WorldWideScience

Sample records for weak charged currents

  1. Study of the weak charged hadronic current in b decays

    Science.gov (United States)

    Acciarri, M.; Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.; Alpat, B.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alverson, G.; Alviggi, M. G.; Ambrosi, G.; Anderhub, H.; Andreev, V. P.; Angelescu, T.; Anselmo, F.; Antreasyan, D.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Baksay, L.; Ball, R. C.; Banerjee, S.; Banicz, K.; Barillère, R.; Barone, L.; Bartalini, P.; Baschirotto, A.; Basile, M.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Bhattacharya, S.; Biasini, M.; Biland, A.; Bilei, G. M.; Blaising, J. J.; Blyth, S. C.; Bobbink, G. J.; Bock, R.; Böhm, A.; Borgia, B.; Boucham, A.; Bourilkov, D.; Bourquin, M.; Boutigny, D.; Branson, J. G.; Brigljevic, V.; Brock, I. C.; Buffini, A.; Buijs, A.; Burger, J. D.; Burger, W. J.; Busenitz, J.; Buytenhuijs, A.; Cai, X. D.; Campanelli, M.; Capell, M.; Romeo, G. Cara; Caria, M.; Carlino, G.; Cartacci, A. M.; Casaus, J.; Castellini, G.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chan, A.; Chang, Y. H.; Chaturvedi, U. K.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chen, M.; Chiefari, G.; Chien, C. Y.; Choi, M. T.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Cohn, H. O.; Coignet, G.; Colijn, A. P.; Colino, N.; Commichau, V.; Costantini, S.; Cotorobai, F.; de La Cruz, B.; Csilling, A.; Dai, T. S.; D'Alessandro, R.; de Asmundis, R.; de Boeck, H.; Degré, A.; Deiters, K.; Denes, P.; Denotaristefani, F.; Dibitonto, D.; Diemoz, M.; van Dierendonck, D.; di Lodovico, F.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dorne, I.; Dova, M. T.; Drago, E.; Duchesneau, D.; Duinker, P.; Duran, I.; Dutta, S.; Easo, S.; Efremenko, Yu.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Erné, F. C.; Ernenwein, J. P.; Extermann, P.; Fabre, M.; Faccini, R.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Fenyi, B.; Ferguson, T.; Fernandez, D.; Ferroni, F.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Forconi, G.; Fredj, L.; Freudenreich, K.; Furetta, C.; Galaktionov, Yu.; Ganguli, S. N.; Garcia-Abia, P.; Gau, S. S.; Gentile, S.; Gerald, J.; Gheordanescu, N.; Giagu, S.; Goldfarb, S.; Goldstein, J.; Gong, Z. F.; Gougas, A.; Gratta, G.; Gruenewald, M. W.; Gupta, V. K.; Gurtu, A.; Gutay, L. J.; Hartmann, B.; Hasan, A.; Hatzifotiadou, D.; Hebbeker, T.; Hervé, A.; van Hoek, W. C.; Hofer, H.; Hoorani, H.; Hou, S. R.; Hu, G.; Innocente, V.; Janssen, H.; Jenkes, K.; Jin, B. N.; Jones, L. W.; de Jong, P.; Josa-Mutuberria, I.; Kasser, A.; Khan, R. A.; Kamrad, D.; Kamyshkov, Yu.; Kapustinsky, J. S.; Karyotakis, Y.; Kaur, M.; Kienzle-Focacci, M. N.; Kim, D.; Kim, J. K.; Kim, S. C.; Kim, Y. G.; Kinnison, W. W.; Kirkby, A.; Kirkby, D.; Kirkby, J.; Kiss, D.; Kittel, W.; Klimentov, A.; König, A. C.; Korolko, I.; Koutsenko, V.; Kraemer, R. W.; Krenz, W.; Kuijten, H.; Kunin, A.; de Guevara, P. Ladron; Landi, G.; Lapoint, C.; Lassila-Perini, K.; Laurikainen, P.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, J. S.; Lee, K. Y.; Leggett, C.; Le Goff, J. M.; Leiste, R.; Leonardi, E.; Levtchenko, P.; Li, C.; Lieb, E.; Lin, W. T.; Linde, F. L.; Lista, L.; Liu, Z. A.; Lohmann, W.; Longo, E.; Lu, W.; Lu, Y. S.; Lübelsmeyer, K.; Luci, C.; Luckey, D.; Luminari, L.; Lustermann, W.; Ma, W. G.; Maity, M.; Majumder, G.; Malgeri, L.; Malinin, A.; Maña, C.; Mangla, S.; Marchesini, P.; Marin, A.; Martin, J. P.; Marzano, F.; Massaro, G. G. G.; McNally, D.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W. J.; von der Mey, M.; Mi, Y.; Mihul, A.; van Mil, A. J. W.; Mirabelli, G.; Mnich, J.; Molnar, P.; Monteleoni, B.; Moore, R.; Morganti, S.; Moulik, T.; Mount, R.; Müller, S.; Muheim, F.; Nagy, E.; Nahn, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nippe, A.; Nisati, A.; Nowak, H.; Opitz, H.; Organtini, G.; Ostonen, R.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Park, H. K.; Pascale, G.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Peach, D.; Pei, Y. J.; Pensotti, S.; Perret-Gallix, D.; Petrak, S.; Pevsner, A.; Piccolo, D.; Pieri, M.; Pinto, J. C.; Piroué, P. A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Produit, N.; Prokofiev, D.; Rahal-Callot, G.; Rancoita, P. G.; Rattaggi, M.; Raven, G.; Razis, P.; Read, K.; Ren, D.; Rescigno, M.; Reucroft, S.; van Rhee, T.; Riemann, S.; Riemers, B. C.; Riles, K.; Rind, O.; Ro, S.; Robohm, A.; Rodin, J.; Rodriguez, F. J.; Roe, B. P.; Romero, L.; Rosier-Lees, S.; Rosselet, Ph.; van Rossum, W.; Roth, S.; Rubio, J. A.; Rykaczewski, H.; Salicio, J.; Sanchez, E.; Santocchia, A.; Sarakinos, M. E.; Sarkar, S.; Sassowsky, M.; Sauvage, G.; Schäfer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schmitz, P.; Schneegans, M.; Scholz, N.; Schopper, H.; Schotanus, D. J.; Schwenke, J.; Schwering, G.; Sciacca, C.; Sciarrino, D.; Sens, J. C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shukla, J.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Sopczak, A.; Soulimov, V.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Stone, H.; Stoyanov, B.; Straessner, A.; Strauch, K.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Susinno, G. F.; Suter, H.; Swain, J. D.; Tang, X. W.; Tauscher, L.; Taylor, L.; Ting, Samuel C. C.; Ting, S. M.; Tonutti, M.; Tonwar, S. C.; Tóth, J.; Tully, C.; Tuchscherer, H.; Tung, K. L.; Uchida, Y.; Ulbricht, J.; Uwer, U.; Valente, E.; van de Walle, R. T.; Vesztergombi, G.; Vetlitsky, I.; Viertel, G.; Vivargent, M.; Völkert, R.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Vorvolakos, A.; Wadhwa, M.; Wallraff, W.; Wang, J. C.; Wang, X. L.; Wang, Z. M.; Weber, A.; Wittgenstein, F.; Wu, S. X.; Wynhoff, S.; Xu, J.; Xu, Z. Z.; Yang, B. Z.; Yang, C. G.; Yao, X. Y.; Ye, J. B.; Yeh, S. C.; You, J. M.; Zalite, An.; Zalite, Yu.; Zemp, P.; Zeng, Y.; Zhang, Z.; Zhang, Z. P.; Zhou, B.; Zhou, Y.; Zhu, G. Y.; Zhu, R. Y.; Zichichi, A.; Ziegler, F.

    1997-02-01

    Charged and neutral particle multiplicities of jets associated with identified semileptonic and hadronic b decays are studied. The observed differences between these jets are used to determine the inclusive properties of the weak charged hadronic current. The average charged particle multiplicity of the weak charged hadronic current in b decays is measured for the first time to be 2.69+/-0.07 (stat.)+/-0.14(syst.). This result is in good agreement with the JETSET hadronization model of the weak charged hadronic current if 40+/-17% of the produced mesons are light-flavored tensor (L=1) mesons. This level of tensor meson production is consistent with the measurement of the π0 multiplicity in the weak charged hadronic current in b decays.

  2. Study of the Weak Charged Hadronic Current in b Decays

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alpat, B; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Antreasyan, D; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banicz, K; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Borgia, B; Boucham, A; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Buytenhuijs, A O; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Caria, M; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chan, A; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Choi, M T; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; De Boeck, H; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dorne, I; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Fernández, D; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Janssen, H; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kuijten, H; Kunin, A; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee Jae Sik; Lee, K Y; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lieb, E H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Nagy, E; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nippe, A; Nisati, A; Nowak, H; Opitz, H; Organtini, G; Ostonen, R; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riemers, B C; Riles, K; Rind, O; Ro, S; Robohm, A; Rodin, J; Rodríguez-Calonge, F J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Rykaczewski, H; Salicio, J; Sánchez, E; Santocchia, A; Sarakinos, M E; Sarkar, S; Sassowsky, M; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Sens, Johannes C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    Charged and neutral particle multiplicities of jets associated with identified semileptonic and hadronic b decays are studied. The observed differences between these jets are used to determine the inclusive properties of the weak charged hadronic current. The average charged particle multiplicity of the weak charged hadronic current in b decays is measured for the first time to be 2.69$\\pm$0.07(stat.)$\\pm$0.14(syst.). This result is in good agreement with the JETSET hadronization model of the weak charged hadronic current if 40$\\pm$17\\% of the produced mesons are light--flavored tensor (L=1) mesons. This level of tensor meson production is consistent with the measurement of the $\\pi^0$ multiplicity in the weak charged hadronic current in b decays. \\end{abstract}

  3. Charged current weak electroproduction of $\\Delta$ resonance

    CERN Document Server

    Alvarez-Ruso, L; Vacas, M J V

    1998-01-01

    We study the weak production of $\\Delta$ (i.e. $e^{-} + p \\to \\Delta^{0}+ energy range corresponding to the Mainz and TJNAF electron accelerators. The differential cross sections $\\sigma(\\theta)$ are found to be of the order of $ 10^{-39}$ cm$^2$/sr, over a range of angles which increases with energy. The possibility of observing these reactions with the high luminosities available at these accelerators, and studying the weak N-$\\Delta$ transition form factors through these reactions is discussed. The production cross section of N$^*(1440)$ in the kinematic region of $\\Delta$ production is also estimated and found to be small.

  4. The surprising influence of late charged current weak interactions on Big Bang Nucleosynthesis

    Science.gov (United States)

    Grohs, E.; Fuller, George M.

    2016-10-01

    The weak interaction charged current processes (νe + n ↔ p +e-; νbare + p ↔ n +e+; n ↔ p +e- +νbare) interconvert neutrons and protons in the early universe and have significant influence on Big Bang Nucleosynthesis (BBN) light-element abundance yields, particularly that for 4He. We demonstrate that the influence of these processes is still significant even when they operate well below temperatures T ∼ 0.7 MeV usually invoked for "weak freeze-out," and in fact down nearly into the alpha-particle formation epoch (T ≈ 0.1 MeV). This physics is correctly captured in commonly used BBN codes, though this late-time, low-temperature persistent effect of the isospin-changing weak processes, and the sensitivity of the associated rates to lepton energy distribution functions and blocking factors are not widely appreciated. We quantify this late-time influence by analyzing weak interaction rate dependence on the neutron lifetime, lepton energy distribution functions, entropy, the proton-neutron mass difference, and Hubble expansion rate. The effects we point out here render BBN a keen probe of any beyond-standard-model physics that alters lepton number/energy distributions, even subtly, in epochs of the early universe all the way down to near T = 100 keV.

  5. The Weak Neutral Current

    CERN Document Server

    Erler, Jens

    2013-01-01

    This is a review of electroweak precision physics with particular emphasis on low-energy precision measurements in the neutral current sector of the electroweak theory and includes future experimental prospects and the theoretical challenges one faces to interpret these observables. Within the minimal Standard Model they serve as determinations of the weak mixing angle which are competitive with and complementary to those obtained near the Z-resonance. In the context of new physics beyond the Standard Model these measurements are crucial to discriminate between models and to reduce the allowed parameter space within a given model. We illustrate this for the minimal supersymmetric Standard Model with or without R-parity.

  6. Charge segregation in weakly ionized microgels

    Science.gov (United States)

    Hyatt, John S.; Douglas, Alison M.; Stanley, Chris; Do, Changwoo; Barker, Thomas H.; Fernández-Nieves, Alberto

    2017-01-01

    We investigate microgels synthesized from N -isopropylacrylamide (NIPAM) copolymerized with a large mol% of acrylic acid, finding that when the acid groups are partially ionized at high temperatures, competition between ion-induced swelling and hydrophobic deswelling of poly(NIPAM) chains results in microphase separation. In cross-linked microgels, this manifests as a dramatic decrease in the ratio between the radius of gyration and the hydrodynamic radius to ˜0.2 , indicating that almost all the mass of the microgel is concentrated near the particle center. We also observe a concurrent decrease of the polymer network length scale via small-angle neutron scattering, confirming the presence of a dense, deswollen core surrounded by a diffuse, charged periphery. We compare these results to those obtained for a system of charged ultralow-cross-linked microgels; the form factor shows a distinct peak at high q when the temperature exceeds a threshold value. We successfully fit the form factor to theory developed to describe scattering from weakly charged gels in poor solvents, and we tie this behavior to charge segregation in the case of the cross-linked microgels.

  7. Weak gauge principle and electric charge quantization

    CERN Document Server

    Minguzzi, E; Almorox, A L

    2006-01-01

    We review the argument that relates the quantization of electric charge to the topology of the spacetime manifold starting from the gauge principle. We formulate it in the language of Cech cohomology so that its generalization to cases that do not involve a monopole field becomes straightforward. We consider two different formulations of the gauge principle, the usual (strong) version and a weaker version in which the transition functions can differ from matter field to matter field. From both versions it follows that the charges are quantized if the electromagnetic field is not exact. The weak case is studied in detail. To each pair of particles there corresponds an interference class $k \\in H^{1}(M,U(1))$ that controls the different behavior of the particles under topological Aharonov-Bohm experiments. If this class is trivial the phenomenology reduces to that of the usual strong gauge principle case. It is shown that the theory may give rise to two natural quantization units that we identify with the quant...

  8. CP Violation, Neutral Currents, and Weak Equivalence

    Science.gov (United States)

    Fitch, V. L.

    1972-03-23

    Within the past few months two excellent summaries of the state of our knowledge of the weak interactions have been presented. Correspondingly, we will not attempt a comprehensive review but instead concentrate this discussion on the status of CP violation, the question of the neutral currents, and the weak equivalence principle.

  9. Q weak: A precision measurement of the proton's weak charge

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gregory R. [Jefferson Lab., Newport News, VA (United States)

    2005-02-01

    The Q{sub weak} experiment at Jefferson Lab will measure the parity-violating asymmetry in e-p elastic scattering at very low Q{sup 2} using a longitudinally polarized electron beam and a liquid hydrogen target. The experiment will provide the first measure of the weak charge of the proton, Q{sub w}, to an accuracy of 4%. Q{sub w} is simply related to the weak mixing angle {theta}{sub w}, providing a precision test of the Standard Model. Since the value of sin{sup 2} {theta}{sub w} is approximately 1/4, the weak charge of the proton Q{sub w}{sup p}=1-4sin{sup 2} {theta}{sub w} is suppressed in the Standard Model, making it especially sensitive to the value of the mixing angle and also to possible new physics. The experiment employs an 85% polarized, 180 {mu}A, 1.2 GeV electron beam, a 35 cm liquid hydrogen target; and a toroidal magnet to focus electrons scattered at 8 {+-}2 , corresponding to Q{sup 2}{proportional_to}0.03 (GeV/c){sup 2}. With these kinematics the systematic uncertainties from hadronic processes are strongly suppressed. To obtain the necessary statistics this 2200 hours experiment must run at an event rate of over 6 GHz. This requires current (integrating) mode detection of the scattered electrons, which will be achieved using synthetic quartz Cherenkov detectors. A tracking system will be used in a low-rate counting mode to determine the average Q{sup 2} and the dilution factor of background events. The theoretical context of the experiment and the status of its design are discussed. (orig.)

  10. Charge, neutron, and weak size of the atomic nucleus

    CERN Document Server

    Hagen, G; Forssén, C; Jansen, G R; Nazarewicz, W; Papenbrock, T; Wendt, K A; Bacca, S; Barnea, N; Carlsson, B; Drischler, C; Hebeler, K; Hjorth-Jensen, M; Miorelli, M; Orlandini, G; Schwenk, A; Simonis, J

    2015-01-01

    What is the size of the atomic nucleus? This deceivably simple question is difficult to answer. While the electric charge distributions in atomic nuclei were measured accurately already half a century ago, our knowledge of the distribution of neutrons is still deficient. In addition to constraining the size of atomic nuclei, the neutron distribution also impacts the number of nuclei that can exist and the size of neutron stars. We present an ab initio calculation of the neutron distribution of the neutron-rich nucleus $^{48}$Ca. We show that the neutron skin (difference between radii of neutron and proton distributions) is significantly smaller than previously thought. We also make predictions for the electric dipole polarizability and the weak form factor; both quantities are currently targeted by precision measurements. Based on ab initio results for $^{48}$Ca, we provide a constraint on the size of a neutron star.

  11. Information content of the weak-charge form factor

    CERN Document Server

    Reinhard, P -G; Nazarewicz, W; Agrawal, B K; Paar, N; Rocca-Maza, X

    2013-01-01

    Parity-violating electron scattering provides a model-independent determination of the nuclear weak-charge form factor that has widespread implications across such diverse areas as fundamental symmetries, nuclear structure, heavy-ion collisions, and neutron-star structure. We assess the impact of precise measurements of the weak-charge form factor of ${}^{48}$Ca and ${}^{208}$Pb on a variety of nuclear observables, such as the neutron skin and the electric-dipole polarizability. We use the nuclear Density Functional Theory with several accurately calibrated non-relativistic and relativistic energy density functionals. To assess the degree of correlation between nuclear observables and to explore systematic and statistical uncertainties on theoretical predictions, we employ the chi-square statistical covariance technique. We find a strong correlation between the weak-charge form factor and the neutron radius, that allows for an accurate determination of the neutron skin of neutron-rich nuclei. We determine the...

  12. Qweak A Precision Measurement of the Proton's Weak Charge

    CERN Document Server

    Mitchell, G S; Averett, T D; Birchall, J; Bowman, J D; Carlini, R D; Chattopadhyay, S; Davis, C A; Doornbos, J; Dunne, J A; Ent, R; Erler, J; Falk, W R; Finn, J M; Forest, T A; Gaskell, D J; Grimm, K H; Hagner, C; Hersman, F W; Holtrop, M; Johnston, K; Jones, R T; Joo, K; Keppel, C E; Korkmaz, E J; Kowalski, S; Lee, L; Lung, A; Mack, D; Majewski, S R; Mitchell, G S; Mkrtchyan, H G; Morgan, N; Opper, A K; Page, S A; Penttila, S I; Pitt, M; Poelker, M; Porcelli, T; Ramsay, W D; Ramsey-Musolf, M J; Roche, J; Simicevic, N; Smith, G R; Suleiman, R; Taylor, S; Van Oers, W T H; Wells, S B; Wilburn, W S; Wood, S A; Zorn, C; Mitchell, Gregory S.

    2003-01-01

    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low $Q^2$ of a longitudinally polarized electron beam on a proton target. The experiment will measure the weak charge of the proton, and thus the weak mixing angle at low energy scale, providing a precision test of the Standard Model. Since the value of the weak mixing angle is approximately 1/4, the weak charge of the proton $Q_w^p = 1-4 \\sin^2 \\theta_w$ is suppressed in the Standard Model, making it especially sensitive to the value of the mixing angle and also to possible new physics. The experiment is approved to run at JLab, and the construction plan calls for the hardware to be ready to install in Hall C in 2007. The theoretical context of the experiment and the status of its design are discussed.

  13. Meson exchange and neutral weak currents

    Energy Technology Data Exchange (ETDEWEB)

    Beck, D.H. [Univ. of Illinois, Urbana, IL (United States)

    1994-04-01

    Measurements of parity-violating electron scattering asymmetries to determine weak neutral currents in nuclei will be effected by the presence of meson exchange currents. Present low momentum transfer calculations, based on a flavor independent framework, show these effects to be small. In general, however, as the momentum transfer increases to values typical of deep-inelastic scattering, fragmentation functions show a clear flavor dependence. It is suggested that a good experimental starting point for understanding the flavor dependence of meson production and exchange currents is the Q{sup 2} dependence of parity-violating asymmetry in inclusive single pion electroproduction. A CEBAF facility with doubled energy is necessary to approach momentum transfers where this process begins to scale.

  14. Qweak: First Direct Measurement of the Proton’s Weak Charge

    Directory of Open Access Journals (Sweden)

    Androic D.

    2017-01-01

    Full Text Available The Qweak experiment, which took data at Jefferson Lab in the period 2010 - 2012, will precisely determine the weak charge of the proton by measuring the parity-violating asymmetry in elastic e-p scattering at 1.1 GeV using a longitudinally polarized electron beam and a liquid hydrogen target at a low momentum transfer of Q2 = 0.025 (GeV/c2. The weak charge of the proton is predicted by the Standard Model and any significant deviation would indicate physics beyond the Standard Model. The technical challenges and experimental apparatus for measuring the weak charge of the proton will be discussed, as well as the method of extracting the weak charge of the proton. The results from a small subset of the data, that has been published, will also be presented. Furthermore an update will be given of the current status of the data analysis.

  15. Hadronic weak charges and parity-violating forward Compton scattering

    CERN Document Server

    Gorchtein, Mikhail

    2016-01-01

    Parity-violating elastic electron-nucleon scattering at low momentum transfer allows one to access the nucleon's weak charge, the vector coupling of the $Z$-boson to the nucleon. In the Standard Model and at tree level, the weak charge of the proton is related to the weak mixing angle and accidentally suppressed, $Q_W^{p,\\,{\\rm tree}}=1-4\\sin^2\\theta_W\\approx0.07$. Modern experiments aim at extracting $Q_W^p$ at $\\sim1\\%$ accuracy. Similarly, parity non-conservation in atoms allows to access the weak charge of atomic nuclei. We consider a novel class of radiative corrections, an exchange of two photons with parity violation in the hadronic/nuclear system. These corrections may affect the extraction of $\\sin^2\\theta_W$ from the experimental data at the relevant level of precision because they are affected by long-range interactions similar to other parity-violating radiative corrections, such as, e.g., the $\\gamma Z$-exchange, which has obtained much attention recently. We show that the significance of this ne...

  16. Hadronic weak charges and parity-violating forward Compton scattering

    Science.gov (United States)

    Gorchtein, Mikhail; Spiesberger, Hubert

    2016-11-01

    Background: Parity-violating elastic electron-nucleon scattering at low momentum transfer allows one to access the nucleon's weak charge, the vector coupling of the Z -boson to the nucleon. In the Standard Model and at tree level, the weak charge of the proton is related to the weak mixing angle and accidentally suppressed, QWp ,tree=1 -4 sin2θW≈0.07 . Modern experiments aim at extracting QWp at ˜1 % accuracy. Similarly, parity nonconservation in atoms allows to access the weak charge of atomic nuclei. Purpose: We consider a novel class of radiative corrections due to the exchange of two photons, with parity violation in the hadronic/nuclear system. These corrections are prone to long-range interactions and may affect the extraction of sin2θW from the experimental data at the relevant level of precision. Methods: The two-photon exchange contribution to the parity-violating electron-proton scattering amplitude is studied in the framework of forward dispersion relations. We address the general properties of the parity-violating forward Compton scattering amplitude and use relativistic chiral perturbation theory to provide the first field-theoretical proof that it obeys a superconvergence relation. Results: We show that the significance of this new correction increases with the beam energy in parity-violating electron scattering, but the superconvergence relation protects the formal definition of the weak charge as a limit at zero-momentum transfer and zero energy. We evaluate the new correction in a hadronic model with pion loops and the Δ (1232 ) resonance, supplemented with a high-energy contribution. For the kinematic conditions of existing and upcoming experiments we show that two-photon exchange corrections with hadronic or nuclear parity violation do not pose a problem for the interpretation of the data in terms of the weak mixing angle at the present level of accuracy. Conclusions: Two-photon exchange in presence of hadronic or nuclear parity violation

  17. Measurement of Neutrino Induced, Charged Current, Charged Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Wilking, Michael Joseph [Univ. of Colorado, Boulder, CO (United States)

    2009-05-01

    Neutrinos are among the least understood particles in the standard model of particle physics. At neutrino energies in the 1 GeV range, neutrino properties are typically determined by observing the outgoing charged lepton produced in a charged current quasi-elastic interactions. The largest charged current background to these measurements comes from charged current pion production interactions, for which there is very little available data.

  18. Ring current proton decay by charge exchange

    Science.gov (United States)

    Smith, P. H.; Hoffman, R. A.; Fritz, T. A.

    1976-01-01

    Explorer 45 (S3-A) measurements were made during the recovery phase of the moderate magnetic storm of February 24, 1972, in which a symmetric ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, which is a consequence of the dissipation of the asymmetric ring current, the equatorially mirroring protons in the energy range 5-30 keV decayed throughout the L value range of 3.5-5.0 at the charge exchange decay rate calculated by Liemohn (1961). After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange is more than sufficient as a particle loss mechanism for the storm time proton ring current decay.

  19. First Determination of the Weak Charge of the Proton

    Energy Technology Data Exchange (ETDEWEB)

    Androic, D. [et al.

    2013-10-01

    The Qweak experiment has measured the parity-violating asymmetry in polarized e-p elastic scattering at Q2 = 0.025(GeV/c)2, employing 145 microamps of 89% longitudinally polarized electrons on a 34.4cm long liquid hydrogen target at Jefferson Lab. The results of the experiment's commissioning run are reported here, constituting approximately 4% of the data collected in the experiment. From these initial results the measured asymmetry is Aep = -279 +- 35 (statistics) +- 31 (systematics) ppb, which is the smallest and most precise asymmetry ever measured in polarized e-p scattering. The small Q2 of this experiment has made possible the first determination of the weak charge of the proton, QpW, by incorporating earlier parity-violating electron scattering (PVES) data at higher Q2 to constrain hadronic corrections. The value of QpW obtained in this way is QnW(PVES) = 0.064 +- 0.012, in good agreement with the Standard Model prediction of QpW(SM) = 0.0710 +- 0.0007. When this result is further combined with the Cs atomic parity violation (APV) measurement, significant constraints on the weak charges of the up and down quarks can also be extracted. That PVES+APV analysis reveals the neutron's weak charge to be QnW(PVES+APV) = -0.975 +- 0.010.

  20. Characterization of a constant current charge detector.

    Science.gov (United States)

    Mori, Masanobu; Chen, Yongjing; Ohira, Shin-Ichi; Dasgupta, Purnendu K

    2012-12-15

    Ion exchangers are ionic equivalents of doped semiconductors, where cations and anions are equivalents of holes and electrons as charge carriers in solid state semiconductors. We have previously demonstrated an ion exchange membrane (IEM) based electrolyte generator which behaves similar to a light-emitting diode and a charge detector (ChD) which behaves analogous to a p-i-n photodiode. The previous work on the charge detector, operated at a constant voltage, established its unique ability to respond to the charge represented by the analyte ions regardless of their redox properties, rather than to their conductivities. It also suggested that electric field induced dissociation (EFID) of water occurs at one or both ion exchange membranes. A logical extension is to study the behavior of the same device, operated in a constant current mode (ChD(i)). The evidence indicates that in the present operational mode the device also responds to the charge represented by the analytes and not their conductivity. Injection of a base into a charge detector operated in the constant voltage mode was not previously examined; in the constant current mode, base injection appears to inhibit EFID. The effects of applied current, analyte residence time and outer channel fluid composition were individually examined; analyte ions of different mobilities as well as affinities for the respective IEMs were used. While the exact behavior is somewhat dependent on the applied current, strong electrolytes, both acids and salts, respond the highest and in a near-uniform fashion, weak acids and their salts respond in an intermediate fashion and bases produce the lowest responses. A fundamentally asymmetric behavior is observed. Injected bases but not injected acids produce a poor response; the effects of incorporating a strong base as the electrolyte in the anion exchange membrane (AEM) compartment is far greater than incorporating an acid in the cation exchange membrane (CEM) compartment. These

  1. Weakly nonlinear electrophoresis of a highly charged colloidal particle

    Science.gov (United States)

    Schnitzer, Ory; Zeyde, Roman; Yavneh, Irad; Yariv, Ehud

    2013-05-01

    At large zeta potentials, surface conduction becomes appreciable in thin-double-layer electrokinetic transport. In the linear weak-field regime, where this effect is quantified by the Dukhin number, it is manifested in non-Smoluchowski electrophoretic mobilities. In this paper we go beyond linear response, employing the recently derived macroscale model of Schnitzer and Yariv ["Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction," Phys. Rev. E 86, 021503 (2012), 10.1103/PhysRevE.86.021503] as the infrastructure for a weakly nonlinear analysis of spherical-particle electrophoresis. A straightforward perturbation in the field strength is frustrated by the failure to satisfy the far-field conditions, representing a non-uniformity of the weak-field approximation at large distances away from the particle, where salt advection becomes comparable to diffusion. This is remedied using inner-outer asymptotic expansions in the spirit of Acrivos and Taylor ["Heat and mass transfer from single spheres in Stokes flow," Phys. Fluids 5, 387 (1962), 10.1063/1.1706630], with the inner region representing the particle neighborhood and the outer region corresponding to distances scaling inversely with the field magnitude. This singular scheme furnishes an asymptotic correction to the electrophoretic velocity, proportional to the applied field cubed, which embodies a host of nonlinear mechanisms unfamiliar from linear electrokinetic theories. These include the effect of induced zeta-potential inhomogeneity, animated by concentration polarization, on electro-osmosis and diffuso-osmosis; bulk advection of salt; nonuniform bulk conductivity; Coulomb body forces acting on bulk volumetric charge; and the nonzero electrostatic force exerted upon the otherwise screened particle-layer system. A numerical solution of the macroscale model validates our weakly nonlinear analysis.

  2. The Quasinormal Modes of Weakly Charged Kerr-Newman Spacetimes

    CERN Document Server

    Mark, Zachary; Zimmerman, Aaron; Chen, Yanbei

    2014-01-01

    The resonant mode spectrum of the Kerr-Newman spacetime is presently unknown. These modes, called the quasinormal modes, play a central role in determining the stability of Kerr-Newman black holes and their response to perturbations. We present a new formalism, generalized from time-independent perturbation theory in quantum mechanics, for calculating the quasinormal mode frequencies of weakly charged Kerr-Newman spacetimes of arbitrary spin. Our method makes use of an original technique for applying perturbation theory to zeroth-order solutions that are not square- integrable, and it can be applied to other problems in theoretical physics. The new formalism reveals no unstable modes, which together with previous results in the slow-rotation limit strongly indicates the modal stability of the Kerr-Newman spacetime. Our techniques and results are of interest in the areas of holographic duality, foundational problems in General Relativity, and possibly in astrophysical systems.

  3. Dust charging and charge fluctuations in a weakly collisional radio-frequency sheath at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Piel, Alexander, E-mail: piel@physik.uni-kiel.de; Schmidt, Christian [IEAP, Christian-Albrechts-Universität, Kiel (Germany)

    2015-05-15

    Models for the charging of dust particles in the bulk plasma and in the sheath region are discussed. A new model is proposed that describes collision-enhanced ion currents in the sheath. The collisions result in a substantial reduction of the negative charge of the dust. Experimental data for the dust charge in the sheath can be described by this model when a Bi-Maxwellian electron distribution is taken into account. Expressions for the dust charging rate for all considered models are presented and their influence on the rise of the kinetic dust temperature is discussed.

  4. Axial Current and Noether Charge

    CERN Document Server

    Mahato, Prasanta

    2012-01-01

    A decade ago, a Lagrangian density has been proposed by the author where only the local symmetries of the Lorentz subgroup of (A)ds group is retained. This formalism has been found to produce some results encompassing that of standard Einstein-Hilbert formalism. In the present article, the conserved axial vector matter currents, constructed in some earlier paper, have been found to be a result of Noether's theorem. PACS: 04.20.Fy, 04.20.Cv, 11.40.-q Keywords: Torsion, Axial Current, Noether's Theorem

  5. Mechano-chemical effects in weakly charged porous media.

    Science.gov (United States)

    Zholkovskij, Emiliy K; Yaroshchuk, Andriy E; Koval'chuk, Volodymyr I; Bondarenko, Mykola P

    2015-08-01

    The paper is concerned with mechano-chemical effects, namely, osmosis and pressure-driven separation of ions that can be observed when a charged porous medium is placed between two electrolyte solutions. The study is focused on porous systems with low equilibrium interfacial potentials (about 30 mV or lower). At such low potentials, osmosis and pressure-driven separation of ions noticeably manifest themselves provided that the ions in the electrolyte solutions have different diffusion coefficients. The analysis is conducted by combining the irreversible thermodynamic approach and the linearized (in terms of the normalized equilibrium interfacial potential) version of the Standard Electrokinetic Model. Osmosis and the pressure-driven separation of ions are considered for an arbitrary mixed electrolyte solution and various porous space geometries. It is shown that the effects under consideration are proportional to a geometrical factor which, for all the considered geometries of porous space, can be expressed as a function of porosity and the Λ- parameter of porous medium normalized by the Debye length. For all the studied geometries, this function turns out to be weakly dependent on both the porosity and the geometry type. The latter allows for a rough evaluation of the geometrical factor from experimental data on electric conductivity and hydraulic permeability without previous knowledge of the porous space geometry. The obtained results are used to illustrate how the composition of electrolyte solution affects the mechano-chemical effects. For various examples of electrolyte solution compositions, the obtained results are capable of describing positive, negative and anomalous osmosis, positive and negative rejection of binary electrolytes, and pressure-driven separation of binary electrolyte mixtures.

  6. Weak Values from Displacement Currents in Multiterminal Electron Devices

    Science.gov (United States)

    Marian, D.; Zanghı, N.; Oriols, X.

    2016-03-01

    Weak values allow the measurement of observables associated with noncommuting operators. Up to now, position-momentum weak values have been mainly developed for (relativistic) photons. In this Letter, a proposal for the measurement of such weak values in typical electronic devices is presented. Inspired by the Ramo-Shockley-Pellegrini theorem that provides a relation between current and electron velocity, it is shown that the displacement current measured in multiterminal configurations can provide either a weak measurement of the momentum or strong measurement of position. This proposal opens new opportunities for fundamental and applied physics with state-of-the-art electronic technology. As an example, a setup for the measurement of the Bohmian velocity of (nonrelativistic) electrons is presented and tested with numerical experiments.

  7. Charge regulation of weak polyelectrolytes at low- and high-dielectric-constant substrates

    CERN Document Server

    Netz, R R

    2003-01-01

    As is well known, the effective charge of weak polyelectrolytes (PEs) decreases with decreasing salt concentration due to the electrostatic repulsion between dissociated charges. Close to dielectric boundaries, image-charge effects influence the dissociation equilibrium. At low-dielectric-constant substrates, one finds a further charge decrease and repulsion from the interface, while at high-dielectric-constant (e.g. metallic) substrates, the effective charge increases and the PE is attracted to the interface.

  8. Weak nonlinear surface-charging effects in electrolytic films.

    Science.gov (United States)

    Dean, D S; Horgan, R R

    2003-11-01

    A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full nonlinear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the renormalization of the theory and apply it to a triple-layer model for a thin film with Stern layer of thickness h. For this model we give expressions for the surface charge sigma(L) and the disjoining pressure P(d)(L) and show their dependence on the parameters. The influence of image charges naturally arises in the formalism, and we show that predictions depend strongly on h because of their effects. In particular, we show that the surface charge vanishes as the film thickness L-->0. The fluctuation terms in this class of theories contribute a Casimir-like attraction across the film. Although this attraction is well known to be negligible compared with the mean-field component for model electrolytic films with no surface-charge regulation, in the model studied here these fluctuations also affect the surface-charge regulation leading to a fluctuation component in the disjoining pressure which has the same behavior as the mean-field component even for large film thickness.

  9. Determination of three characteristic regimes of weakly charged polyelectrolytes monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Farhan [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Shin, Kwanwoo [Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742 (Korea, Republic of)], E-mail: kshin@sogang.ac.kr; Choi, Jae-Hak [Advanced Radiation Technology Institute, KAERI, Jeongeup 580-185 (Korea, Republic of); Satija, Sushil K. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Kim, Joon-Seop [Department of Polymer Science and Engineering, Chosun University (Korea, Republic of); Rafailovich, Miriam H.; Sokolov, Jon [Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794 (United States)

    2008-09-15

    We have demonstrated that monolayer films of randomly charged polystyrene sulfonated acid (PSSA) can be produced by the Langmuir technique, and observed the micro-domain structures, produced by the phase separation of electrostatically charged moieties and the hydrophobic moieties. Using atomic force microscopy and Langmuir isotherm, we found three specific regimes for the polyelectrolytes with various degrees of sulfonation (4-35%); very low charged PSSA (4-5%) in the hydrophobic regime, moderately charged PSSA (6-16%) which possessed a well-balanced nature between electrostatic and the hydrophobic interactions, and strongly amphiphilic nature of PSSA (6-16%) in the ionomer regime. Finally, we could categorize PSSA 35% in the polyelectrolyte regime, due to the dominance of the electrostatic interactions over the hydrophobic interactions.

  10. Weak non-linear surface charging effects in electrolytic films

    OpenAIRE

    Dean, D. S.; Horgan, R. R.

    2002-01-01

    A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full non-linear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the reno...

  11. Inclusive Charged--Current Neutrino--Nucleus Reactions

    CERN Document Server

    Nieves, J; Vacas, M J Vicente

    2011-01-01

    We present a model for weak CC induced nuclear reactions at energies of interest for current and future neutrino oscillation experiments. This model is a natural extension of the work of Refs.[1,2], where the QE contribution to the inclusive electron and neutrino scattering on nuclei was analyzed. The model is based on a systematic many body expansion of the gauge boson absorption modes that includes one, two and even three body mechanisms, as well as the excitation of Delta isobars. The whole scheme has no free parameters, besides those previously adjusted to the weak pion production off the nucleon cross sections in the deuteron, since all nuclear effects were set up in previous studies of photon, electron and pion interactions with nuclei. We have discussed at length the recent charged current quasi-elastic MiniBooNE cross section data, and showed that two nucleon knockout mechanisms are essential to describe these measurements.

  12. Stimulated Brillouin scattering of an electromagnetic wave in weakly magnetized plasma with variably charged dust particles

    Indian Academy of Sciences (India)

    Sourabh Bal; M Bose

    2009-10-01

    We have investigated analytically the stimulated Brillouin scattering (SBS) of an electromagnetic wave in non-dissipative weakly magnetized plasma in the presence of dust particles with variable charge.

  13. Weak additivity principle for current statistics in d dimensions

    Science.gov (United States)

    Pérez-Espigares, C.; Garrido, P. L.; Hurtado, P. I.

    2016-04-01

    The additivity principle (AP) allows one to compute the current distribution in many one-dimensional nonequilibrium systems. Here we extend this conjecture to general d -dimensional driven diffusive systems, and validate its predictions against both numerical simulations of rare events and microscopic exact calculations of three paradigmatic models of diffusive transport in d =2 . Crucially, the existence of a structured current vector field at the fluctuating level, coupled to the local mobility, turns out to be essential to understand current statistics in d >1 . We prove that, when compared to the straightforward extension of the AP to high d , the so-called weak AP always yields a better minimizer of the macroscopic fluctuation theory action for current statistics.

  14. Underwater Reversible Adhesion Between Oppositely Charged Weak Polyelectrolytes

    Science.gov (United States)

    Alfhaid, Latifah; Geoghegan, Mark; Williams, Nicholas; Seddon, William

    2015-03-01

    Force-distance data has shown that the adhesion between two oppositely charged polyelectrolytes: poly(methacrylic acid) (PMAA, a polyacid) and poly[2-(diethylamino)ethyl methacrylate] (PDEAEMA, a polybase), was controllable by varying the pH level of their surrounding. Accordingly, adhesive force at the interface between these two polymers was higher inside basic surroundings at pH 6 and 7, and then it started to decrease at pH level below 3 and above 8. Stimulating adhesion between PMAA gel and PDEAEMA brushes by adding salt to their surrounded water has only a limited effect on the adhesive force between them, contradicting previous results. Increasing the molar concentration of sodium chloride (NaCl) in the surrounded water of these two polymers from 0.1 to 1M did not decrease the adhesion forces between a PMAA gel and a grafted PDEAEMA layer (brush). The JKR equation was used to evaluate the adhesion forces between the polymer gel and the brushes and it was observed that the adhesion increased with the elastic modulus of the gel decreased.

  15. Charged Current Universality and the MSSM

    CERN Document Server

    Bauman, Sky; Ramsey-Musolf, Michael

    2012-01-01

    We analyze the prospective impact of supersymmetric radiative corrections on tests of charged current universality involving light quarks and leptons. Working within the R-parity conserving Minimal Supersymmetric Standard Model, we compute the corresponding one-loop corrections that enter the extraction of the Cabibbo-Kobayashi-Maskawa matrix element $V_{ud}$ from a comparison of the muon-decay Fermi constant with the vector coupling constant determined from nuclear and neutron $\\beta$-decay. We also revisit earlier studies of the corrections to the ratio $R_{e/\\mu}$ of pion leptonic decay rates $\\Gamma[\\pi^+ \\to e^+ \

  16. Charged current neutrino induced coherent pion production

    CERN Document Server

    Alvarez-Ruso, L; Hirenzaki, S; Vacas, M J V

    2007-01-01

    We analyze the neutrino induced charged current coherent pion production at the energies of interest for recent experiments like K2K and MiniBooNE. Medium effects in the production mechanism and the distortion of the pion wave function, obtained solving the Klein Gordon equation with a microscopic optical potential, are included in the calculation. We find a strong reduction of the cross section due to these effects and also substantial modifications of the energy distributions of the final lepton and pion.

  17. Weak Interaction Models with New Quarks and Right-handed Currents

    Science.gov (United States)

    Wilczek, F. A.; Zee, A.; Kingsley, R. L.; Treiman, S. B.

    1975-06-01

    We discuss various weak interaction issues for a general class of models within the SU(2) x U(1) gauge theory framework, with special emphasis on the effects of right-handed, charged currents and of quarks bearing new quantum numbers. In particular we consider the restrictions on model building which are imposed by the small KL - KS mass difference and by the .I = = rule; and we classify various possibilities for neutral current interactions and, in the case of heavy mesons with new quantum numbers, various possibilities for mixing effects analogous to KL - KS mixing.

  18. Charge Exchange Effect on Space-Charge-Limited Current Densities in Ion Diode

    Institute of Scientific and Technical Information of China (English)

    石磊

    2002-01-01

    The article theoretically studied the charge-exchange effects on space charge limited electron and ion current densities of non-relativistic one-dimensional slab ion diode, and compared with those of without charge exchange.

  19. Josephson current and Andreev level dynamics in nanoscale superconducting weak links

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Aldo

    2014-11-15

    In this thesis we focus on the interplay between proximity induced superconducting correlations and Coulomb interactions in a Josephson junction: i.e., in a system where two superconductors modeled as two s-wave superconductors at a phase difference φ are contacted by means of a weak link, in our case a quantum dot located in the contact. In the first part we study the Josephson current-phase relation for a multi-level quantum dot tunnel-contacted by two conventional s-waves superconductors. We determine in detail the conditions for observing a finite anomalous Josephson current, i.e. a supercurrent flowing at zero phase difference in a two-level dot with spin-orbit interactions, a weak magnetic (Zeeman) field, and in the presence of Coulomb interactions. This leads to an onset behavior I{sub a}∝sgn(B), interpreted as the sign of an incipient spontaneous breakdown of time-reversal symmetry. Moreover, we will provide conditions for realizing spatially separated - but topologically unprotected - Majorana bound states, whose signature in the system will be detectable via the current-phase relation. In the second part of the thesis, we address the Andreev bound state population dynamics in superconducting weak links (a superconducting 'atomic contact'), in which a poisoning mechanism due to the trapping of single quasiparticles can occur. Our motivation is that quantum coherent superconducting circuits are the most promising candidates for future large-scale quantum information processing devices. Moreover, quasiparticle poisoning has recently been observed in devices which contain a short superconducting weak link with few transport channels. We discuss a novel charge imbalance effect in the continuum quasiparticle population, which is due to phase fluctuations of the environment weakly coupled to the superconducting contact. This coupling enters the system as a transition rate connecting continuum quasiparticles and the Andreev bound state system. The

  20. Laminar and weakly turbulent oceanic gravity currents performing inertial oscillations

    Directory of Open Access Journals (Sweden)

    A. Wirth

    2012-05-01

    Full Text Available The small scale dynamics of a weakly turbulent oceanic gravity current is determined. The gravity current considered is initially at rest and adjusts by performing inertial oscillations to a geostrophic mean flow. The dynamics is explored with a hierarchy of mathematical models. The most involved are the fully 3-D Navier-Stokes equations subject to the Boussinesq approximation. A 1-D and 0-D mathematical model of the same gravity current dynamics are systematically derived. Using this hierarchy and the numerical solutions of the mathematical models, the turbulent dynamics at the bottom and the interface is explored and their interaction investigated. Three different regimes of the small scale dynamics of the gravity current are identified, they are characterised by laminar flow, coherent roll vortices and turbulent dynamics with coherent streaks and bursts.

    The problem of the rectification of the turbulent fluxes, that is, how to average out the fluctuations and calculate their average influence on the flow, is considered. It is shown that two different regimes of friction are superposed, an Ekman friction applies to the average geostrophic flow and a linear friction, not influenced by rotation, to the inertial oscillations. The combination of the two makes the bulk friction non-local in time for the 0-D model.

    The implications of the results for parametrisations of the Ekman dynamics and the small scale turbulent fluxes in the planetary boundary layer are discussed.

  1. Laminar and weakly turbulent oceanic gravity currents performing inertial oscillations

    Directory of Open Access Journals (Sweden)

    A. Wirth

    2011-09-01

    Full Text Available The small scale dynamics of a weakly turbulent oceanic gravity current is determined. The gravity current considered is initially at rest and adjusts by performing inertial oscillations to a geostrophic mean flow. The dynamics is explored with a hierarchy of mathematical models. The most involved are the fully 3-D Navier-Stokes equations subject to the Boussinesq approximation. A 1-D and 0-D mathematical model of the same gravity current dynamics are systematically derived. Using this hierarchy and the numerical solutions of the mathematical models, the turbulent dynamics at the bottom and the interface is explored and their interaction investigated. Three different regimes of the small scale dynamics of the gravity current are identified, they are characterised by laminar flow, coherent roll vortices and turbulent dynamics with coherent streaks and bursts.

    The problem of the rectification of the turbulent fluxes, that is how to average out the fluctuations and calculate their average influence on the flow is considered. It is shown that two different regimes of friction are superposed, an Ekman friction applies to the average geostrophic flow and a linear friction, not influenced by rotation, to the inertial oscillations. The combination of the two makes the bulk friction non-local in time for the 0-D model. The implications of the results for parametrisations of the Ekman dynamics and the small scale turbulent fluxes in the planetary boundary layer are discussed.

  2. Trapped-space-charge-limited currents in organics

    Energy Technology Data Exchange (ETDEWEB)

    Paasch, Gernot [IFW Dresden (Germany); Blom, Paul; Mandoc, Magda; Boer, Bert de [University of Groningen (Netherlands)

    2007-07-01

    The Mott-Gurney law for space charge limited current (SCLC) has been modified early to account for the presence of exponentially distributed traps. This expression has been widely used to analyse transport in organic light emitting diodes. However, the theory fails to describe the rather weak temperature dependence observed for electron transport, for instance in PPV derivatives. There we have shown that the trap-limited SCLC law is essentially modified if the density of transport states is of Gaussian type. Here, we discuss the origin of this modification and present a detailed analysis of the modified law. In addition, we derive further modifications for different combinations of densities of states of both the transport states and the trap distribution. As a result, rather different dependencies of the current on voltage, layer thickness and temperature are possible. Consequently, one has to exercise care in order to obtain reliable trap parameters from SCLC.

  3. Scaling theory of relative diffusion of charged particles in a weakly magneto-turbulent plasma

    Energy Technology Data Exchange (ETDEWEB)

    Haida Wang (University of Science and Technology of China, Hefei, Anhui. Dept. of Modern Physics); Xiaoming Qui (Southwest Inst. of Physics, Leshan, SC (China))

    1989-02-01

    Stochastic motion of charged particles in a magneto-turbulent plasma is studied for the whole time region. A set of nonlinear differential equations for describing relative spatial diffusion of charged particles is derived and some explicit results are obtained in the case of a weak magnetic field. It is found that, for the diffusion in the present system there are some new and interesting properties which do not exist in an unmagnetized plasma. The clump effect is also discussed. (author).

  4. Meson exchange currents in pion double charge exchange at high energies

    CERN Document Server

    Alvarez-Ruso, L

    1995-01-01

    In this letter we study the high energy behavior of the forward differential cross section for the O(18)(pi+,pi-)Ne(18) double charge exchange reaction. We have evaluated the sequential and the meson exchange current mechanisms. The meson exchange current contribution shows a very weak energy dependence and becomes dominant at incident pion kinetic energies above 600 MeV.

  5. Storing Data from Qweak--A Precision Measurement of the Proton's Weak Charge

    Science.gov (United States)

    Pote, Timothy

    2008-10-01

    The Qweak experiment will perform a precision measurement of the proton's parity violating weak charge at low Q-squared. The experiment will do so by measuring the asymmetry in parity-violating electron scattering. The proton's weak charge is directly related to the value of the weak mixing angle--a fundamental quantity in the Standard Model. The Standard Model makes a firm prediction for the value of the weak mixing angle and thus Qweak may provide insight into shortcomings in the SM. The Qweak experiment will run at Thomas Jefferson National Accelerator Facility in Newport News, VA. A database was designed to hold data directly related to the measurement of the proton's weak charge such as detector and beam monitor yield, asymmetry, and error as well as control structures such as the voltage across photomultiplier tubes and the temperature of the liquid hydrogen target. In order to test the database for speed and stability, it was filled with fake data that mimicked the data that Qweak is expected to collect. I will give a brief overview of the Qweak experiment and database design, and present data collected during these tests.

  6. Measuring the Weak Charge of the Proton via Elastic Electron-Proton Scattering

    CERN Document Server

    Jones, Donald

    2016-01-01

    The Qweak experiment which ran at Jefferson Lab in Newport News, VA, measured the weak charge of the proton $Q_W^p$ via elastic electron-proton scattering. Longitudinally polarized electrons were scattered from an unpolarized liquid hydrogen target. The Standard Model predicts a small parity-violating asymmetry of scattering rates between electron right and left helicity states due to the weak interaction. An initial result using 4% of the data was published in October 2013 with a measured parity-violating asymmetry of $-279\\pm 35(\\text{stat})\\pm 31$ (syst) parts per billion (ppb). This asymmetry, along with other data from parity-violating electron scattering experiments, provided the world's first determination of the weak charge of the proton. The weak charge of the proton was found to be $Q_W^p=0.064\\pm0.012$, in agreement with the Standard Model prediction of $Q_W^p(SM)=0.0708\\pm0.0003$. The results of the full dataset are expected to decrease the statistical error from the initial publication by a facto...

  7. Measuring the Weak Charge of the Proton via Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Donald C. [Univ. of Virginia, Charlottesville, VA (United States)

    2015-10-01

    The Qweak experiment which ran in Hall C at Jefferson Lab in Newport News, VA, and completed data taking in May 2012, measured the weak charge of the proton QpW via elastic electron-proton scattering. Longitudinally polarized electrons were scattered from an unpolarized liquid hydrogen target. The helicity of the electron beam was flipped at approximately 1 kHz between left and right spin states. The Standard Model predicts a small parity-violating asymmetry of scattering rates between right and left helicity states due to the weak interaction. An initial result using 4% of the data was published in October 2013 [1] with a measured parity-violating asymmetry of -279 ± 35(stat) ± 31 (syst) ppb. This asymmetry, along with other data from parity-violating electron scattering experiments, provided the world's first determination of the weak charge of the proton. The weak charge of the proton was found to be pW = 0.064 ± 0.012, in good agreement with the Standard Model prediction of pW(SM) = 0.0708 ± 0.0003[2].

  8. Kinematic Reconstruction of Tau Leptons and Test for Lepton Universality in Charged Weak Interactions with the CMS Experiment

    CERN Document Server

    Sauerland, Philip

    2011-01-01

    The Standard Model of Particle Physics (SM) postulates the universal coupling of the three lepton families to the weak current. The most precise measurement of lepton universality in W decays comes from the four experiments at the Large Electon-Positron Collider (LEP). If one compares the couplings of muons and tau leptons to the charged weak current, there is a discrepancy of nearly three standard deviations w.r.t. the SM expectation. There are models beyond the SM, which could explain the violation of lepton universality with new physics processes, if it is more than a statistical fluctuation. The Large Hadron Collider (LHC) offers a great opportunity to study decays of the charged-weak gauge bosons at very high event rates and at unmatched collision energies. This thesis presents an analysis strategy to test lepton universality with the Compact Muon Solenoid experiment (CMS) at the LHC. The analysis focusses on the decays of the W boson to particles of the second and third lepton family. For this purpose d...

  9. Qweak: A Precision Measurement of the Proton's Weak Charge

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Todd Averett; James Birchall; James Bowman; Roger Carlini; Swapan Chattopadhyay; Charles Davis; J. Doornbos; James Dunne; Rolf Ent; Jens Erler; Willie Falk; John Finn; Tony Forest; David Gaskell; Klaus Grimm; C. Hagner; F. Hersman; Maurik Holtrop; Kathleen Johnston; R.T. Jones; Kyungseon Joo; Cynthia Keppel; Elie Korkmaz; Stanley Kowalski; Lawrence Lee; Allison Lung; David Mack; Stanislaw Majewski; Gregory Mitchell; Hamlet Mkrtchyan; Norman Morgan; Allena Opper; Shelley Page; Seppo Penttila; Mark Pitt; Benard Poelker; Tracy Porcelli; William Ramsay; Michael Ramsey-musolf; Julie Roche; Neven Simicevic; Gregory Smith; Riad Suleiman; Simon Taylor; Willem Van Oers; Steven Wells; W.S. Wilburn; Stephen Wood; Carl Zorn

    2004-02-05

    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low Q{sup 2} of a longitudinally polarized electron beam on a proton target. The experiment will measure the weak charge of the proton, and thus the weak mixing angle at low energy scale, providing a precision test of the Standard Model. Since the value of the weak mixing angle is approximately 1/4, the weak charge of the proton Q{sub w}{sup p} = 1-4 sin{sup 2} {theta}{sub w} is suppressed in the Standard Model, making it especially sensitive to the value of the mixing angle and also to possible new physics. The experiment is approved to run at JLab, and the construction plan calls for the hardware to be ready to install in Hall C in 2007. The theoretical context of the experiment and the status of its design are discussed.

  10. Natural Limits for Currents in Charge Separated Pulsar Magnetospheres

    CERN Document Server

    Jessner, A; Kunzl, T A

    2002-01-01

    Rough estimates and upper limits on current and particle densities form the basis of most of the canonical pulsar models. Whereas the surface of the rotating neutron star is capable of supplying sufficient charges to provide a current that, given the polar cap potential, could easily fuel the observed energy loss processes, observational and theoretical constraints provide strict upper limits to the charge densities. The space charge of a current consisting solely of particles having only one sign creates a compensating potential that will make the maximum current dependent on potential and distance. In the non-relativistic case this fact is expressed in the familiar Child-Langmuir law. Its relativistic generalization and subsequent application to the inner pulsar magnetosphere provides clear limits on the strength and radial extension of charged currents originating on the polar cap. Violent Pierce-type oscillations set in, if one attempts to inject more current than the space charge limit into a given volum...

  11. Weak Finite—Size Dependence of Velocity and Strong Phase Dependence of Central Charge

    Institute of Scientific and Technical Information of China (English)

    LINZhi-Bin; ZHANGJun; 等

    2002-01-01

    We study the finite-size scaling behavior of velocity and central charge for different coupling constants and different phases in (1+1)-dimensional lattice model in very short chains.Using XXZ spin 1/2 chains with 15 or fewer sites,we demonstrate the weak finite-size dependence of spinon velocity for any magnitude of coupling strength Jz and the strong phase dependence of central charge.This behavior of velocity and central charge in different coupling constants and different phases gives a method to determine phase transitions of (1+1)-dimensional models.This method is simple and efficient by utilizing only the ground state energy of very short finite-size chains.It is also general and powerfur for various one-dimensional lattice models and it uncovers eventhe weakest berezinski-Kosterlitz-Thouless phase transitions.

  12. The role of multipoles in counterion-mediated interactions between charged surfaces: strong and weak coupling

    Energy Technology Data Exchange (ETDEWEB)

    Kanduc, M; Podgornik, R [Department of Theoretical Physics, J Stefan Institute, SI-1000 Ljubljana (Slovenia); Naji, A [Department of Physics, Department of Chemistry and Biochemistry, Materials Research Laboratory, University of California, Santa Barbara, CA 93106 (United States); Jho, Y S; Pincus, P A [Materials Research Laboratory, University of California, Santa Barbara, CA 93106 (United States)

    2009-10-21

    We present general arguments for the importance, or lack thereof, of structure in the charge distribution of counterions for counterion-mediated interactions between bounding symmetrically charged surfaces. We show that on the mean field or weak coupling level, the charge quadrupole contributes the lowest order modification to the contact value theorem and thus to the intersurface electrostatic interactions. The image effects are non-existent on the mean field level even with multipoles. On the strong coupling level the quadrupoles and higher order multipoles contribute additional terms to the interaction free energy only in the presence of dielectric inhomogeneities. Without them, the monopole is the only multipole that contributes to the strong coupling electrostatics. We explore the consequences of these statements in all their generality.

  13. Modeling of stored charge in metallized biaxially oriented polypropylene film capacitors based on charging current measurement

    Science.gov (United States)

    Li, Hua; Wang, Bowen; Li, Zhiwei; Liu, De; Lin, Fuchang; Dai, Ling; Zhang, Qin; Chen, Yaohong

    2013-10-01

    Metallized biaxially oriented polypropylene film (BOPP) capacitors are widely used in pulsed power systems. When the capacitor is used as the energy storage equipment under high electric field, more charges should be provided to maintain the voltage of the capacitor. This should be ascribed to the completion of the slow polarization which may take several hours or even longer. This paper focuses on the stored charge in metallized BOPP film capacitors. The modeling of the stored charge by the equivalent conversion of circuits is conducted to analyse the slow polarization in the BOPP film. The 3-RC network is proposed to represent the time-dependent charge stored in the capacitor. A charging current measurement system is established to investigate the charge storage property of the capacitor. The measurement system can measure the long time charging current with a sampling rate of 300Hz. The total charge calculated by the charging current indicates that the stored charge in the capacitor under the electric field of 400 V/μm is 13.5% larger than the product of the voltage and the capacitance measured by the AC bridge. The nonlinear effect of the electric field on the slow polarization charge is also demonstrated. And the simulation of charge storage based on the 3-RC network can match well with the trend of the stored charge increasing with the time.

  14. Qweak: First Direct Measurement of the Weak Charge of the Proton

    Energy Technology Data Exchange (ETDEWEB)

    Nuruzzaman, NFN [Hampton University, JLAB

    2014-04-01

    The Qweak experiment at Hall C of Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton, QWp, through a precision measurement of the parity-violating asymmetry in elastic e-p scattering at low momentum transfer Q2= 0.025 (GeV/c)2 with incident electron beam energy of 1.155 GeV. The Qweak experiment, along with earlier results of parity violating elastic scattering experiments, is expected to determine the most precise value of QWp which is suppressed in the Standard Model. If this result is further combined with the 133Cs atomic parity violation (APV) measurement, significant constraints on the weak charge of the up quark, down quark, and neutron can be extracted. This data will also be used to determine the weak-mixing angle, sin2 θW, with a relative uncertainty of < 0.5% that will provide a competitive measurement of the running of sin2 θW to low Q2. An overview of the experiment and its results using the commissioning dataset, constituting approximately 4% of the data collected in the experiment, are reported here.

  15. The Weak Charge of the Proton. A Search For Physics Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    MacEwan, Scott J. [Univ. of Manitoba, Winnipeg, MB (Canada)

    2015-05-01

    The Qweak experiment, which completed running in May of 2012 at Jefferson Laboratory, has measured the parity-violating asymmetry in elastic electron-proton scattering at four-momentum transfer Q2 =0.025 (GeV/c)2 in order to provide the first direct measurement of the proton's weak charge, QWp. The Standard Model makes firm predictions for the weak charge; deviations from the predicted value would provide strong evidence of new physics beyond the Standard Model. Using an 89% polarized electron beam at 145 microA scattering from a 34.4 cm long liquid hydrogen target, scattered electrons were detected using an array of eight fused-silica detectors placed symmetric about the beam axis. The parity-violating asymmetry was then measured by reversing the helicity of the incoming electrons and measuring the normalized difference in rate seen in the detectors. The low Q2 enables a theoretically clean measurement; the higher-order hadronic corrections are constrained using previous parity-violating electron scattering world data. The experimental method will be discussed, with recent results constituting 4% of our total data and projections of our proposed uncertainties on the full data set.

  16. Effect of Ionic Advection on Electroosmosis over Charge Surfaces: Beyond the Weak Field Limit

    CERN Document Server

    Ghosh, Uddipta

    2015-01-01

    The present study deals with the effect of ionic advection on electroosmotic flow over charge modulated surfaces in a generalized paradigm when the classically restrictive "weak field" limit may be relaxed. Going beyond the commonly portrayed weak field limit (i.e, the externally applied electric field is over-weighed by the surface-induced electrical potential, towards charge distribution in an electrified wall-adhering layer) for electroosmotic transport, we numerically solve the coupled full set of Poisson-Nernst-Planck (PNP) and Navier-Stokes equations, in a semi-infinite domain, bounded at the bottom by a charged wall. Further, in an effort to obtain deeper physical insight, we solve the simplified forms of the relevant governing equations for low surface potential in two separate asymptotic limits: (i) a regular perturbation solution for Low Ionic Peclet number (Pe), where Pe is employed as the gauge function and (ii) a matched asymptotic solution for O(1) Pe in the Thin Electric Double Layer (EDL) limi...

  17. Spin Polarized Photons from Axially Charged Plasma at Weak Coupling: Complete Leading Order

    CERN Document Server

    Mamo, Kiminad A

    2015-01-01

    In the presence of (approximately conserved) axial charge in the QCD plasma at finite temperature, the emitted photons are spin-aligned, which is a unique P- and CP-odd signature of axial charge in the photon emission observables. We compute this "P-odd photon emission rate" in weak coupling regime at high temperature limit to complete leading order in the QCD coupling constant: the leading log as well as the constant under the log. As in the P-even total emission rate in the literature, the computation of P-odd emission rate at leading order consists of three parts: 1) Compton and Pair Annihilation processes with hard momentum exchange, 2) soft t- and u-channel contributions with Hard Thermal Loop re-summation, 3) Landau-Pomeranchuk-Migdal (LPM) re-summation of collinear Bremstrahlung and Pair Annihilation. We present analytical and numerical evaluations of these contributions to our P-odd photon emission rate observable.

  18. Geometry dependence of 2-dimensional space-charge-limited currents

    CERN Document Server

    De Visschere, Patrick

    2016-01-01

    The space-charge-limited current in a zero thickness planar thin film depends on the geometry of the electrodes. We present a theory which is to a large extent analytical and applicable to many different lay-outs. We show that a space-charge-limited current can only be sustained if the emitting electrode induces a singularity in the field and if the singularity induced by the collecting electrode is not too strong. For those lay-outs where no space-charge-limited current can be sustained for a zero thickness film, the real thickness of the film must be taken into account using a numerical model.

  19. Space-charge limiting current in spherical cathode diodes

    Institute of Scientific and Technical Information of China (English)

    刘国治; 邵浩

    2003-01-01

    The results of the investigation on the space-charge limiting current for a spherical-cathode diode in the nonrelativistic situation are presented in this paper. The results show that the current enhancement factor equals the square of E-field enhancement factor on the cathode surface. The generated space-charge limiting current is deduced.In the case of a pin-shaped-cathode diode, the space-charge limiting current is also obtained, indicating that the current is independent of the geometric parameters of the diode. Analyses of the shielding effects and the conditions for generation of the uniform space-charge limiting beam show that, for pin-arrayed cathodes, the distance between pins should be in the range from 1.2D to 1.5D, where D is the distance between the two electrodes.

  20. Correlators of left charges and weak operators in finite volume chiral perturbation theory

    Science.gov (United States)

    Hernández, Pilar; Laine, Mikko

    2003-01-01

    We compute the two-point correlator between left-handed flavour charges, and the three-point correlator between two left-handed charges and one strangeness violating DeltaI = 3/2 weak operator, at next-to-leading order in finite volume SU(3)L × SU(3)R chiral perturbation theory, in the so-called epsilon-regime. Matching these results with the corresponding lattice measurements would in principle allow to extract the pion decay constant F, and the effective chiral theory parameter g27, which determines the Delta I = 3/2 amplitude of the weak decays K to pipi as well as the kaon mixing parameter BK in the chiral limit. We repeat the calculations in the replica formulation of quenched chiral perturbation theory, finding only mild modifications. In particular, a properly chosen ratio of the three-point and two-point functions is shown to be identical in the full and quenched theories at this order.

  1. Quantum theory of space charge limited current in solids

    Energy Technology Data Exchange (ETDEWEB)

    González, Gabriel, E-mail: gabriel.gonzalez@uaslp.mx [Cátedras Conacyt, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico and Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000 (Mexico)

    2015-02-28

    We present a quantum model of space charge limited current transport inside trap-free solids with planar geometry in the mean field approximation. We use a simple transformation which allows us to find the exact analytical solution for the steady state current case. We use our approach to find a Mott-Gurney like behavior and the mobility for single charge carriers in the quantum regime in solids.

  2. Post-duplication charge evolution of phosphoglucose isomerases in teleost fishes through weak selection on many amino acid sites

    Directory of Open Access Journals (Sweden)

    Sato Yukuto

    2007-10-01

    Full Text Available Abstract Background The partitioning of ancestral functions among duplicated genes by neutral evolution, or subfunctionalization, has been considered the primary process for the evolution of novel proteins (neofunctionalization. Nonetheless, how a subfunctionalized protein can evolve into a more adaptive protein is poorly understood, mainly due to the limitations of current analytical methods, which can detect only strong selection for amino acid substitutions involved in adaptive molecular evolution. In this study, we employed a comparative evolutionary approach to this question, focusing on differences in the structural properties of a protein, specifically the electric charge, encoded by fish-specific duplicated phosphoglucose isomerase (Pgi genes. Results Full-length cDNA cloning, RT-PCR based gene expression analyses, and comparative sequence analyses showed that after subfunctionalization with respect to the expression organ of duplicate Pgi genes, the net electric charge of the PGI-1 protein expressed mainly in internal tissues became more negative, and that of PGI-2 expressed mainly in muscular tissues became more positive. The difference in net protein charge was attributable not to specific amino acid sites but to the sum of various amino acid sites located on the surface of the PGI molecule. Conclusion This finding suggests that the surface charge evolution of PGI proteins was not driven by strong selection on individual amino acid sites leading to permanent fixation of a particular residue, but rather was driven by weak selection on a large number of amino acid sites and consequently by steady directional and/or purifying selection on the overall structural properties of the protein, which is derived from many modifiable sites. The mode of molecular evolution presented here may be relevant to various cases of adaptive modification in proteins, such as hydrophobic properties, molecular size, and electric charge.

  3. Charge transfer and weak bonding between molecular oxygen and graphene zigzag edges at low temperatures

    CERN Document Server

    Boukhvalov, D W; Shames, A I; Takai, K; Hayashi, T; Enoki, T

    2016-01-01

    Electron paramagnetic resonance (EPR) study of air-physisorbed defective carbon nano-onions evidences in favor of microwave assisted formation of weakly-bound paramagnetic complexes comprising negatively-charged O2- ions and edge carbon atoms carrying pi-electronic spins. These complexes being located on the graphene edges are stable at low temperatures but irreversibly dissociate at temperatures above 50-60 K. These EPR findings are justified by density functional theory (DFT) calculations demonstrating transfer of an electron from the zigzag edge of graphene-like material to oxygen molecule physisorbed on the graphene sheet edge. This charge transfer causes changing the spin state of the adsorbed oxygen molecule from S = 1 to S = 1/2 one. DFT calculations show significant changes of adsorption energy of oxygen molecule and robustness of the charge transfer to variations of the graphene-like substrate morphology (flat and corrugated mono- and bi-layered graphene) as well as edges passivation. The presence of...

  4. Determining the maximum charging currents of lithium-ion cells for small charge quantities

    Science.gov (United States)

    Grimsmann, F.; Gerbert, T.; Brauchle, F.; Gruhle, A.; Parisi, J.; Knipper, M.

    2017-10-01

    In order to optimize the operating parameters of battery management systems for electric and hybrid vehicles, great interest has been shown in achieving the maximum permissible charging currents during recuperation, without causing a cell damage due to lithium plating, in relation to the temperature, charge quantity and state of charge. One method for determining these recuperation currents is measuring the cell thickness, where excessively high charging currents can be detected by an irreversible increase in thickness. It is not possible to measure particularly small charge quantities by employing mechanic dial indicators, which have a limited resolution of 1 μm. This is why we developed a measuring setup that has a resolution limit of less than 10 nm using a high-resolution contactless inductance sensor. Our results show that the permissible charging current I can be approximated in relation to the charge quantity x by a correlating function I =a /√{(x) } which is compliant with the Arrhenius law. Small charge quantities therefore have an optimization potential for energy recovery during recuperation.

  5. Sleep maintenance insomnia: strengths and weaknesses of current pharmacologic therapies.

    Science.gov (United States)

    Rosenberg, Russell P

    2006-01-01

    Although insomnia is highly prevalent, sleep disturbances often go unrecognized and untreated. When insomnia is recognized, considerable emphasis has been placed on improving sleep onset; however, there is growing evidence that improving sleep maintenance is an equally important treatment goal. A MEDLINE literature search was performed using the search parameters "insomnia," "zolpidem," "zaleplon," "flurazepam," "estazolam," "quazepam," "triazolam," and "temazepam," as these agents are FDA-approved for the treatment of insomnia. Per reviewer comments, the search criteria was later expanded to include lorazepam. A literature search using the terms "trazodone" and "insomnia" was also performed, as this is the second-most commonly prescribed agent for treating insomnia. Sleep efficacy endpoints from randomized, placebo-controlled clinical trials in adult populations and key review articles published between 1975 and 2004 were included in this review. As only one randomized placebo-controlled trial evaluated trazodone use in primary insomnia, the trazodone search was expanded to include all clinical trials that evaluated trazodone use in insomnia. Relevant texts and other articles that evaluated side effect profiles of these agents were also included, one of which was published in January of 2005. In all publications, impact of treatment on sleep maintenance parameters (wake time after sleep onset, number of awakenings) and measures of next-day functioning were evaluated, in addition to sleep onset parameters (sleep latency, time to sleep onset/induction) and sleep duration data (total sleep time). Many of the currently available agents used to treat insomnia, including the antidepressant trazodone, the non-benzodiazepine hypnotics zolpidem and zaleplon, and some of the benzodiazepines, have not consistently demonstrated effectiveness in promoting sleep maintenance. Furthermore, the benzodiazepines with established sleep maintenance efficacy are associated with next

  6. Single neutral pion production by charged-current $\\bar{\

    CERN Document Server

    Aliaga, L; Bercellie, A; Bodek, A; Bravar, A; Brooks, W K; Butkevich, A; Caicedo, D A Martinez; Carneiro, M F; Christy, M E; Chvojka, J; da Motta, H; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Felix, J; Fields, L; Fine, R; Gago, A M; Gallagher, H; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; McFarland, K S; McGivern, C L; McGowan, A M; Miller, J; Morfín, J G; Mousseau, J; Nelson, J K; Norrick, A; Osta, J; Palomino, J L; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ramirez, M A; Ransome, R D; Ray, H; Ren, L; Rodrigues, P A; Ruterbories, D; Schellman, H; Schmitz, D W; Sobczyk, J T; Salinas, C J Solano; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Yepes-Ramirez, H; Zavala, G; Zhang, D; Ziemer, B P

    2015-01-01

    Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) is studied using the \\minerva detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for $\\bar{\

  7. Charged and Neutral Current Neutrino Induced Nucleon Emission Reactions

    CERN Document Server

    Nieves, J; Vacas, M J V

    2006-01-01

    By means of a Monte Carlo cascade method, to account for the rescattering of the outgoing nucleon, we study the charged and neutral current inclusive one nucleon knockout reactions off nuclei induced by neutrinos. The nucleon emission process studied here is a clear signal for neutral--current neutrino driven reactions, and can be used in the analysis of future neutrino experiments.

  8. The spin-charge-family theory explains why are the scalar fields (the Higgs) doublets with respect to the weak and the hyper charge

    CERN Document Server

    Borstnik, Norma Susana Mankoc

    2014-01-01

    One Weyl representation of SO(13+1) contains, if analysed with respect to the charge and the spin groups of the standard model, left handed weak (SU(2)_{I}) charged and SU(2)_{II} chargeless colour triplet quarks and colourless leptons, and right handed weakless and SU(2)_{II} charged quarks and leptons (neutrinos and electrons). In the spin-charge-family theory spinors carry also the family quantum numbers, explaining the origin of families and correspondingly the masses of fermions and weak bosons and the origin of the scalar Higgs and Yukawa couplings. It is demonstrated in this paper that all the fields appearing in the simple starting action of spin-charge-family theory in d=(13+1) with the scalar index with respect to d=(3+1) and determining masses of quarks and leptons (and correspondingly also of the weak boson fields) carry the weak and the hyper charge in the fundamental representations, in agreement with the Higgs in the standard model.

  9. Research and design of a novel current mode charge pump

    Science.gov (United States)

    Xianrui, Li; Xinquan, Lai; Yushan, Li; Qiang, Ye

    2009-10-01

    To meet the demands for a number of LEDs, a novel charge pump circuit with current mode control is proposed. Regulation is achieved by operating the current mirrors and the output current of the operational transconductance amplifier. In the steady state, the input current from power voltage retains constant, so reducing the noise induced on the input voltage source and improving the output voltage ripple. The charge pump small-signal model is used to describe the device's dynamic behavior and stability. Analytical predictions were verified by Hspice simulation and testing. Load driving is up to 800 mA with a power voltage of 3.6 V, and the output voltage ripple is less than 45 mV. The output response time is less than 8 μs, and the load current jumps from 400 to 800 mA.

  10. Research and design of a novel current mode charge pump

    Energy Technology Data Exchange (ETDEWEB)

    Li Xianrui; Lai Xinquan; Li Yushan; Ye Qiang, E-mail: lixianrui4213@126.co [Research Institute of Design Circuit, Xidian University, Xi' an 710071 (China)

    2009-10-15

    To meet the demands for a number of LEDs, a novel charge pump circuit with current mode control is proposed. Regulation is achieved by operating the current mirrors and the output current of the operational transconductance amplifier. In the steady state, the input current from power voltage retains constant, so reducing the noise induced on the input voltage source and improving the output voltage ripple. The charge pump small-signal model is used to describe the device's dynamic behavior and stability. Analytical predictions were verified by Hspice simulation and testing. Load driving is up to 800 mA with a power voltage of 3.6 V, and the output voltage ripple is less than 45 mV. The output response time is less than 8 {mu}s, and the load current jumps from 400 to 800 mA.

  11. Research and design of a novel current mode charge pump

    Institute of Scientific and Technical Information of China (English)

    Li Xianrui; Lai Xinquan; Li Yushan; Ye Qiang

    2009-01-01

    To meet the demands for a number of LEDs, a novel charge pump circuit with current mode control is proposed. Regulation is achieved by operating the current mirrors and the output current of the operational transcon ductance amplifier. In the steady state, the input current from power voltage retains constant, so reducing the noise induced on the input voltage source and improving the output voltage ripple. The charge pump small-signal model is used to describe the device's dynamic behavior and stability. Analytical predictions were verified by Hspice sim ulation and testing. Load driving is up to 800 mA with a power voltage of 3.6 V, and the output voltage ripple is less than 45 mV. The output response time is less than 8 μs, and the load current jumps from 400 to 800 mA.

  12. Testing the standard model by precision measurement of the weak charges of quarks.

    Science.gov (United States)

    Young, R D; Carlini, R D; Thomas, A W; Roche, J

    2007-09-21

    In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low energy. The precision of this new result, combined with earlier atomic parity-violation measurements, places tight constraints on the size of possible contributions from physics beyond the standard model. Consequently, this result improves the lower-bound on the scale of relevant new physics to approximately 1 TeV.

  13. Testing the Standard Model by precision measurement of the weak charges of quarks

    Energy Technology Data Exchange (ETDEWEB)

    Ross Young; Roger Carlini; Anthony Thomas; Julie Roche

    2007-05-01

    In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low-energy. The precision of this new result, combined with earlier atomic parity-violation measurements, limits the magnitude of possible contributions from physics beyond the Standard Model - setting a model-independent, lower-bound on the scale of new physics at ~1 TeV.

  14. Kinematic reconstruction of tau leptons and test for lepton universality in charged weak interactions with the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sauerland, Philip

    2011-04-15

    The Standard Model of Particle Physics (SM) postulates the universal coupling of the three lepton families to the weak current. The most precise measurement of lepton universality in W decays comes from the four experiments at the Large Electron-Positron Collider (LEP). If one compares the couplings of muons and tau leptons to the charged weak current, there is a discrepancy of nearly three standard deviations w.r.t. the SM expectation. There are models beyond the SM, which could explain the violation of lepton universality with new physics processes, if it is more than a statistical fluctuation. The Large Hadron Collider (LHC) offers a great opportunity to study decays of the charged-weak gauge bosons at very high event rates and at unmatched collision energies. This thesis presents an analysis strategy to test lepton universality with the Compact Muon Solenoid experiment (CMS) at the LHC. The analysis focusses on the decays of the W{sup {+-}} boson to particles of the second and third lepton family. For this purpose detector-simulated proton-proton events are used. The identification and reconstruction of tau leptons is a difficult task at the LHC. The reconstruction is often restricted by the limited precision of the commonly used collinear approximation. The application of a kinematic fit to particular tau-decay modes can improve the experimental resolution and provides an efficient background suppression. The development of such a fit with kinematic constraints derived from the topology of the decay {tau} {yields} 3{pi}{sup {+-}} + {nu}{sub {tau}} is described. The kinematic fit of tau leptons is not limited to the test for lepton universality, but can be deployed by various physics analyses in a broad energy range of the tau leptons. The event topology of W{sup {+-}} decays with leptonic final states is studied. Two event selections are developed: one for the W{sup {+-}} {yields} {tau}{nu} and one for the W{sup {+-}} {yields} {mu}{nu} decay. A common online

  15. Measuring the Weak Charge of the Proton and the Hadronic Parity Violation of the N → Δ Transition

    Energy Technology Data Exchange (ETDEWEB)

    Leacock, John D. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2012-10-16

    Qweak will determine the weak charge of the proton, Qp{sub W}, via an asymmetry measurement of parity-violating elastic electron-proton scattering at low four momentum transfer to a precision of 4%. QpW has a firm Standard Model prediction and is related to the weak mixing angle, sin2 ΦW, a well-defined Standard Model parameter. Qweak will probe a subset of new physics to the TeV mass scale and test the Standard Model. The details of how this measurement was performed and the analysis of the 25% elastic dataset will be presented in this thesis. Also, an analysis of an auxiliary measurement of the parity-violating asymmetry in the N → Δ transition is presented. It is used as a systematic inelastic background correction in the elastic analysis and to extract information about the hadronic parity violation through the low energy constant, dΔ. The elastic asymmetry at Q2 = 0.0252 ± 0.0007 GeV2 was measured to be Aep = -265 ± 40 ± 22 ± 68 ppb (stat., sys., and blinding). Extrapolated to Q2 = 0, the value of the proton's weak charge was measured to be QpW = 0.077 ± 0.019 (stat. and sys.) ± 0.026 (blinding). This is within 1 σ of the Standard Model prediction of QpW = 0.0705 ± 0.0008. The N → Δ inelastic asymmetry at Q2 = 0.02078 ± 0.0005 GeV2 and W = 1205 MeV was measured to be Ainel = -3.03 ± 0.65 ± 0.73 ± 0.07 ppm (stat., sys., and blinding). This result constrains the low energy constant to be dΔ = 5.8 ± 22gπ, and, if the result of the G0 experiment is included, dΔ = 5.8 ± 17gπ. This result rules out suggested large values of dΔ motivated by radiative hyperon decays. The elastic measurement is the first direct measurement of the weak charge of the proton while the inelastic measurement is only the second

  16. Effective dynamics of an electrically charged string with a current

    Science.gov (United States)

    Kazinski, P. O.

    2005-08-01

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found.

  17. Effective dynamics of an electrically charged string with a current

    CERN Document Server

    Kazinski, P O

    2005-01-01

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations ...

  18. Charge and Current in the Quantum Hall Matrix Model

    OpenAIRE

    2003-01-01

    We extend the quantum Hall matrix model to include couplings to external electric and magnetic fields. The associated current suffers from matrix ordering ambiguities even at the classical level. We calculate the linear response at low momenta -- this is unambigously defined. In particular, we obtain the correct fractional quantum Hall conductivity, and the expected density modulations in response to a weak and slowly varying magnetic field. These results show that the classical quantum Hall ...

  19. Nuclear electromagnetic charge and current operators in Chiral EFT

    Energy Technology Data Exchange (ETDEWEB)

    Girlanda, Luca [Università del Salento; Marcucci, Laura Elisa [Univ. Pisa; Pastore, Saori [Department of Physics and Astronomy, University of South Carolina, Columbia, SC; Piarulli, Maria [Department of Physics, Old Dominion University, Norfolk, VA; Schiavilla, Rocco [Old Dominion U., JLAB; Viviani, Michele

    2013-08-01

    We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.

  20. Peltier effect in multilayered nanopillars under high density charge current

    Science.gov (United States)

    Gravier, L.; Fukushima, A.; Kubota, H.; Yamamoto, A.; Yuasa, S.

    2006-12-01

    From the basic equations of thermoelectricity, we model the thermal regimes that develop in multilayered nanopillar elements experiencing continuous charge currents. The energy conservation principle was applied to all layer-layer and layer-electrode junctions. The obtained set of equations was solved to derive the temperature of each junction. The contribution of the Peltier effect is included in an effective resistance. This model gives satisfactory fits to experimental data obtained on a series of reference nanopillar elements.

  1. Peltier effect in multilayered nanopillars under high density charge current

    Energy Technology Data Exchange (ETDEWEB)

    Gravier, L [Institut de Physique des Nanostructures, Ecole Polytechnique Federale de Lausanne (EPFL), EPFL-SB-IPN station 3, 1015 Lausanne (Switzerland); Fukushima, A [National Institute of Advances Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Kubota, H [National Institute of Advances Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Yamamoto, A [National Institute of Advances Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Yuasa, S [National Institute of Advances Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2006-12-21

    From the basic equations of thermoelectricity, we model the thermal regimes that develop in multilayered nanopillar elements experiencing continuous charge currents. The energy conservation principle was applied to all layer-layer and layer-electrode junctions. The obtained set of equations was solved to derive the temperature of each junction. The contribution of the Peltier effect is included in an effective resistance. This model gives satisfactory fits to experimental data obtained on a series of reference nanopillar elements.

  2. Charged Current Quasielastic Analysis from MINERνA

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Anushree [Rio de Janeiro, CBPF

    2015-08-01

    The MINERνA detector situated in Fermilab, is designed to make precision cross-section measurements for scattering processes on various nuclei. In this proceeding, the results of the charged current quasi-elastic (CCQE) analysis using lepton kinematics and with proton kinematics have been presented. Comparison of these with theoretical models suggested that further studies are required to include the additional nuclear effects in the current simulations. The first direct measurement of electron-neutrino quasielastic-like scattering in the few-GeV region of incident neutrino energy has also been presented. All three analyses, discussed here, are carried out on hydrocarbon target.

  3. Computation of charged current neutrino-Te reactions cross sections

    Science.gov (United States)

    Tsakstara, V.; Kosmas, T. S.; Sinatkas, J.

    2016-08-01

    Neutrino-nucleus reactions, involving both neutral current (NC) and charged current (CC) interactions are important probes in modern neutrino physics searches. In the present work, we study the concrete CC reactions 130 Te(vℓ,ℓ-)130 I and 130 Te(ṽℓ,ℓ+)130Sb which are of current experimental interest for the CUORE and COBRA experiments operating at Gran Sasso underground laboratory in Italy. The nuclear wave functions for the required initial and final nuclear states are derived by employing the proton-neutron (p-n) quasi-particle random phase approximation (QRPA) which has been previously tested in our neutral-current v-nucleus studies for Te isotopes.

  4. The diffusion of charged particles in the weakly ionized plasma with power-law kappa-distributions

    Science.gov (United States)

    Wang, Lan; Du, Jiulin

    2017-10-01

    We study the diffusion of charged particles in the weakly ionized plasma with the power-law κ-distributions and without the magnetic field. The electrons and ions have different κ-parameters. We obtain the expressions of both diffusion and mobility coefficients of electrons and ions respectively in the plasma. We find that these new transport coefficient formulae depend strongly on the κ-parameters in the power-law distributed plasma. When we take κ→∞, these formulae reduce to the classical forms in the weakly ionized plasma with a Maxwellian distribution.

  5. Measurement of the effective weak mixing angle by jet-charge asymmetry in hadronic decays of the Z boson

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Easo, S; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Migani, D; Mihul, A; Van Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Moulik, T; Mount, R; Muanza, G S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pedace, M; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Sakar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F; Zilizi, G

    1998-01-01

    The coupling of the Z boson to quarks is studied in a sample of about 3.5 million hadronic Z decays collected by the L3 experiment at LEP from 1991 to 1995. The forward-backward quark charge asymmet ry is measured by means of a jet charge technique. From the measured asymmetries, the effective weak mixing angle is determined to be \\begin{center} $\\STE = 0.2327 \\pm 0.0012(\\mbox{\\emph{stat.}} ) \\pm 0.0013(\\mbox{\\emph{syst.}}).$

  6. Persistent Spin Current in a Quantum Wire with Weak Rashba Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    WANG Yi; SHENG Wei; ZHOU Guang-Hui

    2006-01-01

    @@ We theoretically investigate the spin current for a parabolically confined semiconductor heterojunction quantum wire with weak Rashba spin-orbit coupling by means of the perturbation method. By analytical calculation, it is found that only two components off spin current density is non-zero in the equilibrium case. Numerical examples have demonstrated that the spin current of electron transverse motion is 10-3 times that off electron longitudinal motion. However, the former one is much more sensitive to the strength of Rashba spin-orbit coupling. These results may suggest an approach to the spin storage device and to the measurement of spin current through its induced electric field.

  7. Propagation of dust-acoustic waves in weakly ionized plasmas with dust-charge fluctuation

    Indian Academy of Sciences (India)

    K K Mondal

    2004-11-01

    For an unmagnetized partially ionized dusty plasma containing electrons, singly charged positive ions, micron-sized massive negatively charged dust grains and a fraction of neutral atoms, dispersion relations for both the dust-ion-acoustic and the dust-acoustic waves have been derived, incorporating dust charge fluctuation. The dispersion relations, under various conditions, have been exhaustively analysed. The explicit expressions for the growth rates have also been derived.

  8. Sensitivities to charged-current nonstandard neutrino interactions at DUNE

    CERN Document Server

    Bakhti, Pouya

    2016-01-01

    We investigate the effects of charged-current nonstandard neutrino interactions (NSIs) at the source and at the detector in the simulated data for the planned Deep Underground Neutrino Experiment (DUNE), while neglecting the neutral-current NSIs at the propagation. We study the effects of NSIs on the simultaneous measurements of $\\theta_{23}$ and $ \\delta _{CP} $ in the DUNE. The analysis reveals that 3$\\sigma $ C.L. measurement of the correct octant of $\\theta _{23}$ in the standard mixing scenario is spoiled if NSIs are taken into account. Likewise, the NSIs can deteriorate the uncertainty of the $\\delta _{CP}$ measurement by a factor of two relative to that in the standard oscillation scenario. We further show that the source and the detector NSIs can induce a significant amount of fake CP-violation and the no fake CP-violation case can be excluded by more than 99\\% C.L. We also find the potential of DUNE to constrain the relevant charged-current NSI parameters from the single parameter fits for both neutr...

  9. Adsorption of weak polyelectrolytes on charged nanoparticles. Impact of salt valency, pH, and nanoparticle charge density. Monte Carlo simulations.

    Science.gov (United States)

    Carnal, Fabrice; Stoll, Serge

    2011-10-27

    Complex formation between a weak flexible polyelectrolyte chain and one positively charged nanoparticle in presence of explicit counterions and salt particles is investigated using Monte Carlo simulations. The influence of parameters such as the nanoparticle surface charge density, salt valency, and solution property such as the pH on the chain protonation/deprotonation process and monomer adsorption at the nanoparticle surface are systematically investigated. It is shown that the nanoparticle presence significantly modifies chain acid/base and polyelectrolyte conformational properties. The importance of the attractive electrostatic interactions between the chain and the nanoparticle clearly promotes the chain deprotonation leading, at high pH and nanoparticle charge density, to fully wrapped polyelectrolyte at the nanoparticle surface. When the nanoparticle bare charge is overcompensated by the polyelectrolyte charges, counterions and salt particles condense at the surface of the polyelectrolyte-nanoparticle complex to compensate for the excess of charges providing from the adsorbed polyelectrolyte chain. It is also shown that the complex formation is significantly affected by the salt valency. Indeed, with the presence of trivalent salt cations, competition is observed between the nanoparticle and the trivalent cations. As a result, the amount of adsorbed monomers is less important than in the monovalent and divalent case and chain conformations are different due to the collapse of polyelectrolyte segments around trivalent cations out of the nanoparticle adsorption layer.

  10. [A SWOT (strengths, weaknesses, opportunities, threats) analysis of the current immunization program in Zhejiang Province].

    Science.gov (United States)

    He, Han-Qing; Ling, Luo-Ya; Xu, Xu-Qing

    2009-02-01

    To know the status of Immunization program in Zhejiang Province. The investigation on immunization program in zhejiang province was conducted, and the SWOT analysis was corducted to make a comprehensive evaluation. 11 cities, 22 counties and 44 towns were investigated in this study, and the current immunization program in Zhejiang province were explored by SWOT analysis. The SWOT Matrix, includes SO (strength-opportunity), ST (strength-threat), WO (weakness-opportunity) and WT (weakness-threat) can apply to make optimal strategy for the development of expanded program on immunization.

  11. Streaming current magnetic fields in a charged nanopore

    Science.gov (United States)

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-11-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques.

  12. Streaming current magnetic fields in a charged nanopore

    Science.gov (United States)

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-01-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques. PMID:27833119

  13. Streaming current magnetic fields in a charged nanopore.

    Science.gov (United States)

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W

    2016-11-11

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques.

  14. Current flow in random resistor networks: the role of percolation in weak and strong disorder.

    Science.gov (United States)

    Wu, Zhenhua; López, Eduardo; Buldyrev, Sergey V; Braunstein, Lidia A; Havlin, Shlomo; Stanley, H Eugene

    2005-04-01

    We study the current flow paths between two edges in a random resistor network on a L X L square lattice. Each resistor has resistance e(ax) , where x is a uniformly distributed random variable and a controls the broadness of the distribution. We find that: (a) The scaled variable u identical with u congruent to L/a(nu) , where nu is the percolation connectedness exponent, fully determines the distribution of the current path length l for all values of u . For u > 1, the behavior corresponds to the weak disorder limit and l scales as l approximately L, while for u < 1 , the behavior corresponds to the strong disorder limit with l approximately L(d(opt) ), where d(opt) =1.22+/-0.01 is the optimal path exponent. (b) In the weak disorder regime, there is a length scale xi approximately a(nu), below which strong disorder and critical percolation characterize the current path.

  15. Weak measurement from the electron displacement current: new path for applications

    Science.gov (United States)

    Marian, D.; Colomés, E.; Zanghì, N.; Oriols, X.

    2015-10-01

    The interest on weak measurements is rapidly growing during the last years as a unique tool to better understand and predict new quantum phenomena. Up to now many theoretical and experimental weak-measurement techniques deal with (relativistic) photons or cold atoms, but there is much less investigation on (non-relativistic) electrons in up-to-date electronics technologies. We propose a way to perform weak measurements in nanoelectronic devices through the measurement of the total current (particle plus displacement component) in such devices. We study the interaction between an electron in the active region of a electron device with a metal surface working as a sensing electrode by means of the (Bohmian) conditional wave function. We perform numerical (Monte Carlo) simulations to reconstruct the Bohmian trajectories in the iconic double slit experiment. This work opens new paths for understanding the quantum properties of an electronic system as well as for exploring new quantum engineering applications in solid state physics.

  16. Self-consistent theory of charged current neutrino-nucleus reactions

    Energy Technology Data Exchange (ETDEWEB)

    Paar, Nils; Marketin, Tomislav; Vretenar, Dario [Physics Department, Faculty of Science, University Zagreb (Croatia); Ring, Peter [Physik-Department, Technischen Universitaet Muenchen, D-85748 Muenchen (Germany)

    2009-07-01

    A novel theoretical framework has been introduced for description of neutrino induced reactions with nuclei. The properties of target nuclei are determined in a self-consistent way using relativistic mean-field framework based on effective Lagrangians with density dependent meson-nucleon vertex functions. The weak lepton-hadron interaction is expressed in the standard current-current form, the nuclear ground state is described in the relativistic Hartree-Bogolyubov model, and the relevant transitions to excited nuclear states are calculated in the proton-neutron relativistic quasiparticle random phase approximation. This framework has been employed in studies of charged-current neutrino reactions involving nuclei of relevance for neutrino detectors, r-process nuclei, and neutrino-nucleus cross sections averaged over measured neutrino fluxes and supernova neutrino distributions.

  17. Charge transfer rates in organic semiconductors beyond first-order perturbation: from weak to strong coupling regimes.

    Science.gov (United States)

    Nan, Guangjun; Wang, Linjun; Yang, Xiaodi; Shuai, Zhigang; Zhao, Yi

    2009-01-14

    Semiclassical Marcus electron transfer theory is often employed to investigate the charge transport properties of organic semiconductors. However, quite often the electronic couplings vary several orders of magnitude in organic crystals, which goes beyond the application scope of semiclassical Marcus theory with the first-order perturbative nature. In this work, we employ a generalized nonadiabatic transition state theory (GNTST) [Zhao et al., J. Phys. Chem. A 110, 8204 (2004)], which can evaluate the charge transfer rates from weak to strong couplings, to study charge transport properties in prototypical organic semiconductors: quaterthiophene and sexithiophene single crystals. By comparing with GNTST results, we find that the semiclassical Marcus theory is valid for the case of the coupling semiconductors with general electronic coupling terms. Taking oligothiophenes as examples, we find that our GNTST-calculated hole mobility is about three times as large as that from the semiclassical Marcus theory. The difference arises from the quantum nuclear tunneling and the nonperturbative effects.

  18. Gd3+ and calcium sensitive, sodium leak currents are features of weak membrane-glass seals in patch clamp recordings.

    Directory of Open Access Journals (Sweden)

    Adrienne N Boone

    Full Text Available The properties of leaky patch currents in whole cell recording of HEK-293T cells were examined as a means to separate these control currents from expressed sodium and calcium leak channel currents from snail NALCN leak channels possessing both sodium (EKEE and calcium (EEEE selectivity filters. Leak currents were generated by the weakening of gigaohm patch seals by artificial membrane rupture using the ZAP function on the patch clamp amplifier. Surprisingly, we found that leak currents generated from the weakened membrane/glass seal can be surprisingly stable and exhibit behavior that is consistent with a sodium leak current derived from an expressible channel. Leaky patch currents differing by 10 fold in size were similarly reduced in size when external sodium ions were replaced with the large monovalent ion NMDG+. Leaky patch currents increased when external Ca2+ (1.2 mM was lowered to 0.1 mM and were inhibited (>40% to >90% with 10 µM Gd3+, 100 µM La3+, 1 mM Co2+ or 1 mM Cd2+. Leaky patch currents were relatively insensitive (<30% to 1 mM Ni2+ and exhibited a variable amount of block with 1 mM verapamil and were insensitive to 100 µM mibefradil or 100 µM nifedipine. We hypothesize that the rapid changes in leak current size in response to changing external cations or drugs relates to their influences on the membrane seal adherence and the electro-osmotic flow of mobile cations channeling in crevices of a particular pore size in the interface between the negatively charged patch electrode and the lipid membrane. Observed sodium leak conductance currents in weak patch seals are reproducible between the electrode glass interface with cell membranes, artificial lipid or Sylgard rubber.

  19. Surfactant mediated self-assembly of weakly charged polymer on hydrophobic polymeric substrate

    Science.gov (United States)

    Goswami, Monojoy; Sumpter, Bobby

    2011-03-01

    Molecular Dynamics (MD) simulations are carried out to understand the physical aspects of different bulk morphologies formed in charged diblock copolymers. It has been seen that the bulk morphologies formed by charged block copolymers, 75 vol % fluorinated polyisoprene (FPI) - 25 vol% sulfonated polystyrene (PSS) with 50% sulfonation are substantially different from their diblock counterparts. In this study we show how the bulk morphologies change from the uncharged diblock counterparts and also how morphology can be tuned with volume fraction of the charged block and with a change in dielectric constant. A physical understanding based on the underlying strong electrostatic interactions between the charged block and counterions is obtained. The 75/25 diblock shows hexagonal morphologies with the minority blocks (PSS) forming the continuous phase due to charge percolation and the FPI blocks arranged in hexagonal cylinders. Some long-range order can be sustained even by changing the dielectric of the medium. Diverse and atypical morphologies are readily accessible by simply changing the number distribution of the charges on PSS block.

  20. Measurement of charm in charged current at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Tobias

    2008-12-15

    A measurement of charm production in charged current (CC) polarized electron-proton deep inelastic scattering processes with data from the H1 detector at the HERA collider is presented. This process in principle allows access to the strange quark density in the proton. In total 5460 CC candidate events in e{sup +}p and 6253 in e{sup -}p data are selected in the kinematic range Q{sup 2}>223 GeV{sup 2} and 0.03charge asymmetry. Muons originating from charmed hadron decays in CC events at HERA always have the same charge as the beam lepton. The extracted charm fractions in the selected CC candidate event samples are F{sub c}=9.5{+-}8.9{+-}3.0 % for e{sup +}p and F{sub c}=4.4{+-}6.9{+-}2.6 % for e{sup -}p. Due to the large statistical errors of the measured charm fractions, the strange quark density in the proton has not been extracted. (orig.)

  1. Determination of the weak charge of the proton through parity violating asymmetry measurements in the elastic e+p scattering

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, Adesh [Mississippi State Univ., Mississippi State, MS (United States)

    2014-12-01

    The Qweak experiment has taken data to make a 2.5% measurement of parity violating elastic e+p asymmetry in the four momentum transfer region of 0.0250 (GeV/c)2. This asymmetry is proportional to the weak charge of the proton, which is related to the weak mixing angle, sin2(theta_W). The final Qweak measurement will provide the most precise measurement of the weak mixing angle below the Z0 pole to test the Standard Model prediction. A description of the experimental apparatus is provided in this dissertation. The experiment was carried out using a longitudinally polarized electron beam of up to 180 microampere on a 34.5 cm long unpolarized liquid hydrogen target. The Qweak target is not only the world's highest cryogenic target ever built for a parity experiment but also is the least noisy target. This dissertation provides a detailed description of this target and presents a thorough analysis of the target performance. Statistical analysis of Run 1 data, collected between Feb - May 2011, is done to extract a blinded parity violating asymmetry of size -299.7 ± 13.4 (stat.) ± 17.2 (syst.) ± 68 (blinding) parts-per-billion. This resulted in a preliminary proton's weak charge of value 0.0865 ± 0.0085, a 9% measurement. Based on this blinded asymmetry, the weak mixing angle was determined to be sin2(theta_W) = 0.23429 ± 0.00211.

  2. Neutral weak-current two-body contributions in inclusive scattering from {sup 12}C

    Energy Technology Data Exchange (ETDEWEB)

    Lovato, Alessandro [ANL; Gandolfi, Stefano [LANL; Carlson, Joseph [LANL; Pieper, S. C. [ANL; Schiavilla, Rocco [JLAB, ODU

    2014-05-01

    An {\\it ab initio} calculation of the sum rules of the neutral weak response functions in $^{12}$C is reported, based on a realistic Hamiltonian, including two- and three-nucleon potentials, and on realistic currents, consisting of one- and two-body terms. We find that the sum rules of the response functions associated with the longitudinal and transverse components of the (space-like) neutral current are largest and that a significant portion ($\\simeq 30$\\%) of the calculated strength is due to two-body terms. This fact may have implications for the MiniBooNE and other neutrino quasi-elastic scattering data on nuclei.

  3. Charged Current Neutrino Nucleus Interactions at Intermediate Energies

    CERN Document Server

    Leitner, T; Mosel, U

    2006-01-01

    We have developed a model to describe the interactions of neutrinos with nucleons and nuclei, focusing on the region of the quasielastic and Delta(1232) peaks. We describe neutrino nucleon collisions with a fully relativistic formalism which incorporates state-of-the-art parametrizations of the form factors for both the nucleon and the N-Delta transition. The model has then been extended to finite nuclei, taking into account nuclear effects such as Fermi motion, Pauli blocking (both within the local density approximation), nuclear binding and final state interactions. The in-medium modification of the Delta resonance due to Pauli blocking and collisional broadening have also been included. Final state interactions are implemented by means of the Boltzmann-Uehling-Uhlenbeck (BUU) coupled-channel transport model. Results for charged current inclusive cross sections and exclusive channels as pion production and nucleon knockout are presented and discussed.

  4. Charged-current neutrino-nucleus reactions within the SuSAv2-MEC approach

    CERN Document Server

    Megias, G D; Barbaro, M B; Caballero, J A; Donnelly, T W; Simo, I Ruiz

    2016-01-01

    We present a detailed study of charged-current (CC) neutrino-nucleus reactions in a fully relativis- tic framework and comparisons with recent experiments spanning an energy range from hundreds of MeV up to 100 GeV within the SuperScaling Approach, which is based on the analysis of electron- nucleus scattering data and has been recently improved with the inclusion of Relativistic Mean Field theory effects. We also evaluate and discuss the impact of two-particle two-hole meson-exchange currents (2p-2h MEC) on neutrino-nucleus interactions through the analysis of two-particle two-hole axial and vector contributions to weak response functions in a fully relativistic Fermi gas. The results show a fairly good agreement with experimental data over the whole range of neutrino energies.

  5. The role of meson exchange currents in charged current (anti)neutrino-nucleus scattering

    CERN Document Server

    Barbaro, M B; Caballero, J A; De Pace, A; Donnelly, T W; Megias, G D; Simo, I Ruiz

    2016-01-01

    We present our recent progress in the description of neutrino-nucleus interaction in the GeV region, of interest for ongoing and future oscillation experiments. In particular, we discuss the weak excitation of two-particle-two-hole states induced by meson exchange currents in a fully relativistic framework. We compare the results of our model with recent measurements of neutrino scattering cross sections, showing the crucial role played by two-nucleon knockout in the interpretation of the data.

  6. Effects of weak second-class currents in semi-leptonic processes

    Energy Technology Data Exchange (ETDEWEB)

    Samsonenko, N.; Cumar, Y.; Suvorov, M. (Universite Patrice-Lumumba, Moscou (URSS))

    1982-01-01

    The possibility of the observation of the second-class currents (SCC) in the semi-leptonic processes and also in the processes of the neutrino decomposition of deuterons due to neutral and charged currents, is discussed. It is shown, that the effects of the SCC are strongly dependent on the geometrical configuration of the experiments (i.e. the mutual orientation of the spins and momenta of the particles under consideration). The examples of favorable and unfavorable geometrical configurations are given. An evaluation of the effects of the SCC in the above processes under different assumptions about form factors of the particles and different meanings of energies and momenta is made.

  7. A Measurement of the Weak Charge of the Proton through Parity Violating Electron Scattering using the Qweak Apparatus: A 21% Result

    Energy Technology Data Exchange (ETDEWEB)

    Beminiwattha, Rakitha [Ohio Univ., Athens, OH (United States)

    2013-08-01

    After a decade of preparations, the Qweak experiment at Jefferson Lab is making the first direct measurement of the weak charge of the proton, Q^p_W. This quantity is suppressed in the Standard Model making a good candidate for search for new physics beyond the SM at the TeV scale. Operationally, we measure a small (about -0.200 ppm) parity-violating asymmetry in elastic electron-proton scattering in integrating mode while flipping the helicity of the electrons 1000 times per second. Commissioning took place Fall 2010, and we finished taking data in early summer 2012. This dissertation is based on the data taken on an initial two weeks period (Wien0). It will provide an overview of the Qweak apparatus, description of the data acquisition and analysis software systems, and final analysis and results from the Wien0 data set. The result is a 16% measurement of the parity violating electron-proton scattering asymmetry, A = -0.2788 +/- 0.0348 (stat.) +/- 0.0290 (syst.) ppm at Q^2 = 0.0250 +/- 0.0006 (GeV)^2. From this a 21% measurement of the weak charge of the proton, Q_w^p(msr)= +0.0952 +/- 0.0155 (stat.) +/- 0.0131 (syst.) +/- 0.0015 (theory) is extracted. From this a 2% measurement of the weak mixing angle, sin^2theta_W(msr)= +0.2328 +/- 0.0039 (stat.) +/- 0.0033 (syst.) +/- 0.0004 (theory) and improved constraints on isoscalar/isovector effective coupling constants of the weak neutral hadronic currents are extracted. These results deviate from the Standard Model by one standard deviation. The Wien0 results are a proof of principle of the Qweak data analysis and a highlight of the road ahead for obtaining full results.

  8. DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer.

    Science.gov (United States)

    Bronder, Thomas S; Poghossian, Arshak; Scheja, Sabrina; Wu, Chunsheng; Keusgen, Michael; Mewes, Dieter; Schöning, Michael J

    2015-09-16

    Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.

  9. LELONG-DEMAILLY NUMBERS IN TERMS OF CAPACITY AND WEAK CONVERGENCE FOR CLOSED POSITIVE CURRENTS

    Institute of Scientific and Technical Information of China (English)

    Fredj ELKHADHRA

    2013-01-01

    In this paper we give a new definition of the Lelong-Demailly number in terms of the CT-capacity, where T is a closed positive current and CT is the capacity associated to T . This derived from some esimate on the growth of the CT-capacity of the sublevel sets of a weighted plurisubharmonic (psh for short) function. These estimates enable us to give another proof of the Demailly’s comparaison theorem as well as a generalization of some results due to Xing concerning the characterization of bounded psh functions. Another problem that we consider here is related to the existence of a psh function v that satisfies the equality CT (K) = RK T ∧(ddcv)p, where K is a compact subset. Finally, we give some conditions on the capacity CT that guarantees the weak convergence uk Tk·uT , for positive closed currents T, Tk and psh functions uk, u.

  10. Information about the state of a charge qubit gained by a weakly coupled quantum point contact

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S; You, J Q; Nori, Franco [Advanced Science Institute, Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198 (Japan)], E-mail: ashhab@riken.jp

    2009-12-15

    We analyze the information that one can learn about the state of a quantum two-level system, i.e. a qubit, when probed weakly by a nearby detector. We consider the general case where the qubit Hamiltonian and the qubit's operator probed by the detector do not commute. Because the qubit's state keeps evolving while being probed and the measurement data is mixed with a detector-related background noise, one might expect the detector to fail in this case. We show, however, that under suitable conditions and by proper analysis of the measurement data, useful information about the initial state of the qubit can be extracted. Our approach complements the usual master-equation and quantum-trajectory approaches, which describe the evolution of the qubit's quantum state during the measurement process but do not keep track of the acquired measurement information.

  11. The weak, fluctuating, dipole moment of membrane-bound hydrogenase from Aquifex aeolicus accounts for its adaptability to charged electrodes.

    Science.gov (United States)

    Oteri, Francesco; Ciaccafava, Alexandre; de Poulpiquet, Anne; Baaden, Marc; Lojou, Elisabeth; Sacquin-Mora, Sophie

    2014-06-21

    [NiFe] hydrogenases from Aquifex aeolicus (AaHase) and Desulfovibrio fructosovorans (DfHase) have been mainly studied to characterize physiological electron transfer processes, or to develop biotechnological devices such as biofuel cells. In this context, it remains difficult to control the orientation of AaHases on electrodes to achieve a fast interfacial electron transfer. Here, we study the electrostatic properties of these two proteins based on microsecond-long molecular dynamics simulations that we compare to voltammetry experiments. Our calculations show weak values and large fluctuations of the dipole direction in AaHase compared to DfHase, enabling the AaHase to absorb on both negatively and positively charged electrodes, with an orientation distribution that induces a spread in electron transfer rates. Moreover, we discuss the role of the transmembrane helix of AaHase and show that it does not substantially impact the general features of the dipole moment.

  12. Weak constraint four-dimensional variational data assimilation in a model of the California Current System

    Science.gov (United States)

    Crawford, William J.; Smith, Polly J.; Milliff, Ralph F.; Fiechter, Jerome; Wikle, Christopher K.; Edwards, Christopher A.; Moore, Andrew M.

    2016-12-01

    A new approach is explored for computing estimates of the error covariance associated with the intrinsic errors of a numerical forecast model in regions characterized by upwelling and downwelling. The approach used is based on a combination of strong constraint data assimilation, twin model experiments, linear inverse modeling, and Bayesian hierarchical modeling. The resulting model error covariance estimates Q are applied to a model of the California Current System using weak constraint four-dimensional variational (4D-Var) data assimilation to compute estimates of the ocean circulation. The results of this study show that the estimates of Q derived following our approach lead to demonstrable improvements in the model circulation estimates and isolate regions where model errors are likely to be important and that have been independently identified in the same model in previously published work.

  13. The efficiency of fast wave current drive for a weakly relativistic plasma

    Science.gov (United States)

    Chiu, S. C.; Lin-Liu, Y. R.; Karney, C. F. F.

    1994-10-01

    Current drive by fast waves (FWCD) is an important candidate for steady-state operation of tokamaks. Major experiments using this scheme are being carried out on DIII-D. There has been considerable study of the theoretical efficiency of FWCD. In Refs. 4 and 5, the nonrelativistic efficiency of FWCD at arbitrary frequencies was studied. For DIII-D parameters, the results can be considerably different from the Landau and Alfvén limits. At the high temperatures of reactors and DIII-D upgrade, relativistic effects become important. In this paper, the relativistic FWCD efficiency for arbitrary frequencies is studied. Assuming that the plasma is weakly relativistic, i.e., Te/mc2 is small, an analytic expression for FWCD is obtained for high resonant energies (uph/uTe≫1). Comparisons with the results from a numerical code ADJ and the nonrelativistic results shall be made and analytical fits in the whole range of velocities shall be presented.

  14. Design of a CMOS Adaptive Charge Pump with Dynamic Current Matching

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel structure for a charge pump circuit is proposed, in which the charge-pump (CP) current can adaptively regulated according to phase-locked loops (PLL) frequency synthesis demand. The current follow technology is used to make perfect current matching characteristics, and the two differential inverters are implanted to increase the speed of charge pump and decrease output spur due to theory of low voltage difference signal. Simulation results, with 1st silicon 0.25 μm 2.5 V complementary metal-oxide-semiconductor (CMOS) mixed-signal process, show the good current matching characteristics regardless of the charge pump output voltages.

  15. Resonant Charge Current in a Rashba Ring Induced by Spin-Dependent Potential

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhan-Feng; LI Hong

    2008-01-01

    A one-dimensional ring subject to Rashba spin-orbit coupling is investigated. When it is attached to a lead with spin-dependent chemical potential, there will be charge current in the ring. The charge current response is resonantly maximized when the Fermi energy of the lead is equal to any energy level of the 1D ring. And if two probes are attached to the ring, the electric voltage between them creates sawtooth-like wave, which indicates the direction of the charge current. A ferromagnetic lead can also induce persistent charge current, which can be detected by magnetization intensity measurement.

  16. Barodynamic determination of the current yield in the charging of a sealed nickel-cadmium battery

    Energy Technology Data Exchange (ETDEWEB)

    Tsenter, B.T.; Boldin, R.V.; Levinzon, L.M.

    1982-02-10

    The current yield (n) in charging a sealed nickel-cadmium battery is an important parameter determining such characteristics as the charge, heat regime, and energy supply. This work presents a method for determining n relative to barodynamic measurements in charging and storing sealed nickel-cadmium battery.

  17. Neutrino induced charged-current coherent $\\rho$ production

    CERN Document Server

    ,

    2013-01-01

    We present the latest results of coherent $\\rho$ (Coh$\\rho$) production using the large data set collected by the NOMAD detector in which the momenta, charges, and photons are precisely measured. We discuss the application of using Coh$\\rho$ process to constrain the neutrino flux with the proposed Long-Baseline Neutrino Experiment Near Detector, the high resolution Straw Tube Tracker.

  18. ANALYSIS OF A COMMERCIAL PORTABLE LITHIUM-ION BATTERY UNDER LOW CURRENT CHARGE-DISCHARGE CYCLES

    Directory of Open Access Journals (Sweden)

    Stephany Pires da Silva

    Full Text Available The dependence between the transferred charge and the corresponding transference time to charge and discharge a portable cell phone Li-ion battery (LiCoO2/C under cycles of low intensity currents was studied in detail. The voltage curve profile between 3.0 and 4.2 V and the charging and discharging time are strongly influenced by the applied current intensity. A linear dependence between the stored and extracted charges, into and from the battery, with the intensity of applied current was also observed. Allometric equations were found to describe the correlation between the charge transference time and the applied current intensity to charge and discharge the battery.

  19. Development of Capacitor Charging Supply Based on Constant Current Technique

    Institute of Scientific and Technical Information of China (English)

    YANG; Jing-he; ZHANG; Li-feng; YANG; Sheng; TONG; Xun-hua; YU; Guo-long

    2013-01-01

    As the pulse power supply in electron linear accelerator,the line-type pulse modulator is used to produce the high voltage pulse which come into being when the pulse forming net(PFN)is discharged.The frequency and stability is related to the PFN charging system.The breakthrough in high power switch devices makes it possible that applying switch devices are into pulse power field.In line-type high voltage

  20. Information parameters for realization of adaptive charge of secondary chemical sources of a current

    Directory of Open Access Journals (Sweden)

    Zhitnik N. E.

    2008-10-01

    Full Text Available A chrono-potentiometric method of control of the state of chemical sources of current (CSC is offered. The method allows from chrono-potentiogram (CPG, representing CSC reaction on the charge current impulse, to get practically all informative parameters, necessary for practical realization of adaptive charge.

  1. The power of two: Assessing the impact of a second measurement of the weak-charge form factor of 208Pb

    CERN Document Server

    Piekarewicz, J; Giuliani, P; Chicken, E

    2016-01-01

    [Background] Besides its intrinsic value as a fundamental nuclear-structure observable, the weak-charge density of 208Pb - a quantity that is closely related to its neutron distribution - is of fundamental importance in constraining the equation of state of neutron-rich matter. [Purpose] To assess the impact that a second electroweak measurement of the weak-charge form factor of 208Pb may have on the determination of its overall weak-charge density. [Methods] Using the two putative experimental values of the form factor, together with a simple implementation of Bayes' theorem, we calibrate a theoretically sound - yet surprisingly little known - symmetrized Fermi function, that is characterized by a density and form factor that are both known exactly in closed form. [Results] Using the charge form factor of 208Pb as a proxy for its weak-charge form factor, we demonstrate that using only two experimental points to calibrate the symmetrized Fermi function is sufficient to accurately reproduce the experimental ch...

  2. Searching for Tensor Currents in the Weak Interaction Using 8Li β Decay

    Science.gov (United States)

    Burkey, M. T.; Savard, G.; Segel, R. E.; Clark, J. A.; Scielzo, N. D.; Gallant, A. T.; Kolos, K.; Padgett, S. W.; Wang, B. S.; Hirsh, T.; Heckmaier, E.; Marley, S. T.; Morgan, G.; Orford, R.; Sharma, K. S.

    2017-01-01

    The weak interaction is framed in the Standard Model with a pure vector-axial vector structure. A high-precision measurement of the β - ν correlation coefficient (aβν) could reveal contributions from tensor or scalar currents and give insight into new physics. We utilize stopped 8Li in the Beta decay Paul Trap (BPT) at Argonne National Lab to measure aβν. The BPT is surrounded on 4 sides with double-sided silicon strip detectors backed by plastic scintillator detectors, which allow the kinematics of the 8Li decay products to be over-constrained. A previous measurement done by our collaboration resulted in the first improvement in over 50 years to the tensor limit of aβν in a nuclear setting and was recently published in PRL. We have since upgraded our system and obtained over ten times our previous statistics. Our goal is to achieve a limit of aβν with an uncertainty of 0.001. Analysis is ongoing. We acknowledge NSERC, Canada, App. No. 216974, the U.S. DOE Contract No. DE-AC02-06CH11357 [ANL] and DE-AC52-07NA27344 [LLNL], NSF Grant No. 1144082 and the ANL ATLAS facility

  3. Effect of interjunction coupling on superconducting current and charge correlations in intrinsic Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Hamdipour, M.; Kolahchi, M. R.

    2009-07-01

    Charge formations on superconducting layers and creation of the longitudinal plasma wave in the stack of intrinsic Josephson junctions change crucially the superconducting current through the stack. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers allows us to predict the additional features in the current-voltage characteristics. The charge autocorrelation functions clearly demonstrate the difference between harmonic and chaotic behavior in the breakpoint region. Use of the correlation functions gives us a powerful method for the analysis of the current-voltage characteristics of coupled Josephson junctions.

  4. Current feedback operational amplifiers as fast charge sensitive preamplifiers for photomultiplier read out

    Energy Technology Data Exchange (ETDEWEB)

    Giachero, A; Gotti, C; Maino, M; Pessina, G, E-mail: claudio.gotti@mib.infn.it [INFN - Sezione di Milano-Bicocca, I-20126, Milano (Italy)

    2011-05-01

    Fast charge sensitive preamplifiers were built using commercial current feedback operational amplifiers for fast read out of charge pulses from a photomultiplier tube. Current feedback opamps prove to be particularly well suited for this application where the charge from the detector is large, of the order of one million electrons, and high timing resolution is required. A proper circuit arrangement allows very fast signals, with rise times down to one nanosecond, while keeping the amplifier stable. After a review of current feedback circuit topology and stability constraints, we provide a 'recipe' to build stable and very fast charge sensitive preamplifiers from any current feedback opamp by adding just a few external components. The noise performance of the circuit topology has been evaluated and is reported in terms of equivalent noise charge.

  5. Current feedback operational amplifiers as fast charge sensitive preamplifiers for photomultiplier read out

    Science.gov (United States)

    Giachero, A.; Gotti, C.; Maino, M.; Pessina, G.

    2011-05-01

    Fast charge sensitive preamplifiers were built using commercial current feedback operational amplifiers for fast read out of charge pulses from a photomultiplier tube. Current feedback opamps prove to be particularly well suited for this application where the charge from the detector is large, of the order of one million electrons, and high timing resolution is required. A proper circuit arrangement allows very fast signals, with rise times down to one nanosecond, while keeping the amplifier stable. After a review of current feedback circuit topology and stability constraints, we provide a "recipe" to build stable and very fast charge sensitive preamplifiers from any current feedback opamp by adding just a few external components. The noise performance of the circuit topology has been evaluated and is reported in terms of equivalent noise charge.

  6. Vortex Properties of Nanosized Superconducting Strips with One Central Weak Link Under an Applied Current Drive

    Science.gov (United States)

    Peng, Lin; Cai, Chuanbing

    2016-06-01

    The static and dynamic properties of vortices in a nanosized superconducting strip with one central weak link (weakly superconducting region or normal metal) are investigated in the presence of external magnetic and electric fields. The time-dependent Ginzburg-Landau equations are used to describe the electronic transport and have been solved numerically by a finite element analysis. Anisotropy is included through the spatially dependent anisotropy coefficient ζ in different layers of the sample. Our results show that the energy barrier for vortices to enter a weak link is smaller than that for vortices to enter the superconducting layers. The magnetization shows periodic oscillations. With the introduction of the weak link, the period of oscillations decreases.

  7. A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Katsuki [Kyoto Univ. (Japan)

    2009-01-01

    Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for vμ → vx oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance (vμN → μ-+) and coherent pion production interacting with the entire nucleus (vμA → μ-+), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, vμ 12C → μ-12+, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering angle is not small. Furthermore, the coherent process is particularly interesting because it is deeply rooted in fundamental physics via Adler's partially conserved axial-vector current theorem. We took data from June 2007 until August 2008, in both the neutrino and antineutrino beam. In total, 2.52 x 1020 protons on target were collected. We have performed a search for charged current coherent pion production by using SciBooNE's full neutrino data set, corresponding to 0.99 x 1020 protons on target. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio

  8. Charged-current inclusive neutrino cross sections in the SuperScaling model

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, M. V., E-mail: martin.inrne@gmail.com [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid E-28040 (Spain); Megias, G. D.; Caballero, J. A. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla (Spain); González-Jiménez, R. [Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Gent (Belgium); Moreno, O.; Donnelly, T. W. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Barbaro, M. B. [Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino, Via P. Giuria 1, 10125 Torino (Italy); Antonov, A. N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Moya de Guerra, E.; Udías, J. M. [Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid E-28040 (Spain)

    2016-03-25

    SuperScaling model (SuSA) predictions to neutrino-induced charged-current π{sup +} production in the Δ-resonance region are explored under MiniBooNE experimental conditions. The SuSA charged-current π{sup +} results are in good agreement with data on neutrino flux-averaged double-differential cross sections. The SuSA model for quasielastic scattering and its extension to the pion production region are used for predictions of charged-current inclusive neutrino-nucleus cross sections. Results are also compared with the T2K experimental data for inclusive scattering.

  9. Probing space charge and resolving overlimiting current mechanisms at the microchannel-nanochannel interface.

    Science.gov (United States)

    Schiffbauer, Jarrod; Liel, Uri; Leibowitz, Neta; Park, Sinwook; Yossifon, Gilad

    2015-07-01

    We present results demonstrating the space charge-mediated transition between classical, diffusion-limited current and surface-conduction dominant over-limiting current in a shallow microchannel-nanochannel device. The extended space charge layer develops at the depleted microchannel-nanochannel entrance at high current and is correlated with a distinctive maximum in the dc resistance. Experimental results for a shallow surface-conduction dominated system are compared with theoretical models, allowing estimates of the effective surface charge at high voltage to be obtained. In comparison to an equilibrium estimate of the surface charge obtained from electrochemical impedance spectroscopy, it is further observed that the effective surface charge appears to change under applied voltage.

  10. The Qweak Experiment: A Search for New Physics at the TeV Scale via a Measurement of the Proton's Weak Charge

    CERN Document Server

    Armstrong, D S; Averett, T; Benesch, J; Birchall, J; Bosted, P; Bruell, A; Capuano, C L; Cates, G; Carrigee, C; Carlini, R D; Chattopadhyay, S; Covrig, S; Davis, C A; Dow, K; Dunne, J; Dutta, D; Ent, R; Erler, J; Falk, W; Fenker, H; Finn, J M; Forest, T A; Franklin, W; Gaskell, D; Gericke, M; Grames, J; Grimm, K; Hersman, F W; Higinbotham, D; Holtrop, M; Hoskins, J R; Johnston, K; Ihloff, E; Jones, M; Jones, R; Joo, K; Kelsey, J; Keppel, C; Khol, M; King, P; Korkmaz, E; Kowalski, S; Leacock, J; Leckey, J P; Lee, L; Lung, A; Mack, D; Majewski, S; Mammei, J; Martin, J; Meekins, D; Micherdzinska, A; Mkrtchyan, A; Mkrtchyan, H; Morgan, N; Myers, K E; Narayan, A; Opper, A K; Pan, J; Page, S A; Paschke, K; Pitt, M; Poelker, M; Prok, Y; Ramsay, W D; Ramsey-Musolf, M; Roche, J; Simicevic, N; Smith, G; Smith, T; Souder, P; Spayde, D; Stokes, B E; Suleiman, R; Tadevosyan, V; Tsentalovich, E; van Oers, W T H; Vulcan, W; Wang, P; Wells, S; Wood, S A; Yang, S; Young, R; Zhu, H; Zorn, C

    2012-01-01

    We propose a new precision measurement of parity-violating electron scattering on the proton at very low Q^2 and forward angles to challenge predictions of the Standard Model and search for new physics. A unique opportunity exists to carry out the first precision measurement of the proton's weak charge, $Q_W =1 - 4\\sin^2\\theta_W$. A 2200 hour measurement of the parity violating asymmetry in elastic ep scattering at Q^2=0.03 (GeV/c)^2 employing 180 $\\mu$A of 85% polarized beam on a 35 cm liquid Hydrogen target will determine the proton's weak charge with approximately 4% combined statistical and systematic errors. The Standard Model makes a firm prediction of $Q_W$, based on the running of the weak mixing angle from the Z0 pole down to low energies, corresponding to a 10 sigma effect in this experiment.

  11. Controlling charge current through a DNA based molecular transistor

    Science.gov (United States)

    Behnia, S.; Fathizadeh, S.; Ziaei, J.

    2017-01-01

    Molecular electronics is complementary to silicon-based electronics and may induce electronic functions which are difficult to obtain with conventional technology. We have considered a DNA based molecular transistor and study its transport properties. The appropriate DNA sequence as a central chain in molecular transistor and the functional interval for applied voltages is obtained. I-V characteristic diagram shows the rectifier behavior as well as the negative differential resistance phenomenon of DNA transistor. We have observed the nearly periodic behavior in the current flowing through DNA. It is reported that there is a critical gate voltage for each applied bias which above it, the electrical current is always positive.

  12. Profiling of the injected charge drift current transients by cross-sectional scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Gaubas, E., E-mail: eugenijus.gaubas@ff.vu.lt; Ceponis, T.; Pavlov, J.; Baskevicius, A. [Institute of Applied Research, Vilnius University, Sauletekio av. 9-III, LT-10222 Vilnius (Lithuania)

    2014-02-07

    The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has been shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current.

  13. Profiling of the injected charge drift current transients by cross-sectional scanning technique

    Science.gov (United States)

    Gaubas, E.; Ceponis, T.; Pavlov, J.; Baskevicius, A.

    2014-02-01

    The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has been shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current.

  14. Shot noises of spin and charge currents in a ferromagnet-quantum-dot-ferromagnet system

    Institute of Scientific and Technical Information of China (English)

    Hong-kang ZHAO; Jian WANG

    2008-01-01

    We have investigated the shot noises of charge and spin current by considering the spin polarized electron tunneling through a ferromagnet-quantum-dotferromagnet system.We have derived the spin polarized current noise matrix,from which we can derive general expressions of shot noises associated with charge and spin currents.The spin and charge currents are intimately related to the polarization angles,and they behave quite differently from each other.The shot noise of charge current is symmetric about the gate voltage whose structure is modified by the Zeeman field considerably.There exists oscillations in spin current shot noise in the absence of source-drain bias at zero temperature,and it is asym metric in the positive and negative regimes of sourcedrain voltage. The shot noise of spin current behaves quite differently from the shot noise of charge current,since the spin current components Isx,Isy oscillate sinusoidally with the frequency ωγ in the γth lead,while the Isz component of spin current is independent of time.

  15. Competition between Induced-Charge Electro-Osmosis and Electro-Thermal Effects around a Weakly-Polarizable Microchannel Corner

    CERN Document Server

    Zehavi, Matan; Yossifon, Gilad

    2014-01-01

    The microchannel corner is a common inherent component of most planar microfluidic systems and thus its influence on the channel flow is of significant interest. Application of an alternating current electric field enables quantification of the non-linear induced-charge electro-osmosis (ICEO) ejection flow effect by isolating it from linear electro-osmotic background flow which is present under dc forcing. The hydrodynamic flow in the vicinity of a sharp channel corner is analyzed using experimental micro-particle-image-velocimetry (PIV) and numerical simulations for different buffer concentrations, frequencies and applied voltages. Divergence from the purely ICEO flow with increasing buffer conductivity is shown to be a result of increasing electro-thermal effects due to Joule heating.

  16. Competition between Induced-Charge Electro-Osmosis and Electrothermal Effects at Low Frequencies around a Weakly Polarizable Microchannel Corner

    Science.gov (United States)

    Zehavi, Matan; Boymelgreen, Alicia; Yossifon, Gilad

    2016-04-01

    Sharp corners are an inherent component of most planar microfluidic systems, and thus their influence on flow within the microchannel is of significant interest. Here, we demonstrate that in electrokinetically driven devices, the presence of a sharp corner may result in localized vortices due to nonlinear induced-charge electro-osmosis (ICEO) and/or electrothermal forces. Application of an alternating-current electric field enables quantification of the nonlinear ICEO ejection-flow effect by isolating it from linear electro-osmotic background flow which is present under dc forcing. The hydrodynamic flow in the vicinity of a sharp channel corner is analyzed using experimental micro-particle-image-velocimetry and numerical simulations for different buffer concentrations, frequencies, and applied voltages. Divergence from the purely ICEO flow with increasing buffer conductivity is shown to be a result of increasing electrothermal effects due to Joule heating.

  17. Double-Frame Current Control with a Multivariable PI Controller and Power Compensation for Weak Unbalanced Networks

    CERN Document Server

    Siemaszko, D

    2015-01-01

    The handling of weak networks with asymmetric loads and disturbances im- plies the accurate handling of the second-harmonic component that appears in an unbalanced network. This paper proposes a classic vector control approach using a PI-based controller with superior decoupling capabilities for operation in weak networks with unbalanced phase voltages. A synchronization method for weak unbalanced networks is detailed, with dedicated dimensioning rules. The use of a double-frame controller allows a current symmetry or controlled imbalance to be forced for compensation of power oscillations by controlling the negative current sequence. This paper also serves as a useful reminder of the proper way to cancel the inherent coupling effect due to the transformation to the synchronous rotating reference frame, and of basic considerations of the relationship between switching frequency and control bandwidth.

  18. Charged Current Coherent Pion Production in Neutrino Scattering

    CERN Document Server

    Martins, Paul

    2016-01-01

    We summarise here the main differences of three models of neutrino-induced coherent pion production, namely the Rein-Sehgal and Berger-Sehgal models based on the Partially Conserved Axial Current theorem and the Alvarez-Ruso \\textit{et al.} model which is using a microscopic approach. Their predictions in the event generators are compared against recent experimental measurements for a neutrino energy from 0.5 to 20 GeV.

  19. First Measurement of Charged Current Cross Sections at HERA with Longitudinally Polarised Positrons

    CERN Document Server

    Aktas, A; Anthonis, T; Antunovic, B; Aplin, S; Asmone, A; Astvatsatourov, A; Babaev, A; Backovic, S; Bähr, J; Baghdasaryan, A; Baranov, P; Barrelet, E; Bartel, Wulfrin; Baudrand, S; Baumgartner, S; Becker, J; Beckingham, M; Behnke, O; Behrendt, O; Belousov, A; Berger, C; Berger, N; Bizot, J C; Boenig, M O; Boudry, V; Bracinik, J; Brandt, G; Brisson, V; Bruncko, Dusan; Büsser, F W; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Cassol-Brunner, F; Cerny, K; Cerny, V; Chekelian, V; Contreras, J G; Coughlan, J A; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; De Boer, Y; Delcourt, B; Del Degan, M; de Roeck, A; Desch, Klaus; De Wolf, E A; Diaconu, C; Dodonov, V; Dubak, A; Eckerlin, G; Efremenko, V; Egli, S; Eichler, R; Eisele, F; Elsen, E; Erdmann, W; Essenov, S; Falkewicz, A; Faulkner, P J W; Favart, L; Fedotov, A; Feltesse, J; Ferencei, J; Finke, L; Fleischer, M; Fleischmann, P; Flucke, G; Fomenko, A; Foresti, I; Franke, G; Frisson, T; Gabathuler, E; Garutti, E; Gayler, J; Gerlich, C; Ghazaryan, S; Ginzburgskaya, S; Glazov, A; Glushkov, I; Görlich, L; Goettlich, M; Gogitidze, N; Gorbounov, S; Goyon, C; Grab, C; Greenshaw, T; Gregori, M; Grell, B R; Grindhammer, G; Gwilliam, C; Haidt, D; Hajduk, L; Hansson, M; Heinzelmann, G; Henderson, R C W; Henschel, H; Herrera-Corral, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R P; Hovhannisyan, A; Hreus, T; Hussain, S; Ibbotson, M; Ismail, M; Jacquet, M; Janauschek, L; Janssen, X; Jemanov, V; Jönsson, L B; Johnson, D P; Jung, A W; Jung, H; Kapichine, M; Katzy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Klimkovich, T; Kluge, T; Knies, G; Knutsson, A; Korbel, V; Kostka, P; Krastev, K; Kretzschmar, J; Kropivnitskaya, A; Krüger, K; Kuckens, J; Landon, M P J; Lange, W; Lastoviicka, T; Lastoviicka-Medin, G; Laycock, P; Lebedev, A; Leibenguth, G; Lendermann, V; Levonian, S; Lindfeld, L; Lipka, K; Liptaj, A; List, B; List, J; Lobodzinska, E; Loktionova, N; López-Fernandez, R; Lubimov, V; Lucaci-Timoce, A I; Lüders, H; Lüke, D; Lux, T; Lytkin, L; Makankine, A; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marshall, R; Martisikova, M; Martyn, H U; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Michels, V; Mikocki, S; Milcewicz-Mika, I; Milstead, D; Mladenov, D; Mohamed, A; Moreau, F; Morozov, A; Morris, J V; Mozer, M U; Müller, K; Murn, P; Nankov, K; Naroska, Beate; Naumann, T; Newman, P R; Niebuhr, C; Nikiforov, A; Nowak, G; Nozicka, M; Oganezov, R; Olivier, B; Olsson, J E; Osman, S; Ozerov, D; Palichik, V; Panagoulias, I; Papadopoulou, T D; Pascaud, C; Patel, G D; Peng, H; Pérez, E; Perez-Astudillo, D; Perieanu, A; Petrukhin, A; Pitzl, D; Placakyte, R; Portheault, B; Povh, B; Prideaux, P; Rahmat, A J; Raicevic, N; Reisert, B; Reimer, P; Rimmer, A; Risler, C; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rurikova, Z; Rusakov, S; Salvaire, F; Sankey, D P C; Sauvan, E; Schatzel, S; Schmidt, S; Schmitt, S; Schmitz, C; Schoeffel, L; Schöning, A; Schultz-Coulon, H C; Sedlak, K; Sefkow, F; Shaw-West, R N; Shevyakov, I; Shtarkov, L N; Sloan, T; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V; Specka, A; Steder, M; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Sunar, D; Tchoulakov, V; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsakov, I; Tsipolitis, G; Tsurin, I; Turnau, J; Tzamariudaki, E; Urban, K; Urban, M; Usik, A; Utkin, D; Valkárová, A; Vallée, C; Van Mechelen, P; Vargas-Trevino, A; Vazdik, Ya A; Veelken, C; Vinokurova, S; Volchinski, V; Wacker, K; Wagner, J; Weber, G; Weber, R; Wegener, D; Werner, C; Wessels, M; Wessling, B; Wigmore, C; Wissing, C; Wolf, R; Wünsch, E; Xella, S M; Yan, W; Yeganov, V; Zaicek, J; Zaleisak, J; Zhang, Z; Zhelezov, A; Zhokin, A; Zhu, Y C; Zimmermann, J; Zimmermann, T; Zohrabyan, H; Zomer, F

    2006-01-01

    Data taken with positrons of different longitudinal polarisation states in collision with unpolarised protons at HERA are used to measure the total cross sections of the charged current process, e^+ p \\to \\bar{\

  20. QCD analysis of neutrino charged current structure function F2 in deep inelastic scattering

    Science.gov (United States)

    Saleem, M.; Aleem, F.

    1985-08-01

    An analytic expression for the neutrino charged current structure function F2 (x, Q2) in deep inelastic scattering, consistent with quantum chromodynamics, is proposed. The calculated results are in good agreement with experiment.

  1. Alternating current-generated plasma discharges for the controlled direct current charging of ferroelectrets

    Science.gov (United States)

    Cury Basso, Heitor; Monteiro, José Roberto B. de A.; Baladelli Mazulquim, Daniel; Teixeira de Paula, Geyverson; Gonçalves Neto, Luiz; Gerhard, Reimund

    2013-09-01

    The standard charging process for polymer ferroelectrets, e.g., from polypropylene foams or layered film systems involves the application of high DC fields either to metal electrodes or via a corona discharge. In this often-used process, the DC field triggers the internal breakdown and limits the final charge densities inside the ferroelectret cavities and, thus, the final polarization. Here, an AC + DC charging procedure is proposed and demonstrated in which a high-voltage high-frequency (HV-HF) wave train is applied together with a DC poling voltage. Thus, the internal dielectric-barrier discharges in the ferroelectret cavities are induced by the HV-HF wave train, while the final charge and polarization level is controlled separately through the applied DC voltage. In the new process, the frequency and the amplitude of the HV-HF wave train must be kept within critical boundaries that are closely related to the characteristics of the respective ferroelectrets. The charging method has been tested and investigated on a fluoropolymer-film system with a single well-defined cylindrical cavity. It is found that the internal electrical polarization of the cavity can be easily controlled and increases linearly with the applied DC voltage up to the breakdown voltage of the cavity. In the standard charging method, however, the DC voltage would have to be chosen above the respective breakdown voltage. With the new method, control of the HV-HF wave-train duration prevents a plasma-induced deterioration of the polymer surfaces inside the cavities. It is observed that the frequency of the HV-HF wave train during ferroelectret charging and the temperature applied during poling of ferroelectrics serve an analogous purpose. The analogy and the similarities between the proposed ferroelectret charging method and the poling of ferroelectric materials or dipole electrets at elevated temperatures with subsequent cooling under field are discussed.

  2. Charge and spin currents in normal metal sandwiched by tow p-wave

    Directory of Open Access Journals (Sweden)

    Y Rahnavard

    2010-09-01

    Full Text Available Charge and spin transport properties of a clean $SNS$ Josephson junction (triplet superconductor-normal metal-triplet superconductor are studied using the quasiclassical Eilenberger equation of Green’s function. Our system consists of two p-wave superconducting crystals separated by a Copper nano layer. Effects of thickness of normal layer between superconductors on the spin and charge currents are investigated. Also misorientation between triplet superconductors which creates the spin current is another subject of this paper.

  3. Critical currents in ballistic two-dimensional InAs-based superconducting weak links

    NARCIS (Netherlands)

    Heida, J.P.; Wees, B.J. van; Klapwijk, T.M.; Borghs, G.

    1999-01-01

    The critical supercurrent Ic carried by a short (0.3 to 0.8 µm) ballistic two-dimensional InAs-based electron gas between superconducting niobium electrodes is studied. In relating the maximum value to the resistance of the weak link in the normal state Rn a much lower value is found than

  4. Minimum Mismatch of Current in Fully Differential Charge Pump for Integer N- DPLL

    Directory of Open Access Journals (Sweden)

    Rajeshwari D S

    2017-06-01

    Full Text Available Fully Differential ended charge pump (FDCP are proven to have advantages over single ended charge pump at the cost of complexity and required more power for implementation for digital phase locked loop(DPLL. Wide swing cascodebias voltage with the rail to rail operational amplifier(opamp as common mode feedback(CMFB provides efficient solutions for current mismatch due to its non-idealities. The FDCP is simulated across process corners using 65nm technology with tsmc foundry for10Ghz DPLL. The power consumption of FDCP is 23mW with 100uA as Charge Pump (CP current.

  5. Dissipative particle dynamics simulations of weak polyelectrolyte adsorption on charged and neutral surfaces as a function of the degree of ionization

    CERN Document Server

    Alarcón, F; Goicochea, A Gama

    2012-01-01

    The influence of the chain degree of ionization on the adsorption of weak polyelectrolytes on neutral and on oppositely and likely charged surfaces is investigated for the first time, by means of Monte Carlo simulations with the mesoscopic interaction model known as dissipative particle dynamics. The electrostatic interactions are calculated using the three-dimensional Ewald sum method, with an appropriate modification for confined systems. Effective wall forces confine the linear polyelectrolytes, and electric charges on the surfaces are included. The solvent is included explicitly also and it is modeled as an athermal solvent for the polyelectrolytes. The number of solvent particles is allowed to fluctuate. The results show that the polyelectrolytes adsorb both onto neutral and charged surfaces, with the adsorption regulated by the chain degree of ionization, being larger at lower ionization degrees, where polyelectrolytes are less charged. Furthermore, polyelectrolyte adsorption is strongly modulated by th...

  6. A Measurement of the Parity-Violating Asymmetry in Aluminum and its Contribution to a Measurement of the Proton's Weak Charge

    Energy Technology Data Exchange (ETDEWEB)

    Magee, Joshua Allen [College of William and Mary, Williamsburg, VA (United States)

    2016-05-01

    The Q_weak experiment, which ran at the Thomas Jefferson National Accelerator Facility, made a precision measurement of the proton's weak charge, Q^p_W. The weak charge is extracted via a measurement of the parity-violating asymmetry in elastic electron-proton scattering from hydrogen at low momentum transfer (Q^2=0.025 GeV^2). This result is directly related to the electroweak mixing angle, sin^2(Theta_W), a fundamental parameter in the Standard Model of particle physics. This provides a precision test sensitive to new, as yet unknown, fundamental physics. This dissertation focuses on two central corrections to the Q_weak measurement: the target window contribution and sub-percent determination of the electron beam polarization. The aluminum target windows contribute approximately 30% of the measured asymmetry. Removal of this background requires precise measurements of both the elastic electron-aluminum scattering rate and its parity-violating asymmetry. The results reported here are the most precise measurement of the Q_weak target dilution and asymmetry to date. The parity-violating asymmetry for the aluminum alloy was found to be 1.6174 +/- 0.0704 (stat.) +/- 0.0113 (sys.) parts-per-million. The first sub-percent precision polarization measurements made from the Hall C Moller polarimeter are also reported, with systematic uncertainties of 0.84%.

  7. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  8. Coherent production of pions and rho mesons in neutrino charged current interactions on neon nuclei at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Willocq, S.

    1992-05-01

    The coherent production of single pions and and {rho} mesons in charged current interactions of neutrinos and antineutrinos on neon nuclei has been studied. The data were obtained using the Fermilab 15-foot Bubble Chamber, filled with a heavy Ne-H{sub 2} mixture and exposed to the Quadrupole Triplet neutrino beam produced by 800 GeV protons from the Tevatron. The average beam energy was 86 GeV. In a sample of 330000 frames, 1032 two-prong {nu}{sub {mu}} + {bar {nu}}{sub {mu}} charged current interactions were selected. The goal of this study was to investigate the low Q{sup 2} high {nu} region where the hadron dominance model can be tested. In this model, the vector and axial-vector parts of the weak hadronic current are dominated by the {rho} and a{sub 1} mesons respectively. Moreover, the Partially Conserved Axial Current (PCAC) hypothesis can be tested by studying the coherent production of single pions.

  9. Persistent Spin and Charge Currents in Open Conducting Ring Subjected to Rashba Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xi-Sua; XIONG Shi-Jie

    2008-01-01

    We investigate persistent charge and spin currents of a one-dimensional ring with Rashba spin-orbit coupling and connected asymmetrically to two external leads spanned with angle (φ)0.Because of the asymmetry of the structure and the spin-reflection,the persistent charge and spin currents can be induced.The magnification of persistent currents can be obtained when tuning the energy of incident electron to the sharp zero and sharp resonance of transmission depending on the Aharonov-Casher (AC) phase due to the spin-orbit coupling and the angle spanned by two leads (φ)0.The general dependence of the charge and spin persistent currents on these parameters is obtained.This suggests a possible method of controlling the magnitude and direction of persistent currents by tuning the AC phase and (φ)0,without the electromagnetic flux though the ring.

  10. Measurement of charged and neutral current e$^{-}$p deep inelastic scattering cross sections at high Q$^{2}$

    CERN Document Server

    Derrick, Malcolm; Magill, S; Mikunas, D; Musgrave, B; Repond, J; Stanek, R; Talaga, R L; Zhang, H; Ayad, R; Bari, G; Basile, M; Bellagamba, L; Boscherini, D; Bruni, A; Bruni, G; Bruni, P; Cara Romeo, G; Castellini, G; Chiarini, M; Cifarelli, Luisa; Cindolo, F; Contin, A; Corradi, M; Gialas, I; Giusti, P; Iacobucci, G; Laurenti, G; Levi, G; Margotti, A; Massam, Thomas; Nania, R; Nemoz, C; Palmonari, F; Polini, A; Sartorelli, G; Timellini, R; Zamora-Garcia, Yu E; Zichichi, Antonino; Bargende, A; Crittenden, James Arthur; Desch, Klaus; Diekmann, B; Doeker, T; Eckert, M; Feld, L; Frey, A; Geerts, M; Geitz, G; Grothe, M; Haas, T; Hartmann, H; Haun, D; Heinloth, K; Hilger, E; Jakob, H P; Katz, U F; Mari, S M; Mass, A; Mengel, S; Mollen, J; Paul, E; Rembser, C; Schattevoy, R; Schramm, D; Stamm, J; Wedemeyer, R; Campbell-Robson, S; Cassidy, A; Dyce, N; Foster, B; George, S; Gilmore, R; Heath, G P; Heath, H F; Llewellyn, T J; Morgado, C J S; Norman, D J P; O'Mara, J A; Tapper, R J; Wilson, S S; Yoshida, R; Rau, R R; Arneodo, M; Iannotti, L; Schioppa, M; Susinno, G; Bernstein, A M; Caldwell, A; Cartiglia, N; Parsons, J A; Ritz, S; Sciulli, F; Straub, P B; Wai, L; Yang, S; Zhu, Q; Borzemski, P; Chwastowski, J; Eskreys, Andrzej; Piotrzkowski, K; Zachara, M; Zawiejski, L; Adamczyk, L; Bednarek, B; Jelen, K; Kisielewska, D; Kowalski, T; Rulikowska-Zarebska, E; Suszycki, L; Zajac, J; Kotanski, Andrzej; Przybycien, M B; Bauerdick, L A T; Behrens, U; Beier, H; Bienlein, J K; Coldewey, C; Deppe, O; Desler, K; Drews, G; Flasinski, M; Gilkinson, D J; Glasman, C; Göttlicher, P; Grosse-Knetter, J; Gutjahr, B; Hain, W; Hasell, D; Hessling, H; Hultschig, H; Iga, Y; Joos, P; Kasemann, M; Klanner, Robert; Koch, W; Köpke, L; Kötz, U; Kowalski, H; Labs, J; Ladage, A; Löhr, B; Loewe, M; Lüke, D; Manczak, O; Ng, J S T; Nickel, S; Notz, D; Ohrenberg, K; Roco, M T; Rohde, M; Roldán, J; Schneekloth, U; Schulz, W; Selonke, F; Stiliaris, E; Surrow, B; Voss, T; Westphal, D; Wolf, G; Youngman, C; Zhou, J F; Grabosch, H J; Kharchilava, A I; Leich, A; Mattingly, M C K; Meyer, A; Schlenstedt, S; Wulff, N; Barbagli, G; Pelfer, P G; Anzivino, Giuseppina; Maccarrone, G D; De Pasquale, S; Votano, L; Bamberger, Andreas; Eisenhardt, S; Freidhof, A; Söldner-Rembold, S; Schröder, J; Trefzger, T M; Brook, N H; Bussey, Peter J; Doyle, A T; Fleck, I; Saxon, D H; Utley, M L; Wilson, A S; Dannemann, A; Holm, U; Horstmann, D; Neumann, T; Sinkus, R; Wick, K; Badura, E; Burow, B D; Hagge, L; Lohrmann, E; Mainusch, J; Milewski, J; Nakahata, M; Pavel, N; Poelz, G; Schott, W; Zetsche, F; Bacon, Trevor C; Butterworth, Ian; Gallo, E; Harris, V L; Hung, B Y H; Long, K R; Miller, D B; Morawitz, P P O; Prinias, A; Sedgbeer, J K; Whitfield, A F; Mallik, U; McCliment, E; Wang, M Z; Wang, S M; Wu, J T; Zhang, Y; Cloth, P; Filges, D; An Shiz Hong; Hong, S M; Nam, S W; Park, S K; Suh, M H; Yon, S H; Imlay, R; Kartik, S; Kim, H J; McNeil, R R; Metcalf, W; Nadendla, V K; Barreiro, F; Cases, G; Graciani, R; Hernández, J M; Hervás, L; Labarga, L; Del Peso, J; Puga, J; Terrón, J; De Trocóniz, J F; Smith, G R; Corriveau, F; Hanna, D S; Hartmann, J; Hung, L W; Lim, J N; Matthews, C G; Patel, P M; Sinclair, L E; Stairs, D G; Saint-Laurent, M G; Ullmann, R T; Zacek, G; Bashkirov, V; Dolgoshein, B A; Stifutkin, A; Bashindzhagian, G L; Ermolov, P F; Gladilin, L K; Golubkov, Yu A; Kobrin, V D; Kuzmin, V A; Proskuryakov, A S; Savin, A A; Shcheglova, L M; Solomin, A N; Zotov, N P; Botje, M; Chlebana, F S; Dake, A P; Engelen, J; De Kamps, M; Kooijman, P M; Kruse, A; Tiecke, H G; Verkerke, W; Vreeswijk, M; Wiggers, L; De Wolf, E; Van Woudenberg, R; Acosta, D; Bylsma, B G; Durkin, L S; Honscheid, K; Li Chuan; Ling, T Y; McLean, K W; Murray, W N; Park, I H; Romanowsky, T A; Seidlein, R; Bailey, D S; Blair, G A; Byrne, A; Cashmore, Roger J; Cooper-Sarkar, A M; Daniels, D C; Devenish, R C E; Harnew, N; Lancaster, M; Luffman, P; Lindemann, L; McFall, J D; Nath, C; Noyes, V A; Quadt, A; Uijterwaal, H; Walczak, R; Wilson, F F; Yip, T; Abbiendi, G; Bertolin, A; Brugnera, R; Carlin, R; Dal Corso, F; De Giorgi, M; Dosselli, U; Limentani, S; Morandin, M; Posocco, M; Stanco, L; Stroili, R; Voci, C; Bulmahn, J; Butterworth, J M; Feild, R G; Oh, B Y; Whitmore, J; D'Agostini, Giulio; Marini, G; Nigro, A; Tassi, E; Hart, J C; McCubbin, N A; Prytz, K; Shah, T P; Short, T L; Barberis, E; Dubbs, T; Heusch, C A; Van Hook, M; Hubbard, B; Lockman, W; Rahn, J T; Sadrozinski, H F W; Seiden, A; Biltzinger, J; Seifert, R J; Walenta, Albert H; Zech, G; Abramowicz, H; Briskin, G M; Dagan, S; Levy, A; Hasegawa, T; Hazumi, M; Ishii, T; Kuze, M; Mine, S; Nagasawa, Y; Nakao, M; Susuki, I; Tokushuku, K; Yamada, S; Yamazaki, Y; Chiba, M; Hamatsu, R; Hirose, T; Homma, K; Kitamura, S; Nakamitsu, Y; Yamauchi, K; Cirio, R; Costa, M; Ferrero, M I; Lamberti, L; Maselli, S; Peroni, C; Sacchi, R; Solano, A; Staiano, A; Dardo, M; Bailey, D C; Bandyopadhyay, D; Bénard, F; Brkic, M; Crombie, M B; Gingrich, D M; Hartner, G F; Joo, K K; Levman, G M; Martin, J F; Orr, R S; Sampson, C R; Teuscher, R; Catterall, C D; Jones, T W; Kaziewicz, P B; Lane, J B; Saunders, R L; Shulman, J; Blankenship, K; Kochocki, J A; Lu, B; Mo, L W; Bogusz, W; Charchula, K; Ciborowski, J; Gajewski, J; Grzelak, G; Kasprzak, M; Krzyzanowski, M; Muchorowski, K; Nowak, R J; Pawlak, J M; Tymieniecka, T; Wróblewski, A K; Zakrzewski, J A; Zarnecki, A F; Adamus, M; Eisenberg, Y; Karshon, U; Revel, D; Zer-Zion, D; Ali, I; Badgett, W F; Behrens, B H; Dasu, S; Fordham, C; Foudas, C; Goussiou, A; Loveless, R J; Reeder, D D; Silverstein, S; Smith, W H; Vaiciulis, A W; Wodarczyk, M; Tsurugai, T; Bhadra, S; Cardy, M L; Fagerstroem, C P; Frisken, W R; Furutani, K M; Khakzad, M; Schmidke, W B

    1995-01-01

    Deep inelastic e^-p scattering has been studied in both the charged-current (CC) and neutral-current (NC) reactions at momentum transfers squared, Q^2, between 400 GeV^2 and the kinematic limit of 87500 GeV^2 using the ZEUS detector at the HERA ep collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections, d\\sigma/dQ^2 , are presented. For Q^2 \\simeq M_W^2, where M_W is the mass of the W boson, the CC and NC cross sections have comparable magnitudes, demonstrating the equal strengths of the weak and electromagnetic interactions at high Q^2. The Q^2 dependence of the CC cross section determines the mass term in the CC propagator to be M_{W} = 76 \\pm 16 \\pm 13~GeV.

  11. Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes.

    Science.gov (United States)

    Chen, Guang; Das, Siddhartha

    2017-03-01

    In this paper, we study the thermodynamics, electrostatics, and an external electric field driven ionic current in a pH-responsive, end-charged polyelectrolyte (PE) brush grafted nanochannel. By employing a mean field theory, we unravel a highly nonintuitive interplay of pH and electrolyte salt concentration in dictating the height of the end-charged PE brush. Larger pH or weak hydrogen ion concentration leads to maximum ionization of the charge-producing group-as a consequence, the resulting the electric double layer (EDL) energy get maximized causing a maximum deviation of the brush height from the value (d0 ) of the uncharged brush. This deviation may result in enhancement or lowering of the brush height as compared to d0 depending on whether the PE end locates lower or higher than h/2 (h is the nanochannel half height) and the salt concentration. Subsequently, we use this combined PE-brush-configuration-EDL-electrostatics framework to compute the ionic current in the nanochannel. We witness that the ionic current for smaller pH is much larger despite the corresponding magnitude of the EDL electrostatic potential being much smaller-this stems from the presence of a much larger concentration of H+ ions at small pH and the fact that H+ ions have very large mobilities. In fact, this ionic current shows a steep variation with pH that can be useful in exploring new designs for applications involving quantification and characterization of ionic current in PE-brush-grafted nanochannels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Current-induced suppression of superconductivity in a three-dimensional lattice of weakly linked indium grains in opal

    CERN Document Server

    Romanov, S G

    2000-01-01

    The current-voltage characteristics of the metal-dielectric composite have been investigated in the range of the resistive state near the superconducting transition temperature T/sub c/. The composite structure can be represented as a face-centered cubic lattice, which involves a large number of weakly linked indium nanograins and is stabilized in structural cavities of opal. The response to microwave radiation is used to characterize the resistive state of the composite. The comparative investigation into the current-voltage characteristics and the response of the composite to microwave radiation makes it possible to conclude that the weak links are superconducting in the region of the critical current (I/sub c/) of the composite as a whole. The transition of weak links to the resistive state occurs at currents immediately preceding the transition of the composite from the resistive state to the ohmic state. The model of the resistivity of the indium-opal composite is proposed on the basis of morphological e...

  13. Effects of weak transcranial Alternating Current Stimulation on brain activity – a review of known mechanisms from animal studies

    Directory of Open Access Journals (Sweden)

    Davide eReato

    2013-10-01

    Full Text Available Rhythmic neuronal activity is ubiquitous in the human brain. These rhythms originate from a variety of different network mechanisms, which give rise to a wide-ranging spectrum of oscillation frequencies. In the last few years an increasing number of clinical research studies have explored transcranial alternating current stimulation (tACS with weak current as a tool for affecting brain function. The premise of these interventions is that tACS will interact with ongoing brain oscillations. However, the exact mechanisms by which weak currents could affect neuronal oscillations at different frequency bands are not well known and this, in turn, limits the rational optimization of human experiments. Here we review the available in vitro and in vivo animal studies that attempt to provide mechanistic explanations. The findings can be summarized into a few generic principles, such as periodic modulation of excitability, shifts in spike timing, modulation of firing rate, and shifts in the balance of excitation and inhibition. These effects result from weak but simultaneous polarization of a large number of neurons. Whether this can lead to an entrainment or a modulation of brain oscillations, or whether AC currents have no effect at all, depends entirely on the specific dynamic that gives rise to the different brain rhythms, as discussed here for slow wave oscillations (~1 Hz and gamma oscillations (~30 Hz. We conclude with suggestions for further experiments to investigate the role of AC stimulation for other physiologically relevant brain rhythms.

  14. Persistent Spin Current in a Hard-Wall Confining Quantum Wire with Weak Dresselhaus Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    FU Xi; ZHOU Guang-Hui

    2009-01-01

    We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors.Both the quantum wire and conductors are described by a hard-wall confining potential.Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density jTs,xi and jTs,yi(I = x, y, z).We lind that the elements jTs,xx and jTs,yy have a antisymmetrical relation and the element jTs,yz has the same amount level jTs,xx and jTs,yy.We also find a net linear spin current density, which has peaks at the center of quantum wire.The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.

  15. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Deyang, E-mail: d.yu@impcas.ac.cn; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Xin [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2015-11-15

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O{sup 3+} ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  16. The charged current neutrino cross section for solar neutrinos, and background to \\BBz\\ experiments

    CERN Document Server

    Ejiri, H

    2013-01-01

    Solar neutrinos can interact with the source isotope in neutrinoless double beta decay experiments through charged current and neutral current interactions. The charged-current product nucleus will then beta decay with a Q-value larger than the double beta decay Q-value. As a result, this process can populate the region of interest and be a background to the double beta decay signal. In this paper we estimate the solar neutrino capture rates on three commonly used double beta decay isotopes, \

  17. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    CERN Document Server

    Yu, Deyang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-01-01

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking the advantages of high electric potential and narrow bandwidth in DC energetic charged beam measurements, current resolution better than 5 fA can be achieved. Two 128-channel Faraday cup arrays are built, and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O3+ ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  18. Non-Markovian signatures in the current noise of a charge qubit

    DEFF Research Database (Denmark)

    Braggio, A.; Flindt, Christian; Novotny, T.

    2008-01-01

    We investigate the current noise of a charge qubit coupled to a phonon bath in different parameter regimes. We find, using the theory of Full Counting Statistics of non-Markovian systems, that the current fluctuations are strongly influenced by memory effects generated from the interplay between ...

  19. Disrupted coupling of gating charge displacement to Na+ current activation for DIIS4 mutations in hypokalemic periodic paralysis.

    Science.gov (United States)

    Mi, Wentao; Rybalchenko, Volodymyr; Cannon, Stephen C

    2014-08-01

    Missense mutations at arginine residues in the S4 voltage-sensor domains of NaV1.4 are an established cause of hypokalemic periodic paralysis, an inherited disorder of skeletal muscle involving recurrent episodes of weakness in conjunction with low serum K(+). Expression studies in oocytes have revealed anomalous, hyperpolarization-activated gating pore currents in mutant channels. This aberrant gating pore conductance creates a small inward current at the resting potential that is thought to contribute to susceptibility to depolarization in low K(+) during attacks of weakness. A critical component of this hypothesis is the magnitude of the gating pore conductance relative to other conductances that are active at the resting potential in mammalian muscle: large enough to favor episodes of paradoxical depolarization in low K(+), yet not so large as to permanently depolarize the fiber. To improve the estimate of the specific conductance for the gating pore in affected muscle, we sequentially measured Na(+) current through the channel pore, gating pore current, and gating charge displacement in oocytes expressing R669H, R672G, or wild-type NaV1.4 channels. The relative conductance of the gating pore to that of the pore domain pathway for Na(+) was 0.03%, which implies a specific conductance in muscle from heterozygous patients of ∼ 10 µS/cm(2) or 1% of the total resting conductance. Unexpectedly, our data also revealed a substantial decoupling between gating charge displacement and peak Na(+) current for both R669H and R672G mutant channels. This decoupling predicts a reduced Na(+) current density in affected muscle, consistent with the observations that the maximal dV/dt and peak amplitude of the action potential are reduced in fibers from patients with R672G and in a knock-in mouse model of R669H. The defective coupling between gating charge displacement and channel activation identifies a previously unappreciated mechanism that contributes to the reduced

  20. Hadron up-down asymmetry in neutrino-neon charged-current interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ballagh, H.C.; Bingham, H.H.; Lawry, T.J.; Lynch, G.R.; Lys, J.; Stevenson, M.L.; Huson, F.R.; Schmidt, E.; Smart, W.; Sokoloff, M.D.

    1984-09-01

    In charged-current neutrino-neon events (mean energy 100 GeV), fast charged hadrons show an up-down asymmetry with respect to the lepton plane. The asymmetry may be associated with reinteractions in the neon nuclei. For z>0.3 hadrons the asymmetry is -0.054 +- 0.017; for those events showing evidence for reinteractions the asymmetry is -0.111 +- 0.028. For all hadrons the asymmetry is 0.0010 +- 0.0048.

  1. Persistent spin current in a quantum wire with weak Dresselhaus spin-orbit coupling

    Institute of Scientific and Technical Information of China (English)

    Sheng Wei; Wang Yi; Zhou Guang-Hui

    2007-01-01

    The spin current in a parabolically confined semiconductor heterojunction quantum wire with Dresselhaus spinorbit coupling is theoretically studied by using the perturbation method. The formulae of the elements for linear and angular spin current densities are derived by using the recent definition for spin current based on spin continuity equation. It is found that the spin current in this Dresselhaus spin-orbit coupling quantum wire is antisymmetrical,which is different from that in R ashba model due to the difference in symmetry between these two models. Some numerical examples for the result are also demonstrated and discussed.

  2. Synthesis and Mechanism Insight of a Peptide-Grafted Hyperbranched Polymer Nanosheet with Weak Positive Charges but Excellent Intrinsically Antibacterial Efficacy.

    Science.gov (United States)

    Gao, Jingyi; Wang, Mingzhi; Wang, Fangyingkai; Du, Jianzhong

    2016-06-13

    Antimicrobial resistance is an increasingly problematic issue in the world and there is a present and urgent need to develop new antimicrobial therapies without drug resistance. Antibacterial polymers are less susceptible to drug resistance but they are prone to inducing serious side effects due to high positive charge. Herein we report a peptide-grafted hyperbranched polymer which can self-assemble into unusual nanosheets with highly effective intrinsically antibacterial activity but weak positive charges (+ 6.1 mV). The hyperbranched polymer was synthesized by sequential Michael addition-based thiol-ene and free radical mediated thiol-ene reactions, and followed by ring-opening polymerization of N-carboxyanhydrides (NCAs). The nanosheet structure was confirmed by transmission electron microscopy (TEM) and atomic force microscopy (AFM) studies. Furthermore, a novel "wrapping and penetrating" antibacterial mechanism of the nanosheets was revealed by TEM and it is the key to significantly decrease the positive charges but have a very low minimum inhibitory concentration (MIC) of 16 μg mL(-1) against typical Gram-positive and Gram-negative bacteria. Overall, our synthetic strategy demonstrates a new insight for synthesizing antibacterial nanomaterials with weak positive charges. Moreover, the unique antibacterial mechanism of our nanosheets may be extended for designing next-generation antibacterial agents without drug resistance.

  3. Dijet Production in Charged and Neutral Current $e^{+}p$ Interactions at High $Q^{2}$

    CERN Document Server

    Adloff, C; Andrieu, B; Arkadov, V; Astvatsaturov, A R; Ayyaz, I; Babaev, A; Bähr, J; Baranov, P S; Barrelet, E; Bartel, Wulfrin; Bassler, U; Bate, P; Beglarian, A; Behnke, O; Beier, C; Belousov, A; Benisch, T; Berger, C; Bernardi, G; Berndt, T; Bizot, J C; Borras, K; Boudry, V; Braunschweig, W; Brisson, V; Broker, H B; Brown, D P D; Brückner, W; Bruel, P; Bruncko, Dusan; Bürger, J; Büsser, F W; Bunyatyan, A; Burkhardt, H; Burrage, A; Buschhorn, G W; Campbell, A J; Cao, J; Carli, T; Caron, S; Chabert, E; Clarke, D; Clerbaux, B; Collard, Caroline; Contreras, J G; Coughlan, J A; Cousinou, M C; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; David, M; Davidsson, M; Delcourt, B; Delerue, N; Demirchyan, R A; de Roeck, A; De Wolf, E A; Diaconu, C A; Dixon, P; Dodonov, V; Dowell, John D; Droutskoi, A; Duprel, C; Eckerlin, G; Eckstein, D; Efremenko, V; Egli, S; Eichler, R; Eisele, Franz; Eisenhandler, Eric F; Ellerbrock, M; Elsen, E E; Erdmann, M; Erdmann, W; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Ferencei, J; Ferron, S; Fleischer, M; Flügge, G; Fomenko, A; Foresti, I; Formánek, J; Foster, J M; Franke, G; Gabathuler, Erwin; Gabathuler, K; Garvey, J; Gassner, J; Gayler, J; Gerhards, R; Kazarian, S; Görlich, L; Gogitidze, N; Goldberg, M; Goodwin, C; Grab, C; Grässler, Herbert; Greenshaw, T; Grindhammer, G; Hadig, T; Haidt, Dieter; Hajduk, L; Haynes, W J; Heinemann, B; Heinzelmann, G; Henderson, R C W; Hengstmann, S; Henschel, H; Heremans, R; Herrera-Corral, G; Herynek, I; Hilgers, M; Hiller, K H; Hladky, J; Hoting, P; Hoffmann, D; Hoprich, W; Horisberger, R P; Hurling, S; Ibbotson, M; Jacquet, M; Jaffré, M; Janauschek, L; Jansen, D M; Janssen, X; Jemanov, V; Jönsson, L B; Johnson, D P; Jones, M A S; Jung, H; Kastli, H K; Kant, D; Kapichine, M; Karlsson, M; Karschnick, O; Kaufmann, O; Kausch, M; Keil, F; Keller, N; Kennedy, J; Kenyon, Ian Richard; Kermiche, S; Kiesling, C; Klein, M; Kleinwort, C; Knies, G; Koblitz, B; Kolya, S D; Korbel, V; Kostka, P; Kotelnikov, S K; Krasny, M W; Krehbiel, H; Kroseberg, J; Krücker, D; Krüger, K; Küpper, A; Kuhr, T; Kurca, T; Kutuev, R K; Lachnit, W A; Lahmann, R; Lamb, D; Landon, M P J; Lange, W; Lastoviicka, T; Lebedev, A; Leiner, B; Lemrani, R; Lendermann, V; Levonian, S; Lindstrøm, M; List, B; Lobodzinska, E; Lobodzinski, B; Loktionova, N A; Lubimov, V; Lüders, S; Lüke, D; Lytkin, L K; Magnussen, N; Mahlke-Krüger, H; Malden, N; Malinovskii, E I; Maracek, R; Marage, P; Marks, J; Marshall, R; Martyn, H U; Martyniak, J; Maxfield, S J; Mehta, A; Meier, K; Merkel, P; Metlica, F; Meyer, H; Meyer, J; Meyer, P O; Mikocki, S; Milstead, D; Mkrtchyan, T; Mohr, R F; Mohrdieck, S; Mondragón, M N; Moreau, F; Morozov, A; Morris, J V; Müller, K; Murn, P; Nagovizin, V; Naroska, Beate; Naumann, J; Naumann, T; Nellen, G; Newman, P R; Nicholls, T C; Niebergall, F; Niebuhr, C B; Nix, O; Nowak, G; Nunnemann, T; Olsson, J E; Ozerov, D; Panassik, V; Pascaud, C; Patel, G D; Pérez, E; Phillips, J P; Pitzl, D; Pöschl, R; Potachnikova, I; Povh, B; Rabbertz, K; Rädel, G; Rauschenberger, J; Reimer, P; Reisert, B; Reyna, D; Riess, S; Rizvi, E; Robmann, P; Roosen, R; Rostovtsev, A A; Royon, C; Rusakov, S V; Rybicki, K; Sankey, D P C; Scheins, J; Schilling, F P; Schleper, P; Schmidt, D; Schoeffel, L; Schöning, A; Schörner-Sadenius, T; Schröder, V; Schultz-Coulon, H C; Sedlak, K; Sefkow, F; Shekelian, V I; Shevyakov, I; Shtarkov, L N; Siegmon, G; Sievers, P; Sirois, Y; Sloan, Terence; Smirnov, P; Solochenko, V; Soloviev, Yu V; Spaskov, V N; Specka, A E; Spitzer, H; Stamen, R; Steinhart, J; Stella, B; Stellberger, A; Stiewe, J; Straumann, U; Struczinski, W; Swart, M; Tasevsky, M; Chernyshov, V; Chechelnitskii, S; Thompson, G; Thompson, P D; Tobien, N; Traynor, D; Truöl, P; Tsipolitis, G; Turnau, J; Turney, J E; Tzamariudaki, E; Udluft, S; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Mechelen, P; Vazdik, Ya A; Von Dombrowski, S; Wacker, K; Wallny, R; Walter, T; Waugh, B; Weber, G; Weber, M; Wegener, D; Wegner, A; Wengler, T; Werner, M; White, G; Wiesand, S; Wilksen, T; Winde, M; Winter, G G; Wissing, C; Wobisch, M; Wollatz, H; Wünsch, E; Wyatt, A C; Zaleisak, J; Zhang, Z; Zhokin, A S; Zomer, F; Zsembery, J

    2001-01-01

    Jet production in charged and neutral current events in the kinematic range of Q^2 from 640 to 35000 GeV^2 is studied in deep-inelastic positron-proton scattering at HERA. The measured rate of multi-jet events and distributions of jet polar angle, transverse energy, dijet mass, and other dijet variables are presented. Using parton densities derived from inclusive DIS cross sections, perturbative QCD calculations in NLO are found to give a consistent description of both the neutral and charged current dijet production. A direct, model independent comparison of the jet distributions in charged and neutral current events confirms that the QCD dynamics of the hadronic final state is independent of the underlying electroweak scattering process.

  4. Dijet Production in Charged and Neutral Current $e^{+}p$ Interactions at High $Q^{2}$

    CERN Document Server

    Adloff, C.; Andrieu, B.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Bernardi, G.; Berndt, T.; Bizot, J.C.; Borras, K.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruel, P.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burkhardt, H.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Chabert, E.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; David, M.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Hoprich, W.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C.; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Kaufmann, O.; Kausch, M.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Krasny, M.W.; Krehbiel, H.; Kroseberg, J.; Krucker, D.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Kutuev, R.; Lachnit, W.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nunnemann, T.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, D.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Siegmon, G.; Sievers, P.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Solovev, Y.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Swart, M.; Tasevsky, M.; Tchernyshov, V.; Tchetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; von Dombrowski, S.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wollatz, H.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    2001-01-01

    Jet production in charged and neutral current events in the kinematic range of Q^2 from 640 to 35000 GeV^2 is studied in deep-inelastic positron-proton scattering at HERA. The measured rate of multi-jet events and distributions of jet polar angle, transverse energy, dijet mass, and other dijet variables are presented. Using parton densities derived from inclusive DIS cross sections, perturbative QCD calculations in NLO are found to give a consistent description of both the neutral and charged current dijet production. A direct, model independent comparison of the jet distributions in charged and neutral current events confirms that the QCD dynamics of the hadronic final state is independent of the underlying electroweak scattering process.

  5. Four point function of R-currents in N=4 SYM in the Regge limit at weak coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Mischler, A.M.; Salvadore, M. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2008-04-15

    We compute, in N = 4 super Yang-Mills, the four point correlation function of R-currents in the Regge limit in the leading logarithmic approximation at weak coupling. Such a correlator is the closest analog to photon-photon scattering within QCD, and there is a well defined procedure to perform the analogous computation at strong coupling via AdS/CFT. The main result of this paper is, on the gauge theory side, the proof of Regge factorization and the explicit computation of the R-current impact factors. (orig.)

  6. Current leakage relaxation and charge trapping in ultra-porous low-k materials

    Energy Technology Data Exchange (ETDEWEB)

    Borja, Juan; Plawsky, Joel L., E-mail: plawsky@rpi.edu; Gill, William N. [Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lu, T.-M. [Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Bakhru, Hassaram [University at Albany' s College of Nanoscale Science and Engineering (CNSE), Albany, New York 12203 (United States)

    2014-02-28

    Time dependent dielectric failure has become a pivotal aspect of interconnect design as industry pursues integration of sub-22 nm process-technology nodes. Literature has provided key information about the role played by individual species such as electrons, holes, ions, and neutral impurity atoms. However, no mechanism has been shown to describe how such species interact and influence failure. Current leakage relaxation in low-k dielectrics was studied using bipolar field experiments to gain insight into how charge carrier flow becomes impeded by defects within the dielectric matrix. Leakage current decay was correlated to injection and trapping of electrons. We show that current relaxation upon inversion of the applied field can be described by the stretched exponential function. The kinetics of charge trapping events are consistent with a time-dependent reaction rate constant, k=k{sub 0}⋅(t+1){sup β−1}, where 0 < β < 1. Such dynamics have previously been observed in studies of charge trapping reactions in amorphous solids by W. H. Hamill and K. Funabashi, Phys. Rev. B 16, 5523–5527 (1977). We explain the relaxation process in charge trapping events by introducing a nonlinear charge trapping model. This model provides a description on the manner in which the transport of mobile defects affects the long-tail current relaxation processes in low-k films.

  7. Current leakage relaxation and charge trapping in ultra-porous low-k materials

    Science.gov (United States)

    Borja, Juan; Plawsky, Joel L.; Lu, T.-M.; Bakhru, Hassaram; Gill, William N.

    2014-02-01

    Time dependent dielectric failure has become a pivotal aspect of interconnect design as industry pursues integration of sub-22 nm process-technology nodes. Literature has provided key information about the role played by individual species such as electrons, holes, ions, and neutral impurity atoms. However, no mechanism has been shown to describe how such species interact and influence failure. Current leakage relaxation in low-k dielectrics was studied using bipolar field experiments to gain insight into how charge carrier flow becomes impeded by defects within the dielectric matrix. Leakage current decay was correlated to injection and trapping of electrons. We show that current relaxation upon inversion of the applied field can be described by the stretched exponential function. The kinetics of charge trapping events are consistent with a time-dependent reaction rate constant, k =k0ṡ(t+1)β -1, where 0 < β < 1. Such dynamics have previously been observed in studies of charge trapping reactions in amorphous solids by W. H. Hamill and K. Funabashi, Phys. Rev. B 16, 5523-5527 (1977). We explain the relaxation process in charge trapping events by introducing a nonlinear charge trapping model. This model provides a description on the manner in which the transport of mobile defects affects the long-tail current relaxation processes in low-k films.

  8. Measurement of weak magnetic field of corrosion current of isolated corrosion center

    Directory of Open Access Journals (Sweden)

    I. V. Bardin

    2015-01-01

    Full Text Available A very small magnetic field of corrosion current, of the order of 10−4 Oe, generated by isolated zinc inclusion in a copper platelet placed in electrolyte has been measured for the first time with a highly sensitive giant magneto-impedance magnetometer. The total corrosion current of the inclusion is estimated comparing the measured magnetic field distribution with corresponding theoretical calculation. The estimated value of the total corrosion current turns out to be in reasonable agreement with that one obtained in the standard gravimetric measurement.

  9. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section

    CERN Document Server

    Aguilar-Arevalo, A A; Bazarko, A O; Brice, S J; Brown, B C; Bugel, L; Cao, J; Coney, L; Conrad, J M; Cox, D C; Curioni, A; Djurcic, Z; Finley, D A; Fleming, B T; Ford, R; Garcia, F G; Garvey, G T; Grange, J; Green, C; Green, J A; Hart, T L; Hawker, E; Imlay, R; Johnson, R A; Karagiorgi, G; Kasper, P; Katori, T; Kobilarcik, T; Kourbanis, I; Koutsoliotas, S; Laird, E M; Linden, S K; Link, J M; Liu, Y; Liu, Y; Louis, W C; Mahn, K B M; Marsh, W; Mauger, C; McGary, V T; McGregor, G; Metcalf, W; Meyers, P D; Mills, F; Mills, G B; Monroe, J; Moore, C D; Mousseau, J; Nelson, R H; Nienaber, P; Nowak, J A; Osmanov, B; Ouedraogo, S; Patterson, R B; Pavlovic, Z; Perevalov, D; Polly, C C; Prebys, E; Raaf, J L; Ray, H; Roe, B P; Russell, A D; Sandberg, V; Schirato, R; Schmitz, D; Shaevitz, M H; Shoemaker, F C; Smith, D; Soderberg, M; Sorel, M; Spentzouris, P; Spitz, J; Stancu, I; Stefanski, R J; Sung, M; Tanaka, H A; Tayloe, R; Tzanov, M; Van de Water, R G; Wascko, M O; White, D H; Wilking, M J; Yang, H J; Zeller, G P; Zimmerman, E D

    2010-01-01

    A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section ($\\frac{d^2\\sigma}{dT_\\mu d\\cos\\theta_\\mu}$) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ($\\sigma[E_\

  10. Study of D*+ production in νμ charged current interactions in the NOMAD experiment

    Science.gov (United States)

    NOMAD Collaboration; Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; De Santo, A.; Dignan, T.; Di Lella, L.; do Couto e Silva, E.; Dumarchez, J.; Ellis, M.; Fazio, T.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kustov, D.; Kuznetsov, V.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubičić, A.; Long, J.; Lupi, A.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S. R.; Moorhead, G. F.; Naumov, D.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Yabsley, B. D.; Zaccone, H.; Zuber, K.; Zuccon, P.

    2002-02-01

    A search was made among νμ charged current events collected in the NOMAD experiment for the reaction: νμ+N-->μ- +D*++hadrons↪D0+π+↪K-+π+. A high purity D*+ sample composed of 35 events was extracted. The D*+ yield in νμ charged current interactions was measured to be /T=(0.79+/-0.17(stat.)+/-0.10(syst.))%. The mean fraction of the hadronic jet energy taken by the D*+ is /0.67+/-0.02(stat.)+/-0.02(syst.). The distributions of the fragmentation variables /z, PT2 and xF for D*+ are also presented.

  11. Estimation of electron mobility of n-doped 4, 7-diphenyl-1, 10-phenanthroline using space-charge-limited currents

    Institute of Scientific and Technical Information of China (English)

    Khizar-ul-Haq; Khan M A; Jiang Xueyin; Zhang Zhilin; Zhang Xiaowen; Zhang Liang; Li Jun

    2009-01-01

    The electron mobilities of 4, 7-diphenyl-1, 10-phenanthroline (BPhen) doped 8-hydroxyquinolinatolithium (Liq) at various thicknesses (50-300 nm) have been estimated by using space-charge-limited current measurements. It is observed that the electron mobility of 33 wt% Liq doped BPhen approaches its true value when the thickness is more than 200 nm. The electron mobility of 33 wt% Liq doped BPhen at 300 nm is found to be ~5.2 × 10~(-3) cm~2/(V·s) (at 0.3 MV/cm) with weak dependence on electric field, which is about one order of magnitude higher than that of pristine BPhen (3.4 × 10~(-4) cm~2/(V·s)) measured by SCLC. For the typical thickness of organic light-emitting devices, the electron mobility of doped BPhen is also investigated.

  12. Spin and Charge Currents through a Quantum Dot Connected to Ferromagnetic Leads

    Institute of Scientific and Technical Information of China (English)

    CHI Feng; LI Shu-Shen

    2005-01-01

    @@ We investigate the spin polarized current through a quantum dot connected to ferromagnetic leads in the presence of a finite spin-dependent chemical potential. The effects of the spin polarization of the leads p and the external magnetic field B are studied. It is found that both the magnitude and the symmetry of the current are dependent on the spin polarization of the leads. When the two ferromagnetic leads are in parallel configuration, the spin polarization p has an insignificant effect on the spin current, and an accompanying charge current appears with the increase of p. When the leads are in antiparallel configuration, however, the effect of p is distinct. The charge current is always zero regardless of the variation of p in the absence of B. The peaks appearing in the pure spin current are greatly suppressed and become asymmetric as p is increased. The applied magnetic field Bresults in an accompanying charge current in both the parallel and antiparallel configurations of the leads. The characteristics of the currents are explained in terms of the density of states of the quantum dot.

  13. Induced fermionic charge and current densities in two-dimensional rings

    CERN Document Server

    Bellucci, S; Grigoryan, A Kh

    2016-01-01

    For a massive quantum fermionic field, we investigate the vacuum expectation values (VEVs) of the charge and current densities induced by an external magnetic flux in a two-dimensional circular ring. Both the irreducible representations of the Clifford algebra are considered. On the ring edges the bag (infinite mass) boundary conditions are imposed for the field operator. This leads to the Casimir type effect on the vacuum characteristics. The radial current vanishes. The charge and the azimuthal current are decomposed into the boundary-free and boundary-induced contributions. Both these contributions are odd periodic functions of the magnetic flux with the period equal to the flux quantum. An important feature that distinguishes the VEVs of the charge and current densities from the VEV of the energy density, is their finiteness on the ring edges. The current density is equal to the charge density for the outer edge and has the opposite sign on the inner edge. The VEVs are peaked near the inner edge and, as f...

  14. Disturbingly Weak: The Current State of Financial Management Education in Library and Information Science Curricula

    Science.gov (United States)

    Burger, Robert H.; Kaufman, Paula T.; Atkinson, Amy L.

    2015-01-01

    Financial management skills are necessary for responsible library management. In light of the profession's current emphasis on financial literacy, the authors posed four questions: (1) to what extent are library and information science schools providing courses in financial management for their graduates; (2) what is the quality and quantity of…

  15. Disturbingly Weak: The Current State of Financial Management Education in Library and Information Science Curricula

    Science.gov (United States)

    Burger, Robert H.; Kaufman, Paula T.; Atkinson, Amy L.

    2015-01-01

    Financial management skills are necessary for responsible library management. In light of the profession's current emphasis on financial literacy, the authors posed four questions: (1) to what extent are library and information science schools providing courses in financial management for their graduates; (2) what is the quality and quantity of…

  16. Analysis of Magnetic Field Intensity and Induced Current under Live Working Based on Charge Simulation Method

    Directory of Open Access Journals (Sweden)

    Luo Yuanxiang

    2015-01-01

    Full Text Available To the problem that safety distance is insufficient for 500 kV substation live working, a magnetic field analysis method for overhead line bus is given based on the charge simulation method. In the method, charge is calculated firstly, and the space field intensity distribution calculation is completed by overlying charge. The space field intensity distribution rule is carried out based on the appropriate analysis, and space field intensity distribution rule of substation is obtained. Then according to the calculation formula of inducing current, the human body induction current under a substation busbar is simulated based on MATLAB. The simulation results have a certain guidance function for actual live working.

  17. Space charge and steady state current in LDPE samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Bambery, K. R.; Fleming, R. J.

    2000-01-01

    Electromagnetic theory predicts that a dielectric sample in which a steady DC current of density ε is flowing, and in which the ratio of permittivity ε to conductivity σ varies with position, will acquire a space charge density j·grad(ε/σ). A simple and convenient way to generate an ε/σ gradient...... in a homogeneous sample is to establish a temperature gradient across it. The resulting spatial variation in ε is usually small in polymeric insulators, but the variation in σ can be appreciable. Laser induced pressure pulse (LIPP) measurements were made on 1.5 mm thick plaques of ultra pure LDPE equipped...... with vacuum-evaporated aluminium electrodes. Temperature differences up to 27°C were maintained across the samples, which were subjected to DC fields up to 20 kV/mm. Current density was measured as a function of temperature and field. Negligible thermally generated space charge was observed. The charge...

  18. Charge and spin current oscillations in a tunnel junction induced by magnetic field pulses

    Science.gov (United States)

    Dartora, C. A.; Nobrega, K. Z.; Cabrera, G. G.

    2016-08-01

    Usually, charge and spin transport properties in tunnel junctions are studied in the DC bias regime and/or in the adiabatic regime of time-varying magnetic fields. In this letter, the temporal dynamics of charge and spin currents in a tunnel junction induced by pulsed magnetic fields is considered. At low bias voltages, energy and momentum of the conduction electrons are nearly conserved in the tunneling process, leading to the description of the junction as a spin-1/2 fermionic system coupled to time-varying magnetic fields. Under the influence of pulsed magnetic fields, charge and spin current can flow across the tunnel junction, displaying oscillatory behavior, even in the absence of DC bias voltage. A type of spin capacitance function, in close analogy to electric capacitance, is predicted.

  19. Two-dimensional relativistic space charge limited current flow in the drift space

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. L.; Chen, S. H., E-mail: chensh@ncu.edu.tw [Department of Physics, National Central University, Jhongli 32001, Taiwan (China); Koh, W. S. [A-STAR Institute of High Performance Computing, Singapore 138632 (Singapore); Ang, L. K. [Engineering Product Development, Singapore University of Technology and Design, Singapore 138682 (Singapore)

    2014-04-15

    Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.

  20. Effects of neutral gas release on current collection during the CHARGE-2 rocket experiment

    Science.gov (United States)

    Gilchrist, B. E.; Banks, P. M.; Neubert, T.; Williamson, P. R.; Myers, Neil B.; Raitt, W. John; Sasaki, S.

    1990-01-01

    Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged rocket payload in the ionosphere are reported. These observations were made during the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother/daughter payload system. The current collection enhancement was observed at the daughter payload located 100 to 400 m away from the mother which was firing an energetic electron beam. The authors interpret these results in terms of an electrical discharge forming in close proximity to the daughter during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. These results can also be compared with recent laboratory observations of hollow cathode plasma contactors operating in the ignited mode. Experimental observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated daughter payload in the nighttime ionosphere were made. These observations were derived from the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother-daughter payload system. The rocket flew from White Sands Missile Range (WSMR) in December, 1985. The rocket achieved an altitude of 261 km and carried a 1 keV electron beam emitting up to 48 mA of current (Myers, et al., 1989a). The mother payload, carried the electron beam source, while the daughter acted as a remote current collection and observation platform and reached a distance of 426 m away from the main payload. Gas emissions at the daughter were due to periodic thruster jet firings to maintain separation velocity between the two payloads.

  1. Deep-Trap Stress Induced Leakage Current Model for Nominal and Weak Oxides

    Science.gov (United States)

    Kamohara, Shiro; Hu, Chenming; Okumura, Tsugunori

    2008-08-01

    We have developed a model of the stress-induced leakage current (SILC) based on the inelastic trap-assisted tunneling (ITAT) by introducing a trap with a deep energy level of 3.6 eV from the bottom of the conduction band. This model can explain both of two field dependencies, i.e., a field dependence of the direct tunneling (DT) for A-mode SILC and that of the Fowler-Nordheim (FN) tunneling for B-mode SILC by analytical equations of a common form. For simple analytical equations, we introduce the most favorable trap position (MFTP), which gives the largest contribution to the leakage current. The trap area density for A-mode SILC of around 1×1010 cm-2 and the area density of the leakage paths for B-mode SILC of 1×102 cm-2 were obtained by comparisons between the experimental results and the present model.

  2. Simple DCM or CRM analog peak current controller for HV capacitor charge-discharge applications

    DEFF Research Database (Denmark)

    Trintis, Ionut; Dimopoulos, Emmanouil; Munk-Nielsen, Stig

    2013-01-01

    This paper presents a simple analog current controller suitable for buck and boost converter topologies. The controller operates in DCM or CRM, depending on the setup. The experimental results are presented to validate the proposed controller functionality for a high voltage capacitor charge...

  3. Charged Particle Dynamics in the Magnetic Field of a Long Straight Current-Carrying Wire

    Science.gov (United States)

    Prentice, A.; Fatuzzo, M.; Toepker, T.

    2015-01-01

    By describing the motion of a charged particle in the well-known nonuniform field of a current-carrying long straight wire, a variety of teaching/learning opportunities are described: 1) Brief review of a standard problem; 2) Vector analysis; 3) Dimensionless variables; 4) Coupled differential equations; 5) Numerical solutions.

  4. Space-charge-limited current and the effect of light in CdS-single crystals

    NARCIS (Netherlands)

    Driedonks, F.; Zijlstra, R.J.J.

    1966-01-01

    Thin CdS-single crystals in darkness show current-voltage characteristics in agreement with Lampert's theory. Illumination with photons in the extrinsic energy-range appears to increase considerably the amount of injected charge that remains free in the conduction band.

  5. Analysis and design of a charge pump circuit for high output current applications

    NARCIS (Netherlands)

    Steenwijk, van Gijs; Hoen, Klaas; Wallinga, Hans

    1993-01-01

    A charge pump circuit has been developed that can deliver high currents even for a system supply voltage of 3 V. The circuit consists of capacitances, connected by MOS switches. The influence of the on-resistance of the switches on the circuit's output resistance has been analysed. The switches are

  6. Neutrino and antineutrino inclusive charged-current cross section measurement with the MINOS near detector

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debdatta [Univ. of Pittsburgh, PA (United States)

    2009-01-01

    This thesis presents the measurement of energy dependence of the neutrino-nucleon inclusive charged current cross section on an isoscalar target in the range 3-50 GeV for neutrinos and 5-50 GeV energy range for antineutrinos. The data set was collected with the MINOS Near Detector using the wide band NuMI beam at Fermilab. The size of the charged current sample is 1.94 x 106 neutrino events and 1.60 x 105 antineutrino events. The flux has been extracted using a low hadronic energy sub-sample of the charged current events. The energy dependence of the cross section is obtained by dividing the charged current sample with the extracted flux. The neutrino and antineutrino cross section exhibits a linear dependence on energy at high energy but shows deviations from linear behavior at low energy. We also present a measurement of the ratio of antineutrino to neutrino inclusive cross section.

  7. Effect of surface charge on the dark current of InGaAs/InP avalanche photodiodes

    Science.gov (United States)

    Zeng, Q. Y.; Wang, W. J.; Wen, J.; Huang, L.; Liu, X. H.; Li, N.; Lu, W.

    2014-04-01

    The effects of surface charge on the dark current of the separate-absorption-grading-charge-multiplication InGaAs/InP avalanche photodiodes (APDs) are discussed using drift-diffusion simulation. The dark current increases exponentially with the increasing of surface charge density, and gets multiplied, thus influencing the performance of the APDs, especially in Geiger mode. The mechanism of the surface charge leakage current is discussed, and a floating guard ring structure is proposed to suppress the influence of surface charge effectively.

  8. Charges and currents in quantum spin chains: late-time dynamics and spontaneous currents

    Science.gov (United States)

    Fagotti, Maurizio

    2017-01-01

    We review the structure of the conservation laws in noninteracting spin chains and unveil a formal expression for the corresponding currents. We briefly discuss how interactions affect the picture. In the second part, we explore the effects of a localized defect. We show that the emergence of spontaneous currents near the defect undermines any description of the late-time dynamics by means of a stationary state in a finite chain. In particular, the diagonal ensemble does not work. Finally, we provide numerical evidence that simple generic localized defects are not sufficient to induce thermalization.

  9. Charged-Current Neutrino-Nucleus Scattering off the Even Molybdenum Isotopes

    Directory of Open Access Journals (Sweden)

    E. Ydrefors

    2012-01-01

    Full Text Available Neutrinos from supernovae constitute important probes of both the currently unknown supernova mechanisms and of neutrino properties. Reliable information about the nuclear responses to supernova neutrinos is therefore crucial. In this work, we compute the cross sections for the charged-current neutrino-nucleus scattering off the even-even molybdenum isotopes. The nuclear responses to supernova neutrinos are subsequently calculated by folding the cross sections with a Fermi-Dirac distribution.

  10. Charge Neutral Fermionic States and Current Oscillation in a Graphene-Superconductor Hybrid Structure

    Science.gov (United States)

    Duan, Wenye; Wang, Wei; Zhang, Chao; Jin, Kuijuan; Ma, Zhongshui

    2016-10-01

    The proximity properties of edge currents in the vicinity of the interface between the graphene and superconductor in the presence of magnetic field are investigated. It is shown that the edge states introduced by Andreev reflection at the graphene-superconductor (G/S) interface give rise to the charge neutral states in all Landau levels. We note that in a topological insulator-superconductor (TI/S) hybrid structure, only N = 0 Landau level can support this type of charge neutral states. The different interface states of a G/S hybrid and a TI/S hybrid is due to that graphene consists of two distinct sublattices. The armchair edge consists of two inequivalent atoms. This gives rise to unique electronic properties of edge states when connected to a superconductor. A direct consequence of zero charge states in all Landau levels is that the current density approaches zero at interface. The proximity effect leads to quantum magnetic oscillation of the current density in the superconductor region. The interface current density can also be tuned with a finite interface potential. For sharp δ-type interface potential, the derivative of the wavefunction is discontinuous. As a result, we found that there is current density discontinuity at the interface. The step of the current discontinuity is proportional to the strength of the interface potential.

  11. Berry{close_quote}s phase and a possible new topological current drive in certain weak link superconducting systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaitan, F.; Shenoy, S.R. [International Center for Theoretical Physics, P. O. Box 586, Miramare, 34100 Trieste (Italy)

    1996-06-01

    We examine the consequences of Berry{close_quote}s phase for the dynamics of Josephson junctions and junction arrays in which moving vortices are present. For both a large annular Josephson junction and a 2D junction array, Berry{close_quote}s phase produces a new current drive in the superconducting phase dynamics of these weak link systems. This Berry phase effect is shown to be physically inequivalent to a known effect in junction arrays associated with the Aharonov-Casher phase. {copyright} {ital 1996 The American Physical Society.}

  12. Two New Theories for the Current Charge Relativity and the Electric Origin of the Magnetic Force Between Two Filamentary Current Elements

    CERN Document Server

    Shadid, Waseem G T

    2016-01-01

    This paper presents two new theories and a new current representation to explain the magnetic force between two filamentary current elements as a result of electric force interactions between current charges. The first theory states that a current has an electric charge relative to its moving observer. The second theory states that the magnetic force is an electric force in origin. The new current representation characterizes a current as equal amounts of positive and negative point charges moving in opposite directions at the speed of light. Previous work regarded electricity and magnetism as different aspects of the same subject. One effort was made by Johnson to unify the origin of electricity and magnetism, but this effort yielded a formula that is unequal to the well-known magnetic force law. The explanation provided for the magnetic force depends on three factors: 1) representing the electric current as charges moving at the speed of light, 2) considering the relative velocity between moving charges, an...

  13. Off-shell Noether current and conserved charge in Horndeski theory

    Directory of Open Access Journals (Sweden)

    Jun-Jin Peng

    2016-01-01

    Full Text Available We derive the off-shell Noether current and potential in the context of Horndeski theory, which is the most general scalar–tensor theory with a Lagrangian containing derivatives up to second order while yielding at most to second-order equations of motion in four dimensions. Then the formulation of conserved charges is proposed on basis of the off-shell Noether potential and the surface term got from the variation of the Lagrangian. As an application, we calculate the conserved charges of black holes in a scalar–tensor theory with non-minimal coupling between derivatives of the scalar field and the Einstein tensor.

  14. Off-shell Noether current and conserved charge in Horndeski theory

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jun-Jin, E-mail: pengjjph@163.com [School of Physics and Electronic Science, Guizhou Normal University, Guiyang, Guizhou 550001 (China); Institute of Technical Physics, SEEE, Wuhan Textile University, Wuhan, Hubei 430073 (China)

    2016-01-10

    We derive the off-shell Noether current and potential in the context of Horndeski theory, which is the most general scalar–tensor theory with a Lagrangian containing derivatives up to second order while yielding at most to second-order equations of motion in four dimensions. Then the formulation of conserved charges is proposed on basis of the off-shell Noether potential and the surface term got from the variation of the Lagrangian. As an application, we calculate the conserved charges of black holes in a scalar–tensor theory with non-minimal coupling between derivatives of the scalar field and the Einstein tensor.

  15. Gummel Symmetry Test on charge based drain current expression using modified first-order hyperbolic velocity-field expression

    Science.gov (United States)

    Singh, Kirmender; Bhattacharyya, A. B.

    2017-03-01

    Gummel Symmetry Test (GST) has been a benchmark industry standard for MOSFET models and is considered as one of important tests by the modeling community. BSIM4 MOSFET model fails to pass GST as the drain current equation is not symmetrical because drain and source potentials are not referenced to bulk. BSIM6 MOSFET model overcomes this limitation by taking all terminal biases with reference to bulk and using proper velocity saturation (v -E) model. The drain current equation in BSIM6 is charge based and continuous in all regions of operation. It, however, adopts a complicated method to compute source and drain charges. In this work we propose to use conventional charge based method formulated by Enz for obtaining simpler analytical drain current expression that passes GST. For this purpose we adopt two steps: (i) In the first step we use a modified first-order hyperbolic v -E model with adjustable coefficients which is integrable, simple and accurate, and (ii) In the second we use a multiplying factor in the modified first-order hyperbolic v -E expression to obtain correct monotonic asymptotic behavior around the origin of lateral electric field. This factor is of empirical form, which is a function of drain voltage (vd) and source voltage (vs) . After considering both the above steps we obtain drain current expression whose accuracy is similar to that obtained from second-order hyperbolic v -E model. In modified first-order hyperbolic v -E expression if vd and vs is replaced by smoothing functions for the effective drain voltage (vdeff) and effective source voltage (vseff), it will as well take care of discontinuity between linear to saturation regions of operation. The condition of symmetry is shown to be satisfied by drain current and its higher order derivatives, as both of them are odd functions and their even order derivatives smoothly pass through the origin. In strong inversion region and technology node of 22 nm the GST is shown to pass till sixth

  16. Finite temperature fermion condensate, charge and current densities in a (2+1)-dimensional conical space

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Bezerra de Mello, E.R. [Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Braganca, E. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Saharian, A.A. [Yerevan State University, Department of Physics, Yerevan (Armenia)

    2016-06-15

    We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even function of the chemical potential. The behavior of the expectation values in various asymptotic regions of the parameters are discussed in detail. In particular, we show that for points near the cone apex the vacuum parts dominate. For a massless field with zero chemical potential the fermion condensate and charge density vanish. Simple expressions are derived for the part in the total charge induced by the planar angle deficit and magnetic flux. Combining the results for separate irreducible representations, we also consider the fermion condensate, charge and current densities in parity and time-reversal symmetric models. Possible applications to graphitic nanocones are discussed. (orig.)

  17. Bose-Einstein correlations in charged current muon-neutrino interactions in the NOMAD experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V. E-mail: vincenzo.cavasinni@pi.infn.it; Cervera-Villanueva, A.; Challis, R.C.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; De Santo, A.; Dignan, T.; Di Lella, L.; Couto e Silva, E. do; Dumarchez, J.; Ellis, M.; Feldman, G.J.; Ferrari, R.; Ferrere, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Goessling, C.; Gouanere, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Lacaprara, S.; Lachaud, C.; Lakic, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubicic, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Mechain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S.R.; Moorhead, G.F.; Naumov, D.; Nedelec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L.S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Sevior, M.; Sillou, D.; Soler, F.J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipcevic, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G.N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S.N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K.E.; Veltri, M.; Vercesi, V. [and others

    2004-05-10

    Bose-Einstein correlations in one and two dimensions have been studied, with high statistics, in charged current muon-neutrino interaction events collected with the NOMAD detector at CERN. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov-Podgoretskii phenomenological parametrizations. The Goldhaber parametrization gives the radius of the pion emission region R{sub G}=1.01{+-}0.05(stat){sup +0.09}{sub -0.06}(sys) fm and for the chaoticity parameter the value {lambda}=0.40{+-}0.03(stat){sup +0.01}{sub -0.06}(sys). Using the Kopylov-Podgoretskii parametrization yields R{sub KP}=2.07{+-}0.04(stat){sup +0.01}{sub -0.14}(sys) fm and {lambda}{sub KP}=0.29{+-}0.06(stat){sup +0.01}{sub -0.04}(sys). Different parametrizations of the long-range correlations have been also studied. The two-dimensional shape of the source has been investigated in the longitudinal comoving frame. A significant difference between the transverse and the longitudinal dimensions is observed. The high statistics of the collected sample allowed the study of the Bose-Einstein correlations as a function of rapidity, charged particle multiplicity and hadronic energy. A weak dependence of both radius and chaoticity on multiplicity and hadronic energy is found.

  18. Bose-Einstein correlations in charged current muon-neutrino interactions in the NOMAD experiment at CERN

    Science.gov (United States)

    Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R. C.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; de Santo, A.; Dignan, T.; di Lella, L.; Do Couto E Silva, E.; Dumarchez, J.; Ellis, M.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubičić, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S. R.; Moorhead, G. F.; Naumov, D.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Yabsley, B. D.; Zaccone, H.; Zei, R.; Zuber, K.; Zuccon, P.; NOMAD Collaboration

    2004-05-01

    Bose-Einstein correlations in one and two dimensions have been studied, with high statistics, in charged current muon-neutrino interaction events collected with the NOMAD detector at CERN. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov-Podgoretskii phenomenological parametrizations. The Goldhaber parametrization gives the radius of the pion emission region RG=1.01±0.05(stat) +0.09-0.06(sys) fm and for the chaoticity parameter the value λ=0.40±0.03(stat) +0.01-0.06(sys). Using the Kopylov-Podgoretskii parametrization yields RKP=2.07±0.04(stat) +0.01-0.14(sys) fm and λKP=0.29±0.06(stat) +0.01-0.04(sys). Different parametrizations of the long-range correlations have been also studied. The two-dimensional shape of the source has been investigated in the longitudinal comoving frame. A significant difference between the transverse and the longitudinal dimensions is observed. The high statistics of the collected sample allowed the study of the Bose-Einstein correlations as a function of rapidity, charged particle multiplicity and hadronic energy. A weak dependence of both radius and chaoticity on multiplicity and hadronic energy is found.

  19. Circular orbits and related quasi-harmonic oscillatory motion of charged particles around weakly magnetized rotating black holes

    CERN Document Server

    Tursunov, Arman; Kološ, Martin

    2016-01-01

    We study motion of charged particles in the field of a rotating black hole immersed into an external asymptotically uniform magnetic field, focusing on the epicyclic quasi-circular orbits near the equatorial plane. Separating the circular orbits into four qualitatively different classes according to the sign of the canonical angular momentum of the motion and the orientation of the Lorentz force, we analyse the circular orbits using the so called force formalism. We find the analytical solutions for the radial profiles of velocity, specific angular momentum and specific energy of the circular orbits in dependence on the black hole dimensionless spin and the magnetic field strength. The innermost stable circular orbits are determined for all four classes of the circular orbits. The stable circular orbits with outward oriented Lorentz force can extend to radii lower than the radius of the corresponding photon circular geodesic. We calculate the frequencies of the harmonic oscillatory motion of the charged parti...

  20. Lithium-ion Battery Charging System using Constant-Current Method with Fuzzy Logic Based ATmega16

    Directory of Open Access Journals (Sweden)

    Rossi Passarella

    2014-10-01

    Full Text Available In this charging system, constant-current charging technique keeps the current flow into the battery on its maximum range of 2A. The use of fuzzy logic control of this charging system is to control the value of PWM. PWM is controlling the value of current flowing to the battery during the charging process. The current value into the battery depends on the value of battery voltage and also its temperature. The cutoff system will occur if the temperature of the battery reaches its maximum range

  1. Quantum radiation from an inertial scalar charge evolving in the de Sitter universe: Weak-field limit

    Energy Technology Data Exchange (ETDEWEB)

    Blaga, Robert, E-mail: robert.blaga90@e-uvt.ro [Faculty of Physics, West University of Timişoara V. Pârvan Ave. 4, RO-300223 Timişoara (Romania)

    2015-12-07

    We investigate the energy radiated by an inertial scalar charge evolving in the expanding Poincaré patch of de Sitter spacetime, in the framework of scalar QED perturbation theory. We approximate the transition amplitude in the small expansion parameter limit and show that the leading contribution to the radiated energy has the form of the energy radiated by an accelerated particle in Minkowski space.

  2. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  3. Prospect for Charge Current Neutrino Interactions Measurements at the CERN-PS

    CERN Document Server

    Bernardini, P; Bozza, C; Brugnera, R; Cecchetti, A; Cecchini, S; Collazuol, G; Corso, F Dal; De Mitri, I; De Serio, M; Di Ferdinando, D; Dore, U; Dusini, S; Fabbricatore, P; Fanin, C; Fini, R A; Garfagnini, A; Grella, G; Kose, U; Laveder, M; Loverre, P; Longhin, A; Marsella, G; Mancarella, G; Mandrioli, G; Mauri, N; Medinaceli, E; Mezzetto, M; Muciaccia, M T; Orecchini, D; Paoloni, A; Pastore, A; Patrizii, L; Pozzato, M; Rescigno, R; Rosa, G; Simone, S; Sioli, M; Sirri, G; Spurio, M; Stanco, L; Stellacci, S; Surdo, A; Tenti, M; Togo, V

    2011-01-01

    Tensions in several phenomenological models grew with experimental results on neutrino/antineutrino oscillations at Short-Baseline (SBL) and with the recent, carefully recomputed, antineutrino fluxes from nuclear reactors. At a refurbished SBL CERN-PS facility an experiment aimed to address the open issues has been proposed [1], based on the technology of imaging in ultra-pure cryogenic Liquid Argon (LAr). Motivated by this scenario a detailed study of the physics case was performed. We tackled specific physics models and we optimized the neutrino beam through a full simulation. Experimental aspects not fully covered by the LAr detection, i.e. the measurements of the lepton charge on event-by-event basis and their energy over a wide range, were also investigated. Indeed the muon leptons from Charged Current (CC) (anti-)neutrino interactions play an important role in disentangling different phenomenological scenarios provided their charge state is determined. Also, the study of muon appearance/disappearance ca...

  4. Prospect for Charge Current Neutrino Interactions Measurements at the CERN-PS

    CERN Document Server

    Stanco, Luca (INFN-Padova)

    2011-01-01

    Tensions in several phenomenological models grew with experimental results on neu- trino/antineutrino oscillations at Short-Baseline (SBL) and with the recent, carefully recomputed, antineutrino fluxes from nuclear reactors. At a refurbished SBL CERN- PS facility an experiment aimed to address the open issues has been proposed [1], based on the technology of imaging in ultra-pure cryogenic Liquid Argon (LAr). Motivated by this scenario a detailed study of the physics case was performed. We tackled specific physics models and we optimized the neutrino beam through a full simulation. Experimental aspects not fully covered by the LAr detection, i.e. the measurements of the lepton charge on event-by-event basis and their energy over a wide range, were also investigated. Indeed the muon leptons from Charged Current (CC) (anti-)neutrino interactions play an important role in disentangling different phenomenological scenarios provided their charge state is determined. Also, the study of muon appearance/disappearance...

  5. Planck Charges, Planck Currents and The Hermitic Shangri-La for Magnetic Monopole

    CERN Document Server

    Deng, Yanbin; Huang, Yong-Chang

    2016-01-01

    The concepts of Planck charges are summarized and extended in a consistent and unified manner to include Planck currents. These Planck parameters form a set of indicators serving as the boundary markers signaling the buffer zone separating the quantum gravity physics beyond Planck energy scale from the ordinary physics below the Planck scale. Combining the concepts of Planck charges with the Dirac electric-magnetic charge quantization relation, a lower bound is discovered and attributed to the value of magnetic monopole as half of the Planck magnetic monopole. The value of the running electric fine structure constant is required to be confined to a restricted interval to keep physics involving magnetic monopoles below the Planck scale. It provides a prediction about the hermitic Shangri-La, a remote place the magnetic monopoles are inhabiting near the boundary but still within the scope of ordinary physics. It opens a window of hope to the theoretical and/or experimental probe for magnetic monopoles realizing...

  6. Crossing the Boundaries of Our Current Healthcare System by Integrating Ultra-Weak Photon Emissions with Metabolomics

    Science.gov (United States)

    Burgos, Rosilene C. Rossetto; van Wijk, Eduard P. A.; van Wijk, Roeland; He, Min; van der Greef, Jan

    2016-01-01

    The current healthcare system is hampered by a reductionist approach in which diagnostics and interventions focus on a specific target, resulting in medicines that center on generic, static phenomena while excluding inherent dynamic nature of biological processes, let alone psychosocial parameters. In this essay, we present some limitations of the current healthcare system and introduce the novel and potential approach of combining ultra-weak photon emission (UPE) with metabolomics technology in order to provide a dynamic readout of higher organizational systems. We argue that the combination of metabolomics and UPE can bring a new, broader, view of health state and can potentially help to shift healthcare toward more personalized approach that improves patient well-being. PMID:28018239

  7. Crossing the boundaries of our current healthcare system by integrating ultra-weak photon emissions with metabolomics

    Directory of Open Access Journals (Sweden)

    Rosilene Cristina Rossetto Burgos

    2016-12-01

    Full Text Available The current healthcare system is hampered by a reductionist approach in which diagnostics and interventions focus on a specific target, resulting in medicines that center on generic, static phenomena while excluding inherent dynamic nature of biological processes, let alone psychosocial parameters. In this essay, we present some limitations of the current healthcare system and introduce the novel and potential approach of combining ultra-weak photon emission (UPE with metabolomics technology in order to provide a dynamic readout of higher organizational systems. We argue that the combination of metabolomics and UPE can bring a new, broader, view of health state and can potentially help to shift healthcare towards more personalized approach that improves patient well-being.

  8. Meson-exchange currents and quasielastic predictions for charged-current neutrino-12C scattering in the superscaling approach

    CERN Document Server

    Megias, G D; Moreno, O; Williamson, C F; Caballero, J A; Gonzalez-Jimenez, R; De Pace, A; Barbaro, M B; Alberico, W M; Nardi, M; Amaro, J E

    2014-01-01

    We evaluate and discuss the impact of meson-exchange currents (MEC) on charged-current quasielastic (QE) neutrino cross sections. We consider the nuclear transverse response arising from 2p-2h states excited by the action of electromagnetic, purely isovector meson-exchange currents in a fully relativistic framework, based on the work by the Torino collaboration [1]. An accurate parametrization of this MEC response as a function of the momentum and energy transfers involved is presented. Results of neutrino-nucleus cross sections using this MEC parametrization together with a recent scaling approach for the 1p-1h contributions (SuSAv2) are compared with experimental data (MiniBooNE, MINERvA, NOMAD and T2K Collaborations).

  9. Inclusive vector meson production in nuµD charged current interactions

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C. C.; Mann, W. A.; Napier, A.

    1980-01-01

    From hadronic systems induced in 3571 charged-current neutrino-deuterium interactions in the FNAL 15-foot diameter bubble chamber, invariant mass distributions (..pi../sup +/..pi../sup -/) and (K/sub s//sup 0/..pi../sup + -/) have been used to study inclusive production of vector meson resonances. Inclusive rates from a pure isoscalar target are determined to be 0.05 +- 0.01 K*/sup +/(890) per charged-current event and 0.19 +- 0.04 rho/sup 0/ per charged-current event. Inclusive K*(890)/sup + -/ production is found to be predominantly K*/sup +/(890) in the current fragmentation region. The ratios (rho/sup 0//event) from neutron targets and from proton targets separately are, respectively, 0.18 +- 0.06 and 0.21 +- 0.08. For deuteron targets, trends in the dependence of (rho/sup 0//event) on variables Y/sub R/, W, p/sub T/, and Q/sup 2/ are found to be similar to those observed in rho/sup 0/ production from anti ..nu../sub ..mu../p collisions.

  10. Characterization of Final State Interaction Strength in Plastic Scintillator by Muon-Neutrino Charged Current Charged Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Eberly, Brandon M. [Univ. of Pittsburgh, PA (United States)

    2014-01-01

    Precise knowledge of neutrino-nucleus interactions is increasingly important as neutrino oscillation measurements transition into the systematics-limited era. In addition to modifying the initial interaction, the nuclear medium can scatter and absorb the interaction by-products through final state interactions, changing the types and kinematic distributions of particles seen by the detector. Recent neutrino pion production data from MiniBooNE is inconsistent with the final state interaction strength predicted by models and theoretical calculations, and some models fit best to the MiniBooNE data only after removing final state interactions entirely. This thesis presents a measurement of dσ/dTπ and dσ/dθπ for muon-neutrino charged current charged pion production in the MINER A scintillator tracker. MINER A is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. The analysis is limited to neutrino energies between 1.5-10 GeV. Dependence on invariant hadronic mass W is studied through two versions of the analysis that impose the limits W < 1.4 GeV and W < 1.8 GeV. The lower limit on W increases compatibility with the MiniBooNE pion data. The shapes of the differential cross sections, which depend strongly on the nature of final state interactions, are compared to Monte Carlo and theoretical predictions. It is shown that the measurements presented in this thesis favor models that contain final state interactions. Additionally, a variety of neutrino-nucleus interaction models are shown to successfully reproduce the thesis measurements, while simultaneously failing to describe the shape of the MiniBooNE data.

  11. Effects of weakly coupled and dense quantum plasmas environments on charge exchange and ionization processes in Na+ + Rb(5s) atom collisions

    Science.gov (United States)

    Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam

    2017-02-01

    The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.

  12. Space-charge-controlled field emission model of current conduction through Al2O3 films

    Science.gov (United States)

    Hiraiwa, Atsushi; Matsumura, Daisuke; Kawarada, Hiroshi

    2016-02-01

    This study proposes a model for current conduction in metal-insulator-semiconductor (MIS) capacitors, assuming the presence of two sheets of charge in the insulator, and derives analytical formulae of field emission (FE) currents under both negative and positive bias. Since it is affected by the space charge in the insulator, this particular FE differs from the conventional FE and is accordingly named the space-charge-controlled (SCC) FE. The gate insulator of this study was a stack of atomic-layer-deposition Al2O3 and underlying chemical SiO2 formed on Si substrates. The current-voltage (I-V) characteristics simulated using the SCC-FE formulae quantitatively reproduced the experimental results obtained by measuring Au- and Al-gated Al2O3/SiO2 MIS capacitors under both biases. The two sheets of charge in the Al2O3 films were estimated to be positive and located at a depth of greater than 4 nm from the Al2O3/SiO2 interface and less than 2 nm from the gate. The density of the former is approximately 1 × 1013 cm-2 in units of electronic charge, regardless of the type of capacitor. The latter forms a sheet of dipoles together with image charges in the gate and hence causes potential jumps of 0.4 V and 1.1 V in the Au- and Al-gated capacitors, respectively. Within a margin of error, this sheet of dipoles is ideally located at the gate/Al2O3 interface and effectively reduces the work function of the gate by the magnitude of the potential jumps mentioned above. These facts indicate that the currents in the Al2O3/SiO2 MIS capacitors are enhanced as compared to those in ideal capacitors and that the currents in the Al-gated capacitors under negative bias (electron emission from the gate) are more markedly enhanced than those in the Au-gated capacitors. The larger number of gate-side dipoles in the Al-gated capacitors is possibly caused by the reaction between the Al and Al2O3, and therefore gate materials that do not react with underlying gate insulators should be chosen

  13. A double-stage start-up structure to limit the inrush current used in current mode charge pump

    Science.gov (United States)

    Cong, Liu; Xinquan, Lai; Hanxiao, Du; Yuan, Chi

    2016-06-01

    A double-stage start-up structure to limit the inrush current used in current-mode charge pump with wide input range, fixed output and multimode operation is presented in this paper. As a widely utilized power source implement, a Li-battery is always used as the power supply for chips. Due to the internal resistance, a potential drop will be generated at the input terminal of the chip with an input current. A false shut down with a low supply voltage will happen if the input current is too large, leading to the degradation of the Li-battery's service life. To solve this problem, the inrush current is limited by introducing a new start-up state. All of the circuits have been implemented with the NUVOTON 0.6 μm CMOS process. The measurement results show that the inrush current can be limited below 1 A within all input supply ranges, and the power efficiency is higher than the conventional structure. Project supported by the National Natural Science Foundation of China (No. 61106026).

  14. Measurement of the $Z/A$ dependence of neutrino charged-current total cross-sections

    CERN Document Server

    Kayis-Topaksu, A; Van Dantzig, R; De Jong, M; Konijn, J; Melzer, O; Oldeman, R G C; Pesen, E; Van der Poel, C A F J; Spada, F R; Visschers, J L; Güler, M; Serin-Zeyrek, M; Kama, S; Sever, R; Tolun, P; Zeyrek, M T; Armenise, N; Catanesi, M G; De Serio, M; Ieva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; El-Aidi, R; Van de Vyver, B; Vilian, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, A V; Brunner, J; Chizhov, M; Cussans, D G; Doucet, M; Fabre, Jean-Paul; Hristova, I R; Kawamura, T; Kolev, D; Litmaath, M; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A; Saltzberg, D; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Rondeshagen, D; Wolff, T; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Ereditato, A; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Pistillo, C; Santorelli, R; Scotto-Lavina, L; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; Loverre, P F; Ludovici, L; Maslennikov, A L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2003-01-01

    A relative measurement of total cross-sections is reported for polyethylene, marble, iron, and lead targets for the inclusive charged-current reaction nu_mu + N -> mu^- + X. The targets, passive blocks of ~100kg each, were exposed simultaneously to the CERN SPS wide-band muon-neutrino beam over a period of 18 weeks. Systematics effects due to differences in the neutrino flux and detector efficiency for the different target locations were minimised by changing the position of the four targets on their support about every two weeks. The relative neutrino fluxes on the targets were monitored within the same experiment using charged-current interactions in the calorimeter positioned directly downstream of the four targets. From a fit to the Z/A dependence of the total cross-sections a value is deduced for the effective neutron-to-proton cross-section ratio.

  15. Universal charge and current on magnetic domain walls in Weyl semimetals

    Science.gov (United States)

    Araki, Yasufumi; Yoshida, Akihide; Nomura, Kentaro

    2016-09-01

    Domain walls in three-dimensional Weyl semimetals, formed by localized magnetic moments, are investigated. There appear bound states around the domain wall with the discrete spectrum, among which we find "Fermi arc" states with the linear dispersion. The Fermi arc modes contribute to the electric charge and current localized at the domain wall, which reveal a universal behavior depending only on chemical potential and the splitting of the Weyl nodes. This equilibrium current can be traced back to the chiral magnetic effect, or the edge counterpart of the anomalous Hall effect in the bulk. We propose a way to manipulate the motion of the domain wall, accompanied with the localized charge, by applying an external electric field.

  16. Modulation of current through a nanopore induced by a charged globule: implications for DNA-docking

    CERN Document Server

    Chinappi, Mauro; Cecconi, Fabio; Marconi, Umberto Marini Bettolo; Melchionna, Simone

    2015-01-01

    The passage of DNA through a nanopore can be effectively decomposed into two distinct phases, docking and actual translocation. In experiments each phase is characterized by a distinct current signature which allows the discrimination of the two events. However, at low voltages a clear distinction of the two phases is lost. By using numerical simulations we clarify how the current signature associated to the docking events depends on the applied voltage. The simulations show that at small voltage the DNA globule enhances the pore conductance due to an enrichment of charge carriers. At high voltage, the globule drains substantial charge carriers from the pore region, thereby reducing the overall conductance. The results provide a new interpretation to the experimental data on conductance and show how docking interferes with the translocation signal, of potential interest for sequencing applications.

  17. Multi-jet cross sections in charged current e{sup {+-}}p scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2008-02-15

    Jet cross sections were measured in charged current deep inelastic e{sup {+-}}p scattering at high boson virtualities Q{sup 2} with the ZEUS detector at HERA II using an integrated luminosity of 0.36 fb{sup -1}. Differential cross sections are presented for inclusive-jet production as functions of Q{sup 2}, Bjorken x and the jet transverse energy and pseudorapidity. The dijet invariant mass cross section is also presented. Observation of three- and four-jet events in charged-current e{sup {+-}}p processes is reported for the first time. The predictions of next-to-leading-order (NLO) QCD calculations are compared to the measurements. The measured inclusive-jet cross sections are well described in shape and normalization by the NLO predictions. The data have the potential to constrain the u and d valence quark distributions in the proton if included as input to global fits. (orig.)

  18. Right-handed charged currents in the era of the Large Hadron Collider arXiv

    CERN Document Server

    Alioli, S.; Dekens, W.; de Vries, J.; Mereghetti, E.

    We discuss the phenomenology of right-handed charged currents in the framework of the Standard Model Effective Field Theory, in which they arise due to a single gauge-invariant dimension-six operator. We study the manifestations of the nine complex couplings of the $W$ to right-handed quarks in collider physics, flavor physics, and low-energy precision measurements. We first obtain constraints on the couplings under the assumption that the right-handed operator is the dominant correction to the Standard Model at observable energies. We subsequently study the impact of degeneracies with other Beyond-the-Standard-Model effective interactions and identify observables, both at colliders and low-energy experiments, that would uniquely point to right-handed charged currents.

  19. Achievable peak electrode voltage reduction by neurostimulators using descending staircase currents to deliver charge.

    Science.gov (United States)

    Halpern, Mark

    2011-01-01

    This paper considers the achievable reduction in peak voltage across two driving terminals of an RC circuit when delivering charge using a stepped current waveform, comprising a chosen number of steps of equal duration, compared with using a constant current over the total duration. This work has application to the design of neurostimulators giving reduced peak electrode voltage when delivering a given electric charge over a given time duration. Exact solutions for the greatest possible peak voltage reduction using two and three steps are given. Furthermore, it is shown that the achievable peak voltage reduction, for any given number of steps is identical for simple series RC circuits and parallel RC circuits, for appropriate different values of RC. It is conjectured that the maximum peak voltage reduction cannot be improved using a more complicated RC circuit.

  20. Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    CERN Document Server

    jima, Y Naka; Brice, S J; Bugel, L; Catala-Perez, J; Cheng, G; Conrad, J M; Djurcic, Z; Dore, U; Finley, D A; Franke, A J; Giganti, C; Gomez-Cadenas, J J; Guzowski, P; Hanson, A; Hayato, Y; Hiraide, K; Jover-Manas, G; Karagiorgi, G; Katori, T; Kobayashi, Y K; Kobilarcik, T; Kubo, H; Kurimoto, Y; Louis, W C; Loverre, P F; Ludovici, L; Mahn, K B M; Mariani, C; Masuike, S; Matsuoka, K; McGary, V T; Metcalf, W; Mills, G B; Mitsuka, G; Miyachi, Y; Mizugashira, S; Moore, C D; Nakaya, T; Napora, R; Nienaber, P; Orme, D; Otani, M; Russell, A D; Sanchez, F; Shaevitz, M H; Shibata, T -A; Sorel, M; Stefanski, R J; Takei, H; Tanaka, H -K; Tanaka, M; Tayloe, R; Taylor, I J; Tesarek, R J; Uchida, Y; Van de Water, R; Walding, J J; Wascko, M O; White, H B; Yokoyama, M; Zeller, G P; Zimmerman, E D

    2010-01-01

    The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8~GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.

  1. Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y.; jima, Y.Naka; Alcaraz-Aunion, J.L.; Brice, S.J.; Bugel, L.; Catala-Perez, J.; Cheng, G.; Conrad, J.M.; Djurcic, Z.; Dore, U.; Finley, D.A.; /Kyoto U. /Barcelona, IFAE /Fermilab /MIT /Valencia U. /Columbia U. /MIT /Columbia U. /INFN, Rome /Rome U. /Fermilab /Columbia U. /INFN, Rome /Rome U.

    2010-11-01

    The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.

  2. Measurement of the muon-neutrino charged-current cross section on water with zero pions

    CERN Document Server

    Yuan, Tianlu

    2016-01-01

    The Tokai to Kamioka (T2K) experiment is a 295-km long-baseline neutrino experiment aimed towards the measurement of neutrino oscillation parameters ${\\theta}_{13}$ and ${\\theta}_{23}$. Precise measurement of these parameters requires accurate knowledge of neutrino cross sections. We present a flux-averaged double differential measurement of the charged-current cross section on water with zero pions in the final state using the T2K off-axis near detector, ND280. A selection of $\

  3. Charged current disappearance measurements in the NuMI off-axis beam

    Energy Technology Data Exchange (ETDEWEB)

    R. H. Bernstein

    2003-09-25

    This article studies the potential of combining charged-current disappearance measurements of {nu}{sub {mu}} {yields} {nu}{sub {tau}} from MINOS and an off-axis beam. The author finds that the error on {Delta}m{sup 2} from a 100 kt-yr off-axis measurement is a few percent of itself. Further, the author found little improvement to an off-axis measurement by combining it with MINOS.

  4. Feedback Direct Injection Current Readout For Infrared Charge-Coupled Devices

    Science.gov (United States)

    Kubo, Kazuya; Wakayama, Hiroyuki; Kajihara, Nobuyuki; Awamoto, Kenji; Miyamoto, Yoshihiro

    1990-01-01

    We are proposing current readout for infrared charge coupled devices (IRCCDs) which can operate at higher temperatures. Feedback direct injection (FDI) consists of a simple amplifier of gain, AFDI was used in a medium-wavelength IRCCD operating at a high temperature. We made a 64-element HgCdTe linear IRCCD using FDI. The device operates at 195 K with an NETD of 0.5 K.

  5. Biquaternionic Model of Electro-Gravimagnetic Field, Charges and Currents. Law of Inertia

    CERN Document Server

    Alexeyeva, Lyudmila

    2016-01-01

    One the base of Maxwell and Dirac equations the one biquaternionic model of electro-gravimagnetic (EGM) fields is considered. The closed system of biquaternionic wave equations is constructed for determination of free system of electric and gravimagnetic charges and currents and generated by them EGM-field. By using generalized functions theory the fundamental and regular solutions of this system are determined and some of them are considered (spinors, plane waves, shock EGMwaves and others). The properties of these solutions are investigated.

  6. Bose-Einstein Correlations in charged current muon-neutrino interactions in NOMAD

    CERN Document Server

    Zei, R

    2004-01-01

    Bose-Einstein Correlations in one and two dimensions have been studied in charged current muon-neutrino interaction events collected with NOMAD. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov parametrizations. The two-dimensional shape of the source has been investigated in the longitudinal co-moving frame. A significant difference between the transverse and the longitudinal sizes is observed.

  7. Strange Resonance and Charmed Particle Production in Muon-Associated Neutrino Neon Charged-Current Interactions

    Science.gov (United States)

    Hyatt, Eric Roy

    The production of strange resonances and charmed particles in nu_{mu} Ne charged-current interactions was measured in the 15 ft Bubble Chamber. The chamber, filled with a heavy Ne-H_2 mixture, was exposed at Fermilab to a wide-band horn-focussed neutrino beam with peak energy ~20 GeV. In a 390,000 expansion exposure of the chamber, ~125,000 charge-current events occurred within the fiducial volume. Among these events were 4381 (3676) well-reconstructed K _sp{s}{0} ( Lambda^0) decays. The events containing these neutral strange particle decays are examined to measure strange resonance and charmed particle production. Inclusive production rates or rate limits per charged-current event are measured for the K*(890) and Sigma^ {*}(1380) resonances. The production of any particular resonance is measured to be typically {cal O}(1%), and resonance decays are shown to account for 10-25% of K^0 /|{rm K}^0 's and Lambda^0's. Production rates or rate limits are measured for charmed particles via hadronic decays which include a neutral strange particle --these rates are typically {cal O} (1%) and are consistent with the rate at which charmed particle semileptonic decays were observed during the same experiment. ftn*Research supported by the National Science Foundation. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the graduate School of Arts and Sciences, Columbia University.

  8. On the nature of stabilization in weak, medium, and strong charge-transfer complexes: CCSD(T)/CBS and SAPT calculations.

    Science.gov (United States)

    Karthikeyan, S; Sedlak, Robert; Hobza, Pavel

    2011-09-01

    Weak, medium, and strong charge-transfer (CT) complexes containing various electron donors (C(2)H(4), C(2)H(2), NH(3), NMe(3), HCN, H(2)O) and acceptors (F(2), Cl(2), BH(3), SO(2)) were investigated at the CCSD(T)/complete basis set (CBS) limit. The nature of the stabilization for these CT complexes was evaluated on the basis of perturbative NBO calculations and DFT-SAPT/CBS calculations. The structure of all of the complexes was determined by the counterpoise-corrected gradient optimization performed at the MP2/cc-pVTZ level, and most of complexes possess a linear-like contact structure. The total stabilization energies lie between 1 and 55 kcal/mol and the strongest complexes contain BH(3) as an electron acceptor. When ordering the electron donors and electron acceptors on the basis of these energies, we obtain the same order as that based on the perturbative E2 charge-transfer energies, which provides evidence that the charge-transfer term is the dominant energy contribution. The CCSD(T) correction term, defined as the difference between the CCSD(T) and MP2 interaction energies, is mostly small, which allows the investigation of the CT complexes of this type at the "cheap" MP2/CBS level. In the case of weak and medium CT complexes (with stabilization energy smaller than about 15 kcal/mol), the dominant stabilization originates in the electrostatic term; the dispersion as well as induction and δ(HF) terms covering the CT energy contribution are, however, important as well. For strong CT complexes, induction energy is the second (after electrostatic) most important energy term. The role of the induction and δ(HF) terms is unique and characteristic for CT complexes. For all CT complexes, the CCSD(T)/CBS and DFT-SAPT/CBS stabilization energies are comparable, and surprisingly, it is true even for very strong CT complexes with stabilization energy close to 50 kcal/mol characteristic by substantial charge transfer (more than 0.3 e). It is thus possible to conclude

  9. Nano-electron beam induced current and hole charge dynamics through uncapped Ge nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, A.; El Hdiy, A.; Troyon, M. [Laboratoire de Recherche en Nanosciences, Bat. 6, case no 15, UFR Sciences, Universite de Reims Champagne Ardenne, 51687 Reims Cedex 2 (France); Amiard, G.; Ronda, A.; Berbezier, I. [IM2NP, Faculte des Sciences et Techniques, Campus de Saint Jerome - Case 142, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20 (France)

    2012-04-16

    Dynamics of hole storage in spherical Ge nanocrystals (NCs) formed by a two step dewetting/nucleation process on an oxide layer grown on an n-doped <001> silicon substrate is studied using a nano-electron beam induced current technique. Carrier generation is produced by an electron beam irradiation. The generated current is collected by an atomic force microscope--tip in contact mode at a fixed position away from the beam spot of about 0.5 {mu}m. This distance represents the effective diffusion length of holes. The time constants of holes charging are determined and the effect of the NC size is underlined.

  10. 16-Channel biphasic current-mode programmable charge balanced neural stimulation.

    Science.gov (United States)

    Li, Xiaoran; Zhong, Shunan; Morizio, James

    2017-08-14

    Neural stimulation is an important method used to activate or inhibit action potentials of the neuronal anatomical targets found in the brain, central nerve and peripheral nerve. The neural stimulator system produces biphasic pulses that deliver balanced charge into tissue from single or multichannel electrodes. The timing and amplitude of these biphasic pulses are precisely controlled by the neural stimulator software or imbedded algorithms. Amplitude mismatch between the anodic current and cathodic current of the biphasic pulse will cause permanently damage for the neural tissues. The main goal of our circuit and layout design is to implement a 16-channel biphasic current mode programmable neural stimulator with calibration to minimize the current mismatch caused by inherent complementary metal oxide semiconductor (CMOS) manufacturing processes. This paper presents a 16-channel constant current mode neural stimulator chip. Each channel consists of a 7-bit controllable current DAC used as sink and source current driver. To reduce the LSB quantization error and the current mismatch, an automatic calibration circuit and flow diagram is presented in this paper. There are two modes of operation of the stimulator chip-namely, stimulation mode and calibration mode. The chip also includes a digital interface used to control the stimulator parameters and calibration levels specific for each individual channel. This stimulator Application Specific Integrated Circuit (ASIC) is designed and fabricated in a 0.18 μm High-Voltage CMOS technology that allows for ±20 V power supply. The full-scale stimulation current was designed to be at 1 mA per channel. The output current was shown to be constant throughout the timing cycles over a wide range of electrode load impedances. The calibration circuit was also designed to reduce the effect of CMOS process variation of the P-channel metal oxide semiconductor (PMOS) and N-channel metal oxide semiconductor (NMOS) devices that will

  11. Induced-charge electrokinetics, bipolar current, and concentration polarization in a microchannel-Nafion-membrane system

    Science.gov (United States)

    Park, Sinwook; Yossifon, Gilad

    2016-06-01

    The presence of a floating electrode array located within the depletion layer formed due to concentration polarization across a microchannel-membrane interface device may produce not only induced-charge electro-osmosis (ICEO) but also bipolar current resulting from the induced Faradaic reaction. It has been shown that there exists an optimal thickness of a thin dielectric coating that is sufficient to suppress bipolar currents but still enables ICEO vortices that stir the depletion layer, thereby affecting the system's current-voltage response. In addition, the use of alternating-current electro-osmosis by activating electrodes results in further enhancement of the fluid stirring and opens new routes for on-demand spatiotemporal control of the depletion layer length.

  12. Image current heating on a metal surface due to charged bunches

    Directory of Open Access Journals (Sweden)

    Xintian E. Lin

    2000-10-01

    Full Text Available When charged particles pass through a metal pipe, they are accompanied by an image current on the metal surface. With intense short bunches passing near or even into the metal surface, the peak image current density can be very high. This current may result in substantial temperature rise on the surface, especially in high peak current, multibunch operation. In this paper, we derive an explicit formula for the surface temperature rise due to this previously unrecognized pulsed heating effect and show that this effect dominates the proposed linear coherent light source collimator spoiler and wire scanner heating. Without proper account, it can result in component and instrument failures. The result also applies to optical transition radiation screens, profile screens, wire scanners, exit windows, and targets, which the beam crosses.

  13. The inconsistency between proton charge exchange and the observed ring current decay

    Science.gov (United States)

    Lyons, L. R.; Evans, D. S.

    1976-01-01

    The equatorial pitch-angle distributions of ring-current ions observed during a storm recovery phase at L values between 3 and 4 are compared with the pitch-angle distributions predicted by proton charge exchange with neutral hydrogen. Large disagreements are found, and three alternative explanations are explored. (1) A strong proton source acts to mask the effects of charge exchange. It is believed that the required strong continual source with a unique pitch-angle and energy dependence is unrealistic at these low L values. (2) Presently accepted neutral hydrogen density models have densities well over an order of magnitude too large for a storm recovery phase. No evidence is known to support the required large errors in the densities. (3) The ring current at particle energies not exceeding 50 keV was dominated by some ion species other than protons during the storm recovery phase. Such ions must have much longer lifetimes for charge exchange with hydrogen than do protons. This alternative is strongly favored, with He(+) being an attractive candidate.

  14. Calculations of current densities for neutral and doubly charged persubstituted benzenes using effective core potentials.

    Science.gov (United States)

    Rauhalahti, Markus; Taubert, Stefan; Sundholm, Dage; Liégeois, Vincent

    2017-03-08

    Magnetically induced current density susceptibilities and ring-current strengths have been calculated for neutral and doubly charged persubstituted benzenes C6X6 and C6X6(2+) with X = F, Cl, Br, I, At, SeH, SeMe, TeH, TeMe, and SbH2. The current densities have been calculated using the gauge-including magnetically induced current (GIMIC) method, which has been interfaced to the Gaussian electronic structure code rendering current density calculations using effective core potentials (ECP) feasible. Relativistic effects on the ring-current strengths have been assessed by employing ECP calculations of the current densities. Comparison of the ring-current strengths obtained in calculations on C6At6 and C6At6(2+) using relativistic and non-relativistic ECPs show that scalar relativistic effects have only a small influence on the ring-current strengths. Comparisons of the ring-current strengths and ring-current profiles show that the C6I6(2+), C6At6(2+), C6(SeH)6(2+), C6(SeMe)6(2+), C6(TeH)6(2+), C6(TeMe)6(2+), and C6(SbH2)6(2+) dications are doubly aromatic sustaining spatially separated ring currents in the carbon ring and in the exterior of the molecule. The C6I6(+) radical cation is also found to be doubly aromatic with a weaker ring current than obtained for the dication.

  15. Shot Noise of Charge and Spin Current of a Quantum Dot Coupled to Semiconductor Electrodes.

    Science.gov (United States)

    Sartipi, Zahra; Vahedi, Javad

    2015-10-15

    On the basis of the scattering matrix theory and nonequilibrium green function method, we have investigated the fluctuations of charge and spin current of the systems that consist of a quantum dot (QD) with a resonant level coupled to two semiconductor contacts within in alternative site (AS) and alternative bond (AB) framework, where two transverse (Bx) and longitudinal (Bz) magnetic fields are applied to the QD. It is only necessary to use the autocorrelation function to characterize the fluctuations of charge current for a twoterminal system because of the relation that is defined as Σα e Sαβ = Σβ e Sαβ = 0. Our result shows that both auto-shot noise (SLL) and cross-shot noise (SLR) are essential to characterize the fluctuations of spin current when Bx is present. Moreover, our model calculations show that the sign of the cross-shot noise of spin current is negative for all surface states of AS/QD/AS junctions, whereas it oscillates between positive and negative values for two surface states of AB/QD/AB junctions as we sweep the gate voltage.

  16. High Current Matching over Full-Swing and Low-Glitch Charge Pump Circuit for PLLs

    Directory of Open Access Journals (Sweden)

    De-zhi Wang

    2013-04-01

    Full Text Available A high current matching over full-swing and low-glitch charge pump (CP circuit is proposed. The current of the CP is split into two identical branches having one-half the original current. The two branches are connected in source-coupled structure, and a two-stage amplifier is used to regulate the common-source voltage for the minimum current mismatch. The proposed CP is designed in TSMC 0.18µm CMOS technology with a power supply of 1.8 V. SpectreRF based simulation results show the mismatch between the current source and the current sink is less than 0.1% while the current is 40 µA and output swing is 1.32 V ranging from 0.2 V to 1.52 V. Moreover, the transient output current presents nearly no glitches. The simulation results verify the usage of the CP in PLLs with the maximum tuning range from the voltage-controlled oscillator, as well as the low power supply applications.

  17. A CMOS Current Steering Neurostimulation Array With Integrated DAC Calibration and Charge Balancing.

    Science.gov (United States)

    Greenwald, Elliot; Maier, Christoph; Wang, Qihong; Beaulieu, Robert; Etienne-Cummings, Ralph; Cauwenberghs, Gert; Thakor, Nitish

    2017-04-01

    An 8-channel current steerable, multi-phasic neural stimulator with on-chip current DAC calibration and residue nulling for precise charge balancing is presented. Each channel consists of two sub-binary radix DACs followed by wide-swing, high output impedance current buffers providing time-multiplexed source and sink outputs for anodic and cathodic stimulation. A single integrator is shared among channels and serves to calibrate DAC coefficients and to closely match the anodic and cathodic stimulation phases. Following calibration, the differential non-linearity is within ±0.3 LSB at 8-bit resolution, and the two stimulation phases are matched within 0.3%. Individual control in digital programming of stimulation coefficients across the array allows altering the spatial profile of current stimulation for selection of stimulation targets by current steering. Combined with the self-calibration and current matching functions, the current steering capabilities integrated on-chip support use in fully implanted neural interfaces with autonomous operation for and adaptive stimulation under variations in electrode and tissue conditions. As a proof-of-concept we applied current steering stimulation through a multi-channel cuff electrode on the sciatic nerve of a rat.

  18. Graphitic silicon nitride: a metal-free ferromagnet with charge and spin current rectification.

    Science.gov (United States)

    Sen, Sabyasachi; Chakrabarti, Swapan

    2014-09-15

    As a first example, herein we show that g-Si(4)N(3) is expected to act as a metal-free ferromagnet featuring both charge and spin current rectification simultaneously. Such rectification is crucial for envisioning devices that contain both logic and memory functionality on a single chip. The spin coherent quantum-transport calculations on g-Si(4)N(3) reveal that the chosen system is a unique molecular spin filter, the current-voltage characteristics of which is asymmetric in nature, which can create a perfect background for synchronous charge and spin current rectification. To shed light on this highly unusual in-silico observation, we have meticulously inspected the bias-dependent modulation of the spin-polarized eigenstates. The results indicate that, whereas only the localized 2p orbitals of the outer-ring (OR) Si atoms participate in the transmission process in the positive bias, both OR Si and N atoms contribute in the reverse bias. Furthermore, we have evaluated the spin-polarized electron-transfer rate in the tunneling regime, and the results demonstrate that the transfer rates are unequal in the positive and negative bias range, leading to the possible realization of a simultaneous logic-memory device.

  19. Induction of cell self-organization on weakly positively charged surfaces prepared by the deposition of polyion complex nanoparticles of thermoresponsive, zwitterionic copolymers.

    Science.gov (United States)

    Iwai, Ryosuke; Haruki, Ryota; Nemoto, Yasushi; Nakayama, Yasuhide

    2017-07-01

    We have developed inducible cell self-organization through weakly positively charged culture surfaces. In this study, a thermoresponsive and zwitterionic copolymer comprised of N,N-dimethylaminoethyl methacrylate (DMAEMA) and methacrylic acid (MA) (PDMAEMA-co-PMA; Mn: ∼9.7 × 10(4) g/mol; PDMAEMA/PMA ratio: 10) was designed for inducing cell self-organization. The copolymer formed single polymer-derived polyion complex (sPIC) nanoparticles following dissolution in an aqueous solution. The sPIC nanoparticles had a positive charge (ca. 25 mV). Self-organization occurred in adipose-derived vascular stromal cell monolayers cultivated on sPIC-deposited surfaces. There were dramatic morphological changes of these cells with the formation of capillary-like networks and single-cell aggregates with little cytotoxicity. This was a significant improvement compared with cells grown on previously developed surfaces deposited with PIC, a mixture of PDMAEMA and plasmid DNA. Thus, sPICs of PDMAEMA-co-PMA may allow for the accurate evaluation of a variety of cell behaviors with less cytotoxicity, and may facilitate additional potential medical applications such as cell-based therapy and drug discovery. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1009-1015, 2017. © 2016 Wiley Periodicals, Inc.

  20. Neutral and charged current cross section measurements and searches for new physics at HERA

    CERN Document Server

    Malden, N; Abramowicz, H; Adamczyk, L; Adamus, M; Adler, V; Aghuzumtsyan, G; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Basile, M; Bauerdick, L A T; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bloch, I; Bodmann, B; Bold, T; Boos, E G; Borras, K; Boscherini, D; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Catterall, C D; Chekanov, S; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cloth, P; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Cottrell, A; D'Agostini, Giulio; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; Dementiev, R K; Derrick, M; Deshpande, Abhay A; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fricke, U; Fusayasu, T; Gabareen, A; Gallo, E; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Gliga, S; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Göttlicher, P; Grabowska-Bold, I; Grijpink, S; Grzelak, G; Gutsche, O; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hamilton, J; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G; Hartner, G F; Heaphy, E A; Heath, G P; Heath, H F; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, H P; Jones, T W; Kagawa, S; Kahle, B; Kaji, H; Kananov, S; Kappes, A; Kataoka, Y; Yamazaki, M; Katkov, I I; Katz, U F; Kcira, D; Khein, L A; Kim, J Y; Kim, Y K; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korzhav, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D; Kramberger, G; Kreisel, A; Krumnack, N; Kuze, M; Kuzmin, V A; Labarga, L; Labes, H; Lainesse, J; Lammers, S; Lee, J H; Lee, S W; Lelas, D; Levchenko, B B; Levman, G M; Levy, A; Li, L; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Löhr, B; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lukina, O Yu; Lupi, A; Luzniak, P; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Martin, J F; Mastroberardino, A; Matsuzawa, K; Mattingly, M C K; McCubbin, N A; Mellado, B; Melzer-Pellmann, I A; Menary, S R; Metlica, F; Meyer, U; Milite, M; Mirea, A; Monaco, V; Montanari, A; Moritz, M; Musgrave, B; Nagano, K; Nania, R; Nguyen, C N; Nigro, A; Ning, Y; Nishimura, T; Notz, D; Nowak, R J; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Patel, S; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Pesci, A; Petrucci, M C; Piotrzkowski, K; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Rautenberg, J; Raval, A; Reeder, D D; Ren, Z; Renner, R; Repond, J; Riveline, U; Karshon, M; Robins, S; Rodrigues, E; Rosin, M; Rurua, L; Ruspa, M; Sacchi, R; Salehi, H; Sartorelli, G; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Sciulli, F; Scott, J; Selonke, F; Shcheglova, L M; Skillicorn, I O; Slominski, W; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V V; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stoesslein, U; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Tawara, T; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Vázquez, M; Velthuis, J J; Vlasov, N N; Voss, K C; Walczak, R; Walsh, R; Wang, M; Weber, A; Wessoleck, H; West, B J; Whitmore, J J; Wick, K; Wiggers, L; Wills, H H; Wing, M; Wolf, G; Yamada, S; Yamashita, T; Yoshida, R; Youngman, C; Zawiejski, L; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A; De Wolf, E; Del Peso, J; Malden, Nicholas

    2004-01-01

    HERA is the only high energy electron-proton collider in the world today and hence has unique opportunities both to probe the structure of the proton and to search for physics beyond the Standard Model. Results are presented for measurements of both neutral and charged current cross sections, and for searches for exotic processes involving direct electron-quark interactions (leptoquarks and R-parity violating SUSY), generic coupling models (contact interactions) and exclusive final states (isolated leptons and missing PT, single top production and pentaquarks). Exclusion limits on proposed models are set where no deviation from Standard Model predictions are found.

  1. Current voltage characteristics of intrinsic Josephson junctions with charge-imbalance effect

    Science.gov (United States)

    Shukrinov, Yu. M.; Mahfouzi, F.

    2007-09-01

    The current-voltage characteristics (IVC) of intrinsic Josephson junctions are numerically calculated taking into account the quasiparticle charge-imbalance effect. We solve numerically the full set of the equations including second order differential equations for phase differences, kinetic equations and generalized Josephson relations for a stack of Josephson junctions. The boundary conditions due to the proximity effect are used. We obtain the branch structure of IVC and investigate it as a function of disequilibrium parameter at different values of coupling constant and McCumber parameter. An increase in the disequilibrium parameter essentially changes the character of IVC at large values of McCumber parameter.

  2. Current-voltage characteristics of intrinsic Josephson junctions with charge-imbalance effect

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Physical Technical Institute, Dushanbe 734063 (Tajikistan)], E-mail: shukrinv@theor.jinr.ru; Mahfouzi, F. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of)

    2007-09-01

    The current-voltage characteristics (IVC) of intrinsic Josephson junctions are numerically calculated taking into account the quasiparticle charge-imbalance effect. We solve numerically the full set of the equations including second order differential equations for phase differences, kinetic equations and generalized Josephson relations for a stack of Josephson junctions. The boundary conditions due to the proximity effect are used. We obtain the branch structure of IVC and investigate it as a function of disequilibrium parameter at different values of coupling constant and McCumber parameter. An increase in the disequilibrium parameter essentially changes the character of IVC at large values of McCumber parameter.

  3. Search for lepton number violating charged current processes with neutrino beams

    Energy Technology Data Exchange (ETDEWEB)

    Kanemura, Shinya, E-mail: kanemu@sci.u-toyama.ac.jp [Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Kuno, Yoshitaka, E-mail: kuno@phys.sci.osaka-u.ac.jp [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Ota, Toshihiko, E-mail: toshi@mppmu.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2013-02-26

    We propose a novel idea on measurements to understand which physics mechanism is responsible for the origin of a small neutrino mass, by searching for the processes of lepton number violating charged current interaction with incident of a neutrino beam. It turns out that only the proposed measurements could provide a potential to discriminate the mechanisms, in particular the ones called loop-induced mechanisms of neutrino mass generation, from the others. The expected rates of these processes based on some theoretical assumptions are estimated. They are found to be sizable so that detection of such processes could be achievable at near detectors in future highly intense neutrino-beam facilities.

  4. Charged-current quasielastic scattering of muon antineutrino and neutrino in the MINERvA experiment

    CERN Document Server

    Ankowski, Artur M

    2015-01-01

    One of the largest sources of systematic uncertainties in ongoing neutrino-oscillation measurements is the description of nuclear effects. Its considerable reduction is expected thanks to the dedicated studies of (anti)neutrino-nucleus interactions in the MINERvA experiment. In this article, the calculations within the spectral function approach are compared to the charged-current quasielastic cross sections reported from MINERvA. The obtained results show that the effect of final-state interactions on the (anti)muon kinematics plays pivotal role in reproducing the experimental data.

  5. Measuring neutrino-induced exclusive charge-current final states on hydrogen at T2K

    CERN Document Server

    Coplowe, David; Barr, Giles

    2016-01-01

    By taking advantage of symmetries with respect to the plane containing the directions of the neutrino and outgoing lepton, it is possible to isolate neutrino interactions on hydrogen in composite nuclear targets. This technique enables us to study the `primary' neutrino-nucleon interaction and therefore gain access to fundamental model parameters free from nuclear effects. Using T2K Monte Carlo equivalent to $\\sim7\\times10^{21}$ POT, we present an update on the measurement of the exclusive charged-current $\\mu^-$, p, $\\pi^+$ final state on hydrogen.

  6. Measuring nu(mu) charged-current muon neutrino interactions in MiniBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Wascko, M.O.; /Louisiana State U.

    2004-12-01

    MiniBooNE seeks to confirm or refute the LSND {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} oscillation signal with high statistical significance and different systematics. MiniBooNE has accumulated the world's largest {approx} 1 GeV neutrino data set. MiniBooNE employs a cosmic muon calibration system to study the reconstruction of the energies and directions of muons in the detector. Progress of measurements of the {nu}{sub {mu}} charged-current quasi-elastic and single pion production cross sections are presented.

  7. Charm production in charged current deep inelastic e{sup +}p scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.

    2006-03-15

    The measurement of charm production in charged current deep inelastic positron-proton scattering is investigated with the ZEUS detector at the HERA collider. The data used has been collected from 1995 to 2000, corresponding to an integrated luminosity of 110 pb{sup -1}. Charged D{sup *} mesons decaying in the channel D{sup *+}{yields}D{sup 0}{pi}{sup +}{sub s} with D{sup 0}{yields}K{sup -}{pi}{sup +} and the charge conjugated channel are reconstructed to tag charm quarks. The visible cross section for D{sup *}, {sigma}{sup D*}{sub vis}=12.8{+-}4.0(stat){sup +4.7}{sub -1.5}(sys) pb, is measured in the kinematic range of Q{sup 2}>200 GeV{sup 2} and y<0.9, and of p{sup D{sup *}}{sub T}>1.5 GeV and vertical stroke {eta}{sup D{sup *}} vertical stroke <1.5. The upper-limit for the charm production in the same DIS kinematic range is determined to be {sigma}{sup e{sup +}}{sup p{yields}} {sup anti} {sup {nu}{sub e}}{sup cX} < 109 pb at 90% confidence level. (orig.)

  8. 100 kV/2A three-phase constant-current repetitive-rate charging equipment

    CERN Document Server

    Tan Yu Gang; Chen Li Dong; Guo Zhi Gang; Zou Xiao Bing; Luo Min; Cao Shao Yun; Chang An Bi

    2002-01-01

    A 100 kV/2A three-phase constant-current repetitive-rate charging equipment was designed and constructed. A three-phase L-C converter is adopted as constant-current power source. Six Insulated Gate Bipolar Transistors (IGBTs) are connected in parallel to control the stop of charge. A Programmable Logical Controller (PLC) is the central element of the control unit. The equipment is used in the repetitive-rate discharge features test of the switch. It works stably under the conditions of 2A charging current, 10 Hz operating voltage, 100 kV repetitive rate and 1 mu F capacitor

  9. Measurement of Neutrino and Antineutrino Charged-Current Inclusive Cross Sections with the MINERvA Detector

    Energy Technology Data Exchange (ETDEWEB)

    Devan, Joshua D. [College of William and Mary, Williamsburg, VA (United States)

    2015-01-01

    Neutrinos are a nearly massless, neutral particle in the Standard Model that only interact via the weak interaction. Experimental confirmation of neutrino oscillations, in which a neutrino created as a particular type (electron, muon or tau) can be observed as a different type after propagating some distance, earned the 2015 Nobel Prize in Physics. Neutrino oscillation experiments rely on accurate measurements of neutrino interactions with matter, such as that presented here. Neutrinos also provide a unique probe of the nucleus, complementary to electron scattering experiments. This thesis presents a measurement of the charged-current inclusive cross section for muon neutrinos and antineutrinos in the energy range 2 to 50 GeV with the MINERvA detector. MINERvA is a neutrino scattering experiment in the NuMI neutrino beam at Fermilab, near Chicago. A cross section measures the probability of an interaction occurring, measured here as a function of neutrino energy. To extract a cross section from data, the observed rate of interactions is corrected for detector efficiency and divided by the number of scattering nucleons in the target and the flux of neutrinos in the beam. The neutrino flux is determined with the low-$\

  10. Measurement of Neutrino and Antineutrino Charged-Current Inclusive Cross Sections with the MINERvA Detector

    Science.gov (United States)

    Devan, Joshua D.

    Neutrinos are a nearly massless, neutral particle in the Standard Model that only interact via the weak interaction. Experimental confirmation of neutrino oscillations, in which a neutrino created as a particular type (electron, muon or tau) can be observed as a different type after propagating some distance, earned the 2015 Nobel Prize in Physics. Neutrino oscillation experiments rely on accurate measurements of neutrino interactions with matter, such as that presented here. Neutrinos also provide a unique probe of the nucleus, complementary to electron scattering experiments. This thesis presents a measurement of the charged-current inclusive cross section for muon neutrinos and antineutrinos in the energy range 2 to 50 GeV with the MINERvA detector. MINERvA is a neutrino scattering experiment in the NuMI neutrino beam at Fermilab, near Chicago. A cross section measures the probability of an interaction occurring, measured here as a function of neutrino energy. To extract a cross section from data, the observed rate of interactions is corrected for detector efficiency and divided by the number of scattering nucleons in the target and the flux of neutrinos in the beam. The neutrino flux is determined with the low- v method, which relies on the principle that the cross section for interactions with very low recoil energy is nearly constant as a function of neutrino energy. The measured cross section is compared with world data.

  11. Control of zoonoses in emergency situations: lessons learned during recent outbreaks (gaps and weaknesses of current zoonoses control programmes

    Directory of Open Access Journals (Sweden)

    Darem Tabbaa

    2008-12-01

    Full Text Available In emergency situations, domestic animals and wildlife are, like people, exposed to infectious diseases and environmental contaminants in the air, soil, water and food. They can suffer from acute and/or chronic diseases from such exposure. Often animals serve as disease reservoirs or early warning systems for the community in regard to the spread of zoonotic diseases. Over 100 years of experience have shown that animal and human health are closely related. During the past few years, emergent disease episodes have increased; nearly all have involved zoonotic agents. As there is no way to predict when or where the next important new zoonotic pathogen will emerge or what its ultimate importance might be, investigation at the first sign of emergence of a new zoonotic disease is particularly important. Today, in many emerging situations, different activities involving zoonotic disease control are at risk because of failed investigative infrastructures or financial constraints. Considering that zoonotic diseases have their own characteristics, their prevention and control require unique strategies, based more on fundamental and applied research than on traditional approaches. Such strategies require cooperation and coordination between animal and public health sectors and the involvement of other disciplines and experts such as epidemiologists, entomologists, environmentalists and climatologists. Lessons learned from the avian influenza pandemic threat, the Crimean-Congo haemorrhagic fever and rabies outbreaks are presented and the gaps and weakness of current control programmes are discussed.

  12. A first measurement of the charged current DIS cross sections with longitudinally polarised electrons in the H1 experiment at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Antunovic, B.

    2007-07-01

    The analysis presented in this thesis is based on data from electron-proton collisions with longitudinally polarised electron beams at a centre-of-mass energy of {radical}(s)=319 GeV. The data were taken with the H1 detector at the HERA collider in the year 2005 corresponding to two polarisation states: a left-handed electron polarisation of -27% and a right-handed electron polarisation of +37%, corresponding to integrated luminosities of 68.6 pb{sup -1} and 29.6 pb{sup -1}, respectively. The inclusive total deep inelastic charged current cross section and the differential cross sections are measured for both helicities in the kinematic domain Q{sup 2}>400 GeV{sup 2} and y<0.9. The entire analysis chain necessary for the determination of the cross sections is described with emphasis on the understanding of the performance of the Liquid Argon trigger system. The experimental results obtained are consistent with the predictions of the Standard Model. In particular, the measurement of the total polarised charged current cross section confirms the Standard Model expectation that there are no weak charged current interactions mediated by a hypothetical right-handed W boson. In addition, a measurement of the charged current structure function F{sup cc}{sub 2} has been performed at the H1 experiment for the first time. The measurements are well described by the theoretical expectations based on parton distributions derived from inclusive neutral current measurements in H1, and are in agreement with published data from the ZEUS (e{sup {+-}}p) and CCFR (anti {nu}{sub {mu}}Fe) experiments. (orig.)

  13. Current mirror reset for low-power BiCMOS charge amplifier

    CERN Document Server

    Sampietro, M; Fasoli, L

    2000-01-01

    We present a circuit solution to provide DC feedback and signal reset in charge amplifiers that overcomes the difficulty to integrate high value resistors in VLSI technology. The feedback resistor is substituted by a MOSFET current conveyor that re-direct to the input node the current already available at the output follower. The lower noise of this 'active resistor' with respect to a physical resistor of equal value makes possible a first shaping within the preamplifier. The circuit has been implemented for a fast shaping time system (20 ns peaking time) using a BJT as input transistor for best noise performance. The circuit has been powered with single supply as low as 1.6 V with a total power consumption down to 220 mu W/ch and has shown a measured noise of 660 electrons rms, in accordance with the theoretical expectation.

  14. Effect of the bound nucleon form factors on charged-current neutrino-nucleus scattering

    CERN Document Server

    Tsushima, K; Saitô, K; Kim, Hungchong

    2003-01-01

    We study the effect of bound nucleon form factors on charged-current neutrino-nucleus scattering. The bound nucleon form factors associated with the vector and axial-vector currents are calculated in the quark-meson coupling model. We compute the inclusive $^{12}$C($nu_mu,mu^-$)$X$ differential and total cross sections, which have been measured by the LSND collaboration at Los Alamos, using a relativistic Fermi gas model with the calculated bound nucleon form factors. It is shown that the bound nucleon form factors reduce the total cross section by about 8% relative to that calculated with the free nucleon form factors, where most of the conventional calculations overestimate the total cross section data by about 30% to 100%.

  15. Consistent analysis of neutral- and charged-current (anti)neutrino scattering off carbon

    CERN Document Server

    Ankowski, Artur M

    2013-01-01

    Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for the correct interpretation of results of ongoing and planned oscillation experiments. To clarify a possible source of disagreement between recent measurements of the cross sections on carbon, we analyze the available data within an approach based on the realistic spectral function of carbon, treating neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes on equal footing. We show that the axial mass from the shape analysis of the MiniBooNE data is in good agreement with the results reported by the BNL E734 and NOMAD Collaborations. However, the combined analysis of the NCE and CCQE data does not seem to support the contribution of multinucleon final states being large enough to explain the normalization of the MiniBooNE-reported cross sections.

  16. Consistent analysis of neutral- and charged-current (anti)neutrino scattering off carbon

    Science.gov (United States)

    Ankowski, Artur M.

    2015-05-01

    Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for the correct interpretation of results of ongoing and planned oscillation experiments. To clarify a possible source of disagreement between recent measurements of the cross sections on carbon, we analyze the available data within an approach based on the realistic spectral function of carbon, treating neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes on equal footing. We show that the axial mass from the shape analysis of the MiniBooNE data is in good agreement with the results reported by the BNL E734 and NOMAD Collaborations. However, the combined analysis of the NCE and CCQE data does not seem to support the contribution of multinucleon final states being large enough to explain the normalization of the MiniBooNE-reported cross sections.

  17. Consistent analysis of neutral- and charged-current (anti)neutrino scattering off carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ankowski, Artur M. [INFN and Department of Physics,“Sapienza” Università di Roma, I-00185 Roma (Italy)

    2015-05-15

    Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for the correct interpretation of results of ongoing and planned oscillation experiments. To clarify a possible source of disagreement between recent measurements of the cross sections on carbon, we analyze the available data within an approach based on the realistic spectral function of carbon, treating neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes on equal footing. We show that the axial mass from the shape analysis of the MiniBooNE data is in good agreement with the results reported by the BNL E734 and NOMAD Collaborations. However, the combined analysis of the NCE and CCQE data does not seem to support the contribution of multinucleon final states being large enough to explain the normalization of the MiniBooNE-reported cross sections.

  18. A Measurement of the charged-current interaction cross section of the tau neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Maher, Emily O' Connor; /Minnesota U.

    2005-01-01

    The Fermilab experiment E872 (DONUT) was designed to make the first observation of the tau neutrino charged-current interaction. Using a hybrid emulsion-spectrometer detector, the tau lepton was identified by its single-prong or trident decay. Six interactions were observed, of which five were in the deep inelastic scattering region. These five interaction were used to measure the charged-current cross section of the tau neutrino. To minimize uncertainties, the tau neutrino cross section was measured relative to the electron neutrino cross section. The result {sigma}{sub {nu}{sub {tau}}N}{sup const}/{sigma}{sub {nu}{sub e}N}{sup const} = 0.77 {+-} 0.39 is consistent with 1.0, which is predicted by lepton universality. The tau neutrino cross section was also measured for 115 GeV neutrinos, which was the average energy of the interacted tau neutrinos. The result {sigma}{sub {nu}{sub {tau}}N}{sup exp} = 45 {+-} 21 x 10{sup -38} cm{sup 2} is consistent with the standard model prediction calculated in this thesis, {sigma}{sub {tau}N}{sup SM} = 48 {+-} 5 x 10{sup -38} cm{sup 2}.

  19. A Measurement Of The Charged-current Interaction Cross Section Of The Tau Neutrino

    CERN Document Server

    Maher, E O

    2005-01-01

    The Fermilab experiment E872 (DONUT) was designed to make the first observation of the tau neutrino charged-current interaction. Using a hybrid emulsion-spectrometer detector, the tau lepton was identified by its single- prong or trident decay. Six interactions were observed, of which five were in the deep inelastic scattering region. These five interaction were used to measure the charged-current cross section of the tau neutrino. To minimize uncertainties, the tau neutrino cross section was measured relative to the electron neutrino cross section. The result sconstn tNsconst neN=0.77±0.39 is consistent with 1.0, which is predicted by lepton universality. The tau neutrino cross section was also measured for 115 GeV neutrinos, which was the average energy of the interacted tau neutrinos. The result sexpnt N=45±21×10-38 cm2 is consistent with the standard model prediction calculated in this thesis, sSMnt N=48±5×10-38 cm2.

  20. A Measurement of the Charged-Current Interaction Cross Section of the Tau Neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Maher, Emily O' Connor [Univ. of Minnesota, Minneapolis, MN (United States)

    2007-02-01

    The Fermilab experiment E872 (DONUT) was designed to make the first observation of the tau neutrino charged-current interaction. Using a hybrid emulsion-spectrometer detector, the tau lepton was identified by its single-prong or trident decay. Six interactions were observed, of which five were in the deep inelastic scattering region. These five interaction were used to measure the charged-current cross section of the tau neutrino. To minimize uncertainties, the tau neutrino cross section was measured relative to the electron neutrino cross section. The result σντNconstνeNconst = 0.77 ± 0.39 is consistent with 1.0, which is predicted by lepton universality. The tau neutrino cross section was also measured for 115 GeV neutrinos, which was the average energy of the interacted tau neutrinos. The result σντNexp = 45 ± 21 x 10-38 cm2 is consistent with the standard model prediction calculated in this thesis, σντNSM = 48 ± 5 x 10-38 cm2.

  1. Time evolution of secondary electron emission and trapped charge accumulation in polyimide film under various primary electron irradiation currents

    Science.gov (United States)

    Song, Bai-Peng; Zhou, Run-Dong; Su, Guo-Qiang; Mu, Hai-Bao; Zhang, Guan-Jun; Bu, Ren-An

    2016-12-01

    Time-resolved evolution of secondary electron emission and trapped charge accumulation in polyimide film is investigated during two interval electrons bombardment, derived from the measurement of displacement current and secondary current via a hemispherical detector with the shielded grid. Under various irradiation current, secondary electron yield (SEY σ) at a certain injected energy decreases exponentially from initial amplitude σ0 to self-consistent steady value σ∞ close to 0.93. The time constant τ of charging process is characterized as a function of incident current Ip, and the results indicate that the formula Ip × τ is fitted by a hyperbolical law. The influence of Ip on the amount of trapped charge is studied and no significant change in its saturation value is observed. The evolution of SEY σ and trapped charge is dependent on incident dose Qp but not the incident rate Ip. Furthermore, the trap density and capture cross section are discussed.

  2. Prospects for Charged Current Deep-Inelastic Scattering off Polarized Nucleons at a Future Electron-Ion Collider

    CERN Document Server

    Aschenauer, Elke C; Martini, Till; Spiesberger, Hubert; Stratmann, Marco

    2013-01-01

    We present a detailed phenomenological study of charged-current-mediated deep-inelastic scattering off longitudinally polarized nucleons at a future Electron-Ion Collider. A new version of the event generator package DJANGOH, extended by capabilities to handle processes with polarized nucleons, is introduced and used to simulate charged current deep-inelastic scattering including QED, QCD, and electroweak radiative effects. We carefully explore the range of validity and the accuracy of the Jacquet-Blondel method to reconstruct the relevant kinematic variables from the measured hadronic final state in charged current events, assuming realistic detector performance parameters. Finally, we estimate the impact of the simulated charged current single-spin asymmetries on determinations of helicity parton distributions in the context of a global QCD analysis at next-to-leading order accuracy.

  3. Conservative Currents of Boundary Charges in AdS2+1 Gravity

    Institute of Scientific and Technical Information of China (English)

    FENG Sze-Shiang; WANG Bin; MENG Xin-He

    2001-01-01

    The boundary charge which constitutes the Virasoro algebra in (2-+ 1)-dirnensional anti-de Sitter gravity is derived by Noether theorem and diffeomorphic invariance. It shows that the boundary charge under discussion recently exhausts all the available independent nontrivial charges. Therefore, for any specific spacetime, the state counting via the central charge of the Virasoro algebra is exact.``

  4. Linear and angular momentum of electromagnetic fields generated by an arbitrary distribution of charge and current densities at rest

    CERN Document Server

    Thidé, B; Then, H; Tamburini, F

    2010-01-01

    Starting from Stratton-Panofsky-Phillips-Jefimenko equations for the electric and magnetic fields generated by completely arbitrary charge and current density distributions at rest, we derive far-zone approximations for the fields, containing all components, dominant as well as sub-dominant. Using these approximate formulas, we derive general formulas for the total electromagnetic linear momentum and angular momentum, valid at large distances from arbitrary, non-moving charge and current sources.

  5. Measurement of single charged pion production in the charged-current interactions of neutrinos in a 1.3 GeV wide band beam

    CERN Document Server

    Rodríguez, A; Whitehead, L; Alcaraz, J L; Andringa, S; Aoki, S; Argyriades, J; Asakura, K; Ashie, R; Berghaus, F; Berns, H; Bhang, H; Blondel, A; Borghi, S; Bouchez, J; Burguet-Castell, J; Casper, D; Catala, J; Cavata, C; Cervera-Villanueva, Anselmo; Chen, S M; Cho, K O; Choi, J H; Dore, U; Espinal, X; Fechner, M; Fernández, E; Fujii, Y; Fukuda, Y; Gomez-Cadenas, J; Gran, R; Hara, T; Hasegawa, M; Hasegawa, T; Hayato, Y; Helmer, R L; Hiraide, K; Hosaka, J; Ichikawa, A K; Iinuma, M; Ikeda, A; Ishida, T; Ishihara, K; Ishii, T; Ishitsuka, M; Itow, Y; Iwashita, T; Jang, H I; Jeon, E J; Jeong, I S; Joo, K K; Jover, G; Jung, C K; Kajita, T; Kameda, J; Kaneyuki, K; Kato, I; Kearns, E; Kim, C O; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kim, J Y; Kim, S B; Kitching, P; Kobayashi, K; Kobayashi, T; Konaka, A; Koshio, Y; Kropp, W; Kudenko, Yu; Kuno, Y; Kurimoto, Y; Kutter, T; Learned, J; Likhoded, S; Lim, I T; Loverre, P F; Ludovici, L; Maesaka, H; Mallet, J; Mariani, C; Matsuno, S; Matveev, V; McConnel, K; McGrew, C; Mikheyev, S; Minamino, A; Mine, S; Mineev, O; Mitsuda, C; Miura, M; Moriguchi, Y; Moriyama, S; Nakadaira, T; Nakahata, M; Nakamura, K; Nakano, I; Nakaya, T; Nakayama, S; Namba, T; Nambu, R; Nawang, S; Nishikawa, K; Nitta, K; Nova, F; Novella, P; Obayashi, Y; Okada, A; Okumura, K; Oser, S M; Oyama, Y; Pac, M Y; Pierre, F; Saji, C; Sakuda, M; Sánchez, F; Scholberg, K; Schroeter, R; Sekiguchi, M; Shiozawa, M; Shiraishi, K; Sitjes, G; Smy, M; Sobel, H; Sorel, M; Stone, J; Sulak, L; Suzuki, A; Suzuki, Y; Tada, M; Takahashi, T; Takenaga, Y; Takeuchi, Y; Taki, K; Takubo, Y; Tamura, N; Tanaka, M; Terri, R; T'Jampens, S; Tornero-Lopez, A; Totsuka, Y; Vagins, M; Walter, C W; Wang, W; Wilkes, R J; Yamada, S; Yamada, Y; Yamamoto, S; Yanagisawa, C; Yershov, N; Yokoyama, H; Yokoyama, M; Yoo, J; Yoshida, M; Zalipska, J

    2008-01-01

    Single charged pion production in charged-current muon neutrino interactions with carbon is studied using data collected in the K2K long-baseline neutrino experiment. The mean energy of the incident muon neutrinos is 1.3 GeV. The data used in this analysis are mainly from a fully active scintillator detector, SciBar. The cross section for single $\\pi^{+}$ production in the resonance region ($W<2$ GeV/$c^2$) relative to the charged-current quasi-elastic cross section is found to be 0.734 $^{+0.140}_{-0.153}$. The energy-dependent cross section ratio is also measured. The results are consistent with a previous experiment and the prediction of our model.

  6. Measurement of the weak charged current structure in semileptonic b-hadron decays at the Z peak

    Science.gov (United States)

    Acciarri, M.; Adam, A.; Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.; Alcaraz, J.; Aloisio, A.; Alverson, G.; Alviggi, M. G.; Ambrosi, G.; An, Q.; Anderhub, H.; Anderson, A. L.; Andreev, V. P.; Angelescu, T.; Antonov, L.; Antreasyan, D.; Alkhazov, G.; Arefiev, A.; Azemoon, T.; Aziz, T.; Baba, P. V. K. S.; Bagnaia, P.; Bakken, J. A.; Baksay, L.; Ball, R. C.; Banerjee, S.; Banicz, K.; Barillère, R.; Barone, L.; Baschirotto, A.; Basile, M.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bencze, Gy. L.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biland, A.; Bilei, G. M.; Bizzarri, R.; Blaising, J. J.; Bobbink, G. J.; Bock, R.; Böhm, A.; Borgia, B.; Boucham, A.; Bourilkov, D.; Bourquin, M.; Boutigny, D.; Bouwens, B.; Brambilla, E.; Branson, J. G.; Brigljevic, V.; Brock, I. C.; Brooks, M.; Bujak, A.; Burger, J. D.; Burger, W. J.; Burgos, C.; Busenitz, J.; Buytenhuijs, A.; Bykov, A.; Cai, X. D.; Capell, M.; Cara Romeo, G.; Caria, M.; Carlino, G.; Cartacci, A. M.; Casaus, J.; Castellini, G.; Castello, R.; Cavallo, N.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chang, Y. H.; Chaturvedi, U. K.; Chemarin, M.; Chen, A.; Chen, C.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chen, M.; Chiefari, G.; Chien, C. Y.; Choi, M. T.; Chung, S.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Coan, T. E.; Cohn, H. O.; Coignet, G.; Colino, N.; Commichau, V.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Cui, X. T.; Cui, X. Y.; Dai, T. S.; D'Alessandro, R.; de Asmundis, R.; Degré, A.; Deiters, K.; Dénes, E.; Denes, P.; DeNotaristefani, F.; DiBitonto, D.; Diemoz, M.; Dimitrov, H. R.; Dionisi, C.; Dittmar, M.; Dorne, I.; Dova, M. t.; Drago, E.; Duchesneau, D.; Duhem, F.; Duinker, P.; Duran, I.; Dutta, S.; Easo, S.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Erné, F. C.; Extermann, P.; Fabbretti, R.; Fabre, M.; Falciano, S.; Favara, A.; Fay, J.; Felcini, M.; Ferguson, T.; Fernandez, D.; Fernandez, G.; Ferroni, F.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Forconi, G.; Fredj, L.; Freudenreich, K.; Gailloud, M.; Galaktionov, Yu.; Gallo, E.; Ganguli, S. N.; garcia-Abia, P.; Gau, S. S.; Gentile, S.; Gerald, J.; Gheordanescu, N.; Giagu, S.; Goldfarb, S.; Goldstein, J.; Gong, Z. F.; Gonzalez, E.; Gougas, A.; Goujon, D.; Gratta, G.; Gruenewald, M. W.; Gu, C.; Guanziroli, M.; Gupta, V. K.; Gurtu, A.; Gustafson, H. R.; Gutay, L. J.; Hartmann, B.; Hasan, A.; Hauschildt, D.; He, J. T.; Hebbeker, T.; Hebert, M.; Hervé, A.; Hilgers, K.; Hofer, H.; Hoorani, H.; Hou, S. R.; Hu, G.; Ille, B.; Ilyas, M. M.; Innocente, V.; Janssen, H.; Jin, B. N.; Jones, L. W.; de Jong, P.; Josa-Mutuberria, I.; Kasser, A.; Khan, R. A.; Kamyhkov, Yu.; Kapinos, P.; Kapustinsky, J. S.; Karyotakis, Y.; Kaur, M.; Khokhar, S.; Kienzle-Focacci, M. N.; Kim, D.; Kim, J. K.; Kim, S. C.; Kim, Y. G.; Kinnison, W. W.; Kirkby, A.; Kirkby, D.; Kirkby, J.; Kirsch, S.; Kittel, W.; Klimentov, A.; König, A. C.; Koffeman, E.; Kornadt, O.; Koutsenko, V.; Koulbardis, A.; Kraemer, R. W.; Kramer, T.; Krastev, V. R.; Krenz, W.; Kuijten, H.; Kunin, A.; Ladron de Guevara, P.; Landi, G.; Lanzano, S.; Laurikainen, P.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, D. M.; Lee, J. S.; Lee, K. Y.; Leedom, I.; Leggett, C.; Le Goff, J. M.; Leiste, R.; Lenti, M.; Leonardi, E.; Levtchenko, P.; Li, C.; Lieb, E.; Lin, W. T.; Linde, F. L.; Lindemann, B.; Lista, L.; Liu, Y.; Lohmann, W.; Longo, E.; Lu, W.; Lu, Y. S.; Lübelsmeyer, K.; Luci, C.; Luckey, D.; Ludovici, L.; Luminari, L.; Lustermann, W.; Ma, W. G.; MacDermott, M.; Maity, M.; Malgeri, L.; Malik, R.; Malinin, A.; Maña, C.; Mangla, S.; Maolinbay, M.; Marchesini, P.; Marin, A.; Martin, J. P.; Marzano, F.; Massaro, G. G. G.; Mazumdar, K.; McMahon, T.; McNally, D.; Mele, S.; Merk, M.; Merola, L.; Meschini, M.; Metzger, W. J.; Mi, Y.; Mihul, A.; Mills, G. B.; Mir, Y.; Mirabelli, G.; Mnich, J.; Möller, M.; Monaco, V.; Monteleoni, B.; Morand, R.; Morganti, S.; Moulai, N. E.; Mount, R.; Müller, S.; Nagy, E.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niaz, M. A.; Nippe, A.; Nowak, H.; Organtini, G.; Ostonen, R.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Pascale, G.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pei, Y. J.; Pensotti, S.; Perret-Gallix, D.; Pevsner, A.; Piccolo, D.; Pieri, M.; Pinto, J. C.; Piroué, P. A.; Pistolesi, E.; Plasil, F.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Produit, N.; Qian, J. M.; Qureshi, K. N.; Raghavan, R.; Rahal-Callot, G.; Rancoita, P. G.; Rattaggi, M.; Raven, G.; Razis, P.; Read, K.; Redaelli, M.; Ren, D.; Ren, Z.; Rescigno, M.; Reucroft, S.; Ricker, A.; Riemann, S.; Riemers, B. C.; Riles, K.; Rind, O.; Rizvi, H. A.; Ro, S.; Robohm, A.; Rodriguez, F. J.; Roe, B. P.; Röhner, M.; Röhner, S.; Romero, L.; Rosier-Lees, S.; Rosmalen, R.; Rosselet, Ph.; van Rossum, W.; Roth, S.; Rubio, J. A.; Rykaczewski, H.; Salicio, J.; Salicio, J. M.; Sanchez, E.; Sanders, G. S.; Santocchia, A.; Sarakinos, M. E.; Sarkar, S.; Sartorelli, G.; Sassowsky, M.; Sauvage, G.; Schäfer, C.; Schegelsky, V.; Schmitz, D.; Schmitz, P.; Schneegans, M.; Schoeneich, B.; Scholz, N.; Schopper, H.; Schotanus, D. J.; Shotkin, S.; Shukla, J.; Schulte, R.; Schultze, K.; Schwenke, J.; Schwering, G.; Sciacca, C.; Sehgal, R.; Seiler, P. G.; Sens, J. C.; Servoli, L.; Sheer, I.; Shevchenko, S.; Shi, X. R.; Shumilov, E.; Shoutko, V.; Son, D.; Sopczak, A.; Soulimov, V.; Spartiotis, C.; Spickermann, T.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Sticozzi, F.; Stone, H.; Strauch, K.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Susinno, G. F.; Suter, H.; Swain, J. D.; Syed, A. A.; Tang, X. W.; Taylor, L.; Timellini, R.; Ting, Samuel C. C.; Ting, S. M.; Toker, O.; Tonutti, M.; Tonwar, S. C.; Tóth, J.; Tsaregorodtsev, A.; Tsipolitis, G.; Tully, C.; Tuchscherer, H.; Ulbricht, J.; Urbán, L.; Uwer, U.; Valente, E.; Van de Walle, R. T.; Vetlitsky, I.; Viertel, G.; Vikas, P.; Vikas, U.; Vivargent, M.; Voelkert, R.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Vorobyov, An. A.; Vuilleumier, L.; Wadhwa, M.; Wallraff, W.; Wang, J. C.; Wang, X. L.; Wang, Y. F.; Wang, Z. M.; Weber, A.; Weill, R.; Willmott, C.; Wittgenstein, F.; Wright, D.; Wu, S. X.; Wynhoff, S.; Xu, Z. Z.; Yang, B. Z.; Yang, C. G.; Yang, G.; Yao, X. Y.; Ye, C. H.; Ye, J. B.; Ye, Q.; Yeh, S. C.; You, J. M.; Yunus, N.; Yzerman, M.; Zaccardelli, C.; Zemp, P.; Zeng, M.; Zeng, Y.; Zhang, D. H.; Zhang, Z. P.; Zhou, B.; Zhou, G. J.; Zhou, J. F.; Zhu, R. Y.; Zichichi, A.; van der Zwaan, B. C. C.; L3 Collaboration

    1995-02-01

    The neutrino energy spectrum in semileptonic b-hadron decays with identified energetic electrons and muons has been measured. The observed relative energy sharing between the neutrino and the cahrged lepton is found to be well described with a W ± polarization obtained from a free b-quark decay model with a (Vf-A)×(Vf-A) decay structure. The alternative of a (V+A)×(Vf-A) decay structure is excluded with a significance of more than 6 standard deviations. The possibility that hadronic corrections to the b-hadron decay destroy any W ± polarization is disfavored by more than 3 standard deviations.

  7. Cost Management for Large Weak Current Engineering Project%大型弱电工程项目成本管理

    Institute of Scientific and Technical Information of China (English)

    苗富琨

    2014-01-01

    弱电项目成本管理和其它专业的成本管理虽然相似,但是又有其自身特点。本文结合上海市政府浦东集中办公点弱电工程中采取的部分成本管理措施,与大家作个探讨。%Cost management of weak current project may be similar with that of other engineering projects, it still has its own characteristics in the weak current domain. Setting some measures taken by Shanghai Municipal Government′s Pudong Centralized Office in its weak current engineering cost management for example, the article will discuss with you in detail.

  8. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility

    KAUST Repository

    Dacuña, Javier

    2011-11-28

    We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows the utilization of asymmetric contacts to describe the built-in potential within the device. The model has been applied to extract information of the distribution of traps from experimental current-voltage measurements of a rubrene single crystal from Krellner showing excellent agreement across several orders of magnitude in the current. Although the two contacts are made of the same metal, an energy offset of 580 meV between them, ascribed to differences in the deposition techniques (lamination vs evaporation) was essential to correctly interpret the shape of the current-voltage characteristics at low voltage. A band mobility of 0.13cm 2V-1s-1 for holes is estimated, which is consistent with transport along the long axis of the orthorhombic unit cell. The total density of traps deeper than 0.1 eV was 2.2×1016cm -3. The sensitivity analysis and error estimation in the obtained parameters show that it is not possible to accurately resolve the shape of the trap distribution for energies deeper than 0.3 eV or shallower than 0.1 eV above the valence-band edge. The total number of traps deeper than 0.3 eV, however, can be estimated. Contact asymmetry and the diffusion component of the current play an important role in the description of the device at low bias and are required to obtain reliable information about the distribution of deep traps. © 2011 American Physical Society.

  9. Electric Vehicles in Colorado: Anticipating Consumer Demand for Direct Current Fast Charging

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-01

    To support the State of Colorado in planning for growth in direct current fast charging (DCFC) for electric vehicles, the National Renewable Energy Laboratory (NREL) has partnered with the Regional Air Quality Council (RAQC) and the Colorado Department of Transportation (CDOT) to analyze a number of DCFC investment scenarios. NREL analyzed existing electric vehicle registration data from IHS Markit (IHS) to highlight early trends in the electric vehicle market, which were compared with sales forecasts predicting large growth in the Colorado electric vehicle market. Electric vehicle forecasts were then used to develop future DCFC scenarios to be evaluated in a simulation environment to estimate consumer benefits of the hypothetical DCFC networks in terms of increased driving range and electric vehicle miles traveled (eVMT). Simulated utilization of the hypothetical DCFC networks was analyzed for geographic trends, particularly for correlations with vehicle electric range. Finally, a subset of simulations is presented for consumers with potentially inconsistent access to charging at their home location and presumably greater reliance on public DCFC infrastructure.

  10. Space Charge Behavior in Paper Insulation Induced by Copper Sulfide in High-Voltage Direct Current Power Transformers

    Directory of Open Access Journals (Sweden)

    Ruijin Liao

    2015-08-01

    Full Text Available The main insulation system in high-voltage direct current (HVDC transformer consists of oil-paper insulation. The formation of space charge in insulation paper is crucial for the dielectric strength. Unfortunately, space charge behavior changes because of the corrosive sulfur substance in oil. This paper presents the space charge behavior in insulation paper induced by copper sulfide generated by corrosive sulfur in insulation oil. Thermal aging tests of paper-wrapped copper strip called the pigtail model were conducted at 130 °C in laboratory. Scanning electron microscopy (SEM was used to observe the surface of copper and paper. Pulse electroacoustic (PEA and thermally stimulated current (TSC methods were used to obtain the space charge behavior in paper. Results showed that both maximum and total amount of space charge increased for the insulation paper contaminated by semi-conductor chemical substance copper sulfide. The space charge decay rate of contaminated paper was significantly enhanced after the polarization voltage was removed. The TSC results revealed that copper sulfide increased the trap density and lowered the shallow trap energy levels. These results contributed to charge transportation by de-trapping and trapping processes. This improved charge transportation could be the main reason for the decreased breakdown voltage of paper insulation material.

  11. Direct Measurement of Nuclear Dependence of Charged Current Quasielasticlike Neutrino Interactions Using MINERvA

    Science.gov (United States)

    Betancourt, M.; Ghosh, A.; Walton, T.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Bodek, A.; Bravar, A.; Cai, T.; Martinez Caicedo, D. A.; Carneiro, M. F.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Patrick, C. E.; Perdue, G. N.; Ramírez, M. A.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Sobczyk, J. T.; Solano Salinas, C. J.; Sánchez Falero, S.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; Minerva Collaboration

    2017-08-01

    Charged-current νμ interactions on carbon, iron, and lead with a final state hadronic system of one or more protons with zero mesons are used to investigate the influence of the nuclear environment on quasielasticlike interactions. The transferred four-momentum squared to the target nucleus, Q2, is reconstructed based on the kinematics of the leading proton, and differential cross sections versus Q2 and the cross-section ratios of iron, lead, and carbon to scintillator are measured for the first time in a single experiment. The measurements show a dependence on the atomic number. While the quasielasticlike scattering on carbon is compatible with predictions, the trends exhibited by scattering on iron and lead favor a prediction with intranuclear rescattering of hadrons accounted for by a conventional particle cascade treatment. These measurements help discriminate between different models of both initial state nucleons and final state interactions used in the neutrino oscillation experiments.

  12. Anomalous Top Charged-current Contact Interactions in Single Top Production at the LHC

    CERN Document Server

    Bach, Fabian

    2014-01-01

    In an effective theory approach, the full minimal set of leading contributions to anomalous charged-current top couplings comprises various new trilinear tbW as well as quartic tbff' interaction vertices, some of which are related to one another by equations of motion. While much effort in earlier work has gone into the extraction of the trilinear couplings from single top measurements, we argue in this article that these structures can be assessed independently by other observables, while single top production forms a unique window to the four-fermion sector. An effective theory approach is employed to infer and classify the minimal set of such couplings from dimension six operators in the minimal flavor violation scheme. In the phenomenological analysis, we present a Monte Carlo study at detector level to quantify the expected performance of the next LHC run to bound as well as distinguish the various contact couplings. Special attention is directed towards differential final state distributions including d...

  13. Scan-rate-dependent ion current rectification and rectification inversion in charged conical nanopores.

    Science.gov (United States)

    Momotenko, Dmitry; Girault, Hubert H

    2011-09-21

    Herein we report a theoretical study of diode-like behavior of negatively charged (e.g., glass or silica) nanopores at different potential scan rates (1-1000 V·s(-1)). Finite element simulations were used to determine current-voltage characteristics of conical nanopores at various electrolyte concentrations. This study demonstrates that significant changes in rectification behavior can be observed at high scan rates because the mass transport of ionic species appears sluggish on the time scale of the voltage scan. In particular, it explains the influence of the potential scan rate on the nanopore rectifying properties in the cases of classical rectification, rectification inversion, and the "transition" rectification domain where the rectification direction in the nanopore could be modulated according to the applied scan rate.

  14. Current mixing and properties of vector bosons in preon model with preonic charge

    Energy Technology Data Exchange (ETDEWEB)

    Senju, Hirofumi (Nagoya Municipal Women' s Coll. (Japan))

    1994-09-01

    In the preon model with preonic charge, new vector boson which can mix with the photon exists. On the basis of the current mixing model, its properties are studied. Cross sections of e[sup +]e[sup -] [yields] U boson pair and of [iota][sub s]-nucleus scattering are given. It will be also shown that, if the new vector boson is sufficiently heavy (say [approx] 500 GeV), the success of the standard model at the LEP level is naturally reproduced. Small deviations from the standard model are predicted in a definite way, which seems to be rather supported by the data. Our model leads to lighter W boson than the standard model does and to positive [epsilon][sub b] parameter in contrast to the standard model. (author).

  15. Current Mixing and Properties of Vector Bosons in Preon Model with Preonic Charge

    Science.gov (United States)

    Senju, H.

    1994-09-01

    In the preon model with preonic charge, new vector boson which can mix with the photon exists. On the basis of the current mixing model, its properties are studied. Cross sections of e+e- --> U boson pair and of ls-nucleus scattering are given. It will be also shown that, if the new vector boson is sufficiently heavy (say ~500 GeV), the success of the standard model at the LEP level is naturally reproduced. Small deviations from the standard model are predicted in a definite way, which seems to be rather supported by the data. Our model leads to lighter W boson than the standard model does and to positive ɛb parameter in contrast to the standard model.

  16. Optical switching of electric charge transfer pathways in porphyrin: a light-controlled nanoscale current router.

    Science.gov (United States)

    Thanopulos, Ioannis; Paspalakis, Emmanuel; Yannopapas, Vassilios

    2008-11-05

    We introduce a novel molecular junction based on a thiol-functionalized porphyrin derivative with two almost energetically degenerate equilibrium configurations. We show that each equilibrium structure defines a pathway of maximal electric charge transfer through the molecular junction and that these two conduction pathways are spatially orthogonal. We further demonstrate computationally how to switch between the two equilibrium structures of the compound by coherent light. The optical switching mechanism is presented in the relevant configuration subspace of the compound, and the corresponding potential and electric dipole surfaces are obtained by ab initio methods. The laser-induced isomerization takes place in two steps in tandem, while each step is induced by a two-photon process. The effect of metallic electrodes on the electromagnetic irradiation driving the optical switching is also investigated. Our study demonstrates the potential for using thiol-functionalized porphyrin derivatives for the development of a light-controlled nanoscale current router.

  17. Cross Sections of Charged Current Neutrino Scattering off 132Xe for the Supernova Detection

    Directory of Open Access Journals (Sweden)

    P. C. Divari

    2013-01-01

    Full Text Available The total cross sections as well as the neutrino event rates are calculated in the charged current neutrino and antineutrino scattering off 132Xe isotope at neutrino energies Ev<100 MeV. Transitions to excited nuclear states are calculated in the framework of quasiparticle random-phase approximation. The contributions from different multipoles are shown for various neutrino energies. Flux-averaged cross sections are obtained by convolving the cross sections with a two-parameter Fermi-Dirac distribution. The flux-averaged cross sections are also calculated using terrestrial neutrino sources based on conventional sources (muon decay at rest or on low-energy beta-beams.

  18. Measurement of Lambda polarization in muon neutrino charged current interactions in NOMAD

    CERN Document Server

    Naumov, Dmitry V.

    2000-01-01

    The Lambda polarization in muon neutrino charged current interactions has been measured in the NOMAD experiment. We observe negative polarization along the W - boson direction which is enhanced in the target fragmentation region: Px (xF 0) = -0.09 +/- 0.06(stat) +/- 0.03(sys). These results provide a test of different models describing the nucleon spin composition and the spin transfer mechanisms. A significant transverse polarization (in the direction orthogonal to the Lambda production plane) has been observed for the first time in a neutrino experiment: Py = -0.22 +/- 0.03(stat) +/- 0.01(sys). The dependence of the absolute value of Py on the Lambda transverse momentum with respect to the hadronic jet direction is in qualitative agreement with the results from unpolarized hadron-hadron experiments.

  19. O(D,D) covariant Noether currents and global charges in double field theory

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong-Hyuck [Department of Physics, Sogang University,Seoul, 04107 (Korea, Republic of); Rey, Soo-Jong [School of Physics and Astronomy, Seoul National University,Seoul, 08862 (Korea, Republic of); Fields, Gravity & Strings, Center for Theoretical Physics of the Universe,Institute for Basic Sciences, Daejeon, 34047 (Korea, Republic of); Rim, Woohyun; Sakatani, Yuho [School of Physics and Astronomy, Seoul National University,Seoul, 08862 (Korea, Republic of)

    2015-11-20

    Double field theory is an approach for massless modes of string theory, unifying and geometrizing all gauge invariance in manifest O(D,D) covariant manner. In this approach, we derive off-shell conserved Noether current and corresponding Noether potential associated with unified gauge invariance. We add Wald-type counter two-form to the Noether potential and define conserved global charges as surface integral. We check our O(D,D) covariant formula against various string backgrounds, both geometric and non-geometric. In all cases we examined, we find perfect agreements with previous results. Our formula facilitates to evaluate momenta along not only ordinary spacetime directions but also dual spacetime directions on equal footing. From this, we confirm recent assertion that null wave in doubled spacetime is the same as macroscopic fundamental string in ordinary spacetime.

  20. Direct Measurement of Nuclear Dependence of Charged Current Quasielasticlike Neutrino Interactions Using MINER$\

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt, M.; et al.

    2017-08-25

    Charged-current νμ interactions on carbon, iron, and lead with a final state hadronic system of one or more protons with zero mesons are used to investigate the influence of the nuclear environment on quasielasticlike interactions. The transferred four-momentum squared to the target nucleus, Q2, is reconstructed based on the kinematics of the leading proton, and differential cross sections versus Q2 and the cross-section ratios of iron, lead, and carbon to scintillator are measured for the first time in a single experiment. The measurements show a dependence on the atomic number. While the quasielasticlike scattering on carbon is compatible with predictions, the trends exhibited by scattering on iron and lead favor a prediction with intranuclear rescattering of hadrons accounted for by a conventional particle cascade treatment. These measurements help discriminate between different models of both initial state nucleons and final state interactions used in the neutrino oscillation experiments.

  1. Search for a Fourth Generation Charge -1/3 Quark via Flavor Changing Neutral Current Decay

    Science.gov (United States)

    Abachi, S.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amidi, E.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Bartlett, J. F.; Bazizi, K.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Borders, J.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Drinkard, J.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M.; Fatyga, M. K.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Geld, T. L.; Genik, R. J., II; Genser, K.; Gerber, C. E.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goforth, M.; Goldschmidt, A.; Gómez, B.; Gomez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Grim, G.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, P.; Gutnikov, Y. E.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klatchko, A.; Klima, B.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Lan, H.; Lander, R.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Q.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Mani, S.; Mao, H. S.; Markeloff, R.; Markosky, L.; Marshall, T.; Martin, M. I.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; de Miranda, J. M.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Nes̆iĆ, D.; Nicola, M.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Pang, M.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Perkins, J.; Peters, M.; Piekarz, H.; Pischalnikov, Y.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Pus̆eljić, D.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rapidis, P. A.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roe, N. A.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Singh, P.; Sirotenko, V.; Smart, W.; Smith, A.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stoianova, D. A.; Stoker, D.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yanagisawa, C.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhu, Q.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.

    1997-05-01

    We report on a search for pair production of a fourth generation charge -1/3 quark ( b') in pp¯ collisions at s = 1.8 TeV by the DØ experiment at the Fermilab Tevatron using an integrated luminosity of 93 pb-1. Both b' quarks are assumed to decay via flavor changing neutral currents (FCNC). The search uses the signatures γ+3 jets +μ-tag and 2γ+2 jets. We see no significant excess of events over the expected background. We place an upper limit on the production cross section times branching fraction that is well below theoretical expectations for a b' decaying exclusively via FCNC for b' masses up to mZ+mb.

  2. Monitoring And Recording Data For Solar Radiation Temperature And Charging Current

    Directory of Open Access Journals (Sweden)

    Aung Bhone Myint

    2015-08-01

    Full Text Available A data logger based on 8051 microcontroller has been implemented in this project to measure the solar radiation temperature and charging current. Development of a low-cost data logger can easily be made and easily be used to convert the analog signal of physical parameters of various test or other purposes of engineering. By using a suitable program code it can be used to read the value digitally with a PC. Our aim is to provide with a module and a software package when installed in a computer one can remotely acquire and monitor several numbers of the same or different types of signals sequentially at a time. Signals obtained from various sensors have been effectively conditioned. Now interfacing these signals using ADC with the Bluetooth module port of a computer satisfies the very goal of data acquisition. Proposed system provides better performance and has low cost versatile portable.

  3. Measurement of the Muon Neutrino Inclusive Charged Current Cross Section on Iron using the MINOS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Loiacono, Laura Jean [Univ. of Texas, Austin, TX (United States)

    2010-05-01

    The Neutrinos at the Main Injector (NuMI) facility at Fermi National Accelerator Laboratory (FNAL) produces an intense muon neutrino beam used by the Main Injector Neutrino Oscillation Search (MINOS), a neutrino oscillation experiment, and the Main INjector ExpeRiment v-A, (MINERv A), a neutrino interaction experiment. Absolute neutrino cross sections are determined via σv = N vv , where the numerator is the measured number of neutrino interactions in the MINOS Detector and the denominator is the flux of incident neutrinos. Many past neutrino experiments have measured relative cross sections due to a lack of precise measurements of the incident neutrino flux, normalizing to better established reaction processes, such as quasielastic neutrino-nucleon scattering. But recent measurements of neutrino interactions on nuclear targets have brought to light questions about our understanding of nuclear effects in neutrino interactions. In this thesis the vμ inclusive charged current cross section on iron is measured using the MINOS Detector. The MINOS detector consists of alternating planes of steel and scintillator. The MINOS detector is optimized to measure muons produced in charged current vμ interactions. Along with muons, these interactions produce hadronic showers. The neutrino energy is measured from the total energy the particles deposit in the detector. The incident neutrino flux is measured using the muons produced alongside the neutrinos in meson decay. Three ionization chamber monitors located in the downstream portion of the NuMI beamline are used to measure the muon flux and thereby infer the neutrino flux by relation to the underlying pion and kaon meson flux. This thesis describes the muon flux instrumentation in the NuMI beam, its operation over the two year duration of this measurement, and the techniques used to derive the neutrino flux.

  4. Measurement of the Muon Neutrino Inclusive Charged Current Cross Section on Iron using the MINOS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Loiacono, Laura Jean [Univ. of Texas, Austin, TX (United States)

    2010-05-01

    The Neutrinos at the Main Injector (NuMI) facility at Fermi National Accelerator Laboratory (FNAL) produces an intense muon neutrino beam used by the Main Injector Neutrino Oscillation Search (MINOS), a neutrino oscillation experiment, and the Main INjector ExpeRiment v-A, (MINERv A), a neutrino interaction experiment. Absolute neutrino cross sections are determined via σv = N vv , where the numerator is the measured number of neutrino interactions in the MINOS Detector and the denominator is the flux of incident neutrinos. Many past neutrino experiments have measured relative cross sections due to a lack of precise measurements of the incident neutrino flux, normalizing to better established reaction processes, such as quasielastic neutrino-nucleon scattering. But recent measurements of neutrino interactions on nuclear targets have brought to light questions about our understanding of nuclear effects in neutrino interactions. In this thesis the vμ inclusive charged current cross section on iron is measured using the MINOS Detector. The MINOS detector consists of alternating planes of steel and scintillator. The MINOS detector is optimized to measure muons produced in charged current vμ interactions. Along with muons, these interactions produce hadronic showers. The neutrino energy is measured from the total energy the particles deposit in the detector. The incident neutrino flux is measured using the muons produced alongside the neutrinos in meson decay. Three ionization chamber monitors located in the downstream portion of the NuMI beamline are used to measure the muon flux and thereby infer the neutrino flux by relation to the underlying pion and kaon meson flux. This thesis describes the muon flux instrumentation in the NuMI beam, its operation over the two year duration of this measurement, and the techniques used to derive the neutrino flux.

  5. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    Directory of Open Access Journals (Sweden)

    Valeriy Shchavlev

    2012-12-01

    Full Text Available Electron beam welding (EBW shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  6. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    Science.gov (United States)

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  7. Effects of geometry and linearly polarized cavity photons on charge and spin currents in a quantum ring with spin-orbit interactions

    Science.gov (United States)

    Arnold, Thorsten; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2014-05-01

    We calculate the persistent charge and spin polarization current inside a finite-width quantum ring of realistic geometry as a function of the strength of the Rashba or Dresselhaus spin-orbit interaction. The time evolution in the transient regime of the two-dimensional (2D) quantum ring connected to electrically biased semi-infinite leads is governed by a time-convolutionless non-Markovian generalized master equation. The electrons are correlated via Coulomb interaction. In addition, the ring is embedded in a photon cavity with a single mode of linearly polarized photon field, which is polarized either perpendicular or parallel to the charge transport direction. To analyze carefully the physical effects, we compare to the analytical results of the toy model of a one-dimensional (1D) ring of non-interacting electrons with spin-orbit coupling. We find a pronounced charge current dip associated with many-electron level crossings at the Aharonov-Casher phase ΔΦ = π, which can be disguised by linearly polarized light. Qualitative agreement is found for the spin polarization currents of the 1D and 2D ring. Quantitatively, however, the spin polarization currents are weaker in the more realistic 2D ring, especially for weak spin-orbit interaction, but can be considerably enhanced with the aid of a linearly polarized electromagnetic field. Specific spin polarization current symmetries relating the Dresselhaus spin-orbit interaction case to the Rashba one are found to hold for the 2D ring, which is embedded in the photon cavity.

  8. Experimental study of nonlinear interaction of plasma flow with charged thin current sheets: 2. Hall dynamics, mass and momentum transfer

    Directory of Open Access Journals (Sweden)

    S. Savin

    2006-01-01

    Full Text Available Proceeding with the analysis of Amata et al. (2005, we suggest that the general feature for the local transport at a thin magnetopause (MP consists of the penetration of ions from the magnetosheath with gyroradius larger than the MP width, and that, in crossing it, the transverse potential difference at the thin current sheet (TCS is acquired by these ions, providing a field-particle energy exchange without parallel electric fields. It is suggested that a part of the surface charge is self-consistently produced by deflection of ions in the course of inertial drift in the non-uniform electric field at MP. Consideration of the partial moments of ions with different energies demonstrates that the protons having gyroradii of roughly the same size or larger than the MP width carry fluxes normal to MP that are about 20% of the total flow in the plasma jet under MP. This is close to the excess of the ion transverse velocity over the cross-field drift speed in the plasma flow just inside MP (Amata et al., 2005, which conforms to the contribution of the finite-gyroradius inflow across MP. A linkage through the TCS between different plasmas results from the momentum conservation of the higher-energy ions. If the finite-gyroradius penetration occurs along the MP over ~1.5 RE from the observation site, then it can completely account for the formation of the jet under the MP. To provide the downstream acceleration of the flow near the MP via the cross-field drift, the weak magnetic field is suggested to rotate from its nearly parallel direction to the unperturbed flow toward being almost perpendicular to the accelerated flow near the MP. We discuss a deceleration of the higher-energy ions in the MP normal direction due to the interaction with finite-scale electric field bursts in the magnetosheath flow frame, equivalent to collisions, providing a charge separation. These effective collisions, with a nonlinear frequency proxy of the order of the proton

  9. Thickness scaling of the space-charge-limited current in poly(p-phenylene vinylene)

    NARCIS (Netherlands)

    Blom, PWM; Tanase, C; de Leeuw, DM; Coehoorn, R

    2005-01-01

    Charge transport in light-emitting diodes (LEDs) based on a polyp-phenylene vinylene) (PPV) derivative is investigated as a function of sample thickness. Via the thickness dependence, the contributions from the electric field and charge carrier density to the mobility in space-charge-limited (SCL) d

  10. Charge effects controlling the current hysteresis and negative differential resistance in periodical nanosize Si/CaF sub 2 structures

    CERN Document Server

    Berashevich, Y A; Kholod, A N; Borisenko, V E

    2002-01-01

    A kinetic model of charge carrier transport in nanosize periodical Si/CaF sub 2 structures via localized states in dielectric is proposed. Computer simulation of the current-voltage characteristics of such structures has shown that the built-in field arises in a dielectric due to polarization of the trapped charge by localized centers. This results in current hysteresis and negative differential resistance region at the current-voltage characteristics when the bias polarity is changed. At temperature below 250 K, the portion of negative differential resistance vanishes

  11. A Physics-Based Charge-Control Model for InP DHBT Including Current-Blocking Effect

    Institute of Scientific and Technical Information of China (English)

    GE Ji; JIN Zhi; SU Yong-Bo; CHENG Wei; WANG Xian-Wai; CHEN Gao-Peng; LIU Xin-Yu

    2009-01-01

    We develop a physics-based charge-control InP double heterojunction bipolar transistor model including three important effects: current blocking, mobile-charge modulation of the base-collector capacitance and velocity-field modulation in the transit time. The bias-dependent base-collector depletion charge is obtained analytically, which takes into account the mobile-charge modulation. Then, a measurement based voltage-dependent transit time formulation is implemented. As a result, over a wide range of biases, the developed model shows good agreement between the modeled and measured S-parameters and cutoff frequency. Also, the model considering current blocking effect demonstrates more accurate prediction of the output characteristics than conventional vertical bipolar inter company results.

  12. Transient charging and discharging current study in pure PVF and PVF/PVDF fluoro polyblends for application in microelectronics

    Indian Academy of Sciences (India)

    A K Gupta; R Bajpai; J M Keller

    2011-02-01

    The transient current were analysed by considering the effect of variation of forming time, temperature, field and composition of blend specimens. Measurements indicated that transient charging and discharging currents exhibited thermally activated character but did not show mirror image behaviour at different temperatures and field values. The log –log plots were found to follow the Curie–Von Schweidler law with the value of decay constant `’ lying in the range of 0.029–2.9456. These observed characteristics also indicated that the transient charging in PVF:PVDF fluoro polyblends occur partly due to orientation of dipoles but predominantly due to trapped space charges and hopping of charge carriers amongst localized states. The modification in transient behaviour on blending PVDF with PVF have been explained on the basis of plasticization effect which increases free volume and molecular mobility and g modification in the trap structure.

  13. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    CERN Document Server

    Wolcott, J

    2016-01-01

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter for electron neutrino appearance oscillation experiments. Current experiments typically begin with the muon neutrino cross section and apply theoretical corrections to obtain a prediction for the electron neutrino cross section. However, at present no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments exists. We present the cross sections for a CCQE-like process determined using the MINERvA detector, which are the first measurements of any exclusive reaction in few-GeV electron neutrino interactions. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^{2}$. We also compute the ratio to a muon neutrino cross-section in $Q^{2}$ from MINERvA. We find satisfactory agreement between these measurements and the predictions of the GENIE generato...

  14. Electron neutrino charged-current quasielastic scattering in the MINERvA experiment

    CERN Document Server

    Wolcott, Jeremy

    2015-01-01

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross section for a CCQE-like process, made using the MINERvA detector. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^2$. We also compute the ratio to a muon neutrino cross-section in $Q^2$ from MINERvA. We find satisfactory agreement between this measurement and the predictions of the GENIE generator.

  15. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wolcott, J. [Tufts U.

    2015-12-31

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter for electron neutrino appearance oscillation experiments. Current experiments typically begin with the muon neutrino cross section and apply theoretical corrections to obtain a prediction for the electron neutrino cross section. However, at present no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments exists. We present the cross sections for a CCQE-like process determined using the MINERvA detector, which are the first measurements of any exclusive reaction in few-GeV electron neutrino interactions. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^{2}$. We also compute the ratio to a muon neutrino cross-section in $Q^{2}$ from MINERvA. We find satisfactory agreement between these measurements and the predictions of the GENIE generator. We furthermore report on a photon-like background unpredicted by the generator which we interpret as neutral-coherent diffractive scattering from hydrogen.

  16. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wolcott, Jeremy [Rochester U.

    2015-10-28

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross section for a CCQE-like process, made using the MINERvA detector. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^2$. We also compute the ratio to a muon neutrino cross-section in $Q^2$ from MINERvA. We find satisfactory agreement between this measurement and the predictions of the GENIE generator.

  17. In vivo demonstration of injectable microstimulators based on charge-balanced rectification of epidermically applied currents

    Science.gov (United States)

    Ivorra, Antoni; Becerra-Fajardo, Laura; Castellví, Quim

    2015-12-01

    Objective. It is possible to develop implantable microstimulators whose actuation principle is based on rectification of high-frequency (HF) current bursts supplied through skin electrodes. This has been demonstrated previously by means of devices consisting of a single diode. However, previous single diode devices caused dc currents which made them impractical for clinical applications. Here flexible thread-like stimulation implants which perform charge balance are demonstrated in vivo. Approach. The implants weigh 40.5 mg and they consist of a 3 cm long tubular silicone body with a diameter of 1 mm, two electrodes at opposite ends, and, within the central section of the body, an electronic circuit made up of a diode, two capacitors, and a resistor. In the present study, each implant was percutaneously introduced through a 14 G catheter into either the gastrocnemius muscle or the cranial tibial muscle of a rabbit hindlimb. Then stimulation was performed by delivering HF bursts (amplitude neuromuscular stimulation. The implants were well-tolerated during the 4 weeks. Significance. Existing power supply methods, and, in particular inductive links, comprise stiff and bulky parts. This hinders the development of minimally invasive implantable devices for neuroprostheses based on electrical stimulation. The proposed methodology is intended to relieving such bottleneck. In terms of mass, thinness, and flexibility, the demonstrated implants appear to be unprecedented among the intramuscular stimulation implants ever assayed in vertebrates.

  18. QCD analysis of neutral and charged current cross sections and search for contact interactions at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Pirumov, Hayk

    2013-11-15

    A QCD analysis of the inclusive deep inelastic ep scattering cross section measured by the H1 experiment at HERA is presented. The data correspond to a total integrated luminosity of about 0.5 fb{sup -1} and covers a kinematic range of 0.5 GeV{sup 2} - 30000 GeV{sup 2} in the negative four-momentum transfer Q{sup 2} and 3 . 10{sup -5} - 0.65 in Bjorken x. The performed QCD analysis of the double differential neutral and charged current cross sections results in a set of parton distribution functions H1PDF 2012. The precise data from HERA II period in the kinematic region of high Q{sup 2} considerably improve the accuracy of the PDFs at the high x. In addition a search for signs of new physics using single differential neutral current cross section measurements at high Q{sup 2} is performed. The observed good agreement of the analysed data with the Standard Model predictions allows to set constraints on various new physics models within the framework of contact interactions. Limits are derived on the compositeness scale for general contact interactions, on the ratio of mass to the Yukawa coupling for heavy leptoquark models, on the effective Plank-mass scale in the large extra dimension models and on the quark radius.

  19. Effects of defects and dephasing on charge and spin currents in two-dimensional topological insulators

    Science.gov (United States)

    Van Dyke, John S.; Morr, Dirk K.

    2017-01-01

    Using the nonequilibrium Keldysh Green's function formalism, we investigate the effect of defects on the electronic structure and transport properties of two-dimensional topological insulators (TI). We demonstrate how the spatial flow of charge changes between the topologically protected edge and bulk states and show that elastically and inelastically scattering defects that preserve the time-reversal symmetry of the TI lead to qualitatively different effects on the TI's local electronic structure and its transport properties. Moreover, we show that the recently predicted ability to create highly spin-polarized currents by breaking the time-reversal symmetry of the TI via magnetic defects [J. S. Van Dyke and D. K. Morr, Phys. Rev. B 93, 081401 (2016), 10.1103/PhysRevB.93.081401] is robust against the inclusion of a Rashba spin-orbit interaction and the effects of dephasing, and remains unaffected by changes over a wide range of the TI's parameters. We discuss how the sign of the induced spin currents changes under symmetry operations, such as reversal of bias and gate voltages, or spatial reflections. Finally, we show that the insight into the interplay between topology and symmetry of the magnetic defects can be employed for the creation of intriguing quantum phenomena, such as highly localized magnetic fields inside the TI.

  20. Consistent analysis of neutral- and charged-current neutrino scattering off carbon

    CERN Document Server

    Ankowski, Artur M

    2012-01-01

    Background: Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for correct interpretation of results of ongoing and planned oscillation experiments. Purpose: Clarify possible source of disagreement between recent measurements of the cross sections on carbon. Method: Nuclear effects in (anti)neutrino scattering off carbon nucleus are described using the spectral function approach. The effect of two- and multi-nucleon final states is accounted for by applying an effective value of the axial mass, fixed to 1.23 GeV. Neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes are treated on equal footing. Results: The differential and total cross sections for the energy ranging from a few hundreds of MeV to 100 GeV are obtained and compared to the available data from the BNL E734, MiniBooNE, and NOMAD experiments. Conclusions: Nuclear effects in NCE and CCQE scattering seem to be very similar. Within the spe...

  1. A sub-GeV charged-current quasi-elastic $\

    Energy Technology Data Exchange (ETDEWEB)

    Walding, Joseph James [Imperial College, London (United Kingdom)

    2009-12-01

    Neutrino-nucleus charged-current quasi-elastic scattering is the signal interaction used by many neutrino oscillation experiments. For muon disappearance studies the signal mode is νμn → μp. Modern oscillation experiments, such as T2K, produce neutrino beams with peak beam energies of order a few-GeV. It is therefore vitally important to have accurate measurements of the charged-current quasi-elastic crosssection for future neutrino oscillation experiments. Neutrino-nucleus cross-sections in the few-GeV region are not well understood, with the main uncertainties coming from understanding of the neutrino beam flux and the final state interactions within nuclei. SciBooNE is a sub-GeV neutrino-nucleus cross-section experiment based at Fermilab, Batavia, USA, with the goal to measure neutrino cross-sections with precision of order 5%. SciBooNE took data from June 2007 until August 2008, in total 0.99×1020 and 1.53×1020 protons on target were collected in neutrino and anti-neutrino mode, respectively. In this thesis a νμ charged-current quasi-elastic (CCQE) cross-section contained within the SciBar sub-detector is presented. A method to tag muons in SciBar was developed and three samples were isolated. An excess in backwards tracks in the one-track sample is observed. A Poisson maximum likelihood is used to extract the CCQE cross-section. The fit was applied using a basic fit parameter model, successfully used to obtain the cross-section in the SciBar-MRD matched CCQE analysis. This method was found to be insufficient in describing the data for the SciBarcontained CCQE analysis. By adding two migration parameters the cross-section was calculated to be 1.004 ± 0.031 (stat)+0.101 -0.150(sys) × 10-38 cm2/neutron, excluding backwards tracks with a χ2 = 203.8/76 d.o.f. and 1.083 ± 0.030(stat)+0.115 -0.177(sys) × 10-38 cm2

  2. Diagnostics of many-particle electronic states: non-stationary currents and residual charge dynamics

    Science.gov (United States)

    Maslova, N. S.; Mantsevich, V. N.; Arseyev, P. I.

    2017-01-01

    We propose the method for identifying many particle electronic states in the system of coupled quantum dots (impurities) with Coulomb correlations. We demonstrate that different electronic states can be distinguished by the complex analysis of localized charge dynamics and non-stationary characteristics. We show that localized charge time evolution strongly depends on the properties of initial state and analyze different time scales in charge kinetics for initially prepared singlet and triplet states. We reveal the conditions for existence of charge trapping effects governed by the selection rules for electron transitions between the states with different occupation numbers.

  3. Anomalous top charged-current contact interactions in single top production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bach, Fabian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ohl, Thorsten [Wuerzburg Univ. (Germany). Inst. fuer Theoretische Physik und Astrophysik

    2014-10-15

    In an effective theory approach, the full minimal set of leading contributions to anomalous charged-current top couplings comprises various new trilinear tbW as well as quartic tbff' interaction vertices, some of which are related to one another by equations of motion. While much effort in earlier work has gone into the extraction of the trilinear couplings from single top measurements, we argue in this article that these structures can be assessed independently by other observables, while single top production forms a unique window to the four-fermion sector. An effective theory approach is employed to infer and classify the minimal set of such couplings from dimension six operators in the minimal flavor violation scheme. In the phenomenological analysis, we present a Monte Carlo study at detector level to quantify the expected performance of the next LHC run to bound as well as distinguish the various contact couplings. Special attention is directed toward differential final state distributions including detector effects as a means to optimize the signal sensitivity as well as the discriminative power with respect to the possible coupling structures.

  4. Jet production in charged current deep inelastic e+p scattering at HERA

    CERN Document Server

    Abe, T; Adamczyk, L; Adamus, M; Adler, V; Aghuzumtsyan, G; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Basile, M; Bauerdick, L A T; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bloch, I; Bodmann, B; Bold, T; Boos, E G; Borras, K; Boscherini, D; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Catterall, C D; Chekanov, S; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cloth, P; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Cottrell, A; D'Agostini, Giulio; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; Dementiev, R K; Derrick, M; Deshpande, A A; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fricke, U; Fusayasu, T; Gabareen, A; Gallo, E; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Gliga, S; Göbel, F; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Göttlicher, P; Grabowska-Bold, I; Grijpink, S; Grzelak, G; Gutsche, O; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hamilton, J; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G; Hartner, G F; Heaphy, E A; Heath, G P; Heath, H F; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, H P; Jones, T W; Kagawa, S; Kahle, B; Kananov, S; Kappes, A; Karshon, U; Katkov, I I; Katz, U F; Kcira, D; Khein, L A; Kim, J Y; Kim, Y K; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korzhav, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D A; Kram, G; Kreisel, A; Krumnack, N; Kuze, M; Kuzmin, V A; Labarga, L; Labes, H; Lainesse, J; Lammers, S; Lee, J H; Lee, S W; Lelas, D; Levchenko, B B; Levman, G M; Levy, A; Li, L; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Löhr, B; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lukina, O Yu; Lupi, A; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Martin, J F; Mastroberardino, A; Matsuzawa, K; Mattingly, M C K; McCubbin, N A; Mellado, B; Melzer-Pellmann, I A; Menary, S R; Metlica, F; Meyer, U; Milite, M; Mirea, A; Monaco, V; Moritz, M; Musgrave, B; Nagano, K; Nania, R; Nguyen, C N; Nigro, A; Ning, Y; Nishimura, T; Notz, D; Nowak, R J; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Patel, S; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Pesci, A; Petrucci, M C; Piotrzkowski, K; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Rautenberg, J; Raval, A; Reeder, D D; Ren, Z; Renner, R; Repond, J; Riveline, M; Robins, S; Rodrigues, E; Ruspa, M; Sacchi, R; Salehi, H; Sartorelli, G; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Sciulli, F; Scott, J; Selonke, F; Shcheglova, L M; Skillicorn, I O; Slominski, W; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V V; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stoesslein, U; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Tawara, T; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Vázquez, M; Velthuis, J J; Vlasov, N N; Voss, K C; Walczak, R; Wang, M; Weber, A; Wessoleck, H; West, B J; Whitmore, J J; Wick, K; Wiggers, L; Wills, H H; Wing, M; Wolf, G; Yamada, S; Yamashita, T; Yamazaki, Y; Yoshida, R; Youngman, C; Zawiejski, L; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A; De Wolf, E; Del Peso, J

    2003-01-01

    The production rates and substructure of jets have been studied in charged current deep inelastic e+p scattering for Q**2>200 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb**-1. Inclusive jet cross sections are presented for jets with transverse energies E_T(jet) > 14 GeV and pseudorapidities in the range -1 14 GeV and a second jet having E_T(jet) > 5 GeV. Measurements of the mean subjet multiplicity, , of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations a re compared to the measurements. The value of alphas(M_Z), determined from at y_cut=0.01 for jets with 25

  5. Measurement of fragmentation properties of charmed particle production in charged-current neutrino interactions

    CERN Document Server

    Onengüt, G; De Jong, M; Konijn, J; Melzer, O; Oldeman, R G C; Pesen, E; Van der Poel, C A F J; Visschers, J L; Güler, M; Köse, U; Serin-Zeyrek, M; Kama, S; Sever, R; Tolun,, P; Zeyrek, M T; Catanesi, M G; De Serio, M; Ieva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; Van de Vyver, B; Vilain, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, A V; Brunner, J; Chizhov, M; Cussans, D G; Doucet, M; Fabre, Jean-Paul; Hristova, I R; Kawamura, T; Kolev, D; Litmaath, M; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A; Saltzberg, D; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Rondeshagen, D; Wolff, T; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Ereditato, A; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Pistillo, C; Santorelli, R; Scotto-Lavina, L; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; FLoverre, P; Ludovici, L; Maslennikov, A L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Spada, F R; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2004-01-01

    During the years 1994-97, the emulsion target of the CHORUS detector was exposed to the wideband neutrino beam of the CERN SPS. In total about 100 000 charged-current neutrino interactions were located in the nuclear emulsion target and fully reconstructed. From this sample of events which was based on the data acquired by new automatic scanning systems, 1048 D0 events were selected by a pattern recognition program. They were confirmed as neutral-particle decays through visual inspection. Fragmentation properties of deep-inelastic charm production were measured using these events. Distributions of the D0 momentum, Feynman x(x_F), z and tan thetaôut, the transverse angle out of the leptonic plane defined by the muon and the neutrino, are presented. The mean value of z was measured to be (z) = 0.63 +- 0.03(stat) +- 0.01(syst). From fits to the z distribution, values for the Peterson parameter epsilon_p = 0.108 +- 0.017(stat) +- 0.013(syst) and the Collins-Spiller parameter epsilon_CS = 0.21^+0.05_-0.04(stat) +...

  6. Measurement of the /Λ polarization in νμ charged current interactions in the NOMAD experiment

    Science.gov (United States)

    Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; de Santo, A.; Dignan, T.; di Lella, L.; Do Couto E Silva, E.; Dumarchez, J.; Ellis, M.; Fazio, T.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kustov, D.; Kuznetsov, V.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubičić, A.; Long, J.; Lupi, A.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S. R.; Moorhead, G. F.; Naumov, D.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rathouit, P.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Yabsley, B. D.; Zaccone, H.; Zuber, K.; Zuccon, P.; NOMAD Collaboration

    2000-11-01

    The Λ polarization in ν μ charged current interactions has been measured in the NOMAD experiment. The event sample (8087 reconstructed Λ 's) is more than an order of magnitude larger than that of previous bubble chamber experiments, while the quality of event reconstruction is comparable. We observe negative polarization along the W -boson direction which is enhanced in the target fragmentation region: P x(x F0)=-0.09±0.06 (stat)±0.03 (sys) . These results provide a test of different models describing the nucleon spin composition and the spin transfer mechanisms. A significant transverse polarization (in the direction orthogonal to the Λ production plane) has been observed for the first time in a neutrino experiment: P y=-0.22±0.03 (stat)±0.01 (sys) . The dependence of the absolute value of P y on the Λ transverse momentum with respect to the hadronic jet direction is in qualitative agreement with the results from unpolarized hadron-hadron experiments.

  7. Charged-current quasielastic neutrino cross sections on $^{12}$C with realistic spectral and scaling functions

    CERN Document Server

    Ivanov, M V; Caballero, J A; Megias, G D; Barbaro, M B; de Guerra, E Moya; Udias, J M

    2014-01-01

    Charge-current quasielastic (CCQE) (anti)neutrino scattering cross sections on a $^{12}$C target are analyzed using a spectral function $S(p,{\\cal E})$ that gives a scaling function in accordance with the ($e,e'$) scattering data. The spectral function accounts for the nucleon-nucleon (NN) correlations, it has a realistic energy dependence and natural orbitals (NO's) from the Jastrow correlation method are used in its construction. In all calculations the standard value of the axial mass $M_A= 1.032$ GeV/c$^2$ is used. The results are compared with those when NN correlations are not included, as in the Relativistic Fermi Gas (RFG) model, or when harmonic-oscillator (HO) single-particle wave functions are used instead of NO's. The role of the final-state interactions (FSI) on the theoretical spectral and scaling functions, as well as on the cross sections is accounted for. A comparison of the results for the cases with and without FSI, as well as to results from the phenomenological scaling function obtained f...

  8. A Measurement of Neutrino-Induced Charged-Current Neutral Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Robert H. [Univ. of Colorado, Boulder, CO (United States)

    2010-01-01

    This work presents the first comprehensive measurement of neutrino-induced charged-current neutral pion production (CCπ0) off a nuclear target. The Mini Booster Neutrino Experiment (MiniBooNE) and Booster Neutrino Beam (BNB) are discussed in detail. MiniBooNE is a high-statistics (~ 1, 000, 000 interactions) low-energy (Evϵ 2 0.5 - 2.0 GeV) neutrino experiment located at Fermilab. The method for selecting and reconstructing CCπ0 events is presented. The π0 and μ- are fully reconstructed in the final state allowing for the measurement of, among other things, the neutrino energy. The total observable CCπ0 cross-section is presented as a function of neutrino energy, along with five differential cross-sections in terms of the final state kinematics and Q2. The results are combined to yield a flux-averaged total cross-section of <σ>Φ = (9.2 ± 0.3stat. ± 1.5syst.) × 10-39 cm2/CH2 at energy 965 MeV. These measurements will aid future neutrino experiments with the prediction of their neutrino interaction rates.

  9. The Space Charge Effect on the Discharge Current in Cross-Linked Polyethylene under High AC Voltages

    Science.gov (United States)

    Kwon, Yoon-Hyeok; Hwangbo, Seung; Lee, June-Ho; Yi, Dong-Young; Han, Min-Koo

    2003-12-01

    The space charge distributions in solid dielectrics have been usually investigated by means of the pulsed electroacoustic (PEA) method. However, most previous studies have been limited to the phenomenological analysis under DC voltages. In our study, the space charge distribution in cross-linked polyethylene (XLPE) has been measured using AC voltages by means of the modified PEA method. Simultaneously, the streamer discharges in an air gap have been measured in order to investigate the relationship between space charge and discharge current, and the relationship has been adapted to the case of dielectric barrier discharge. At high AC voltages, discharge current increases to the critical point, but no further increase is exhibited over the critical voltage and the discharge pattern is resolved by the space charge. This result indicates that the frequency effect and space charge characteristics of dielectric materials are preferred to the voltage effect in the adaptation to dielectric barrier discharge. The results well explain the space charge effect on partial discharge and the dielectric barrier discharge phenomenon.

  10. A metrology perspective on the dark injection transient current method for charge mobility determination in organic semiconductors

    Science.gov (United States)

    Esward, T.; Knox, S.; Jones, H.; Brewer, P.; Murphy, C.; Wright, L.; Williams, J.

    2011-05-01

    Charge mobility is a key parameter for understanding the performance of organic semiconductor devices and materials. A range of techniques is available that can measure charge mobility with varying accuracy and precision. In this paper we analyze the dark injection transient current (DITC) method from a metrology perspective. We carried out a systematic study of the sensitivity of single carrier analogues of organic light-emitting diodes (OLEDs) to small changes in electrical input and environmental conditions. We observed that the experimental results depend strongly on the previous history of the device under test, with both long term and short term effects in evidence. Our findings demonstrate the need for caution in interpreting the results of single experiments to determine the charge mobility of OLEDs and the difficulty of associating uncertainty statements with the results of charge mobility measurements.

  11. Charging of superconducting layers and resonance-related hysteresis in the current-voltage characteristics of coupled Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Gaafar, M. A.

    2011-09-01

    A manifestation of a resonance-type hysteresis related to the parametric resonance in the system of coupled Josephson junctions is demonstrated. In contrast with the McCumber and Steward hysteresis, we find that the width of this hysteresis is inversely proportional to the McCumber parameter and it also depends on the coupling between junctions and the boundary conditions. Investigation of the time dependence of the electric charge in superconducting layers allows us to explain the origin of this hysteresis by different charge dynamics for increasing and decreasing bias current processes. The effect of the wavelength of the longitudinal plasma wave created at the resonance on the charging of superconducting layers is demonstrated. We find a strong effect of the dissipation in the system on the amplitude of the charge oscillations at the resonance.

  12. Analysis of the effects of constant-current Fowler-Nordheim-tunneling injection with charge trapping inside the potential barrier

    Science.gov (United States)

    Lopez-Villanueva, J. A.; Jimenez-Tejada, J. A.; Cartujo, P.; Bausells, J.; Carceller, J. E.

    1991-10-01

    Charge trapping and the generation of interface traps in thermally grown SiO2 and its interface with silicon, produced by Fowler-Nordheim tunneling injection at low temperatures from highly doped Si substrates, have been investigated. The results that can be obtained with the constant-current-injection method, when a moderate amount of charge is trapped inside the potential barrier, have been analyzed. This has afforded information about the position of the charge trapped in the oxide. No increase in the interface-trap density has been produced immediately after injection at 77 K, but, as the temperature is raised after injection, the growing of a peak of interface states has been observed. This phenomenon had been reported to be produced as a consequence of a previous hole trapping but, in this case, this intermediate stage of positive-charge building has not been observed. This effect is discussed, taking into account published models.

  13. Anti-Neutrino Charged Current Quasi-Elastic Scattering in MINER$\

    Energy Technology Data Exchange (ETDEWEB)

    Chvojka, Jesse John [Univ. of Rochester, NY (United States)

    2012-01-01

    The phenomenon of neutrino oscillation is becoming increasingly understood with results from accelerator-based and reactor-based experiments, but unanswered questions remain. The proper ordering of the neutrino mass eigenstates that compose the neutrino avor eigenstates is not completely known. We have yet to detect CP violation in neutrino mixing, which if present could help explain the asymmetry between matter and anti-matter in the universe. We also have not resolved whether sterile neutrinos, which do not interact in any Standard Model interaction, exist. Accelerator-based experiments appear to be the most promising candidates for resolving these questions; however, the ability of present and future experiments to provide answers is likely to be limited by systematic errors. A significant source of this systematic error comes from limitations in our knowledge of neutrino-nucleus interactions. Errors on cross-sections for such interactions are large, existing data is sometimes contradictory, and knowledge of nuclear effects is incomplete. One type of neutrino interaction of particular interest is charged current quasi-elastic (CCQE) scattering, which yields a final state consisting of a charged lepton and nucleon. This process, which is the dominant interaction near energies of 1 GeV, is of great utility to neutrino oscillation experiments since the incoming neutrino energy and the square of the momentum transferred to the final state nucleon, Q2, can be reconstructed using the final state lepton kinematics. To address the uncertainty in our knowledge of neutrino interactions, many experiments have begun making dedicated measurements. In particular, the MINER A experiment is studying neutrino-nucleus interactions in the few GeV region. MINERvA is a fine-grained, high precision, high statistics neutrino scattering experiment that will greatly improve our understanding of neutrino cross-sections and nuclear effects that affect the final state particles

  14. Effect of linear surface-charge non-uniformities on the electrokinetic ionic-current rectification in conical nanopores.

    Science.gov (United States)

    Qian, Shizhi; Joo, Sang W; Ai, Ye; Cheney, Marcos A; Hou, Wensheng

    2009-01-15

    The electrokinetic ionic-current rectification in a conical nanopore with linearly varying surface-charge distributions is studied theoretically by using a continuum model composed of a coupled system of the Nernst-Planck equations for the ionic-concentration field and the Poisson equation for the electric potential in the electrolyte solution. The numerical analysis includes the electrochemistry inside reservoirs connected to the nanopore, neglected in previous studies, and more precise accounts of the ionic current are provided. The surface-charge distribution, especially near the tip of the nanopore, significantly affects the ionic enrichment and depletion, which, in turn, influence the resulting ionic current and the rectification. It is shown that non-uniform surface-charge distribution can reverse the direction, or sense, of the rectification. Further insights into the ionic-current rectification are provided by discussing the intriguing details of the electric potential and ionic-concentration fields, leading to the rectification. Rationale for future studies on ionic-current rectification, associated with other non-uniform surface-charge distributions and electroosmotic convection for example, is discussed.

  15. Current driven transition from Abrikosov-Josephson to Josephson-like vortex in mesoscopic lateral S/S’/S superconducting weak links

    Science.gov (United States)

    Carapella, G.; Sabatino, P.; Barone, C.; Pagano, S.; Gombos, M.

    2016-01-01

    Vortices are topological defects accounting for many important effects in superconductivity, superfluidity, and magnetism. Here we address the stability of a small number of such excitations driven by strong external forces. We focus on Abrikosov-Josephson vortex that appears in lateral superconducting S/S’/S weak links with suppressed superconductivity in S’. In such a system the vortex is nucleated and confined in the narrow S’ region by means of a small magnetic field and moves under the effect of a force proportional to an applied electrical current with a velocity proportional to the measured voltage. Our numerical simulations show that when a slow moving Abrikosov-Josephson vortex is driven by a strong constant current it becomes unstable with respect to a faster moving excitation: the Josephon-like vortex. Such a current-driven transition explains the structured dissipative branches that we observe in the voltage-current curve of the weak link. When vortex matter is strongly confined phenomena as magnetoresistance oscillations and reentrance of superconductivity can possibly occur. We experimentally observe these phenomena in our weak links. PMID:27752137

  16. The Current Status and Future Directions of Heavy Charged Particle Therapy in Medicine

    Science.gov (United States)

    Levy, Richard P.; Blakely, Eleanor A.; Chu, William T.; Coutrakon, George B.; Hug, Eugen B.; Kraft, Gerhard; Tsujii, Hirohiko

    2009-03-01

    As aggressive, 3D-conformal treatment has become the clearly accepted goal of radiation oncology, heavy charged-particle treatment with protons and heavier ions has concurrently and relentlessly ascended to the forefront. Protons and helium nuclei, with relatively low linear-energy-transfer (LET) properties, have consistently been demonstrated to be beneficial for aggressive (high-dose) local treatment of many types of tumors. Protons have been applied to the majority of solid tumors, and have reached a high degree of general acceptance in radiation oncology after three decades and 55,000 patients treated. However, some 15% to 20% of tumor types have proven resistant to even the most aggressive low-LET irradiation. For these radio-resistant tumors, treatment with heavier ions (e.g., carbon) offers great potential benefit. These high-LET particles have increased relative biological effectiveness (RBE) that reaches its maximum in the Bragg peak. Irradiation with these heavier ions offers the unique combination of excellent 3D-dose distribution and increased RBE. We are presently witnessing several, important parallel developments in particle therapy. Protons will likely continue their exponential growth phase, and more compact design systems will make protons available to a larger patient population—thus becoming the "heavy charged particle of choice" for Cancer Centers with limited financial resources. In parallel, major academic efforts will further advance the field of heavier ion therapy, exploring all opportunities for particle treatment and continuing the search for the ideal particle(s) for specific tumors. The future of ion therapy will be best realized by clinical trials that have ready access to top-quality delivery of both protons and heavier ions that can be accurately shaped for treatment of a specific pathology, and which will permit direct randomized-trial comparison of the effectiveness of the various ions for different diseases. Optimal results

  17. 3-loop contributions to heavy flavor Wilson coefficients of neutral and charged current DIS

    Energy Technology Data Exchange (ETDEWEB)

    Hasselhuhn, Alexander

    2013-11-15

    . A new method is presented for the calculation of such diagrams with equal masses, contributing to the OMEs A{sub gq,Q} and A{sub gg,Q}. The method uses a Mellin-Barnes representation instead of a generalized hypergeometric function and keeps, for convergence reasons, one of the Feynman parameter integrals unintegrated. The above symbolic summation methods are used to solve the sum of residues in terms of cyclotomic harmonic polylogarithms. Many properties of these functions are implemented in the package Harmonic Sums. Since the result is first derived as a generating function, the symbolic summation machinery is applied a second time, solving difference equations and simplifying sums needed to derive the Nth Taylor coefficient for symbolic N. First the O({alpha}{sub s}) contributions are revisited, due to partly different results in the foregoing literature, which can be clarified. At 1-loop order, an efficient representation in Mellin space allowing for fast numerical evaluations is designed, including power corrections. Also here errors in the literature are corrected. Here the 1-loop expressions are also expanded for 1>>m{sup 2}/Q{sup 2} up to the constant term. A careful recalculation of the gluonic contribution is performed as well as a calculation in leading logarithmic approximation. The leading logarithmic calculation shows that the same sign error occurs for the pure-singlet contribution at two loops. The heavy quark corrections of charged current deep-inelastic scattering are extended to 2-loop order. The factorization of the heavy flavor Wilson coefficients at large values of Q{sup 2} is derived for the charged current case. Using the light flavor Wilson coefficients and operator matrix elements up to 2-loop order from the literature, x- and N-space expressions for all heavy flavor Wilson coefficients at two loops are given.

  18. Measurement of charged current deep inelastic scattering cross sections with a longitudinally polarised electron beam at HERA

    NARCIS (Netherlands)

    Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; Pasquale, S. De; Sartorelli, G.; Zichichi, A.; Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H.-P.; Jungst, M.; Nuncio-Quiroz, A. E.; Samson, U.; Schonberg, V.; Shehzadi, R.; Wlasenko, M.; Brook, N. H.; Heath, G. P.; Kaur, M.; Kaur, P.; Singh, I.; Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.; Kim, J. Y.; Ibrahim, Z. A.; Mohamad Idris, F.; Kamaluddin, B.; Wan Abdullah, W. A. T.; Ning, Y.; Ren, Z.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.; Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.; Kotanski, A.; Slominski, W.; Behnke, O.; Behrens, U.; Blohm, C.; Bonato, A.; Borras, K.; Ciesielski, R.; Coppola, N.; Fourletova, J.; Geiser, A.; Gottlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huttmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Kotz, U.; Kowalski, H.; Lisovyi, M.; Lobodzinska, E.; Lohr, B.; Mankel, R.; Melzer-Pellmann, I.-A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Rinaldi, L.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Ukleja, J.; Wolf, G.; Wrona, K.; Yagues Molina, A. G.; Youngman, C.; Zeuner, W.; Drugakov, V.; Lohmann, W.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P. G.; Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.; Bussey, P. J.; Doyle, A. T.; Dunne, W.; Forrest, M.; Rosin, M.; Saxon, D. H.; Skillicorn, I. O.; Gialas, I.; Papageorgiu, K.; Holm, U.; Klanner, R.; Lohrmann, E.; Perrey, H.; Schleper, P.; Schorner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.; Foudas, C.; Fry, C.; Long, K. R.; Tapper, A. D.; Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kozulia, A.; Libov, V.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.; Son, D.; de Favereau, J.; Piotrzkowski, K.; Barreiro, F.; Glasman, C.; Jimenez, M.; Labarga, L.; del Peso, J.; Ron, E.; Soares, M.; Terron, J.; Uribe-Estrada, C.; Zambrana, M.; Corriveau, F.; Schwartz, J.; Walsh, R.; Tsurugai, T.; Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.; Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W. B.; Grigorescu, G.; Keramidas, A.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Brummer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.; Allfrey, P. D.; Bell, M. A.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Walczak, R.; Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Stanco, L.; Bellan, P.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.; Oh, B. Y.; Raval, A.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cole, J. E.; Hart, J. C.; Abramowicz, H.; Ingbir, R.; Kananov, S.; Stern, A.; Kuze, M.; Maeda, J.; Hori, R.; Kagawa, S.; Okazaki, N.; Tawara, T.; Hamatsu, R.; Kaji, H.; Kitamura, S.; Ota, O.; Ri, Y. D.; Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.; Arneodo, M.; Ruspa, M.; Fourletov, S.; Stewart, T. P.; Boutle, S. K.; Butterworth, J. M.; Jones, T. W.; Loizides, J. H.; Wing, M.; Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Tymieniecka, T.; Zarnecki, A. F.; Adamus, M.; Plucinski, P.; Ukleja, A.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.; Bhadra, S.; Catterall, C. D.; Hartner, G.; Menary, S.; Noor, U.; Standage, J.; Whyte, J.

    2009-01-01

    Measurements of the cross sections for charged current deep inelastic scattering in e(-)p collisions with longitudinally polarised electron beams are presented. The measurements are based on a data sample with an integrated luminosity of 175 pb(-1) collected with the ZEUS detector at HERA at a centr

  19. Noise in space-charge-limited current in a CdS-single crystal at low injection level

    NARCIS (Netherlands)

    Driedonks, F.

    1967-01-01

    Current noise spectra (25Hz–20MHz) of a CdS-diode, working under space-charge-limited conditions. show trapping noise at low frequencies and slightly suppressed noise in the upper frequency range. Suppression is relatively small due to the effect of traps.

  20. Charge and current density profiles of a degenerate magnetized free-electron gas near a hard wall

    NARCIS (Netherlands)

    M.M. Kettenis; L.G. Suttorp

    1998-01-01

    The charge and current densities of a completely degenerate free-electron gas in a uniform magnetic field are found to have a damped oscillatory spatial dependence near a wall that is parallel to the magnetic field. For large distances from the wall the behaviour of the associated profile functions

  1. Measurement of the Inclusive Electron Neutrino Charged Current Cross Section on Carbon with the T2K Near Detector

    CERN Document Server

    Abe, K; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Berardi, V; Berger, B E; Berkman, S; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Rodríguez, J Caravaca; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Escudero, L; Finch, A J; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kubo, H; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Guerra, E S Pinzon; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2014-01-01

    The T2K off-axis near detector, ND280, is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ~1 GeV as a function of electron momentum, electron scattering angle and four-momentum transfer of the interaction. The total flux-averaged $\

  2. Measurement of Neutrino Oscillation Parameters Using Anti-fiducial Charged Current Events in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Strait, Matthew Levy [Minnesota U.

    2010-09-01

    Abstract The Main Injector Neutrino Oscillation Search (MINOS) obse rves the disappearance of muon neutrinos as they propagate in the long baseline Neutri nos at the Main Injector (NuMI) beam. MINOS consists of two detectors. The near detector sam ples the initial composition of the beam. The far detector, 735 km away, looks for an energy-d ependent deficit in the neutrino spectrum. This energy-dependent deficit is interpreted as q uantum mechanical oscillations be- tween neutrino flavors. A measurement is made of the effective two-neutrino mixing parameters ∆ m 2 ≈ ∆ m 2 23 and sin 2 2 θ ≈ sin 2 2 θ 23 . The primary MINOS analysis uses charged current events in the fiducial volume of the far detector. This analysis uses the roughly equal-sized sample of events that fails the fiducial cut, consisting of interact ions outside the fiducial region of the detector and in the surrounding rock. These events provide a n independent and complementary measurement, albeit weaker due to incomplete reconstructi on of the events. This analysis reports on an exposure of 7 . 25 × 10 20 protons-on-target. Due to poor energy resolution, the meas urement of sin 2 2 θ is much weaker than established results, but the measuremen t of sin 2 2 θ > 0 . 56 at 90% confidence is consistent with the accepted value. The measur ement of ∆ m 2 is much stronger. Assuming sin 2 2 θ = 1 , ∆ m 2 = (2 . 20 ± 0 . 18[stat] ± 0 . 14[syst]) × 10 − 3 eV 2 .

  3. Measurement of Charged Current Coherent Pion Production by Neutrinos on Carbon at MINER$\

    Energy Technology Data Exchange (ETDEWEB)

    Mislivec, Aaron Robert [Univ. of Rochester, NY (United States)

    2017-01-01

    Neutrino-nucleus coherent pion production is a rare neutrino scattering process where the squared four-momentum transferred to the nucleus is small, a lepton and pion are produced in the forward direction, and the nucleus remains in its initial state. This process is an important background in neutrino oscillation experiments. Measurements of coherent pion production are needed to constrain models which are used to predict coherent pion production in oscillation experiments. This thesis reports measurements of νµ and νµ charged current coherent pion production on carbon for neutrino energies in the range 2 < Eν < 20 GeV. The measurements were made using data from MINERνA, which is a dedicated neutrino-nucleus scattering experiment that uses a fi scintillator tracking detector in the high-intensity NuMI neutrino beam at Fermilab. Coherent interactions were isolated from the data using only model-independent signatures of the reaction, which are a forward muon and pion, no evidence of nuclear breakup, and small four-momentum transfer to the nucleus. The measurements were compared to the coherent pion production model used by oscillation experiments. The data and model agree in the total interaction rate and are similar in the dependence of the interaction rate on the squared four- momentum transferred from the neutrino. The data and model disagree significantly in the pion kinematics. The measured νµ and νµ interaction rates are consistent, which supports model predictions that the neutrino and antineutrino interaction rates are equal.

  4. Measurement of Muon Neutrino Charged Current Single $\\pi^0$ Production on Hydrocarbon using MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Altinok, Ozgur [Tufts Univ., Medford, MA (United States)

    2017-01-01

    A sample of charged-current single pion production events for the semi- exclusive channel νµ + CH → µ-π0 + nucleon(s) has been obtained using neutrino exposures of the MINERvA detector. Differential cross sections for muon momentum, muon production angle, pion momentum, pion production angle, and four-momentum transfer square Q2 are reported and are compared to a GENIE-based simulation. The cross section versus neutrino energy is also re- ported. The effects of pion final-state interactions on these cross sections are investigated. The effect of baryon resonance suppression at low Q2 is examined and an event re-weight used by two previous experiments is shown to improve the data versus simulation agreement. The differential cross sections for Q2 for Eν < 4.0 GeV and Eν ≥ 4.0 GeV are examined and the shapes of these distributions are compared to those from the experiment’s $\\bar{v}$µ-CC (π0) measurement. The polarization of the pπ0 system is measured and compared to the simulation predictions. The hadronic invariant mass W distribution is examined for evidence of resonance content, and a search is reported for evidence of a two-particle two-hole (2p2h) contribution. All of the differential cross-section measurements of this Thesis are compared with published MINERvA measurements for νµ-CC (π+) and \\bar{v}$µ-CC (π0) processes.

  5. Measurement of Neutrino Oscillation Parameters Using Anti-fiducial Charged Current Events in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Strait, Matthew Levy [Univ. of Minnesota, Minneapolis, MN (United States)

    2010-09-01

    Abstract The Main Injector Neutrino Oscillation Search (MINOS) obse rves the disappearance of muon neutrinos as they propagate in the long baseline Neutri nos at the Main Injector (NuMI) beam. MINOS consists of two detectors. The near detector sam ples the initial composition of the beam. The far detector, 735 km away, looks for an energy-d ependent deficit in the neutrino spectrum. This energy-dependent deficit is interpreted as q uantum mechanical oscillations be- tween neutrino flavors. A measurement is made of the effective two-neutrino mixing parameters Δ m 2 ≈ Δ m 2 23 and sin 2 2 θ ≈ sin 2 2 θ 23 . The primary MINOS analysis uses charged current events in the fiducial volume of the far detector. This analysis uses the roughly equal-sized sample of events that fails the fiducial cut, consisting of interact ions outside the fiducial region of the detector and in the surrounding rock. These events provide a n independent and complementary measurement, albeit weaker due to incomplete reconstructi on of the events. This analysis reports on an exposure of 7 . 25 × 10 20 protons-on-target. Due to poor energy resolution, the meas urement of sin 2 2 θ is much weaker than established results, but the measuremen t of sin 2 2 θ > 0 . 56 at 90% confidence is consistent with the accepted value. The measur ement of Δ m 2 is much stronger. Assuming sin 2 2 θ = 1 , Δ m 2 = (2 . 20 ± 0 . 18[stat] ± 0 . 14[syst]) × 10 - -3 eV 2 .

  6. Gd3+ and calcium sensitive, sodium leak currents are features of weak membrane-glass seals in patch clamp recordings.

    Science.gov (United States)

    Boone, Adrienne N; Senatore, Adriano; Chemin, Jean; Monteil, Arnaud; Spafford, J David

    2014-01-01

    The properties of leaky patch currents in whole cell recording of HEK-293T cells were examined as a means to separate these control currents from expressed sodium and calcium leak channel currents from snail NALCN leak channels possessing both sodium (EKEE) and calcium (EEEE) selectivity filters. Leak currents were generated by the weakening of gigaohm patch seals by artificial membrane rupture using the ZAP function on the patch clamp amplifier. Surprisingly, we found that leak currents generated from the weakened membrane/glass seal can be surprisingly stable and exhibit behavior that is consistent with a sodium leak current derived from an expressible channel. Leaky patch currents differing by 10 fold in size were similarly reduced in size when external sodium ions were replaced with the large monovalent ion NMDG+. Leaky patch currents increased when external Ca2+ (1.2 mM) was lowered to 0.1 mM and were inhibited (>40% to >90%) with 10 µM Gd3+, 100 µM La3+, 1 mM Co2+ or 1 mM Cd2+. Leaky patch currents were relatively insensitive (Sylgard rubber.

  7. Space-charge-limited leakage current in high dielectric constant and ferroelectric thin films considering the field-dependent permittivity

    Science.gov (United States)

    Sun, J.; Zheng, X. J.; Yin, W.; Tang, M. H.; Li, W.

    2010-12-01

    Distinguishing from the traditional characterization on high-field leakage current density-voltage relationship, the field-dependent permittivity from the polarization derivative is used to solve the space-charge-limited conduction, and the simulated leakage current densities are compared with the previous experimental observations. The influences of the mobility, ferroelectric parameters, and film thickness on the leakage current densities are discussed. The results verify that the high-field quasi-Ohmic region observed experimentally may result from the field-dependent permittivity, and that the leakage current can be influenced by the ferroelectric polarization.

  8. Multi-step constant-current charging method for electric vehicle, valve-regulated, lead/acid batteries during night time for load-levelling

    Energy Technology Data Exchange (ETDEWEB)

    Ikeya, Tomohiko; Mita, Yuichi; Ishihara, Kaoru [Central Research Inst. of Electric Power Industry, Tokyo (Japan); Sawada, Nobuyuki [Hokkaido Electric Power, Sapporo (Japan); Takagi, Sakae; Murakami, Jun-ichi [Tohoku Electric Power, Sendai (Japan); Kobayashi, Kazuyuki [Tokyo Electric Power, Yokohama (Japan); Sakabe, Tetsuya [Chubu Electric Power, Nagoya (Japan); Kousaka, Eiichi [Hokuriku Electric Power, Toyama (Japan); Yoshioka, Haruki [The Kansai Electric Power, Osaka (Japan); Kato, Satoru [The Chugoku Electric Power, Hiroshima (Japan); Yamashita, Masanori [Shikoku Research Inst., Takamatsu (Japan); Narisoko, Hayato [The Okinawa Electric Power, Naha (Japan); Nishiyama, Kazuo [The Central Electric Power Council, Tokyo (Japan); Adachi, Kazuyuki [Kyushu Electric Power, Fukuoka (Japan)

    1998-09-01

    For the popularization of electric vehicles (EVs), the conditions for charging EV batteries with available current patterns should allow complete charging in a short time, i.e., less than 5 to 8 h. Therefore, in this study, a new charging condition is investigated for the EV valve-regulated lead/acid battery system, which should allow complete charging of EV battery systems with multi-step constant currents in a much shorter time with longer cycle life and higher energy efficiency compared with two-step constant-current charging. Although a high magnitude of the first current in the two-step constant-current method prolongs cycle life by suppressing the softening of positive active material, too large a charging current magnitude degrades cells due to excess internal evolution of heat. A charging current magnitude of approximately 0.5 C is expected to prolong cycle life further. Three-step charging could also increase the magnitude of charging current in the first step without shortening cycle life. Four-or six-step constant-current methods could shorten the charging time to less than 5 h, as well as yield higher energy efficiency and enhanced cycle life of over 400 cycles compared with two-step charging with the first step current of 0.5 C. Investigation of the degradation mechanism of the batteries revealed that the conditions of multi-step constant-current charging suppressed softening of positive active material and sulfation of negative active material, but, unfortunately, advanced the corrosion of the grids in the positive plates. By adopting improved grids and cooling of the battery system, the multistep constant-current method may enhance the cycle life. (orig.)

  9. ON THE RESONANT GENERATION OF WEAKLY NONLINEAR STOKES WAVES IN REGIONS WITH FAST VARYING TOPOGRAPHY AND FREE SURFACE CURRENT

    Institute of Scientific and Technical Information of China (English)

    黄虎; 周锡礽

    2001-01-01

    The effect of nonlinearity on the free surface wave resonated by an incident flow over rippled beds, which consist of fast varying topography superimposed on an otherwise slowly varying mean depth, is studied using a WKBJ-type perturbation approach. Synchronous, superharmonic and in particular subharmonic resonance were selectively excited over the fast varying topography with corresponding wavelengths. For a steady current the dynamical system is autonomous and the possible nonlinear steady states and their stability were investigated. When the current has a small oscillatory component the dynamical system becomes non-autonomous, chaos is now possible.

  10. Probing Neutrino Mass Hierarchy by Comparing the Charged-Current and Neutral-Current Interaction Rates of Supernova Neutrinos

    CERN Document Server

    Lai, Kwang-Chang; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-01-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, $\

  11. Gating currents from a Kv3 subfamily potassium channel: charge movement and modification by BDS-II toxin.

    Science.gov (United States)

    Wang, Zhuren; Robertson, Brian; Fedida, David

    2007-11-01

    Kv3 channels have a major role in determining neuronal excitability, and are characterized by ultra-rapid kinetics of gating and a high activation threshold. However, the gating currents, which occur as a result of positional changes of the charged elements in the channel structure during activation, are not well understood. Here we report a study of gating currents from wild-type Kv3.2b channels, expressed in human embryonic kidney (HEK) cells to facilitate high time-resolution recording. On-gating currents (I(g,on)) had extremely rapid kinetics such that at +80 mV, the time constant for the decay of I(g,on) was only approximately 0.3 ms. Decay of I(g,on) appeared mono-exponential at all potentials studied, and in support of this, the charge-voltage (Q-V) relationship was fitted with a single Boltzmann function, supporting the idea that only one charge system is required to account for the time course of I(g,on) and the voltage dependence of Q(on). The voltage (V((1/2))) for half movement of gating charge was -8.4 +/- 4.0 mV (n = 6), which closely matches the voltage dependence of activation of Kv3.2b ionic currents reported before. Depolarizations to more positive potentials than 0 mV decreased the amplitude and slowed the decay of the off-gating currents (I(g,off)), suggesting that a rate-limiting step in opening was present in Kv3 channels as in Shaker and other Kv channels. Return of charge was negatively shifted along the potential axis with a V((1/2)) of Q(off) of -80.9 +/- 0.8 mV (n = 3), which allowed approximately 90% charge return upon repolarization to -100 mV. BDS-II toxin apparently reduced I(g,on), and greatly slowed the kinetics of I(g,on), while shifting the Q-V relationship in the depolarizing direction. However, the Q-V relationship remained well fitted by a single Boltzmann function. These data provide the first description of Kv3 gating currents and give further insight into the interaction of BDS toxins and Kv3 channels.

  12. Faculty perceptions of the strengths, weaknesses and future prospects of the current medical undergraduate experimental physiology curriculum in Gujarat, India.

    Science.gov (United States)

    Paralikar, Swapnil; Shah, Chinmay

    2015-01-01

    Over the past several years, an opinion has emerged in India that the current practical curricula in medical schools fail to meet many of the objectives for which they were instituted. Hence, this study has assessed the perception of physiology faculty members regarding the current experimental physiology curriculum in one Indian state, Gujarat. The faculty were of the opinion that many of the topics currently taught in experimental physiology (amphibian nerve-muscle and heart muscle experiments) were outdated and clinically irrelevant: Therefore, the faculty advocated that duration of teaching time devoted to some of these topics should be reduced and topics with clinical relevance should be introduced at the undergraduate level. The faculty also felt that more emphasis should be laid on highlighting the clinical aspect related to each concept taught in experimental physiology . Moreover, a majority of faculty members were in favour of replacing the current practice in Gujarat of teaching experimental physiology only by explanation of graphs obtained from experiments conducted in the previous years, with computer assisted learning in small groups.

  13. Measurement of Neutral and Charged Current Cross Sections in Electron-Proton Collisions at High $Q^{2}$

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Bernardi, G.; Berndt, T.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruel, P.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burkhardt, H.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Chabert, E.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Ghazarian, S.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C.; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Krasny, M.W.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Mehta, A.; Meier, K.; Merkel, P.; Meyer, A.B.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyian, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nunnemann, T.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Riess, S.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, D.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.I.; Sheviakov, I.; Shtarkov, L.N.; Sievers, P.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Solovev, Y.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Swart, M.; Tasevsky, M.; Chernyshov, V.; Chetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vassilev, S.; Vazdik, Y.; Vichnevski, A.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Werner, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wollatz, H.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    2001-01-01

    The inclusive e^-p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA, in the range of four-momentum transfer squared Q^2 between 150 and 30000 GeV^2, and Bjorken x between 0.002 and 0.65. The data were taken in 1998 and 1999 with a centre-of-mass energy of 320 GeV and correspond to an integrated luminosity of 16.4 pb^(-1). The data are compared with recent measurements of the inclusive neutral and charged current e^+p cross sections. For Q^2>1000 GeV^2 clear evidence is observed for an asymmetry between e^+p and e^-p neutral current scattering and the generalised structure function xF_3 is extracted for the first time at HERA. A fit to the charged current data is used to extract a value for the W boson propagator mass. The data are found to be in good agreement with Standard Model predictions.

  14. Elastic, excitation, ionization and charge transfer cross sections of current interest in fusion energy research

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.R.; Krstic, P.S. [Oak Ridge National Lab. TN (United States). Physics Div.

    1997-01-01

    Due to the present interest in modeling and diagnosing the edge and divertor plasma regions in magnetically confined fusion devices, we have sought to provide new calculations regarding the elastic, excitation, ionization, and charge transfer cross sections in collisions among relevant ions, neutrals, and isotopes in the low-to intermediate-energy regime. We summarize here some of our recent work. (author)

  15. The reaction current distribution in battery electrode materials revealed by XPS-based state-of-charge mapping.

    Science.gov (United States)

    Pearse, Alexander J; Gillette, Eleanor; Lee, Sang Bok; Rubloff, Gary W

    2016-07-28

    Morphologically complex electrochemical systems such as composite or nanostructured lithium ion battery electrodes exhibit spatially inhomogeneous internal current distributions, particularly when driven at high total currents, due to resistances in the electrodes and electrolyte, distributions of diffusion path lengths, and nonlinear current-voltage characteristics. Measuring and controlling these distributions is interesting from both an engineering standpoint, as nonhomogenous currents lead to lower utilization of electrode material, as well as from a fundamental standpoint, as comparisons between theory and experiment are relatively scarce. Here we describe a new approach using a deliberately simple model battery electrode to examine the current distribution in a electrode material limited by poor electronic conductivity. We utilize quantitative spatially resolved X-ray photoelectron spectroscopy to measure the spatial distribution of the state-of-charge of a V2O5 model electrode as a proxy measure for the current distribution on electrodes discharged at varying current densities. We show that the current at the electrode-electrolyte interface falls off with distance from the current collector, and that the current distribution is a strong function of total current. We compare the observed distributions with a simple analytical model which reproduces the dependence of the distribution on total current, but fails to predict the correct length scale. A more complete numerical simulation suggests that dynamic changes in the electronic conductivity of the V2O5 concurrent with lithium insertion may contribute to the differences between theory and experiment. Our observations should help inform design criteria for future electrode architectures.

  16. The structure of the weak neutral current an analysis of the hadronic energy distribution from neutrino and antineutrino interactions

    CERN Document Server

    Deden, H; Baruzzi, V; Beuselinck, R; Bloch, M; Clayton, E F; Cundy, Donald C; Davis, C L; Deutschmann, Martin; Emans, H; Figiel, J; Fritze, P; Geich-Gimbel, C; Grant, A; Grässler, Herbert; Grossmann, P; Haidt, D; Hartmann, R; Hasert, F J; Hulth, P O; Keller, A; Kocher, D J; Kokott, T P; McGow, R; Miller, D B; Morfin, J; Morrison, Douglas Robert Ogston; Mulvey, J H; Myatt, G; Nellen, B; Pagiola, E; Pape, L; Pech, R; Perkins, Donald Hill; Peterson, V; Peyrou, Charles; Pons, R; Porth, Paul; Powell, K J; Radojicic, D; Renton, P B; Sacquin, Yu; Saitta, B; Schmid, P; Schulte, R; Schultze, K; Scott, W G; Seyfert, H; Stenger, V; Tallini, B; Vignaud, D; Wachsmuth, H W; Wernhard, Karl-Ludwig

    1979-01-01

    An analysis is presented of the distribution of hadronic energy in neutrino and antineutrino neutral current interactions occurring in BEBC, filled with a neon-hydrogen mixture and exposed to the CERN-SPS narrow-band neutrino beam. This shows that the contributions by scalar or pseudo-scalar forms of the interaction are consistent with zero and pure V, A and V+A are excluded; there is good agreement with the Weinberg-Salam model. (10 refs).

  17. Non-singlet coefficient functions for charged-current deep-inelastic scattering to the third order in QCD

    CERN Document Server

    Davies, J; Moch, S; Vermaseren, J A M

    2016-01-01

    We have calculated the coefficient functions for the structure functions F_2, F_L and F_3 in nu-nubar charged-current deep-inelastic scattering (DIS) at the third order in the strong coupling alpha_s, thus completing the description of unpolarized inclusive W^(+-) exchange DIS to this order of massless perturbative QCD. In this brief note, our new results are presented in terms of compact approximate expressions that are sufficiently accurate for phenomenological analyses. For the benefit of such analyses we also collect, in a unified notation, the corresponding lower-order contributions and the flavour non-singlet coefficient functions for nu+nubar charged-current DIS. The behaviour of all six third-order coefficient functions at small Bjorken-x is briefly discussed.

  18. 高层建筑弱电系统安装过程分析%The Installation Process Analysis of High-rise building Weak Current System

    Institute of Scientific and Technical Information of China (English)

    肖建军

    2013-01-01

      高层建筑弱电系统安装时管线敷设复杂,布线全过程在建筑弱电系统设计安装中起着决定性作用,且安装时信息点多、作业空间大。本文主要是从布线施工、系统设备、线缆设备、网络设备等方面分析了高层建筑弱点系统安装和施工。%The piping instal ation of weak electricity system in high-rise building is complicated, wiring in the whole proce-ss of building weak current system design and instal ation pla-ys a decisive role, with instal ation information points, large working space. This paper is mainly from the aspects of const-ruction, wiring system equipment, cable equipment, network equipment, analyzes the weaknesses of the system instal ation and construction of high-rise building.

  19. Nuclear Effects in Structure Functions xF3(x, Q2) from Charge Current Neutrino Deep Inelastic Scattering

    Institute of Scientific and Technical Information of China (English)

    DUAN Chun-Gui; SHEN Peng-Nian; LI Guang-Lie

    2006-01-01

    By taking advantage of the model-independent nuclear parton distributions, the structure functions xF3(x, Q2)are calculated, in comparison with the experimental data from CCFR neutrino-nuclei charge current deep inelastic scattering. It is shown that shadowing and anti-shadowing effects occur in valence quark distributions for small and medium x regions, respectively. It is suggested that the neutrino experimental data should be employed in the future for pinning down the nuclear parton distributions.

  20. Measurement of Neutrino and Antineutrino Total Charged-Current Cross Sections on Carbon with MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Lu [Univ. of Pittsburgh, PA (United States)

    2017-01-01

    This thesis presents a measurement of charged-current inclusive cross sections of muon neutrino and antineutrino interaction on carbon, and antineutrino to neutrino cross section ratio, r, in the energy range 2 - 22 GeV, with data collected in the MINERA experiment. The dataset corresponds to an exposure of 3.2 x 1020 protons on target (POT) for neutrinos and 1.01020 POT for antineutrinos. Measurement of neutrino and antineutrino charged-current inclusive cross sections provides essential constraints for future long baseline neutrino oscillation experiment at a few GeV energy range. Our measured antineutrino cross section has an uncertainty in the range 6.1% - 10.5% and is the most precise measurement below 6 GeV to date. The measured r has an uncertainty of 5.0% - 7.5%. This is the rst measurement below 6 GeV since Gargamelle in 1970s. The cross sections are measured as a function of neutrino energy by dividing the eciency corrected charged-current sample with extracted uxes. Fluxes are obtained using the low- method, which uses low hadronic energy subsamples of charged-current inclusive sample to extract ux. Measured cross sections show good agreement with the prediction of neutrino interaction models above 7 GeV, and are about 10% below the model below 7 GeV. The measured r agrees with the GENIE model [1] over the whole energy region. The measured cross sections and r are compared with world data.

  1. Negative charging effect of traps on the gate leakage current of an AlGaN/GaN HEMT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. J.; Lim, J. H.; Yang, J. W. [Chonbuk National University, Jeonju (Korea, Republic of); Stanchina, W. [University of Pittsburgh, Pittsburgh, PA (United States)

    2014-08-15

    The negative charging effect of surface traps on the gate leakage current of AlGaN/GaN high electron mobility transistors (HEMTs) was investigated. The gate leakage current could be decreased by two orders of magnitude by using a photo-electrochemical process to treat of the source and the drain region, but current flowed into the gate even at a negative voltage in a limited region when the measurement was executed with a gate voltage sweep from negative to positive voltage. Also the electrical characteristics of the HEMT were degraded by pulsed operation of the gate. Traps newly generated on the surface were regarded as sources for the current that flowed against the applied voltage, and the number of traps was estimated. Also, a slow transient in the drain current was confirmed based on the results of delayed sweep measurements.

  2. Estimation of the spatial distribution of traps using space-charge-limited current measurements in an organic single crystal

    KAUST Repository

    Dacuña, Javier

    2012-09-06

    We used a mobility edge transport model and solved the drift-diffusion equation to characterize the space-charge-limited current of a rubrene single-crystal hole-only diode. The current-voltage characteristics suggest that current is injection-limited at high voltage when holes are injected from the bottom contact (reverse bias). In contrast, the low-voltage regime shows that the current is higher when holes are injected from the bottom contact as compared to hole injection from the top contact (forward bias), which does not exhibit injection-limited current in the measured voltage range. This behavior is attributed to an asymmetric distribution of trap states in the semiconductor, specifically, a distribution of traps located near the top contact. Accounting for a localized trap distribution near the contact allows us to reproduce the temperature-dependent current-voltage characteristics in forward and reverse bias simultaneously, i.e., with a single set of model parameters. We estimated that the local trap distribution contains 1.19×1011 cm -2 states and decays as exp(-x/32.3nm) away from the semiconductor-contact interface. The local trap distribution near one contact mainly affects injection from the same contact, hence breaking the symmetry in the charge transport. The model also provides information of the band mobility, energy barrier at the contacts, and bulk trap distribution with their corresponding confidence intervals. © 2012 American Physical Society.

  3. How a charge conserving alternative to Maxwells displacement current entails a Darwin like approximation to the solutions of Maxwells equations

    CERN Document Server

    Wolsky, Alan M

    2014-01-01

    Though sufficient for local conservation of charge, Maxwells displacement current is not necessary. An alternative to the Ampere-Maxwell equation is exhibited and the alternatives electric and magnetic fields and scalar and vector potentials are expressed in terms of the charge and current densities. The magnetic field is shown to satisfy the Biot_Savart Law. The electric field is shown to be the sum of the gradient of a scalar potential and the time derivative of a vector potential which is different from but just as tractable as the simplest vector potential that yields the Biot_Savart Law The alternative describes a theory in which action is instantaneous and so may provide a good approximation to Maxwells equations where and when the finite speed of light can be neglected. The result recalls the Darwin approximation which arose from the study classical charged point particles to order (v/c)2 in the Lagrangian. Unlike Darwin, this approach does not depend on the constitution of the electric current. Instea...

  4. MRI detection of weak magnetic fields due to an extended current dipole in a conducting sphere: a model for direct detection of neuronal currents in the brain.

    Science.gov (United States)

    Konn, Daniel; Gowland, Penny; Bowtell, Richard

    2003-07-01

    To investigate the feasibility of direct MR detection of neuronal activity in the brain, neuronal current flow was modeled as an extended current dipole located in a conducting sphere. The spatially varying magnetic field induced within the sphere by such a dipole was calculated, including its form close to and within the current source. The predicted field variation was experimentally verified by measurements of the variation in phase of the MR signal in a sphere containing a model dipole. The effects of the calculated magnetic field distributions on the phase and magnitude of the signal in MR images were explored. The minimum detectable dipole strength under normal experimental conditions was calculated to be about 4.5 nAm, which is similar in magnitude to dipole strengths from evoked neuronal activity, and is an order of magnitude smaller than dipole strengths expected from spontaneous activity. This minimum detectable dipole strength increases with increasing spatial extent of the primary current distribution. In the experimental work, the effects of a field of [1.1 +/- 0.5] x 10(-10) T strength were detected, corresponding to the maximum net field caused by a dipole of 6.3 nAm strength with a spatial extent of 3 x 3 x 2 mm(3). Copyright 2003 Wiley-Liss, Inc.

  5. A simple method to increase the current range of the TERA chip in charged particle therapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Cirio, R. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Fausti, F. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Elettronica e Telecomunicazioni del Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino (Italy); Fanola Guarachi, L. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Giordanengo, S., E-mail: Simona.Giordanengo@to.infn.it [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Marchetto, F.; Mazza, G. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Monaco, V.; Sacchi, R. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Talpacci, E. [Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Varasteh Anvar, M. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Vignati, A. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy)

    2015-10-21

    The development of the next generation of accelerators for charged particle radiotherapy aims to reduce dimensions and operational complexity of the machines by engineering pulsed beams accelerators. The drawback is the increased difficulty to monitor the beam delivery. Within each pulse, instantaneous currents larger by two to three orders of magnitude than present applications are expected, which would saturate the readout of the monitor chambers. In this paper, we report of a simple method to increase by almost two orders of magnitude the current range of an Application Specific Integrated Circuit chip previously developed by our group to read out monitor ionization chambers.

  6. A simple method to increase the current range of the TERA chip in charged particle therapy applications

    Science.gov (United States)

    Cirio, R.; Fausti, F.; Fanola Guarachi, L.; Giordanengo, S.; Marchetto, F.; Mazza, G.; Monaco, V.; Sacchi, R.; Talpacci, E.; Varasteh Anvar, M.; Vignati, A.

    2015-10-01

    The development of the next generation of accelerators for charged particle radiotherapy aims to reduce dimensions and operational complexity of the machines by engineering pulsed beams accelerators. The drawback is the increased difficulty to monitor the beam delivery. Within each pulse, instantaneous currents larger by two to three orders of magnitude than present applications are expected, which would saturate the readout of the monitor chambers. In this paper, we report of a simple method to increase by almost two orders of magnitude the current range of an Application Specific Integrated Circuit chip previously developed by our group to read out monitor ionization chambers.

  7. Measurements of the Inclusive Neutrino and Antineutrino Charged Current Cross Sections in MINERvA Using the Low-$\

    CERN Document Server

    DeVan, J; Aliaga, L; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Budd, H; Cai, T; Carneiro, M F; da Motta, H; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Endress, E; Felix, J; Fields, L; Fine, R; Gago, A M; Galindo, R; Gallagher, H; Ghosh, A; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; Caicedo, D A Martinez; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman,; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Ramirez, M A; Ransome, R D; Ray, H; Rimal, D; Rodrigues, P A; Ruterbories, D; Schellman, H; Salinas, C J Solano; Sultana, M; Falero, S Sánchez; Tice, B G; Valencia, E; Wolcott, J; Wospakrik, M; Zhang, D

    2016-01-01

    The total cross sections are important ingredients for the current and future neutrino oscillation experiments. We present measurements of the total charged-current neutrino and antineutrino cross sections on scintillator (CH) in the NuMI low-energy beamline using an {\\em in situ} prediction of the shape of the flux as a function of neutrino energy from 2--50 GeV. This flux prediction takes advantage of the fact that neutrino and antineutrino interactions with low nuclear recoil energy ($\

  8. First Measurement of the Muon Anti-Neutrino Charged Current Quasielastic Double-Differential Cross-Section

    Energy Technology Data Exchange (ETDEWEB)

    Grange, Joseph M. [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    This dissertation presents the first measurement of the muon antineutrino charged current quasi-elastic double-differential cross section. These data significantly extend the knowledge of neutrino and antineutrino interactions in the GeV range, a region that has recently come under scrutiny due to a number of conflicting experimental results. To maximize the precision of this measurement, three novel techniques were employed to measure the neutrino background component of the data set. Representing the first measurements of the neutrino contribution to an accelerator-based antineutrino beam in the absence of a magnetic field, the successful execution of these techniques carry implications for current and future neutrino experiments.

  9. Investigation of Deep Dielectric Charging and Subsequent Currents on Geosynchronous Spacecraft

    Science.gov (United States)

    1991-12-01

    backscatter+ jh True ambient flux is all of the flux that surrounds the spacecraft. Ambient current density is current/unit area that comes from the ambient...We tacitly assume the currents are constant over the periods of integration. (5) Lnet= nambient +Jenergetic+Jsecondary+ Jbackscatter+ Jhv For the two

  10. Breakdown of a space charge limited regime of a sheath in a weakly collisional plasma bounded by walls with secondary electron emission.

    Science.gov (United States)

    Sydorenko, D; Kaganovich, I; Raitses, Y; Smolyakov, A

    2009-10-02

    A new regime of plasma-wall interaction is identified in particle-in-cell simulations of a hot plasma bounded by walls with secondary electron emission. Such a plasma has a strongly non-Maxwellian electron velocity distribution function and consists of bulk plasma electrons and beams of secondary electrons. In the new regime, the plasma sheath is not in a steady space charge limited state even though the secondary electron emission produced by the plasma bulk electrons is so intense that the corresponding partial emission coefficient exceeds unity. Instead, the plasma-sheath system performs relaxation oscillations by switching quasiperiodically between the space charge limited and non-space-charge limited states.

  11. How many scalar fields there are and how are they related to fermions and weak bosons in the spin-charge-family theory?

    CERN Document Server

    Borstnik, Norma Susana Mankoc

    2012-01-01

    The spin-charge-family theory offers a possible explanation for the assumptions of the standard model, interpreting the standard model as its low energy effective manifestation. The standard model Higgs and Yukawa couplings are explained as an effective replacement for several scalar fields, all of bosonic (adjoint) representations with respect to all the charge groups, with the family groups included. Assuming the Lagrange function for all scalar fields to be of the renormalizable kind, properties of the scalar fields on the tree level are discussed. Free scalar fields (mass eigenstates) differ from either those, which couple to $Z_m$, or to $W^{\\pm}_{m}$ or to each family member of each of the four families, which further differ among themselves. Consequently the spin-charge-family theory predictions differ from those of the standard model.

  12. Theoretical analysis of novel weak current sensor using FeCuNbSiB single nanocrystalline toroidal core and double-winding

    Institute of Scientific and Technical Information of China (English)

    BAO Bing-hao; ZHU Da-qi; DING Jian-ning; LI Chang-sheng

    2006-01-01

    An Fe73.5Cu1Nb3Si13.5B9 nanocrystalline toroidal core made by isothermal furnace annealing shows good thermal stability of magnetic properties and excellent soft magnetic properties due to the full release of the internal stresses of the core during the annealing process.Based on the feature of the magnetic core,a novel non-contact type weak current sensor adopting single nanocrystalline core and double-winding excited by multivibrator bridge is proposed.The measuring principles for static current are given in theory by an established mathematical model of the sensor.The theory is in good agreement with the experimental results and it indicated clearly the key factors affecting performance parameters for the sensor.The multivibrator bridge output signal was analyzed by Fourier transform.Furthermore,according to the theoretical results,the method to design the signal conditioning circuit was introduced.

  13. A new current line division concept for the determination of the current distribution in electrochemical cells. Part I. Theoretical background of the “corner weakness” effect in electroforming

    Directory of Open Access Journals (Sweden)

    R. M. STEVANOVIC

    2000-12-01

    Full Text Available A new approach to the determination of the current distribution in electrochemical cells, the current line division concept, is introduced. The new concept, based on the basic equations of electrics and electrochemical kinetics, was employed for a theoretical explanation of the phenomenon known in electroforming as “corner weakness”. It was shown that this phenomenon depends on the kind of control of the deposition process, being the largest in the case of pure ohmic control and disappearing in the case of pure activation control.

  14. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Kwang-Chang [Center for General Education, Chang Gung University,Kwei-Shan, Taoyuan, 333, Taiwan (China); Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Lee, Fei-Fan [Institute of Physics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Lee, Feng-Shiuh [Department of Electrophysics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Lin, Guey-Lin [Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Institute of Physics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Liu, Tsung-Che [Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Yang, Yi [Department of Electrophysics, National Chiao Tung University,Hsinchu, 300, Taiwan (China)

    2016-07-22

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(ν-bar)+p→ν(ν-bar)+p, and inverse beta decays (IBD), ν-bar{sub e}+p→n+e{sup +}, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of ν-bar{sub e} flux with the ν-bar{sub x} (x=μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  15. Impact of charge transport on current-voltage characteristics and power-conversion efficiency of organic solar cells.

    Science.gov (United States)

    Würfel, Uli; Neher, Dieter; Spies, Annika; Albrecht, Steve

    2015-04-24

    This work elucidates the impact of charge transport on the photovoltaic properties of organic solar cells. Here we show that the analysis of current-voltage curves of organic solar cells under illumination with the Shockley equation results in values for ideality factor, photocurrent and parallel resistance, which lack physical meaning. Drift-diffusion simulations for a wide range of charge-carrier mobilities and illumination intensities reveal significant carrier accumulation caused by poor transport properties, which is not included in the Shockley equation. As a consequence, the separation of the quasi Fermi levels in the organic photoactive layer (internal voltage) differs substantially from the external voltage for almost all conditions. We present a new analytical model, which considers carrier transport explicitly. The model shows excellent agreement with full drift-diffusion simulations over a wide range of mobilities and illumination intensities, making it suitable for realistic efficiency predictions for organic solar cells.

  16. Compton Scattering Polarimetry for the Determination of the Proton's Weak Charge Through Measurements of the Parity-Violating Asymmetry of 1H(e,e')p

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo, Juan [Carnegie Mellon Univ., Pittsburgh, PA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-08-01

    The Standard Model has been a theory with the greatest success in describing the fundamental interactions of particles. As of the writing of this dissertation, the Standard Model has not been shown to make a false prediction. However, the limitations of the Standard Model have long been suspected by its lack of a description of gravity, nor dark matter. Its largest challenge to date, has been the observation of neutrino oscillations, and the implication that they may not be massless, as required by the Standard Model. The growing consensus is that the Standard Model is simply a lower energy effective field theory, and that new physics lies at much higher energies. The Q_weak Experiment is testing the Electroweak theory of the Standard Model by making a precise determination of the weak charge of the proton (Q^p_w). Any signs of "new physics" will appear as a deviation to the Standard Model prediction. The weak charge is determined via a precise measurement of the parity-violating asymmetry of the electron-proton interaction via elastic scattering of a longitudinally polarized electron beam of an un-polarized proton target. The experiment required that the electron beam polarization be measured to an absolute uncertainty of 1%. At this level the electron beam polarization was projected to contribute the single largest experimental uncertainty to the parity-violating asymmetry measurement. This dissertation will detail the use of Compton scattering to determine the electron beam polarization via the detection of the scattered photon. I will conclude the remainder of the dissertation with an independent analysis of the blinded Q_weak.

  17. Weak Convergence and Weak Convergence

    Directory of Open Access Journals (Sweden)

    Narita Keiko

    2015-09-01

    Full Text Available In this article, we deal with weak convergence on sequences in real normed spaces, and weak* convergence on sequences in dual spaces of real normed spaces. In the first section, we proved some topological properties of dual spaces of real normed spaces. We used these theorems for proofs of Section 3. In Section 2, we defined weak convergence and weak* convergence, and proved some properties. By RNS_Real Mizar functor, real normed spaces as real number spaces already defined in the article [18], we regarded sequences of real numbers as sequences of RNS_Real. So we proved the last theorem in this section using the theorem (8 from [25]. In Section 3, we defined weak sequential compactness of real normed spaces. We showed some lemmas for the proof and proved the theorem of weak sequential compactness of reflexive real Banach spaces. We referred to [36], [23], [24] and [3] in the formalization.

  18. Generation of reference dc currents at 1 nA level with the capacitance-charging method

    CERN Document Server

    Callegaro, Luca; D'Elia, Vincenzo; Galliana, Flavio

    2013-01-01

    The capacitance-charging method is a well-established and handy technique for the generation of dc current in the 100 pA range or lower. The method involves a capacitance standard and a sampling voltmeter, highly stable devices easy to calibrate, and it is robust and insensitive to the voltage burden of the instrument being calibrated. We propose here a range extender amplifier, which can be employed as a plug-in component in existing calibration setups, and allows the generation of currents in the 1 nA range. The extender has been employed in the INRIM setup and validated with two comparisons at 100 pA and 1 nA current level. The calibration accuracy achieved on a top-class instrument is 10 ppm at 1 nA.

  19. Charge transfer on porous silicon membranes studied by current-sensing atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    Bing Xia; Qiang Miao; Jie Chao; Shou Jun Xiao; Hai Tao Wang; Zhong Dang Xiao

    2008-01-01

    A visible rectification effect on the current-voltage curves of metal/porous silicon/p-silicon has been observed by currentsensing atomic force microscopy.The current-voltage curves of porous silicon membranes with different porosities,prepared through variation of etching current density for a constant time,indicate that a higher porosity results in a higher resistance and thus a lower rectification,until the current reaches a threshold at a porosity>55%.We propose that the conductance mode in the porous silicon membrane with porosities>55% is mainly a hopping mechanism between nano-crystallites and an inverse static electric field between the porous silicon and p-Si interface blocks the electron injection from porous silicon to p-Si,but with porosities <55%,electron flows through a direct continuous channel between nano-crystallites.

  20. Fabrication of single cylindrical Au-coated nanopores with non-homogeneous fixed charge distribution exhibiting high current rectifications.

    Science.gov (United States)

    Nasir, Saima; Ali, Mubarak; Ramirez, Patricio; Gómez, Vicente; Oschmann, Bernd; Muench, Falk; Tahir, Muhammad Nawaz; Zentel, Rudolf; Mafe, Salvador; Ensinger, Wolfgang

    2014-08-13

    We designed and characterized a cylindrical nanopore that exhibits high electrochemical current rectification ratios at low and intermediate electrolyte concentrations. For this purpose, the track-etched single cylindrical nanopore in polymer membrane was coated with a gold (Au) layer via electroless plating technique. Then, a non-homogeneous fixed charge distribution inside the Au-coated nanopore was obtained by incorporating thiol-terminated uncharged poly(N-isopropylacrylamide) chains in series to poly(4-vinylpyridine) chains, which were positively charged at acidic pH values. The functionalization reaction was checked by measuring the current-voltage curves prior to and after the chemisorption of polymer chains. The experimental nanopore characterization included the effects of temperature, adsorption of chloride ions, electrolyte concentration, and pH of the external solutions. The results obtained are further explained in terms of a theoretical continuous model. The combination of well-established chemical procedures (thiol and self-assembled monolayer formation chemistry, electroless plating, ion track etching) and physical models (two-region pore and Nernst-Planck equations) permits the obtainment of a new nanopore with high current rectification ratios. The single pore could be scaled up to multipore membranes of potential interest for pH sensing and chemical actuators.

  1. Measurement of the {lambda}-bar polarization in {nu}{sub {mu}} charged current interactions in the NOMAD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V.; Cervera-Villanueva, A.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; De Santo, A.; Dignan, T.; Di Lella, L.; Couto e Silva, E. do; Dumarchez, J.; Ellis, M.; Fazio, T.; Feldman, G.J.; Ferrari, R.; Ferrere, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Goessling, C.; Gouanere, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kustov, D.; Kuznetsov, V.; Lacaprara, S.; Lachaud, C.; Lakic, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubicic, A.; Long, J.; Lupi, A.; Marchionni, A.; Martelli, F.; Mechain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S.R.; Moorhead, G.F.; Naumov, D.; Nedelec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L.S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B. E-mail: boris.popov@cern.ch; Poulsen, C.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sevior, M.; Sillou, D.; Soler, F.J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipcevic, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G.N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S.N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K.E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F.V.[and others

    2001-07-02

    We present a measurement of the polarization of {lambda}-bar hyperons produced in {nu}{sub {mu}} charged current interactions. The full data sample from the NOMAD experiment has been analyzed using the same V{sup 0} identification procedure and analysis method reported in a previous paper [NOMAD Collaboration, Nucl. Phys. B 588 (2000) 3] for the case of {lambda} hyperons. The {lambda}-bar polarization has been measured for the first time in a neutrino experiment. The polarization vector is found to be compatible with zero.

  2. Measurement of the Λ¯ polarization in νμ charged current interactions in the NOMAD experiment

    Science.gov (United States)

    Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; de Santo, A.; Dignan, T.; di Lella, L.; Do Couto E Silva, E.; Dumarchez, J.; Ellis, M.; Fazio, T.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kustov, D.; Kuznetsov, V.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubičić, A.; Long, J.; Lupi, A.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S. R.; Moorhead, G. F.; Naumov, D.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Yabsley, B. D.; Zaccone, H.; Zuber, K.; Zuccon, P.; NOMAD Collaboration

    We present a measurement of the polarization of Λ¯ hyperons produced in νμ charged current interactions. The full data sample from the NOMAD experiment has been analyzed using the same V0 identification procedure and analysis method reported in a previous paper [NOMAD Collaboration, Nucl. Phys. B 588 (2000) 3] for the case of Λ hyperons. The Λ¯ polarization has been measured for the first time in a neutrino experiment. The polarization vector is found to be compatible with zero.

  3. Microstructure and He desorption behaviors of He charged FeCrNi-based films fabricated by direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Song, L. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Wang, X.P., E-mail: xpwang@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Liu, F. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Gao, Y.X. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Zhang, T., E-mail: zhangtao@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Luo, G.N. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Fang, Q.F.; Liu, C.S. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China)

    2015-08-31

    He-charged FeCrNi-based films were prepared at different temperatures in a mixed atmosphere of He and Ar by direct-current magnetron sputtering method. X-ray diffraction and energy dispersive spectrometry analysis confirmed the typical austenitic structure of the deposited FeCrNi films and the compositions were in good accordance with 304 stainless steel target. Cross-sectional scanning electron microscopy images revealed the dense columnar nanocrystalline structure of the fabricated FeCrNi films. Nanoindentation measurements showed that the film fabricated at 300 °C exhibited the highest hardness value of 11.5 GPa. He desorption from FeCrNi-based films was traced by thermal desorption spectroscopy; the relatively low He desorption temperature range (150 °C–450 °C) implied that the charged He atoms were mainly located in interstitial sites of FeCrNi-based films. - Highlights: • He-charged columnar nanocrystalline FeCrNi films were prepared by DC magnetron sputtering. • Substrate temperature of 300 °C and He/Ar ratio 1:1 were the best sputtering parameters. • Compact and uniform microstructure obtained at 300 °C resulted in stable, high hardness. • Two He atoms' absorption/desorption mechanisms were revealed by TDS.

  4. Simple charged-current channels in. nu. -D/sub 2/ interactions

    Energy Technology Data Exchange (ETDEWEB)

    Derrick, M.; Hyman, L.; Levman, G.

    1978-01-01

    Updated results are presented from a study of low energy ..nu..-D/sub 2/ interactions using the ANL 12-Foot Bubble Chamber. These results for the quasi-elastic reaction ..nu..n ..-->.. ..mu../sup -/p and single pion production final states ..mu../sup -/..pi../sup +/p, ..mu../sup -/..pi../sup 0/p and ..mu../sup -/..pi../sup +/n are from a total exposure of 2.3 x 10/sup 18/ protons on target. The axial-vector form factor mass in quasi-elastic scattering, assuming a dipole form, is determined to be M/sub A/ = 0.98 +- 0.08 GeV. The single pion production channels are in good agreement with the predictions of the Adler model of weak pion production. In particular, the I = 1/2 pion-nucleon amplitude is substantial and relative to the I = 3/2, is determined to be (A/sub 1/2/)/(A/sub 3/2/) = 0.57 +- 0.06. 4 references.

  5. Design of Weak Signal Conditioning Circuit for Pulsed Eddy Current%脉冲涡流检测微弱信号调理电路设计

    Institute of Scientific and Technical Information of China (English)

    孙思成; 付跃文

    2013-01-01

    分析了铁磁性材料脉冲涡流检测后期微弱信号的特点,在此基础上进行了脉冲涡流微弱信号调理电路的设计.设计采用了阻抗匹配、对称式限幅差分前置放大、浮空的电压源和屏蔽与接地技术,有效地提高了信号的共模抑制比和信号调理系统的信噪比.试验结果表明:设计的信号调理电路改善了接收系统的信噪比,提高了脉冲涡流晚期微弱信号的分辨能力(有效检测信号为几个微伏),提高了在复杂电磁环境下测量铁磁性材料厚度的检测灵敏度.%This paper analyzed the weak late stage signal of pulsed eddy current testing of the ferromagnetic materials briefly,and signal conditioning circuit was designed based on the analysis.Techniques of the impedance matching,electromagnetism shielding,grounding,floating empty DC voltage source and limited different preamplifying symmetrically are used and the SNR (Signal-to-Noise Rate) of signal conditioning system is improved effectively.The experiment results show that the design of weak signal conditioning circuit for pulsed eddy current improves the SNR and signal of several microvolts can be detected.Effective detection for the small corrosion of ferromagnetic materials in complicated electromagnetic environment is implemented.

  6. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Haseroth, Helmut [European Organization for Nuclear Research, Geneva (Switzerland); Hora, Heinrich [New South Wales Univ., Kensington, NSW (Australia)]|[Regensburg Inst. of Tech. (Germany). Anwenderzentrum

    1996-12-31

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10{sup 11} C{sup 4+} ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ``hot`` electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author).

  7. Dynamical charge and pseudospin currents in graphene and possible Cooper pair formation

    Science.gov (United States)

    Morawetz, K.

    2016-10-01

    Based on the quantum kinetic equations for systems with SU(2) structure, regularization-free density and pseudospin currents are calculated in graphene realized as the infinite-mass limit of electrons with quadratic dispersion and a proper spin-orbit coupling. Correspondingly the currents possess no quasiparticle part but only anomalous parts. The intraband and interband conductivities are discussed with respect to magnetic fields and magnetic domain puddles. It is found that the magnetic field and mean field of domains can be represented by an effective Zeeman field. For large Zeeman fields the dynamical conductivities become independent of the density and are universal in this sense. The different limits of vanishing density, relaxation, frequency, and Zeeman field are not interchangeable. The optical conductivity agrees well with the experimental values using screened impurity scattering and an effective Zeeman field. The universal value of Hall conductivity is shown to be modified due to the Zeeman field. The pseudospin current reveals an anomaly since a quasiparticle part appears though it vanishes for particle currents. The density and pseudospin response functions to an external electric field are calculated and the dielectric function is discussed with respect to collective excitations. A frequency and wave-vector range is identified where the dielectric function changes sign and the repulsive Coulomb potential becomes effectively attractive allowing Cooper pairing.

  8. Four Momentum Transfer Discrepancy in the Charged Current pi+ Production in the MiniBooNE: Data versus Theory

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Jaroslaw A.; /Louisiana State U.

    2009-09-01

    The MiniBooNE experiment has collected what is currently the world's largest sample of {nu}{sub {mu}} charged current single charged pion (CCl{pi}{sup +}) interactions, roughly 46,000 events. The purity of the CCl{pi}{sup +} sample is 87% making this the purest event sample observed in the MiniBooNE detector. The average energy of neutrinos producing CC{pi}{sup +} interactions in MiniBooNE is about 1 GeV, therefore the study of these events can provide insight into both resonant and coherent pion production processes. In this talk, we will discuss the long-standing discrepancy in four-momentum transfer observed between CC{pi}{sup +} data and existing predictions. Several attempts to address this problem will be presented. Specifically, the Rein-Sehgal model has been extended to include muon mass terms for both resonant and coherent production. Using calculations from, an updated form for the vector form factor has also been adopted. The results of this improved description of CC{pi}{sup +} production will be compared to the high statistics MiniBooNE CC{pi}{sup +} data and several existing parametrizations of the axial vector form factor.

  9. Measurement of the Antineutrino to Neutrino Charged-Current Interaction Cross Section Ratio in MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Ren, L.; et al.

    2017-01-17

    We present measurements of the neutrino and antineutrino total charged-current cross sections on carbon and their ratio using the MINERvA scintillator-tracker. The measurements span the energy range 2-22 GeV and were performed using forward and reversed horn focusing modes of the Fermilab low-energy NuMI beam to obtain large neutrino and antineutrino samples. The flux is obtained using a sub-sample of charged-current events at low hadronic energy transfer along with precise higher energy external neutrino cross section data overlapping with our energy range between 12-22 GeV. We also report on the antineutrino-neutrino cross section ratio, Rcc, which does not rely on external normalization information. Our ratio measurement, obtained within the same experiment using the same technique, benefits from the cancellation of common sample systematic uncertainties and reaches a precision of 5% at low energy. Our results for the antineutrino-nucleus scattering cross section and for Rcc are the most precise to date in the energy range $E_{\

  10. Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi2Se3.

    Science.gov (United States)

    Li, C H; van 't Erve, O M J; Robinson, J T; Liu, Y; Li, L; Jonker, B T

    2014-03-01

    Topological insulators exhibit metallic surface states populated by massless Dirac fermions with spin-momentum locking, where the carrier spin lies in-plane, locked at right angles to the carrier momentum. Here, we show that a charge current produces a net spin polarization via spin-momentum locking in Bi2Se3 films, and this polarization is directly manifested as a voltage on a ferromagnetic contact. This voltage is proportional to the projection of the spin polarization onto the contact magnetization, is determined by the direction and magnitude of the charge current, scales inversely with Bi2Se3 film thickness, and its sign is that expected from spin-momentum locking rather than Rashba effects. Similar data are obtained for two different ferromagnetic contacts, demonstrating that these behaviours are independent of the details of the ferromagnetic contact. These results demonstrate direct electrical access to the topological insulators' surface-state spin system and enable utilization of its remarkable properties for future technological applications.

  11. Pico-ampere current sensitivity and CdSe quantum dots assembly assisted charge transport in ferroelectric liquid crystal

    Science.gov (United States)

    Pratap Singh, Dharmendra; Boussoualem, Yahia; Duponchel, Benoit; Sahraoui, Abdelhak Hadj; Kumar, Sandeep; Manohar, Rajiv; Daoudi, Abdelylah

    2017-08-01

    Octadecylamine capped CdSe quantum dots (QDs) dispersed 4-(1-methyl-heptyloxy)-benzoic acid 4‧-octyloxy-biphenyl-4-yl ester ferroelectric liquid crystal (FLC) were deposited over gold coated quartz substrate using dip-coating. The topographical investigation discloses that the homogeneously dispersed QDs adopt face-on to edge-on assembly in FLC matrix owing to their concentration. Current-voltage (I-V) measurement was performed using conductive atomic force microscopy (CAFM) which yields ohmic to critical diode like I-V curves depending upon the concentration of QDs in FLC. The recorded pico-ampere (pA) current sensitivity in FLC-QDs composites is attributed to micro-second drift time of electron due to weak electronic coupling between the π-electrons on the FLC and s-electrons on the metal surface. The observed pico-ampere sensitivity is the least current sensitivity recorded so far. For FLC-QDs composites, almost 24% faster electro-optic response was observed in comparison to pure FLC. The pico-ampere current sensitivity can be utilized in touch screen displays whereas the change in polarization for low applied electric field ameliorates the increased electrical susceptibility counteracting the internal electric field and its use in electronic data storage and faster electro-optical devices.

  12. Weak Force

    CERN Multimedia

    Without the weak force, the sun wouldn't shine. The weak force causes beta decay, a form of radioactivity that triggers nuclear fusion in the heart of the sun. The weak force is unlike other forces: it is characterised by disintegration. In beta decay, a down quark transforms into an up quark and an electron is emitted. Some materials are more radioactive than others because the delicate balance between the strong force and the weak force varies depending on the number of particles in the atomic nucleus. We live in the midst of a natural radioactive background that varies from region to region. For example, in Cornwall where there is a lot of granite, levels of background radiation are much higher than in the Geneva region. Text for the interactive: Move the Geiger counter to find out which samples are radioactive - you may be surprised. It is the weak force that is responsible for the Beta radioactivity here. The electrons emitted do not cross the plastic cover. Why do you think there is some detected radioa...

  13. A Measurement of Neutrino Charged Current Interactions and a Search for Muon Neutrino Disappearance with the Fermilab Booster Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yasuhiro [Kyoto Univ. (Japan)

    2011-01-01

    In this thesis, we report on a measurement of muon neutrino inclusive charged current interactions on carbon in the few GeV region, using the Fermilab Booster Neutrino Beam. The all neutrino mode data collected in the SciBooNE experiment is used for this analysis. We collected high-statistics CC interaction sample at SciBooNE, and extracted energy dependent inclusive charged current interaction rates and cross sections for a wide energy range from 0.25 GeV to ~3 GeV. We measure the interaction rates with 6-15% precision, and the cross sections with 10-30% precision. We also made an energy integrated measurements, with the precisions of 3% for the rate, and 8% for the cross section measurements. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. This inclusive interaction measurement is nearly free from effects of hadron re-interactions in the nucleus. Hence, it is complementary to other exclusive cross section measurements, and essential to understand the neutrino interaction cross sections in the few GeV region, which is relevant to ongoing and future neutrino oscillation experiments. This analysis also provides the normalization for SciBooNE's previous cross section ratio measurements for charged current coherent pion production and neutral current neutral pion production. Then, a precise comparison between our previous measurements and the model predictions becomes possible. The result of the interaction rate measurement is used to constrain the product of the neutrino flux and the cross section at the other experiment on the Fermilab Booster Neutrino Beam: Mini-BooNE. We conducted a search for short-baseline muon neutrino disappearance using data both from SciBooNE and MiniBooNE, to test a possible neutrino oscillation with sterile neutrinos which is suggested by the LSND experiment. With this constraint by SciBooNE, we significantly reduced the flux and the cross section uncertainties at MiniBooNE, and achieved the

  14. Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry.

    Science.gov (United States)

    Allagui, Anis; Freeborn, Todd J; Elwakil, Ahmed S; Maundy, Brent J

    2016-12-09

    The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal SsC behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance Rs in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (Rs, Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical RsC model. We validate our formulae with the experimental measurements of different EDLCs.

  15. Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry

    Science.gov (United States)

    Allagui, Anis; Freeborn, Todd J.; Elwakil, Ahmed S.; Maundy, Brent J.

    2016-12-01

    The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal SsC behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance Rs in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (Rs, Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical RsC model. We validate our formulae with the experimental measurements of different EDLCs.

  16. Direct coupling between charge current and spin polarization by extrinsic mechanisms in graphene

    Science.gov (United States)

    Huang, Chunli; Chong, Y. D.; Cazalilla, Miguel A.

    2016-08-01

    Spintronics—the all-electrical control of the electron spin for quantum or classical information storage and processing—is one of the most promising applications of the two-dimensional material graphene. Although pristine graphene has negligible spin-orbit coupling (SOC), both theory and experiment suggest that SOC in graphene can be enhanced by extrinsic means, such as functionalization by adatom impurities. We present a theory of transport in graphene that accounts for the spin-coherent dynamics of the carriers, including hitherto-neglected spin precession processes taking place during resonant scattering in the dilute impurity limit. We uncover an "anisotropic spin precession" (ASP) scattering process in graphene, which contributes a large current-induced spin polarization and modifies the standard spin Hall effect. ASP scattering arises from two dimensionality and extrinsic SOC, and apart from graphene, it can be present in other 2D materials or in the surface states of 3D materials with a fluctuating SOC. Our theory also yields a comprehensive description of the spin relaxation mechanisms present in adatom-decorated graphene, including Elliot-Yafet and D'yakonov-Perel relaxation rates, the latter of which can become an amplification process in a certain parameter regime of the SOC disorder potential. Our work provides theoretical foundations for designing future graphene-based integrated spintronic devices.

  17. HERA Inclusive Neutral and Charged Current Cross Sections and a New PDF Fit, HERAPDF 2.0

    CERN Document Server

    ,

    2015-01-01

    In this talk, I present the brand new results from the H1 and ZEUS Collaborations on the combination of all previously published inclusive deep inelastic cross sections at HERA for neutral and charged current $e^\\pm p$ scattering for zero beam polarisation and the corresponding parton distributions functions, HERAPDF 2.0, at up to next-to-next-to-leading order (NNLO). The results also include a new precise determination at next-to-leading order (NLO) of the strong coupling constant $\\alpha_s(M^2_Z)=0.1184\\pm 0.0016$ (excluding scale uncertainties) based on a simultaneous fit to the combined inclusive cross section data and jet production data.

  18. Uncontained νμ charged-current quasi-elastic events at the NOvA far detector

    Science.gov (United States)

    Sepulveda-Quiroz, Jose; NOvA Collaboration

    2017-01-01

    NOvA is a long-baseline neutrino oscillation experiment that uses an upgraded neutrino beam from Fermilab and two highly active, segmented, liquid scintillator off-axis detectors that offer a remarkable capability in event identification. In its first and second analysis results, NOvA has used only events with an interaction vertex and all secondary particles fully contained in the detectors. I will present studies of the potential sensitivity improvement of the sin2 2θ23 and Δm322 neutrino oscillation parameters from the νμ-disappearance measurement when including uncontained events in the sample. In particular, this study focuses on incorporating νμ charged current quasi-elastic interactions of the type νμ + n -> μ + p where the muon is uncontained but the proton is contained.

  19. Charge based, continuous compact model for the channel current in organic thin-film transistors for all regions of operation

    Science.gov (United States)

    Hain, Franziska; Graef, Michael; Iñíguez, Benjamín; Kloes, Alexander

    2017-07-01

    In general most modeling approaches for organic field-effect transistors (OFETs) are based on the typical MOSFET equations. The threshold voltage is usually a fitting parameter without relation to physical parameters hence the impact of their variability on the threshold voltage is not clear. The presented modeling approach is charge based with a continuous equation for the channel current in organic field-effect transistors from below to above threshold. The model provides a physics based parameter set related to trap states, and a compatible parameter set from a circuit designer's perspective. An expression for the threshold voltage is derived depending on the density of trap states. The model considers a power-law mobility model, parasitic contact resistances and channel length modulation effects and is verified with measurements on OFETs fabricated with small molecules.

  20. A study of strange particle production in {nu}{sub {mu}} charged current interactions in the NOMAD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; De Santo, A.; Dignan, T.; Di Lella, L.; Couto e Silva, E. do; Dumarchez, J.; Ellis, M.; Fazio, T.; Feldman, G.J.; Ferrari, R.; Ferrere, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Goessling, C.; Gouanere, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kustov, D.; Kuznetsov, V.; Lacaprara, S.; Lachaud, C.; Lakic, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubicic, A.; Long, J.; Lupi, A.; Marchionni, A.; Martelli, F.; Mechain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S.R.; Moorhead, G.F.; Naumov, D.; Nedelec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L.S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B. E-mail: popov@nusun.jinr.dubna.su; Poulsen, C.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sevior, M.; Sillou, D.; Soler, F.J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipcevic, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G.N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S.N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K.E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G. [and others

    2002-01-21

    A study of strange particle production in {nu}{sub {mu}} charged current interactions has been performed using the data from the NOMAD experiment. Yields of neutral strange particles (K{sup 0}{sub s},{lambda},{lambda}-bar) have been measured. Mean multiplicities are reported as a function of the event kinematic variables E{sub {nu}}, W{sup 2} and Q{sup 2} as well as of the variables describing particle behaviour within a hadronic jet: x{sub F}, z and p{sub T}{sup 2}. Decays of resonances and heavy hyperons with identified K{sup 0}{sub s} and {lambda} in the final state have been analyzed. Clear signals corresponding to K{sup *{+-}}, {sigma}{sup *{+-}}, {xi}{sup -} and {sigma}{sup 0} have been observed.

  1. Measurement of high-Q2 charged current cross sections in e-p deep inelastic scattering at HERA

    CERN Document Server

    Abe, T; Adamczyk, L; Adamus, M; Aghuzumtsyan, G; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Bashkirov, V; Basile, M; Bauerdick, L A T; Bednarek, B; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bodmann, B; Bokel, C; Boogert, S; Boos, E G; Borras, K; Boscherini, D; Brock, I; Brook, N H; Brugnera, R; Bruni, A; Bruni, G; Brümmer, N; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Cartiglia, N; Catterall, C D; Chekanov, S; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cirio, R; Cloth, P; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Costa, M; Crittenden, James Arthur; D'Agostini, Giulio; Dagan, S; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; De Wolf, E; Del Peso, J; Dementiev, R K; Derrick, M; Deshpande, Abhay A; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Engelen, J; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fox-Murphy, A; Fricke, U; Fusayasu, T; Gabareen, A; Galea, R; Gallo, E; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Gilmore, J; Ginsburg, C M; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Göbel, F; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Grabowska-Bold, I; Grijpink, S; Grzelak, G; Gutsche, O; Gwenlan, C; Göttlicher, P; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G F; Heaphy, E A; Heath, G P; Heath, H F; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Hughes, V W; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, H P; Jelen, K; Jones, T W; Kananov, S; Kappes, A; Karshon, U; Katkov, I I; Katz, U F; Kcira, D; Kerger, R; Khein, L A; Kim, C L; Kim, J Y; Kim, Y K; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korzhav, I A; Kotanski, A; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D A; Kreisel, A; Krumnack, N; Kuze, M; Kuzmin, V A; Kötz, U; Labarga, L; Labes, H; Lammers, S; Lane, J B; Lee, J H; Lee, S W; Lelas, D; Levchenko, B B; Levi, G; Levman, G M; Levy, A; Li, L; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lopez-Duran Viani, A; Lukina, O Yu; Lupi, A; Löhr, B; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Martin, J F; Martínez, M; Maselli, S; Mastroberardino, A; Mat, T; Matsuzawa, K; Mattingly, M C K; Mc, G J; McCubbin, N A; Mellado, B; Menary, S R; Metlica, F; Meyer, A; Milite, M; Miller, D B; Mindur, B; Mirea, A; Monaco, V; Moritz, M; Musgrave, B; Nagano, K; Nania, R; Nigro, A; Nishimura, T; Notz, D; Nowak, R J; Ochs, A; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Pellmann, I A; Peroni, C; Pesci, A; Petrucci, M C; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Raach, H; Rautenberg, J; Raval, A; Redondo, I; Reeder, D D; Renner, R; Repond, J; Rigby, M; Robins, S; Rodrigues, E; Rulikowska-Zarebska, E; Ruske, O; Ruspa, M; Sabetfakhri, A; Sacchi, R; Saint-Laurent, M G; Salehi, H; Sartorelli, G; Saull, P R B; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Schnurbusch, H; Sciulli, F; Scott, J; Selonke, F; Shcheglova, L M; Skillicorn, I O; Slominski, W; Smalska, B; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V V; Staiano, A; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Surrow, B; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tap, A D; Tapper, R J; Tassi, E; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Tuning, N; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Umemori, K; Velthuis, J J; Vlasov, N N; Voss, K C; Vázquez, M; Walczak, R; Walker, R; Weber, A; Wes, H; West, B J; Whitmore, J J; Wichmann, R; Wick, K; Wiggers, L; Wills, H H; Wing, M; Wolf, G; Yamada, S; Yamashita, T; Yamazaki, Y; Yoshida, R; Youngman, C; Zakrzewski, J A; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A

    2002-01-01

    Cross sections for e-p charged current deep inelastic scattering have been measured at a centre-of-mass energy of 318 GeV with an integrated luminosity of 16.4 pb-1 using the ZEUS detector at HERA. Differential cross-sections d\\sigma/dQ2, d\\sigma/dx and d\\sigma/dy are presented for Q2>200 GeV2. In addition, d2\\sigma/dxdQ2 was measured in the kinematic range 280 GeV2 < Q2 < 30000 GeV2 and 0.015 < x < 0.42. The predictions of the Standard Model agree well with the measured cross sections. The mass of the W boson, determined from a fit to d\\sigma/dQ2, is MW=80.3 \\pm 2.1 (stat.) \\pm 1.2 (syst.) \\pm 1.0 (PDF) GeV.

  2. A study of strange particle production in νμ charged current interactions in the NOMAD experiment

    Science.gov (United States)

    Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; de Santo, A.; Dignan, T.; di Lella, L.; Do Couto E Silva, E.; Dumarchez, J.; Ellis, M.; Fazio, T.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kustov, D.; Kuznetsov, V.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubičić, A.; Long, J.; Lupi, A.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S. R.; Moorhead, G. F.; Naumov, D.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Yabsley, B. D.; Zaccone, H.; Zuber, K.; Zuccon, P.; NOMAD Collaboration

    2002-01-01

    A study of strange particle production in νμ charged current interactions has been performed using the data from the NOMAD experiment. Yields of neutral strange particles ( K0s,Λ, Λ¯) have been measured. Mean multiplicities are reported as a function of the event kinematic variables Eν, W2 and Q2 as well as of the variables describing particle behaviour within a hadronic jet: xF, z and pT2. Decays of resonances and heavy hyperons with identified K 0s and Λ in the final state have been analyzed. Clear signals corresponding to K ★±, Σ ★±, Ξ- and Σ0 have been observed.

  3. Charge and fluence lifetime measurements of a dc high voltage GaAs photogun at high average current

    Energy Technology Data Exchange (ETDEWEB)

    J. Grames, R. Suleiman, P.A. Adderley, J. Clark, J. Hansknecht, D. Machie, M. Poelker, M.L. Stutzman

    2011-04-01

    GaAs-based dc high voltage photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed high average current facilities that must operate at tens of milliamperes or more. This paper describes techniques to maintain good vacuum while delivering beam, and techniques that minimize the ill effects of ion bombardment, the dominant mechanism that reduces photocathode yield of a GaAs-based dc high voltage photogun. Experimental results presented here demonstrate enhanced lifetime at high beam currents by: (a) operating with the drive laser beam positioned away from the electrostatic center of the photocathode, (b) limiting the photocathode active area to eliminate photoemission from regions of the photocathode that do not support efficient beam delivery, (c) using a large drive laser beam to distribute ion damage over a larger area, and (d) by applying a relatively low bias voltage to the anode to repel ions created within the downstream beam line. A combination of these techniques provided the best total charge extracted lifetimes in excess of 1000 C at dc beam currents up to 9.5 mA, using green light illumination of bulk GaAs inside a 100 kV photogun.

  4. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment.

    Science.gov (United States)

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-10-20

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.

  5. Experimental study of rare charged pion decays

    CERN Document Server

    Pocanic, Dinko; van der Schaaf, Andries

    2014-01-01

    The combination of simple dynamics, small number of available decay channels, and extremely well controlled radiative and loop corrections, make charged pion decays a sensitive means for testing the underlying symmetries and the universality of weak fermion couplings, as well as for improving our understanding of pion structure and chiral dynamics. This paper reviews the current state of experimental study of the allowed rare decays of charged pions: (a) leptonic, $\\pi^+ \\to e^+\

  6. 混合储能系统在弱光充电系统中的仿真研究%Simulation of Photovoltaic Charge System Under Weak Light Using Hybrid Energy Storage System

    Institute of Scientific and Technical Information of China (English)

    张智峰; 丁攀峰

    2012-01-01

    The output characteristics of photovoltaic array is influenced by the incident radiant intensity. Especially in the weak sunlight the maximum power point trace strategy can't match the battery's charging requirement. In order to maximize the output power of PV, the method using supper capacitors is proposed to reduce the influence of charging conditions caused by sunlight variation. Based on the character of stand-alone PV system, an active hybrid storage scheme is designed. The scehem can assure the maximum power point tracing of photovoltaic panels and meet the batteries charging requirements at the same time. The simulation model in Simulink/MATLAB is created and the simulation results verifies the feasibility of the system.%光伏阵列的输出特性受光照强度影响很大,在弱光下光伏电池的最大功率点跟踪控制算法无法达到蓄电池的充电要求。为了最大限度利用光伏阵歹tl的输出功率,采用超级电容减小光照变化对蓄电池充电的影响。针对独立光伏发电系统的特点,设计了一种有源式混合储能方案,在保证光伏电池获得最大功率跟踪的同时,也能满足蓄电池的充电要求,建立的Simulink/MATLAB仿真模型验证了该设计方案的有效性。

  7. Method for generating linear current-field characteristics and eliminating charging delay in no-insulation superconducting magnets

    Science.gov (United States)

    Kim, Seokho; Hahn, Seungyong; Kim, Kwangmin; Larbalestier, David

    2017-03-01

    No-insulation (NI) rare-earth barium copper oxide (REBCO) magnets are promising for high field or high temperature superconducting magnets because they simplify quench protection. However, the turn-to-turn leakage current path induced by the absence of insulation introduces nonlinearities into the magnetic fieldcurrent characteristic and significant delay in reaching the desired field. This paper shows that active feedback control can mitigate both the nonlinearity and the charging delay. To verify our approach, simulations and tests were performed with an NI REBCO magnet made of 13 double-pancake coils. A proportional and integral (PI) feedback control of the power supply was adopted which allowed determination of the appropriate PI gains using dynamic simulations of the equivalent circuit of the NI magnet. Feedback control tests were then performed in liquid nitrogen at 77 K. The time to reach 99.5% of the target magnetic field to become essentially steady-state was reduced by more than 2000 times from 850 s without control to 0.4 s with control. The results demonstrate a potential that one of the most significant perceived disadvantages of an NI magnet can essentially be removed by active feedback control of the power supply current.

  8. An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codes

    CERN Document Server

    Vincenti, H; Sasanka, R; Vay, J-L

    2016-01-01

    In current computer architectures, data movement (from die to network) is by far the most energy consuming part of an algorithm (10pJ/word on-die to 10,000pJ/word on the network). To increase memory locality at the hardware level and reduce energy consumption related to data movement, future exascale computers tend to use more and more cores on each compute nodes ("fat nodes") that will have a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, machine vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD register length is expected to double every four years. As a consequence, Particle-In-Cell (PIC) codes will have to achieve good vectorization to fully take advantage of these upcoming architectures. In this paper, we present a new algorithm that allows for efficient and portable SIMD vectorization of current/charge deposition routines that are, along with the field gathering...

  9. Measurement of the {lambda} polarization in {nu}{sub {mu}} charged current interactions in the NOMAD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V.; Cervera-Villanueva, A.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; De Santo, A.; Dignan, T.; Di Lella, L. E-mail: luigi.di.lella@cern.ch; Couto e Silva, E. do; Dumarchez, J.; Ellis, M.; Fazio, T.; Feldman, G.J.; Ferrari, R.; Ferrere, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Goessling, C.; Gouanere, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kustov, D.; Kuznetsov, V.; Lacaprara, S.; Lachaud, C.; Lakic, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubicic, A.; Long, J.; Lupi, A.; Marchionni, A.; Martelli, F.; Mechain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S.R.; Moorhead, G.F.; Naumov, D.; Nedelec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L.S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rathouit, P.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sevior, M.; Sillou, D.; Soler, F.J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipcevic, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G.N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S.N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K.E.; Veltri, M.; Vercesi, V.; Vieira, J.-M.; Vinogradova, T.[and others

    2000-11-06

    The {lambda} polarization in {nu}{sub {mu}} charged current interactions has been measured in the NOMAD experiment. The event sample (8087 reconstructed {lambda} 's) is more than an order of magnitude larger than that of previous bubble chamber experiments, while the quality of event reconstruction is comparable. We observe negative polarization along the W -boson direction which is enhanced in the target fragmentation region: P{sub x}(x{sub F}<0)=-0.21{+-}0.04(stat){+-}0.02(sys) . In the current fragmentation region we find P{sub x}(x{sub F}>0)=-0.09{+-}0.06(stat){+-}0.03(sys) . These results provide a test of different models describing the nucleon spin composition and the spin transfer mechanisms. A significant transverse polarization (in the direction orthogonal to the {lambda} production plane) has been observed for the first time in a neutrino experiment: P{sub y}=-0.22{+-}0.03(stat){+-}0.01(sys) . The dependence of the absolute value of P{sub y} on the {lambda} transverse momentum with respect to the hadronic jet direction is in qualitative agreement with the results from unpolarized hadron-hadron experiments.

  10. Weak relativity

    CERN Document Server

    Selleri, Franco

    2015-01-01

    Weak Relativity is an equivalent theory to Special Relativity according to Reichenbach’s definition, where the parameter epsilon equals to 0. It formulates a Neo-Lorentzian approach by replacing the Lorentz transformations with a new set named “Inertial Transformations”, thus explaining the Sagnac effect, the twin paradox and the trip from the future to the past in an easy and elegant way. The cosmic microwave background is suggested as a possible privileged reference system. Most importantly, being a theory based on experimental proofs, rather than mutual consensus, it offers a physical description of reality independent of the human observation.

  11. Design of Weak-current System and Intelligent Lighting of a Municipal Sports Center%某市级体育中心弱电系统及智能照明设计

    Institute of Scientific and Technical Information of China (English)

    王雁春

    2011-01-01

    某市级体育中心弱电系统繁多而复杂.智能化要求较高且具有一定的特殊性.介绍该体育中心弱电各系统的设计思路、系统组成及功能特点。%As the weak-current systems of a municipal sports center are various and complex, which have some particularity and high intelligent requirements, this paper presents the design programs, structures and functions of various weak-current systems applied in the sports center.

  12. La formación actual del médico: fortalezas y debilidades The current training of doctors: strengths and weaknesses

    Directory of Open Access Journals (Sweden)

    X. Clèries

    2009-03-01

    Full Text Available Las “Jornadas estatales de estudio y debate sobre el futuro de la formación integral del médico ¿bioingeniería o medicina?” que se realizaron en Barcelona el 8 y 9 de febrero de 2008 fueron el marco para que un grupo de trabajo abordara el tema de las fortalezas y debilidades de la formación actual del médico. Las principales aportaciones se estructuraron en los tres niveles educativos siguientes: pregrado, posgrado y formación continuada. Se destacó la necesidad de una formación integral y psicosocial en la enseñanza de pregrado, la conveniencia de una estructuración troncal de la formación de posgrado para conseguir una mayor transversalidad de la competencia del médico y la contextualización de la formación continuada en el desarrollo profesional de cada médico. El predominio de los conocimientos biomédicos y tecnológicos en la formación actual del médico contrastan con las demandas de carácter psicosocial de una gran parte de la población en el sistema sanitario.The “National Conference for study and debate on the future of the integral training of doctors: bioengineering or medicine?” that were realized in Barcelona on February 8-9th, 2008 it was the context so that a work group was carried out on the topic about strengths and weaknesses of the current training of physicians. The main contributions were structured around three educational levels: undergraduate, postgraduate and continuing education. In the undergraduate level was emphasized the need to achieve an integral and psychosocial education. The postgraduate education should have a core subject in order to acquire a better global understanding of doctors' competences. Continuing medical education in the context of professional development of every physician. The predominance of the biomedical and technological knowledge in the current training of doctors contrasts with psychosocial demands of the population of healthcare system.

  13. Weak Polarized Electron Scattering

    CERN Document Server

    Erler, Jens; Mantry, Sonny; Souder, Paul A

    2014-01-01

    Scattering polarized electrons provides an important probe of the weak interactions. Precisely measuring the parity-violating left-right cross section asymmetry is the goal of a number of experiments recently completed or in progress. The experiments are challenging, since A_{LR} is small, typically between 10^(-4) and 10^(-8). By carefully choosing appropriate targets and kinematics, various pieces of the weak Lagrangian can be isolated, providing a search for physics beyond the Standard Model. For other choices, unique features of the strong interaction are studied, including the radius of the neutron density in heavy nuclei, charge symmetry violation, and higher twist terms. This article reviews the theory behind the experiments, as well as the general techniques used in the experimental program.

  14. Measurement of the Antineutrino Double-Differential Charged-Current Quasi-Elastic Scattering Cross Section at MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, Cheryl [Northwestern U.

    2016-01-01

    Next-generation neutrino oscillation experiments, such as DUNE and Hyper-Kamiokande, hope to measure charge-parity (CP) violation in the lepton sector. In order to do this, they must dramatically reduce their current levels of uncertainty, particularly those due to neutrino-nucleus interaction models. As CP violation is a measure of the difference between the oscillation properties of neutrinos and antineutrinos, data about how the less-studied antineutrinos interact is especially valuable. We present the MINERvA experiment's first double-differential scattering cross sections for antineutrinos on scintillator, in the few-GeV range relevant to experiments such as DUNE and NOvA. We also present total antineutrino-scintillator quasi-elastic cross sections as a function of energy, which we compare to measurements from previous experiments. As well as being useful to help reduce oscillation experiments' uncertainty, our data can also be used to study the prevalence of various cor relation and final-state interaction effects within the nucleus. We compare to models produced by different model generators, and are able to draw first conclusions about the predictions of these models.

  15. Exclusive Muon-Neutrino Charged Current Muon Plus Any Number of Protons Topologies In ArgoNeuT

    Energy Technology Data Exchange (ETDEWEB)

    Partyka, Kinga Anna [Yale Univ., New Haven, CT (United States)

    2013-01-01

    Neutrinos remain among the least understood fundamental particles even after decades of study. As we enter the precision era o f neutrino measurements bigger and more sophisticated detectors have emerged. The leading candidate among them is a Liquid Argon Time Projection Chamber (LArTPC ) detector technology due to its bubble-like chamber imaging, superb background rejection and scalability. I t is a perfect candidate that w ill aim to answer the remaining questions of the nature o f neutrino and perhaps our existence. Studying neutrinos with a detector that employs detection via beautiful images o f neutrino interactions can be both illuminating and surprising. The analysis presented here takes the full advantage of the LArTPC power by exploiting the first topological analysis of charged current muon neutrino p + N p , muon and any number of protons, interactions with the ArgoNeuT LArTPC experiment on an argon target. The results presented here are the first that address the proton multiplicity at the vertex and the proton kinematics. This study also addresses the importance o f nuclear effects in neutrino interactions. Furthermore, the developed here reconstruction techniques present a significant step forward for this technology and can be employed in the future LArTPC detectors.

  16. Measuring Muon-Neutrino Charged-Current Differential Cross Sections with a Liquid Argon Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, Joshua B. [Yale Univ., New Haven, CT (United States)

    2011-01-01

    More than 80 years after its proposed existence, the neutrino remains largely mysterious and elusive. Precision measurements of the neutrino's properties are just now beginning to take place. Such measurements are required in order to determine the mass of the neutrino, how many neutrinos there are, if neutrinos are different than anti-neutrinos, and more. Muon-neutrino charged-current differential cross sections on an argon target in terms of the outgoing muon momentum and angle are presented. The measurements have been taken with the ArgoNeuT Liquid Argon Time Projection Chamber (LArTPC) experiment. ArgoNeuT is the first LArTPC to ever take data in a low energy neutrino beam, having collected thousands of neutrino and anti-neutrino events in the NuMI beamline at Fermilab. The results are relevant for long baseline neutrino oscillation experiments searching for non-zero $\\theta_{13}$, CP-violation in the lepton sector, and the sign of the neutrino mass hierarchy, among other things. Furthermore, the differential cross sections are important for understanding the nature of the neutrino-nucleus interaction in general. These measurements represent a significant step forward for LArTPC technology as they are among the first neutrino physics results with such a device.

  17. Study of quasielastic scattering using charged-current nu_mu-iron interactions in the MINOS Near Detector

    CERN Document Server

    Adamson, P; Aurisano, A; Barr, G; Bishai, M; Blake, A; Bock, G J; Bogert, D; Cao, S V; Castromonte, C M; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hahn, S R; Hartnell, J; Hatcher, R; Holin, A; Huang, J; Hylen, J; Irwin, G M; Isvan, Z; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGivern, C; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Miller, W H; Mishra, S R; Sher, S Moed; Moore, C D; Mualem, L; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Connor, J O; Orchanian, M; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Perch, A; Pfutzner, M; Phan-Budd, S; Plunkett, R K; Poonthottathil, N; Qiu, X; Radovic, A; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tian, X; Timmons, A; Tognini, S C; Toner, R; Torretta, D; Urheim, J; Vahle, P; Viren, B; Walding, J J; Weber, A; Webb, R C; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Zwaska, R

    2014-01-01

    Kinematic distributions from an inclusive sample of 1.41 x 10^6 charged-current nu_mu interactions on iron, obtained using the MINOS Near Detector exposed to a wide-band beam with peak flux at 3 GeV, are compared to a conventional treatment of neutrino scattering within a Fermi gas nucleus. Results are used to guide the selection of a subsample enriched in quasielastic nu_mu Fe interactions, containing an estimated 123,000 quasielastic events of incident energies 1 = 2.79 GeV. Four additional subsamples representing topological and kinematic sideband regions to quasielastic scattering are also selected for the purpose of evaluating backgrounds. Comparisons using subsample distributions in four-momentum transfer Q^2 show the Monte Carlo model to be inadequate at low Q^2. Its shortcomings are remedied via inclusion of a Q^2-dependent suppression function for baryon resonance production, developed from the data. A chi-square fit of the resulting Monte Carlo simulation to the shape of the Q^2 distribution for th...

  18. Bose-Einstein Correlations in Charged Current Muon-Neutrino Interactions in the NOMAD Experiment at CERN

    CERN Document Server

    Astier, P.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, Barry J.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.C.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; De Santo, A.; Dignan, T.; Di Lella, L.; do Couto e Silva, E.; Dumarchez, J.; Ellis, Malcolm; Feldman, G.J.; Ferrari, R.; Ferrere, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.J.; Gosset, J.; Gossling, C.; Gouanere, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Lacaprara, S.; Lachaud, C.; Lakic, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.M.; Linssen, L.; Ljubicic, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Mechain, X.; Mendiburu, J.P.; Meyer, J.P.; Mezzetto, M.; Mishra, S.R.; Moorhead, G.F.; Naumov, D.; Nedelec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L.S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Sevior, M.; Sillou, D.; Soler, F.J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipcevic, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G.N.; Tereshchenko, V.; Toropin, A.; Touchard, A.M.; Tovey, S.N.; Tran, M.T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K.E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.M.; Vinogradova, T.; Weber, F.V.; Weisse, T.; Wilson, F.F.; Winton, L.J.; Yabsley, Bruce D.; Zaccone, H.; Zei, R.; Zuber, K.; Zuccon, P.

    2004-01-01

    Bose-Einstein Correlations in one and two dimensions have been studied, with high statistics, in charged current muon-neutrino interaction events collected with the NOMAD detector at CERN. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov-Podgoretskii phenomenological parametrizations. The Goldhaber parametrization gives the radius of the pion emission region R_G = 1.01+/-0.05(stat)+0.09-0.06(sys) fm and for the chaoticity parameter the value lambda = 0.40+/-0.03(stat)+0.01-0.06(sys). Using the Kopylov-Podgoretskii parametrization yields R_KP = 2.07+/-0.04(stat)+0.01-0.14(sys) fm and lambda_KP = 0.29+/-0.06(stat)+0.01-0.04(sys). Different parametrizations of the long-range correlations have been also studied. The two-dimensional shape of the source has been investigated in the longitudinal co-moving frame. A significant difference between the transverse and the longitudinal dimensions is observed. The high statistics of the collected sample allowed the study of the...

  19. Measurement of high-Q^2 charged current cross sections in e^+p deep inelastic scattering at HERA

    CERN Document Server

    Abe, T; Adamczyk, L; Adamus, M; Adler, V; Aghuzumtsyan, G; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Basile, M; Bauerdick, L A T; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bloch, I; Bodmann, B; Bold, T; Boos, E G; Borras, K; Boscherini, D; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Catterall, C D; Chekanov, S; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cloth, P; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Cottrell, A; D'Agostini, Giulio; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; Dementiev, R K; Derrick, M; Deshpande, A A; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fricke, U; Fusayasu, T; Gabareen, A; Gallo, E; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Gliga, S; Göbel, F; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Göttlicher, P; Grabowska-Bold, I; Grijpink, S; Grzelak, G; Gutsche, O; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hamilton, J; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G; Hartner, G F; Heaphy, E A; Heath, G P; Heath, H F; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, H P; Jones, T W; Kagawa, S; Kahle, B; Kananov, S; Kappes, A; Karshon, U; Katkov, I I; Katz, U F; Kcira, D; Khein, L A; Kim, J Y; Kim, Y K; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korzhav--, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D A; Kram, G; Kreisel, A; Krumnack, N; Kuze, M; Kuzmin, V A; Labarga, L; Labes, H; Lainesse, J; Lammers, S; Lee, J H; Lee, S W; Lelas, D; Levchenko, B B; Levman, G M; Levy, A; Li, L; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Löhr, B; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lukina, O Yu; Lupi, A; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Martin, J F; Mastroberardino, A; Matsuzawa, K; Mattingly, M C K; McCubbin, N A; Mellado, B; Melzer-Pellmann, I A; Menary, S R; Metlica, F; Meyer, U; Milite, M; Mirea, A; Monaco, V; Moritz, M; Musgrave, B; Nagano, K; Nania, R; Nguyen, C N; Nigro, A; Ning, Y; Nishimura, T; Notz, D; Nowak, R J; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Patel, S; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Pesci, A; Petrucci, M C; Piotrzkowski, K; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Rautenberg, J; Raval, A; Reeder, D D; Ren, Z; Renner, R; Repond, J; Robins, S; Rodrigues, E; Ruspa, M; Sacchi, R; Salehi, H; Sartorelli, G; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Sciulli, F; Scott, J; Selonke, F; Shcheglova, L M; Skillicorn, I O; Slominski, W; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V V; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stoesslein, U; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Tawara, T; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Vázquez, M; Velthuis, J J; Vlasov, N N; Voss, K C; Walczak, R; Wang, M; Weber, A; Wessoleck, H; West, B J; Whitmore, J J; Wick, K; Wiggers, L; Wills, H H; Wing, M; Wolf, G; Yamada, S; Yamashita, T; Yamazaki, Y; Yoshida, R; Youngman, C; Zawiejski, L; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A; De Wolf, E

    2003-01-01

    Cross sections for e^+p charged current deep inelastic scattering at a centre-of-mass energy of 318 GeV have been determined with an integrated luminosity of 60.9pb^-1 collected with the ZEUS detector at HERA. The differential cross sections dsigma/dQ^2, dsigma/dx and dsigma/dy for Q^2>200 GeV^2 are presented. In addition, d^2sigma/dxdQ^2 has been measured in the kinematic range 280 GeV^2 < Q^2 < 17000 GeV^2 and 0.008 < x < 0.42. The predictions of the Standard Model agree well with the measured cross sections. The mass of the W boson propagator is determined to be M_W=78.9 +/- 2.0 (stat.) +/- 1.8 (syst.) +2.0 -1.8 (PDF) GeV from a fit to dsigma/dQ^2. The chiral structure of the Standard Model is also investigated in terms of the (1-y)^2 dependence of the the double-differential cross section. The structure-function F_2^CC has been extracted by combining the measurements presented here with previous ZEUS results from e^-p scattering, extending the measurement obtained in a neutrino-nucleus scatter...

  20. Measurement of topological muonic branching ratios of charmed hadrons produced in neutrino-induced charged-current interactions

    CERN Document Server

    Kayis-Topaksu, A; Van Dantzig, R; De Jong, M; Oldeman, R G C; Güler, M; Köse, U; Tolun, P; Catanesi, M G; Muciaccia, M T; Winter, Klaus; Van de Vyver, B; Vilain, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Hristova, I R; Kawamura, T; Kolev, D; Meinhard, H; Panman, J; Rozanov, A; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Artamonov, A V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Hoshino, K; Kawada, J; Komatsu, M; Myanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Scotto-Lavina, L; Strolin, P; Tioukov, V; Okusawa, T; Dore, U; Loverre, P F; Ludovici, L; Rosa, G; Santacesaria, R; Satta, A; Spada, F R; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2005-01-01

    From 1994 to 1997, the emulsion target of the CHORUS detector was exposed to the wideband neutrino beam of the CERN SPS. In total about 100 000 charged-current neutrino interactions were located in the nuclear emulsion target and fully reconstructed. From this sample of events based on the data acquired by new automatic scanning systems, 2013 charm-decay events were selected by a pattern recognition program. They were confirmed as decays through visual inspection. Based on these events, the effective branching ratio of charmed particles into muons was determined to be Bμ = [7.3 ± 0.8 (stat) ± 0.2 (syst)] × 10âˆ'2. In addition, the muonic branching ratios are presented for dominating charm decay topologies. Normalization of the muonic decays to chargedcurrent interactions provides _μâˆ'μ+/_cc = [3.16 ± 0.34 (stat) ± 0.09 (syst)] × 10âˆ'3. Selecting only events with visible energy greater than 30 GeV gives a value of Bμ that is less affected by the charm production threshold ...

  1. The search for magnetic-induced charged currents in Pb--Pb collisions with ALICE arXiv

    CERN Document Server

    INSPIRE-00507060

    In non-central heavy-ion collisions unprecedented strong magnetic fields, of the order of 10$^{18}$ Gauss, are expected to be produced. The interplay of such fields with QCD anomalies in the Quark--Gluon Plasma (QGP) has been predicted to lead to a number of interesting phenomena, such as the Chiral Magnetic Effect (CME). While several experimental observations are partially consistent with predictions of a CME signal, it is hard to distinguish them unambiguously from a combination of more mundane phenomena present in the anisotropic expansion of the QGP. This makes it imperative to establish that the early-time magnetic field has observable consequences not related to the anomalous QCD effects on final-state charged particles and to calibrate its strength. We test a recent prediction of a pure electromagnetic effect, which may arise in heavy-ion collisions. The varying magnetic field would induce a current within the QGP, which is expected to leave a very peculiar imprint on final-state particles: a contribu...

  2. Measurement of charged current deep inelastic scattering cross sections with a longitudinally polarised electron beam at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, IL (US)] (and others)

    2008-12-15

    Measurements of the cross sections for charged current deep inelastic scattering in e{sup -}p collisions with longitudinally polarised electron beams are presented. The measurements are based on a data sample with an integrated luminosity of 175 pb{sup -1} collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is given for positively and negatively polarised electron beams. The differential cross-sections d{sigma}/dQ{sup 2}, d{sigma}/dx and d{sigma}/dy are presented for Q{sup 2}>200 GeV{sup 2}. The double-differential cross-section d{sup 2}{sigma}/dxdQ{sup 2} is presented in the kinematic range 280

  3. Charged-current quasielastic neutrino scattering cross sections on 12C with realistic spectral and scaling functions

    Science.gov (United States)

    Ivanov, M. V.; Antonov, A. N.; Caballero, J. A.; Megias, G. D.; Barbaro, M. B.; de Guerra, E. Moya; Udías, J. M.

    2014-01-01

    Charge-current quasielastic (anti)neutrino scattering cross sections on a 12C target are analyzed using a spectral function S (p,E) that gives a scaling function in accordance with the (e ,e') scattering data. The spectral function accounts for the nucleon-nucleon (NN) correlations, it has a realistic energy dependence, and natural orbitals (NOs) from the Jastrow correlation method are used in its construction. In all calculations the standard value of the axial mass MA=1.032 GeV/c2 is used. The results are compared with those when NN correlations are not included, as in the relativistic Fermi gas model, or when harmonic-oscillator single-particle wave functions are used instead of NOs. The role of the final-state interactions (FSIs) on the theoretical spectral and scaling functions, as well as on the cross sections, is accounted for. A comparison of the results for the cases with and without FSI, as well as to results from the phenomenological scaling function obtained from the superscaling analysis, is carried out. Our calculations based on the impulse approximation underpredict the MiniBooNE data but agree with the data from the NOMAD experiment. The possible missing ingredients in the considered theoretical models are discussed.

  4. The Q_weak Experimental Apparatus

    CERN Document Server

    Allison, T; Androic, D; Armstrong, D S; Asaturyan, A; Averett, T D; Averill, R; Balewski, J; Beaufait, J; Beminiwattha, R S; Benesch, J; Benmokhtar, F; Bessuille, J; Birchall, J; Bonnell, E; Bowman, J; Brindza, P; Brown, D B; Carlini, R D; Cates, G D; Cavness, B; Clark, G; Cornejo, J C; Dusa, S Covrig; Dalton, M M; Davis, C A; Dean, D C; Deconinck, W; Diefenbach, J; Dow, K; Dowd, J F; Dunne, J A; Dutta, D; Duvall, W S; Echols, J R; Elaasar, M; Falk, W R; Finelli, K D; Finn, J M; Gaskell, D; Gericke, M T W; Grames, J; Gray, V M; Grimm, K; Guo, F; Hansknecht, J; Harrison, D J; Henderson, E; Hoskins, J R; Ihloff, E; Johnston, K; Jones, D; Jones, M; Jones, R; Kargiantoulakis, M; Kelsey, J; Khan, N; King, P M; Korkmaz, E; Kowalski, S; Kubera, A; Leacock, J; Leckey, J P; Lee, A R; Lee, J H; Lee, L; Liang, Y; MacEwan, S; Mack, D; Magee, J A; Mahurin, R; Mammei, J; Martin, J W; McCreary, A; McDonald, M H; McHugh, M J; Medeiros, P; Meekins, D; Mei, J; Michaels, R; Micherdzinska, A; Mkrtchyan, A; Mkrtchyan, H; Morgan, N; Musson, J; Mesick, K E; Narayan, A; Ndukum, L Z; Nelyubin, V; Nuruzzaman,; van Oers, W T H; Opper, A K; Page, S A; Pan, J; Paschke, K D; Phillips, S K; Pitt, M L; Poelker, M; Rajotte, J F; Ramsay, W D; Roberts, W R; Roche, J; Rose, P W; Sawatzky, B; Seva, T; Shabestari, M H; Silwal, R; Simicevic, N; Smith, G R; Sobczynski, S; Solvignon, P; Spayde, D T; Stokes, B; Storey, D W; Subedi, A; Subedi, R; Suleiman, R; Tadevosyan, V; Tobias, W A; Tvaskis, V; Urban, E; Waidyawansa, B; Wang, P; Wells, S P; Wood, S A; Yang, S; Zhamkochyan, S; Zielinski, R B

    2014-01-01

    The Jefferson Lab Q_weak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from an unpolarized liquid hydrogen target at small momentum transfer. A custom apparatus was designed for this experiment to meet the technical challenges presented by the smallest and most precise ${\\vec{e}}$p asymmetry ever measured. Technical milestones were achieved at Jefferson Lab in target power, beam current, beam helicity reversal rate, polarimetry, detected rates, and control of helicity-correlated beam properties. The experiment employed 180 microA of 89% longitudinally polarized electrons whose helicity was reversed 960 times per second. The electrons were accelerated to 1.16 GeV and directed to a beamline with extensive instrumentation to measure helicity-correlated beam properties that can induce false asymmetries. Moller and Compton polarimetry were used to measure the electron beam polarization to better than 1%. The ...

  5. Measurement of the Charged-Current Quasi-Elastic Cross-Section for Electron Neutrinos on a Hydrocarbon Target

    Energy Technology Data Exchange (ETDEWEB)

    Wolcott, Jeremy [Univ. of Rochester, NY (United States)

    2016-01-01

    Appearance-type neutrino oscillation experiments, which observe the transition from muon neutrinos to electron neutrinos, promise to help answer some of the fundamental questions surrounding physics in the post-Standard-Model era. Because they wish to observe the interactions of electron neutrinos in their detectors, and because the power of current results is typically limited by their systematic uncertainties, these experiments require precise estimates of the cross-section for electron neutrino interactions. Of particular interest is the charged-current quasi-elastic (CCQE) process, which gures signi cantly in the composition of the reactions observed at the far detector. However, no experimental measurements of this crosssection currently exist for electron neutrinos; instead, current experiments typically work from the abundance of muon neutrino CCQE cross-section data and apply corrections from theoretical arguments to obtain a prediction for electron neutrinos. Veri cation of these predictions is challenging due to the di culty of constructing an electron neutrino beam, but the advent of modern high-intensity muon neutrino beams|together with the percent-level electron neutrino impurity inherent in these beams| nally presents the opportunity to make such a measurement. We report herein the rst-ever measurement of a cross-section for an exclusive state in electron neutrino scattering, which was made using the MINER A detector in the NuMI neutrino beam at Fermilab. We present the electron neutrino CCQE di erential cross-sections, which are averaged over neutrinos of energies 1-10 GeV (with mean energy of about 3 GeV), in terms of various kinematic variables: nal-state electron angle, nal-state electron energy, and the square of the fourmomentum transferred to the nucleus by the neutrino , Q2. We also provide a total cross-section vs. neutrino energy. While our measurement of this process is found to be in agreement with the predictions of the GENIE

  6. Measurements of the Total Charge-Changing Cross Sections for Collisions of Fast Ions with Target Gas Using High Current Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Covo, Michel Kireeff; Molvik, Arthur W.; Kaganovich, Igor D.; Shnidman, Ariel; Vujic, Jasmina L.

    2009-04-13

    The sum of ionization and charge-exchange cross sections of several gas targets (H2, N2, He, Ne, Kr, Xe, Ar, and water vapor) impacted by 1MeV K+ beam are measured. In a high current ion beam, the self-electric field of the beam is high enough that ions produced from the gas ionization or charge exchange by the ion beam are quickly swept to the sides of accelerator. The flux of the expelled ions is measured by a retarding field analyzer. This allows accurate measuring of the total charge-changing cross sections (ionization plus charge exchange) of the beam interaction with gas. Cross sections for H2, He, and N2 are simulated using classical trajectory Monte Carlo (CTMC) method and compared with the experimental results, showing good agreement.

  7. Muscle Weakness

    Science.gov (United States)

    Al Kaissi, Ali; Ryabykh, Sergey; Ochirova, Polina; Kenis, Vladimir; Hofstätter, Jochen G.; Grill, Franz; Ganger, Rudolf; Kircher, Susanne Gerit

    2017-01-01

    Marked ligamentous hyperlaxity and muscle weakness/wasting associated with awkward gait are the main deficits confused with the diagnosis of myopathy. Seven children (6 boys and 1 girl with an average age of 8 years) were referred to our department because of diverse forms of skeletal abnormalities. No definitive diagnosis was made, and all underwent a series of sophisticated investigations in other institutes in favor of myopathy. We applied our methodology through the clinical and radiographic phenotypes followed by targeted genotypic confirmation. Three children (2 boys and 1 girl) were compatible with the diagnosis of progressive pseudorheumatoid chondrodysplasia. The genetic mutation was correlated with the WISP 3 gene actively expressed by articular chondrocytes and located on chromosome 6. Klinefelter syndrome was the diagnosis in 2 boys. Karyotyping confirmed 47,XXY (aneuploidy of Klinefelter syndrome). And 2 boys were finally diagnosed with Morquio syndrome (MPS type IV A) as both showed missense mutations in the N-acetylgalactosamine-sulfate sulfatase gene. Misdiagnosis can lead to the initiation of a long list of sophisticated investigations. PMID:28210640

  8. Charge of a quasiparticle in a superconductor

    Science.gov (United States)

    Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas

    2016-01-01

    Nonlinear charge transport in superconductor–insulator–superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e=n, with n = 1–4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD∼2Δ, we found a reproducible and clear dip in the extracted charge to q ∼0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure. PMID:26831071

  9. Charge of a quasiparticle in a superconductor.

    Science.gov (United States)

    Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas

    2016-02-16

    Nonlinear charge transport in superconductor-insulator-superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e = n, with n = 1-4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD ~ 2Δ, we found a reproducible and clear dip in the extracted charge to q ~ 0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure.

  10. Constant current charging process of MV-level Marx generator%MV级Marx发生器恒流充电过程分析

    Institute of Scientific and Technical Information of China (English)

    张江华; 杨汉武; 张华; 田希文; 梁波; 李嵩

    2012-01-01

    A 4 MV pre-triggered Marx generator charged with series resistor has been designed. For better output property, higher charging efficiency and lower voltage difference between stages, the study conducted the analytic solution of its constant current charging(CCC) process. The results show that the voltage differences between different stages of capacitors are in direct proportion to charging resistance, capacitance and charging speed, but are independent of time) the charging efficiency improves with time, but is independent of charging speed. This solution is universally applicable. The simulation of CCC for the Marx generator was done with PSpice, and the results agree with the analytic solution. Compared to constant voltage chargingCCVC) with 10 kΩ charging resistors, 400 nF capacitors and 10 kV/s charging speed, the charging efficiency of CCC is 90%, double that of CVC and the charging time is only one third.%设计了一种输出电压为4 MV的超前触发型Marx发生器,为了进一步优化采用电阻充电的Marx发生器输出特性,提高系统的充电效率并且减小级间充电电压不均匀性,对Marx发生器恒流充电过程进行了解析求解.结果表明:各级间充电电压差为与充电电阻、电容和充电速率成正比,与时间无关的定值,充电时间越长电压效率越高,且与电压变化率无关.该结论具有普遍适用性.结合我们设计的4 MV超前触发型Marx发生器回路,利用PSpice对Marx发生器的恒流充电过程进行了模拟,得到了自洽的结果,并且与恒压充电进行了对比.当充电电阻为10 kΩ.各级电容为400 nF.充电速率为10 kV/s时,恒流充电能量效率达到90%,约为恒压充电能量效率的2倍,充电时间为恒压充电的1/3.

  11. Measurement of high-Q (2) charged current deep inelastic scattering cross sections with a longitudinally polarised positron beam at HERA

    NARCIS (Netherlands)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bold, T.; Boos, E. G.; Borras, K.; Boscherini, D.; Boutle, S. K.; Brock, I.; Brownson, E.; Brugnera, R.; Bruemmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Butterworth, J. M.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Forrest, M.; Foster, B.; Fourletov, S.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Goettlicher, P.; Grabowska-Bold, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Horton, K.; Huettmann, A.; Iacobucci, G.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H. -P.; Januschek, F.; Jimenez, M.; Jones, T. W.; Juengst, M.; Kadenko, I.; Kahle, B.; Kamaluddin, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotanski, A.; Koetz, U.; Kowalski, H.; Kulinski, P.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Loehr, B.; Lohrmann, E.; Loizides, J. H.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Luzniak, P.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Mastroberardino, A.; Matsumoto, T.; Mattingly, M. C. K.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Idris, F. Mohamad; Monaco, V.; Montanari, A.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nicholass, D.; Nigro, A.; Ning, Y.; Noor, U.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Oliver, K.; Olkiewicz, K.; Onishchuk, Yu.; Ota, O.; Papageorgiu, K.; Parenti, A.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlanski, W.; Perrey, H.; Piotrzkowski, K.; Plucinski, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycien, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Ron, E.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Salii, A.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schoenberg, V.; Schoerner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terron, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomalak, O.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Tymieniecka, T.; Uribe-Estrada, C.; Vazquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Volynets, O.; Walczak, R.; Abdullah, W. A. T. Wan; Whitmore, J. J.; Whyte, J.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yaguees-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zichichi, A.; Zolko, M.; Zotkin, D. S.; Zulkapli, Z.

    2010-01-01

    Measurements of the cross sections for charged current deep inelastic scattering in e (+) p collisions with a longitudinally polarised positron beam are presented. The measurements are based on a data sample with an integrated luminosity of 132 pb(-1) collected with the ZEUS detector at HERA at a ce

  12. A measurement of the muon neutrino charged current quasielastic-like cross section on a hydrocarbon target and final state interaction effects

    Energy Technology Data Exchange (ETDEWEB)

    Walton, Tammy [Hampton Univ., Hampton, VA (United States)

    2014-01-01

    Presented is the analysis of the μ charged-current quasielastic-like interaction with a polystyrene (CH or hydrocarbon) target in the MINER A experiment, which was exposed to a neutrino beam that peaked at 3.5 GeV.

  13. Standardization of calibration of clinic dosemeters using electric currents and charges; Padronizacao da calibracao de dosimetros clinicos utilizando cargas e correntes eletricas

    Energy Technology Data Exchange (ETDEWEB)

    Peres, Marcos Antonio de Lima

    1999-09-15

    Clinical dosimeters used in radiotherapy are calibrated in Latin American countries, including Brazil, as a complete 'system, i.e., ionization chamber and electrometer together. Some countries, as European ones, and USA calibrate them by component, i.e., ionisation chamber apart from electrometer. This method is more advantageous than the previous one, since it makes possible the automation of the calibration process, allowing the acquisition of data related to the chamber and the electrometer measurements independently, as well as the substitution of one of the components, in case of failure. This work proposes a method for standardisation of low intensity electric charge and currents in order to implement electric calibration of electrometers. This will make possible the implementation of a by components calibration technique, by components, of clinical dosimeters in Brazil. The results obtained with the calibration by components prove that the proposed method of standardisation of low electric charges and currents is viable. The difficulties found for the generation and measurement of low intensity electric charges and currents and the procedures adopted for the calibration by components are presented. Additionally, a current source was built to yield reference electric charges that will make possible the quality control clinical dosimeters. This source will also allow the user to identify the defective components of the dosimeters, through a simple verification test. (author)

  14. Charge transport across insulating self-assembled monolayers: non-equilibrium approaches and modeling to relate current and molecular structure.

    Science.gov (United States)

    Mirjani, Fatemeh; Thijssen, Joseph M; Whitesides, George M; Ratner, Mark A

    2014-12-23

    This paper examines charge transport by tunneling across a series of electrically insulating molecules with the structure HS(CH2)4CONH(CH2)2R) in the form of self-assembled monolayers (SAMs), supported on silver. The molecules examined were studied experimentally by Yoon et al. (Angew. Chem. Int. Ed. 2012, 51, 4658-4661), using junctions of the structure AgS(CH2)4CONH(CH2)2R//Ga2O3/EGaIn. The tail group R had approximately the same length for all molecules, but a range of different structures. Changing the R entity over the range of different structures (aliphatic to aromatic) does not influence the conductance significantly. To rationalize this surprising result, we investigate transport through these SAMs theoretically, using both full quantum methods and a generic, independent-electron tight-binding toy model. We find that the highest occupied molecular orbital, which is largely responsible for the transport in these molecules, is always strongly localized on the thiol group. The relative insensitivity of the current density to the structure of the R group is due to a combination of the couplings between the carbon chains and the transmission inside the tail. Changing from saturated to conjugated tail groups increases the latter but decreases the former. This work indicates that significant control over SAMs largely composed of nominally insulating groups may be possible when tail groups are used that are significantly larger than those used in the experiments of Yoon et al.1.

  15. Magnetic charge quantisation and fractionally charged quarks

    NARCIS (Netherlands)

    Hooft, G. 't

    1976-01-01

    If magnetic monopoles with Schwinger's value of the magnetic charge would exist then that would pose serious restrictions on theories with fractionally charged quarks, even if they are confined. Weak and electromagnetic interactions must be unified with color, leading to a Weinberg angle w close to

  16. Controlling charge quantization with quantum fluctuations

    Science.gov (United States)

    Jezouin, S.; Iftikhar, Z.; Anthore, A.; Parmentier, F. D.; Gennser, U.; Cavanna, A.; Ouerghi, A.; Levkivskyi, I. P.; Idrisov, E.; Sukhorukov, E. V.; Glazman, L. I.; Pierre, F.

    2016-08-01

    In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

  17. Current signal of silicon detectors facing charged particles and heavy ions; Reponse en courant des detecteurs silicium aux particules chargees et aux ions lourds

    Energy Technology Data Exchange (ETDEWEB)

    Hamrita, H

    2005-07-01

    This work consisted in collecting and studying for the first time the shapes of current signals obtained from charged particles or heavy ions produced by silicon detectors. The document is divided into two main parts. The first consisted in reducing the experimental data obtained with charged particles as well as with heavy ions. These experiments were performed at the Orsay Tandem and at GANIL using LISE. These two experiments enabled us to create a data base formed of current signals with various shapes and various times of collection. The second part consisted in carrying out a simulation of the current signals obtained from the various ions. To obtain this simulation we propose a new model describing the formation of the signal. We used the data base of the signals obtained in experiments in order to constrain the three parameters of our model. In this model, the charge carriers created are regarded as dipoles and their density is related to the dielectric polarization in the silicon detector. This phenomenon induces an increase in permittivity throughout the range of the incident ion and consequently the electric field between the electrodes of the detector is decreased inside the trace. We coupled with this phenomenon a dissociation and extraction mode of the charge carriers so that they can be moved in the electric field. (author)

  18. Investigation of electric charge transport in conjugated polymer P3HT: PCBM solar cell with temperature dependent current and capacitance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Peiqing; Mencaraglia, Denis; Darga, Arouna; Migan, Anne [Laboratoire de Genie Electrique de Paris, CNRS UMR 8507, SUPELEC, UPMC, Universite Paris VI, Universite Paris-Sud, 11 Rue Joliot Curie, Plateau de Moulon, 91192 Gif-Sur-Yvette Cedex (France); Rabdbeh, Roshanak; Ratier, Bernard; Moliton, Andre [Institut Carnot XLim, UMR 6172, CNRS, Universite de Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France)

    2010-04-15

    We investigated quantitatively the electronic transport properties of a bulk heterojunction polymer/fullerene solar cell, based on structure Glass/ITO/P3HT:PCBM/Al. The current-voltage I-V characteristics in the intermediate positive bias and temperature regime (0.2 V {<=} V {<=} 1.5 V, 180 K {<=} T {<=} 250 K) can be well fitted by a modified Poole-Frenkel PF detrapping model. Combining these results with the high frequency capacitance measurements, we could then derive independently the absorber thickness and its dielectric constant. At low temperature (80 K {<=} T {<=} 170 K), the I-V data can be well accounted for with Space Charge Limited Current (SCLC) regimes. At intermediate positive bias (1 V {<=} V {<=} 2.3 V), the current is dominated by the trapped space charges with an exponential traps distribution, while at high positive bias (2.5 V {<=} V {<=} 4 V), the space charges due to injected free carrier play an important role for the conduction. From the fits to the two different SCLC models, we could then extract the electrically active defects parameters controlling the transport. These parameters were confirmed by space charge capacitance spectroscopy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density.

    Science.gov (United States)

    Filip, Jaroslav; Andicsová-Eckstein, Anita; Vikartovská, Alica; Tkac, Jan

    2017-03-15

    Previously we showed that an effective bilirubin oxidase (BOD)-based biocathode using graphene oxide (GO) could be prepared in 2 steps: 1. electrostatic adsorption of BOD on GO; 2. electrochemical reduction of the BOD-GO composite to form a BOD-ErGO (electrochemically reduced GO) film on the electrode. In order to identify an optimal charge density of GO for BOD-ErGO composite preparation, several GO fractions differing in an average flake size and ζ-potential were prepared using centrifugation and consequently employed for BOD-ErGO biocathode preparation. A simple way to express surface charge density of these particular GO nanosheets was developed. The values obtained were then correlated with biocatalytic and electrochemical parameters of the prepared biocathodes, i.e. electrocatalytically active BOD surface coverage (Γ), heterogeneous electron transfer rate (kS) and a maximum biocatalytic current density. The highest bioelectrocatalytic current density of (597±25)μAcm(-2) and the highest Γ of (23.6±0.9)pmolcm(-2) were obtained on BOD-GO composite having the same moderate negative charge density, but the highest kS of (79.4±4.6)s(-1) was observed on BOD-GO composite having different negative charge density. This study is a solid foundation for others to consider the influence of a charge density of GO on direct bioelectrochemistry/bioelectrocatalysis of other redox enzymes applicable for construction of biosensors, bioanodes, biocathodes or biofuel cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Characterization of polyester films used in capacitors. 2: Effects of heat treatments on transient and steady-state charging currents in polyethylene terephthalate thin films

    Science.gov (United States)

    Thielen, A.; Cerfontaine, J.; Niezette, J.; Feyder, G.; Vanderschueren, J.

    1994-10-01

    The effects of various heat treatments performed before or after the vacuum deposition of aluminum electrodes on the charging currents flowing through polyethylene terephthalate (PET) thin films (6 and 12 micrometers) were studied. The amorphous phase of the PET films was characterized by the use of thermally stimulated current/relaxation map analysis spectrometry, allowing precise determination of thermodynamic and thermokinetic parameters. Density measurements were used to calculate the rate of crystallinity achieved after annealing. A correlation was found between the relaxation parameters of the alpha dipolar relaxation of PET, the rate of crystallinity, and the properties of the charging currents observed from room temperature to 200 C. Strain-induced crystallization has been put forward to account for the experimental evidences.

  1. A simple method of extracting the polarization charge density in the AlGaN/GaN heterostructure from current-voltage and capacitance-voltage characteristics

    Institute of Scientific and Technical Information of China (English)

    Lü Yuan-Jie; Lin Zhao-Jun; Yu Ying-Xia; Meng Ling-Guo; Cao Zhi-Fang; Luan Chong-Biao; Wang Zhan-Guo

    2012-01-01

    An Ni Schottky contact on the AlGaN/GaN heterostructure is fabricated.The flat-band voltage for the Schottky contact on the AlGaN/GaN heterostructure is obtained from the forward current-voltage characteristics.With the measured capacitance-voltage curve and the flat-band voltage,the polarization charge density in the AlGaN/GaN heterostructure is investigated,and a simple formula for calculating the polarization charge density is obtained and analyzed.With the approach described in this paper,the obtained polarization charge density agrees well with the one calculated by self-consistently solving Schrodinger's and Poisson's equations.

  2. A novel CMOS charge-pump circuit with current mode control 110 mA at 2.7 V for telecommunication systems

    Energy Technology Data Exchange (ETDEWEB)

    Krit, Salahddine; Qjidaa, Hassan; Affar, Imad El; Khadija, Yafrah; Messghati, Ziani; El-Ghzizal, Yassir, E-mail: krit_salah@yahoo.f, E-mail: qjidah@yahoo.f [Faculty of Sciences Dhar El Mehraz, Laboratory of Electronic, Signal-Systymes and Informatic (LESSI) Fes (Morocco)

    2010-04-15

    This paper presents a novel organization of switch capacitor charge pump circuits based on voltage doubler structures. Each voltage doubler takes a DC input and outputs a doubled DC voltage. By cascading voltage doublers the output voltage increases up to 2 times. A two-phase voltage doubler and a multiphase voltage doubler structures are discussed and design considerations are presented. A simulator working in the Q-V realm was used for simplified circuit level simulation. In order to evaluate the power delivered by a charge pump, a resistive load is attached to the output of the charge pump and an equivalent capacitance is evaluated. To avoid the short circuit during switching, a clock pair generator is used to achieve multi-phase non-overlapping clock pairs. This paper also identifies optimum loading conditions for different configurations of the charge pumps. The proposed charge-pump circuit is designed and simulated by SPICE with TSMC 0.35-{mu}m CMOS technology and operates with a 2.7 to 3.6 V supply voltage. It has an area of 0.4 mm{sup 2}; it was designed with a frequency regulation of 1 MHz and internal current mode to reduce power consumption. (semiconductor integrated circuits)

  3. Charge Transport Across Insulating Self-Assembled Monolayers: Non-equilibrium Approaches and Modeling To Relate Current and Molecular Structure

    NARCIS (Netherlands)

    Mirjani, F.; Thijssen, J.M.; Whitesides, G.M.; Ratner, M.A.

    2014-01-01

    This paper examines charge transport by tunneling across a series of electrically insulating molecules with the structure HS(CH2)4CONH(CH2)2R) in the form of self-assembled monolayers (SAMs), supported on silver. The molecules examined were studied experimentally by Yoon et al. (Angew. Chem. Int. Ed

  4. Investigation of field-dependent charge carrier generation and recombination in polymer based solar cells by transient extraction currents

    Energy Technology Data Exchange (ETDEWEB)

    Kniepert, Juliane; Blakesley, James; Neher, Dieter [University of Potsdam (Germany)

    2011-07-01

    There is an ongoing discussion as to whether photoinduced charge transfer in P3HT:PCBM solar cells leads to fully separated electrons and holes, independent of an electric field, or Coulombically bound interfacial charge pairs. While recent studies by R.A. Marsh et al. with transient absorption spectroscopy gave clear evidence for the formation and field-induced dissociation of bound polaron pairs, measurements by I.A. Howard et al. were in favour of hot exciton dissociation. Here, we present the results of bias-dependent Time Delayed Collection Field (TDCF) measurements to access directly the density of free charge carriers in P3HT:PCBM blends coated from dichlorobenzene. Solvent annealing was applied to yield a phase-separated morphology and the corresponding solar cells exhibit high values for the external quantum efficiency and fill factor. Our setup allowed us to follow the generation and recombination of photogenerated charges with a so far unattained time resolution of 40 ns. Our experiments show that the number of collected carriers is independent of the applied bias during pulsed illumination implying that extractable carriers in P3HT:PCBM blends are not generated by the field-assisted separation of bound polaron pairs. In addition, our experiments support the view that bimolecular recombination of free carriers is strongly suppressed in phase-separated P3HT:PBCM blends.

  5. Drift waves in a weakly ionized plasma

    DEFF Research Database (Denmark)

    Popovic, M.; Melchior, H.

    1968-01-01

    A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated.......A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated....

  6. 高充电效率的恒流太阳能路灯控制器%Solar street lamp controller of high charging efficiency and constant current

    Institute of Scientific and Technical Information of China (English)

    向敏; 冉景海; 屈洪春

    2015-01-01

    针对传统太阳能路灯控制器主要存在充电效率低、恒流精度低的问题,提出基于多路脉冲宽度调制(PWM)恒流技术的新型太阳能路灯控制器的设计方案。该控制器采用复合式DC-DC变换器,通过控制多路 PWM 信号,实现高效地充放电功能。充电过程以改进的扰动观察法实现最大功率点跟踪(MPPT),提高充电效率;放电过程通过实时检测 LED 路灯的实际电流,动态调整相应 PWM 信号的占空比实现高精度恒流驱动 LED 路灯。实物测试结果表明该控制器能有效地改善充电效率和恒流源精度,充电速度提高了4%~7%,恒流源精度高达2.5%。%The traditional solar street lamp controller is constrained with the low charging efficiency and the low precision of the constant current source.A novel solar street lamp controller based on the multi-channel PWM constant current technology is designed.A composite DC-DC converter is adopted to realize charging and discharging efficiently through controlling multi-channel PWM signals.During the charging stage,the efficiency of charging is improved by tracking the maximum power point with the perturbation and observation method.During the discharging stage,the duty cycle of the relevant PWM signals are used to implement the high precision constant current source for driving the LED street lamp,which can be adjusted automatically through real-time detecting of the lamp’s actual current.The test results show that the charging efficiency of the street lamp controller can be improved evidently,and the charging speed increases 4% to 7%.Furthermore,the precision of the constant current source reaches a high level of 2.5%.

  7. Evidence for a Lattice Weak Gravity Conjecture

    CERN Document Server

    Heidenreich, Ben; Rudelius, Tom

    2016-01-01

    The Weak Gravity Conjecture postulates the existence of superextremal charged particles, i.e. those with mass smaller than or equal to their charge in Planck units. We present further evidence for our recent observation that in known examples a much stronger statement is true: an infinite tower of superextremal particles of different charges exists. We show that effective Kaluza-Klein field theories and perturbative string vacua respect the Sublattice Weak Gravity Conjecture, namely that a finite index sublattice of the full charge lattice exists with a superextremal particle at each site. In perturbative string theory we show that this follows from modular invariance. However, we present counterexamples to the stronger possibility that a superextremal state exists at every lattice site, including an example in which the lightest charged state is subextremal. The Sublattice Weak Gravity Conjecture has many implications both for abstract theories of quantum gravity and for real-world physics. For instance, it ...

  8. Single neutral pion production by charged-current ν¯μ interactions on hydrocarbon at 〈Eν〉=3.6 GeV

    Directory of Open Access Journals (Sweden)

    T. Le

    2015-10-01

    Full Text Available Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH is studied using the MINERvA detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for ν¯e appearance oscillation experiments. The differential cross sections for π0 momentum and production angle, for events with a single observed π0 and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the π0 kinematics for this process.

  9. Charged Leptons

    CERN Document Server

    Albrecht, J; Babu, K; Bernstein, R H; Blum, T; Brown, D N; Casey, B C K; Cheng, C -h; Cirigliano, V; Cohen, A; Deshpande, A; Dukes, E C; Echenard, B; Gaponenko, A; Glenzinski, D; Gonzalez-Alonso, M; Grancagnolo, F; Grossman, Y; Harnik, R; Hitlin, D G; Kiburg, B; Knoepfe, K; Kumar, K; Lim, G; Lu, Z -T; McKeen, D; Miller, J P; Ramsey-Musolf, M; Ray, R; Roberts, B L; Rominsky, M; Semertzidis, Y; Stoeckinger, D; Talman, R; Van De Water, R; Winter, P

    2013-01-01

    This is the report of the Intensity Frontier Charged Lepton Working Group of the 2013 Community Summer Study "Snowmass on the Mississippi", summarizing the current status and future experimental opportunities in muon and tau lepton studies and their sensitivity to new physics. These include searches for charged lepton flavor violation, measurements of magnetic and electric dipole moments, and precision measurements of the decay spectrum and parity-violating asymmetries.

  10. Current-voltage characteristics and charge DLTS spectra of proton-bombarded Schottky diodes on semi-insulating GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Thurzo, I. (Inst. of Physics, Slovak Academy of Sciences, Bratislava (Slovakia)); Hrubcin, L. (Inst. of Electrical Engineering, Slovak Academy of Sciences, Bratislava (Slovakia)); Bartos, J. (Inst. of Physics, Slovak Academy of Sciences, Bratislava (Slovakia)); Pincik, E. (Inst. of Physics, Slovak Academy of Sciences, Bratislava (Slovakia))

    1993-10-01

    Changes in the current-voltage characteristics and charge DLTS spectra of Schottky diodes on semi-insulating GaAs after irradiation by protons at different energies and doses are presented and discussed. Apart from a progressive degradation of the Schottky barriers with enhanced proton energy and dose, there is a threshold, positioned between 10[sup 14] and 10[sup 15] protons/cm[sup 2], for observing trap-limited transients. (orig.)

  11. 用于X射线传感器的多通道微弱电流采集系统%Multi-channel Weak Current Acquisition System for X-ray Sensor

    Institute of Scientific and Technical Information of China (English)

    许超群; 孙颖; 朱大中; 韩雁

    2013-01-01

    在X射线传感器中,为了满足对集成片上闪烁层的6×6光电二极管阵列在脉冲型X射线激发下的光电流值的快速读出要求,提出了一种36通道微弱电流的快速采集系统的设计.系统主要包括低漏电流多路选择器、高精度电流镜和微控制器,在微控制器控制下,系统逐个读出36通道的微弱电流,经过A/D转换后采集值送到PC机显示.实验结果表明,该系统的采集精度可达1 nA,满足X射线传感器的多通道微弱电流的快速采集要求.%To rapidly acquire photocurrents of 6 × 6 photodiode arrays on scintillation layer of integrated chip which are excited by pulsed X-ray in X-ray senor,a multi-channel weak current rapid acquisition system is proposed.The system consists of low leak current multiplexer,high accuracy current mirror and microcontroller.It reads weak current values of the 36 channels sequentially under the control of microcontroller,and the data are sent to PC for display after A/D conversion.The experimental results show the system has the accuracy of 1 nA,meeting the requirement of rapid acquisition of multi-channel weak current for X-ray sensor.

  12. Weak Galois and Weak Cocleft Coextensions

    Institute of Scientific and Technical Information of China (English)

    J.N. Alonso (A)lvarez; J.M. Fernández Vilaboa; R. González Rodríguez; A.B. Rodríguez Raposo

    2007-01-01

    For a weak entwining structure (A, C,ψ) living in a braided monoidal category with equalizers and coequalizers, we formulate the notion of weak A-Galois coextension with normal basis and we show that these Galois coextensions are equivalent to the weak A-cocleft coextensions introduced by the authors.

  13. Design of Weak Current System in Intelligent Community%智能化小区的弱电系统设计

    Institute of Scientific and Technical Information of China (English)

    张菊芳

    2012-01-01

    Intelligent community design principle should reflect the "people-oriented", to ensure the safe, comfortable, convenient. District of weak engineering constitutes mainly by visual intercom system, information communication system, triple play, smart card, security systems, car park management system, automatic fire alarm and fire control linkage system. Intelligent community is not the more function the better, the design should pay attention to market positioning, functional limitation, to prevent technical pitfalls, opening, advanced nature, reliability, economy.%智能小区设计原则应体现“以人为本”,做到安全、舒适、方便.小区内的弱电工程主要由可视对讲系统、信息通信系统、三网合一、智能一卡通、安全防范系统、停车场管理系统、火灾自动报警及消防联动系统构成.小区智能化方面不是功能越多越好,设计时应注意市场定位、功能限额、防止技术陷阱、开放性、先进性、可靠性、经济性.

  14. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zorin, V. G. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Sidorov, A. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Bokhanov, A. F. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Izotov, I. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Razin, S. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Skalyga, V. A. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics

    2013-06-02

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available, however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (~100 kW) microwave (37.5 GHz) radiation provides a dense plasma (~1013 cm-3) with a relatively low electron temperature (~50- 100 eV) and allows for the generation of high current (~1 A/cm2) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP

  15. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, M.A., E-mail: dorf1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Zorin, V.G.; Sidorov, A.V.; Bokhanov, A.F.; Izotov, I.V.; Razin, S.V.; Skalyga, V.A. [Institute of Applied Physics RAS, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation)

    2014-01-01

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available; however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (∼100 kW) microwave (37.5 GHz) radiation provides a dense plasma (∼10{sup 13} cm{sup −3}) with a relatively low electron temperature (∼50–100 eV) and allows for the generation of high current (∼1 A/cm{sup 2}) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP.

  16. Battery charging system

    Energy Technology Data Exchange (ETDEWEB)

    Carollo, J.A.; Kalinsky, W.A.

    1984-02-21

    A battery charger utilizes three basic modes of operation that includes a maintenance mode, a rapid charge mode and time controlled limited charging mode. The device utilizes feedback from the battery being charged of voltage, current and temperature to determine the mode of operation and the time period during which the battery is being charged.

  17. Study and Control of Various Corona Modes in an Atmospheric Pressure Weakly Ionized Plasma Reactor Using a Current Sensor Characterized by a Broad Frequency Band

    Science.gov (United States)

    Islam, Rokibul; Pedrow, Patrick; Lekobou, William; Englund, Karl

    2013-09-01

    A broad band current sensor is being used to monitor the various phenomena (primary streamers, secondary streamers, back corona, etc.) associated with an atmospheric pressure needle-array-to-grounded-screen corona discharge. The reactor consists of a PVC tube and the needle array consists of nickel coated steel electrodes with radius of curvature about 50 μ . The grounded screen is made from stainless steel mesh and applied voltage has a frequency of 60 Hz with an RMS value ranging from 0 to 10 kV. The voltage sensor is a resistive divider and the current sensor is a viewing resistor with value 50 Ω. The feed gas stream is presently (argon + acetylene) or (argon + oxygen) with the argon acting as carrier gas and the acetylene and oxygen acting as precursor gases. Voltage and current are captured with a LeCroy 9350AL 500MHz oscilloscope and analyzed with Matlab using digital signal processing algorithms. The goals of the research are 1) to measure reactor electrical power on a real time basis; 2) to provide real time control of the applied voltage and thus avoid spark conditions; and 3) to identify the various corona modes present in the reactor. Processing of substrates takes place downstream from the grounded screen, outside of the harsh corona discharge environment.

  18. Charge filling factors in clean and disordered arrays of tunnel junctions.

    Science.gov (United States)

    Walker, Kelly A; Vogt, Nicolas; Cole, Jared H

    2015-12-02

    We simulate one-dimensional arrays of tunnel junctions using the kinetic Monte Carlo method to study charge filling behaviour in the large charging energy limit. By applying a small fixed voltage bias and varying the offset voltage, we investigate this behaviour in clean and disordered arrays (both weak and strong disorder effects). The offset voltage dependent modulation of the current is highly sensitive to background charge disorder and exhibits substantial variation depending on the strength of the disorder. We show that while small fractional charge filling factors are likely to be washed out in experimental devices due to strong background charge disorder, larger factors may be observable.

  19. Charge inversion, water splitting, and vortex suppression due to DNA sorption on ion-selective membranes and their ion-current signatures.

    Science.gov (United States)

    Slouka, Zdenek; Senapati, Satyajyoti; Yan, Yu; Chang, Hsueh-Chia

    2013-07-02

    The physisorption of negatively charged single-stranded DNA (ssDNA) of different lengths onto the surface of anion-exchange membranes is sensitively shown to alter the anion flux through the membrane. At low surface concentrations, the physisorbed DNAs act to suppress an electroconvection vortex instability that drives the anion flux into the membrane and hence reduce the overlimiting current through the membrane. Beyond a critical surface concentration, determined by the total number of phosphate charges on the DNA, the DNA layer becomes a cation-selective membrane, and the combined bipolar membrane has a lower net ion flux, at low voltages, than the original membrane as a result of ion depletion at the junction between the cation- (DNA) and anion-selective membranes. However, beyond a critical voltage that is dependent on the ssDNA coverage, water splitting occurs at the junction to produce a larger overlimiting current than that of the original membrane. These two large opposite effects of polyelectrolyte counterion sorption onto membrane surfaces may be used to eliminate limiting current constraints of ion-selective membranes for liquid fuel cells, dialysis, and desalination as well as to suggest a new low-cost membrane surface assay that can detect and quantify the number of large biomolecules captured by probes functionalized on the membrane surface.

  20. Precise measurement of the weak mixing angle in neutrino-nucleon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo, C.G.; King, B.J.; Bachmann, K.T.; Bazarko, A.O.; Bolton, T.; Foudas, C.; Lefmann, W.C.; Leung, W.C.; Mishra, S.R.; Oltman, E.; Quintas, P.Z.; Rabinowitz, S.A.; Sciulli, F.J.; Seligman, W.G.; Shaevitz, M.H. (Columbia University, New York, New York 10027 (United States)); Merritt, F.S.; Oreglia, M.J.; Schumm, B.A. (University of Chicago, Chicago, Illinois 60637 (United States)); Bernstein, R.H.; Borcherding, F.; Fisk, H.E.; Lamm, M.J.; Marsh, W.; Merritt, K.W.B.; Schellman, H.M.; Yovanovitch, D.D. (Fermilab, Batavia, Illinois 60510 (United States)); Bodek, A.; Budd, H.S.; de Barbaro, P.; Sakumoto, W.K. (University of Rochester, Rochester, New York 14627 (United States)); Kinnel, T.; Sandler, P.H.; Smith, W.H. (University of Wisconsin Madison, Wisconsin 53706 (United States))

    1994-05-30

    We report a precise measurement of the weak mixing angle from the ratio of neutral current to charged current inclusive cross sections in deep-inelastic neutrino-nucleon scattering. The data were gathered at the CCFR neutrino detector in the Fermilab quadrupole-triplet beam, with neutrino energies up to 600 GeV. Using the on-shell definition, sin[sup 2][theta][sub [ital W

  1. Cross section of the charged current reaction sup 12 C(. nu. sub e , e sup - ) sup 12 N sub g. s

    Energy Technology Data Exchange (ETDEWEB)

    Bodmann, B.; Burtak, F.; Finckh, E.; Glombik, A.; Hanika, T.; Hoessl, J.; Kretschmer, W.; Meyer, R.; Schilling, F. (Physikalisches Inst., Univ. Erlangen-Nuernberg, Erlangen (Germany)); Booth, N.E. (Dept. of Nuclear Physics, Oxford Univ. (United Kingdom)); Dodd, A. (Rutherford Appleton Lab., Chilton (United Kingdom)); Drexlin, G.; Eberhard, V.; Eitel, K.; Gemmeke, H.; Giorginis, G.; Grandegger, W.; Kleifges, M.; Kleinfeller, J.; Maschuw, R.; Plischke, P.; Rapp, J.; Raupp, F.; Wochele, J.; Wolf, J.; Woelfle, S.; Zeitnitz, B. (Inst. fuer Kernphysik 1, Kernforschungszentrum Karlsruhe (Germany) Inst. fuer Experimentelle Kernphysik, Univ. Karlsruhe (Germany)); Edgington, J.A.; Gorringe, T.; Malik, A.; Seligmann, B. (Physics Dept., Queen Mary and Westfield Coll., London (United Kingdom)); KARMEN Collaboration

    1992-04-30

    The charged current nuclear transition {sup 12}C({nu}{sub e}, e{sup -}){sup 12}N{sub g.s.} has been observed in the KARMEN experiment. The flux average cross section for {nu}{sub e} from {mu}{sup +} decay at rest is determined to be <{sigma}>=(8.1{+-}0.9(stat.){+-}0.75(syst.))x10{sup -42} cm{sup 2}. For the first time also the energy dependence of the cross section has been measured for neutrino energies up to 50 MeV. (orig.).

  2. First Measurement of the Muon Neutrino Charged Current Single Pion Production Cross Section on Water with the T2K Near Detector

    CERN Document Server

    Abe, K.

    2017-01-01

    The T2K off-axis near detector, ND280, is used to make the first differential cross section measurements of muon neutrino charged current single positive pion production on a water target at energies ${\\sim}0.8$~GeV. The differential measurements are presented as a function of muon and pion kinematics, in the restricted phase-space defined by $p_{\\pi^+}>200$MeV/c, $p_{\\mu^-}>200$MeV/c, $\\cos \\theta_{\\pi^+}>0.3$ and $\\cos \\theta_{\\mu^-}>0.3$. The total flux integrated $\

  3. 我国现行受贿犯罪罪名体系探究%The Charges System of China's Current Bribery Crime

    Institute of Scientific and Technical Information of China (English)

    吴雨阳

    2013-01-01

      At present ,punishing bribery crime is the most important anti-corruption work in china, in allusion to the viewpoint supported by the present criminal law academic, that the bribery crime charges system should perform unified under a development route. Discussing the present bribery crime charges system, we should considere from the subject of crime, the object of crime, the legal interest, and the application and distribution of the specific provisions to affirm the rationality of current bribery crimes charges system, analyzing the rationality of the units and natural person double subjects of crime in our country and putting forward measures for improving the bribery crime charges system. This paper argues the regulating the bribery crime in the non-state-owned units, further refining the current bribery crime charges to make the judicial practice more facilitated.%  惩治受贿犯罪是我国目前反贪腐工作的重中之重,针对目前刑法学界普遍主张的“贪污贿赂犯罪罪名体系一元化的发展路线”,在探讨现行受贿犯罪罪名体系的基础上,从犯罪主体、客体、法益保护、分则条文的适用和分布等多方面肯定我国现行受贿犯罪罪名体系的合理性,分析我国单位和自然人双重犯罪主体的可行性,并提出对我国受贿犯罪罪名体系的完善措施,主张规制非国有单位的受贿犯罪,并对现行受贿犯罪进行进一步细化,以便司法实践操作。

  4. Observation of Muon Neutrino Charged Current Events in an Off-Axis Horn-Focused Neutrino Beam Using the NOvA Prototype Detector

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Enrique Arrieta [Michigan State Univ., East Lansing, MI (United States)

    2014-01-01

    The NOνA is a long base-line neutrino oscillation experiment. It will study the oscillations between muon and electron neutrinos through the Earth. NOνA consists of two detectors separated by 810 km. Each detector will measure the electron neutrino content of the neutrino (NuMI) beam. Differences between the measurements will reveal details about the oscillation channel. The NOνA collaboration built a prototype detector on the surface at Fermilab in order to develop calibration, simulation, and reconstruction tools, using real data. This 220 ton detector is 110 mrad off the NuMI beam axis. This off-axis location allows the observation of neutrino interactions with energies around 2 GeV, where neutrinos come predominantly from charged kaon decays. During the period between October 2011 and April 2012, the prototype detector collected neutrino data from 1.67 × 1020 protons on target delivered by the NuMI beam. This analysis selected a number of candidate charged current muon neutrino events from the prototype data, which is 30% lower than predicted by the NOνA Monte Carlo simulation. The analysis suggests that the discrepancy comes from an over estimation of the neutrino flux in the Monte Carlo simulation, and in particular, from neutrinos generated in charged kaon decays. The ratio of measured divided by the simulated flux of muon neutrinos coming from charged kaon decays is: 0.70+0.108 -0.094. The NOνA collaboration may use the findings of this analysis to introduce a more accurate prediction of the neutrino flux produced by the NuMI beam in future Monte Carlo simulations.

  5. Enhanced saturation current sensitivities to charge trapping and illumination in MOS tunnel diode by inserting metal in gate dielectric

    Science.gov (United States)

    Chen, Jun-Yao; Kao, Wei-Chih; Hwu, Jenn-Gwo

    2016-06-01

    The enlarged two-state phenomenon in the current-voltage (I-V) characteristic of metal-oxide-semiconductor (MOS) tunnel diode (TD) after negative/positive constant voltage stress (negative/positive CVS) was investigated. It was found that the reverse saturation tunnel current of MOS TD is proportional to the Schottky barrier height of holes, which is determined by the intensity of fringing field (FF) at device edge. With the aid of high permittivity dielectric and screening effect by embedded metal in the MOS structure, the FF was enhanced, which was confirmed by TCAD simulations. Because of the FF enhancement, after proper electrical treatments of voltage stressing, the intensified quantity of electron trapping/de-trapping was found at device edge, which augmented the modulation of Schottky barrier height of holes. As a result, much variation of reverse saturation tunnel current was exhibited, and hence, the enlarged two-state behavior was achieved. The endurance characteristics were also demonstrated to show that the trapped electrons are more stable in the MOS structure with embedded aluminum. Moreover, benefited from FF enhancement, the enlarged photosensitivity of the I-V characteristics of the sample with high permittivity dielectric and embedded aluminum was obtained. The mechanisms of the enlarged split of current behaviors after suitable CVS and illumination treatments are also discussed for these observations.

  6. On Weak Regular *-semigroups

    Institute of Scientific and Technical Information of China (English)

    Yong Hua LI; Hai Bin KAN; Bing Jun YU

    2004-01-01

    In this paper, a special kind of partial algebras called projective partial groupoids is defined.It is proved that the inverse image of all projections of a fundamental weak regular *-semigroup under the homomorphism induced by the maximum idempotent-separating congruence of a weak regular *-semigroup has a projective partial groupoid structure. Moreover, a weak regular *-product which connects a fundamental weak regular *-semigroup with corresponding projective partial groupoid is defined and characterized. It is finally proved that every weak regular *-product is in fact a weak regular *-semigroup and any weak regular *-semigroup is constructed in this way.

  7. Measurements of the inclusive neutrino and antineutrino charged current cross sections in MINERvA using the low-ν flux method

    Science.gov (United States)

    Devan, J.; Ren, L.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Budd, H.; Cai, T.; Carneiro, M. F.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tice, B. G.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Minerva Collaboration

    2016-12-01

    The total cross sections are important ingredients for the current and future neutrino oscillation experiments. We present measurements of the total charged-current neutrino and antineutrino cross sections on scintillator (CH) in the NuMI low-energy beamline using an in situ prediction of the shape of the flux as a function of neutrino energy from 2-50 GeV. This flux prediction takes advantage of the fact that neutrino and antineutrino interactions with low nuclear recoil energy (ν ) have a nearly constant cross section as a function of incident neutrino energy. This measurement is the lowest energy application of the low-ν flux technique, the first time it has been used in the NuMI antineutrino beam configuration, and demonstrates that the technique is applicable to future neutrino beams operating at multi-GeV energies. The cross section measurements presented are the most precise measurements to date below 5 GeV.

  8. Modeling of the saturation current of a fission chamber taking into account the distorsion of electric field due to space charge effects

    CERN Document Server

    Poujade, O; Poujade, Olivier; Lebrun, Alain

    1999-01-01

    Fission chambers were first made fifty years ago for neutron detection. At the moment, the French Atomic Energy Commission \\textsf{(CEA-Cadarache)} is developing a sub-miniature fission chamber technology with a diameter of 1.5 mm working in the current mode (Bign). To be able to measure intense fluxes, it is necessary to adjust the chamber geometry and the gas pressure before testing it under real neutron flux. In the present paper, we describe a theoretical method to foresee the current-voltage characteristics (sensitivity and saturation plateau) of a fission chamber whose geometrical features are given, taking into account the neutron flux to be measured (spectrum and intensity). The proposed theoretical model describes electric field distortion resulting from charge collection effect. A computer code has been developed on this model basis. Its application to 3 kinds of fission chambers indicates excellent agreement between theoretical model and measured characteristics.

  9. Measurement of high-Q{sup 2} charged current cross sections in e{sup +}p deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Rautenberg, J.

    2004-06-01

    Cross sections for charged current deep inelastic scattering have been measured in e{sup +}p collisions at a center-of-mass energy of 318 GeV. The data collected with the ZEUS detector at HERA in the running periods 1999 and 2000 correspond to an integrated luminosity of 61 pb{sup -1}. Single differential cross sections d{sigma}/dQ{sup 2}, d{sigma}/dx and d{sigma}/dy have been measured for Q{sup 2}>200 GeV{sup 2}, as well as the double differential reduced cross section d{sup 2}{sigma}/dxdQ{sup 2} in the kinematic range 280 GeV{sup 2}charged current deep inelastic scattering cross sections. The helicity structure is investigated in particular. The mass of the space-like W boson propagator has been determined from a fit to d{sigma}/dQ{sup 2}. (orig.)

  10. Charge trapping studies in SiO2 using high current injection from Si-rich SiO2 films

    Science.gov (United States)

    DiMaria, D. J.; Ghez, R.; Dong, D. W.

    1980-09-01

    The high electron injection phenomenon of Si-rich SiO2 films deposited on top of SiO2 can be used for novel charge trapping studies of sites normally present or purposely introduced in the SiO2. From the position and extent of current ledges observed in dark current as a function of ramped gate voltage, the capture cross section and total number of traps can be determined. Using these measurements with capacitance as a function of gate voltage, the trap distribution centroid and number of trapped charges can also be found. Several experimental examples are given including trapping in thermal SiO2, in chemically vapor deposited (CVD) SiO2, and on W, less than a monolayer thick, sandwiched between thermal and CVD SiO2. These stepped insulator metal-insulator-silicon (SI-MIS) ramp I-V results for the trapping parameters are shown to be in good agreement with those determined using the conventional photo I-V and avalanche injection with flat-band voltage tracking techniques. A numerical simulation of the ramp I-V measurements, assuming electric field-enhanced Fowler-Nordheim tunneling at the Si-rich-SiO2-SiO2 interface, is described and is shown to give good agreement with the experimental data. These techniques for SI-MIS structures are faster and easier, although less accurate than the conventional techniques.

  11. Measurement of the inclusive νμ charged current cross section on iron and hydrocarbon in the T2K on-axis neutrino beam

    Science.gov (United States)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-09-01

    We report a measurement of the νμ inclusive charged current cross sections on iron and hydrocarbon in the Tokai-to-Kamioka (T2K) on-axis neutrino beam. The measured inclusive charged current cross sections on iron and hydrocarbon averaged over the T2K on-axis flux with a mean neutrino energy of 1.51 GeV are (1.444±0.002(stat)-0.157+0.189(syst))×10-38 cm2/nucleon and (1.379±0.009(stat)-0.147+0.178(syst))×10-38 cm2/nucleon, respectively, and their cross-section ratio is 1.047±0.007(stat)±0.035(syst). These results agree well with the predictions of the neutrino interaction model, and thus we checked the correct treatment of the nuclear effect for iron and hydrocarbon targets in the model within the measurement precisions.

  12. Measurement of the inclusive νμ charged current cross section on carbon in the near detector of the T2K experiment

    Science.gov (United States)

    Abe, K.; Abgrall, N.; Aihara, H.; Akiri, T.; Albert, J. B.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Beznosko, D.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Boyd, S.; Brailsford, D.; Bravar, A.; Bronner, C.; Brook-Roberge, D. G.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; Day, M.; de André, J. P. A. M.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Dobson, J.; Drapier, O.; Duboyski, T.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Dziomba, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Frank, E.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Guzowski, P.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Joo, K. K.; Jung, C. K.; Kaboth, A.; Kaji, H.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khanam, F.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J. Y.; Kim, J.; Kim, S. B.; Kirby, B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kowalik, K.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laing, A.; Laveder, M.; Lawe, M.; Lee, K. P.; Licciardi, C.; Lim, I. T.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, G. D.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marchionni, A.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; McFarland, K. S.; McGrew, C.; McLachlan, T.; Messina, M.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakajima, K.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nicholls, T. C.; Nielsen, C.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Obayashi, Y.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Pac, M. Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Pinzon Guerra, E. S.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Scully, D. I.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shibata, M.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Szeptycka, M.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. A.; Tanaka, M. M.; Tanaka, M.; Taylor, I. J.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wang, J.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2013-05-01

    T2K has performed the first measurement of νμ inclusive charged current interactions on carbon at neutrino energies of ˜1GeV where the measurement is reported as a flux-averaged double differential cross section in muon momentum and angle. The flux is predicted by the beam Monte Carlo and external data, including the results from the NA61/SHINE experiment. The data used for this measurement were taken in 2010 and 2011, with a total of 10.8×1019 protons-on-target. The analysis is performed on 4485 inclusive charged current interaction candidates selected in the most upstream fine-grained scintillator detector of the near detector. The flux-averaged total cross section is ⟨σCC⟩ϕ=(6.91±0.13(stat)±0.84(syst))×10-39(cm2)/(nucleon) for a mean neutrino energy of 0.85 GeV.

  13. Make Dark Matter Charged Again

    CERN Document Server

    Agrawal, Prateek; Randall, Lisa; Scholtz, Jakub

    2016-01-01

    We revisit constraints on dark matter that is charged under a $U(1)$ gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viabili...

  14. Heat and Charge Current Fluctuations and the Time-Dependent Coefficient of Performance for a Nanoscale Refrigerator

    Science.gov (United States)

    Okada, Hiroki; Utsumi, Yasuhiro

    2017-02-01

    We theoretically investigate the coefficient of performance (COP) of a mesoscopic thermoelectric refrigerator realized by using a tunnel junction. We analyze the influence of particle and heat current fluctuations on the COP out of the equilibrium regime. We calculate the average COP by using full counting statistics and find that it depends on the measurement time τ. The deviation from the macroscopic COP value can be expressed with the Skellam distribution at all times. This result enables us to improve the Gaussian approximation valid within the linear response regime, which cannot predict the average COP in the limit of τ → 0. We illustrate the time dependence of the average COP and find that in the short-time regime, the average COP possesses a minimum. In order to confirm the physical consistency far from equilibrium, we propose checking the correlation coefficient between the particle and the heat currents in addition to the positivity of the entropy production rate.

  15. Electrical Detection of Charge-Current-Induced Spin Polarization Due to Spin-Momentum Locking in Bi2Se3

    Science.gov (United States)

    2014-01-01

    magnetic field, the measured spin voltage mirrors the hysteresis loop of the contact. When the contact magnetization is rotated in-plane 908 so that... measurements , as described in the Supplementary Section ‘Ferromagnetic contacts’. The Fe contacts exhibited square magnetization versus applied field...Fig. 3a,b, and for this current direction closely resembles the magnetic hysteresis loop of the Fe detector contact itself. The detector voltage often

  16. Discrimination between spin-dependent charge transport and spin-dependent recombination in π-conjugated polymers by correlated current and electroluminescence-detected magnetic resonance

    Science.gov (United States)

    Kavand, Marzieh; Baird, Douglas; van Schooten, Kipp; Malissa, Hans; Lupton, John M.; Boehme, Christoph

    2016-08-01

    Spin-dependent processes play a crucial role in organic electronic devices. Spin coherence can give rise to spin mixing due to a number of processes such as hyperfine coupling, and leads to a range of magnetic field effects. However, it is not straightforward to differentiate between pure single-carrier spin-dependent transport processes which control the current and therefore the electroluminescence, and spin-dependent electron-hole recombination which determines the electroluminescence yield and in turn modulates the current. We therefore investigate the correlation between the dynamics of spin-dependent electric current and spin-dependent electroluminescence in two derivatives of the conjugated polymer poly(phenylene-vinylene) using simultaneously measured pulsed electrically detected (pEDMR) and optically detected (pODMR) magnetic resonance spectroscopy. This experimental approach requires careful analysis of the transient response functions under optical and electrical detection. At room temperature and under bipolar charge-carrier injection conditions, a correlation of the pEDMR and the pODMR signals is observed, consistent with the hypothesis that the recombination currents involve spin-dependent electronic transitions. This observation is inconsistent with the hypothesis that these signals are caused by spin-dependent charge-carrier transport. These results therefore provide no evidence that supports earlier claims that spin-dependent transport plays a role for room-temperature magnetoresistance effects. At low temperatures, however, the correlation between pEDMR and pODMR is weakened, demonstrating that more than one spin-dependent process influences the optoelectronic materials' properties. This conclusion is consistent with prior studies of half-field resonances that were attributed to spin-dependent triplet exciton recombination, which becomes significant at low temperatures when the triplet lifetime increases.

  17. An improved charge pump with suppressed charge sharing effect

    Directory of Open Access Journals (Sweden)

    Na Bai

    2013-09-01

    Full Text Available A differential charge pump with reduced charge sharing effect is presented. The current-steering topology is adopted for fast switching. A replica charge pump is added to provide a current path for the complementary branch of the master charge pump in the current switching. Through the replica charge pump, the voltage at the complementary node of the master charge pump keeps stable during switching, and the dynamic charge sharing effect is avoided. Apply the charge pump to a 4.8 GHz band integer-N PLL, the measured reference spur is -49.7dBc with a 4-MHz reference frequency.

  18. Perspective: Coulomb fluids—Weak coupling, strong coupling, in between and beyond

    Science.gov (United States)

    Naji, Ali; Kanduč, Matej; Forsman, Jan; Podgornik, Rudolf

    2013-10-01

    We present a personal view on the current state of statistical mechanics of Coulomb fluids with special emphasis on the interactions between macromolecular surfaces, concentrating on the weak and the strong coupling limits. Both are introduced for a (primitive) counterion-only system in the presence of macroscopic, uniformly charged boundaries, where they can be derived systematically. Later we show how this formalism can be generalized to the cases with additional characteristic length scales that introduce new coupling parameters into the problem. These cases most notably include asymmetric ionic mixtures with mono- and multivalent ions that couple differently to charged surfaces, ions with internal charge (multipolar) structure and finite static polarizability, where weak and strong coupling limits can be constructed by analogy with the counterion-only case and lead to important new insights into their properties that cannot be derived by any other means.

  19. Current Flow and Pair Creation at Low Altitude in Rotation-Powered Pulsars' Force-Free Magnetospheres: Space Charge Limited Flow

    Science.gov (United States)

    Timokhin, A. N.; Arons, J.

    2013-01-01

    We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs.We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/j(sub GJ) rotating frame), finding that such steady flows can occupy only a small fraction of the current density parameter space exhibited by the force-free magnetospheric model. The generic polar flow dynamics and pair creation are strongly time dependent. The model has an essential difference from almost all previous quantitative studies, in that we sought the accelerating voltage (with pair creation, when the voltage drops are sufficiently large; without, when they are

  20. Longitudinal vector form factors in weak decays of nuclei

    CERN Document Server

    Simkovic, F; Krivoruchenko, M I

    2015-01-01

    The longitudinal form factors of the weak vector current of particles with spin $ J = 1/2 $ and isospin $ I = 1/2 $ are determined by the mass difference and the charge radii of members of the isotopic doublets. The most promising reactions to measure these form factors are the reactions with large momentum transfers involving the spin-1/2 isotopic doublets with a maximum mass splitting. Numerical estimates of longitudinal form factors are given for nucleons and eight nuclear spin-1/2 isotopic doublets.

  1. The Weak Gravity Conjecture in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Montero, Miguel [Departamento de Física Teórica, Facultad de Ciencias,Universidad Autónoma de Madrid,Calle Francisco Tomás y Valiente 7, 28049 Madrid (Spain); Instituto de Física Teórica IFT-UAM/CSIC, Campus de Cantoblanco,C/ Nicolás Cabrera 13-15, 28049 Madrid (Spain); Shiu, Gary; Soler, Pablo [Department of Physics, University of Wisconsin-Madison,1150 University Ave, Madison, WI 53706 (United States); Department of Physics & Institute for Advanced Study,Hong Kong University of Science and Technology,Lo Ka Chung Building, Lee Shau Kee Campus, Clear Water Bay (Hong Kong)

    2016-10-28

    We study weakly coupled U(1) theories in AdS{sub 3}, their associated charged BTZ solutions, and their charged spectra. We find that modular invariance of the holographic dual two-dimensional CFT and compactness of the gauge group together imply the existence of charged operators with conformal dimension significantly below the black hole threshold. We regard this as a form of the Weak Gravity Conjecture (WGC) in three dimensions. We also explore the constraints posed by modular invariance on a particular discrete ℤ{sub N} symmetry which arises in our discussion. In this case, modular invariance does not guarantee the existence of light ℤ{sub N}-charged states. We also highlight the differences between our discussion and the usual heuristic arguments for the WGC based on black hole remnants.

  2. The Weak Gravity Conjecture in three dimensions

    CERN Document Server

    Montero, Miguel; Soler, Pablo

    2016-01-01

    We study weakly coupled $U(1)$ theories in $AdS_3$, their associated charged BTZ solutions, and their charged spectra. We find that modular invariance of the holographic dual two-dimensional CFT and compactness of the gauge group together imply the existence of charged operators with conformal dimension significantly below the black hole threshold. We regard this as a form of the Weak Gravity Conjecture (WGC) in three dimensions. We also explore the constraints posed by modular invariance on a particular discrete $\\mathbb{Z}_N$ symmetry which arises in our discussion. In this case, modular invariance does not guarantee the existence of light $\\mathbb{Z}_N$-charged states. We also highlight the differences between our discussion and the usual heuristic arguments for the WGC based on black hole remnants.

  3. Weak Gravity Conjecture in AdS/CFT

    CERN Document Server

    Nakayama, Yu

    2015-01-01

    We study implications of the weak gravity conjecture in the AdS/CFT correspondence. Unlike in Minkowski spacetime, AdS spacetime has a physical length scale, so that the conjecture must be generalized with an additional parameter. We discuss possible generalizations and translate them into the language of dual CFTs, which take the form of inequalities involving the dimension and charge of an operator as well as the current and energy-momentum tensor central charges. We then test these inequalities against various CFTs to see if they are universally obeyed by all the CFTs. We find that certain CFTs, such as supersymmetric QCDs, do not satisfy them even in the large $N$ limit. This does not contradict the conjecture in AdS spacetime because the theories violating them are either unlikely or unclear to have weakly coupled gravitational descriptions, but it suggests that the CFT inequalities obtained here by naive translations do not apply beyond the regime in which weakly coupled gravitational descriptions are a...

  4. MINERvA Measurement of Neutrino Charged-Current Cross Section Ratios of Nuclei C, Fe, and Pb to CH at Energies of a Few GeV

    Energy Technology Data Exchange (ETDEWEB)

    Gran, Richard [Minnesota U., Duluth

    2016-06-02

    The MINERvA experiment is designed to measure neutrino cross sections for different nuclei using substantially similar fiducial and tracking environments. This allows for reduced systematics in the ratio to better see the evolution of the cross section with the size of the nucleus. The first such result is an inclusive charged current cross section ratio as a function of energy from and the kinematic quantity Bjorken x for nuclei Pb, Fe, and C relative to plastic scintillator CH. The measurement is made for neutrino energies from 2 to 20 GeV. In the past, charged lepton scattering ratios of heavier nuclei to deuterium have revealed interesting structure such as the EMC effect. These ratios were restricted to purely deep inelastic scattering data whereas these ratios to different nuclei in MINERvA are sensitive to the elastic scattering as well as resonance production regions. Significant deviations from the baseline scattering model are observed, and suggest new theory work to investigate these ratios.

  5. Cofinitely weak supplemented modules

    OpenAIRE

    Alizade, Rafail; Büyükaşık, Engin

    2003-01-01

    We prove that a module M is cofinitely weak supplemented or briefly cws (i.e., every submodule N of M with M/N finitely generated, has a weak supplement) if and only if every maximal submodule has a weak supplement. If M is a cws-module then every M-generated module is a cws-module. Every module is cws if and only if the ring is semilocal. We study also modules, whose finitely generated submodules have weak supplements.

  6. GENERALIZED WEAK FUNCTIONS

    Institute of Scientific and Technical Information of China (English)

    丁夏畦; 罗佩珠

    2004-01-01

    In this paper the authors introduce some new ideas on generalized numbers and generalized weak functions. They prove that the product of any two weak functions is a generalized weak function. So in particular they solve the problem of the multiplication of two generalized functions.

  7. Influence of the spatially inhomogeneous gap distribution on the quasiparticle current in c-axis junctions involving d-wave superconductors with charge density waves

    Science.gov (United States)

    Ekino, T.; Gabovich, A. M.; Li, Mai Suan; Szymczak, H.; Voitenko, A. I.

    2016-11-01

    The quasiparticle tunnel current J(V) between the superconducting ab-planes along the c-axis and the corresponding conductance G(V)=\\text{d}J/\\text{d}V were calculated for symmetric junctions composed of disordered d-wave layered superconductors partially gapped by charge density waves (CDWs). Here, V is the voltage. Both the checkerboard and unidirectional CDWs were considered. It was shown that the spatial spread of the CDW-pairing strength substantially smears the peculiarities of G(V) appropriate to uniform superconductors. The resulting curves G(V) become very similar to those observed for a number of cuprates in intrinsic junctions, e.g. mesas. In particular, the influence of CDWs may explain the peak-dip-hump structures frequently found for high-T c oxides.

  8. Inclusive production of ρ0(770), f0(980) and f2(1270) mesons in νμ charged current interactions

    Science.gov (United States)

    Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; de Santo, A.; Dignan, T.; di Lella, L.; Do Couto E Silva, E.; Dumarchez, J.; Ellis, M.; Fazio, T.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kuznetsov, V.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; Larotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubičić, A.; Long, J.; Lupi, A.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S. R.; Moorhead, G. F.; Naumov, D.; Nédélec, P.; Nefedov, Yu; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rathouit, P.; Rico, J.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Yabsley, B. D.; Zaccone, H.; Zuber, K.; Zuccon, P.; NOMAD Collaboration

    The inclusive production of the meson resonances ρ0(770), f0(980) and f2(1270) in neutrino-nucleus charged current interactions has been studied with the NOMAD detector exposed to the wide band neutrino beam generated by 450 GeV protons at the CERN SPS. For the first time the f0(980) meson is observed in neutrino interactions. The statistical significance of its observation is 6 standard deviations. The presence of f2(1270) in neutrino interactions is reliably established. The average multiplicity of these three resonances is measured as a function of several kinematic variables. The experimental results are compared to the multiplicities obtained from a simulation based on the Lund model. In addition, the average multiplicity of ρ0(770) in antineutrino-nucleus interactions is measured.

  9. Experimental study of nonlinear interaction of plasma flow with charged thin current sheets: 1. Boundary structure and motion

    Directory of Open Access Journals (Sweden)

    E. Amata

    2006-01-01

    Full Text Available We study plasma transport at a thin magnetopause (MP, described hereafter as a thin current sheet (TCS, observed by Cluster at the southern cusp on 13 February 2001 around 20:01 UT. The Cluster observations generally agree with the predictions of the Gas Dynamic Convection Field (GDCF model in the magnetosheath (MSH up to the MSH boundary layer, where significant differences are seen. We find for the MP a normal roughly along the GSE x-axis, which implies a clear departure from the local average MP normal, a ~90 km thickness and an outward speed of 35 km/s. Two populations are identified in the MSH boundary layer: the first one roughly perpendicular to the MSH magnetic field, which we interpret as the "incident" MSH plasma, the second one mostly parallel to B. Just after the MP crossing a velocity jet is observed with a peak speed of 240 km/s, perpendicular to B, with MA=3 and β>10 (peak value 23. The magnetic field clock angle rotates by 70° across the MP. Ex is the main electric field component on both sides of the MP, displaying a bipolar signature, positive on the MSH side and negative on the opposite side, corresponding to a ~300 V electric potential jump across the TCS. The E×B velocity generally coincides with the perpendicular velocity measured by CIS; however, in the speed jet a difference between the two is observed, which suggests the need for an extra flow source. We propose that the MP TCS can act locally as an obstacle for low-energy ions (<350 eV, being transparent for ions with larger gyroradius. As a result, the penetration of plasma by finite gyroradius is considered as a possible source for the jet. The role of reconnection is briefly discussed. The electrodynamics of the TCS along with mass and momentum transfer across it are further discussed in the companion paper by Savin et al. (2006.

  10. Spatial distribution of superconducting and charge-density-wave order parameters in cuprates and its influence on the quasiparticle tunnel current (Review Article)

    Science.gov (United States)

    Gabovich, Alexander M.; Voitenko, Alexander I.

    2016-10-01

    The state of the art concerning tunnel measurements of energy gaps in cuprate oxides has been analyzed. A detailed review of the relevant literature is made, and original results calculated for the quasiparticle tunnel current J(V) between a metallic tip and a disordered d-wave superconductor partially gapped by charge density waves (CDWs) are reported, because it is this model of high-temperature superconductors that becomes popular owing to recent experiments in which CDWs were observed directly. The current was calculated suggesting the scatter of both the superconducting and CDW order parameters due to the samples' intrinsic inhomogeneity. It was shown that peculiarities in the current-voltage characteristics inherent to the case of homogeneous superconducting material are severely smeared, and the CDW-related features transform into experimentally observed peak-dip-hump structures. Theoretical results were used to fit data measured for YBa2Cu3O7-δ and Bi2Sr2CaCu2O8+δ. The fitting demonstrated a good qualitative agreement between the experiment and model calculations. The analysis of the energy gaps in high-Tc superconductors is important both per se and as a tool to uncover the nature of superconductivity in cuprates not elucidated so far despite of much theoretical effort and experimental progress.

  11. Precision measurement of the cross section of charged-current and neutral current processes at large Q{sup 2} at HERA with the polarized-electron beam; Mesures de precision de la section efficace des processus courant charge et courant neutre a grand Q{sup 2} a HERA avec le faisceau d'electrons polarises

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Trong Hieu

    2011-04-15

    The inclusive cross sections for both charged and neutral current processes have been measured in interactions of longitudinally polarized electrons (positrons) with unpolarized protons using the full data samples collected by H1 at HERA-II. The data taken at a center-of-mass energy of 319 GeV correspond to an integrated luminosity of 149.1 pb{sup -1} and 180.0 pb{sup -1} for e{sup -}p and e{sup +}p collisions, representing an increase in statistics of a factor of 10 and 2, respectively, over the data from HERA-I. The measured double differential cross sections d{sup 2}{sigma}/dxdQ{sup 2} cover more than two orders of magnitude in both Q{sup 2}, the negative four-momentum transfer squared, up to 30000 GeV{sup 2}, and Bjorken x, down to 0.003. The cross section data are compared to predictions of the Standard Model which is able to provide a good description of the data. The polarization asymmetry as a function of Q{sup 2} is measured with improved precision, confirming the previous observation of P violation effect in neutral current ep scattering at distances down to 10{sup -18} m. The total cross sections of the charged current process, for Q{sup 2} > 400 GeV{sup 2} and inelasticity y < 0.9 are measured for 4 independent data samples with e{sup {+-}} beams and different polarization values. Together with the corresponding cross section obtained from the previously published unpolarized data, the polarization dependence of the charged current cross section is measured and found to be in agreement with the Standard Model prediction with the absence of right-handed charged current. The cross sections are combined with previously published data from H1 to obtain the most precise unpolarized measurements. These are used to extract the structure function xF{sub 3}{sup {gamma}}{sup Z} which is sensitive to the valence quark distributions down to low x values. The new cross sections have also been used in a combined electroweak and QCD fit to significantly improve the

  12. Charge carrier transport in Cu(In,Ga)Se{sub 2} thin-film solar-cells studied by electron beam induced current and temperature and illumination dependent current voltage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nichterwitz, Melanie

    2012-01-10

    This work contributes to the understanding of generation dependent charge-carrier transport properties in Cu(In,Ga)Se{sub 2} (CIGSe)/ CdS/ ZnO solar cells and a consistent model for the electronic band diagram of the heterojunction region of the device is developed. Cross section electron-beam induced current (EBIC) and temperature and illumination dependent current voltage (IV) measurements are performed on CIGSe solar cells with varying absorber layer compositions and CdS thickness. For a better understanding of possibilities and limitations of EBIC measurements applied on CIGSe solar cells, detailed numerical simulations of cross section EBIC profiles for varying electron beam and solar cell parameters are performed and compared to profiles obtained from an analytical description. Especially the effects of high injection conditions are considered. Even though the collection function of the solar cell is not independent of the generation function of the electron beam, the local electron diffusion length in CIGSe can still be extracted. Grain specific values ranging from (480±70) nm to (2.3±0.2) μm are determined for a CuInSe{sub 2} absorber layer and a value of (2.8±0.3) μm for CIGSe with a Ga-content of 0.3. There are several models discussed in literature to explain generation dependent charge carrier transport, all assuming a high acceptor density either located in the CIGSe layer close to the CIGSe/CdS interface (p{sup +} layer), within the CdS layer or at the CdS/ZnO interface. In all models, a change in charge carrier collection properties is caused by a generation dependent occupation probability of the acceptor type defect state and the resulting potential distribution throughout the device. Numerical simulations of EBIC and IV data are performed with parameters according to these models. The model that explains the experimental data best is that of a p{sup +} layer at the CIGSe/CdS interface and acceptor type defect states at the CdS/ZnO interface

  13. Measurement of charged-current e{sup +}p deep inelastic scattering cross sections at {radical}s=300 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Nagano, Kunihiro [Tokyo Univ., Tokyo (Japan)

    2000-02-01

    The charged-current e{sup +}p deep inelastic scattering cross sections were measured at {radical}s=300 GeV in the kinematic region Q{sup 2} > 200 GeV{sup 2}. The analysis is based on the 46.6 pb{sup -1} e{sup +}p collision data collected by ZEUS at HERA during the running years from 1994 to 1997. The single differential cross sections d{sigma}/dQ{sup 2}, d{sigma}/dx and d{sigma}/dy were measured. Compared with our previous measurement, both the statistical and systematic errors were reduced. The explored kinematic region was extended to high Q{sup 2} and high x regions: d{sigma}/dQ{sup 2} was measured up to Q{sup 2}=30000 GeV{sup 2}, and d{sigma}/dx was measured up to x=0.65. The double differential cross section as a function of x and Q{sup 2}, d{sup 2}{sigma}/dxdQ{sup 2}, was also measured. This is the first measurement for the e{sup +}p charged-current interaction. The measured cross sections were compared with the Standard Model predictions obtained with CTEQ 4D, MRSA and GRV 94 parton density functions, respectively, which were evolved according to the next-to-leading-order QCD evolution equation. The cross sections were consistent with these predictions except for the high x region, x > or approx. 0.1, where d{sigma}/dx exhibited an excess. The double differential cross section d{sup 2}{sigma}/dxdQ{sup 2} exhibited this high-x excess in a wide range of Q{sup 2}. This observation suggests that the d-quark density in the high x region is underestimated in the current parton density functions. The propagator mass was extracted from d{sigma}/dQ{sup 2} as M{sub W}=83.4{+-}2.8(stat.){sub -2.1}{sup +1.6}(syst.){+-}2.7(pdf) GeV. This value is in agreement with the mass of W{sup {+-}}-boson obtained by the direct mass measurements at LEP and Tevatron. (author)

  14. A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter

    Science.gov (United States)

    Wang, Yujie; Zhang, Chenbin; Chen, Zonghai

    2015-04-01

    The state-of-charge (SOC) estimation for LiFePO4 batteries is one of the most important issues in battery management system (BMS) on electric vehicles (EVs). Significant temperature changes and drift current noises are inevitable in EVs and cause strong interference in SOC estimation, therefore a SOC-Particle filter (PF) estimator is proposed for SOC estimation. This paper tries to make three contributions: (1) a temperature composed battery model is established based on commercial LiFePO4 cells which can be used for SOC estimation at dynamic temperatures. (2) A capacity retention ratio (CRR) aging model is established based on the real history statistical analysis of the running mileage of the battery on an urban bus. (3) The proposed models are combined with an electrochemical model and the PF method is employed for SOC estimation to eliminate the drift noise effects. Experiments under dynamic current and temperature conditions are designed and performed to verify the accuracy and robustness of the proposed method. The numeral results of the validation experiments have verified that accurate and robust SOC estimation results can be obtained by the proposed method.

  15. Mitigation of numerical Cerenkov radiation and instability using a hybrid finite difference-FFT Maxwell solver and a local charge conserving current deposit

    CERN Document Server

    Yu, Peicheng; Tableman, Adam; Decyk, Viktor K; Tsung, Frank S; Fiuza, Frederico; Davidson, Asher; Vieira, Jorge; Fonseca, Ricardo A; Lu, Wei; Silva, Luis O; Mori, Warren B

    2015-01-01

    A hybrid Maxwell solver for fully relativistic and electromagnetic (EM) particle-in-cell (PIC) codes is described. In this solver, the EM fields are solved in $k$ space by performing an FFT in one direction, while using finite difference operators in the other direction(s). This solver eliminates the numerical Cerenkov radiation for particles moving in the preferred direction. Moreover, the numerical Cerenkov instability (NCI) induced by the relativistically drifting plasma and beam can be eliminated using this hybrid solver by applying strategies that are similar to those recently developed for pure FFT solvers. A current correction is applied for the charge conserving current deposit to correctly account for the EM calculation in hybrid Yee-FFT solver. A theoretical analysis of the dispersion properties in vacuum and in a drifting plasma for the hybrid solver is presented, and compared with PIC simulations with good agreement obtained. This hybrid solver is applied to both 2D and 3D Cartesian and quasi-3D (...

  16. Evidence for a sublattice weak gravity conjecture

    Science.gov (United States)

    Heidenreich, Ben; Reece, Matthew; Rudelius, Tom

    2017-08-01

    The Weak Gravity Conjecture postulates the existence of superextremal charged particles, i.e. those with mass smaller than or equal to their charge in Planck units. We present further evidence for our recent observation that in known examples a much stronger statement is true: an infinite tower of superextremal particles of different charges exists. We show that effective Kaluza-Klein field theories and perturbative string vacua respect the Sublattice Weak Gravity Conjecture, namely that a finite index sublattice of the full charge lattice exists with a superextremal particle at each site. In perturbative string theory we show that this follows from modular invariance. However, we present counterexamples to the stronger possibility that a superextremal particle exists at every lattice site, including an example in which the lightest charged particle is subextremal. The Sublattice Weak Gravity Conjecture has many implications both for abstract theories of quantum gravity and for real-world physics. For instance, it implies that if a gauge group with very small coupling e exists, then the fundamental gravitational cutoff energy of the theory is no higher than ˜ e 1/3 M Pl.

  17. On Weakly Semicommutative Rings*

    Institute of Scientific and Technical Information of China (English)

    CHEN WEI-XING; CUI SHU-YING

    2011-01-01

    A ring R is said to be weakly scmicommutative if for any a, b ∈ R,ab = 0 implies aRb C_ Nil(R), where Nil(R) is the set of all nilpotcnt elements in R.In this note, we clarify the relationship between weakly semicommutative rings and NI-rings by proving that the notion of a weakly semicommutative ring is a proper generalization of NI-rings. We say that a ring R is weakly 2-primal if the set of nilpotent elements in R coincides with its Levitzki radical, and prove that if R is a weakly 2-primal ring which satisfies oα-condition for an endomorphism α of R (that is, ab = 0 (←→) aα(b) = 0 where a, b ∈ R) then the skew polynomial ring R[π; αα]is a weakly 2-primal ring, and that if R is a ring and I is an ideal of R such that I and R/I are both weakly semicommutative then R is weakly semicommutative.Those extend the main results of Liang et al. 2007 (Taiwanese J. Math., 11(5)(2007),1359-1368) considerably. Moreover, several new results about weakly semicommutative rings and NI-rings are included.

  18. Formation of the Surface Space Charge Layer in Fair Weather

    Science.gov (United States)

    Redin, Alexander; Kupovykh, Gennady; Boldyreff, Anton

    2014-05-01

    It is widely known that the positive space charge, caused by electrode effect action, is obtained near surface in fair weather. Space charge density depends on the different local features: meteorological conditions, aerosol particles concentration, convective transfer of the surface layer. Namely space charge determines the local variations of electric field. Space charge could be negative in condition of strong ionization rate in thin air layer near surface. The electrodynamic model, consisting of transfer equations of light ions and nucleuses, generated by interactions between lights ions and aerosol particles, and Poisson equation. The turbulent transfer members, electric field near the surface, the mobility of positive and negative ions, recombination coefficient, ionization rate, the number of elementary charges on the nuclei were took into account in the model equations. The time-space variations of positive and negative small and heavy ions, electric field, electrical conductivity, current density and space charge, depending on aerosol particles concentrations, turbulence and convective transfer ionization rate, aerosol particles size and number of charged on the particles are calculated. The mechanisms of turbulent and convection-turbulent surface layer electrodynamic structure forming in dependence of single and multi-charged aerosol particles for different physical and meteorological conditions are investigated. Increasing of turbulent mixing intensity leads to increasing of character electrode layer thickness, decreasing of space charge density value, decreasing of electric current conductivity value. The electrode effect of the whole layer remains constant. Increasing of aerosol particles concentration leads to decreasing of electrode effect within the whole electrode layer and increasing of electric field values, decreasing of space charge density values and current conductivity density. It was received that increasing of the aerosol particles

  19. Vacuum expectation values of the current density and energy-momentum tensor for a charged scalar field in curved spacetime with toroidally compactified spatial dimensions

    Science.gov (United States)

    Saharian, Aram; Kotanjyan, Anna; Sargsyan, Hayk; Simonyan, David

    2016-07-01

    The models with compact spatial dimensions appear in a number of fundamental physical theories. In particular, the idea of compactified dimensions has been extensively used in supergravity and superstring theories. In quantum field theory, the modification of the vacuum fluctuations spectrum by the periodicity conditions imposed on the field operator along compact dimensions leads to a number of interesting physical effects. A well known example of this kind, demonstrating the close relation between quantum phenomena and global geometry, is the topological Casimir effect. In models with extra compact dimensions, the Casimir energy creates a nontrivial potential for the compactification radius. This can serve as a stabilization mechanism for moduli fields and for the effective gauge couplings. The Casimir ef