Collider (LHC) recorded by the ATLAS detector at a center of mass energy of 8 TeV were analyzed corresponding to an integrated luminosity of 20.3 fb{sup -1}. Pairs of Z bosons decaying into two electron-positron pairs are searched for in the data sample. The effect of the inclusion of detector regions corresponding to high values of the pseudorapidity was studied to enlarge the phase space available for the measurement of the ZZ production. The number of ZZ candidates was determined and the ZZ production cross section was measured to be: 7.3±1.0(Stat.)±0.4(Sys.)±0.2(lumi.) pb, which is consistent with the SM expectation value of 7.2{sup +0.3}{sub -0.2} pb. Limits on the aTGCs were derived using the observed yield, which are twice as stringent as previous limits obtained by ATLAS at a center of mass energy of 7 TeV.
Infinite coupling duals of N=2 gauge theories and new rank 1 superconformal field theories
Argyres, Philip C
2008-01-01
We show that a proposed duality [arXiv:0711.0054] between infinitely coupled gauge theories and superconformal field theories (SCFTs) with weakly gauged flavor groups predicts the existence of new rank 1 SCFTs. These superconformal fixed point theories have the same Coulomb branch singularities as the rank 1 E_6, E_7, and E_8 SCFTs, but have smaller flavor symmetry algebras and different central charges. Gauging various subalgebras of the flavor algebras of these rank 1 SCFTs provides many examples of infinite-coupling dualities, satisfying an intricate set of consistency checks. They also provide examples of N=2 conformal theories with marginal couplings but no weak-coupling limits.
Hosoya, Akio
2010-01-01
We develop a formal theory of the weak values with emphasis on the consistency conditions and a probabilistic interpretation in the counter-factual processes. We present the condition for the choice of the post-selected state to give a negative weak value of a given projection operator and strange values of an observable in general. The general framework is applied to Hardy's paradox and the spin $1/2$ system to explicitly address the issues of counter-factuality and strange weak values. The counter-factual arguments which characterize the paradox specifies the pre-selected state and a complete set of the post-selected states clarifies how the strange weak values emerge.
Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang
2013-01-01
The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.
Collective couplings: Rectification and supertransmittance
Schaller, Gernot; Giusteri, Giulio Giuseppe; Celardo, Giuseppe Luca
2016-09-01
We investigate heat transport between two thermal reservoirs that are coupled via a large spin composed of N identical two-level systems. One coupling implements the dissipative Dicke superradiance. The other coupling is locally of the pure-dephasing type and requires to go beyond the standard weak-coupling limit by employing a Bogoliubov mapping in the corresponding reservoir. After the mapping, the large spin is coupled to a collective mode with the original pure-dephasing interaction, but the collective mode is dissipatively coupled to the residual oscillators. Treating the large spin and the collective mode as the system, a standard master equation approach is now able to capture the energy transfer between the two reservoirs. Assuming fast relaxation of the collective mode, we derive a coarse-grained rate equation for the large spin only and discuss how the original Dicke superradiance is affected by the presence of the additional reservoir. Our main finding is a cooperatively enhanced rectification effect due to the interplay of supertransmittant heat currents (scaling quadratically with N ) and the asymmetric coupling to both reservoirs. For large N , the system can thus significantly amplify current asymmetries under bias reversal, functioning as a heat diode. We also briefly discuss the case when the couplings of the collective spin are locally dissipative, showing that the heat-diode effect is still present.
Gosses, Moritz; Moore, Catherine; Wöhling, Thomas
2016-04-01
. The subspace is generated by sampling full-model variation via snapshots in time, which requires only a few runs of the complex model. In theory, straight-forward POD methods are only applicable to linear problems. To test the limits of the POD method, we apply it to a complex non-linear synthetic groundwater model using MODFLOW and compare the loss of model accuracy to the accuracy of the complex model. Success of the applied POD method is evaluated by estimating the tradeoff between reduction of computing times and the deterioration of simulation accuracy. Preliminary results have shown that run time reductions of two orders of magnitude are possible while retaining acceptable precision levels. References: Doherty, J. and Christensen, S. (2011). Use of paired simple and complex models to reduce predictive bias and quantify uncertainty. Water Resour. Res., 47(12):W12534. Sahuquillo, A. (1983). An eigenvalue numerical technique for solving un-steady linear groundwater models continuously in time. Water Resour. Res.,19(1):87-93. Siade, A. J., Putti, M., and Yeh, W. W.-G. (2010). Snapshot selection for groundwater model reduction using proper orthogonal decomposition. Water Resour. Res., 46(8):W08539.
Petrova, P.; Velichkov, S.; Velitchkova, N.; Havezov, I.; Daskalova, N.
2010-02-01
The economic and geological importance of platinum group of elements has led to the development of analytical methods to quantify them in different types of samples. In the present paper the quantitative information for spectral interference in radial viewing 40.68 MHz inductively coupled plasma atomic emission spectrometry in the determination of Pt, Pd and Rh in the presence of complex matrix, containing Al, Ca, Fe, Mg, Mn, P and Ti as matrix constituents was obtained. The database was used for optimum line selections. By using the selected analysis lines the following detection limits in ng g - 1 were obtained: Pt 1700, Pd-1440, Rh-900. The reached detection limits determine the possibilities and limitation of the direct ICP-AES method in the determination of Pt, Pd and Rh in geological and environmental materials. The database for spectral interferences in the presence of aluminum can be used for the determination of platinum group of elements in car catalysts. The accuracy of the analytical results was experimentally demonstrated by two certified reference materials that were analyzed: SARM 7, Pt ore and recycled auto-catalyst certified reference material SRM 2556.
Energy Technology Data Exchange (ETDEWEB)
Petrova, P.; Velichkov, S. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. bl. 11, 1113 Sofia (Bulgaria); Velitchkova, N. [Geological Institute, Bulgarian Academy of Sciences, Acad. G. Bontchev Str., bl.24, 1113 Sofia (Bulgaria); Havezov, I. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. bl. 11, 1113 Sofia (Bulgaria); Daskalova, N., E-mail: das15482@svr.igic.bas.b [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. bl. 11, 1113 Sofia (Bulgaria)
2010-02-15
The economic and geological importance of platinum group of elements has led to the development of analytical methods to quantify them in different types of samples. In the present paper the quantitative information for spectral interference in radial viewing 40.68 MHz inductively coupled plasma atomic emission spectrometry in the determination of Pt, Pd and Rh in the presence of complex matrix, containing Al, Ca, Fe, Mg, Mn, P and Ti as matrix constituents was obtained. The database was used for optimum line selections. By using the selected analysis lines the following detection limits in ng g{sup -1} were obtained: Pt 1700, Pd-1440, Rh-900. The reached detection limits determine the possibilities and limitation of the direct ICP-AES method in the determination of Pt, Pd and Rh in geological and environmental materials. The database for spectral interferences in the presence of aluminum can be used for the determination of platinum group of elements in car catalysts. The accuracy of the analytical results was experimentally demonstrated by two certified reference materials that were analyzed: SARM 7, Pt ore and recycled auto-catalyst certified reference material SRM 2556.
Joyal, André
2009-01-01
We define weak units in a semi-monoidal 2-category $\\CC$ as cancellable pseudo-idempotents: they are pairs $(I,\\alpha)$ where $I$ is an object such that tensoring with $I$ from either side constitutes a biequivalence of $\\CC$, and $\\alpha: I \\tensor I \\to I$ is an equivalence in $\\CC$. We show that this notion of weak unit has coherence built in: Theorem A: $\\alpha$ has a canonical associator 2-cell, which automatically satisfies the pentagon equation. Theorem B: every morphism of weak units is automatically compatible with those associators. Theorem C: the 2-category of weak units is contractible if non-empty. Finally we show (Theorem E) that the notion of weak unit is equivalent to the notion obtained from the definition of tricategory: $\\alpha$ alone induces the whole family of left and right maps (indexed by the objects), as well as the whole family of Kelly 2-cells (one for each pair of objects), satisfying the relevant coherence axioms.
Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendel, Markus; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert
2012-01-01
This Letter reports a measurement of the WW production cross section in $\\sqrt{s}$ = 7 TeV pp collisions using data corresponding to an integrated luminosity of 1.02/fb collected with the ATLAS detector. Using leptonic decays of oppositely charged W bosons, the total measured cross section is $\\sigma$(pp -> WW) = 54.4 +/- 4.0 (stat.) +/- 3.9 (syst.) +/- 2.0 (lumi.) pb, consistent with the Standard Model prediction of $\\sigma$(pp -> WW) = 44.4 +/- 2.8 pb. Limits on anomalous electroweak triple-gauge couplings are extracted from a fit to the transverse-momentum distribution of the leading charged lepton in the event.
Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendel, Markus; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goryachev, Vladimir; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kennedy, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuler, Georges; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz
2012-01-01
This Letter reports a measurement of the WW production cross section in $\\sqrt{s}$ = 7 TeV pp collisions using data corresponding to an integrated luminosity of 1.02/fb collected with the ATLAS detector. Using leptonic decays of oppositely charged W bosons, the total measured cross section is $\\sigma$(pp -> WW) = 54.4 +/- 4.0 (stat.) +/- 3.9 (syst.) +/- 2.0 (lumi.) pb, consistent with the Standard Model prediction of $\\sigma$(pp -> WW) = 44.4 +/- 2.8 pb. Limits on anomalous electroweak triple-gauge couplings are extracted from a fit to the transverse-momentum distribution of the leading charged lepton in the event.
Iliadis, Dimitrios; The ATLAS collaboration
2016-01-01
The WZ boson pair production at 13 TeV is measured using the ATLAS detector. Leptonic decays of the W and Z bosons to electrons and muons are considered using 2015 and 2016 data. The differential cross-section as a function of jet multiplicity, the Z-boson pT and the transverse mass of the WZ system are also measured along with the charge-dependent W+Z and W-Z cross-sections and their ratio. Finally, the integrated fiducial cross-sections ratio, measured at center-of-mass energies of 13 TeV and 8 TeV, is calculated and limits on anomalous triple gauge couplings are set.
Burger, Angela Maria; The ATLAS collaboration
2017-01-01
Measurements of the cross sections of the production of pairs of electroweak gauge bosons at the LHC constitute stringent tests of the electroweak sector of the Standard Model and provide a model-independent means to search for new physics at the TeV scale. The ATLAS collaboration has performed detailed measurements of integrated and differential cross sections of the production of heavy di-boson pairs in fully-leptonic and semi-leptonic final states at centre-of-mass energies of 8 and 13 TeV. The results are compared to predictions at NLO (and NNLO) in pQCD and provide constraints on new physics, by setting limits on anomalous triple gauge couplings.
Buttinger, William; The ATLAS collaboration
2017-01-01
Measurements of the cross sections of the production of pairs of electroweak gauge bosons at the LHC constitute stringent tests of the electroweak sector of the Standard Model and provide a model-independent means to search for new physics at the TeV scale. The ATLAS collaboration has performed new measurements of integrated and differential cross sections of the production of heavy di-boson pairs in fully-leptonic and semi-leptonic final states at centre-of-mass energies of 8 and 13 TeV. We present in particular new measurements of WW and WZ in semi-leptonic or hadronic decays using standard or boosted technologies and new measurements of the inclusive and differential ZZ cross section at 13 TeV in various decay modes. The results are compared to predictions at NLO (and NNLO) in pQCD and provide constraints on new physics, by setting limits on anomalous triple gauge couplings.
Wγ production and limits on anomalous WWγ couplings in pp collisions at sqrt[s] = 1.96 TeV.
Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Aoki, M; Arov, M; Askew, A; Åsman, B; Atkins, S; Atramentov, O; Augsten, K; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bazterra, V; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brandt, O; Brock, R; Brooijmans, G; Bross, A; Brown, D; Brown, J; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calpas, B; Camacho-Pérez, E; Carrasco-Lizarraga, M A; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapon, E; Chen, G; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Croc, A; Cutts, D; Das, A; Davies, G; De, K; de Jong, S J; De la Cruz-Burelo, E; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garcia-Bellido, A; García-Guerra, G A; Gavrilov, V; Gay, P; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guillemin, T; Gutierrez, G; Gutierrez, P; Haas, A; Hagopian, S; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jamin, D; Jayasinghe, A; Jesik, R; Jiang, P; Johns, K; Johnson, M; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kohli, J M; Kozelov, A V; Kraus, J; Kulikov, S; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Kvita, J; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Lobodenko, A; Lokajicek, M; Lopes de Sa, R; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Muanza, G S; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Novaes, S F; Nunnemann, T; Obrant, G; Orduna, J; Osman, N; Osta, J; Otero y Garzón, G J; Padilla, M; Pal, A; Parashar, N; Parihar, V; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Piegaia, R; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Polozov, P; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Salcido, P; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, K J; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stolin, V; Stoyanova, D A; Strauss, M; Strom, D; Stutte, L; Suter, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Titov, M; Tokmenin, V V; Tsai, Y-T; Tschann-Grimm, K; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Welty-Rieger, L; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, S; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Youn, S W; Yu, J; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L
2011-12-09
We measure the cross section and the difference in rapidities between photons and charged leptons for inclusive W(→lν) + γ production in eγ and μγ final states. Using data corresponding to an integrated luminosity of 4.2 fb(-1) collected with the D0 detector at the Fermilab Tevatron Collider, the measured cross section times branching fraction for the process pp → Wγ + X → lνγ + X and the distribution of the charge-signed photon-lepton rapidity difference are found to be in agreement with the standard model. These results provide the most stringent limits on anomalous WWγ couplings for data from hadron colliders: -0.4<Δκ(γ)<0.4 and -0.08<λ(γ)<0.07 at the 95% C.L.
Vila, Jorge A.; Scheraga, Harold A.
2017-04-01
Assessment of the relative amounts of the forms of the imidazole ring of Histidine (His), namely the protonated (H+) and the tautomeric Nε2-H and Nδ1-H forms, respectively, is a challenging task in NMR spectroscopy. Indeed, their determination by direct observation of the 15N and 13C chemical shifts or the one-bond Csbnd H, 1JCH, Spin-Spin Coupling Constants (SSCC) requires knowledge of the "canonical" limiting values of these forms in which each one is present to the extent of 100%. In particular, at high-pH, an accurate determination of these "canonical" limiting values, at which the tautomeric forms of His coexist, is an elusive problem in NMR spectroscopy. Among different NMR-based approaches to treat this problem, we focus here on the computation, at the DFT level of theory, of the high-pH limiting value for the 1JCH SSCC of the imidazole ring of His. Solvent effects were considered by using the polarizable continuum model approach. The results of this computation suggest, first, that the value of 1JCε1H = 205 ± 1.0 Hz should be adopted as the canonical high-pH limiting value for this SSCC; second, the variation of 1JCε1H SSCC during tautomeric changes is minor, i.e., within ±1 Hz; and, finally, the value of 1JCδ2H SSCC upon tautomeric changes is large (15 Hz) indicating that, at high-pH or for non-protonated His at any pH, the tautomeric fractions of the imidazole ring of His can be predicted accurately as a function of the observed value of 1JCδ2H SSCC.
On the global well-posedness of BV weak solutions to the Kuramoto-Sakaguchi equation
Amadori, Debora; Ha, Seung-Yeal; Park, Jinyeong
2017-01-01
The Kuramoto model is a prototype phase model describing the synchronous behavior of weakly coupled limit-cycle oscillators. When the number of oscillators is sufficiently large, the dynamics of Kuramoto ensemble can be effectively approximated by the corresponding mean-field equation, namely "the Kuramoto-Sakaguchi (KS) equation". This KS equation is a kind of scalar conservation law with a nonlocal flux function due to the mean-field interactions among oscillators. In this paper, we provide a unique global solvability of bounded variation (BV) weak solutions to the kinetic KS equation for identical oscillators using the method of front-tracking in hyperbolic conservation laws. Moreover, we also show that our BV weak solutions satisfy local-in-time L1-stability with respect to BV-initial data. For the ensemble of identical Kuramoto oscillators, we explicitly construct an exponentially growing BV weak solution generated from BV perturbation of incoherent state for any positive coupling strength. This implies the nonlinear instability of incoherent state in a positive coupling strength regime. We provide several numerical examples and compare them with our analytical results.
Electrical transport through a single-electron transistor strongly coupled to an oscillator
Doiron, C. B.; Belzig, W.; Bruder, C.
2006-11-01
We investigate electrical transport through a single-electron transistor coupled to a nanomechanical oscillator. Using a combination of a master-equation approach and a numerical Monte Carlo method, we calculate the average current and the current noise in the strong-coupling regime, studying deviations from previously derived analytic results valid in the limit of weak coupling. After generalizing the weak-coupling theory to enable the calculation of higher cumulants of the current, we use our numerical approach to study how the third cumulant is affected in the strong-coupling regime. In this case, we find an interesting crossover between a weak-coupling transport regime where the third cumulant heavily depends on the frequency of the oscillator to one where it becomes practically independent of this parameter. Finally, we study the spectrum of the transport noise and show that the two peaks found in the weak-coupling limit merge on increasing the coupling strength. Our calculation of the frequency dependence of the noise also allows one to describe how transport-induced damping of the mechanical oscillations is affected in the strong-coupling regime.
WEAK CONVERGENCE OF SOME SERIES
Institute of Scientific and Technical Information of China (English)
2000-01-01
This paper continues the study of [1] on weak functions.The weak convergence theory is investigated in complex analysis,Fourier transform and Mellin transform.A Mobius inverse formula of weak functions is obtained.
DEFF Research Database (Denmark)
Kohlenbach, Ulrich Wilhelm
2002-01-01
We show that the so-called weak Markov's principle (WMP) which states that every pseudo-positive real number is positive is underivable in E-HA + AC. Since allows one to formalize (atl eastl arge parts of) Bishop's constructive mathematics, this makes it unlikely that WMP can be proved within the...
The weak measurement process and the weak value of spin for metastable helium 23S1
Monachello, Vincenzo; Barker, Peter; Flack, Robert; Hiley, Basil
2016-05-01
An experiment is being designed and constructed in order to measure the weak value of spin for an atomic system. The principle of the ``weak measurement'' process was first proposed by Aharonov, Albert and Vaidman, and describes a scenario in which a system is weakly coupled to a pointer between well-defined pre- and post-selected states. This experiment will utilise a pulsed supersonic beam of spin-1 metastable Helium (He*) atoms in the 23S1 state. The spin of the pre-selected He* atoms will be weakly coupled to its centre-of-mass. During its flight, the atomic beam will be prepared in a desired quantum state and travel through two inhomogeneous magnets (weak and strong) which both comprise the ``weak measurement'' process. The deviation of the post-selected ms = + 1 state as measured using a micro-channel plate, phosphor screen and CCD camera setup will allow for the determination of the weak value of spin. This poster will report on the methods used and the experimental realisation.
On closed weak supplemented modules
Institute of Scientific and Technical Information of China (English)
ZENG Qing-yi; SHI Mei-hua
2006-01-01
A module M is called closed weak supplemented if for any closed submodule N of M, there is a submodule K of M such that M=K+N and K(c)N＜＜M. Any direct summand of closed weak supplemented module is also closed weak supplemented.Any nonsingular image of closed weak supplemented module is closed weak supplemented. Nonsingular V-rings in which all nonsingular modules are closed weak supplemented are characterized in Section 4.
Energy Technology Data Exchange (ETDEWEB)
Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, S.; Andrieu, B.; Arnoud, Y.; Askew, A.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao
2005-04-01
The authors present results from a search for WZ production with subsequent decay to {ell}{nu}{ell}'{bar {ell}}' ({ell} and {ell}' = e or {mu}) using 0.30 fb{sup -1} of data collected by the D0 experiment between 2002 and 2004 at the Tevatron. Three events with WZ decay characteristics are observed. With an estimated background of 0.71 {+-} 0.08 events, we measure the WZ production cross section to be 4.5{sub -2.6}{sup +3.8} pb, with a 95% C.L. upper limit of 13.3 pb. The 95% C.L. limits for anomalous WWZ couplings are found to be -2.0 < {Delta}{kappa}{sub Z} < 2.4 for form factor scale {Lambda} = 1 TeV, and -0.48 < {lambda}{sub Z} < 0.48 and -0.49 < {Delta}g{sub 1}{sup Z} < 0.66 for {Lambda} = 1.5 TeV.
Kagan, Michael
This dissertation presents a measurement of the W±Z production cross section and limits on anomalous triple gauge couplings in proton-proton collisions at a center of mass energy of 7 TeV using data produced by LHC collisions and acquired by the ATLAS detector in 2011. The measurement and limits probe the electroweak sector of the Standard Model at high energies and allow for generic tests for new physics that could be present at high energy scales. This analysis is also useful for understanding the ATLAS detector response in the presence of multi-lepton signatures. The dataset used corresponds to an integrated luminosity of 1.02 fb−1. The measurement relies on the leptonic decay modes of the W and Z, resulting in final states with electrons, muons, and missing energy. Events are selected by requiring three high momentum leptons, a large missing transverse energy, a Z candidate (reconstructed from two of the leptons) with a mass consistent with the Z pole mass, and a W candidate (reconstructed from the thi...
DEFF Research Database (Denmark)
Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter
We study possible motivations for co-entrepenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and postdissolution private and financial outcomes...... with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse – most commonly the female – has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female...
DEFF Research Database (Denmark)
Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter
2015-01-01
We study possible motivations for co-entreprenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes...... with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse – most commonly the female – has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female...
DEFF Research Database (Denmark)
Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter
We study possible motivations for co-entrepenurial couples to start up a joint firm, us-ing a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes...... with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse - most commonly the female - has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female...
Compressive wavefront sensing with weak values.
Howland, Gregory A; Lum, Daniel J; Howell, John C
2014-08-11
We demonstrate a wavefront sensor that unites weak measurement and the compressive-sensing, single-pixel camera. Using a high-resolution spatial light modulator (SLM) as a variable waveplate, we weakly couple an optical field's transverse-position and polarization degrees of freedom. By placing random, binary patterns on the SLM, polarization serves as a meter for directly measuring random projections of the wavefront's real and imaginary components. Compressive-sensing optimization techniques can then recover the wavefront. We acquire high quality, 256 × 256 pixel images of the wavefront from only 10,000 projections. Photon-counting detectors give sub-picowatt sensitivity.
Bricmont, J; Bricmont J; Kupiainen A
1994-01-01
We consider a lattice of weakly coupled expanding circle maps. We construct, via a cluster expansion of the Perron-Frobenius operator, an invariant measure for these infinite dimensional dynamical systems which exhibits space-time-chaos.
Directory of Open Access Journals (Sweden)
Zhisheng Wu
2015-09-01
Full Text Available In this work, multivariate detection limits (MDL estimator was obtained based on the micro-electro-mechanical systems–near infrared (MEMS–NIR technology coupled with two sampling accessories to assess the detection capability of four quality parameters (glycyrrhizic acid, liquiritin, liquiritigenin and isoliquiritin in licorice from different geographical regions. 112 licorice samples were divided into two parts (calibration set and prediction set using Kennard–Stone (KS method. Four quality parameters were measured using high-performance liquid chromatography (HPLC method according to Chinese pharmacopoeia and previous studies. The MEMS–NIR spectra were acquired from fiber optic probe (FOP and integrating sphere, then the partial least squares (PLS model was obtained using the optimum processing method. Chemometrics indicators have been utilized to assess the PLS model performance. Model assessment using chemometrics indicators is based on relative mean prediction error of all concentration levels, which indicated relatively low sensitivity for low-content analytes (below 1000 parts per million (ppm. Therefore, MDL estimator was introduced with alpha error and beta error based on good prediction characteristic of low concentration levels. The result suggested that MEMS–NIR technology coupled with fiber optic probe (FOP and integrating sphere was able to detect minor analytes. The result further demonstrated that integrating sphere mode (i.e., MDL0.05,0.05, 0.22% was more robust than FOP mode (i.e., MDL0.05,0.05, 0.48%. In conclusion, this research proposed that MDL method was helpful to determine the detection capabilities of low-content analytes using MEMS–NIR technology and successful to compare two sampling accessories.