WorldWideScience

Sample records for weak charged current

  1. Charged weak currents

    International Nuclear Information System (INIS)

    Turlay, R.

    1979-01-01

    In this review of charged weak currents I shall concentrate on inclusive high energy neutrino physics. There are surely still things to learn from the low energy weak interaction but I will not discuss it here. Furthermore B. Tallini will discuss the hadronic final state of neutrino interactions. Since the Tokyo conference a few experimental results have appeared on charged current interaction, I will present them and will also comment on important topics which have been published during the last past year. (orig.)

  2. Study of the Weak Charged Hadronic Current in b Decays

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alpat, B; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Antreasyan, D; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banicz, K; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Borgia, B; Boucham, A; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Buytenhuijs, A O; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Caria, M; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chan, A; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Choi, M T; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; De Boeck, H; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dorne, I; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Fernández, D; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Janssen, H; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kuijten, H; Kunin, A; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee Jae Sik; Lee, K Y; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lieb, E H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Nagy, E; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nippe, A; Nisati, A; Nowak, H; Opitz, H; Organtini, G; Ostonen, R; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riemers, B C; Riles, K; Rind, O; Ro, S; Robohm, A; Rodin, J; Rodríguez-Calonge, F J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Rykaczewski, H; Salicio, J; Sánchez, E; Santocchia, A; Sarakinos, M E; Sarkar, S; Sassowsky, M; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Sens, Johannes C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    Charged and neutral particle multiplicities of jets associated with identified semileptonic and hadronic b decays are studied. The observed differences between these jets are used to determine the inclusive properties of the weak charged hadronic current. The average charged particle multiplicity of the weak charged hadronic current in b decays is measured for the first time to be 2.69$\\pm$0.07(stat.)$\\pm$0.14(syst.). This result is in good agreement with the JETSET hadronization model of the weak charged hadronic current if 40$\\pm$17\\% of the produced mesons are light--flavored tensor (L=1) mesons. This level of tensor meson production is consistent with the measurement of the $\\pi^0$ multiplicity in the weak charged hadronic current in b decays. \\end{abstract}

  3. BOREX: Solar neutrino experiment via weak neutral and charged currents in boron-11

    International Nuclear Information System (INIS)

    Kovacs, T.; Mitchell, J.W.; Raghavan, P.

    1989-01-01

    Borex, and experiment to observe solar neutrinos using boron loaded liquid scintillation techniques, is being developed for operation at the Gran Sasso underground laboratory. It aims to observe the spectrum of electron type 8 B solar neutrinos via charged current inverse β-decay of 11 B and the total flux solar neutrinos regardless of flavor by excitation of 11 B via the weak neutral current. 14 refs

  4. Electromagnetic current in weak interactions

    International Nuclear Information System (INIS)

    Ma, E.

    1983-01-01

    In gauge models which unify weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current. The exact nature of such a component can be explored using e + e - experimental data. In recent years, the existence of a new component of the weak interaction has become firmly established, i.e., the neutral-current interaction. As such, it competes with the electromagnetic interaction whenever the particles involved are also charged, but at a very much lower rate because its effective strength is so small. Hence neutrino processes are best for the detection of the neutral-current interaction. However, in any gauge model which unifies weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current

  5. Charged current weak interactions at high energy

    International Nuclear Information System (INIS)

    Cline, D.

    1977-01-01

    We review high energy neutrino and antineutrino charged current interactions. An overview of the experimental data is given, including a discussion of the experimental status of the y anomaly. Locality tests, μ-e universality and charge symmetry invariance tests are discussed. Charm production is discussed. The experimental status of trimuon events and possible phenomenological models for these events are presented. (orig.) [de

  6. Weak polyelectrolyte complexation driven by associative charging

    Science.gov (United States)

    Rathee, Vikramjit S.; Zervoudakis, Aristotle J.; Sidky, Hythem; Sikora, Benjamin J.; Whitmer, Jonathan K.

    2018-03-01

    Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.

  7. Charged current weak interaction of polarized muons

    International Nuclear Information System (INIS)

    Smadja, G.; Vesztergombi, G.

    1983-01-01

    The polarization of the muon beam can be used to test the presence of right-handed couplings in charged current interaction of muons in process μ+N->#betta#+X. The experimental feasibility and the limits which can be obtained on the mass of right-handed intermediate boson are discussed. (orig.)

  8. Qweak: First Direct Measurement of the Proton’s Weak Charge

    Directory of Open Access Journals (Sweden)

    Androic D.

    2017-01-01

    Full Text Available The Qweak experiment, which took data at Jefferson Lab in the period 2010 - 2012, will precisely determine the weak charge of the proton by measuring the parity-violating asymmetry in elastic e-p scattering at 1.1 GeV using a longitudinally polarized electron beam and a liquid hydrogen target at a low momentum transfer of Q2 = 0.025 (GeV/c2. The weak charge of the proton is predicted by the Standard Model and any significant deviation would indicate physics beyond the Standard Model. The technical challenges and experimental apparatus for measuring the weak charge of the proton will be discussed, as well as the method of extracting the weak charge of the proton. The results from a small subset of the data, that has been published, will also be presented. Furthermore an update will be given of the current status of the data analysis.

  9. Weak neutral currents discovery: a giant step for particle physics

    International Nuclear Information System (INIS)

    Pullia, A.; Vialle, J.P.

    2010-01-01

    Subatomic particles interact with different kinds of forces (strong, electromagnetic, weak and gravitational). In case of the weak force, the interaction is due to the exchange of intermediate charged (W +,- ) and neutral (Z 0 ) bosons. These cases are referred as 'charged currents' and 'neutral currents', respectively. The evidence for such weak neutral currents appeared in the Gargamelle international collaboration whose aim was to study in-depth neutrino interactions (and thus weak interactions) through the use of a giant heavy liquid bubble chamber at CERN. In a collaboration meeting in March 1972, the Milan team showed the first hints of neutral currents in neutrino interactions with at least one pion outgoing. In 1974, 2 new leptonic neutral current candidate events were found in Gargamelle films and the Fermilab team confirmed the result a few months later. (A.C.)

  10. Broken color symmetry and weak currents

    International Nuclear Information System (INIS)

    Stech, B.

    1976-01-01

    Broken colour symmetry predicts a very rich spectrum of new particles. If broken colour is relevant at all, charged psi-particles should be found in particular at the 4 GeV region. For the weak hadronic currents no completely satisfactory suggestion exists. Broken colour symmetry describes qualitatively several of the new effects observed recently. (BJ) [de

  11. Weak currents

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1976-01-01

    A survey of the fundamental ideas on weak currents such as CVC and PCAC and a presentation of the Cabibbo current and the neutral weak currents according to the Salam-Weinberg model and the Glashow-Iliopoulos-Miami model are given [fr

  12. Evidence for parity nonconservation in the weak neutral current

    International Nuclear Information System (INIS)

    Benvenuti, A.; Cline, D.; Messing, F.; Ford, W.; Imlay, R.; Ling, T.Y.; Mann, A.K.; Reeder, D.D.; Rubbia, C.; Stefanski, R.; Sulak, L.; Wanderer, P.

    1976-01-01

    Measurements of R/sup nu/ and R/sup nu-bar/, the ratios of neutral current to charged current ν and nu-bar cross sections, yield neutral current rates for ν and nu-bar that are consistent with a pure V-A interaction but 3 standard deviations from pure V or pure A, indicating the presence of parity nonconservation in the weak neutral current

  13. Phenomenology of the neutral weak current in elastic neutrino-nucleon scattering

    International Nuclear Information System (INIS)

    Cochard, G.M.; Ichola, A.

    1978-01-01

    The aim of this study is to check if we can construct the neutral weak current Jsub(μ)sup(nucleonc) of nucleons from ''known'' phenomenological currents, namely electromagnetic Vsub(μ)sup((deg)), Vsub(μ)sup((3)) and charged weak Vsub(μ)sup((+)), Vsub(μ)sup((-)). It will be seen that a neutral weak current, built with these pieces, is valid with respect to the experimental data on elastic neutrino-nucleon scattering through neutral current. The use of these data is interesting in the sense that we can avoid the uncertainties of the quark parton model and the gauge theories prejudices

  14. Critical potentials, leptons, and weak currents

    International Nuclear Information System (INIS)

    Smith, P.F.; Lewin, J.D.

    1977-12-01

    A theoretical study is made of the interaction of very strong localised electromagnetic potentials with charged leptons, and with the vacuum state. The principal objective is to investigate the phenomena which occur when the potential reaches or exceeds the critical value at which bound levels are drawn into the lower continuum. The behaviour of bound and continuum solutions of the Dirac equation for the specific model of a short range potential well in an arbitrarily large bounded volume is examined in detail. Vacuum polarisation effects are computed by summation over the infinite set of single particle levels, and special attention is given to the behaviour of the overall charge distribution as the potential strength increases through the critical value. The most significant features of the results are (a) the formation of highly localised electron or muon bound states, (b) similar critical potential strengths for electrons and muons, and (c) redefinition of the vacuum by one charge unit at the critical potential. These features are analogous to some properties of leptonic and hadronic weak currents, and the hypothesis is proposed that strong short range potentials may provide a possible mediating mechanism for the weak interaction and also a lepton confinement mechanism within the structure of hadrons. (author)

  15. Josephson current and Andreev level dynamics in nanoscale superconducting weak links

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Aldo

    2014-11-15

    In this thesis we focus on the interplay between proximity induced superconducting correlations and Coulomb interactions in a Josephson junction: i.e., in a system where two superconductors modeled as two s-wave superconductors at a phase difference φ are contacted by means of a weak link, in our case a quantum dot located in the contact. In the first part we study the Josephson current-phase relation for a multi-level quantum dot tunnel-contacted by two conventional s-waves superconductors. We determine in detail the conditions for observing a finite anomalous Josephson current, i.e. a supercurrent flowing at zero phase difference in a two-level dot with spin-orbit interactions, a weak magnetic (Zeeman) field, and in the presence of Coulomb interactions. This leads to an onset behavior I{sub a}∝sgn(B), interpreted as the sign of an incipient spontaneous breakdown of time-reversal symmetry. Moreover, we will provide conditions for realizing spatially separated - but topologically unprotected - Majorana bound states, whose signature in the system will be detectable via the current-phase relation. In the second part of the thesis, we address the Andreev bound state population dynamics in superconducting weak links (a superconducting 'atomic contact'), in which a poisoning mechanism due to the trapping of single quasiparticles can occur. Our motivation is that quantum coherent superconducting circuits are the most promising candidates for future large-scale quantum information processing devices. Moreover, quasiparticle poisoning has recently been observed in devices which contain a short superconducting weak link with few transport channels. We discuss a novel charge imbalance effect in the continuum quasiparticle population, which is due to phase fluctuations of the environment weakly coupled to the superconducting contact. This coupling enters the system as a transition rate connecting continuum quasiparticles and the Andreev bound state system. The

  16. On the theoretical description of weakly charged surfaces.

    Science.gov (United States)

    Wang, Rui; Wang, Zhen-Gang

    2015-03-14

    It is widely accepted that the Poisson-Boltzmann (PB) theory provides a valid description for charged surfaces in the so-called weak coupling limit. Here, we show that the image charge repulsion creates a depletion boundary layer that cannot be captured by a regular perturbation approach. The correct weak-coupling theory must include the self-energy of the ion due to the image charge interaction. The image force qualitatively alters the double layer structure and properties, and gives rise to many non-PB effects, such as nonmonotonic dependence of the surface energy on concentration and charge inversion. In the presence of dielectric discontinuity, there is no limiting condition for which the PB theory is valid.

  17. Precision measurement of the weak charge of the proton.

    Science.gov (United States)

    2018-05-01

    Large experimental programmes in the fields of nuclear and particle physics search for evidence of physics beyond that explained by current theories. The observation of the Higgs boson completed the set of particles predicted by the standard model, which currently provides the best description of fundamental particles and forces. However, this theory's limitations include a failure to predict fundamental parameters, such as the mass of the Higgs boson, and the inability to account for dark matter and energy, gravity, and the matter-antimatter asymmetry in the Universe, among other phenomena. These limitations have inspired searches for physics beyond the standard model in the post-Higgs era through the direct production of additional particles at high-energy accelerators, which have so far been unsuccessful. Examples include searches for supersymmetric particles, which connect bosons (integer-spin particles) with fermions (half-integer-spin particles), and for leptoquarks, which mix the fundamental quarks with leptons. Alternatively, indirect searches using precise measurements of well predicted standard-model observables allow highly targeted alternative tests for physics beyond the standard model because they can reach mass and energy scales beyond those directly accessible by today's high-energy accelerators. Such an indirect search aims to determine the weak charge of the proton, which defines the strength of the proton's interaction with other particles via the well known neutral electroweak force. Because parity symmetry (invariance under the spatial inversion (x, y, z) → (-x, -y, -z)) is violated only in the weak interaction, it provides a tool with which to isolate the weak interaction and thus to measure the proton's weak charge 1 . Here we report the value 0.0719 ± 0.0045, where the uncertainty is one standard deviation, derived from our measured parity-violating asymmetry in the scattering of polarized electrons on protons, which is -226.5

  18. Δ(1232) production via charge-changing weak currents: e-+p→Δ0+ν/sub e/ and e++p→Δ/sup ++/+nu-bar/sub e/

    International Nuclear Information System (INIS)

    Hwang, W.P.; Henley, E.M.; Kisslinger, L.S.

    1987-01-01

    We investigate Δ(1232) production via charge-changing weak currents e - +p→Δ 0 +ν/sub e/ and e + +p→Δ/sup ++/+nu-bar/sub e/ at electron/positron beam energies in the range of a few GeV. A general formalism is introduced for the N→Δ transition form factors, including the weak magnetism, weak quadrupole, and weak scalar form factors for the polar-vector current and the axial, pseudoscalar, recoil, and weak electric form factors for the axial current. The form factors related to the polar-vector current are related to Δ(1232) electroproduction on a nucleon target. For nucleons and deltas, we adopt in this calculation the flavor SU(6) wave functions, with quarks described as confined Dirac particles. The quark wave function adopted is of the form given by the MIT bag model, with or without the sharp boundary smoothened out. In the few GeV range, it is found that cross sections can be as large as 10/sup -38/ cm 2 and are sensitive to induced form factors such as the weak magnetism form factor. It is also found that, for a beam energy of around 4.0 GeV, the predicted cross sections depend sensitively on whether or not the sharp boundary in the quark wave function is smoothened out

  19. Do the weak neutral currents cause parity non-conserving eN and μN forces

    International Nuclear Information System (INIS)

    Henley, E.M.

    1977-01-01

    It is stated that although the evidence for weak neutral currents is now well established its effects have been observed primarily in reactions initiated by muon neutrinos in which the neutrino is also present in the final state. There is, as yet, no comparable evidence for a weak force due to neutral currents, mediated by an uncharged boson, between charged leptons (electrons, muons) and nucleons. Theory predicts such a force, but its detection requires it to be parity non-conserving, since any weak parity conserving force is masked by the much larger electromagnetic interaction between the charged lepton and proton. Although high energy neutrino experiments favor a parity non-conserving interaction, the evidence is not overwhelming, and pure vector current theories cannot be ruled out. The electromagnetic current which is related directly to the weak force in modern gauge theories, behaves, as a pure vector under rotations and reflections, but the charged weak currents, responsible for ordinary β decays, are known to be of a mixed vector-axial vector nature. It is therefore of great interest to learn the spatial characteristics of the neutral weak currents. The search for parity non-conserving (PNC) effects in electron-nucleon scattering, in muonic atoms and in normal electronic atoms, has received much attention, but the experiments require very high precision and great care and ingenuity. The variety of ways for searching for PNC effects are discussed, together with the basic framework for most PNC theories, restricted to vector and axial-vector currents. One method to learn about the e-N weak force is to scatter longitudinally polarized electrons from protons, and the advantages of this are discussed - such tests are being undertaken. Experiments with muonic and normal electronic atoms are referred to, and their advantages and disadvantages are discussed. It is pointed out that a pleasant feature of the weak interaction is that perturbation theory can be used

  20. Study of single pion production in antineutrino induced charged current interactions

    International Nuclear Information System (INIS)

    Bolognese, Teresa.

    1978-01-01

    Results are presented on the exclusive charged current antineutrino production of one pion using the data of the Gargamelle propane experiment at CERN PS. The isospin structure of the charged weak current is studied as well as the energy dependence of the total cross section for π - antineutrino production, which is compared with the prediction of Adler's model [fr

  1. Ring current proton decay by charge exchange

    Science.gov (United States)

    Smith, P. H.; Hoffman, R. A.; Fritz, T.

    1975-01-01

    Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.

  2. An SU(3)xU(1) theory of weak-electromagnetic interactions with charged boson mixing

    International Nuclear Information System (INIS)

    Singer, M.

    1978-01-01

    An SU(3)xU(1) gauge theory of weak electromagnetic interactions is proposed in which the charged bosons mix with each other. The model naturally ensures e-μ and quark-lepton universality in couplings, and the charged boson mixing permits an equal number of leptons and quark flavours. There are no new stable leptons. All the fermions are placed in triplets and singlets and the theory is vector-like and hence free of anomalies. In addition one of the charged bosons can have a mass less than 43 GeV. Discrete symmetries and specific choices for Higgs fields are postulated to obtain the appropriate boson and fermion masses. Calculations for the decay of the tau particle, which is described as a heavy electron, are given. Multimuon events are discussed as are neutrino neutral currents. Calculations are also given for testing asymmetries in e-hadron scattering due to weak electron neutral currents along with other phenomenology of the model

  3. Forward Compton scattering with weak neutral current: Constraints from sum rules

    Directory of Open Access Journals (Sweden)

    Mikhail Gorchtein

    2015-07-01

    Full Text Available We generalize forward real Compton amplitude to the case of the interference of the electromagnetic and weak neutral current, formulate a low-energy theorem, relate the new amplitudes to the interference structure functions and obtain a new set of sum rules. We address a possible new sum rule that relates the product of the axial charge and magnetic moment of the nucleon to the 0th moment of the structure function g5(ν,0. For the dispersive γZ-box correction to the proton's weak charge, the application of the GDH sum rule allows us to reduce the uncertainty due to resonance contributions by a factor of two. The finite energy sum rule helps addressing the uncertainty in that calculation due to possible duality violations.

  4. Qweak: A Precision Measurement of the Proton's Weak Charge

    International Nuclear Information System (INIS)

    David Armstrong; Todd Averett; James Birchall; James Bowman; Roger Carlini; Swapan Chattopadhyay; Charles Davis; J. Doornbos; James Dunne; Rolf Ent; Jens Erler; Willie Falk; John Finn; Tony Forest; David Gaskell; Klaus Grimm; C. Hagner; F. Hersman; Maurik Holtrop; Kathleen Johnston; R.T. Jones; Kyungseon Joo; Cynthia Keppel; Elie Korkmaz; Stanley Kowalski; Lawrence Lee; Allison Lung; David Mack; Stanislaw Majewski; Gregory Mitchell; Hamlet Mkrtchyan; Norman Morgan; Allena Opper; Shelley Page; Seppo Penttila; Mark Pitt; Benard Poelker; Tracy Porcelli; William Ramsay; Michael Ramsey-musolf; Julie Roche; Neven Simicevic; Gregory Smith; Riad Suleiman; Simon Taylor; Willem Van Oers; Steven Wells; W.S. Wilburn; Stephen Wood; Carl Zorn

    2004-01-01

    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low Q 2 of a longitudinally polarized electron beam on a proton target. The experiment will measure the weak charge of the proton, and thus the weak mixing angle at low energy scale, providing a precision test of the Standard Model. Since the value of the weak mixing angle is approximately 1/4, the weak charge of the proton Q w p = 1-4 sin 2 θ w is suppressed in the Standard Model, making it especially sensitive to the value of the mixing angle and also to possible new physics. The experiment is approved to run at JLab, and the construction plan calls for the hardware to be ready to install in Hall C in 2007. The theoretical context of the experiment and the status of its design are discussed

  5. Charged and neutral current production of Δ(1236)

    International Nuclear Information System (INIS)

    Koerner, J.G.; Kobayashi, T.; Avilez, C.

    1977-04-01

    Based on a hybrid quark model approach previously developed by us which employs a q 2 -continuation in terms of generalized meson dominance form factors we study the weak production of the isobar Δ(1236). First we demonstrate that our model is in agreement with the Argonne data on charged current production of the Δ. We then study neutral current Δ-production using four different gauge models, namely the standard Weinberg-Salam model, a vector-like model with six quarks, a five quark model due to Achiman, Koller and Walsh and a variant of the Guersey-Sikivie model. We find that the results for the differential cross-section in the forward region are very sensitive to the structure of the weak neutral current and suggest that measurements in this region constitute a stringent test of weak interaction models. We also calculate the density matrix elements measurable from decay correllations. The density matrix elements are not so sensitive to the models containing some axial contribution whereas the vector-like model shows a behaviour quite distinct from the others. (orig.) [de

  6. Charged particle in higher dimensional weakly charged rotating black hole spacetime

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Krtous, Pavel

    2011-01-01

    We study charged particle motion in weakly charged higher dimensional black holes. To describe the electromagnetic field we use a test field approximation and the higher dimensional Kerr-NUT-(A)dS metric as a background geometry. It is shown that for a special configuration of the electromagnetic field, the equations of motion of charged particles are completely integrable. The vector potential of such a field is proportional to one of the Killing vectors (called a primary Killing vector) from the 'Killing tower' of symmetry generating objects which exists in the background geometry. A free constant in the definition of the adopted electromagnetic potential is proportional to the electric charge of the higher dimensional black hole. The full set of independent conserved quantities in involution is found. We demonstrate that Hamilton-Jacobi equations are separable, as is the corresponding Klein-Gordon equation and its symmetry operators.

  7. Image formation in weak gravitational lensing by tidal charged black holes

    International Nuclear Information System (INIS)

    Horvath, Zsolt; Gergely, Laszlo Arpad; Hobill, David

    2010-01-01

    We derive a generic weak lensing equation and apply it for the study of images produced by tidal charged brane black holes. We discuss the similarities and point out the differences with respect to the Schwarzschild black hole weak lensing, to both first- and second-order accuracy, when either the mass or the tidal charge dominates. In the case of mass-dominated weak lensing, we analyze the position of the images, the magnification factors and the flux ratio, as compared to the Schwarzschild lensing. The most striking modification appears in the flux ratio. When the tidal charge represents the dominating lensing effect, the number and orientation of the images with respect to the optical axis resembles the lensing properties of a Schwarzschild geometry, where the sign associated with the mass is opposite to that for the tidal charge. Finally it is found that the ratio of the brightness of the images as a function of image separation in the case of tidal charged black holes obeys a power-law relation significantly different from that of Schwarzschild black holes. This might provide a means for determining the underlying spacetime structure.

  8. Second class weak currents

    International Nuclear Information System (INIS)

    Delorme, J.

    1978-01-01

    The definition and general properties of weak second class currents are recalled and various detection possibilities briefly reviewed. It is shown that the existing data on nuclear beta decay can be consistently analysed in terms of a phenomenological model. Their implication on the fundamental structure of weak interactions is discussed [fr

  9. Theory of CP violation based on the charm and strangeness changing righthanded weak current. [Quark mass term

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsch, H; Minkowski, P [California Inst. of Tech., Pasadena (USA)

    1976-06-21

    If the charged weak current contains the righthanded current (anti cs)sub(R), the quark mass term can be the origin of CP violation, which is then intimately related to the origin of the dominating mod(..delta..I)=1/2 and mod(..delta..S)=1 nonleptonic weak interaction. The electric dipole moment of the neutron is predicted to be of the order of 10/sup -25/ecm.

  10. Adler-type sum rule, charge symmetry and neutral current in general multi-triplet model

    International Nuclear Information System (INIS)

    Katuya, Mituaki; Baba, Yoshimitsu; Fujii, Kanji

    1975-01-01

    We derive Adler-type sum rule extended to general multi-triplet model. Paying attention to roles of the colour degree of freedom, we discuss the charge symmetry property of the weak charged current and the structure functions for ν(ν - )+N→l(l - )+X, and also the structure of the neutral current. A comment is given on implications in our theory of Koike and Konuma's result on the neutral hadronic current. (auth.)

  11. Storing Data from Qweak--A Precision Measurement of the Proton's Weak Charge

    Science.gov (United States)

    Pote, Timothy

    2008-10-01

    The Qweak experiment will perform a precision measurement of the proton's parity violating weak charge at low Q-squared. The experiment will do so by measuring the asymmetry in parity-violating electron scattering. The proton's weak charge is directly related to the value of the weak mixing angle--a fundamental quantity in the Standard Model. The Standard Model makes a firm prediction for the value of the weak mixing angle and thus Qweak may provide insight into shortcomings in the SM. The Qweak experiment will run at Thomas Jefferson National Accelerator Facility in Newport News, VA. A database was designed to hold data directly related to the measurement of the proton's weak charge such as detector and beam monitor yield, asymmetry, and error as well as control structures such as the voltage across photomultiplier tubes and the temperature of the liquid hydrogen target. In order to test the database for speed and stability, it was filled with fake data that mimicked the data that Qweak is expected to collect. I will give a brief overview of the Qweak experiment and database design, and present data collected during these tests.

  12. Delocalization of charge and current in a chiral quasiparticle wave packet

    Science.gov (United States)

    Sarkar, Subhajit

    2018-03-01

    A chiral quasiparticle wave packet (c-QPWP) is defined as a conventional superposition of chiral quasiparticle states corresponding to an interacting electron system in two dimensions (2D) in the presence of Rashba spin-orbit coupling (RSOC). I investigate its internal structure via studying the charge and the current densities within the first-order perturbation in the electron-electron interaction. It is found that the c-QPWP contains a localized charge which is less than the magnitude of the bare charge and the remaining charge resides at the system boundary. The amount of charge delocalized turns out to be inversely proportional to the degenerate Fermi velocity v0(=√{α2+2 μ /m }) when RSOC (with strength α ) is weak, and therefore externally tunable. For strong RSOC, the magnitudes of both the delocalized charge and the current further strongly depend on the direction of propagation of the wave packet. Both the charge and the current densities consist of an anisotropic r-2 tail away from the center of the wave packet. Possible implications of such delocalizations in real systems corresponding to 2D semiconductor heterostructure are also discussed within the context of particle injection experiments.

  13. Study of the space-time structure of the leptonic weak charged current by measurement of the muon polarization from the reaction anti νsub(μ)+Fe->X+μ+

    International Nuclear Information System (INIS)

    Metz, E.

    1982-01-01

    An experiment for the measurement of the longitudinal polarization of muons was performed which were produced in the deep inelastic anti ν-nucleon scattering in an irontarget (CDHS detector). The muon decay was applied as indicator of the muon polarization. As polarimeter served a marmor-scintillator calorimeter (CHARM detector). The experiment was performed in the broad-band beam of the CERN SPS. Measured was the longitudinal polarization P = 0.82 +- 0.07 (stat.) +- 0.12 (syst.). That means that the weak charged current possesses a dominant vector and/or axial-vector structure. Regarding the measuring errors of the muon polarization an upper limit for possible S-, P-, and T- contributions to the weak charged current can be stated: sigmasub(S,P,T)/sigmasub(TOT) 0.5) relatively to the muon polarization for small y (y 0.5) = 1.10 +- 0.24 (stat.). The systematic error vanishes in this relative measurement. Measured value and error lead to an upper limit for S- and/or P-contributions: sigmasub(S,P):sigmasub(TOT) 2 approx.= 4 (GeV/c) 2 ) a vector and/or axial-vector structure. (orig./HSI) [de

  14. Qweak: A Precision Measurement of the Proton's Weak Charge

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Todd Averett; James Birchall; James Bowman; Roger Carlini; Swapan Chattopadhyay; Charles Davis; J. Doornbos; James Dunne; Rolf Ent; Jens Erler; Willie Falk; John Finn; Tony Forest; David Gaskell; Klaus Grimm; C. Hagner; F. Hersman; Maurik Holtrop; Kathleen Johnston; R.T. Jones; Kyungseon Joo; Cynthia Keppel; Elie Korkmaz; Stanley Kowalski; Lawrence Lee; Allison Lung; David Mack; Stanislaw Majewski; Gregory Mitchell; Hamlet Mkrtchyan; Norman Morgan; Allena Opper; Shelley Page; Seppo Penttila; Mark Pitt; Benard Poelker; Tracy Porcelli; William Ramsay; Michael Ramsey-musolf; Julie Roche; Neven Simicevic; Gregory Smith; Riad Suleiman; Simon Taylor; Willem Van Oers; Steven Wells; W.S. Wilburn; Stephen Wood; Carl Zorn

    2004-02-05

    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low Q{sup 2} of a longitudinally polarized electron beam on a proton target. The experiment will measure the weak charge of the proton, and thus the weak mixing angle at low energy scale, providing a precision test of the Standard Model. Since the value of the weak mixing angle is approximately 1/4, the weak charge of the proton Q{sub w}{sup p} = 1-4 sin{sup 2} {theta}{sub w} is suppressed in the Standard Model, making it especially sensitive to the value of the mixing angle and also to possible new physics. The experiment is approved to run at JLab, and the construction plan calls for the hardware to be ready to install in Hall C in 2007. The theoretical context of the experiment and the status of its design are discussed.

  15. Weak hadronic currents in compensation theory

    International Nuclear Information System (INIS)

    Pappas, R.C.

    1975-01-01

    Working within the framework of a compensation theory of strong and weak interactions, it is shown that: (1) an axial vector baryon number current can be included in the weak current algebra if certain restrictions on the K-meson strong couplings are relaxed; (2) the theory does not permit the introduction of strange currents of the chiral form V + A; and (3) the assumption that the superweak currents of the theory cannot contain certain CP conserving terms can be justified on the basis of compensation requirements

  16. Measuring the Weak Charge of the Proton via Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Donald C. [Univ. of Virginia, Charlottesville, VA (United States)

    2015-10-01

    The Qweak experiment which ran in Hall C at Jefferson Lab in Newport News, VA, and completed data taking in May 2012, measured the weak charge of the proton QpW via elastic electron-proton scattering. Longitudinally polarized electrons were scattered from an unpolarized liquid hydrogen target. The helicity of the electron beam was flipped at approximately 1 kHz between left and right spin states. The Standard Model predicts a small parity-violating asymmetry of scattering rates between right and left helicity states due to the weak interaction. An initial result using 4% of the data was published in October 2013 [1] with a measured parity-violating asymmetry of -279 ± 35(stat) ± 31 (syst) ppb. This asymmetry, along with other data from parity-violating electron scattering experiments, provided the world's first determination of the weak charge of the proton. The weak charge of the proton was found to be pW = 0.064 ± 0.012, in good agreement with the Standard Model prediction of pW(SM) = 0.0708 ± 0.0003[2].

  17. A study of single-meson production in neutrino and antineutrino charged-current interactions on protons

    Science.gov (United States)

    Allen, P.; Grässler, H.; Schulte, R.; Jones, G. T.; Kennedy, B. W.; O'Neale, S. W.; Gebel, W.; Hofmann, E.; Klein, H.; Mittendorfer, J.; Morrison, D. R. O.; Schmid, P.; Wachsmuth, H.; Barnham, K. W. J.; Clayton, E. F.; Hamisi, F.; Miller, D. B.; Mobayyen, M. M.; Aderholz, M.; Deck, L.; Schmitz, N.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicic, D.; Saitta, B.; Shotton, P. N.; Towers, S. J.; Aachen-Birmingham-Bonn-CERN-London IC-Munich (MPI)-Oxford Collaboration

    1986-01-01

    We present results on exclusive single-charged pion and kaon production in neutrino and antineutrino interactions on protons in the energy range from 5 to 120 GeV. The data were obtained from exposures of BEBC to wide band beams at the CERN SPS. For invariant masses of the (pπ) system below 2 GeV, the pions originate predominantly from decays of baryon resonances excited by the weak charged current. Similarly, we observe the production of Λ(1520) decaying into p and K -. For invariant masses above 2 GeV pion production becomes peripheral by interaction of the weak current with a virtual π0. We establish a contribution of longitudinally polarised intermediate vector bosons to this process.

  18. Measurement of Neutrino Induced, Charged Current, Charged Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Wilking, Michael Joseph [Univ. of Colorado, Boulder, CO (United States)

    2009-05-01

    Neutrinos are among the least understood particles in the standard model of particle physics. At neutrino energies in the 1 GeV range, neutrino properties are typically determined by observing the outgoing charged lepton produced in a charged current quasi-elastic interactions. The largest charged current background to these measurements comes from charged current pion production interactions, for which there is very little available data.

  19. Charge correlation effects on ionization of weak polyelectrolytes

    International Nuclear Information System (INIS)

    Panagiotopoulos, A Z

    2009-01-01

    Ionization curves of weak polyelectrolytes were obtained as a function of the charge coupling strength from Monte Carlo simulations. In contrast to many earlier studies, the present work treats counterions explicitly, thus allowing the investigation of charge correlation effects at strong couplings. For conditions representing typical weak polyelectrolytes in water near room temperature, ionization is suppressed because of interactions between nearby dissociated groups, as also seen in prior work. A novel finding here is that, for stronger couplings, relevant for non-aqueous environments in the absence of added salt, the opposite behavior is observed-ionization is enhanced relative to the behavior of the isolated groups due to ion-counterion correlation effects. The fraction of dissociated groups as a function of position along the chain also behaves non-monotonically. Dissociation is highest near the ends of the chains for aqueous polyelectrolytes and highest at the chain middle segments for non-aqueous environments. At intermediate coupling strengths, dissociable groups appear to behave in a nearly ideal fashion, even though chain dimensions still show strong expansion effects due to ionization. These findings provide physical insights on the impact of competition between acid/base chemical equilibrium and electrostatic attractions in ionizable systems.

  20. A study of single-meson production in neutrino and antineutrino charged-current interactions on protons

    International Nuclear Information System (INIS)

    Allen, P.; Graessler, H.; Schulte, R.; Gebel, W.; Hofmann, E.; Barnham, K.W.J.; Clayton, E.F.; Hamisi, F.; Miller, D.B.; Mobayyen, M.M.; Aderholz, M.; Deck, L.; Schmitz, N.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicic, D.; Saitta, B.; Shotton, P.N.; Towers, S.J.

    1986-01-01

    We present results on exclusive single-charged pion and kaon production in neutrino and antineutrino interactions on protons in the energy range from 5 to 120 GeV. The data were obtained from exposures of BEBC to wide band beams at the CERN SPS. For invariant masses of the (pπ) system below 2 GeV, the pions originate predominantly from decays of baryon resonances excited by the weak charged current. Similarly, we observe the production of Λ(1520) decaying into p and K - . For invariant masses above 2 GeV pion production becomes peripheral by interaction of the weak current with a virtual π 0 . We establish a contribution of longitudinally polarised intermediate vector bosons to this process. (orig.)

  1. Weak mixing below the weak scale in dark-matter direct detection

    Science.gov (United States)

    Brod, Joachim; Grinstein, Benjamin; Stamou, Emmanuel; Zupan, Jure

    2018-02-01

    If dark matter couples predominantly to the axial-vector currents with heavy quarks, the leading contribution to dark-matter scattering on nuclei is either due to one-loop weak corrections or due to the heavy-quark axial charges of the nucleons. We calculate the effects of Higgs and weak gauge-boson exchanges for dark matter coupling to heavy-quark axial-vector currents in an effective theory below the weak scale. By explicit computation, we show that the leading-logarithmic QCD corrections are important, and thus resum them to all orders using the renormalization group.

  2. Challenging the weak cosmic censorship conjecture with charged quantum particles

    International Nuclear Information System (INIS)

    Richartz, Mauricio; Saa, Alberto

    2011-01-01

    Motivated by the recent attempts to violate the weak cosmic censorship conjecture for near-extreme black holes, we consider the possibility of overcharging a near-extreme Reissner-Nordstroem black hole by the quantum tunneling of charged particles. We consider the scattering of spin-0 and spin-(1/2) particles by the black hole in a unified framework and obtain analytically, for the first time, the pertinent reflection and transmission coefficients without any small charge approximation. Based on these results, we propose some gedanken experiments that could lead to the violation of the weak cosmic censorship conjecture due to the (classically forbidden) absorption of small energy charged particles by the black hole. As for the case of scattering in Kerr spacetimes, our results demonstrate explicitly that scalar fields are subject to (electrical) superradiance phenomenon, while spin-(1/2) fields are not. Superradiance impose some limitations on the gedanken experiments involving spin-0 fields, favoring, in this way, the mechanisms for creation of a naked singularity by the quantum tunneling of spin-(1/2) charged fermions. We also discuss the implications that vacuum polarization effects and quantum statistics might have on these gedanken experiments. In particular, we show that they are not enough to prevent the absorption of incident small energy particles and, consequently, the formation of a naked singularity.

  3. Weak neutral-current interactions

    International Nuclear Information System (INIS)

    Barnett, R.M.

    1978-08-01

    The roles of each type of experiment in establishing uniquely the values of the the neutral-current couplings of u and d quarks are analyzed together with their implications for gauge models of the weak and electromagnetic interactions. An analysis of the neutral-current couplings of electrons and of the data based on the assumption that only one Z 0 boson exists is given. Also a model-independent analysis of parity violation experiments is discussed. 85 references

  4. Fast measure proceeding of weak currents

    International Nuclear Information System (INIS)

    Taieb, J.

    1953-01-01

    The process of fast measure of the weak currents that we are going to describe briefly apply worthy of the provided currents by the sources to elevated value internal resistance, as it is the case for the ionization chamber, the photocells, mass spectroscopic tubes. The problem to measure weak currents is essentially a problem of amplifier and of input circuit. We intended to achieve a whole amplifier and input circuit with advanced performances, meaning that for a measured celerity we wanted to have an signal/noise ratio the most important as in the classic systems and for a same report signal/noise a more quickly done measure. (M.B.) [fr

  5. Self-consistent theory of charged current neutrino-nucleus reactions

    Energy Technology Data Exchange (ETDEWEB)

    Paar, Nils; Marketin, Tomislav; Vretenar, Dario [Physics Department, Faculty of Science, University Zagreb (Croatia); Ring, Peter [Physik-Department, Technischen Universitaet Muenchen, D-85748 Muenchen (Germany)

    2009-07-01

    A novel theoretical framework has been introduced for description of neutrino induced reactions with nuclei. The properties of target nuclei are determined in a self-consistent way using relativistic mean-field framework based on effective Lagrangians with density dependent meson-nucleon vertex functions. The weak lepton-hadron interaction is expressed in the standard current-current form, the nuclear ground state is described in the relativistic Hartree-Bogolyubov model, and the relevant transitions to excited nuclear states are calculated in the proton-neutron relativistic quasiparticle random phase approximation. This framework has been employed in studies of charged-current neutrino reactions involving nuclei of relevance for neutrino detectors, r-process nuclei, and neutrino-nucleus cross sections averaged over measured neutrino fluxes and supernova neutrino distributions.

  6. W 2 and Q 2 dependence of charged hadron and pion multiplicities in vp andbar vp charged current interactionscharged current interactions

    Science.gov (United States)

    Jones, G. T.; Jones, R. W. L.; Morrison, D. R. O.; Mobayyen, M. M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Hoffmann, E.; Katz, U. F.; Kern, J.; Schmitz, N.; Wittek, W.; Allport, P.; Borner, H. P.; Myatt, G.; Radojicic, D.; Bullock, F. W.; Burke, S.

    1990-03-01

    Using data on vp andbar vp charged current interactions from a bubble chamber experiment with BEBC at CERN, the average multiplicities of charged hadrons and pions are determined as functions of W 2 and Q 2. The analysis is based on ˜20000 events with incident v and ˜10000 events with incidentbar v. In addition to the known dependence of the average multiplicity on W 2 a weak dependence on Q 2 for fixed intervals of W is observed. For W>2 GeV and Q 2>0.1 GeV2 the average multiplicity of charged hadrons is well described by =a 1+ a 2ln( W 2/GeV2)+ a 3ln( Q 2/GeV2) with a 1=0.465±0.053, a 2=1.211±0.021, a 3=0.103±0.014 for the vp and a 1=-0.372±0.073, a 2=1.245±0.028, a 3=0.093±0.015 for thebar vp reaction.

  7. Experimental investigation on the use of highly charged nanoparticles to improve the stability of weakly charged colloidal system.

    Science.gov (United States)

    Zubir, Mohd Nashrul Mohd; Badarudin, A; Kazi, S N; Misran, Misni; Amiri, Ahmad; Sadri, Rad; Khalid, Solangi

    2015-09-15

    The present work highlighted on the implementation of a unique concept for stabilizing colloids at their incipiently low charge potential. A highly charged nanoparticle was introduced within a coagulated prone colloidal system, serving as stabilizer to resist otherwise rapid flocculation and sedimentation process. A low size asymmetry of nanoparticle/colloid serves as the new topic of investigation in addition to the well-established large size ratio nanoparticle/microparticle study. Highly charged Al2O3 nanoparticles were used within the present research context to stabilize TiO2 and Fe3O4 based colloids via the formation of composite structures. It was believed, based on the experimental evidence, that Al2O3 nanoparticle interact with the weakly charged TiO2 and Fe3O4 colloids within the binary system via absorption and/or haloing modes to increase the overall charge potential of the respective colloids, thus preventing further surface contact via van der Waal's attraction. Series of experimental results strongly suggest the presence of weakly charged colloids in the studied bimodal system where, in the absence of highly charged nanoparticle, experience rapid instability. Absorbance measurement indicated that the colloidal stability drops in accordance to the highly charged nanoparticle sedimentation rate, suggesting the dominant influence of nanoparticles to attain a well-dispersed binary system. Further, it was found that the level of colloidal stability was enhanced with increasing nanoparticle fraction within the mixture. Rheological observation revealed that each hybrid complexes demonstrated behavior reminiscence to water with negligible increase in viscosity which serves as highly favorable condition particularly in thermal transport applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Measurement of the charged particle multiplicity of weakly decaying B hadrons

    CERN Document Server

    Abreu, P; Adye, T; Adzic, P; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Brown, R; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerruti, C; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Damgaard, G; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Duperrin, A; Durand, J D; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Ferrari, P; Ferrer, A; Fichet, S; Firestone, A; Fischer, P A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Heising, S; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krstic, J; Krumshtein, Z; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Malychev, V; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rakoczy, D; Rames, J; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwemling, P; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Silvestre, R; Simonetto, F; Sissakian, A N; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sopczak, André; Sosnowski, R; Souza-Santos, D; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wlodek, T; Wolf, G; Yi, J; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    1998-01-01

    From the $Z$ decays recorded in 1994 and 1995 by the DELPHI detector at LEP, the charged particle multiplicity of weakly decaying $B$ hadrons was measured to be: \\begin{center} $4.97 \\pm 0.03 \\pm 0.06 \\, ,$ \\end{center} \

  9. Qweak: First Direct Measurement of the Weak Charge of the Proton

    Directory of Open Access Journals (Sweden)

    Nuruzzaman

    2014-04-01

    Full Text Available The Qweak experiment at Hall C of Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton, QWp, through a precision measurement of the parity-violating asymmetry in elastic e-p scattering at low momentum transfer Q2= 0.025 (GeV/c2 with incident electron beam energy of 1.155 GeV. The Qweak experiment, along with earlier results of parity violating elastic scattering experiments, is expected to determine the most precise value of QWp which is suppressed in the Standard Model. If this result is further combined with the 133Cs atomic parity violation (APV measurement, significant constraints on the weak charge of the up quark, down quark, and neutron can be extracted. This data will also be used to determine the weak-mixing angle, sin2 θW, with a relative uncertainty of < 0.5% that will provide a competitive measurement of the running of sin2 θW to low Q2. An overview of the experiment and its results using the commissioning dataset, constituting approximately 4% of the data collected in the experiment, are reported here.

  10. Weak interactions

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1978-01-01

    Weak interactions are studied from a phenomenological point of view, by using a minimal number of theoretical hypotheses. Charged-current phenomenology, and then neutral-current phenomenology are discussed. This all is described in terms of a global SU(2) symmetry plus an electromagnetic correction. The intermediate-boson hypothesis is introduced and lower bounds on the range of the weak force are inferred. This phenomenology does not yet reconstruct all the predictions of the conventional SU(2)xU(1) gauge theory. To do that requires an additional assumption of restoration of SU(2) symmetry at asymptotic energies

  11. Measurement of the Q2 dependence of the charged and neutral current cross sections in e±p scattering at HERA

    International Nuclear Information System (INIS)

    Aid, S.; Andreev, V.; Andrieu, B.

    1996-03-01

    The Q 2 dependence and the total cross sections for charged and neutral current processes are measured in e ± p reactions for transverse momenta of the outgoing lepton larger than 25 GeV. Comparable size of cross sections for the neutral current process and for the weak charged current process are observed above Q 2 ∼5000 GeV 2 . Using the shape and magnitude of the charged current cross section we determine a propagator mass of m W =84 -7 +10 GeV. (orig.)

  12. Charge-charge correlations and the detection of weak vector bosons by hadronic jets in proton-antiproton and proton-proton collisions at collider energies

    International Nuclear Information System (INIS)

    Ranft, J.; Ritter, S.

    1980-07-01

    The charge properties of quark jets are studied within a chain decay model for quark jet fragmentation. Using the charge properties of quark jets, charge-charge two-jet cross sections and correlations are defined. In proton-antiproton collisions these correlations show significant structure due to the weak vector bosons W +- and Z 0 . (author)

  13. Conservation of Charge and Conservation of Current

    OpenAIRE

    Eisenberg, Bob

    2016-01-01

    Conservation of current and conservation of charge are nearly the same thing: when enough is known about charge movement, conservation of current can be derived from conservation of charge, in ideal dielectrics, for example. Conservation of current is enforced implicitly in ideal dielectrics by theories that conserve charge. But charge movement in real materials like semiconductors or ionic solutions is never ideal. We present an apparently universal derivation of conservation of current and ...

  14. Negative and positive magnetoresistance in bilayer graphene: Effects of weak localization and charge inhomogeneity

    International Nuclear Information System (INIS)

    Chen Yungfu; Bae, Myung-Ho; Chialvo, Cesar; Dirks, Travis; Bezryadin, Alexey; Mason, Nadya

    2011-01-01

    We report measurements of magnetoresistance in bilayer graphene as a function of gate voltage (carrier density) and temperature. We examine multiple contributions to the magnetoresistance, including those of weak localization (WL), universal conductance fluctuations (UCF), and inhomogeneous charge transport. A clear WL signal is evident at all measured gate voltages (in the hole doped regime) and temperature ranges (from 0.25 to 4.3 K), and the phase coherence length extracted from the WL data does not saturate at low temperatures. The WL data is fit to demonstrate that the electron-electron Nyquist scattering is the major source of phase decoherence. A decrease in UCF amplitude with increase in gate voltage and temperature is shown to be consistent with a corresponding decrease in the phase coherence length. In addition, a weak positive magnetoresistance at higher magnetic fields is observed, and attributed to inhomogeneous charge transport. -- Research highlights: → Weak localization theory describes low-field magnetoresistance in bilayer graphene. → Electron-electron Nyquist scattering limits phase coherence in bilayer graphene. → Positive magnetoresistance reveals charge inhomogeneity in bilayer graphene.

  15. Differences between charged-current coefficient functions

    International Nuclear Information System (INIS)

    Moch, S.; Rogal, M.; Vogt, A.

    2007-08-01

    Second- and third-order results are presented for the structure functions of charged-current deepinelastic scattering in the framework of massless perturbative QCD. We write down the two-loop differences between the corresponding crossing-even and -odd coefficient functions, including those for the longitudinal structure function not covered in the literature so far. At three loops we compute the lowest five moments of these differences for all three structure functions and provide approximate expressions in Bjorken-x space. Also calculated is the related third-order coefficient-function correction to the Gottfried sum rule. We confirm the conjectured suppression of these quantities if the number of colours is large. Finally we derive the second- and third-order QCD contributions to the Paschos-Wolfenstein ratio used for the determination of the weak mixing angle from neutrino-nucleon deep-inelastic scattering. These contributions are found to be small. (orig.)

  16. Differences between charged-current coefficient functions

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S.; Rogal, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Vogt, A. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences

    2007-08-15

    Second- and third-order results are presented for the structure functions of charged-current deepinelastic scattering in the framework of massless perturbative QCD. We write down the two-loop differences between the corresponding crossing-even and -odd coefficient functions, including those for the longitudinal structure function not covered in the literature so far. At three loops we compute the lowest five moments of these differences for all three structure functions and provide approximate expressions in Bjorken-x space. Also calculated is the related third-order coefficient-function correction to the Gottfried sum rule. We confirm the conjectured suppression of these quantities if the number of colours is large. Finally we derive the second- and third-order QCD contributions to the Paschos-Wolfenstein ratio used for the determination of the weak mixing angle from neutrino-nucleon deep-inelastic scattering. These contributions are found to be small. (orig.)

  17. Discovery of the charged vector bosons (W+-) conveying weak interaction

    International Nuclear Information System (INIS)

    Kiss, D.

    1983-01-01

    The unified Weinberg-Salam-Glashow theory of weak and electromagnetic interactions assumes the existence of two charged (W) and one neutral (Z) intermediate vector bosons of the unified electroweak interaction. These particles were discovered at the end of 1982 with the CERN's SPS proton-antiproton colliding beams. Technical aspects of the production and detection of W and Z bosons, the first results and their importance are described in detail. (D.Gy.)

  18. Current algebra and soft pion theorems for weak π production

    International Nuclear Information System (INIS)

    Adler, S.L.

    1976-01-01

    Beginning with definitions of vector, scalar, axial vector, pseudoscalar, and tensor current densities, equal time current commutators are derived and divergences are discussed. The partially conserved axial current (PCAC) hypothesis is formulated and used to derive the Goldberger--Treiman relation. Current algebra and the PCAC hypothesis are then employed to develop a master formula describing the reaction J + N → π + N where J is a current with four momentum k, and π is a soft pion with four momentum q. Several applications are considered: πN scattering consistency conditions, π isovector electroproduction relations, π production by an isoscalar weak neutral current, π axial vector weak production relations, and low energy theorems which combine soft pion results with knowledge of divergences of the vector or axial vector current J (which induces weak pion production). It is concluded that (1) the entire weak production amplitude is determined to zero order in q by soft pion theorems, and (2) combined relations determine corrections linear in q but of zero order in k

  19. Weak decays of charged K-mesons and charm particles

    International Nuclear Information System (INIS)

    Kalmus, G.E.

    1993-11-01

    In the first part of the paper the contribution of the bubble chamber in the early and mid 1960s to the understanding of the strangeness changing weak interaction is discussed by means of selected examples in charged K decay. In the second part of the paper the extension of the technique in the late 1970s and early 1980s needed to investigate charm particle properties is briefly discussed. Selected results from bubble chamber experiments are compared with theoretical predictions and with the present experimental information. (author)

  20. Effect of the radio frequency discharge on the dust charging process in a weakly collisional and fully ionized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Motie, Iman [Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Bokaeeyan, Mahyar, E-mail: Mehyar9798@gmail.com [Department of Engineering, University of Applied Science and Technology (UAST)-Mohandesan Center, Mashhad (Iran, Islamic Republic of)

    2015-02-15

    A close analysis of dust charging process in the presence of radio frequency (RF) discharge on low pressure and fully ionized plasma for both weak and strong discharge's electric field is considered. When the electromagnetic waves pass throughout fully ionized plasma, the collision frequency of the plasma is derived. Moreover, the disturbed distribution function of plasma particles in the presence of the RF discharge is obtained. In this article, by using the Krook model, we separate the distribution function in two parts, the Maxwellian part and the perturbed part. The perturbed part of distribution can make an extra current, so-called the accretion rate of electron (or ion) current, towards a dust particle as a function of the average electron-ion collision frequency. It is proven that when the potential of dust grains increases, the accretion rate of electron current experiences an exponential reduction. Furthermore, the accretion rate of electron current for a strong electric field is relatively smaller than that for a weak electric field. The reasons are elaborated.

  1. The Qweak Experiment: First Determination of the Weak Charge of the Proton

    Energy Technology Data Exchange (ETDEWEB)

    Kargiantoulakis, Emmanouil [Univ. of Virginia, Charlottesville, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-08-01

    The $Q_{weak}$ Collaboration has completed a challenging measurement of the parity-violating asymmetry in elastic electron-proton ($\\vec{e}$p) scattering at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The initial result reported here is extracted from the commissioning part of the experiment, constituting about 4% of the full data set. The parity-violating asymmetry at a low momentum transfer $Q^2$=0.025 GeV$^2$ is $A_{ep}$ = -279 $\\pm$ 35 (stat) $\\pm$ 31 (syst) ppb, which is the smallest and most precise asymmetry ever measured in $\\vec{e}$p scattering. This result allowed the first determination of the weak charge of the proton $Q_W^p$ from a global fit of parity-violating elastic scattering (PVES) results from nuclear targets, where earlier data at higher $Q^2$ constrain uncertainties of hadronic structure. The value extracted from the global fit is $Q_W^p$ (PVES) = 0.064 $\\pm$ 0.012, in agreement with the standard model prediction $Q_W^p$ (SM) = 0.0710 $\\pm$ 0.0007. The neutral weak charges of up and down quarks are extracted from a combined fit of the PVES results with a previous atomic parity violation (APV) measurement on $^{133}$Cs. The analysis of the full $Q_{weak}$ data is ongoing and expected to yield a value for the asymmetry within 10 ppb of precision. Because of the suppression of $Q_W^p$, such a high precision measurement will place significant constraints to models of physics beyond the standard model.

  2. Nonextensive electron and ion dust charging currents

    International Nuclear Information System (INIS)

    Amour, Rabia; Tribeche, Mouloud

    2011-01-01

    The correct nonextensive electron and ion charging currents are presented for the first time based on the orbit motion limited approach. For -1< q<1, where q measures the amount of plasma nonextensivity, the nonextensive electron charging current is expressed in terms of the hypergeometric function. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate succinctly the effects of nonextensive charge carriers. The obtained formulas bring a possibility to build theories on nonlinear collective process in variable charge nonextensive dusty plasmas.

  3. Polarization phenomena in isobar production by a weak neutral current

    International Nuclear Information System (INIS)

    Esajbegyan, S.V.; Matinyan, S.G.

    1977-01-01

    Polarization phenomen connected with weak neutral currents producing the isobar in the lepton-nucleon scattering are considered. It is shown that measurement of the angular distribution of π mesons so as to detect also the longitudinally polarized decay nucleon can provide usefull information about validity of various models including a weak neutral current

  4. Dust charging and charge fluctuations in a weakly collisional radio-frequency sheath at low pressure

    International Nuclear Information System (INIS)

    Piel, Alexander; Schmidt, Christian

    2015-01-01

    Models for the charging of dust particles in the bulk plasma and in the sheath region are discussed. A new model is proposed that describes collision-enhanced ion currents in the sheath. The collisions result in a substantial reduction of the negative charge of the dust. Experimental data for the dust charge in the sheath can be described by this model when a Bi-Maxwellian electron distribution is taken into account. Expressions for the dust charging rate for all considered models are presented and their influence on the rise of the kinetic dust temperature is discussed

  5. Meson exchange and neutral weak currents

    Energy Technology Data Exchange (ETDEWEB)

    Beck, D.H. [Univ. of Illinois, Urbana, IL (United States)

    1994-04-01

    Measurements of parity-violating electron scattering asymmetries to determine weak neutral currents in nuclei will be effected by the presence of meson exchange currents. Present low momentum transfer calculations, based on a flavor independent framework, show these effects to be small. In general, however, as the momentum transfer increases to values typical of deep-inelastic scattering, fragmentation functions show a clear flavor dependence. It is suggested that a good experimental starting point for understanding the flavor dependence of meson production and exchange currents is the Q{sup 2} dependence of parity-violating asymmetry in inclusive single pion electroproduction. A CEBAF facility with doubled energy is necessary to approach momentum transfers where this process begins to scale.

  6. Weak Deeply Virtual Compton Scattering

    International Nuclear Information System (INIS)

    Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin

    2006-01-01

    We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities

  7. Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements

    Science.gov (United States)

    Röhr, Jason A.; Shi, Xingyuan; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-04-01

    Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density-voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2 ,2',7 ,7' -tetrakis(N ,N -di-4-methoxyphenylamine)-9 ,9' -spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density-voltage curves from space-charge-limited current measurements.

  8. Introduction to weak interactions

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    An account is first given of the electromagnetic interactions of complex, scalar, vector and spinor fields. It is shown that the electromagnetic field may be considered as a gauge field. Yang-Mills fields and the field theory invariant with respect to the non-Abelian gauge transformation group are then described. The construction, owing to this invariance principle, of conserved isospin currents associated with gauge fields is also demonstrated. This is followed by a historical survey of the development of the weak interaction theory, established at first to describe beta disintegration processes by analogy with electrodynamics. The various stages are mentioned from the discovery of principles and rules and violation of principles, such as those of invariance with respect to spatial reflection and charge conjugation to the formulation of the effective current-current Lagrangian and research on the structure of weak currents [fr

  9. Measuring the Weak Charge of the Proton and the Hadronic Parity Violation of the N → Δ Transition

    Energy Technology Data Exchange (ETDEWEB)

    Leacock, John D. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2012-10-16

    Qweak will determine the weak charge of the proton, Qp{sub W}, via an asymmetry measurement of parity-violating elastic electron-proton scattering at low four momentum transfer to a precision of 4%. QpW has a firm Standard Model prediction and is related to the weak mixing angle, sin2 ΦW, a well-defined Standard Model parameter. Qweak will probe a subset of new physics to the TeV mass scale and test the Standard Model. The details of how this measurement was performed and the analysis of the 25% elastic dataset will be presented in this thesis. Also, an analysis of an auxiliary measurement of the parity-violating asymmetry in the N → Δ transition is presented. It is used as a systematic inelastic background correction in the elastic analysis and to extract information about the hadronic parity violation through the low energy constant, dΔ. The elastic asymmetry at Q2 = 0.0252 ± 0.0007 GeV2 was measured to be Aep = -265 ± 40 ± 22 ± 68 ppb (stat., sys., and blinding). Extrapolated to Q2 = 0, the value of the proton's weak charge was measured to be QpW = 0.077 ± 0.019 (stat. and sys.) ± 0.026 (blinding). This is within 1 σ of the Standard Model prediction of QpW = 0.0705 ± 0.0008. The N → Δ inelastic asymmetry at Q2 = 0.02078 ± 0.0005 GeV2 and W = 1205 MeV was measured to be Ainel = -3.03 ± 0.65 ± 0.73 ± 0.07 ppm (stat., sys., and blinding). This result constrains the low energy constant to be dΔ = 5.8 ± 22gπ, and, if the result of the G0 experiment is included, dΔ = 5.8 ± 17gπ. This result rules out suggested large values of dΔ motivated by radiative hyperon decays. The elastic measurement is the first direct measurement of the weak charge of the proton while the inelastic measurement is only the second

  10. Effects of a superheavy, weak-isoscalar quark on flavor-changing neutral current processes, especially charge-parity violation in Z0decay

    International Nuclear Information System (INIS)

    Rivard, M.J.

    1987-01-01

    A superheavy, weak-isoscalar, Q = -1/3 quark is added to the Standard Model, inducing tree-level flavor-changing neutral currents (TLFCNCs) involving only the Q = -1/3 quarks. Although constrained by current low-energy experimental data to be extremely weak, it is nonetheless found that the tree-level s ↔ d mixing strength could still be large enough to increase the absolute value of r/sub sd/ = [Gamma(Z 0 → anti sd) - (s ↔ d)] Gamma/sub T/(Z 0 → quarks) by a factor of 360 over its Standard Model-predicted upper limit. The K/sub L/ 0 -K/sub s/ 0 mass difference Δm and K/sub L/ 0 -K/sub s/ 0 mixing parameter anti epsilon are used as input to determine the behavior of the tree-level s ↔ d multiplicative mixing parameter

  11. The Weak Charge of the Proton. A Search For Physics Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    MacEwan, Scott J. [Univ. of Manitoba, Winnipeg, MB (Canada)

    2015-05-01

    The Qweak experiment, which completed running in May of 2012 at Jefferson Laboratory, has measured the parity-violating asymmetry in elastic electron-proton scattering at four-momentum transfer Q2 =0.025 (GeV/c)2 in order to provide the first direct measurement of the proton's weak charge, QWp. The Standard Model makes firm predictions for the weak charge; deviations from the predicted value would provide strong evidence of new physics beyond the Standard Model. Using an 89% polarized electron beam at 145 microA scattering from a 34.4 cm long liquid hydrogen target, scattered electrons were detected using an array of eight fused-silica detectors placed symmetric about the beam axis. The parity-violating asymmetry was then measured by reversing the helicity of the incoming electrons and measuring the normalized difference in rate seen in the detectors. The low Q2 enables a theoretically clean measurement; the higher-order hadronic corrections are constrained using previous parity-violating electron scattering world data. The experimental method will be discussed, with recent results constituting 4% of our total data and projections of our proposed uncertainties on the full data set.

  12. Left--right symmetric gauge theories of weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Sidhu, D.P.

    1978-01-01

    We review the recent progress in spontaneously broken left-right symmetric gauge theories of weak and electromagnetic interactions. Recently gauge theories based on the group SU(2)/Sub L/ x SU(2)/sub R/ x U(1) have been proposed as serious candidates for a unified description of the weak and electromagnetic interactions. Such theories have a number of attractive features which are not shared by the standard SU(2) x U(1) theories. Parity violation as well as CP-violation are spontaneous in origin and, therefore, theories are parity conserving before spontaneous breakdown of the symmetry and also afterwards at asymptotic energies. The asymmetry in low energy charged current weak interaction, i.e., predominance of left-handed charged current interactions over the right-handed ones, is a consequence of the symmetry breaking thus leading to a conceptually different picture of weak interaction at low energies. Another appealing feature of these theories is the beauty and richness of the structure of weak neutral current interactions. One can have a parity conserving structure of the neutral currents (one neutral boson (Z/sub V/) has pure vector and the other (Z/sub A/) pure axial vector coupling to quarks and leptons) which is natural in the technical sense of the word. Models of this type provide the most elegant explanation of the failure to find parity violation in atoms at the level predicted on the basis of the Weinberg-Salam model. In spite of manifestly parity conserving neutral current interactions, ν/sub μ/N and anti ν/sub μ/N (also ν/sub μ/e and anti ν/sub μ/e) neutral current cross-sections have to be unequal in these theories because of the definite parity and charge conjugation of the Z-bosons

  13. Design of Smart Charging Infrastructure Hardware and Firmware Design of the Various Current Multiplexing Charging System

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ching-Yen; Chu, Peter; Gadh, Rajit

    2013-10-07

    Currently, when Electric Vehicles (EVs) are charging, they only have the option to charge at a selected current or not charge. When during the day there is a power shortage, the charging infrastructure should have the options to either shut off the power to the charging stations or to lower the power to the EVs in order to satisfy the needs of the grid. There is a need for technology that controls the current being disbursed to these electric vehicles. This paper proposes a design for a smart charging infrastructure capable of providing power to several EVs from one circuit by multiplexing power and providing charge control. The smart charging infrastructure includes the server and the smart charging station. With this smart charging infrastructure, the shortage of energy in a local grid could be solved by our EV management system

  14. Neutral currents and the gauge group of weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Rajpoot, S.

    1977-12-01

    In considering the question of neutral current parity conversation, models of weak and electromagnetic interactions based on the gauge sub group SU(2)sub(L)xSU(2)sub(R)x(U) 1 are examined. The thesis is presented in the following sections: (1) Introduction. (2) Natural left-right symmetric theory and its neutral current phenomenology. (3) Effects of neutral weak currents in electron-positron annihilation. (4) Dilepton production in pp and anti pp collisions as a probe to the nature of the neutral current interaction. (U.K.)

  15. Theoretical status of weak and electromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, L. K.

    1980-07-01

    An extended simple version of the Weinberg gauge model is proposed to bring together weak and electromagnetic interactions under one theory. The essential features of the standard SU/sub 2/ (operating on)U/sub 1/ gauge scheme with four leptons and four quark flavours is recalled. Charged-current and neutral current interactions are described. Non-leptonic decays of strange particles are studied. The treatment is extended to 6-leptons and 6-quark flavours. The short comings of this model are discussed. Speculations on the unification of strong, weak and electromagnetic interactions are made.

  16. Measurement of MOS current mismatch in the weak inversion region

    International Nuclear Information System (INIS)

    Forti, F.; Wright, M.E.

    1994-01-01

    The MOS transistor matching properties in the weak inversion region have not received, in the past, the attention that the mismatch in the strong inversion region has. The importance of weak inversion biased transistors in low power CMOS analog systems calls for more extensive data on the mismatch in this region of operation. The study presented in this paper was motivated by the need of controlling the threshold matching in a low power, low noise amplifier discriminator circuit used in a silicon radiation detector read-out, where both the transistor dimensions and the currents had to be kept to a minimum. The authors have measured the current matching properties of MOS transistors operated in the weak inversion region. They measured a total of about 1,400 PMOS and NMOS transistors produced in four different processes and report here the results in terms of mismatch dependence on current density, device dimensions, and substrate voltage, without using any specific model for the transistor

  17. Meson exchange corrections to nuclear weak axial charge density in hard pion model and O+ reversible O- transition in A = 16 nuclei

    International Nuclear Information System (INIS)

    Jager, H.U.; Kirchbach, M.; Truhlik, E.

    1982-01-01

    Starting with the hard pion model based on a minimal chiral invariant phenomenological Lagrangian, the two-particle part of the time component of the weak axial-vector current is constructed in the tree-approximation. Pion, rho- and A 1 -meson exchanges are considered. The mesonic exchange operator obtained is applied to describe the purely weak axial 0 + reversible 0 - , ΔT=1 transition in the nuclear A=16 system the muon reaction μ - + 16 O(0 1 + ; T=0) → 16 N(0 1 - ; T=1) + γsub(μ) and beta decay 16 N(0 1 - ; T=1) → 16 O(0 1 + ; T=0) + e - + anti νsub(e). In order to treat nufar structure correlation efects explicit use of shell model wave functions with configuration mixing is made. The large enhancement of the nuclear weak axial charge density with respect to impulse approximation is established

  18. Weak interaction models with spontaneously broken left-right symmetry

    International Nuclear Information System (INIS)

    Mohapatra, R.H.

    1978-01-01

    The present status of weak interaction models with spontaneously broken left-right symmetry is reviewed. The theoretical basis for asymptotic parity conservation, manifest left-right symmetry in charged current weak interactions, natural parity conservation in neutral currents and CP-violation in the context of SU(2)/sub L/ circled x SU (2)/sub R/ circled x U(1) models are outlined in detail. Various directions for further research in the theoretical and experimental side are indicated

  19. Measurement of the beta-asymmetry parameter of Cu-67 in search for tensor-type currents in the weak interaction

    OpenAIRE

    Soti, Gergely; Breitenfeldt, Martin; Finlay, Paul; Herzog, P; Knecht, Andreas; Koester, U; Kraev, I. S; Porobic, Tomica; Prashanth, P. N; Towner, I. S; Tramm, C; Zakoucky, D; Severijns, Nathal; Wauters, F

    2014-01-01

    The experimental value, ˜A = 0.587(14), is in agreement with the standard model value of 0.5991(2) and is interpreted in terms of physics beyond the standard model. The limits obtained on possible tensor-type charged currents in the weak interaction Hamiltonian are −0.045 < (C_T + C'_T)/CA < 0.159 (90% C.L.). The obtained limits are comparable to limits from other correlation measurements in nuclear β decay and contribute to further constraining tensor coupling constants.

  20. Ponderomotive enhancement of charged particle beam limiting current

    International Nuclear Information System (INIS)

    Grebogi, C.; Uhm, H.S.

    1987-01-01

    The space charge limiting current problem is investigated for a magnetized particle beam propagating in a cylindrical drift tube and in presence of a waveguide mode. It is shown that with a proper choice of a waveguide mode, the limiting current can be greatly enhanced due to ponderomotive effects. Physically, this is accomplished by using the ponderomotive energy to reduce the potential depression due to the beam's self space charge field. Formulas for the limiting current as a function of beam energy and waveguide r.f. field for solid and hollow beams are derived. It is found from these formulas that, in appropriate parameter regimes, the space charge limiting current, say, of a 250kV bem can be enhanced by 70%

  1. W2 and Q2 dependence of charged hadron and pion multiplicities in νp and anti νp charged current interactions

    International Nuclear Information System (INIS)

    Jones, G.T.; Jones, R.W.L.; Allport, P.; Borner, H.P.; Myatt, G.; Radojicic, D.; Bullock, F.W.; Burke, S.

    1990-01-01

    Using data on νp and anti νp charged current interactions from a bubble chamber experiment with BEBC at CERN, the average multiplicities of charged hadrons and pions are determined as functions of W 2 and Q 2 . The analysis is based on ∝20000 events with incident ν and ∝10000 events with incident anti ν. In addition to the known dependence of the average multiplicity on W 2 a weak dependence on Q 2 for fixed intervals of W is observed. For W>2 Gev and Q 2 >0.1 GeV 2 the average multiplicity of charged hadrons is well described by =a 1 +a 2 ln(W 2 /GeV 2 )+a 3 ln(Q 2 /GeV 2 ) with a 1 =0.465±0.053, a 2 =1.211±0.021, a 3 =0.103±0.014 for the νp and a 1 =-0.372±0.073, a 2 =1.245±0.028, a=30.093±0.015 for the anti νp reaction. (orig.)

  2. Charged current antineutrino reactions from 12C at MiniBooNE energies

    International Nuclear Information System (INIS)

    Athar, M. Sajjad; Ahmad, Shakeb; Singh, S. K.

    2007-01-01

    A study of charged current induced antineutrino interactions from nuclei has been done for the intermediate energy antineutrinos and applied to 12 C, relevant for ongoing experiment by MiniBooNE collaboration. The calculations have been done for the quasielastic and inelastic lepton production as well as for the incoherent and the coherent pion production processes. The calculations are done in local density approximation. In the case of the quasielastic reaction the effects of Pauli blocking, Fermi motion effects, renormalization of weak transition strengths in nuclear medium and the Coulomb distortion of the outgoing lepton have been taken into account. For the inelastic processes the calculations have been done in the Δ dominance model and take into account the effect of Pauli blocking, Fermi motion of the nucleon, and renormalization of Δ properties in a nuclear medium. The effect of final state interactions of pions is also taken into account. The numerical results for the total cross sections for the charged current quasielastic scattering and incoherent pion production processes are compared with earlier experimental results available in freon and freon-propane. It is found that nuclear medium effects give strong reduction in the cross sections leading to satisfactory agreement with the available data

  3. Weak interactions of the b quark

    International Nuclear Information System (INIS)

    Branco, G.C.; Mohapatra, R.N.

    1978-01-01

    In weak-interaction models with two charged W bosons of comparable mass, there exists a novel possibility for the weak interactions of the b quark, in which the (u-barb)/sub R/ current occurs with maximal strength. It is noted that multimuon production in e + e - annihilation at above Q 2 > or approx. = (12 GeV) 2 will distinguish this scheme from the conventional one. We also present a Higgs system that leads naturally to this type of coupling, in a class of gauge models

  4. Charge Injection and Current Flow in Organic Light Emitting Diodes

    Science.gov (United States)

    Smith, D. L.; Davids, P. S.; Heller, C. M.; Crone, B. K.; Campbell, I. H.; Barashkov, N. N.; Ferraris, J. P.

    1997-03-01

    We present a comparison between device model calculations and current-voltage measurements for a series of organic LED structures. The Schottky energy barrier of an injecting contact is systematically varied by changing the metal used to form that contact. The current-voltage characteristics of the structures are described using a device model that considers charge injection, transport and space charge effects in the low mobility organic material. Charge injection into the organic material is controlled by the Schottky energy barrier of the metal/organic contact. For Schottky energy barriers greater than about 0.4 eV injection into the organic material is the principal limitation to current flow. In this regime the net injected charge density is relatively small, the electric field in the structure is nearly uniform, and space charge effects are not important. For smaller energy barriers relatively large charge densities are injected into the organic material and space charge effects become the dominant limit to current flow. The measured current-voltage characteristics are quantitatively described by the device model using Schottky barrier values independently determined by internal photoemission and electroabsorption measurements.

  5. Hadronic structure of the weak neutral current

    International Nuclear Information System (INIS)

    Marriner, J.P.

    1977-01-01

    A comparison of neutral and charged current deep inelastic neutrino interactions is made in an experiment utilizing the Fermilab 15 ft. bubble chamber. The ratio of neutral current events (NC) to charged current events (CC) is 0.35 +- 0.06 when the visible hadronic energy is greater than 10 GeV. The distributions of NC and CC in a new variable called u/sub vis/, which depends only on the observed hadrons, are given. From these distributions and the assumption that the x distribution is the same for NC and CC, it is concluded that for a NC y distribution of the form (1 - eta) + 3 eta(1 - y) 2 , eta = .12 +- .32. The ratio rho/sub NC/(rho/sub CC/) of neutron to proton cross sections in NC(CC) is studied and the quotient rho/sub NC//rho/sub CC/ = 0.7 +- 0.2. The distribution of hadrons in z/sub vis/, the scaled hadronic momentum, is given. The CC hadrons fit the predictions of the quark fragmentation functions D/sub u//sup π + /(z) and D/sub u//sup π - /(z) as given by Field and Feynman. The neutral current events fit the form (1 - lambda)D/sub u//sup π + /(z) + lambda D/sub d//sup π + /(z) for positives and (1 - lambda)D/sub u//sup π - /(z) + lambda D/sub d//sup π - /(z) for negatives with lambda = 0.56 +- 0.10 and a fit confidence level of 4%

  6. Strange-particle production via the weak interaction

    International Nuclear Information System (INIS)

    Adera, G. B.; Van Der Ventel, B. I. S.; Niekerk, D. D. van; Mart, T.

    2010-01-01

    The differential cross sections for the neutrino-induced weak charged current production of strange particles in the threshold energy region are presented. The general representation of the weak hadronic current is newly developed in terms of eighteen unknown invariant amplitudes to parametrize the hadron vertex. The Born-term approximation is used for the numerical calculations in the framework of the Cabibbo theory and SU(3) symmetry. For unpolarized octet baryons four processes are investigated, whereas in the case of polarized baryons only one process is chosen to study the sensitivity of the differential cross section to the various polarizations of the initial-state nucleon and the final-state hyperon.

  7. A Measurement of the Weak Charge of the Proton through Parity Violating Electron Scattering using the Qweak Apparatus: A 21% Result

    Energy Technology Data Exchange (ETDEWEB)

    Beminiwattha, Rakitha [Ohio Univ., Athens, OH (United States)

    2013-08-01

    After a decade of preparations, the Qweak experiment at Jefferson Lab is making the first direct measurement of the weak charge of the proton, Q^p_W. This quantity is suppressed in the Standard Model making a good candidate for search for new physics beyond the SM at the TeV scale. Operationally, we measure a small (about -0.200 ppm) parity-violating asymmetry in elastic electron-proton scattering in integrating mode while flipping the helicity of the electrons 1000 times per second. Commissioning took place Fall 2010, and we finished taking data in early summer 2012. This dissertation is based on the data taken on an initial two weeks period (Wien0). It will provide an overview of the Qweak apparatus, description of the data acquisition and analysis software systems, and final analysis and results from the Wien0 data set. The result is a 16% measurement of the parity violating electron-proton scattering asymmetry, A = -0.2788 +/- 0.0348 (stat.) +/- 0.0290 (syst.) ppm at Q^2 = 0.0250 +/- 0.0006 (GeV)^2. From this a 21% measurement of the weak charge of the proton, Q_w^p(msr)= +0.0952 +/- 0.0155 (stat.) +/- 0.0131 (syst.) +/- 0.0015 (theory) is extracted. From this a 2% measurement of the weak mixing angle, sin^2theta_W(msr)= +0.2328 +/- 0.0039 (stat.) +/- 0.0033 (syst.) +/- 0.0004 (theory) and improved constraints on isoscalar/isovector effective coupling constants of the weak neutral hadronic currents are extracted. These results deviate from the Standard Model by one standard deviation. The Wien0 results are a proof of principle of the Qweak data analysis and a highlight of the road ahead for obtaining full results.

  8. Weak interaction potentials of nucleons in the Weinberg-Salam model

    International Nuclear Information System (INIS)

    Lobov, G.A.

    1979-01-01

    Weak interaction potentials of nucleons due to the nonet vector meson exchange are obtained in the Weinberg-Salam model using the vector-meson dominance. Contribution from the hadronic neutral currents to the weak interaction potential due to the charged pion exchange is obtained. The isotopic structure of the obtained potentials, that is unambiguous in the Weinberg-Salam model, is investigated. Enhancement of the nucleon weak interaction in nuclei resulting from the hadronic neutral currents is discussed. A nuclear one-particle weak interaction potential is presented that is a result of averaging of the two-particle potential over the states of the nuclear core. An approach to the nucleon weak interaction based on the quark model, is discussed. Effects of the nucleon weak interaction in the radiative capture of a thermal neutron by a proton, are considered

  9. Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes.

    Science.gov (United States)

    Chen, Guang; Das, Siddhartha

    2017-03-01

    In this paper, we study the thermodynamics, electrostatics, and an external electric field driven ionic current in a pH-responsive, end-charged polyelectrolyte (PE) brush grafted nanochannel. By employing a mean field theory, we unravel a highly nonintuitive interplay of pH and electrolyte salt concentration in dictating the height of the end-charged PE brush. Larger pH or weak hydrogen ion concentration leads to maximum ionization of the charge-producing group-as a consequence, the resulting the electric double layer (EDL) energy get maximized causing a maximum deviation of the brush height from the value (d 0 ) of the uncharged brush. This deviation may result in enhancement or lowering of the brush height as compared to d 0 depending on whether the PE end locates lower or higher than h/2 (h is the nanochannel half height) and the salt concentration. Subsequently, we use this combined PE-brush-configuration-EDL-electrostatics framework to compute the ionic current in the nanochannel. We witness that the ionic current for smaller pH is much larger despite the corresponding magnitude of the EDL electrostatic potential being much smaller-this stems from the presence of a much larger concentration of H+ ions at small pH and the fact that H+ ions have very large mobilities. In fact, this ionic current shows a steep variation with pH that can be useful in exploring new designs for applications involving quantification and characterization of ionic current in PE-brush-grafted nanochannels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Gauge theory of weak, electromagnetic and dual electromagnetic interactions

    International Nuclear Information System (INIS)

    Soln, J.

    1980-01-01

    An SU 2 x U 1 algebra, in addition to the ordinary electric charge, also establishes the existence of the dual electric charge. This is taken as an indication of the existence of dual electromagnetic interactions in nature. Here, the unification of weak, electromagnetic and dual electromagnetic interactions is performed. The Yang-Mills-type group which contains the electromagnetic, dual electromagnetic and weak currents is SUsub(L,2) x U 1 x U' 1 . The masses of vector mesons are generated through the Higgs-Kibble mechanism. A simple consistency requirement suggests that dual electromagnetism and ordinary electromagnetism have the same strengths, leading the theory to a rather good agreement with experiments. (author)

  11. Weak interaction studies from nuclear beta decay

    International Nuclear Information System (INIS)

    Morita, M.

    1981-01-01

    The studies performed at the theoretical nuclear physics division of the Laboratory of Nuclear Studies, Osaka University, are reported. Electron spin density and internal conversion process, nuclear excitation by electron transition, beta decay, weak charged current, and beta-ray angular distributions in oriented nuclei have been studied. The relative intensity of internal conversion electrons for the case in which the radial wave functions of orbital electrons are different for electron spin up and down was calculated. The calculated value was in good agreement with the experimental one. The nuclear excitation following the transition of orbital electrons was studied. The calculated probability of the nuclear excitation of Os 189 was 1.4 x 10 - 7 in conformity with the experimental value 1.7 x 10 - 7 . The second class current and other problems on beta-decay have been extensively studied, and described elsewhere. Concerning weak charged current, the effects of all induced terms, the time component of main axial vector, all partial waves of leptons, Coulomb correction for the electrons in finite size nuclei, and radiative correction were studied. The beta-ray angular distribution for the 1 + -- 0 + transition in oriented B 12 and N 12 was investigated. In this connection, investigation on the weak magnetism to include all higher order corrections for the evaluation of the spectral shape factors was performed. Other works carried out by the author and his collaborators are also explained. (Kato, T.)

  12. Nuclear Weak Rates and Detailed Balance in Stellar Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Misch, G. Wendell, E-mail: wendell@sjtu.edu, E-mail: wendell.misch@gmail.com [Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2017-07-20

    Detailed balance is often invoked in discussions of nuclear weak transitions in astrophysical environments. Satisfaction of detailed balance is rightly touted as a virtue of some methods of computing nuclear transition strengths, but I argue that it need not necessarily be strictly obeyed in astrophysical environments, especially when the environment is far from weak equilibrium. I present the results of shell model calculations of nuclear weak strengths in both charged-current and neutral-current channels at astrophysical temperatures, finding some violation of detailed balance. I show that a slight modification of the technique to strictly obey detailed balance has little effect on the reaction rates associated with these strengths under most conditions, though at high temperature the modified technique in fact misses some important strength. I comment on the relationship between detailed balance and weak equilibrium in astrophysical conditions.

  13. Measurement of the effective weak mixing angle by jet-charge asymmetry in hadronic decays of the Z boson

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Easo, S; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Migani, D; Mihul, A; Van Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Moulik, T; Mount, R; Muanza, G S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pedace, M; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Sakar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F; Zilizi, G

    1998-01-01

    The coupling of the Z boson to quarks is studied in a sample of about 3.5 million hadronic Z decays collected by the L3 experiment at LEP from 1991 to 1995. The forward-backward quark charge asymmet ry is measured by means of a jet charge technique. From the measured asymmetries, the effective weak mixing angle is determined to be \\begin{center} $\\STE = 0.2327 \\pm 0.0012(\\mbox{\\emph{stat.}} ) \\pm 0.0013(\\mbox{\\emph{syst.}}).$

  14. Inclusive charged-current neutrino-nucleus reactions calculated with the relativistic quasiparticle random-phase approximation

    International Nuclear Information System (INIS)

    Paar, N.; Vretenar, D.; Marketin, T.; Ring, P.

    2008-01-01

    Inclusive neutrino-nucleus cross sections are calculated using a consistent relativistic mean-field theoretical framework. The weak lepton-hadron interaction is expressed in the standard current-current form, the nuclear ground state is described with the relativistic Hartree-Bogoliubov model, and the relevant transitions to excited nuclear states are calculated in the relativistic quasiparticle random-phase approximation. Illustrative test calculations are performed for charged-current neutrino reactions on 12 C, 16 O, 56 Fe, and 208 Pb, and results compared with previous studies and available data. Through the use of the experimental neutrino fluxes, the averaged cross sections are evaluated for nuclei of interest for neutrino detectors. We analyze the total neutrino-nucleus cross sections and the evolution of the contribution of the different multipole excitations as a function of neutrino energy. The cross sections for reactions of supernova neutrinos on 16 O and 208 Pb target nuclei are analyzed as functions of the temperature and chemical potential

  15. Electronic charge rearrangement at metal/organic interfaces induced by weak van der Waals interactions

    Science.gov (United States)

    Ferri, Nicola; Ambrosetti, Alberto; Tkatchenko, Alexandre

    2017-07-01

    Electronic charge rearrangements at interfaces between organic molecules and solid surfaces play a key role in a wide range of applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. It is common to utilize electrostatics and Pauli pushback to control the interface electronic properties, while the ubiquitous van der Waals (vdW) interactions are often considered to have a negligible direct contribution (beyond the obvious structural relaxation). Here, we apply a fully self-consistent Tkatchenko-Scheffler vdW density functional to demonstrate that the weak vdW interactions can induce sizable charge rearrangements at hybrid metal/organic systems (HMOS). The complex vdW correlation potential smears out the interfacial electronic density, thereby reducing the charge transfer in HMOS, changes the interface work functions by up to 0.2 eV, and increases the interface dipole moment by up to 0.3 Debye. Our results suggest that vdW interactions should be considered as an additional control parameter in the design of hybrid interfaces with the desired electronic properties.

  16. Study of weak neutral-current effects in (e,e'X) reactions

    International Nuclear Information System (INIS)

    Kleppinger, W.E.

    1985-01-01

    In electron scattering from nuclei, in addition to the usual electromagnetic interaction, unified models of the electromagnetic and weak interactions predict an additional weak neutral-current interaction. When this additional interaction is included, a parity-violating contribution to the cross section due to the interference of the electromagnetic and neutral-weak currents, is present. The purpose of this work was to examine how these effects can be explored in (e,e'X) reactions with polarized incident electrons, where in addition to detecting the scattered electron, a decay particle X, emitted by the excited target nucleus, is also detected. It is found that new interference terms appear in the cross section that are not present in inelastic (e,e') scattering. A model calculation that assumed that the target was excited to a single, intermediate resonance indicates that the angular distribution of X is sensitive to these new terms. Results of this work have been published

  17. Quantum theory of space charge limited current in solids

    Energy Technology Data Exchange (ETDEWEB)

    González, Gabriel, E-mail: gabriel.gonzalez@uaslp.mx [Cátedras Conacyt, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico and Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000 (Mexico)

    2015-02-28

    We present a quantum model of space charge limited current transport inside trap-free solids with planar geometry in the mean field approximation. We use a simple transformation which allows us to find the exact analytical solution for the steady state current case. We use our approach to find a Mott-Gurney like behavior and the mobility for single charge carriers in the quantum regime in solids.

  18. Post-duplication charge evolution of phosphoglucose isomerases in teleost fishes through weak selection on many amino acid sites

    Directory of Open Access Journals (Sweden)

    Sato Yukuto

    2007-10-01

    Full Text Available Abstract Background The partitioning of ancestral functions among duplicated genes by neutral evolution, or subfunctionalization, has been considered the primary process for the evolution of novel proteins (neofunctionalization. Nonetheless, how a subfunctionalized protein can evolve into a more adaptive protein is poorly understood, mainly due to the limitations of current analytical methods, which can detect only strong selection for amino acid substitutions involved in adaptive molecular evolution. In this study, we employed a comparative evolutionary approach to this question, focusing on differences in the structural properties of a protein, specifically the electric charge, encoded by fish-specific duplicated phosphoglucose isomerase (Pgi genes. Results Full-length cDNA cloning, RT-PCR based gene expression analyses, and comparative sequence analyses showed that after subfunctionalization with respect to the expression organ of duplicate Pgi genes, the net electric charge of the PGI-1 protein expressed mainly in internal tissues became more negative, and that of PGI-2 expressed mainly in muscular tissues became more positive. The difference in net protein charge was attributable not to specific amino acid sites but to the sum of various amino acid sites located on the surface of the PGI molecule. Conclusion This finding suggests that the surface charge evolution of PGI proteins was not driven by strong selection on individual amino acid sites leading to permanent fixation of a particular residue, but rather was driven by weak selection on a large number of amino acid sites and consequently by steady directional and/or purifying selection on the overall structural properties of the protein, which is derived from many modifiable sites. The mode of molecular evolution presented here may be relevant to various cases of adaptive modification in proteins, such as hydrophobic properties, molecular size, and electric charge.

  19. Charged particle beam current monitoring tutorial

    International Nuclear Information System (INIS)

    Webber, R.C.

    1994-10-01

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed

  20. Multiplicity distributions of charged hadrons in vp and charged current interactions

    Science.gov (United States)

    Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; Morrison, D. R. O.; Mobayyen, M. M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Katz, U. F.; Kern, J.; Schmitz, N.; Wittek, W.; Borner, H. P.; Myatt, G.; Radojicic, D.; Burke, S.

    1992-03-01

    Using data on vp andbar vp charged current interactions from a bubble chamber experiment with BEBC at CERN, the multiplicity distributions of charged hadrons are investigated. The analysis is based on ˜20000 events with incident v and ˜10000 events with incidentbar v. The invariant mass W of the total hadronic system ranges from 3 GeV to ˜14 GeV. The experimental multiplicity distributions are fitted by the binomial function (for different intervals of W and in different intervals of the rapidity y), by the Levy function and the lognormal function. All three parametrizations give acceptable values for X 2. For fixed W, forward and backward multiplicities are found to be uncorrelated. The normalized moments of the charged multiplicity distributions are measured as a function of W. They show a violation of KNO scaling.

  1. The design of high performance weak current integrated amplifier

    International Nuclear Information System (INIS)

    Chen Guojie; Cao Hui

    2005-01-01

    A design method of high performance weak current integrated amplifier using ICL7650 operational amplifier is introduced. The operating principle of circuits and the step of improving amplifier's performance are illustrated. Finally, the experimental results are given. The amplifier has programmable measurement range of 10 -9 -10 -12 A, automatic zero-correction, accurate measurement, and good stability. (authors)

  2. Testing the weak gravity-cosmic censorship connection

    Science.gov (United States)

    Crisford, Toby; Horowitz, Gary T.; Santos, Jorge E.

    2018-03-01

    A surprising connection between the weak gravity conjecture and cosmic censorship has recently been proposed. In particular, it was argued that a promising class of counterexamples to cosmic censorship in four-dimensional Einstein-Maxwell-Λ theory would be removed if charged particles (with sufficient charge) were present. We test this idea and find that indeed if the weak gravity conjecture is true, one cannot violate cosmic censorship this way. Remarkably, the minimum value of charge required to preserve cosmic censorship appears to agree precisely with that proposed by the weak gravity conjecture.

  3. Determination of the weak charge of the proton through parity violating asymmetry measurements in the elastic e+p scattering

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, Adesh [Mississippi State Univ., Mississippi State, MS (United States)

    2014-12-01

    The Qweak experiment has taken data to make a 2.5% measurement of parity violating elastic e+p asymmetry in the four momentum transfer region of 0.0250 (GeV/c)2. This asymmetry is proportional to the weak charge of the proton, which is related to the weak mixing angle, sin2(theta_W). The final Qweak measurement will provide the most precise measurement of the weak mixing angle below the Z0 pole to test the Standard Model prediction. A description of the experimental apparatus is provided in this dissertation. The experiment was carried out using a longitudinally polarized electron beam of up to 180 microampere on a 34.5 cm long unpolarized liquid hydrogen target. The Qweak target is not only the world's highest cryogenic target ever built for a parity experiment but also is the least noisy target. This dissertation provides a detailed description of this target and presents a thorough analysis of the target performance. Statistical analysis of Run 1 data, collected between Feb - May 2011, is done to extract a blinded parity violating asymmetry of size -299.7 ± 13.4 (stat.) ± 17.2 (syst.) ± 68 (blinding) parts-per-billion. This resulted in a preliminary proton's weak charge of value 0.0865 ± 0.0085, a 9% measurement. Based on this blinded asymmetry, the weak mixing angle was determined to be sin2(theta_W) = 0.23429 ± 0.00211.

  4. Modeling nuclear weak-interaction processes with relativistic energy density functionals

    International Nuclear Information System (INIS)

    Paar, N.; Marketin, T.; Vale, D.; Vretenar, D.

    2015-01-01

    Relativistic energy density functionals have become a standard framework for nuclear structure studies of ground state properties and collective excitations over the entire nuclide chart. In this paper, we review recent developments in modeling nuclear weak-interaction processes: Charge-exchange excitations and the role of isoscalar proton–neutron pairing, charged-current neutrino–nucleus reactions relevant for supernova evolution and neutrino detectors and calculation of β-decay rates for r-process nucleosynthesis. (author)

  5. Dynamics of Current, Charge and Mass

    Directory of Open Access Journals (Sweden)

    Eisenberg Bob

    2017-10-01

    Full Text Available Electricity plays a special role in our lives and life. The dynamics of electrons allow light to flow through a vacuum. The equations of electron dynamics are nearly exact and apply from nuclear particles to stars. These Maxwell equations include a special term, the displacement current (of a vacuum. The displacement current allows electrical signals to propagate through space. Displacement current guarantees that current is exactly conserved from inside atoms to between stars, as long as current is defined as the entire source of the curl of the magnetic field, as Maxwell did.We show that the Bohm formulation of quantum mechanics allows the easy definition of the total current, and its conservation, without the dificulties implicit in the orthodox quantum theory. The orthodox theory neglects the reality of magnitudes, like the currents, during times that they are not being explicitly measured.We show how conservation of current can be derived without mention of the polarization or dielectric properties of matter. We point out that displacement current is handled correctly in electrical engineering by ‘stray capacitances’, although it is rarely discussed explicitly. Matter does not behave as physicists of the 1800’s thought it did. They could only measure on a time scale of seconds and tried to explain dielectric properties and polarization with a single dielectric constant, a real positive number independent of everything. Matter and thus charge moves in enormously complicated ways that cannot be described by a single dielectric constant,when studied on time scales important today for electronic technology and molecular biology. When classical theories could not explain complex charge movements, constants in equations were allowed to vary in solutions of those equations, in a way not justified by mathematics, with predictable consequences. Life occurs in ionic solutions where charge is moved by forces not mentioned or described in the

  6. W+- pairs and neutral currents at ISABELLE

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1975-01-01

    A report is presented on two different types of processes which may form part of the weak interactions program. The first is the production of pairs of charged weak bosons in the process pp → W + W - X; the second involves searching for neutral current effects in the rate for ordinary lepton production, without measuring any charge asymmetry or helicities using the reaction pp → l + l - X

  7. Charged-current inclusive neutrino cross sections in the SuperScaling model

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, M. V., E-mail: martin.inrne@gmail.com [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid E-28040 (Spain); Megias, G. D.; Caballero, J. A. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla (Spain); González-Jiménez, R. [Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Gent (Belgium); Moreno, O.; Donnelly, T. W. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Barbaro, M. B. [Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino, Via P. Giuria 1, 10125 Torino (Italy); Antonov, A. N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Moya de Guerra, E.; Udías, J. M. [Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid E-28040 (Spain)

    2016-03-25

    SuperScaling model (SuSA) predictions to neutrino-induced charged-current π{sup +} production in the Δ-resonance region are explored under MiniBooNE experimental conditions. The SuSA charged-current π{sup +} results are in good agreement with data on neutrino flux-averaged double-differential cross sections. The SuSA model for quasielastic scattering and its extension to the pion production region are used for predictions of charged-current inclusive neutrino-nucleus cross sections. Results are also compared with the T2K experimental data for inclusive scattering.

  8. Nickel-Hydrogen Battery Fault Clearing at Low State of Charge

    Science.gov (United States)

    Lurie, C.

    1997-01-01

    Fault clearing currents were achieved and maintained at discharge rates from C/2 to C/3 at high and low states of charge. The fault clearing plateau voltage is strong function of: discharge current, and voltage-prior-to-the-fault-clearing-event and a weak function of state of charge. Voltage performance, for the range of conditions reported, is summarized.

  9. Kinematic reconstruction of tau leptons and test for lepton universality in charged weak interactions with the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sauerland, Philip

    2011-04-15

    The Standard Model of Particle Physics (SM) postulates the universal coupling of the three lepton families to the weak current. The most precise measurement of lepton universality in W decays comes from the four experiments at the Large Electron-Positron Collider (LEP). If one compares the couplings of muons and tau leptons to the charged weak current, there is a discrepancy of nearly three standard deviations w.r.t. the SM expectation. There are models beyond the SM, which could explain the violation of lepton universality with new physics processes, if it is more than a statistical fluctuation. The Large Hadron Collider (LHC) offers a great opportunity to study decays of the charged-weak gauge bosons at very high event rates and at unmatched collision energies. This thesis presents an analysis strategy to test lepton universality with the Compact Muon Solenoid experiment (CMS) at the LHC. The analysis focusses on the decays of the W{sup {+-}} boson to particles of the second and third lepton family. For this purpose detector-simulated proton-proton events are used. The identification and reconstruction of tau leptons is a difficult task at the LHC. The reconstruction is often restricted by the limited precision of the commonly used collinear approximation. The application of a kinematic fit to particular tau-decay modes can improve the experimental resolution and provides an efficient background suppression. The development of such a fit with kinematic constraints derived from the topology of the decay {tau} {yields} 3{pi}{sup {+-}} + {nu}{sub {tau}} is described. The kinematic fit of tau leptons is not limited to the test for lepton universality, but can be deployed by various physics analyses in a broad energy range of the tau leptons. The event topology of W{sup {+-}} decays with leptonic final states is studied. Two event selections are developed: one for the W{sup {+-}} {yields} {tau}{nu} and one for the W{sup {+-}} {yields} {mu}{nu} decay. A common online

  10. Kinematic reconstruction of tau leptons and test for lepton universality in charged weak interactions with the CMS experiment

    International Nuclear Information System (INIS)

    Sauerland, Philip

    2011-01-01

    The Standard Model of Particle Physics (SM) postulates the universal coupling of the three lepton families to the weak current. The most precise measurement of lepton universality in W decays comes from the four experiments at the Large Electron-Positron Collider (LEP). If one compares the couplings of muons and tau leptons to the charged weak current, there is a discrepancy of nearly three standard deviations w.r.t. the SM expectation. There are models beyond the SM, which could explain the violation of lepton universality with new physics processes, if it is more than a statistical fluctuation. The Large Hadron Collider (LHC) offers a great opportunity to study decays of the charged-weak gauge bosons at very high event rates and at unmatched collision energies. This thesis presents an analysis strategy to test lepton universality with the Compact Muon Solenoid experiment (CMS) at the LHC. The analysis focusses on the decays of the W ± boson to particles of the second and third lepton family. For this purpose detector-simulated proton-proton events are used. The identification and reconstruction of tau leptons is a difficult task at the LHC. The reconstruction is often restricted by the limited precision of the commonly used collinear approximation. The application of a kinematic fit to particular tau-decay modes can improve the experimental resolution and provides an efficient background suppression. The development of such a fit with kinematic constraints derived from the topology of the decay τ → 3π ± + ν τ is described. The kinematic fit of tau leptons is not limited to the test for lepton universality, but can be deployed by various physics analyses in a broad energy range of the tau leptons. The event topology of W ± decays with leptonic final states is studied. Two event selections are developed: one for the W ± → τν and one for the W ± → μν decay. A common online selection is proposed, which is independent of the leptonic final state of

  11. One-dimensional Brownian motion of charged nanoparticles along microtubules: a model system for weak binding interactions.

    Science.gov (United States)

    Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko

    2010-04-21

    Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Critical currents and weak links in melt textured R123

    International Nuclear Information System (INIS)

    Veal, B. W.; Zhang, H.; Claus, H.; Chen, L.; Paulikas, A. P.; Koshelev, A.; Crabtree, G. W.

    2000-01-01

    Weak link behavior is studied, using magnetization and Hall probe measurements of ring samples, in welded melt-textured R123 monoliths and in dual-seeded samples with disoriented domains. Techniques for welding samples yield transport currents across the junction that are in excess of 10 4 A/cm 2

  13. Electromagnetic radiation damping of charges in external gravitational fields (weak field, slow motion approximation). [Harmonic coordinates, weak field slow-motion approximation, Green function

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, E [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany)

    1975-01-01

    As a model for gravitational radiation damping of a planet the electromagnetic radiation damping of an extended charged body moving in an external gravitational field is calculated in harmonic coordinates using a weak field, slowing-motion approximation. Special attention is paid to the case where this gravitational field is a weak Schwarzschild field. Using Green's function methods for this purpose it is shown that in a slow-motion approximation there is a strange connection between the tail part and the sharp part: radiation reaction terms of the tail part can cancel corresponding terms of the sharp part. Due to this cancelling mechanism the lowest order electromagnetic radiation damping force in an external gravitational field in harmonic coordinates remains the flat space Abraham Lorentz force. It is demonstrated in this simplified model that a naive slow-motion approximation may easily lead to divergent higher order terms. It is shown that this difficulty does not arise up to the considered order.

  14. Stability of carbon-bearing phases in coal on the passage of weak electric current

    International Nuclear Information System (INIS)

    Pivnyak, G.G.; Sobolev, V.V.; Baskevich, A.S.

    2012-01-01

    According to data of the electron paramagnetic resonance, infrared spectroscopy, X-ray analysis, and other methods, mobile radicals and gas have formed in coal on the passage of weak electric current. The quantum-mechanical estimation of the stability of coal organic mass components under the action of weak electric current is offered. It is established that the hydrocarbon and carbon chains are the most probable phase which is destroyed the first.

  15. Thermal energy and charge currents in multi-terminal nanorings

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Tobias [Novel Materials Group, Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Konrad-Zuse-Zentrum für Informationstechnik Berlin, 14195 Berlin (Germany); Kreisbeck, Christoph; Riha, Christian, E-mail: riha@physik.hu-berlin.de; Chiatti, Olivio; Buchholz, Sven S.; Fischer, Saskia F. [Novel Materials Group, Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Wieck, Andreas D. [Angewandte Festkörperphysik, Ruhr-Universität Bochum, 44780 Bochum (Germany); Reuter, Dirk [Optoelektronische Materialien und Bauelemente, Universität Paderborn, 33098 Paderborn (Germany)

    2016-06-15

    We study in experiment and theory thermal energy and charge transfer close to the quantum limit in a ballistic nanodevice, consisting of multiply connected one-dimensional electron waveguides. The fabricated device is based on an AlGaAs/GaAs heterostructure and is covered by a global top-gate to steer the thermal energy and charge transfer in the presence of a temperature gradient, which is established by a heating current. The estimate of the heat transfer by means of thermal noise measurements shows the device acting as a switch for charge and thermal energy transfer. The wave-packet simulations are based on the multi-terminal Landauer-Büttiker approach and confirm the experimental finding of a mode-dependent redistribution of the thermal energy current, if a scatterer breaks the device symmetry.

  16. A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Katsuki [Kyoto Univ. (Japan)

    2009-01-01

    Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for vμ → vx oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance (vμN → μ-+) and coherent pion production interacting with the entire nucleus (vμA → μ-+), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, vμ 12C → μ-12+, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering angle is not small. Furthermore, the coherent process is particularly interesting because it is deeply rooted in fundamental physics via Adler's partially conserved axial-vector current theorem. We took data from June 2007 until August 2008, in both the neutrino and antineutrino beam. In total, 2.52 x 1020 protons on target were collected. We have performed a search for charged current coherent pion production by using SciBooNE's full neutrino data set, corresponding to 0.99 x 1020 protons on target. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio

  17. Measurements of Neutrino Charged Current Interactions at SciBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yasuhiro [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)], E-mail: nakajima@scphys.kyoto-u.ac.jp

    2009-08-15

    The SciBooNE experiment (FNAL-E954) is designed to measure neutrino-nucleous cross sections in the one GeV region. Additionally, SciBooNE serves as a near detector for MiniBooNE by measuring the neutrino flux. In this paper, we describe two analyses using neutrino charged current interactions at SciBooNE: a neutrino spectrum measurement and a search for charged current coherent pion production.

  18. P2-a new measurement of the weak charge of the proton

    Energy Technology Data Exchange (ETDEWEB)

    Becker, D., E-mail: beckerd@kph.uni-mainz.de; Baunack, S.; Maas, F. E. [Johannes Gutenberg University Mainz, Institute of Nuclear Physics (Germany)

    2013-03-15

    After ten years of experience with parity-violating electron-proton-scattering, the preparatory work on a new high precision parity-violation experiment in Mainz has begun. Project P2 is bound to measure the weak charge of the proton to a relative uncertainty of 1.9%, which corresponds to a relative uncertainty of 0.15 % for sin{sup 2}{theta}{sub W}. This can be achieved by measuring the parity-violating asymmetry in elastic electron-proton-scattering to a relative precision of 1.7 % at E{sub beam}{approx}200 MeV and Q{sup 2}{approx}0.005 GeV{sup 2}. In this proceeding, we will discuss the achievable precision within project P2 as well as the experimental concept and present first results of studies involving Monte Carlo methods.

  19. A Measurement of the Parity-Violating Asymmetry in Aluminum and its Contribution to a Measurement of the Proton's Weak Charge

    Energy Technology Data Exchange (ETDEWEB)

    Magee, Joshua Allen [College of William and Mary, Williamsburg, VA (United States)

    2016-05-01

    The Q_weak experiment, which ran at the Thomas Jefferson National Accelerator Facility, made a precision measurement of the proton's weak charge, Q^p_W. The weak charge is extracted via a measurement of the parity-violating asymmetry in elastic electron-proton scattering from hydrogen at low momentum transfer (Q^2=0.025 GeV^2). This result is directly related to the electroweak mixing angle, sin^2(Theta_W), a fundamental parameter in the Standard Model of particle physics. This provides a precision test sensitive to new, as yet unknown, fundamental physics. This dissertation focuses on two central corrections to the Q_weak measurement: the target window contribution and sub-percent determination of the electron beam polarization. The aluminum target windows contribute approximately 30% of the measured asymmetry. Removal of this background requires precise measurements of both the elastic electron-aluminum scattering rate and its parity-violating asymmetry. The results reported here are the most precise measurement of the Q_weak target dilution and asymmetry to date. The parity-violating asymmetry for the aluminum alloy was found to be 1.6174 +/- 0.0704 (stat.) +/- 0.0113 (sys.) parts-per-million. The first sub-percent precision polarization measurements made from the Hall C Moller polarimeter are also reported, with systematic uncertainties of 0.84%.

  20. Design and commissioning of the APS beam charge and current monitor

    International Nuclear Information System (INIS)

    Wang, X.; Lenkszus, F.; Rotela, E.

    1994-01-01

    The non-intercepting charge and current monitors suitable for a wide range of beam parameters have been developed and installed in the Advanced Photon Source (APS) low energy transport lines, positron accumulator ring (PAR), and injector synchrotron. The positron or electron beam pulse in the APS has charge ranging from 100pC to l0nC with pulse width varying from 30ps to 30ns. The beam charge and current are measured with a current transformer and subsequent current monitoring electronics based on an ultrafast, high precision gated integrator. The signal processing electronics, data acquisition, and communication with the control system are managed by a VME-based system. This paper summarizes the hardware and software features of the systems. The results of recent operations are presented

  1. Design and commissioning of the APS beam charge and current monitors

    International Nuclear Information System (INIS)

    Wang, X.; Lenkszus, F.; Rotela, E.

    1995-01-01

    The non-intercepting charge and current monitors suitable for a wide range of beam parameters have been developed and installed in the Advanced Photon Source (APS) low energy transport lines, positron accumulator ring (PAR), and injector synchrotron. The positron or electron beam pulse in the APS has charge ranging from 100 pC to 10 nC with pulse width varying from 30 ps to 30 ns. The beam charge and current are measured with a current transformer and subsequent current monitoring electronics based on an ultrafast, high precision gated integrator. The signal processing electronics, data acquisition, and communication with the control system are managed by a VME-based system. This paper summarizes the hardware and software features of the systems. The results of recent operations are presented. copyright 1995 American Institute of Physics

  2. Current feedback operational amplifiers as fast charge sensitive preamplifiers for photomultiplier read out

    Energy Technology Data Exchange (ETDEWEB)

    Giachero, A; Gotti, C; Maino, M; Pessina, G, E-mail: claudio.gotti@mib.infn.it [INFN - Sezione di Milano-Bicocca, I-20126, Milano (Italy)

    2011-05-01

    Fast charge sensitive preamplifiers were built using commercial current feedback operational amplifiers for fast read out of charge pulses from a photomultiplier tube. Current feedback opamps prove to be particularly well suited for this application where the charge from the detector is large, of the order of one million electrons, and high timing resolution is required. A proper circuit arrangement allows very fast signals, with rise times down to one nanosecond, while keeping the amplifier stable. After a review of current feedback circuit topology and stability constraints, we provide a 'recipe' to build stable and very fast charge sensitive preamplifiers from any current feedback opamp by adding just a few external components. The noise performance of the circuit topology has been evaluated and is reported in terms of equivalent noise charge.

  3. Tests of μ-e universality for weak neutral currents at PEP

    International Nuclear Information System (INIS)

    Cline, D.B.; Resvanis, L.K.

    1988-01-01

    Two techniques are proposed to test the universality of the μ/minus/e weak neutral current interaction of large Q 2 . Both techniques require large statistics and some degree of longitudinal e + ,e/sup minus/ polarization but are otherwise feasible at PEP

  4. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    International Nuclear Information System (INIS)

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2005-01-01

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster

  5. A study of inclusive charged current neutrino interactions in deuterium

    International Nuclear Information System (INIS)

    Visser, C.P.

    1986-01-01

    In this thesis the results of an analysis of inclusive neutrino and antineutrino interaction on deuterium nuclei are presented. The use of deuterium as a target provides a mean to study proton and neutron scattering separately. The presently accepted theory of electro-weak interactions is reviewed. Applications of the quark-parton model in the context of deep-inelastic neutrino interactions on nucleons are summarized. The concept of scaling and its consequences are treated, together with some sources of violation of scaling. The properties of the CERN wide-band neutrino beam and an overview of the elements of this beam are given. The method to determine the energy distribution and the composition of the neutrino and antineutrino beam is described. The technique employed to separate neutrino interactions on protons and neutrons is discussed. Results of the measurement of the total nucleon charged-current cross-sections and differential cross-sections are presented. The relative contributions of quarks and antiquarks to the neutrino cross-sections are deduced from y-distributions and compared to those obtained from the total cross-section measurements. Finally, the analysis of the structure functions is given. (Auth.)

  6. A first measurement of the charged current DIS cross sections with longitudinally polarised electrons in the H1 experiment at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Antunovic, B.

    2007-07-01

    The analysis presented in this thesis is based on data from electron-proton collisions with longitudinally polarised electron beams at a centre-of-mass energy of {radical}(s)=319 GeV. The data were taken with the H1 detector at the HERA collider in the year 2005 corresponding to two polarisation states: a left-handed electron polarisation of -27% and a right-handed electron polarisation of +37%, corresponding to integrated luminosities of 68.6 pb{sup -1} and 29.6 pb{sup -1}, respectively. The inclusive total deep inelastic charged current cross section and the differential cross sections are measured for both helicities in the kinematic domain Q{sup 2}>400 GeV{sup 2} and y<0.9. The entire analysis chain necessary for the determination of the cross sections is described with emphasis on the understanding of the performance of the Liquid Argon trigger system. The experimental results obtained are consistent with the predictions of the Standard Model. In particular, the measurement of the total polarised charged current cross section confirms the Standard Model expectation that there are no weak charged current interactions mediated by a hypothetical right-handed W boson. In addition, a measurement of the charged current structure function F{sup cc}{sub 2} has been performed at the H1 experiment for the first time. The measurements are well described by the theoretical expectations based on parton distributions derived from inclusive neutral current measurements in H1, and are in agreement with published data from the ZEUS (e{sup {+-}}p) and CCFR (anti {nu}{sub {mu}}Fe) experiments. (orig.)

  7. Measurement of the β-asymmetry parameter of Cu67 in search for tensor-type currents in the weak interaction

    Science.gov (United States)

    Soti, G.; Wauters, F.; Breitenfeldt, M.; Finlay, P.; Herzog, P.; Knecht, A.; Köster, U.; Kraev, I. S.; Porobic, T.; Prashanth, P. N.; Towner, I. S.; Tramm, C.; Zákoucký, D.; Severijns, N.

    2014-09-01

    Background: Precision measurements at low energy search for physics beyond the standard model in a way complementary to searches for new particles at colliders. In the weak sector the most general β-decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor, and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear β decay are on the level of several percent. Purpose: Extracting new information on tensor coupling constants by measuring the β-asymmetry parameter in the pure Gamow-Teller decay of Cu67, thereby testing the V-A structure of the weak interaction. Method: An iron sample foil into which the radioactive nuclei were implanted was cooled down to mK temperatures in a 3He-4He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic β radiation was observed with planar high-purity germanium detectors operating at a temperature of about 10 K. An on-line measurement of the β asymmetry of Cu68 was performed as well for normalization purposes. Systematic effects were investigated using geant4 simulations. Results: The experimental value, Ã=0.587(14), is in agreement with the standard model value of 0.5991(2) and is interpreted in terms of physics beyond the standard model. The limits obtained on possible tensor-type charged currents in the weak interaction Hamiltonian are -0.045<(CT+CT')/CA<0.159 (90% C.L.). Conclusions: The obtained limits are comparable to limits from other correlation measurements in nuclear β decay and contribute to further constraining tensor coupling constants.

  8. Design of constant current charging power supply for J-TEXT ohmic field capacitor banks

    International Nuclear Information System (INIS)

    Lv Shudong; Zhang Ming; Rao Bo; Yu Kexun; Yang Cheng

    2014-01-01

    The charging characteristic of the capacitor charging power supply was analyzed with practical series resonant topology. The method that setting two current taps and regulating PWM switching frequency was putted forward with close loop controlling algorithm to charge the multi-group capacitor banks with constant current. A capacitor charging power supply with the max output current 6.5 A and the max output voltage 2000 V is designed. Experimental results show that, this power supply can charge the four capacitor banks to any four different voltages in 1 minute with charging accuracy less than 1%, and meet the requirements of J-TEXT ohmic field power system. (authors)

  9. A weak current amplifier and output circuit used in nuclear weighing scales

    International Nuclear Information System (INIS)

    Sun Jinhua; Zheng Mingquan; Wang Mingqian; Jia Changchun; Jin Hanjuan; Shi Qicun; Tang Ke

    1998-01-01

    A weak current amplifier and output circuit with a maximum nonlinear error of +-0.06% has been developed. Experiments show that it can work stably and therefore be used in nuclear industrial instruments

  10. Harmonic current control for LCL-filtered VSCs connected to ultra-weak grids

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Yang, Dongsheng; Blaabjerg, Frede

    2017-01-01

    This paper addresses the harmonic current control for LCL-filtered Voltage-Source Converters (VSCs) connected to ultra-weak (high-impedance) grids. It is shown that the harmonic current controllers tend to be unstable as the Short-Circuit Ratio (SCR) of the system reduces. An active stabilizing...... control scheme is thus proposed by feeding back the filter capacitor voltage and the converter-side current. The method not only stabilizes the harmonic current control with a wide range of SCR values, but also mitigates harmonic distortions in the grid-side current of the VSC. The stabilizing mechanism...

  11. Study of charged hadron multiplicities in charged-current neutrino-lead interactions in the OPERA detector

    Energy Technology Data Exchange (ETDEWEB)

    Agafonova, N.; Malgin, A.; Matveev, V.; Ryazhskaya, O.; Shakirianova, I. [INR - Institute for Nuclear Research, Russian Academy of Sciences, Moscow (Russian Federation); Aleksandrov, A.; Buontempo, S.; Consiglio, L.; Tioukov, V.; Voevodina, E. [INFN Sezione di Napoli, Naples (Italy); Anokhina, A.; Dzhatdoev, T.; Podgrudkov, D.; Roganova, T. [Lomonosov Moscow State University, SINP MSU - Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Aoki, S.; Hara, T.; Mizutani, F.; Ozaki, K.; Shibayama, E.; Takahashi, S. [Kobe University, Kobe (Japan); Ariga, A.; Ereditato, A.; Kreslo, I.; Vuilleumier, J.L. [University of Bern, Laboratory for High Energy Physics (LHEP), Albert Einstein Center for Fundamental Physics, Bern (Switzerland); Ariga, T. [University of Bern, Laboratory for High Energy Physics (LHEP), Albert Einstein Center for Fundamental Physics, Bern (Switzerland); Kyushu University, Faculty of Arts and Science, Fukuoka (Japan); Bertolin, A.; Dusini, S.; Kose, U.; Longhin, A.; Pupilli, F.; Stanco, L. [INFN Sezione di Padova, Padua (Italy); Bodnarchuk, I.; Chukanov, A.; Dmitrievski, S.; Gornushkin, Y.; Sotnikov, A.; Vasina, S. [JINR - Joint Institute for Nuclear Research, Dubna (Russian Federation); Bozza, C.; Grella, G.; Stellacci, S.M. [Dipartimento di Fisica, Universita di Salerno (Italy); ' ' Gruppo Collegato' ' INFN, Fisciano, Salerno (Italy); Brugnera, R.; Garfagnini, A.; Laudisio, F.; Medinaceli, E.; Roda, M.; Sirignano, C. [INFN Sezione di Padova, Padua (Italy); Dipartimento di Fisica e Astronomia, Universita di Padova, Padua (Italy); Buonaura, A.; De Lellis, G.; Di Crescenzo, A.; Galati, G.; Hosseini, B.; Lauria, A.; Montesi, M.C.; Strolin, P. [INFN Sezione di Napoli, Naples (Italy); Dipartimento di Fisica, Universita Federico II di Napoli, Naples (Italy); Chernyavskiy, M.; Gorbunov, S.; Okateva, N.; Shchedrina, T.; Starkov, N. [LPI - Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation); D' Ambrosio, N.; Di Marco, N.; Schembri, A. [INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); De Serio, M.; Muciaccia, M.T.; Paparella, L.; Pastore, A.; Simone, S. [Dipartimento di Fisica, Universita di Bari, Bari (Italy); INFN Sezione di Bari, Bari (Italy); Amo Sanchez, P. del; Duchesneau, D.; Pessard, H. [LAPP, Universite Savoie Mont Blanc, CNRS/IN2P3, Annecy-le-Vieux (France); Di Ferdinando, D.; Mandrioli, G.; Patrizii, L.; Sirri, G.; Tenti, M. [INFN Sezione di Bologna, Bologna (Italy); Dracos, M.; Jollet, C.; Meregaglia, A. [IPHC, Universite de Strasbourg, CNRS/IN2P3, Strasbourg (France); Ebert, J.; Hagner, C.; Hollnagel, A.; Wonsak, B. [Hamburg University, Hamburg (Germany); Fini, R.A. [INFN Sezione di Bari, Bari (Italy); Fornari, F.; Mauri, N.; Pasqualini, L.; Pozzato, M. [INFN Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica e Astronomia, Universita di Bologna, Bologna (Italy); Fukuda, T.; Hayakawa, T.; Ishiguro, K.; Kitagawa, N.; Komatsu, M.; Miyanishi, M.; Morishima, K.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Niwa, K.; Rokujo, H.; Sato, O.; Shiraishi, T. [Nagoya University, Nagoya (Japan); Gentile, V. [Gran Sasso Science Institute, L' Aquila (Italy); Goldberg, J. [Technion, Department of Physics, Haifa (Israel); Guler, A.M.; Kamiscioglu, M. [METU - Middle East Technical University, Ankara (Turkey); Gustavino, C.; Loverre, P.; Monacelli, P.; Rosa, G. [INFN Sezione di Roma, Rome (Italy); Jakovcic, K.; Ljubicic, A.; Malenica, M. [Rudjer Boskovic Institute, Zagreb (Croatia); Kamiscioglu, C. [METU - Middle East Technical University, Ankara (Turkey); Ankara University, Ankara (Turkey); Kim, S.H.; Park, B.D.; Yoon, C.S. [Gyeongsang National University, Jinju (Korea, Republic of); Klicek, B.; Stipcevic, M. [Center of Excellence for Advanced Materials and Sensing Devices, Ruder Boskovic Institute, Zagreb (Croatia); Kodama, K. [Aichi University of Education, Kariya, Aichi (Japan); Matsuo, T.; Ogawa, S.; Shibuya, H. [Toho University, Funabashi (Japan); Mikado, S. [Nihon University, Narashino, Chiba (Japan); Paoloni, A.; Spinetti, M.; Votano, L. [INFN - Laboratori Nazionali di Frascati, Rome (Italy); Polukhina, N. [LPI - Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation); Moscow Engineering Physical Institute Moscow, Moscow (Russian Federation); Terranova, F. [Dipartimento di Fisica, Universita di Milano-Bicocca, Milan (Italy); Vilain, P.; Wilquet, G. [IIHE, Universite Libre de Bruxelles, Brussels (Belgium)

    2018-01-15

    The OPERA experiment was designed to search for ν{sub μ} → ν{sub τ} oscillations in appearance mode through the direct observation of tau neutrinos in the CNGS neutrino beam. In this paper, we report a study of the multiplicity of charged particles produced in charged-current neutrino interactions in lead. We present charged hadron average multiplicities, their dispersion and investigate the KNO scaling in different kinematical regions. The results are presented in detail in the form of tables that can be used in the validation of Monte Carlo generators of neutrino-lead interactions. (orig.)

  12. Modeling and application of plasma charge current in deep penetration laser welding

    International Nuclear Information System (INIS)

    Zhang, Xudong; Chen, Wuzhu; Jiang, Ping; Guo, Jing; Tian, Zhiling

    2003-01-01

    Plasma charge current distribution during deep penetration CO 2 laser welding was analyzed theoretically and experimentally. The laser-induced plasma above the workpiece surface expands up to the nozzle, driven by the particle concentration gradient, forming an electric potential between the workpiece and the nozzle due to the large difference between the diffusion velocities of the ions and the electrons. The plasma-induced current obtained by electrically connecting the nozzle and the workpiece can be increased by adding a negative external voltage. For a fixed set of welding conditions, the plasma charge current increases with the external voltage to a saturation value. The plasma charge current decreases as the nozzle-to-workpiece distance increases. Therefore, closed-loop control of the nozzle-to-workpiece distance for laser welding can be based on the linear relationship between the plasma charge current and the distance. In addition, the amount of plasma above the keyhole can be reduced by a transverse magnetic field, which reduces the attenuation of the incident laser power by the plasma so as to increase the laser welding thermal efficiency

  13. Polarized parton distributions from charged-current deep-inelastic scattering and future neutrino factories

    CERN Document Server

    Forte, Stefano; Ridolfi, G; Forte, Stefano; Mangano, Michelangelo L.; Ridolfi, Giovanni

    2001-01-01

    We discuss the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments. We summarize the next-to-leading order treatment of charged-current polarized structure functions, their relation to polarized parton distributions and scale dependence, and discuss their description by means of a next-to-leading order evolution code. We discuss current theoretical expectations and positivity constraints on the unmeasured C-odd combinations Delta q-Delta qbar of polarized quark distributions, and their determination in charged-current deep-inelastic scattering experiments. We give estimates of the expected errors on charged-current structure functions at a future neutrino factory, and perform a study of the accuracy in the determination of polarized parton distributions that would be possible at such a facility. We show that these measurements have the potential to distinguish between different theoretical scenarios for the proton spin structure.

  14. Polarized parton distributions from charged-current deep-inelastic scattering and future neutrino factories

    International Nuclear Information System (INIS)

    Forte, Stefano; Mangano, Michelangelo L.; Ridolfi, Giovanni

    2001-01-01

    We discuss the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments. We summarize the next-to-leading-order treatment of charged-current polarized structure functions, their relation to polarized parton distributions and scale dependence, and discuss their description by means of a next-to-leading-order evolution code. We discuss current theoretical expectations and positivity constraints on the unmeasured C-odd combinations Δq-Δq-bar of polarized quark distributions, and their determination in charged-current deep-inelastic scattering experiments. We give estimates of the expected errors on charged-current structure functions at a future neutrino factory, and perform a study of the accuracy in the determination of polarized parton distributions that would be possible at such a facility. We show that these measurements have the potential to distinguish between different theoretical scenarios for the proton spin structure

  15. Measurement of charged and neutral current e-p deep inelastic scattering cross sections at high Q2

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-03-01

    Deep inelastic e - p scattering has been studied in both the charged current (CC) and neutral current (NC) reactions at momentum transfers squared, Q 2 , between 400 GeV 2 and the kinematic limit of 87500 GeV 2 using the ZEUS detector at the HERA ep collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections, dσ/dQ 2 , are presented. For Q 2 ∝M W 2 , where M W is the mass of the W boson, the CC and NC cross sections have comparable magnitudes, demonstrating the equal strengths of the weak and electromagnetic interactions at high Q 2 . The Q 2 dependence of the CC cross section determines the mass term in the CC propagator to be M W =76±16±13 GeV. (orig.)

  16. Deep inelastic inclusive weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Adler, S.L.

    1976-01-01

    The theory of deep inelastic inclusive interactions is reviewed, emphasizing applications to electromagnetic and weak charged current processes. The following reactions are considered: e + N → e + X, ν + N → μ - + X, anti ν + N → μ + + X where X denotes a summation over all final state hadrons and the ν's are muon neutrinos. After a discussion of scaling, the quark-parton model is invoked to explain the principle experimental features of deep inelastic inclusive reactions

  17. Weak measurement from the electron displacement current: new path for applications

    International Nuclear Information System (INIS)

    Marian, D; Colomés, E; Oriols, X; Zanghì, N

    2015-01-01

    The interest on weak measurements is rapidly growing during the last years as a unique tool to better understand and predict new quantum phenomena. Up to now many theoretical and experimental weak-measurement techniques deal with (relativistic) photons or cold atoms, but there is much less investigation on (non-relativistic) electrons in up-to-date electronics technologies. We propose a way to perform weak measurements in nanoelectronic devices through the measurement of the total current (particle plus displacement component) in such devices. We study the interaction between an electron in the active region of a electron device with a metal surface working as a sensing electrode by means of the (Bohmian) conditional wave function. We perform numerical (Monte Carlo) simulations to reconstruct the Bohmian trajectories in the iconic double slit experiment. This work opens new paths for understanding the quantum properties of an electronic system as well as for exploring new quantum engineering applications in solid state physics. (paper)

  18. G-parity violation of weak nucleon current and in-medium mass renormalization of nucleons detected through the beta decays of spin aligned sup 1 sup 2 B and sup 1 sup 2 N

    CERN Document Server

    Minamisono, K; Sumikama, T; Nagatomo, T; Matsuta, K; Minamisono, T; Fukuda, M; Koshigiri, K; Morita, M

    2000-01-01

    The beta-ray angular distributions from purely spin aligned sup 1 sup 2 B and sup 1 sup 2 N were precisely measured to determine a new limit of the G-parity irregular induced tensor form factor in weak nucleon axial vector currents and to study the in-medium mass renormalization of nucleons through the axial charge. Since the major systematic error in the previous result which originated from the intensity fluctuation of the incident beam used for the production of the nuclei was removed in the present measurement, the more reliable result was obtained: 0.01 <= 2M f sub T /f sub A <= 0.34 (90 % CL). The result is consistent with the theoretical prediction in the framework of which induced tensor form factor is proportional to the mass difference between the up and down quarks. We also determined the axial charge of the weak nucleon current to be y = 4.66 +- 0.12, which may disclose an in-medium mass reduction of the decaying nucleon of 11 +- 4 %.

  19. Multiplicity distributions of charged hadrons produced in (anti)neutrino-deuterium charged- and neutral-current interactions

    International Nuclear Information System (INIS)

    Jongejans, B.; Tenner, A.G.; Apeldoorn, G.W. van

    1989-01-01

    Results are presented on the multiplicity distributions of charged hadrons produced in νn, νp, antiνn and antiνp charged-current interactions for the hadronic energy range 2GeV ≤ W ≤ 14GeV (corresponding approximately to the neutrino energy range 5GeV ≤ E ≤ 150GeV). The experimental distributions are analysed in terms of binomial distributions. With increasing hadronic energy it is found a smooth transition from an ordinary binomial via Poissonian to the negative binomial function. KNO scaling holds approximately for the multiplicity distribution for the whole phase space. Data on the multiplicity distributions for neutral-current interactions are also presented

  20. Drift waves in a weakly ionized plasma

    DEFF Research Database (Denmark)

    Popovic, M.; Melchior, H.

    1968-01-01

    A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated.......A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated....

  1. DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer.

    Science.gov (United States)

    Bronder, Thomas S; Poghossian, Arshak; Scheja, Sabrina; Wu, Chunsheng; Keusgen, Michael; Mewes, Dieter; Schöning, Michael J

    2015-09-16

    Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.

  2. Charged-Current Neutral Pion production at SciBooNE

    International Nuclear Information System (INIS)

    Catala-Perez, J.

    2009-01-01

    SciBooNE, located in the Booster Neutrino Beam at Fermilab, collected data from June 2007 to August 2008 to accurately measure muon neutrino and anti-neutrino cross sections on carbon below 1 GeV neutrino energy. SciBooNE is studying charged current interactions. Among them, neutral pion production interactions will be the focus of this poster. The experimental signature of neutrino-induced neutral pion production is constituted by two electromagnetic cascades initiated by the conversion of the π 0 decay photons, with an additional muon in the final state for CC processes. In this poster, I will present how we reconstruct and select charged-current muon neutrino interactions producing π 0 's in SciBooNE.

  3. Ultrafast dynamics of photoexcited charge and spin currents in semiconductor nanostructures

    Science.gov (United States)

    Meier, Torsten; Pasenow, Bernhard; Duc, Huynh Thanh; Vu, Quang Tuyen; Haug, Hartmut; Koch, Stephan W.

    2007-02-01

    Employing the quantum interference among one- and two-photon excitations induced by ultrashort two-color laser pulses it is possible to generate charge and spin currents in semiconductors and semiconductor nanostructures on femtosecond time scales. Here, it is reviewed how the excitation process and the dynamics of such photocurrents can be described on the basis of a microscopic many-body theory. Numerical solutions of the semiconductor Bloch equations (SBE) provide a detailed description of the time-dependent material excitations. Applied to the case of photocurrents, numerical solutions of the SBE for a two-band model including many-body correlations on the second-Born Markov level predict an enhanced damping of the spin current relative to that of the charge current. Interesting effects are obtained when the scattering processes are computed beyond the Markovian limit. Whereas the overall decay of the currents is basically correctly described already within the Markov approximation, quantum-kinetic calculations show that memory effects may lead to additional oscillatory signatures in the current transients. When transitions to coupled heavy- and light-hole valence bands are incorporated into the SBE, additional charge and spin currents, which are not described by the two-band model, appear.

  4. Investigation on the use of graphene oxide as novel surfactant to stabilize weakly charged graphene nanoplatelets.

    Science.gov (United States)

    Kazi, Salim Newaz; Badarudin, Ahmad; Zubir, Mohd Nashrul Mohd; Ming, Huang Nay; Misran, Misni; Sadeghinezhad, Emad; Mehrali, Mohammad; Syuhada, Nur Ily

    2015-01-01

    This paper presents a unique synergistic behavior between a graphene oxide (GO) and graphene nanoplatelet (GnP) composite in an aqueous medium. The results showed that GO stabilized GnP colloid near its isoelectric point and prevented rapid agglomeration and sedimentation. It was considered that a rarely encountered charge-dependent electrostatic interaction between the highly charged GO and weakly charged GnP particles kept GnP suspended at its rapid coagulation and phase separation pH. Sedimentation and transmission electron microscope (TEM) micrograph images revealed the evidence of highly stable colloidal mixtures while zeta potential measurement provided semi-quantitative explanation on the mechanism of stabilization. GnP suspension was confirmed via UV-vis spectral data while contact angle measurement elucidated the close resemblance to an aqueous solution indicating the ability of GO to mediate the flocculation prone GnP colloids. About a tenfold increase in viscosity was recorded at a low shear rate in comparison to an individual GO solution due to a strong interaction manifested between participating colloids. An optimum level of mixing ratio between the two constituents was also obtained. These new findings related to an interaction between charge-based graphitic carbon materials would open new avenues for further exploration on the enhancement of both GO and GnP functionalities particularly in mechanical and electrical domains.

  5. Probing Supersymmetry with Neutral Current Scattering Experiments

    Science.gov (United States)

    Kurylov, A.; Ramsey-Musolf, M. J.; Su, S.

    2004-02-01

    We compute the supersymmetric contributions to the weak charges of the electron (QWe) and proton (QWp) in the framework of Minimal Supersymmetric Standard Model. We also consider the ratio of neutral current to charged current cross sections, R v and Rv¯ at v (v¯)-nucleus deep inelastic scattering, and compare the supersymmetric corrections with the deviations of these quantities from the Standard Model predictions implied by the recent NuTeV measurement.

  6. Electric-field domain boundary instability in weakly coupled semiconductor superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Rasulova, G. K., E-mail: rasulova@sci.lebedev.ru [P.N. Lebedev Physical Institute of Russian Academy of Sciences, 119991 Moscow (Russian Federation); Pentin, I. V. [Moscow State Pedagogical University, 119991 Moscow (Russian Federation); Brunkov, P. N. [A. F. Ioffe Physical and Technical Institute of Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg (Russian Federation); Egorov, A. Yu. [National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg (Russian Federation)

    2016-05-28

    Damped oscillations of the current were observed in the transient current pulse characteristics of a 30-period weakly coupled GaAs/AlGaAs superlattice (SL). The switching time of the current is exponentially decreased as the voltage is verged towards the current discontinuity region indicating that the space charge necessary for the domain boundary formation is gradually accumulated in a certain SL period in a timescale of several hundreds ns. The spectral features in the electroluminescence spectra of two connected in parallel SL mesas correspond to the energy of the intersubband transitions and the resonance detuning of subbands caused by charge trapping in the quantum wells (QWs) residing in a region of the expanded domain boundary. The obtained results support our understanding of the origin of self-oscillations as a cyclic dynamics of the subband structure in the QWs forming the expanded domain boundary.

  7. Weak interactions

    International Nuclear Information System (INIS)

    Ogava, S.; Savada, S.; Nakagava, M.

    1983-01-01

    The problem of the use of weak interaction laws to study models of elementary particles is discussed. The most typical examples of weak interaction is beta-decay of nucleons and muons. Beta-interaction is presented by quark currents in the form of universal interaction of the V-A type. Universality of weak interactions is well confirmed using as examples e- and μ-channels of pion decay. Hypothesis on partial preservation of axial current is applicable to the analysis of processes with pion participation. In the framework of the model with four flavours lepton decays of hadrons are considered. Weak interaction without lepton participation are also considered. Properties of neutral currents are described briefly

  8. Constraints on Non-Standard Contributions to the Charged-Current Interactions

    CERN Document Server

    Hagiwara, K; Hagiwara, Kaoru; Matsumoto, Seiji

    1998-01-01

    The success of the quantum level predictions of the Standard Model on the $Z$ boson properties, on $\\mw$ and on $\\mt$, which makes use of the muon lifetime as an input, implies a stringent constraint on new physics contributions to the $V-A$ charged-current interactions among leptons. Observed unitarity of the CKM matrix elements then implies constraints on non-standard contributions to the lepton-quark charged-current interactions. By using the recent electroweak data as inputs, we find the 95% CL limits for the corresponding contact interactions: $\\Lambda_{CC,+}^{\\ell\\ell}>7.5$ TeV and the lepton-quark contact interactions.

  9. Precision measurements of the $^{60}$Co $\\beta$-asymmetry parameter in search for tensor currents in weak interactions

    CERN Document Server

    Wauters, F; Zákoucký, D; Beck, M; Breitenfeldt, M; De Leebeeck, V; Golovko, V V; Kozlov, V Yu; Phalet, T; Roccia, S; Soti, G; Tandecki, M; Towner, I S; Traykov, E; Van Gorp, S; Severijns, N

    2010-01-01

    The $\\beta$-asymmetry parameter $\\widetilde{A}$ for the Gamow-Teller decay of $^{60}$Co was measured by polarizing the radioactive nuclei with the brute force low-temperature nuclear-orientation method. The $^{60}$Co activity was cooled down to milliKelvin temperatures in a $^3$He-$^4$He dilution refrigerator in an external 13 T magnetic field. The $\\beta$ particles were observed by a 500 ${\\mu}m$ thick Si PIN diode operating at a temperature of about 10 K in a magnetic field of 0.6 T. Extensive GEANT4 Monte-Carlo simulations were performed to gain control over the systematic effects. Our result, $\\widetilde{A} = -1.014(12)_{stat}(16)_{syst}$, is in agreement with the Standard-Model value of $-0.987(9)$, which includes recoil-order corrections that were addressed for the first time for this isotope. Further, it enables limits to be placed on possible tensor-type charged weak currents as well as other physics beyond the Standard Model.

  10. Charged Current Quasielastic Analysis from MINERνA

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Anushree [Rio de Janeiro, CBPF

    2015-08-01

    The MINERνA detector situated in Fermilab, is designed to make precision cross-section measurements for scattering processes on various nuclei. In this proceeding, the results of the charged current quasi-elastic (CCQE) analysis using lepton kinematics and with proton kinematics have been presented. Comparison of these with theoretical models suggested that further studies are required to include the additional nuclear effects in the current simulations. The first direct measurement of electron-neutrino quasielastic-like scattering in the few-GeV region of incident neutrino energy has also been presented. All three analyses, discussed here, are carried out on hydrocarbon target.

  11. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    Science.gov (United States)

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-10-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.

  12. Standardization of calibration of clinic dosemeters using electric currents and charges

    International Nuclear Information System (INIS)

    Peres, Marcos Antonio de Lima

    1999-09-01

    Clinical dosimeters used in radiotherapy are calibrated in Latin American countries, including Brazil, as a complete 'system, i.e., ionization chamber and electrometer together. Some countries, as European ones, and USA calibrate them by component, i.e., ionisation chamber apart from electrometer. This method is more advantageous than the previous one, since it makes possible the automation of the calibration process, allowing the acquisition of data related to the chamber and the electrometer measurements independently, as well as the substitution of one of the components, in case of failure. This work proposes a method for standardisation of low intensity electric charge and currents in order to implement electric calibration of electrometers. This will make possible the implementation of a by components calibration technique, by components, of clinical dosimeters in Brazil. The results obtained with the calibration by components prove that the proposed method of standardisation of low electric charges and currents is viable. The difficulties found for the generation and measurement of low intensity electric charges and currents and the procedures adopted for the calibration by components are presented. Additionally, a current source was built to yield reference electric charges that will make possible the quality control clinical dosimeters. This source will also allow the user to identify the defective components of the dosimeters, through a simple verification test. (author)

  13. The Q{sup p}{sub Weak} experiment

    Energy Technology Data Exchange (ETDEWEB)

    Androic, D. [University of Zagreb (Croatia); Armstrong, D. S. [The College of William and Mary (United States); Asaturyan, A. [Yerevan Physics Institute (Armenia); Averett, T. [The College of William and Mary (United States); Balewski, J. [Massachusetts Institute of Technology (United States); Beaufait, J. [Thomas Jefferson National Accelerator Facility (United States); Beminiwattha, R. S. [Ohio University (United States); Benesch, J. [Thomas Jefferson National Accelerator Facility (United States); Benmokhtar, F. [Duquesne University (United States); Birchall, J. [University of Manitoba (Canada); Carlini, R. D.; Cornejo, J. C. [The College of William and Mary (United States); Covrig, S. [Thomas Jefferson National Accelerator Facility (United States); Dalton, M. M. [University of Virginia (United States); Davis, C. A. [TRIUMF (United States); Deconinck, W. [The College of William and Mary (United States); Diefenbach, J. [Hampton University (United States); Dow, K. [Massachusetts Institute of Technology (United States); Dowd, J. F. [The College of William and Mary (United States); Dunne, J. A. [Mississippi State University (United States); and others

    2013-03-15

    In May 2012, the Q{sup p}{sub Weak} collaboration completed a two year measurement program to determine the weak charge of the proton Q{sub W}{sup p} = ( 1 - 4sin{sup 2}{theta}{sub W}) at the Thomas Jefferson National Accelerator Facility (TJNAF). The experiment was designed to produce a 4.0 % measurement of the weak charge, via a 2.5 % measurement of the parity violating asymmetry in the number of elastically scattered 1.165 GeV electrons from protons, at forward angles. At the proposed precision, the experiment would produce a 0.3 % measurement of the weak mixing angle at a momentum transfer of Q{sup 2} = 0.026 GeV{sup 2}, making it the most precise stand alone measurement of the weak mixing angle at low momentum transfer. In combination with other parity measurements, Q{sup p}{sub Weak} will also provide a high precision determination of the weak charges of the up and down quarks. At the proposed precision, a significant deviation from the Standard Model prediction could be a signal of new physics at mass scales up to Asymptotically-Equal-To 6 TeV, whereas agreement would place new and significant constraints on possible Standard Model extensions at mass scales up to Asymptotically-Equal-To 2 TeV. This paper provides an overview of the physics and the experiment, as well as a brief look at some preliminary diagnostic and analysis data.

  14. Current leakage relaxation and charge trapping in ultra-porous low-k materials

    International Nuclear Information System (INIS)

    Borja, Juan; Plawsky, Joel L.; Gill, William N.; Lu, T.-M.; Bakhru, Hassaram

    2014-01-01

    Time dependent dielectric failure has become a pivotal aspect of interconnect design as industry pursues integration of sub-22 nm process-technology nodes. Literature has provided key information about the role played by individual species such as electrons, holes, ions, and neutral impurity atoms. However, no mechanism has been shown to describe how such species interact and influence failure. Current leakage relaxation in low-k dielectrics was studied using bipolar field experiments to gain insight into how charge carrier flow becomes impeded by defects within the dielectric matrix. Leakage current decay was correlated to injection and trapping of electrons. We show that current relaxation upon inversion of the applied field can be described by the stretched exponential function. The kinetics of charge trapping events are consistent with a time-dependent reaction rate constant, k=k 0 ⋅(t+1) β−1 , where 0 < β < 1. Such dynamics have previously been observed in studies of charge trapping reactions in amorphous solids by W. H. Hamill and K. Funabashi, Phys. Rev. B 16, 5523–5527 (1977). We explain the relaxation process in charge trapping events by introducing a nonlinear charge trapping model. This model provides a description on the manner in which the transport of mobile defects affects the long-tail current relaxation processes in low-k films

  15. Study program for constant current capacitor charging method

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, C.

    1978-10-04

    The objective of the study program was to determine the best method of charging 20,000 to 132,000 microfarads of capacitance to 22 kVdc in 14 to 15 sec. Component costs, sizes, weights, line current graphs, copies of calculations and manufacturer's data are included.

  16. Measurement of K+ production in charged-current νμ interactions

    Science.gov (United States)

    Marshall, C. M.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Filkins, A.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Griswold, S.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Majoros, I.; Manly, S.; Mann, W. A.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Osta, J.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Rosenberg, M.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Shadler, L. A.; Simon, C.; Solano Salinas, C. J.; Sánchez, S. F.; Tice, B. G.; Valencia, E.; Walton, T.; Wang, Z.; Watkins, P.; Wiley, K.; Wolcott, J.; Wospakrik, M.; Zhang, D.; Minerva Collaboration

    2016-07-01

    Production of K+ mesons in charged-current νμ interactions on plastic scintillator (CH) is measured using MINERvA exposed to the low-energy NuMI beam at Fermilab. Timing information is used to isolate a sample of 885 charged-current events containing a stopping K+ which decays at rest. The differential cross section in K+ kinetic energy, d σ /d TK, is observed to be relatively flat between 0 and 500 MeV. Its shape is in good agreement with the prediction by the genie neutrino event generator when final-state interactions are included, however the data rate is lower than the prediction by 15%.

  17. Weak interactions and exchange currents in light nuclei. Theoretical and experimental aspects

    International Nuclear Information System (INIS)

    Guichon, P.

    1980-01-01

    The influence of meson exchange currents in the nuclear weak interaction is investigated theoretically and experimentally. The hypothesis of current algebra and partial conservation of axial current are used, through Adler-Dothan theorem, to derive the one pion exchange correction to the impulse approximation. Calculations are performed for partial transitions in the 1p-shell nuclei and in 16 O. The corrections are generally small except for the (0 + →0 - ) transition in 16 O where the large correction to the time component of the axial current can show up, due to selection rules. The measurement of the muon capture rate for this transition is described and an interpretation in term of exchange currents is proposed [fr

  18. Implications of experiment on gauge theories of the weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Barnett, R.M.

    1977-06-01

    In this review the phenomenology of four new models for gauge theories of the weak and electromagnetic interactions is discussed that are extensions of SU(2) x U(1) models. Included are the neutral-current phenomenology (neutrino-proton deep-inelastic, neutrino-proton elastic, neutrino-electron elastic, and atomic parity violation). The charged-current neutrino scattering includes the y-dependence, the ratio of anti ν to ν cross sections, and di- and trilepton production. 80 references

  19. Why current algebra and PCAC are applicable for charmed-meson and -baryon weak decays

    International Nuclear Information System (INIS)

    Karlsen, R.E.; Scadron, M.D.

    1991-01-01

    By accounting for rapidly varying pole terms, the current-algebra--PCAC (partial conservation of axial-vector current) procedure properly measures large decay momentum corrections in charmed D + → bar K 0 π + , D + → bar K 0 K+, and Λ c + →p bar K 0 weak decays

  20. Bose-Einstein correlations in charged current muon-neutrino interactions in the NOMAD experiment at CERN

    International Nuclear Information System (INIS)

    Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.C.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; De Santo, A.; Dignan, T.; Di Lella, L.; Couto e Silva, E. do; Dumarchez, J.; Ellis, M.; Feldman, G.J.; Ferrari, R.; Ferrere, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Goessling, C.; Gouanere, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Lacaprara, S.; Lachaud, C.; Lakic, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubicic, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Mechain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S.R.; Moorhead, G.F.; Naumov, D.; Nedelec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L.S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Sevior, M.; Sillou, D.; Soler, F.J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipcevic, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G.N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S.N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K.E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F.V.; Weisse, T.; Wilson, F.F.; Winton, L.J.; Yabsley, B.D.; Zaccone, H.; Zei, R.; Zuber, K.; Zuccon, P.

    2004-01-01

    Bose-Einstein correlations in one and two dimensions have been studied, with high statistics, in charged current muon-neutrino interaction events collected with the NOMAD detector at CERN. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov-Podgoretskii phenomenological parametrizations. The Goldhaber parametrization gives the radius of the pion emission region R G =1.01±0.05(stat) +0.09 -0.06 (sys) fm and for the chaoticity parameter the value λ=0.40±0.03(stat) +0.01 -0.06 (sys). Using the Kopylov-Podgoretskii parametrization yields R KP =2.07±0.04(stat) +0.01 -0.14 (sys) fm and λ KP =0.29±0.06(stat) +0.01 -0.04 (sys). Different parametrizations of the long-range correlations have been also studied. The two-dimensional shape of the source has been investigated in the longitudinal comoving frame. A significant difference between the transverse and the longitudinal dimensions is observed. The high statistics of the collected sample allowed the study of the Bose-Einstein correlations as a function of rapidity, charged particle multiplicity and hadronic energy. A weak dependence of both radius and chaoticity on multiplicity and hadronic energy is found

  1. Plasma current sustained by fusion charged particles in a field reversed configuration

    International Nuclear Information System (INIS)

    Berk, H.L.; Momota, H.; Tajima, T.

    1987-04-01

    The distribution of energetic charged particles generated by thermonuclear fusion reactions in a field reversed configuration (FRC) are studied analytically and numerically. A fraction of the charged fusion products escapes directly while the others are trapped to form a directed particle flow parallel to the plasma current. It is shown that the resultant current density produced by these fusion charged particles can be comparable to background plasma current density that produces the original field reversed configuration in a D- 3 He reactor. Self-consistent equilibria arising from the currents of the background plasma and proton fusion products are constructed where the Larmor radius of the fusion product is of arbitrary size. Reactor relevant parameters are examined, such as how the fusion reactivity rate varies as a result of supporting the pressure associated with the fusion products. We also model the synchrotron emission from various pressure profiles and quantitatively show how synchrotron losses vary with different pressure profiles in an FRC configuration

  2. SU(2) x U(1) unified theory for charge, orbit and spin currents

    International Nuclear Information System (INIS)

    Jin Peiqing; Li Youquan; Zhang Fuchun

    2006-01-01

    Spin and charge currents in systems with Rashba or Dresselhaus spin-orbit couplings are formulated in a unified version of four-dimensional SU(2) x U(1) gauge theory, with U(1) being the Maxwell field and SU(2) being the Yang-Mills field. While the bare spin current is non-conserved, it is compensated by a contribution from the SU(2) gauge field, which gives rise to a spin torque in the spin transport, consistent with the semi-classical theory of Culcer et al. Orbit current is shown to be non-conserved in the presence of electromagnetic fields. Similar to the Maxwell field inducing forces on charge and charge current, we derive forces acting on spin and spin current induced by the Yang-Mills fields such as the Rashba and Dresselhaus fields and the sheer strain field. The spin density and spin current may be considered as a source generating Yang-Mills field in certain condensed matter systems

  3. Ω- and Σ+→pγ nonleptonic weak decays via current algebra, partial conservation of axial-vector current, and the quark model

    International Nuclear Information System (INIS)

    Scadron, M.D.; Visinescu, M.

    1983-01-01

    By employing the current-algebra--PCAC (partial conservation of axial-vector current) program at the hadron level, the three decays Ω - →Ψ 0 π - , Ψ - π 0 , ΛK - are reasonably described in terms of only one fitted (ΔI = (1/2))/(ΔI = (3/2)) parameter of expected small 6% magnitude. Other parameters needed in the analysis, the baryon octet and decuplet weak transitions , , and , are completely constrained from B→B'π weak decays and independently from the quark model. The Σ + →pγ radiative decay amplitude and asymmetry parameters are then determined in terms of no free parameters

  4. Spin current induced by a charged tip in a quantum point contact

    Energy Technology Data Exchange (ETDEWEB)

    Shchamkhalova, B.S., E-mail: s.bagun@gmail.com

    2017-03-15

    We show that the charged tip of the probe microscope, which is widely used in studying the electron transport in low-dimensional systems, induces a spin current. The effect is caused by the spin–orbit interaction arising due to an electric field produced by the charged tip. The tip acts as a spin-flip scatterer giving rise to the spin polarization of the net current and the occurrence of a spin density in the system.

  5. An experimenter's history of neutral currents

    International Nuclear Information System (INIS)

    Sciulli, F.

    1979-01-01

    The history of the experimental study of neutral currents, defined as the class of weak interactions engaged in by lepton pairs of net zero charge, is traced under the headings; historical motivations, experimental searches, first positive indications, neutral currents corroborated, neutrino experiments on neutral currents and some general experimental comments. It is concluded that the neutral current does exist and predicted on the basis of gauge theory ideas, and though to connect the weak and electromagnetic interactions, its very general experimental properties are quite consistent with those ideas. Among these are flavor conserving complicated isospin structure, complicated V, A structure and a structure which depends on the type (or quantum numbers) of the target. 50 references. (UK)

  6. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries

    Science.gov (United States)

    Li, Qi; Tan, Shen; Li, Linlin; Lu, Yingying; He, Yi

    2017-01-01

    High energy and safe electrochemical storage are critical components in multiple emerging fields of technologies. Rechargeable lithium-metal batteries are considered to be promising alternatives for current lithium-ion batteries, leading to as much as a 10-fold improvement in anode storage capacity (from 372 to 3860 mAh g−1). One of the major challenges for commercializing lithium-metal batteries is the reliability and safety issue, which is often associated with uneven lithium electrodeposition (lithium dendrites) during the charging stage of the battery cycling process. We report that stable lithium-metal batteries can be achieved by simply charging cells with square-wave pulse current. We investigated the effects of charging period and frequency as well as the mechanisms that govern this process at the molecular level. Molecular simulations were performed to study the diffusion and the solvation structure of lithium cations (Li+) in bulk electrolyte. The model predicts that loose association between cations and anions can enhance the transport of Li+ and eventually stabilize the lithium electrodeposition. We also performed galvanostatic measurements to evaluate the cycling behavior and cell lifetime under pulsed electric field and found that the cell lifetime can be more than doubled using certain pulse current waveforms. Both experimental and simulation results demonstrate that the effectiveness of pulse current charging on dendrite suppression can be optimized by choosing proper time- and frequency-dependent pulses. This work provides a molecular basis for understanding the mechanisms of pulse current charging to mitigating lithium dendrites and designing pulse current waveforms for stable lithium-metal batteries. PMID:28776039

  7. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M.

    1996-01-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several μs) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution

  8. High ion charge states in a high-current, short-pulse, vacuum arc ion source

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M.

    1995-09-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1--4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several micros) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution

  9. Progress at the WITCH experiment towards weak interaction studies

    CERN Document Server

    Tandecki, Michaël

    A measurement of the $\\beta$–ν angular correlation in nuclear $\\beta$- decay is a good probe to search for physics beyond the Standard Model, independent of assumptions like parity, charge and time reversal violation. The WITCH (Weak Interaction Trap for Charged Particles) experiment will measure this correlation with the aim of further constraining the possible existence of scalar currents in the weak interaction or find a positive indication. The setup is located at ISOLDE/CERN and consists of a double Penning trap system combined with a retardation spectrometer to probe the energy of the recoil ions from the $\\beta$- decay. The shape of the recoil ion energy spectrum allows to determine the $\\beta$–ν angular correlation coefficient, $a$. Past experiments have allowed to measure this parameter with a precision of 0.5–1 %. The aim of the WITCH experiment is to measure $a$ with a precision of about 0.5 %.\\\\ A first step towards this goal has already been taken in 2006 with the measurement of a recoil ...

  10. Operating modes of high-Tc composite superconductors and thermal runaway conditions under current charging

    International Nuclear Information System (INIS)

    Romanovskii, V R; Watanabe, K

    2006-01-01

    The operating thermal and electric modes of a high-T c superconducting composite in partially and fully penetrated states induced by the charging current are investigated. They were studied under conditions in which the current charging rate, the volume fraction of the superconductor in a composite or the temperature of the cooling bath were changed. The transient behaviour of the voltage-current dependence, which is characteristic during stable and unstable increases in electric field inside the composite under a continuous current charging, is discussed. Simulations were done using zero- and one-dimensional steady and unsteady thermoelectric models with a power equation describing the virgin voltage-current characteristic of a superconductor. It is found that some thermoelectric trends underlie the shape of the voltage-current characteristic of the high-T c superconducting composite. These have to be considered during experiments in which the critical or quench currents are defined. First, in the initial stage of the fully penetrated regime (in the low voltage range), the electric field distribution does not have a uniform character. These states depend on the volume fraction of the superconductor and the current charging rate: the higher these quantities, the higher the heterogeneity of the electric field. Second, during the stable over-critical regime (in the high voltage range) occurring in complete penetration modes, the evolution of the electric field may depend on the relevant temperature increase of a composite according to the corresponding increase in its temperature-dependent heat capacity. Consequently, the shape of the voltage-current characteristic of a composite high-T c superconductor during continuous current charging, both before and after thermal runaway, has only a positive slope. Moreover, it is proved that the growth of the fully penetrated part of the voltage-current characteristic becomes less intensive when the current charging rate or the

  11. Ionic currents and charge movements in organ-cultured rat skeletal muscle.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W; Robson, E

    1984-12-01

    The middle of the fibre voltage-clamp technique was used to measure ionic currents and non-linear charge movements in intact, organ-cultured (in vitro denervated) mammalian fast-twitch (rat extensor digitorum longus) muscle fibres. Muscle fibres organ cultured for 4 days can be used as electrophysiological and morphological models for muscles in vivo denervated for the same length of time. Sodium currents in organ-cultured muscle fibres are similar to innervated fibres except that in the temperature range 0-20 degrees C (a) in the steady state, the voltage distribution of inactivation in cultured fibres is shifted negatively some 20 mV; (b) at the same temperature and membrane potential, the time constant of inactivation in cultured fibres is about twice that of innervated fibres. Potassium currents in innervated and cultured fibres at 15 degrees C can be fitted with the Hodgkin-Huxley n variable raised to the second power. Despite the large range we would estimate that the maximum value of the steady-state potassium conductance of cultured fibres is about one-half that of innervated fibres. The estimated maximum amount of charge moved in cultured fibre is about one-third that in innervated fibres. Compared to innervated fibres, culturing doubles the kinetics of the decay phase of charge movement. The possibility of a negative shift of the voltage distribution of charge movements in cultured fibres is discussed.

  12. Current signal of silicon detectors facing charged particles and heavy ions

    International Nuclear Information System (INIS)

    Hamrita, H.

    2005-07-01

    This work consisted in collecting and studying for the first time the shapes of current signals obtained from charged particles or heavy ions produced by silicon detectors. The document is divided into two main parts. The first consisted in reducing the experimental data obtained with charged particles as well as with heavy ions. These experiments were performed at the Orsay Tandem and at GANIL using LISE. These two experiments enabled us to create a data base formed of current signals with various shapes and various times of collection. The second part consisted in carrying out a simulation of the current signals obtained from the various ions. To obtain this simulation we propose a new model describing the formation of the signal. We used the data base of the signals obtained in experiments in order to constrain the three parameters of our model. In this model, the charge carriers created are regarded as dipoles and their density is related to the dielectric polarization in the silicon detector. This phenomenon induces an increase in permittivity throughout the range of the incident ion and consequently the electric field between the electrodes of the detector is decreased inside the trace. We coupled with this phenomenon a dissociation and extraction mode of the charge carriers so that they can be moved in the electric field. (author)

  13. Measurements of charged- and neutral-current cross sections by the CFRR collaboration

    International Nuclear Information System (INIS)

    Blair, R.; Barish, B.; Chu, Y.

    1981-07-01

    We present results on normalized charged and neutral current cross sections. The charged current results can be parameterized by a linearly rising cross section with sigma/sub ν//E = 0.719 +- 0.006 +- 0.036 x 10 -38 cm 2 /GeV and sigma/sub ν/-/E = 0.371 +- 0.004 +- 0.019 x 10 -38 cm 2 /GeV. These results are approx. 15% higher than previous measurements. Preliminary structure functions at low Q 2 are also presented. The neutral current was analyzed using the Paschos-Wolfenstein technique and yields sin 2 sigma/sub w/ = 0.243 +- 0.016

  14. Double-Frame Current Control with a Multivariable PI Controller and Power Compensation for Weak Unbalanced Networks

    CERN Document Server

    Siemaszko, Daniel

    2015-06-15

    The handling of weak networks with asymmetric loads and disturbances im- plies the accurate handling of the second-harmonic component that appears in an unbalanced network. This paper proposes a classic vector control approach using a PI-based controller with superior decoupling capabilities for operation in weak networks with unbalanced phase voltages. A synchronization method for weak unbalanced networks is detailed, with dedicated dimensioning rules. The use of a double-frame controller allows a current symmetry or controlled imbalance to be forced for compensation of power oscillations by controlling the negative current sequence. This paper also serves as a useful reminder of the proper way to cancel the inherent coupling effect due to the transformation to the synchronous rotating reference frame, and of basic considerations of the relationship between switching frequency and control bandwidth.

  15. The dispersion relation of charge and current compensated relativistic electron beam-plasma system

    International Nuclear Information System (INIS)

    Vrba, P.; Schroetter, J.; Jarosova, P.; Koerbel, S.

    1978-01-01

    The unstable regions of relativistic electron beam-plasma system were determined by analysing the general dispersion relation numerically. The external parameters were varied to ensure more effective instability excitations. The full charge- and current compensation presumptions lead to the new synchronism predictions. The slow space charge wave and slow cyclotron wave of the return current are synchronous with the plasma ion wave. (author)

  16. Strengths and Weaknesses of the Current Dental Hygiene Educational System.

    Science.gov (United States)

    Theile, Cheryl Westphal

    2017-09-01

    The state of the dental hygiene educational system in the United States is evolving. The numbers of programs, extent of curricula, and diversity of students, faculty, and practice settings vary significantly across the country. New trends in workforce utilization and delivery models are challenging current educational foundations and mandating an interprofessional approach to both the education and practice of dental hygienists. This article presents an overview of the current state of dental hygiene education to create a baseline for discussion of desired educational models for 2040. The strengths and weaknesses are defined to motivate change. Limitations of the current two-year associate degree are emphasized, along with the need to add expanded content and development of new skills. The developing non-traditional practice settings bring both a challenge to dental hygiene education and a promise of increasing potential in primary care interprofessional settings for the 21 st century. This article was written as part of the project "Advancing Dental Education in the 21 st Century."

  17. Possible influence of the Kuramoto length in a photo-catalytic water splitting reaction revealed by Poisson-Nernst-Planck equations involving ionization in a weak electrolyte

    Science.gov (United States)

    Suzuki, Yohichi; Seki, Kazuhiko

    2018-03-01

    We studied ion concentration profiles and the charge density gradient caused by electrode reactions in weak electrolytes by using the Poisson-Nernst-Planck equations without assuming charge neutrality. In weak electrolytes, only a small fraction of molecules is ionized in bulk. Ion concentration profiles depend on not only ion transport but also the ionization of molecules. We considered the ionization of molecules and ion association in weak electrolytes and obtained analytical expressions for ion densities, electrostatic potential profiles, and ion currents. We found the case that the total ion density gradient was given by the Kuramoto length which characterized the distance over which an ion diffuses before association. The charge density gradient is characterized by the Debye length for 1:1 weak electrolytes. We discuss the role of these length scales for efficient water splitting reactions using photo-electrocatalytic electrodes.

  18. Charge of a quasiparticle in a superconductor.

    Science.gov (United States)

    Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas

    2016-02-16

    Nonlinear charge transport in superconductor-insulator-superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e = n, with n = 1-4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD ~ 2Δ, we found a reproducible and clear dip in the extracted charge to q ~ 0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure.

  19. Conversion of spin current into charge current in a topological insulator: Role of the interface

    Science.gov (United States)

    Dey, Rik; Prasad, Nitin; Register, Leonard F.; Banerjee, Sanjay K.

    2018-05-01

    Three-dimensional spin current density injected onto the surface of a topological insulator (TI) produces a two-dimensional charge current density on the surface of the TI, which is the so-called inverse Edelstein effect (IEE). The ratio of the surface charge current density on the TI to the spin current density injected across the interface defined as the IEE length was shown to be exactly equal to the mean free path in the TI determined to be independent of the electron transmission rate across the interface [Phys. Rev. B 94, 184423 (2016), 10.1103/PhysRevB.94.184423]. However, we find that the transmission rate across the interface gives a nonzero contribution to the transport relaxation rate in the TI as well as to the effective IEE relaxation rate (over and above any surface hybridization effects), and the IEE length is always less than the original mean free path in the TI without the interface. We show that both the IEE relaxation time and the transport relaxation time in the TI are modified by the interface transmission time. The correction becomes significant when the transmission time across the interface becomes comparable to or less than the original momentum scattering time in the TI. This correction is similar to experimental results in Rashba electron systems in which the IEE relaxation time was found shorter in the case of direct interface with metal in which the interface transmission rate will be much higher, compared to interfaces incorporating insulating oxides. Our results indicate the continued importance of the interface to obtain a better spin-to-charge current conversion and a limitation to the conversion efficiency due to the quality of the interface.

  20. Manifestation of neutral weak currents in the e+e-annihilation

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Gakh, G.I.; Korzh, A.P.

    1980-01-01

    The polarization effects, caused by the interference between electromagnetic and neutral weak currents mechanisms, are investigated for the inclusive V-meson production in the e + e - - annihilation. The polarization states of the V-meson are discussed in detail. We use three decriptions of the V-meson polarization. They are: the 4-vector of spin and quadrupole tensor description, the polarization vector description and the density matrix, formalis. The collision of the polarized beams is characterized by the virtual photon and Z-boson density matrix in the helicity representation

  1. An Improved Current Controller to ensure the robust performance of grid-connected converters under weak grid conditions

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2016-01-01

    Voltage Source Converters (VSCs) operating in very weak grids with low Short Circuit Ratio (SCR) are known to meet stability challenges. This article investigates instability of a grid connected current-controlled converter under weak grid conditions, which is often attributed to the dynamic...

  2. Neutrino and antineutrino inclusive charged-current cross section measurement with the MINOS near detector

    International Nuclear Information System (INIS)

    Bhattacharya, Debdatta

    2009-01-01

    This thesis presents the measurement of energy dependence of the neutrino-nucleon inclusive charged current cross section on an isoscalar target in the range 3-50 GeV for neutrinos and 5-50 GeV energy range for antineutrinos. The data set was collected with the MINOS Near Detector using the wide band NuMI beam at Fermilab. The size of the charged current sample is 1.94 x 10 6 neutrino events and 1.60 x 10 5 antineutrino events. The flux has been extracted using a low hadronic energy sub-sample of the charged current events. The energy dependence of the cross section is obtained by dividing the charged current sample with the extracted flux. The neutrino and antineutrino cross section exhibits a linear dependence on energy at high energy but shows deviations from linear behavior at low energy. We also present a measurement of the ratio of antineutrino to neutrino inclusive cross section

  3. Neutrino and antineutrino inclusive charged-current cross section measurement with the MINOS near detector

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debdatta [Univ. of Pittsburgh, PA (United States)

    2009-01-01

    This thesis presents the measurement of energy dependence of the neutrino-nucleon inclusive charged current cross section on an isoscalar target in the range 3-50 GeV for neutrinos and 5-50 GeV energy range for antineutrinos. The data set was collected with the MINOS Near Detector using the wide band NuMI beam at Fermilab. The size of the charged current sample is 1.94 x 106 neutrino events and 1.60 x 105 antineutrino events. The flux has been extracted using a low hadronic energy sub-sample of the charged current events. The energy dependence of the cross section is obtained by dividing the charged current sample with the extracted flux. The neutrino and antineutrino cross section exhibits a linear dependence on energy at high energy but shows deviations from linear behavior at low energy. We also present a measurement of the ratio of antineutrino to neutrino inclusive cross section.

  4. Plasma-induced evolution behavior of space-charge-limited current for multiple-needle cathodes

    International Nuclear Information System (INIS)

    Li Limin; Liu Lie; Zhang Jun; Wen Jianchun; Liu Yonggui; Wan Hong

    2009-01-01

    Properties of the plasma and beam flow produced by tufted carbon fiber cathodes in a diode powered by a ∼500 kV, ∼400 ns pulse are investigated. Under electric fields of 230-260 kV cm -1 , the electron current density was in the range 210-280 A cm -2 , and particularly at the diode gap of 20 mm, a maximum beam power density of about 120 MW cm -2 was obtained. It was found that space-charge-limited current exhibited an evolution behavior as the accelerating pulse proceeded. There exists a direct relation between the movement of plasma within the diode and the evolution of space-charge-limited current. Initially in the accelerating pulse, the application of strong electric fields caused the emission sites to explode, forming cathode flares or plasma spots, and in this stage the space-charge-limited current was approximately described by a multiple-needle cathode model. As the pulse proceeded, these plasma spots merged and expanded towards the anode, thus increasing the emission area and shortening the diode gap, and the corresponding space-charge-limited current followed a planar cathode model. Finally, the space-charge-limited current is developed from a unipolar flow into a bipolar flow as a result of the appearance of anode plasma. In spite of the nonuniform distribution of cathode plasma, the cross-sectional uniformity of the extracted electron beam is satisfactory. The plasma expansion within the diode is found to be a major factor in the diode perveance growth and instability. These results show that these types of cathodes can offer promising applications for high-power microwave tubes.

  5. Weak-interacting holographic QCD

    International Nuclear Information System (INIS)

    Gazit, D.; Yee, H.-U.

    2008-06-01

    We propose a simple prescription for including low-energy weak-interactions into the frame- work of holographic QCD, based on the standard AdS/CFT dictionary of double-trace deformations. As our proposal enables us to calculate various electro-weak observables involving strongly coupled QCD, it opens a new perspective on phenomenological applications of holographic QCD. We illustrate efficiency and usefulness of our method by performing a few exemplar calculations; neutron beta decay, charged pion weak decay, and meson-nucleon parity non-conserving (PNC) couplings. The idea is general enough to be implemented in both Sakai-Sugimoto as well as Hard/Soft Wall models. (author)

  6. Current problems in the weak interactions

    International Nuclear Information System (INIS)

    Pais, A.

    1977-01-01

    Some reasons are discussed showing why the recent SU(2) x U(1) gauge theory of weak and electromagnetic interactions is not a complete theory of these interactions, Lepton theory, charm, and the CP problem are considered. 60 references

  7. Multiplicity distributions of charged hadrons in νp and anti νp charged current interactions

    International Nuclear Information System (INIS)

    Jones, G.T.; Jones, R.W.L.; Kennedy, B.W.; Morrison, D.R.O.; Mobayyen, M.M.; Wainstein, S.; Borner, H.P.; Myatt, G.; Radojicic, D.; Burke, S.; Aderholz, M.; Hantke, D.; Katz, U.F.; Kern, J.; Schmitz, N.; Wittek, W.

    1991-10-01

    Using data on νp and anti νp charged current interactions from a bubble chamber experiment with BEBC at CERN, the multiplicity distributions of charged hadrons are investigated. The analysis is based on ∝ 20 000 events with incident ν and ∝ 10 000 events with incident anti ν. The invariant mass W of the total hadronic system ranges from 3 GeV to ∝ 14 GeV. The experimental multiplicity distributions are fitted by the binomial function (for different intervals of W and in different intervals of the rapidity y), by the Levy function and the lognormal function. All three parametrizations give acceptable values for χ 2 /NDF. For fixed W, forward and backward multiplicities are found to be uncorrelated. The normalized moments of the charged multiplicity distributions are measured as a function of W. They show a violation of KNO scaling. (orig.)

  8. Multiplicity distributions of charged hadrons in νp and anti νp charged current interactions

    International Nuclear Information System (INIS)

    Jones, G.T.; Jones, R.W.L.; Kennedy, B.W.; Morrison, D.R.O.; Mobayyen, M.M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Katz, U.F.; Kern, J.; Schmitz, N.; Wittek, W.; Borner, H.P.; Myatt, G.; Radojicic, D.; Burke, S.

    1992-01-01

    Using data on νp and anti νp charged current interactions from a bubble chamber experiment with BEBC at CERN, the multiplicity distributions of charged hadrons are investigated. The analysis is based on ∝20 000 events with incident ν and ∝10 000 events with incident anti ν. The invariant mass W of the total hadronic system ranges from 3 GeV to ∝14 GeV. The experimental multiplicity distributions are fitted by the binomial function (for different intervals of W and in different intervals of the rapidity y), by the Levy function and the lognormal function. All three parametrizations give acceptable values for χ 2 /NDF. For fixed W, forward and backward multiplicities are found to be uncorrelated. The normalized moments of the charged multiplicity distributions are measured as a function of W. They show a violation of KNO scaling. (orig.)

  9. Effects of weakly coupled and dense quantum plasmas environments on charge exchange and ionization processes in Na+ + Rb(5s) atom collisions

    Science.gov (United States)

    Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam

    2017-02-01

    The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.

  10. Pulse shape discrimination with silicon detectors using charge and current-sensitive preamplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Hamrita, H.; Rauly, E.; Blumenfeld, Y.; Borderie, B.; Chabot, M.; Edelbruck, P.; Lavergne, L.; Le Bris, J.; Le Neindre, N.; Richard, A.; Rivet, M.F.; Scarpaci, J.A.; Barbey, S.; Becheva, E.; Bzyl, F.R.; D' Esesquelles, P.; Galichet, E.; Lalu, G.; Martinet, G.; Pierre, S. [Institut de Physique Nucleaire, IN2P3-CNRS, 91 - Orsay (France); Legou, Th.; Tillier, J.; Bocage, F.; Bougault, R.; Carniol, B.; Cussol, D.; Etasse, D.; Grevy, S.; Lopez, O.; Tamain, B.; Vient, E. [Caen Univ., LPC, IN2P3-CNRS, ENSI, 14 - Caen (France); Galichet, E. [Conservatoire National des Arts et Metier, 75 - Paris (France); Guinet, D.; Lautesse, Ph. [Villeurbanne Univ., Institut de Physique Nucleaire, IN2P3-CNRS, 69 (France); Lanzalone, G. [Catania Univ., INFN, Laboratori Nazionali del Sud and Dipartimento di Fisica e Astronomia, (Italy); Politi, G. [Catania Univ., INFN, Sezione di Catania and Dipartimento di Fisica e Astronomia (Italy); Rosato, E. [Napoli, Univ., Dipt. di Scienze Fisiche e Sezione INFN (Italy)

    2003-07-01

    For the first time shapes of current pulses from light charged particles and carbon ions are presented. Capabilities for pulse shape discrimination techniques are demonstrated. In this work, charge and current-sensitive preamplifier prototypes for nuclear structure and dynamics experiments have been developed and tested with the aim of improving PSD (pulse shape discrimination) method by studying in detail current signal shapes from particles and ions over a large energy range. Note that current signal shapes have been recently used in atomic cluster studies to identify partitions of carbon cluster fragmentation. The paper is organized as follows. Section 2 is devoted to characterization of preamplifiers. In section 3, results of on beam tests will be presented, discussed and compared to a simple simulation.

  11. Neutral-current weak interactions at an EIC

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.X.; Deshpande, A.; Kumar, K.S.; Riordan, S. [Stony Brook University, Department of Physics and Astronomy, Stony Brook, NY (United States); Huang, J. [Brookhaven National Lab, Physics Department, Upton, NY (United States)

    2017-03-15

    A simulation study of measurements of neutral current structure functions of the nucleon at the future high-energy and high-luminosity polarized electron-ion collider (EIC) is presented. A new series of γ-Z interference structure functions, F{sub 1}{sup γZ}, F{sub 3}{sup γZ}, g{sub 1}{sup γZ}, g{sub 5}{sup γZ} become accessible via parity-violating asymmetries in polarized electron-nucleon deep inelastic scattering (DIS). Within the context of the quark-parton model, they provide a unique and, in some cases, yet-unmeasured combination of unpolarized and polarized parton distribution functions. The uncertainty projections for these structure functions using electron-proton collisions are considered for various EIC beam energy configurations. Also presented are uncertainty projections for measurements of the weak mixing angle sin{sup 2} θ{sub W} using electron-deuteron collisions which cover a much higher Q{sup 2} than that accessible in fixed target measurements. QED and QCD radiative corrections and effects of detector smearing are included with the calculations. (orig.)

  12. Testing the Standard Model by precision measurement of the weak charges of quarks

    Energy Technology Data Exchange (ETDEWEB)

    Ross Young; Roger Carlini; Anthony Thomas; Julie Roche

    2007-05-01

    In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low-energy. The precision of this new result, combined with earlier atomic parity-violation measurements, limits the magnitude of possible contributions from physics beyond the Standard Model - setting a model-independent, lower-bound on the scale of new physics at ~1 TeV.

  13. Observation of coherent diffractive charged current interactions of antineutrinos on neon nuclei

    Science.gov (United States)

    Marage, P.; Aderholz, M.; Armenise, N.; Azemoon, T.; Barnham, K. W. J.; Bartley, J. H.; Baton, J. P.; Bertrand, D.; Brisson, V.; Bullock, F. W.; Calicchio, M.; Cooper, A. M.; Chwastowski, J.; Clayton, E. F.; Coghen, T.; Erriquez, O.; Fitch, P. J.; Gerbier, G.; Guy, J.; Hulth, P. O.; Jones, G. T.; Kasper, P.; Kochowski, C.; Leighton-Davies, S.; Middleton, R. P.; Mobayyen, M. M.; Morrison, D. R. O.; Neveu, M.; Nuzzo, S.; O'Neale, S. W.; Parker, M. A.; Petiau, P.; Ruggieri, F.; Sacton, J.; Sansum, R. A.; Simopoulou, E.; Talebzadeh, M.; Vallee, C.; Varvell, K.; Vayaki, A.; Venus, W.; Wells, J.; Wernhard, K. L.; Wittek, W.; Zevgolatakos, E.; WA59 Collaboration

    1984-05-01

    First observation is reported of semi-inclusive coherent diffractive charged current interactions of antineutrinos on neon nuclei. A sharp peaking towards zero is observed in the | t| distribution of interactions for which the final state charge is 0 and from which only one negative hadron is emitted, unaccompanied by any evidence of nuclear fragmentation or reinteraction. This peak is correlated with high momentum of the outgoing charged hadron and with small values of Q2 and x.

  14. A MODEL FOR THE ELECTRICALLY CHARGED CURRENT SHEET OF A PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, C. R.; Antiochos, S. K.; Black, C. E. [Heliophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Harding, A. K.; Kalapotharakos, C.; Kazanas, D.; Timokhin, A. N., E-mail: c.richard.devore@nasa.gov [Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2015-03-10

    Global-scale solutions for the magnetosphere of a pulsar consist of a region of low-lying, closed magnetic field near the star, bounded by opposite-polarity regions of open magnetic field along which the pulsar wind flows into space. Separating these open-field regions is a magnetic discontinuity—an electric current sheet—consisting of generally nonneutral plasma. We have developed a self-consistent model for the internal equilibrium structure of the sheet by generalizing the charge-neutral Vlasov/Maxwell equilibria of Harris and Hoh to allow for net electric charge. The resulting equations for the electromagnetic field are solved analytically and numerically. Our results show that the internal thermal pressure needed to establish equilibrium force balance, and the associated effective current-sheet thickness and magnetization, can differ by orders of magnitude from the Harris/Hoh charge-neutral limit. The new model provides a starting point for kinetic or fluid investigations of instabilities that can cause magnetic reconnection and flaring in pulsar magnetospheres.

  15. The effect of weak neutral currents on the coincidence of e+ and e- particles and the combined theories of measures

    International Nuclear Information System (INIS)

    Lendvai, E.

    1978-01-01

    The electromagnetic and weak interactions as well as the spontaneously broken measures were reviewed. Some characteristic structures and models were described including the most favoured one proposed by Weinberg and Salem. The effect of weak neutral currents were investigated in the processes e + e - → Σ hadron, MantiM, FantiF; the asymmetries of these processes were calculated. The weak effects found were rather significant in the energy range q = 14-40 GeV reaching a maximum of 20%. It was suggested that the measurements of these effects provided useful information about the structure of weak neutral currents. (Z.P.)

  16. Dijet Production in Charged and Neutral Current $e^{+}p$ Interactions at High $Q^{2}$

    CERN Document Server

    Adloff, C.; Andrieu, B.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Bernardi, G.; Berndt, T.; Bizot, J.C.; Borras, K.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruel, P.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burkhardt, H.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Chabert, E.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; David, M.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Hoprich, W.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C.; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Kaufmann, O.; Kausch, M.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Krasny, M.W.; Krehbiel, H.; Kroseberg, J.; Krucker, D.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Kutuev, R.; Lachnit, W.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nunnemann, T.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Siegmon, G.; Sievers, P.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Solovev, Y.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Swart, M.; Tasevsky, M.; Tchernyshov, V.; Tchetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; von Dombrowski, S.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wollatz, H.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    2001-01-01

    Jet production in charged and neutral current events in the kinematic range of Q^2 from 640 to 35000 GeV^2 is studied in deep-inelastic positron-proton scattering at HERA. The measured rate of multi-jet events and distributions of jet polar angle, transverse energy, dijet mass, and other dijet variables are presented. Using parton densities derived from inclusive DIS cross sections, perturbative QCD calculations in NLO are found to give a consistent description of both the neutral and charged current dijet production. A direct, model independent comparison of the jet distributions in charged and neutral current events confirms that the QCD dynamics of the hadronic final state is independent of the underlying electroweak scattering process.

  17. Observation of coherent diffractive charged current interactions of antineutrino on neon nuclei

    International Nuclear Information System (INIS)

    Marage, P.; Sacton, J.; Bertrand, D.; Aderholz, M.; Wernhard, K.L.; Wittek, W.; Armenise, N.; Calicchio, M.; Erriquez, O.; Nuzzo, S.; Ruggieri, F.; Azemoon, T.; Bartley, J.H.; Bullock, F.W.; Fitch, P.J.; Leighton-Davies, S.; Sansum, R.A.; Baton, J.P.; Gerbier, G.; Kochowski, C.; Neveu, M.; Brisson, V.; Petiau, P.; Vallee, C.; Chwastowski, J.; Coghen, T.; Guy, J.; Kasper, P.; Venus, W.; Simopoulou, E.; Vayaki, A.; Zevgolatakos, E.; Varvell, K.; Wells, J.

    1984-01-01

    First observation is reported of semi-inclusive coherent diffractive charged current interactions of antineutrinos on neon nuclei. A sharp peaking towards zero is observed in the vertical stroketvertical stroke distribution of interactions for which the final state charge is 0 and from which only one negative hadron is emitted, unaccompanied by any evidence of nuclear fragmentation or reinteraction. This peak is correlated with high momentum of the outgoing charged hadron and with small values of Q 2 and chi. (orig.)

  18. Polarized parton distributions from charged-current deep-inelastic scattering

    International Nuclear Information System (INIS)

    Ridolfi, G

    2003-01-01

    We investigate the capabilities of a neutrino factory in the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments, with special attention to the accuracy of this kind of measurements. We show that a neutrino factory would allow to distinguish between different theoretical scenarios for the proton spin structure

  19. Research on State-of-Charge (SOC) estimation using current integration based on temperature compensation

    Science.gov (United States)

    Yin, J.; Shen, Y.; Liu, X. T.; Zeng, G. J.; Liu, D. C.

    2017-11-01

    The traditional current integral method for the state-of-charge (SOC) estimation has an unusable estimation accuracy because of the current measuring error. This paper proposed a closed-loop temperature compensation method to improve the SOC estimation accuracy of current integral method by eliminating temperature drift. Through circuit simulation result in Multisim, the stability of current measuring accuracy is improved by more than 10 times. In a designed 70 charge-discharge experimental circle, the SOC estimation error with temperature compensation had 30 times less than error in normal situation without compensation.

  20. Axial charge of the weak nucleon current extracted from the β decays of spin aligned 12B and 12N

    International Nuclear Information System (INIS)

    Yamaguchi, Takayuki

    1998-01-01

    The alignment correlation terms in the β-ray angular distributions of the 12 B and 12 N mirror nuclei have been precisely measured, in order to investigate the mesonic effect in the axial charge matrix element. The spin alignments were created with the spin manipulation technique in the β-NMR method, which has been improved based on the recent studies of hyperfine interactions of 12 B and 12 N in a Mg crystal. From the sum of the alignment correlation terms, the ratio of the axial charge to the Gamow-Teller term was determined to be y = 4.66 ± 0.06(stat) ± 0.13(syst). The present result gives clear evidence of the mesonic effect in the axial charge and even more shows 16 ± 6% enhancement over the full calculation which includes the meson exchange effect and the core polarization effect. A possible mass renormalization for the decaying nucleon in a finite nucleon density explains this enhancement. (author)

  1. Supercapacitor performance evaluation in replacing battery based on charging and discharging current characteristics

    Science.gov (United States)

    Sani, A.; Siahaan, S.; Mubarakah, N.; Suherman

    2018-02-01

    Supercapacitor is a new device of energy storage, which has much difference between ordinary capacitors and batteries. Supercapacitor have higher capacitance and energy density than regular capacitors. The supercapacitor also has a fast charging time, as well as a long life. To be used as a battery replacement please note the internal parameters of the battery to be replaced. In this paper conducted a simulation study to utilize supercapacitor as a replacement battery. The internal parameters of the battery and the supercapacitor are obtained based on the characteristics of charging and discharging current using a predefined equivalent circuit model. The battery to be replaced is a 12-volt lead-acid type, 6.5 Ah which is used on motorcycles with 6A charging and discharging currents. Super capacitor replacement capacitor is a capacity of 1600F, 2.7V which is connected in series as many as 6 pieces with 16.2 volt terminal voltage and charging current 12A. To obtain the same supercapacitor characteristic as the battery characteristic to be replaced, modification of its internal parameters is made. The results show that the super-capacitor can replace the battery function for 1000 seconds.

  2. Current flow in random resistor networks: the role of percolation in weak and strong disorder.

    Science.gov (United States)

    Wu, Zhenhua; López, Eduardo; Buldyrev, Sergey V; Braunstein, Lidia A; Havlin, Shlomo; Stanley, H Eugene

    2005-04-01

    We study the current flow paths between two edges in a random resistor network on a L X L square lattice. Each resistor has resistance e(ax) , where x is a uniformly distributed random variable and a controls the broadness of the distribution. We find that: (a) The scaled variable u identical with u congruent to L/a(nu) , where nu is the percolation connectedness exponent, fully determines the distribution of the current path length l for all values of u . For u > 1, the behavior corresponds to the weak disorder limit and l scales as l approximately L, while for u < 1 , the behavior corresponds to the strong disorder limit with l approximately L(d(opt) ), where d(opt) =1.22+/-0.01 is the optimal path exponent. (b) In the weak disorder regime, there is a length scale xi approximately a(nu), below which strong disorder and critical percolation characterize the current path.

  3. Bulk-Like Electrical Properties Induced by Contact-Limited Charge Transport in Organic Diodes: Revised Space Charge Limited Current

    KAUST Repository

    Xu, Guangwei

    2018-02-22

    Charge transport governs the operation and performance of organic diodes. Illuminating the charge-transfer/transport processes across the interfaces and the bulk organic semiconductors is at the focus of intensive investigations. Traditionally, the charge transport properties of organic diodes are usually characterized by probing the current–voltage (I–V) curves of the devices. However, to unveil the landscape of the underlying potential/charge distribution, which essentially determines the I–V characteristics, still represents a major challenge. Here, the electrical potential distribution in planar organic diodes is investigated by using the scanning Kelvin probe force microscopy technique, a method that can clearly separate the contact and bulk regimes of charge transport. Interestingly, by applying to devices based on novel, high mobility organic materials, the space-charge-limited-current-like I–V curves, which are previously believed to be a result of the bulk transport, are surprisingly but unambiguously demonstrated to be caused by contact-limited conduction. A model accounting is developed for the transport properties of both the two metal/organic interfaces and the bulk. The results indicate that pure interface-dominated transport can indeed give rise to I–V curves similar to those caused by bulk transport. These findings provide a new insight into the charge injection and transport processes in organic diodes.

  4. [A SWOT (strengths, weaknesses, opportunities, threats) analysis of the current immunization program in Zhejiang Province].

    Science.gov (United States)

    He, Han-Qing; Ling, Luo-Ya; Xu, Xu-Qing

    2009-02-01

    To know the status of Immunization program in Zhejiang Province. The investigation on immunization program in zhejiang province was conducted, and the SWOT analysis was corducted to make a comprehensive evaluation. 11 cities, 22 counties and 44 towns were investigated in this study, and the current immunization program in Zhejiang province were explored by SWOT analysis. The SWOT Matrix, includes SO (strength-opportunity), ST (strength-threat), WO (weakness-opportunity) and WT (weakness-threat) can apply to make optimal strategy for the development of expanded program on immunization.

  5. Conformational transitions of a weak polyampholyte

    KAUST Repository

    Nair, Arun Kumar Narayanan

    2014-10-07

    Using grand canonical Monte Carlo simulations of a flexible polyelectrolyte where the charges are in contact with a reservoir of constant chemical potential given by the solution pH, we study the behavior of weak polyelectrolytes in poor and good solvent conditions for polymer backbone. We address the titration behavior and conformational properties of a flexible diblock polyampholyte chain formed of two oppositely charged weak polyelectrolyte blocks, each containing equal number of identical monomers. The change of solution pH induces charge asymmetry in a diblock polyampholyte. For diblock polyampholyte chains in poor solvents, we demonstrate that a discontinuous transition between extended (tadpole) and collapsed (globular) conformational states is attainable by varying the solution pH. The double-minima structure in the probability distribution of the free energy provides direct evidence for the first-order like nature of this transition. At the isoelectric point electrostatically driven coil-globule transition of diblock polyampholytes in good solvents is found to consist of different regimes identified with increasing electrostatic interaction strength. At pH values above or below the isoelectric point diblock chains are found to have polyelectrolyte-like behavior due to repulsion between uncompensated charges along the chain.

  6. Conformational transitions of a weak polyampholyte

    KAUST Repository

    Nair, Arun Kumar Narayanan; Uyaver, Sahin; Sun, Shuyu

    2014-01-01

    Using grand canonical Monte Carlo simulations of a flexible polyelectrolyte where the charges are in contact with a reservoir of constant chemical potential given by the solution pH, we study the behavior of weak polyelectrolytes in poor and good solvent conditions for polymer backbone. We address the titration behavior and conformational properties of a flexible diblock polyampholyte chain formed of two oppositely charged weak polyelectrolyte blocks, each containing equal number of identical monomers. The change of solution pH induces charge asymmetry in a diblock polyampholyte. For diblock polyampholyte chains in poor solvents, we demonstrate that a discontinuous transition between extended (tadpole) and collapsed (globular) conformational states is attainable by varying the solution pH. The double-minima structure in the probability distribution of the free energy provides direct evidence for the first-order like nature of this transition. At the isoelectric point electrostatically driven coil-globule transition of diblock polyampholytes in good solvents is found to consist of different regimes identified with increasing electrostatic interaction strength. At pH values above or below the isoelectric point diblock chains are found to have polyelectrolyte-like behavior due to repulsion between uncompensated charges along the chain.

  7. Charged-Current Neutrino-Nucleus Scattering off the Even Molybdenum Isotopes

    Directory of Open Access Journals (Sweden)

    E. Ydrefors

    2012-01-01

    Full Text Available Neutrinos from supernovae constitute important probes of both the currently unknown supernova mechanisms and of neutrino properties. Reliable information about the nuclear responses to supernova neutrinos is therefore crucial. In this work, we compute the cross sections for the charged-current neutrino-nucleus scattering off the even-even molybdenum isotopes. The nuclear responses to supernova neutrinos are subsequently calculated by folding the cross sections with a Fermi-Dirac distribution.

  8. Sharpening the weak gravity conjecture with dimensional reduction

    International Nuclear Information System (INIS)

    Heidenreich, Ben; Reece, Matthew; Rudelius, Tom

    2016-01-01

    We investigate the behavior of the Weak Gravity Conjecture (WGC) under toroidal compactification and RG flows, finding evidence that WGC bounds for single photons become weaker in the infrared. By contrast, we find that a photon satisfying the WGC will not necessarily satisfy it after toroidal compactification when black holes charged under the Kaluza-Klein photons are considered. Doing so either requires an infinite number of states of different charges to satisfy the WGC in the original theory or a restriction on allowed compactification radii. These subtleties suggest that if the Weak Gravity Conjecture is true, we must seek a stronger form of the conjecture that is robust under compactification. We propose a “Lattice Weak Gravity Conjecture” that meets this requirement: a superextremal particle should exist for every charge in the charge lattice. The perturbative heterotic string satisfies this conjecture. We also use compactification to explore the extent to which the WGC applies to axions. We argue that gravitational instanton solutions in theories of axions coupled to dilaton-like fields are analogous to extremal black holes, motivating a WGC for axions. This is further supported by a match between the instanton action and that of wrapped black branes in a higher-dimensional UV completion.

  9. Weak interactions in deuterons: exchange currents and nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Dautry, F.; Rho, M.; Riska, D.O.

    1976-01-01

    While the meson-exchange electromagnetic current has been tested with an impressive success in the two-nucleon system, nothing much is known about the reliability of the exchange currents in weak interactions. This question is studied using muon absorption in the deuteron, μ - + d→n + n + γ. The meson-exchange current, previously derived in parallel to those of the electromagnetic interaction, is checked for consistency against the p-wave piece of the p + p→d + π + process near threshold and then tested with the total capture rate for which some (though not so accurate) data are available. The same Hamiltonian is then used to calculate the matrix elements for the solar neutrino processes p + p→d + e + + γ and p + p + e - → d + γ in the hope that they would be measured and help resolve the solar neutrino puzzle. Finally a detailed analysis is made of the differential capture rate dGAMMA/dEsub(n), Esub(n) being the kinematic energy in the c.m. of the two neutrons, in the expectation that it will be used to pin down the ever elusive n-n scattering length. (Auth.)

  10. Charged Hadron Properties in Background Electric Fields

    International Nuclear Information System (INIS)

    Detmold, William; Tiburzi, Brian C.; Walker-Loud, Andre

    2010-01-01

    We report on a lattice calculation demonstrating a novel new method to extract the electric polarizability of charged pseudo-scalar mesons by analyzing two point correlation functions computed in classical background electric fields. A staple component of any electrodynamics or quantum mechanics course is the electric polarizability. Neutral material immersed in a weak external field polarizes, internally setting up an electric dipole moment, aligned so as to minimize the energy. At the atomic level, the electron clouds are distorted creating these microscopic dipole moments. The same process occurs at the hadronic level but the polarization effects are now constrained by the strong force. Polarizabilities of these bound QCD states can be viewed as a distortion of the charged pion cloud of a given hadron. One can use lattice QCD to non-perturbatively compute the quark and gluon interactions in the presence of background electric (or magnetic) fields. For sufficiently weak background fields, the low energy properties of the hadrons can be rigorously computed using effective field theory. With this treatment, a picture of hadrons emerges from chiral dynamics: that of a hadronic core surrounded by a pseudoscalar meson cloud. As some pseudoscalar mesons are charged, polarizabilities of hadrons encode the stiffness of the charged meson cloud (as well as that of the core). The form of pseudoscalar meson polarizabilities is consequently strongly constrained by chiral dynamics. However, beyond the leading order, the results depend upon essentially unknown low-energy constants, which must currently be estimated in a model-dependent fashion. In the case of the charged pion, the experimental measurement of the polarizability has proven difficult, both in the original measurement as well as the most recent published result. Currently, there is a 2-3 sigma discrepancy between the two-loop cPT prediction and the measured charged pion polarizability. New results with higher

  11. Transition from Fowler-Nordheim field emission to space charge limited current density

    International Nuclear Information System (INIS)

    Feng, Y.; Verboncoeur, J. P.

    2006-01-01

    The Fowler-Nordheim law gives the current density extracted from a surface under strong fields, by treating the emission of electrons from a metal-vacuum interface in the presence of an electric field normal to the surface as a quantum mechanical tunneling process. Child's law predicts the maximum transmitted current density by considering the space charge effect. When the electric field becomes high enough, the emitted current density will be limited by Child's law. This work analyzes the transition of the transmitted current density from the Fowler-Nordheim law to Child's law space charge limit using a one-dimensional particle-in-cell code. Also studied is the response of the emission model to strong electric fields near the transition point. We find the transition without geometrical effort is smooth and much slower than reported previously [J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev. 92, 45 (1953)]. We analyze the effects of geometric field enhancement and work function on the transition. Using our previous model for effective field enhancement [Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005)], we find the geometric effect dominates, and enhancement β>10 can accelerate the approach to the space charge limit at practical electric field. A damped oscillation near the local plasma frequency is observed in the transient system response

  12. Vehicle charging and return current measurements during electron-beam emission experiments from the Shuttle Orbiter

    International Nuclear Information System (INIS)

    Hawkins, J.G.

    1988-01-01

    The prime objective of this research was to investigate the electro-dynamic response of the Shuttle Orbiter during electron beam emission from the payload bay. This investigation has been conducted by examining data collected by the Vehicle Charging And Potential (VCAP) Experiment. The VCAP experiment has flown on two Shuttle missions with a Fast Pulse Electron Generator (FPEG) capable of emitting a 100 mA beam of 1 keV electrons. Diagnostics of the charging and return current during beam emission were provided by a combined Charge and Current Probe (CCP) located in the payload bay of the Orbiter. The CCP measurements were used to conduct a parametric study of the vehicle charging and return current as a function of vehicle attitude, ambient plasma parameters, and emitted beam current. In particular, the CCP measurements were found to depend strongly on the ambient plasma density. The vehicle charging during a 100 mA beam emission was small when the predicted ambient plasma density was greater than 3 x 10 5 cm -3 , but appreciable charging occurred when the density was less than this value. These observations indicated that the effective current-collecting area of the Orbiter is approximately 42 m 2 , consistent with estimates for the effective area of the Orbiter's engine nozzles. The operation of the Orbiter's Reaction Control System thrusters can create perturbations in the Orbiter's neutral and plasma environment that affect the CCP measurements. The CCP signatures of thruster firings are quite complex, but in general they are consistent with the depletion of plasma density in the ram direction and the enhancement of plasma density in the Orbiter's wake

  13. First measurement of charged current cross sections at HERA with longitudinally polarised positrons

    Science.gov (United States)

    H1 Collaboration; Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bähr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; Desch, K.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Elsen, E.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hajduk, L.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Kückens, J.; Landon, M. P. J.; Lange, W.; Laštovička, T.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lüke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Reisert, B.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauvan, E.; Schätzel, S.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sedlák, K.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Tomasz, F.; Traynor, D.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-03-01

    Data taken with positrons of different longitudinal polarisation states in collision with unpolarised protons at HERA are used to measure the total cross sections of the charged current process, ep→ν¯X, for negative four-momentum transfer squared Q>400 GeV and inelasticity y<0.9. Together with the corresponding cross section obtained from the previously published unpolarised data, the polarisation dependence of the charged current cross section is measured for the first time at high Q and found to be in agreement with the Standard Model prediction.

  14. Inertia-Centric Stability Analysis of a Planar Uniform Dust Molecular Cloud with Weak Neutral-Charged Dust Frictional Coupling

    Science.gov (United States)

    K. Karmakar, P.; Borah, B.

    2014-05-01

    This paper adopts an inertia-centric evolutionary model to study the excitation mechanism of new gravito-electrostatic eigenmode structures in a one-dimensional (1-D) planar self-gravitating dust molecular cloud (DMC) on the Jeans scale. A quasi-neutral multi-fluid consisting of warm electrons, warm ions, neutral gas and identical inertial cold dust grains with partial ionization is considered. The grain-charge is assumed not to vary at the fluctuation evolution time scale. The neutral gas particles form the background, which is weakly coupled with the collapsing grainy plasma mass. The gravitational decoupling of the background neutral particles is justifiable for a higher inertial mass of the grains with higher neutral population density so that the Jeans mode frequency becomes reasonably large. Its physical basis is the Jeans assumption of a self-gravitating uniform medium adopted for fiducially analytical simplification by neglecting the zero-order field. So, the equilibrium is justifiably treated initially as “homogeneous”. The efficacious inertial role of the thermal species amidst weak collisions of the neutral-charged grains is taken into account. A standard multiscale technique over the gravito-electrostatic equilibrium yields a unique pair of Korteweg-de Vries (KdV) equations. It is integrated numerically by the fourth-order Runge-Kutta method with multi-parameter variation for exact shape analyses. Interestingly, the model is conducive for the propagation of new conservative solitary spectral patterns. Their basic physics, parametric features and unique characteristics are discussed. The results go qualitatively in good correspondence with the earlier observations made by others. Tentative applications relevant to space and astrophysical environments are concisely highlighted.

  15. Ratio of neutral-current to charged-current cross sections for inclusive neutrino interactions in hydrogen

    International Nuclear Information System (INIS)

    Harris, F.A.; Berge, J.P.; Bogert, D.V.; Cence, R.J.; Coffin, T.C.; Cundy, D.C.; Diamond, R.N.; DiBianca, F.A.; French, H.T.; Hanft, R.; Kochowski, C.; Louis, W.C.; Lynch, G.R.; Malko, J.; Marriner, J.P.; Nezrick, F.A.; Parker, S.I.; Peters, M.W.; Peterson, V.Z.; Roe, B.P.; Ross, R.T.; Scott, W.G.; Seidl, A.A.; Smart, W.; Stenger, V.J.; Stevenson, M.L.; Vander Velde, J.C.

    1977-01-01

    The ratio of neutral-current to charged-current cross sections is determined from a sample of events obtained in an exposure of the Fermilab 15-ft hydrogen bubble chamber to a high-energy, horn-focused neutrino beam. For evens with three or more prongs and with visible hadron momentum above 10 GeV/c, the ratio is 0.40 +- 0.14. A Monte Carlo calculation assuming the Weinberg-Salam model is used to correct for excluded events, yielding R/sub NC/CC/ = 0.48 +- 0.17

  16. Tuning of tunneling current noise spectra singularities by localized states charging

    OpenAIRE

    Mantsevich, V. N.; Maslova, N. S.

    2008-01-01

    We report the results of theoretical investigations of tunneling current noise spectra in a wide range of applied bias voltage. Localized states of individual impurity atoms play an important role in tunneling current noise formation. It was found that switching "on" and "off" of Coulomb interaction of conduction electrons with two charged localized states results in power law singularity of low-frequency tunneling current noise spectrum ($1/f^{\\alpha}$) and also results on high frequency com...

  17. Off-shell Noether current and conserved charge in Horndeski theory

    Directory of Open Access Journals (Sweden)

    Jun-Jin Peng

    2016-01-01

    Full Text Available We derive the off-shell Noether current and potential in the context of Horndeski theory, which is the most general scalar–tensor theory with a Lagrangian containing derivatives up to second order while yielding at most to second-order equations of motion in four dimensions. Then the formulation of conserved charges is proposed on basis of the off-shell Noether potential and the surface term got from the variation of the Lagrangian. As an application, we calculate the conserved charges of black holes in a scalar–tensor theory with non-minimal coupling between derivatives of the scalar field and the Einstein tensor.

  18. Neutral weak-current two-body contributions in inclusive scattering from {sup 12}C

    Energy Technology Data Exchange (ETDEWEB)

    Lovato, Alessandro [ANL; Gandolfi, Stefano [LANL; Carlson, Joseph [LANL; Pieper, S. C. [ANL; Schiavilla, Rocco [JLAB, ODU

    2014-05-01

    An {\\it ab initio} calculation of the sum rules of the neutral weak response functions in $^{12}$C is reported, based on a realistic Hamiltonian, including two- and three-nucleon potentials, and on realistic currents, consisting of one- and two-body terms. We find that the sum rules of the response functions associated with the longitudinal and transverse components of the (space-like) neutral current are largest and that a significant portion ($\\simeq 30$\\%) of the calculated strength is due to two-body terms. This fact may have implications for the MiniBooNE and other neutrino quasi-elastic scattering data on nuclei.

  19. First charged current data from the CERN-Dortmund-Heidelberg-Saclay neutrino experiment

    International Nuclear Information System (INIS)

    Kleinknecht, K.

    1977-01-01

    The CDHS Collaboration has analyzed data taken in the CERN narrow-band antineutrino and neutrino beams. From 12000 antineutrino and 36000 neutrino charged current events at neutrino energies between 30 GeV and 200 GeV, we obtain the average inelasticity and the cross-section ratio sigma antisub(ν)/sigmasub(ν) as a function of neutrino energy. On the basis of these data we cannot confirm the high y anomaly observed by previous experiments at Fermilab. Instead, the measured average inelasticity in anti neutrino reactions and the ratio of charged current total cross-sections sigma anti sub(ν)/sigma%sub(ν) are compatible with no energy variation within their errors in the energy range 30 + . (orig.) [de

  20. Right-handed charged currents in the era of the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Alioli, S. [CERN Theory Division,CH-1211, Geneva 23 (Switzerland); Cirigliano, V. [Theoretical Division, Los Alamos National Laboratory,Los Alamos, NM 87545 (United States); Dekens, W. [Theoretical Division, Los Alamos National Laboratory,Los Alamos, NM 87545 (United States); New Mexico Consortium, Los Alamos Research Park,Los Alamos, NM 87544 (United States); Vries, J. de [Nikhef, Theory Group,Science Park 105, 1098 XG, Amsterdam (Netherlands); Mereghetti, E. [Theoretical Division, Los Alamos National Laboratory,Los Alamos, NM 87545 (United States)

    2017-05-16

    We discuss the phenomenology of right-handed charged currents in the framework of the Standard Model Effective Field Theory, in which they arise due to a single gauge-invariant dimension-six operator. We study the manifestations of the nine complex couplings of the W to right-handed quarks in collider physics, flavor physics, and low-energy precision measurements. We first obtain constraints on the couplings under the assumption that the right-handed operator is the dominant correction to the Standard Model at observable energies. We subsequently study the impact of degeneracies with other Beyond-the-Standard-Model effective interactions and identify observables, both at colliders and low-energy experiments, that would uniquely point to right-handed charged currents.

  1. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility

    KAUST Repository

    Dacuñ a, Javier; Salleo, Alberto

    2011-01-01

    We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows

  2. Orbital currents and charge density waves in a generalized Hubbard ladder

    International Nuclear Information System (INIS)

    Fjaerestad, J.O.; Marston, J.B.; Schollwoeck, U.

    2006-01-01

    We study a generalized Hubbard model on the two-leg ladder at zero temperature, focusing on a parameter region with staggered flux (SF)/d-density wave (DDW) order. To guide our numerical calculations, we first investigate the location of a SF/DDW phase in the phase diagram of the half-filled weakly interacting ladder using a perturbative renormalization group (RG) and bosonization approach. For hole doping δ away from half-filling, finite-system density-matrix renormalization-group (DMRG) calculations are used to study ladders with up to 200 rungs for intermediate-strength interactions. In the doped SF/DDW phase, the staggered rung current and the rung electron density both show periodic spatial oscillations, with characteristic wavelengths 2/δ and 1/δ, respectively, corresponding to ordering wavevectors 2k F and 4k F for the currents and densities, where 2k F = π (1 - δ). The density minima are located at the anti-phase domain walls of the staggered current. For sufficiently large dopings, SF/DDW order is suppressed. The rung density modulation also exists in neighboring phases where currents decay exponentially. We show that most of the DMRG results can be qualitatively understood from weak-coupling RG/bosonization arguments. However, while these arguments seem to suggest a crossover from non-decaying correlations to power-law decay at a length scale of order 1/δ, the DMRG results are consistent with a true long-range order scenario for the currents and densities

  3. Ion-collecting sphere in a stationary, weakly magnetized plasma with finite shielding length

    International Nuclear Information System (INIS)

    Patacchini, Leonardo; Hutchinson, Ian H

    2007-01-01

    Collisionless ion collection by a negatively biased stationary spherical probe in a finite shielding length plasma is investigated using the Particle in Cell code SCEPTIC, in the presence of a weak magnetic field B. The overall effect of the magnetic field is to reduce the ion current, linearly in |B| for weak enough fields, with a slope steepness increasing with the electron Debye length. The angular current distribution and space-charge buildup strongly depend on the focusing properties of the probe, hence on its potential and the plasma shielding length. In particular, it is found that the concavity of the ion collection flux distribution can reverse sign when the electron Debye length is comparable to or larger than the probe radius (λ De ∼> r p ), provided the ion temperature is much lower than the probe bias (T i p )

  4. Space-charge-limited currents in electron-irradiated dielectrics

    International Nuclear Information System (INIS)

    Nunes de Oliveira, L.; Gross, B.

    1975-01-01

    This paper develops the theory of steady-state currents generated in a dielectric placed between positively or negatively biased electrodes and irradiated with a partially penetrating electron beam. The dielectric is divided into an irradiated region (IR), which extends from the electrode of incidence to the extrapolated range of the beam, and a nonirradiated region (NIR). In the IR the primary beam generates an electron-hole plasma. Its end plane acts as a virtual electrode embedded in the dielectric. Currents are space-charge limited in the NIR and Ohmic in the IR which is characterized by a uniform radiation-induced conductivity. Depending on the polarity of the electrode bias, electrons or holes are drawn from the IR into the NIR. The theory correctly predicts an apparent threshold effect for the inset of steady-state currents: the current amplitudes remain small as long as the electron range is smaller than half the sample thickness, and increase strongly only afterwards. Calculated current curves for different beam energies are in satisfactory agreement with experimental results. The role of the electron beam as a virtual electrode is discussed

  5. The longitudinal space charge problem in the high current linear proton accelerators

    International Nuclear Information System (INIS)

    Lustfeld, H.

    1984-01-01

    In a linear proton accelerator peak currents of 200 mA lead to high space charge densities and the resultant space charge forces reduce the effective focussing considerably. In particular the longitudinal focussing is affected. A new concept based on linear theory is proposed that restricts the influence of the space charge forces on the longitudinal focussing by increasing a, the mean transverse bunch radius, as a proportional(βγ)sup(3/8). This concept is compared with other concepts for the Alvarez (1 MeV - 100 MeV) and for the high energy part (100 MeV - 1100 MeV) of the SNQ linear accelerator. (orig.)

  6. Super symmetry in strong and weak interactions

    International Nuclear Information System (INIS)

    Seshavatharam, U.V.S.; Lakshminarayana, S.

    2010-01-01

    For strong interaction two new fermion mass units 105.32 MeV and 11450 MeV are assumed. Existence of "Integral charge quark bosons", "Integral charge effective quark fermions", "Integral charge (effective) quark fermi-gluons" and "Integral charge quark boso-gluons" are assumed and their masses are estimated. It is noticed that, characteristic nuclear charged fermion is X s · 105.32 = 938.8 MeV and corresponding charged boson is X s (105.32/x) = 415.0 where X s = 8.914 is the inverse of the strong coupling constant and x = 2.26234 is a new number by using which "super symmetry" can be seen in "strong and weak" interactions. 11450 MeV fermion and its boson of mass = 11450/x = 5060 MeV plays a crucial role in "sub quark physics" and "weak interaction". 938.8 MeV strong fermion seems to be the proton. 415 MeV strong boson seems to be the mother of the presently believed 493,496 and 547 MeV etc, strange mesons. With 11450 MeV fermion "effective quark-fermi-gluons" and with 5060 MeV boson "quark boso-gluon masses" are estimated. "Effective quark fermi-gluons" plays a crucial role in ground state charged baryons mass generation. Light quark bosons couple with these charged baryons to form doublets and triplets. "Quark boso-gluons" plays a crucial role in ground state neutral and charged mesons mass generation. Fine and super-fine rotational levels can be given by [I or (I/2)] power(1/4) and [I or (I/2)] power(1/12) respectively. Here, I = n(n+1) and n = 1, 2, 3, … (author)

  7. Design and construction of a faraday cup for measuring small electron currents

    International Nuclear Information System (INIS)

    Veyssiere, A.

    1967-01-01

    This paper describes the design of a device for measuring and integrating very small currents generated by the impact of a charged particle beam upon a Faraday cup. Part one considers the detector as such. The main component is a graphite bloc capable of stopping practically all the incident charges. Part two describes the associated electrode apparatus required to measure better than 10 -13 ampere with a precision- of 1 per cent: Integration of such weak currents over periods of several hours, in the presence of a strong background current, is also discussed. (author) [fr

  8. Current distribution in triodes neglecting space charge and initial velocities

    NARCIS (Netherlands)

    Hamaker, H.C.

    1950-01-01

    A theory of the current distribution in triodes with positive grid is developed on the assumption that space charge and the initial velocities of both primary and secondary electrons may be neglected. This theory, which is originally due to De Lussanct de la Sablonière, has been put in a more lucid

  9. Streaming current magnetic fields in a charged nanopore

    Science.gov (United States)

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-01-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques. PMID:27833119

  10. Neutral currents and electromagnetic renormalization of the vector part of neutrino weak interaction

    International Nuclear Information System (INIS)

    Folomeshkin, V.N.

    1976-01-01

    The nature and properties of neutral currents in neutrino processes at high energies are theoretically investigated. Electronagmetic renormalization of diagonal ((νsub(e)e(νsub(e)e) and (νsub(μ)μ)(νsub(μ)μ)) and nondiagonal ((νsub(e)μ)(νsub(e)μ)) interactions is discussed in terms of the universal fourfermion interaction model. It is shown that electromagnetic renormalization of neutrino vector interaction caused an effective appearance of vector neutral currents with photon isotopic structure. The value for the interaction constant is unambigously defined by the ratio of the total cross-section for electron-positron annihilation into muonic pairs. Interaction (renormalization) constants for neutral currents are pointed out to be always smaller than interaction constants for charge currents

  11. Quantum nano ring composed of quantum dots as a source of pure persistent spin or charge current

    International Nuclear Information System (INIS)

    Eslami, L.; Faizabadi, E.; Ahmadi, S.

    2016-01-01

    Spin-dependent persistent current in a quantum ring constituted by two normal and one magnetic quantum dots, in the presence of Rashba spin–orbit interaction is studied by using Green function technique. It is shown that the presence of the magnetic quantum dot breaks the degeneracy of the density of states of electrons with different spin states. Besides, the Rashba spin–orbit interaction along with the magnetic quantum dot develops tunable persistent spin and charge currents. Moreover, the persistent charge current induces a fully adjustable magnetic flux whose direction and magnitude can be tuned by altering the strength of the Rashba spin–orbit interaction. - Highlights: • An array of normal and magnetic quantum dots with Rashba effect is studied. • Spin-dependent persistent current and DOS are studied using Green function method. • The magnetic quantum dot breaks degeneracy of DOS of up and down spin electrons. • The persistent spin and charge currents are tuned by adjusting the Rashba constant. • The persistent charge current induces tunable magnetic field at the center of ring.

  12. Spectral function sum rules in quantum chromodynamics. I. Charged currents sector

    International Nuclear Information System (INIS)

    Floratos, E.G.; Narison, Stephan; Rafael, Eduardo de.

    1978-07-01

    The Weinberg sum rules of the algebra of currents are reconsidered in the light of quantum chromodynamics (QCD). The authors derive new finite energy sum rules which replace the old Weinberg sum rules. The new sum rules are convergent and the rate of convergence is explicitly calculated in perturbative QCD at the one loop approximation. Phenomenological applications of these sum rules in the charged current sector are also discussed

  13. Possibilities of the determination of neutral, weak current contribution in experiments on study of the e+e- → μ-μ+ process in longitudinally polarized coliding

    International Nuclear Information System (INIS)

    Guliev, N.A.; Dzhafarov, I.G.; Sultanov, S.F.; Khallil-zade, F.T.

    1978-01-01

    The e + e - → μ - μ + process is considered for the case of longitudinal initial and final particle polarizations on the basis of a number of models: the Weinberg-Salam, Lee-Prentky-Zumino, vector, and X-model and under the assumption of the V-A structure of neutral weak currents. Polarization effects in the dufferential and integral cross sections of the process are analyzed in detail, and various possibilities of determining the contribution of neutral weak currents are revealed. The calculations show that neutral weak currents may, in case of attainable energies, cause considerable polarization effects which are highly sensitive to the selection of a model Experimental investigation of these effects may yield valuable data on the neutral weak current structure and, what is even more important, on the sign of the weak interaction constant

  14. Quenching of weak interactions in nucleon matter

    International Nuclear Information System (INIS)

    Cowell, S.; Pandharipande, V.R.

    2003-01-01

    We have calculated the one-body Fermi and Gamow-Teller charge-current and vector and axial-vector neutral-current nuclear matrix elements in nucleon matter at densities of 0.08, 0.16, and 0.24 fm -3 and proton fractions ranging from 0.2 to 0.5. The correlated states for nucleon matter are obtained by operating on Fermi-gas states by a symmetrized product of pair correlation operators determined from variational calculations with the Argonne-v18 and Urbana-IX two- and three-nucleon interactions. The squares of the charge- current matrix elements are found to be quenched by 20-25 % by the short-range correlations in nucleon matter. Most of the quenching is due to spin-isospin correlations induced by the pion exchange interactions which change the isospins and spins of the nucleons. A large part of it can be related to the probability for a spin-up proton quasiparticle to be a bare spin-up/down proton/neutron. Within the interval considered, the charge-current matrix elements do not have significant dependence on the matter density, proton fraction, and magnitudes of nucleon momenta; however, they do depend on momentum transfer. The neutral-current matrix elements have a significant dependence on the proton fraction. We also calculate the matrix elements of the nuclear Hamiltonian in the same correlated basis. These provide relatively mild effective interactions that give the variational energies in the Hartree-Fock approximation. The calculated two-nucleon effective interaction describes the spin-isospin susceptibilities of nuclear and neutron matter fairly accurately. However terms greater than or equal to three-body terms are necessary to reproduce the compressibility. Realistic calculations of weak interaction rates in nucleon matter can presumably be carried out using the effective operators and interactions studied here. All presented results use the simple two-body cluster approximation to calculate the correlated basis matrix elements. This allows for a clear

  15. Higher Mellin moments for charged current DIS

    International Nuclear Information System (INIS)

    Rogal, M.; Moch, S.

    2007-06-01

    We report on our recent results for deep-inelastic neutrino(ν)-proton(P) scattering. We have computed the perturbative QCD corrections to three loops for the charged current structure functions F 2 , F L and F 3 for the combination νP- anti νP. In leading twist approximation we have calculated the first six odd-integer Mellin moments in the case of F 2 and F L and the first six even-integer moments in the case of F 3 . As a new result we have obtained the coefficient functions to O(α 3 s ) and we have found the corresponding anomalous dimensions to agree with known results in the literature. (orig.)

  16. Neutral currents in semileptonic reactions

    International Nuclear Information System (INIS)

    Paschos, E.A.

    1975-05-01

    The evidence for weak neutral currents is analyzed in semileptonic reactions with special emphasis on their Lorentz and internal symmetry structure. It is found that present observations are consistent with the expectations of gauge theories, but other possibilities can not be ruled out. Of particular interest in this respect is the presence of a large isoscalar component. The excitation of the Δ-resonance by neutral currents is analyzed, and pion-nucleon mass distributions are presented. Charge asymmetries sensitive to isoscalar-isovector interferences are discussed. (U.S.)

  17. Analysis techniques of charging damage studied on three different high-current ion implanters

    Science.gov (United States)

    Felch, S. B.; Larson, L. A.; Current, M. I.; Lindsey, D. W.

    1989-02-01

    One of the Greater Silicon Valley Implant Users' Group's recent activities has been to sponsor a round-robin on charging damage, where identical wafers were implanted on three different state-of-the-art, high-current ion implanters. The devices studied were thin-dielectric (250 Å SiO2), polysilicon-gate MOS capacitors isolated by thick field oxide. The three implanters involved were the Varian/Extrion 160XP, the Eaton/Nova 10-80, and the Applied Materials PI9000. Each implanter vendor was given 48 wafers to implant with 100 keV As+ ions at a dose of 1 × 1016 cm-2. Parameters that were varied include the beam current, electron flood gun current, and chamber pressure. The charge-to-breakdown, breakdown voltage, and leakage current of several devices before anneal have been measured. The results from these tests were inconclusive as to the physical mechanism of charging and as to the effectiveness of techniques to reduce its impact on devices. However, the methodology of this study is discussed in detail to aid in the planning of future experiments. Authors' industrial affiliations: S.B. Felch, Varian Research Center, 611 Hansen Way, Palo Alto, CA 94303, USA; L.A. Larson, National Semiconductor Corp., P.O. Box 58090, Santa Clara, CA 95052-8090, USA; M.I. Current, Applied Materials, 3050 Bowers Ave., Santa Clara, CA 95054, USA; D.W. Lindsey, Eaton/NOVA, 931 Benicia Ave, Sunnyvale, CA 94086, USA.

  18. Theory of a condensed charged-Bose, charged Fermi gas and Ginzburg--Landau studies of superfluid 3He

    International Nuclear Information System (INIS)

    Dahl, D.A.

    1976-01-01

    Two independent topics in the field of condensed matter physics are examined: the condensed charged-Bose, charged Fermi gas and superfluid 3 He. Green's function (field theoretic) methods are used to derive the low-temperature properties of a dense, neutral gas of condensed charged bosons and degenerate charged fermions. Restriction is made to the case where the fermion mass is much lighter than the boson mass. Linear response and the density-density correlation function are examined and shown to exhibit two collective modes: a plasmon branch and a phonon branch with speed equal to that of ionic sound in solids. Comparison with a possible astrophysical application (white dwarf stars) is made. The behavior near the superfluid transition temperature (Ginzburg--Landau regime) of 3 He is then studied. Gorkov equations are derived and studied in the weak-coupling limit. In this way the form and order of magnitude estimates of coefficients appearing in the Ginzburg--Landau theory are obtained. Weak-coupling particle and spin currents are derived. Various perturbations break the large degeneracy of the states and have experimental implications. The electric contribution to the Ginzburg--Landau free energy is studied for the proposed A and B phases. Imposition of an electric field orients the axial state, but does not give rise to shifts in the NMR resonances. Shifts and discontinuous jumps in the longitudinal and transverse signals are predicted for the Balian--Werthamer state, the details depending on the relative strengths of the fields, as well as the angle between them

  19. Current-phase relation of a Bose-Einstein condensate flowing through a weak link

    International Nuclear Information System (INIS)

    Piazza, F.; Smerzi, A.; Collins, L. A.

    2010-01-01

    We study the current-phase relation of a Bose-Einstein condensate flowing through a repulsive square barrier by solving analytically the one-dimensional Gross-Pitaevskii equation. The barrier height and width fix the current-phase relation j(δφ), which tends to j∼cos(δφ/2) for weak barriers and to the Josephson sinusoidal relation j∼sin(δφ) for strong barriers. Between these two limits, the current-phase relation depends on the barrier width. In particular, for wide-enough barriers, we observe two families of multivalued current-phase relations. Diagrams belonging to the first family, already known in the literature, can have two different positive values of the current at the same phase difference. The second family, new to our knowledge, can instead allow for three different positive currents still corresponding to the same phase difference. Finally, we show that the multivalued behavior arises from the competition between hydrodynamic and nonlinear-dispersive components of the flow, the latter due to the presence of a soliton inside the barrier region.

  20. Charge and spin current oscillations in a tunnel junction induced by magnetic field pulses

    Energy Technology Data Exchange (ETDEWEB)

    Dartora, C.A., E-mail: cadartora@eletrica.ufpr.br [Electrical Engineering Department, Federal University of Parana (UFPR), C.P. 19011 Curitiba, 81.531-970 PR (Brazil); Nobrega, K.Z., E-mail: bzuza1@yahoo.com.br [Federal Institute of Education, Science and Technolgy of Maranhão (IFMA), Av. Marechal Castelo Branco, 789, São Luís, 65.076-091 MA (Brazil); Cabrera, G.G., E-mail: cabrera@ifi.unicamp.br [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas (UNICAMP), C.P. 6165, Campinas 13.083-970 SP (Brazil)

    2016-08-15

    Usually, charge and spin transport properties in tunnel junctions are studied in the DC bias regime and/or in the adiabatic regime of time-varying magnetic fields. In this letter, the temporal dynamics of charge and spin currents in a tunnel junction induced by pulsed magnetic fields is considered. At low bias voltages, energy and momentum of the conduction electrons are nearly conserved in the tunneling process, leading to the description of the junction as a spin-1/2 fermionic system coupled to time-varying magnetic fields. Under the influence of pulsed magnetic fields, charge and spin current can flow across the tunnel junction, displaying oscillatory behavior, even in the absence of DC bias voltage. A type of spin capacitance function, in close analogy to electric capacitance, is predicted.

  1. Fast measure proceeding of weak currents; Un procede de mesure rapide des courants faibles

    Energy Technology Data Exchange (ETDEWEB)

    Taieb, J [Commissariat a l' Energie Atomique, Siege (France). Centre d' Etudes Nucleaires

    1953-07-01

    The process of fast measure of the weak currents that we are going to describe briefly apply worthy of the provided currents by the sources to elevated value internal resistance, as it is the case for the ionization chamber, the photocells, mass spectroscopic tubes. The problem to measure weak currents is essentially a problem of amplifier and of input circuit. We intended to achieve a whole amplifier and input circuit with advanced performances, meaning that for a measured celerity we wanted to have an signal/noise ratio the most important as in the classic systems and for a same report signal/noise a more quickly done measure. (M.B.) [French] Le procede de mesure rapide des courants faibles que nous allons brievement decrire s'applique a la mesure des courants fournis par les sources a resistance interne de valeur elevee, comme c'est le cas pour les chambres d'ionisation, les photocellules, les tubes de spectrographe de masse. Le probleme de mesure de courants faibles est essentiellement un probleme d'amplificateur et de circuit d'entree. Nous nous sommes proposes de realiser un ensemble amplificateur et circuit d'entree a performances poussees, c'est a dire que pour une meme rapidite de mesure nous desirions avoir un rapport signal/bruit plus important que dans les systemes classiques et pour un meme rapport signal/bruit une mesure effectuee plus rapidement. (M.B.)

  2. Spin currents of charged Dirac particles in rotating coordinates

    Science.gov (United States)

    Dayi, Ö. F.; Yunt, E.

    2018-03-01

    The semiclassical Boltzmann transport equation of charged, massive fermions in a rotating frame of reference, in the presence of external electromagnetic fields is solved in the relaxation time approach to establish the distribution function up to linear order in the electric field in rotating coordinates, centrifugal force and the derivatives. The spin and spin current densities are calculated by means of this distribution function at zero temperature up to the first order. It is shown that the nonequilibrium part of the distribution function yields the spin Hall effect for fermions constrained to move in a plane perpendicular to the angular velocity and magnetic field. Moreover it yields an analogue of Ohm's law for spin currents whose resistivity depends on the external magnetic field and the angular velocity of the rotating frame. Spin current densities in three-dimensional systems are also established.

  3. Weak interactions with nuclei

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1983-01-01

    Nuclei provide systems where the strong, electomagnetic, and weak interactions are all present. The current picture of the strong interactions is based on quarks and quantum chromodynamics (QCD). The symmetry structure of this theory is SU(3)/sub C/ x SU(2)/sub W/ x U(1)/sub W/. The electroweak interactions in nuclei can be used to probe this structure. Semileptonic weak interactions are considered. The processes under consideration include beta decay, neutrino scattering and weak neutral-current interactions. The starting point in the analysis is the effective Lagrangian of the Standard Model

  4. Parity violating weak neutral-current effects in elastic e-12C scattering. Progress report, April 15, 1981-February 28, 1982

    International Nuclear Information System (INIS)

    Lubell, M.S.

    1982-01-01

    Unified gauge theories of the electro-weak interaction incorporate a neutral weak current, which, although many orders of magnitude smaller than the neutral-electromagnetic current, can be isolated through the manifestation of its parity violating effects. As a consequence, neutral current parity violation experiments provide direct access to the measurement of the weak coupling constants as well as fundamental tests of the unified theories. The verification of unified theories at low energies is a crucial prerequisite of the application of these theories to the range of higher energies where the W+- and the Z 0 are predicted to exist. One highly sensitive measurement of parity violation in the neutral current sector is provided by the determination of the asymmetry, A = (sigma + - sigma - )/(sigma + + sigma - ), for elastic scattering of positive (+) and negative (-) helicity electrons from 12 C nuclei. We have been pursuing such a program at the Bates Electron Accelerator with the goal of measuring A to a precision of approx. 10 -7 . By contrast, the standard model predicts a value for A of approx. 2 x 10 -6

  5. Finite temperature fermion condensate, charge and current densities in a (2+1)-dimensional conical space

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Bezerra de Mello, E.R. [Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Braganca, E. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Saharian, A.A. [Yerevan State University, Department of Physics, Yerevan (Armenia)

    2016-06-15

    We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even function of the chemical potential. The behavior of the expectation values in various asymptotic regions of the parameters are discussed in detail. In particular, we show that for points near the cone apex the vacuum parts dominate. For a massless field with zero chemical potential the fermion condensate and charge density vanish. Simple expressions are derived for the part in the total charge induced by the planar angle deficit and magnetic flux. Combining the results for separate irreducible representations, we also consider the fermion condensate, charge and current densities in parity and time-reversal symmetric models. Possible applications to graphitic nanocones are discussed. (orig.)

  6. SANCnews: Sector 4f, charged current TH1"-->

    Science.gov (United States)

    Arbuzov, A.; Bardin, D.; Bondarenko, S.; Christova, P.; Kalinovskaya, L.; Nanava, G.; Sadykov, R.; von Schlippe, W.

    2007-08-01

    In this paper we describe the implementation of the charged current decays of the type t→bl+νl(γ) in the framework of the SANC system. All calculations are done taking into account the one-loop electroweak correction in the standard model. The emphasis of this paper is on the presentation of numerical results. Various distributions are produced by means of a Monte Carlo integrator and event generator. Comparison with the results of the CompHEP and PYTHIA packages are presented for the Born and hard photon contributions. The validity of the cascade approximation at one-loop level is also studied.

  7. Charged current deep-inelastic scattering at three loops

    International Nuclear Information System (INIS)

    Moch, S.; Rogal, M.

    2007-04-01

    We derive for deep-inelastic neutrino(ν)-proton(P) scattering in the combination νP- anti νP the perturbative QCD corrections to three loops for the charged current structure functions F 2 , F L and F 3 . In leading twist approximation we calculate the first five odd-integer Mellin moments in the case of F 2 and F L and the first five even-integer moments in the case of F 3 . As a new result we obtain the coefficient functions to O(α 3 s ) while the corresponding anomalous dimensions agree with known results in the literature. (orig.)

  8. Primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store

    International Nuclear Information System (INIS)

    Chen Jun; Yang Jianhua; Shu Ting; Zhang Jiande; Zhou Xiang; Wen Jianchun

    2008-01-01

    The primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store is studied. The principle of primary power supply circuit and its time diagram of switches are presented. The circuit is analyzed and some expressions are got, especially, the usable voltage scope of capacitance of energy store, and the correlation between the parameters of circuit and time delay, which is between the turn-on of the charging circuit of capacitance of energy store and the circuit of recuperation. The time delay of 256 x 256 lookup table is made with the instruction of theory and the simulation of the actual parameters of circuits. The table is used by the control program to control the repetitive operating of the actual pulsed intense current accelerator. Finally, some conclusions of the primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store are got. (authors)

  9. A sub-GeV charged-current quasi-elastic $\

    Energy Technology Data Exchange (ETDEWEB)

    Walding, Joseph James [Imperial College, London (United Kingdom)

    2009-12-01

    Neutrino-nucleus charged-current quasi-elastic scattering is the signal interaction used by many neutrino oscillation experiments. For muon disappearance studies the signal mode is νμn → μp. Modern oscillation experiments, such as T2K, produce neutrino beams with peak beam energies of order a few-GeV. It is therefore vitally important to have accurate measurements of the charged-current quasi-elastic crosssection for future neutrino oscillation experiments. Neutrino-nucleus cross-sections in the few-GeV region are not well understood, with the main uncertainties coming from understanding of the neutrino beam flux and the final state interactions within nuclei. SciBooNE is a sub-GeV neutrino-nucleus cross-section experiment based at Fermilab, Batavia, USA, with the goal to measure neutrino cross-sections with precision of order 5%. SciBooNE took data from June 2007 until August 2008, in total 0.99×1020 and 1.53×1020 protons on target were collected in neutrino and anti-neutrino mode, respectively. In this thesis a νμ charged-current quasi-elastic (CCQE) cross-section contained within the SciBar sub-detector is presented. A method to tag muons in SciBar was developed and three samples were isolated. An excess in backwards tracks in the one-track sample is observed. A Poisson maximum likelihood is used to extract the CCQE cross-section. The fit was applied using a basic fit parameter model, successfully used to obtain the cross-section in the SciBar-MRD matched CCQE analysis. This method was found to be insufficient in describing the data for the SciBarcontained CCQE analysis. By adding two migration parameters the cross-section was calculated to be 1.004 ± 0.031 (stat)+0.101 -0.150(sys) × 10-38 cm2/neutron, excluding backwards tracks with a χ2 = 203.8/76 d.o.f. and 1.083 ± 0.030(stat)+0.115 -0.177(sys) × 10-38 cm2

  10. Characterization and control of wafer charging effects during high-current ion implantation

    International Nuclear Information System (INIS)

    Current, M.I.; Lukaszek, W.; Dixon, W.; Vella, M.C.; Messick, C.; Shideler, J.; Reno, S.

    1994-02-01

    EEPROM-based sense and memory devices provide direct measures of the charge flow and potentials occurring on the surface of wafers during ion beam processing. Sensor design and applications for high current ion implantation are discussed

  11. New approach to nonleptonic weak interactions. I. Derivation of asymptotic selection rules for the two-particle weak ground-state-hadron matrix elements

    International Nuclear Information System (INIS)

    Tanuma, T.; Oneda, S.; Terasaki, K.

    1984-01-01

    A new approach to nonleptonic weak interactions is presented. It is argued that the presence and violation of the Vertical BarΔIVertical Bar = 1/2 rule as well as those of the quark-line selection rules can be explained in a unified way, along with other fundamental physical quantities [such as the value of g/sub A/(0) and the smallness of the isoscalar nucleon magnetic moments], in terms of a single dynamical asymptotic ansatz imposed at the level of observable hadrons. The ansatz prescribes a way in which asymptotic flavor SU(N) symmetry is secured levelwise for a certain class of chiral algebras in the standard QCD model. It yields severe asymptotic constraints upon the two-particle hadronic matrix elements of nonleptonic weak Hamiltonians as well as QCD currents and their charges. It produces for weak matrix elements the asymptotic Vertical BarΔIVertical Bar = 1/2 rule and its charm counterpart for the ground-state hadrons, while for strong matrix elements quark-line-like approximate selection rules. However, for the less important weak two-particle vertices involving higher excited states, the Vertical BarΔIVertical Bar = 1/2 rule and its charm counterpart are in general violated, providing us with an explicit source of the violation of these selection rules in physical processes

  12. On the Electromagnetic Momentum of Static Charge and Steady Current Distributions

    Science.gov (United States)

    Gsponer, Andre

    2007-01-01

    Faraday's and Furry's formulae for the electromagnetic momentum of static charge distributions combined with steady electric current distributions are generalized in order to obtain full agreement with Poynting's formula in the case where all fields are of class C[superscript 1], i.e., continuous and continuously differentiable, and the…

  13. Measurement of charm in charged current at HERA

    International Nuclear Information System (INIS)

    Zimmermann, Tobias

    2008-12-01

    A measurement of charm production in charged current (CC) polarized electron-proton deep inelastic scattering processes with data from the H1 detector at the HERA collider is presented. This process in principle allows access to the strange quark density in the proton. In total 5460 CC candidate events in e + p and 6253 in e - p data are selected in the kinematic range Q 2 >223 GeV 2 and 0.03 CC =(28.9± 1.4)+P e .(28.6±4.7) pb for e + p and σ CC =(49.2±2.3)-P e .(42.5 ±6.8) pb for e - p, where P e is the lepton beam polarization. While the measured cross section for e + p data is in agreement with the theoretical prediction, the cross section for e - p data shows a weaker dependence on P e than predicted. The charm fractions in the selected CC candidate event samples are extracted using the muon charge asymmetry. Muons originating from charmed hadron decays in CC events at HERA always have the same charge as the beam lepton. The extracted charm fractions in the selected CC candidate event samples are F c =9.5±8.9±3.0 % for e + p and F c =4.4±6.9±2.6 % for e - p. Due to the large statistical errors of the measured charm fractions, the strange quark density in the proton has not been extracted. (orig.)

  14. A programmable controller for constant primary peak current in capacitor charging fet switcher for nova

    International Nuclear Information System (INIS)

    Mihalka, A.

    1983-01-01

    New switching power supplies were designed for the 10 mm laser amplifiers in the Nova master oscillator room. The flashlamp supply must be repeatable. Therefore, the authors designed a constant current, linearly charging power supply. Since it is a capacitor, the load varies through-out the charge cycle. At first the load is great, and DI/DT of load current is at a maximum. As the capacitor charges the initial conditions for each cycle change, the power supply in effect sees a smaller capacitance, and DI/DT decreases. We need a way of gradually increasing the on-time of the current pulses so that the transistors in the power bridge are turned off when they reach their maximum peak current. The normal current sense response of the control chip is not fast enough to be useful for the application. The deadtime, or the time that all the bridge transistors are turned off, is fixed so that as the pulse width varies so does the period. We end up with a constant peak current, switching power supply whose frequency varies from 50 khz to 20 khz. Finally, an overcurrent latch protects the transistors from bridge or transformer faults. the circuit is described and results are shown

  15. Make dark matter charged again

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub, E-mail: prateekagrawal@fas.harvard.edu, E-mail: fcyrraci@physics.harvard.edu, E-mail: randall@physics.harvard.edu, E-mail: jscholtz@physics.harvard.edu [Department of Physics, Harvard University, Cambridge, MA 02138 (United States)

    2017-05-01

    We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.

  16. High Current Ionic Diode Using Homogeneously Charged Asymmetric Nanochannel Network Membrane.

    Science.gov (United States)

    Choi, Eunpyo; Wang, Cong; Chang, Gyu Tae; Park, Jungyul

    2016-04-13

    A high current ionic diode is achieved using an asymmetric nanochannel network membrane (NCNM) constructed by soft lithography and in situ self-assembly of nanoparticles with uniform surface charge. The asymmetric NCNM exhibits high rectified currents without losing a rectification ratio because of its ionic selectivity gradient and differentiated electrical conductance. Asymmetric ionic transport is analyzed with diode-like I-V curves and visualized via fluorescent dyes, which is closely correlated with ionic selectivity and ion distribution according to variation of NCNM geometries.

  17. Prospect for Charge Current Neutrino Interactions Measurements at the CERN-PS

    CERN Document Server

    Bernardini, P; Bozza, C; Brugnera, R; Cecchetti, A; Cecchini, S; Collazuol, G; Corso, F Dal; De Mitri, I; De Serio, M; Di Ferdinando, D; Dore, U; Dusini, S; Fabbricatore, P; Fanin, C; Fini, R A; Garfagnini, A; Grella, G; Kose, U; Laveder, M; Loverre, P; Longhin, A; Marsella, G; Mancarella, G; Mandrioli, G; Mauri, N; Medinaceli, E; Mezzetto, M; Muciaccia, M T; Orecchini, D; Paoloni, A; Pastore, A; Patrizii, L; Pozzato, M; Rescigno, R; Rosa, G; Simone, S; Sioli, M; Sirri, G; Spurio, M; Stanco, L; Stellacci, S; Surdo, A; Tenti, M; Togo, V

    2011-01-01

    Tensions in several phenomenological models grew with experimental results on neutrino/antineutrino oscillations at Short-Baseline (SBL) and with the recent, carefully recomputed, antineutrino fluxes from nuclear reactors. At a refurbished SBL CERN-PS facility an experiment aimed to address the open issues has been proposed [1], based on the technology of imaging in ultra-pure cryogenic Liquid Argon (LAr). Motivated by this scenario a detailed study of the physics case was performed. We tackled specific physics models and we optimized the neutrino beam through a full simulation. Experimental aspects not fully covered by the LAr detection, i.e. the measurements of the lepton charge on event-by-event basis and their energy over a wide range, were also investigated. Indeed the muon leptons from Charged Current (CC) (anti-)neutrino interactions play an important role in disentangling different phenomenological scenarios provided their charge state is determined. Also, the study of muon appearance/disappearance ca...

  18. Weak production of strangeness at threshold with polarization observables

    International Nuclear Information System (INIS)

    Baker, O.K.

    2002-01-01

    The differential cross section for the charged current electroweak reaction e → +p → ν → e +Λ → at threshold with polarization observables is presented. The form of the cross section at threshold for the reaction is simplified compared to higher energy. An expression is given for the invariant matrix element appropriate for the reaction when the incident electron is polarized, and the final state hyperon polarization is determined. The energy dependence of the resulting cross section is shown near threshold. Under the right kinematic conditions, there can be a sizeable enhancement in the cross section, making an experimental measurement of the weak axial-vector form factor feasible

  19. Charm production in charged current deep inelastic e+p scattering at HERA

    International Nuclear Information System (INIS)

    Wang, M.

    2006-03-01

    The measurement of charm production in charged current deep inelastic positron-proton scattering is investigated with the ZEUS detector at the HERA collider. The data used has been collected from 1995 to 2000, corresponding to an integrated luminosity of 110 pb -1 . Charged D * mesons decaying in the channel D *+ →D 0 π + s with D 0 →K - π + and the charge conjugated channel are reconstructed to tag charm quarks. The visible cross section for D * , σ D* vis =12.8±4.0(stat) +4.7 -1.5 (sys) pb, is measured in the kinematic range of Q 2 >200 GeV 2 and y D * T >1.5 GeV and vertical stroke η D * vertical stroke e + p→ anti ν e cX < 109 pb at 90% confidence level. (orig.)

  20. The effect of plasma parameter on the bootstrap current of fast ions in neutral beam injection

    International Nuclear Information System (INIS)

    Huang Qianhong; Gong Xueyu; Cao Jinjia; Yang Lei

    2014-01-01

    The effect of plasma parameters on the distribution of net current density of fast ions produced by neutral beam injection is investigated in a large-aspect-ratio Tokamak with circular cross-section under specific parameters. Numerical results show that the value of net current density increases with the temperature of plasma increasing and decreases with the density of plasma increasing. The value of net current density is weakly affected by the effective charge number, but the peak of net current density moves towards edge plasma with effective charge number increasing. (authors)

  1. Effects of vacuum ultraviolet irradiation on trapped charges and leakage currents of low-k organosilicate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, H.; Guo, X.; Pei, D.; Shohet, J. L. [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Ryan, E. T. [GLOBALFOUNDRIES, Albany, New York 12203 (United States); Nishi, Y. [Stanford University, Stanford, California 94305 (United States)

    2015-05-11

    Vacuum ultraviolet (VUV) photoemission spectroscopy is utilized to investigate the distribution of trapped charges within the bandgap of low dielectric constant (low-k) organosilicate (SiCOH) materials. It was found that trapped charges are continuously distributed within the bandgap of porous SiCOH and the center of the trapped states is 1.3 eV above the valence band of the tested sample. By comparing photoemission spectroscopic results before and after VUV exposure, VUV irradiation with photon energies between 7.6 and 8.9 eV was found to deplete trapped charge while UV exposure with photon energies less than 6.0 eV induces more trapped charges in tested samples. Current-Voltage (IV) characteristics results show that the reliability of dielectrics is improved after VUV irradiation with photon energies between 7.6 and 8.9 eV, while UV exposure results in an increased level of leakage current and a decreased breakdown voltage, both of which are harmful to the reliability of the dielectric. This work shows that VUV irradiation holds the potential to substitute for UV curing in microelectronic processing to improve the reliability of low-k dielectrics by mitigating the leakage currents and trapped charges induced by UV irradiation.

  2. Chiral filter, axial charges and Gamow-Teller strengths

    International Nuclear Information System (INIS)

    Rho, M.

    1983-09-01

    The different ways that nuclear matter responds to the weak axial-vector current are interpreted in terms of modification of the ''vacuum'' in baryon-rich environments. The notion of ''chiral filter'' is introduced. Use of a ward identity is suggested. The Gamow-Teller quenching and the enhanced axial charge in O + O - transitions follow from this. I also discuss briefly possible relevance of the nucleon as a topological soliton configuration to the global property of nuclear axial response functions

  3. First Measurement of one Pion Production in Charged Current Neutrino and Antineutrino events on Argon

    Energy Technology Data Exchange (ETDEWEB)

    Scanavini, Scanavini,Giacomo [Yale U.

    2017-01-01

    This thesis presents a work done in the context of the Fermilab Neutrino Intensity Frontier. In this analysis, the cross section of single charged pion production in charged-current neutrino and antineutrino interactions with the argon nucleus target are measured. These measurements are performed using the Argon Neutrino Test (ArgoNeuT) detector exposed to the Fermilab Neutrino From The Main Injector (NuMI) beam operating in the low energy antineutrino mode. The signal is a charged-current μ interaction in the detector, with exactly one charged pion exiting the target nucleus, with momentum above 100 MeV/c. There shouldn’t be any 0 or kaons in the final state. There is no restriction on other mesons or nucleons. Total and differential cross section measurements are presented. The results are reported in terms of outgoing muon angle and momentum, outgoing pion angle and angle between outgoing pion and muon. The total cross sections, averaged over the flux, are found to be 8.2 ± 0.9 (stat) +0.9 -1.1 (syst) × 10-38 cm2 per argon nuclei and 2.5 ± 0.4 (stat) ± 0.5 (syst) × 10-37 cm2 per argon nuclei for antineutrino and neutrino respectively at a mean neutrino energy of 3.6 GeV (antineutrinos) and 9.6 GeV (neutrinos). This is the first time the single pion production in charged-current interactions cross section is measured on argon nuclei.

  4. Modeling the effect of shunt current on the charge transfer efficiency of an all-vanadium redox flow battery

    Science.gov (United States)

    Chen, Yong-Song; Ho, Sze-Yuan; Chou, Han-Wen; Wei, Hwa-Jou

    2018-06-01

    In an all-vanadium redox flow battery (VRFB), a shunt current is inevitable owing to the electrically conductive electrolyte that fills the flow channels and manifolds connecting cells. The shunt current decreases the performance of a VRFB stack as well as the energy conversion efficiency of a VRFB system. To understand the shunt-current loss in a VRFB stack with various designs and operating conditions, a mathematical model is developed to investigate the effects of the shunt current on battery performance. The model is calibrated with experimental data under the same operating conditions. The effects of the battery design, including the number of cells, state of charge (SOC), operating current, and equivalent resistance of the electrolytes in the flow channels and manifolds, on the shunt current are analyzed and discussed. The charge-transfer efficiency is calculated to investigate the effects of the battery design parameters on the shunt current. When the cell number is increased from 5 to 40, the charge transfer efficiency is decreased from 0.99 to a range between 0.76 and 0.88, depending on operating current density. The charge transfer efficiency can be maintained at higher than 0.9 by limiting the cell number to less than 20.

  5. A contact-less method to evaluate the state of charge of nickel batteries using Foucault's eddy currents

    Science.gov (United States)

    Mancier, V.; Metrot, A.; Willmann, P.

    A nickel hydroxide electrode and a commercial battery have been studied by a new and contact-less impedance method, based on Foucault's eddy currents, with the aim of determining their state of charge. Four different current line distributions have been employed and the impedance versus time graphs obtained show a linear variation of this impedance during charge and discharge for all configurations. This new method allows the determination of the state of charge and, furthermore some "artifacts" obvious on these graphs may be useful to detect a deterioration of the studied material.

  6. Transport properties of triarylamine based dendrimers studied by space charge limited current transients

    Science.gov (United States)

    Szymanski, Marek Z.; Kulszewicz-Bajer, Irena; Faure-Vincent, Jérôme; Djurado, David

    2012-08-01

    We have studied hole transport in triarylamine based dendrimer using space-charge-limited current transient technique. A mobility of 8 × 10-6 cm2/(V s) and a characteristic detrapping time of about 100 ms have been obtained. We found that quasi-ohmic contact is formed with gold. The obtained mobility differs from the apparent one given by the analysis of stationary current-voltage characteristics because of a limited contact efficiency. The comparison between transients obtained from fresh and aged samples reveals no change in mobility with aging. The deterioration of electrical properties is exclusively caused by trap formation and accumulation of ionic conducting impurities. Finally, repeated transient measurements have been applied to analyze the dynamics of charge trapping process.

  7. Measurement of charm in charged current at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Tobias

    2008-12-15

    A measurement of charm production in charged current (CC) polarized electron-proton deep inelastic scattering processes with data from the H1 detector at the HERA collider is presented. This process in principle allows access to the strange quark density in the proton. In total 5460 CC candidate events in e{sup +}p and 6253 in e{sup -}p data are selected in the kinematic range Q{sup 2}>223 GeV{sup 2} and 0.03charge asymmetry. Muons originating from charmed hadron decays in CC events at HERA always have the same charge as the beam lepton. The extracted charm fractions in the selected CC candidate event samples are F{sub c}=9.5{+-}8.9{+-}3.0 % for e{sup +}p and F{sub c}=4.4{+-}6.9{+-}2.6 % for e{sup -}p. Due to the large statistical errors of the measured charm fractions, the strange quark density in the proton has not been extracted. (orig.)

  8. Measurement of Neutrino and Antineutrino Total Charged-Current Cross Sections on Carbon with MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Lu [Univ. of Pittsburgh, PA (United States)

    2017-01-01

    This thesis presents a measurement of charged-current inclusive cross sections of muon neutrino and antineutrino interaction on carbon, and antineutrino to neutrino cross section ratio, r, in the energy range 2 - 22 GeV, with data collected in the MINERA experiment. The dataset corresponds to an exposure of 3.2 x 1020 protons on target (POT) for neutrinos and 1.01020 POT for antineutrinos. Measurement of neutrino and antineutrino charged-current inclusive cross sections provides essential constraints for future long baseline neutrino oscillation experiment at a few GeV energy range. Our measured antineutrino cross section has an uncertainty in the range 6.1% - 10.5% and is the most precise measurement below 6 GeV to date. The measured r has an uncertainty of 5.0% - 7.5%. This is the rst measurement below 6 GeV since Gargamelle in 1970s. The cross sections are measured as a function of neutrino energy by dividing the eciency corrected charged-current sample with extracted uxes. Fluxes are obtained using the low- method, which uses low hadronic energy subsamples of charged-current inclusive sample to extract ux. Measured cross sections show good agreement with the prediction of neutrino interaction models above 7 GeV, and are about 10% below the model below 7 GeV. The measured r agrees with the GENIE model [1] over the whole energy region. The measured cross sections and r are compared with world data.

  9. O({alpha}{sub s}) heavy flavor corrections to charged current deep-inelastic scattering in Mellin space

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, J.; Hasselhuhn, A.; Kovacikova, P.; Moch, S.

    2011-04-15

    We provide a fast and precise Mellin-space implementation of the O({alpha}{sub s}) heavy flavor Wilson coefficients for charged current deep inelastic scattering processes. They are of importance for the extraction of the strange quark distribution in neutrino-nucleon scattering and the QCD analyses of the HERA charged current data. Errors in the literature are corrected. We also discuss a series of more general parton parameterizations in Mellin space. (orig.)

  10. Space-charge-limited currents for cathodes with electric field enhanced geometry

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 701124 (China); Huang, Zhongliang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that the space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.

  11. Neutral strange particle production in neutrino and antineutrino charged-current interactions on neon

    Science.gov (United States)

    Deprospo, D.; Kalelkar, M.; Aderholz, M.; Akbari, H.; Allport, P. P.; Ammosov, V. V.; Andryakov, A.; Asratyan, A.; Badyal, S. K.; Ballagh, H. C.; Baton, J.-P.; Barth, M.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Cence, R. J.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; Coutures, C.; Devanand; de Wolf, E.; Ermolov, P.; Erofeeva, I.; Faulkner, P. J.; Foeth, H.; Fretter, W. B.; Gapienko, G.; Gupta, V. K.; Hanlon, J.; Harigel, G.; Harris, F. A.; Ivanilov, A.; Jabiol, M.; Jacques, P.; Jain, V.; Jones, G. T.; Jones, M. D.; Kafka, T.; Kaftanov, V.; Kasper, P.; Kobrin, V.; Kohli, J. M.; Koller, E. L.; Korablev, V.; Kubantsev, M.; Lauko, M.; Lukina, O.; Lys, J. E.; Lyutov, S.; Marage, P.; Milburn, R. H.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Moskalev, V.; Murzin, V.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Neveu, M.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Ryasakov, S.; Sacton, J.; Sambyal, S. S.; Schmitz, N.; Schneps, J.; Singh, J. B.; Singh, S.; Sivoklokov, S.; Smart, W.; Smirnova, L.; Stamer, P.; Varvell, K. E.; Verluyten, L.; Wachsmuth, H.; Wainstein, S.; Willocq, S.; Yost, G. P.

    1994-12-01

    A study has been made of neutral strange particle production in νμNe and ν¯μNe charged-current interactions at a higher energy than any previous study. The experiment was done at the Fermilab Tevatron using the 15-ft. bubble chamber, and the data sample consists of 814(154) observed neutral strange particles from 6263(1115) ν(ν¯) charged-current events. For the ν beam (average event energy =150 GeV), the average multiplicities per charged-current event have been measured to be 0.408+/-0.048 for K0, 0.127+/-0.014 for Λ, and 0.015+/-0.005 for Λ¯, which are significantly greater than for lower-energy experiments. The dependence of rates on kinematical variables has been measured, and shows that both K0 and Λ production increase strongly with Eν, W2, Q2, and yB. Compared to lower-energy experiments, single-particle distributions indicate that there is much more K0 production for xF>-0.2, and the enhanced Λ production spans most of the kinematic region. Λ¯ production is mostly in the region ||xF||-0.2 there is a significant excess of Λ production over the model's prediction. The Λ hyperons are found to be polarized in the production plane.

  12. Charge orders in organic charge-transfer salts

    International Nuclear Information System (INIS)

    Kaneko, Ryui; Valentí, Roser; Tocchio, Luca F; Becca, Federico

    2017-01-01

    Motivated by recent experimental suggestions of charge-order-driven ferroelectricity in organic charge-transfer salts, such as κ -(BEDT-TTF) 2 Cu[N(CN) 2 ]Cl, we investigate magnetic and charge-ordered phases that emerge in an extended two-orbital Hubbard model on the anisotropic triangular lattice at 3/4 filling. This model takes into account the presence of two organic BEDT-TTF molecules, which form a dimer on each site of the lattice, and includes short-range intramolecular and intermolecular interactions and hoppings. By using variational wave functions and quantum Monte Carlo techniques, we find two polar states with charge disproportionation inside the dimer, hinting to ferroelectricity. These charge-ordered insulating phases are stabilized in the strongly correlated limit and their actual charge pattern is determined by the relative strength of intradimer to interdimer couplings. Our results suggest that ferroelectricity is not driven by magnetism, since these polar phases can be stabilized also without antiferromagnetic order and provide a possible microscopic explanation of the experimental observations. In addition, a conventional dimer-Mott state (with uniform density and antiferromagnetic order) and a nonpolar charge-ordered state (with charge-rich and charge-poor dimers forming a checkerboard pattern) can be stabilized in the strong-coupling regime. Finally, when electron–electron interactions are weak, metallic states appear, with either uniform charge distribution or a peculiar 12-site periodicity that generates honeycomb-like charge order. (paper)

  13. Space charge and steady state current in LDPE samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Bambery, K. R.; Fleming, R. J.

    2000-01-01

    Electromagnetic theory predicts that a dielectric sample in which a steady DC current of density ε is flowing, and in which the ratio of permittivity ε to conductivity σ varies with position, will acquire a space charge density j·grad(ε/σ). A simple and convenient way to generate an ε/σ gradient...... in a homogeneous sample is to establish a temperature gradient across it. The resulting spatial variation in ε is usually small in polymeric insulators, but the variation in σ can be appreciable. Laser induced pressure pulse (LIPP) measurements were made on 1.5 mm thick plaques of ultra pure LDPE equipped...... with vacuum-evaporated aluminium electrodes. Temperature differences up to 27°C were maintained across the samples, which were subjected to DC fields up to 20 kV/mm. Current density was measured as a function of temperature and field. Negligible thermally generated space charge was observed. The charge...

  14. First Measurement of Charged Current Cross Sections at HERA with Longitudinally Polarised Positrons

    CERN Document Server

    Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Elsen, E.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kuckens, J.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reisert, B.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sedlak, K.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Steder, M.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-01-01

    Data taken with positrons of different longitudinal polarisation states in collision with unpolarised protons at HERA are used to measure the total cross sections of the charged current process, e^+ p \\to \\bar{\

  15. Weak pion production off the nucleon

    International Nuclear Information System (INIS)

    Hernandez, E.; Nieves, J.; Valverde, M.

    2007-01-01

    We develop a model for the weak pion production off the nucleon, which besides the delta pole mechanism [weak excitation of the Δ(1232) resonance and its subsequent decay into Nπ], includes also some background terms required by chiral symmetry. We refit the C 5 A (q 2 ) form factor to the flux-averaged ν μ p→μ - pπ + ANL q 2 -differential cross section data, finding a substantially smaller contribution of the delta pole mechanism than traditionally assumed in the literature. Within this scheme, we calculate several differential and integrated cross sections, including pion angular distributions, induced by neutrinos and antineutrinos and driven both by charged and neutral currents. In all cases we find that the background terms produce quite significant effects, and that they lead to an overall improved description of the data, as compared to the case where only the delta pole mechanism is considered. We also show that the interference between the delta pole and the background terms produces parity-violating contributions to the pion angular differential cross section, which are intimately linked to T-odd correlations in the contraction between the leptonic and hadronic tensors. However, these latter correlations do not imply a genuine violation of time-reversal invariance because of the existence of strong final state interaction effects

  16. Generalized polymer effective charge measurement by capillary isotachophoresis.

    Science.gov (United States)

    Chamieh, Joseph; Koval, Dušan; Besson, Adeline; Kašička, Václav; Cottet, Hervé

    2014-11-28

    In this work, we have generalized the use of capillary isotachophoresis as a universal method for determination of effective charge of anionic and cationic (co)polymers on ordinary capillary electrophoresis instruments. This method is applicable to a broad range of strong or weak polyelectrolytes with good repeatability. Experimental parameters (components and concentrations of leading and terminating electrolytes, capillary diameters, constant electric current intensity) were optimized for implementation in 100 μm i.d. capillaries for both polyanions and polycations. Determined values of polymer effective charge were in a very good agreement with those obtained by capillary electrophoresis with indirect UV detection. Uncertainty of the effective charge measurement using isotachophoresis was addressed and estimated to be ∼5-10% for solutes with mobilities in the 20-50 × 10(-9)m(2)V(-1)s(-1) range. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Compton Scattering Polarimetry for the Determination of the Proton's Weak Charge Through Measurements of the Parity-Violating Asymmetry of 1H(e,e')p

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo, Juan Carlos [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-08-01

    The Standard Model has been a theory with the greatest success in describing the fundamental interactions of particles. As of the writing of this dissertation, the Standard Model has not been shown to make a false prediction. However, the limitations of the Standard Model have long been suspected by its lack of a description of gravity, nor dark matter. Its largest challenge to date, has been the observation of neutrino oscillations, and the implication that they may not be massless, as required by the Standard Model. The growing consensus is that the Standard Model is simply a lower energy effective field theory, and that new physics lies at much higher energies. The Qweak Experiment is testing the Electroweak theory of the Standard Model by making a precise determination of the weak charge of the proton (Qpw). Any signs of "new physics" will appear as a deviation to the Standard Model prediction. The weak charge is determined via a precise measurement of the parity-violating asymmetry of the electron-proton interaction via elastic scattering of a longitudinally polarized electron beam of an un-polarized proton target. The experiment required that the electron beam polarization be measured to an absolute uncertainty of 1%. At this level the electron beam polarization was projected to contribute the single largest experimental uncertainty to the parity-violating asymmetry measurement. This dissertation will detail the use of Compton scattering to determine the electron beam polarization via the detection of the scattered photon. I will conclude the remainder of the dissertation with an independent analysis of the blinded Qweak.

  18. Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.

    Science.gov (United States)

    Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva

    2008-11-01

    Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.

  19. Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-formed Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Shvets, Gennady; Startsev, Edward; Davidson, Ronald C.

    2001-01-01

    The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is investigated. The outcome of the calculation is the quantitative prediction of the degree of charge and current neutralization of the ion beam pulse by the background plasma. The electric magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid calculations of current and charge neutralization have been performed for parameters relevant to heavy ion fusion assuming long, dense beams with el >> V(subscript b)/omega(subscript b), where V(subscript b) is the beam velocity and omega subscript b is the electron plasma frequency evaluated with the ion beam density. An important conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force dominates the electric force and the beam ions are always pinched during beam propagation in a background plasma

  20. Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-formed Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Igor D. Kaganovich; Gennady Shvets; Edward Startsev; Ronald C. Davidson

    2001-01-30

    The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is investigated. The outcome of the calculation is the quantitative prediction of the degree of charge and current neutralization of the ion beam pulse by the background plasma. The electric magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid calculations of current and charge neutralization have been performed for parameters relevant to heavy ion fusion assuming long, dense beams with el >> V(subscript b)/omega(subscript b), where V(subscript b) is the beam velocity and omega subscript b is the electron plasma frequency evaluated with the ion beam density. An important conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force dominates the electric force and the beam ions are always pinched during beam propagation in a background plasma.

  1. Weak interaction rates

    International Nuclear Information System (INIS)

    Sugarbaker, E.

    1995-01-01

    I review available techniques for extraction of weak interaction rates in nuclei. The case for using hadron charge exchange reactions to estimate such rates is presented and contrasted with alternate methods. Limitations of the (p,n) reaction as a probe of Gamow-Teller strength are considered. Review of recent comparisons between beta-decay studies and (p,n) is made, leading to cautious optimism regarding the final usefulness of (p,n)- derived GT strengths to the field of astrophysics. copyright 1995 American Institute of Physics

  2. Measurement of Neutral and Charged Current Cross Sections in Electron-Proton Collisions at High $Q^{2}$

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Bernardi, G.; Berndt, T.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruel, P.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burkhardt, H.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Chabert, E.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Ghazarian, S.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C.; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Krasny, M.W.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Mehta, A.; Meier, K.; Merkel, P.; Meyer, A.B.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyian, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nunnemann, T.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Riess, S.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.I.; Sheviakov, I.; Shtarkov, L.N.; Sievers, P.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Solovev, Y.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Swart, M.; Tasevsky, M.; Chernyshov, V.; Chetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vassilev, S.; Vazdik, Y.; Vichnevski, A.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Werner, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wollatz, H.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    2001-01-01

    The inclusive e^-p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA, in the range of four-momentum transfer squared Q^2 between 150 and 30000 GeV^2, and Bjorken x between 0.002 and 0.65. The data were taken in 1998 and 1999 with a centre-of-mass energy of 320 GeV and correspond to an integrated luminosity of 16.4 pb^(-1). The data are compared with recent measurements of the inclusive neutral and charged current e^+p cross sections. For Q^2>1000 GeV^2 clear evidence is observed for an asymmetry between e^+p and e^-p neutral current scattering and the generalised structure function xF_3 is extracted for the first time at HERA. A fit to the charged current data is used to extract a value for the W boson propagator mass. The data are found to be in good agreement with Standard Model predictions.

  3. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  4. Weak interaction effects in e+e- annihilation with polarised beams

    International Nuclear Information System (INIS)

    Simard, R.

    1977-01-01

    Although the standard gauge model of weak and electromagnetic interactions based on the work of Salam and Weinberg has met with great success, there are experimental facts that will require its extension or its modification to a new gauge model; the discovery of a heavy lepton at SLAC and the absence of parity violation in atoms that is expected from the neutral weak current coupling to electrons are discussed. Three tests are proposed that bear on these questions. First, heavy lepton production in e + e - annihilation when one of the incident beams is longitudinally polarized is considered and the purely leptonic decay of this heavy lepton is examined. An asymmetry in the inclusive angular distribution of one charged lepton (electron or muon) is important in determining the structure of weak interactions of the heavy lepton. In fact, this angular asymmetry easily distinguishes between the cases V - A and V + A for the heavy lepton current. Then, the decay channel L → ν/sub L/ + one hadron is considered (L = heavy lepton) under the same experimental set-up and the inclusive one-hadron angular distribution examined. Parity nonconservation in the decay of the heavy lepton causes a conspicuous forward-backward asymmetry in the cos theta distribution of the inclusive hadron spectrum near the high energy end that can be distinguished easily from other sources of asymmetry. It is easy then to discover the chirality (V - A or V + A) of the heavy lepton current. Finally a test is proposed which provides unambigous and clear evidence for parity violation in e + e - annihilation. It consists in measuring a possible left-right asymmetry of inclusive hadron production with highly transversely polarized e + e - incident beams. If observed, this asymmetry provides evidence of a parity violating neutral current coupling to electrons

  5. A Unified Channel Charges Expression for Analytic MOSFET Modeling

    Directory of Open Access Journals (Sweden)

    Hugues Murray

    2012-01-01

    Full Text Available Based on a 1D Poissons equation resolution, we present an analytic model of inversion charges allowing calculation of the drain current and transconductance in the Metal Oxide Semiconductor Field Effect Transistor. The drain current and transconductance are described by analytical functions including mobility corrections and short channel effects (CLM, DIBL. The comparison with the Pao-Sah integral shows excellent accuracy of the model in all inversion modes from strong to weak inversion in submicronics MOSFET. All calculations are encoded with a simple C program and give instantaneous results that provide an efficient tool for microelectronics users.

  6. Constant-current charging supplies for the Advanced Photon Source (APS) linear accelerator modulators

    International Nuclear Information System (INIS)

    Fuja, R.; Grelick, A.E.; Meyer, D.

    1997-01-01

    The APS linac beam energy must be stable to within ±1% to match the energy acceptance of the positron accumulator ring. The klystron pulse modulators must therefore provide a pulse-to-pulse repeatability of 0.1% in order for the beam to have the required energy stability. The modulators have had difficulty achieving the necessary repeatability since the pulse forming network (PFN) charging scheme does not include a deQing circuit. Several of the major charging circuit components are also less reliable than desired. In order to increase operating reliability and to improve pulse-to-pulse stability, it is planned to replace the high voltage power supplies in all modulators with constant-current power supplies. A new modulator charging supply that contains two EMI series 303 constant-current power supplies was constructed. Each of these EMI supplies delivers 1.5 A at up to 40 kV. One supply is sufficient for linac operation at up to 45 Hz, and two supplies in parallel enable linac operation at the nominal rf repetition rate of 60 Hz. This paper discusses test results from the new modulator, and also describes the existing modulators and their performance limitations

  7. World petrochemical outlook: Is the current weakness a trend or an aberration?

    International Nuclear Information System (INIS)

    Baggett, P.E.

    1995-01-01

    While the focus of this conference is methanol, a review of the general petrochemical industry might be enlightening and valuable to understanding the methanol market. Methanol is certainly a commodity with similarities to hydrocarbons such as gasoline and similarities to base petrochemicals such as ethylene. Methanol stands with one foot in the fuels market via MTBE and the other in the chemicals business for acetic acid and formaldehyde, among many others. Is the world petrochemical market moving into a new trend of weak prices and profits or is the strong growth seen in 1994 and 1995 continuing and the current situation an aberration? In order to determine whether the current market is a trend or aberration, the author looks at issues that he believes caused the current situation and then considers where the world's economies and petrochemical markets are heading. The issues discussed are: unusually high price increase in a short period; inventory increase/decrease because of price changes; reduction in demand caused by high prices; increase in capacity caused by high prices; changes in growth of world economies; and political/economic issues in China

  8. Alternative model of space-charge-limited thermionic current flow through a plasma

    Science.gov (United States)

    Campanell, M. D.

    2018-04-01

    It is widely assumed that thermionic current flow through a plasma is limited by a "space-charge-limited" (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. Here, we formulate a fundamentally different current-limited mode. In the "inverse" mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting the circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. The inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.

  9. Peltier effect in multilayered nanopillars under high density charge current

    International Nuclear Information System (INIS)

    Gravier, L; Fukushima, A; Kubota, H; Yamamoto, A; Yuasa, S

    2006-01-01

    From the basic equations of thermoelectricity, we model the thermal regimes that develop in multilayered nanopillar elements experiencing continuous charge currents. The energy conservation principle was applied to all layer-layer and layer-electrode junctions. The obtained set of equations was solved to derive the temperature of each junction. The contribution of the Peltier effect is included in an effective resistance. This model gives satisfactory fits to experimental data obtained on a series of reference nanopillar elements

  10. Discharge current measurements on Venera 13 & 14 - Evidence for charged aerosols in the Venus lower atmosphere?

    Science.gov (United States)

    Lorenz, Ralph D.

    2018-06-01

    Measurements of discharge currents on the Venera 13 and 14 landers during their descent in the lowest 35 km of the Venus atmosphere are interpreted as driven either by an ambient electric field, or by deposition of charge from aerosols. The latter hypothesis is favored (`triboelectric charging' in aeronautical parlance), and would entail an aerosol opacity and charge density somewhat higher than that observed in Saharan dust transported over long distances on Earth.

  11. Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Solenoidal Magnetic Field I: Weak Magnetic Field Limit

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I. D., Startsev, E. A., Sefkow, A. B., Davidson, R. C.

    2008-10-10

    Propagation of an intense charged particle beam pulse through a background plasma is a common problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge and current of the beam pulse, and thus provides a convenient medium for beam transport. The application of a small solenoidal magnetic field can drastically change the self-magnetic and self- electric fields of the beam pulse, thus allowing effective control of the beam transport through the background plasma. An analytic model is developed to describe the self-magnetic field of a finite- length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field. The analytic studies show that the solenoidal magnetic field starts to infuence the self-electric and self-magnetic fields when ωce > ωpeβb, where ωce = eβ/mec is the electron gyrofrequency, ωpe is the electron plasma frequency, and βb = Vb/c is the ion beam velocity relative to the speed of light. This condition typically holds for relatively small magnetic fields (about 100G). Analytical formulas are derived for the effective radial force acting on the beam ions, which can be used to minimize beam pinching. The results of analytic theory have been verified by comparison with the simulation results obtained from two particle-in-cell codes, which show good agreement.

  12. Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Solenoidal Magnetic Field I: Weak Magnetic Field Limit

    International Nuclear Information System (INIS)

    Kaganovich, I. D.; Startsev, E. A.; Sefkow, A. B.; Davidson, R. C.

    2008-01-01

    Propagation of an intense charged particle beam pulse through a background plasma is a common problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge and current of the beam pulse, and thus provides a convenient medium for beam transport. The application of a small solenoidal magnetic field can drastically change the self-magnetic and self- electric fields of the beam pulse, thus allowing effective control of the beam transport through the background plasma. An analytic model is developed to describe the self-magnetic field of a finite-length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field. The analytic studies show that the solenoidal magnetic field starts to influence the self-electric and self-magnetic fields when ω ce ∼> ω pe β b , where ω ce = eB/m e c is the electron gyrofrequency, ω pe is the electron plasma frequency, and β b = V b /c is the ion beam velocity relative to the speed of light. This condition typically holds for relatively small magnetic fields (about 100G). Analytical formulas are derived for the effective radial force acting on the beam ions, which can be used to minimize beam pinching. The results of analytic theory have been verified by comparison with the simulation results obtained from two particle-in-cell codes, which show good agreement

  13. Charge conserving current deposition scheme for PIC simulations in modified spherical coordinates

    Science.gov (United States)

    Cruz, F.; Grismayer, T.; Fonseca, R. A.; Silva, L. O.

    2017-10-01

    Global models of pulsar magnetospheres have been actively pursued in recent years. Both macro and microscopic (PIC) descriptions have been used, showing that collective processes of e-e + plasmas dominate the global structure of pulsar magnetospheres. Since these systems are best described in spherical coordinates, the algorithms used in cartesian simulations must be generalized. A problem of particular interest is that of charge conservation in PIC simulations. The complex geometry and irregular grids used to improve the efficiency of these algorithms represent major challenges in the design of a charge conserving scheme. Here we present a new first-order current deposition scheme for a 2D axisymmetric, log-spaced radial grid, that rigorously conserves charge. We benchmark this scheme in different scenarios, by integrating it with a spherical Yee scheme and Boris/Vay pushers. The results show that charge is conserved to machine precision, making it unnecessary to correct the electric field to guarantee charge conservation. This scheme will be particularly important for future studies aiming to bridge the microscopic physical processes of e-e + plasma generation due to QED cascades, its self-consistent acceleration and radiative losses to the global dynamics of pulsar magnetospheres. Work supported by the European Research Council (InPairs ERC-2015-AdG 695088), FCT (Portugal) Grant PD/BD/114307/2016, and the Calouste Gulbenkian Foundation through the 2016 Scientific Research Stimulus Program.

  14. Simple standard model extension by heavy charged scalar

    Science.gov (United States)

    Boos, E.; Volobuev, I.

    2018-05-01

    We consider a Standard Model (SM) extension by a heavy charged scalar gauged only under the UY(1 ) weak hypercharge gauge group. Such an extension, being gauge invariant with respect to the SM gauge group, is a simple special case of the well-known Zee model. Since the interactions of the charged scalar with the Standard Model fermions turn out to be significantly suppressed compared to the Standard Model interactions, the charged scalar provides an example of a long-lived charged particle being interesting to search for at the LHC. We present the pair and single production cross sections of the charged scalar at different colliders and the possible decay widths for various boson masses. It is shown that the current ATLAS and CMS searches at 8 and 13 TeV collision energy lead to the bounds on the scalar boson mass of about 300-320 GeV. The limits are expected to be much larger for higher collision energies and, assuming 15 a b-1 integrated luminosity, reach about 2.7 TeV at future 27 TeV LHC thus covering the most interesting mass region.

  15. An Improved Measurement of the Muon Neutrino Charged Current Quasi-Elastic Cross-Section on Hydrocarbon at MINERnuA

    Science.gov (United States)

    Zhang, Dun

    Neutrino interactions in the detectors of long baseline oscillation experiments are analyzed to determine the neutrino flavor and energy spectrum, allowing the neutrino mass ordering and mixing parameters to be determined. For neutrino interactions below the pion production threshold, the dominant reaction is charged current quasi-elastic (CCQE) scattering. Oscillation experiments are made of heavy nuclei so the QE process occurs on nucleons that are embedded in the nuclear environment. Predictions of the QE cross-section suffer from significant uncertainties due to our understanding of that nuclear environment and the way it is probed by the weak interaction. I have developed a new technique to reduce the inelastic background to CCQE process by identifying the "Michel electrons" produced by pions. Additionally an updated neutrino flux was used to extract the cross-section and estimates for some sources of systematic uncertainties have been improved. The measured cross-section is compared to several theoretical models and the effect that the signal definition ("CCQE" vs "CCQE-like") has on the measurement is also explored.

  16. Irradiation of intense characteristic x-rays from weakly ionized linear molybdenum plasma

    International Nuclear Information System (INIS)

    Sato, Eiichi; Hayasi, Yasuomi

    2003-01-01

    In the plasma flash x-ray generator, a high-voltage main condenser of approximately 200 nF is charged up to 55 kV by a power supply, and electric charges in the condenser are discharged to an x-ray tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is a demountable triode that is connected to a turbo molecular pump with a pressure of approximately 1 mPa. As electron flows from the cathode electrode are roughly converged to a rod molybdenum target of 2.0 mm in diameter by the electric field in the x-ray tube, weakly ionized linear plasma, which consists of molybdenum ions and electrons, forms by target evaporation. At a charging voltage of 55 kV, the maximum tube voltage was almost equal to the charging voltage of the main condenser, and the peak current was about 20 kA. When the charging voltage was increased, the linear plasma formed, and the K-series characteristic x-ray intensities increased. The K lines were quite sharp and intense, and hardly any bremsstrahlung rays were detected. The x-ray pulse widths were approximately 700 ns, and the time-integrated x-ray intensity had a value of approximately 35 μC/kg at 1.0 m from the x-ray source with a charging voltage of 50 kV. (author)

  17. Measurement of the $Z/A$ dependence of neutrino charged-current total cross-sections

    CERN Document Server

    Kayis-Topaksu, A; Van Dantzig, R; De Jong, M; Konijn, J; Melzer, O; Oldeman, R G C; Pesen, E; Van der Poel, C A F J; Spada, F R; Visschers, J L; Güler, M; Serin-Zeyrek, M; Kama, S; Sever, R; Tolun, P; Zeyrek, M T; Armenise, N; Catanesi, M G; De Serio, M; Ieva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; El-Aidi, R; Van de Vyver, B; Vilian, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, A V; Brunner, J; Chizhov, M; Cussans, D G; Doucet, M; Fabre, Jean-Paul; Hristova, I R; Kawamura, T; Kolev, D; Litmaath, M; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A; Saltzberg, D; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Rondeshagen, D; Wolff, T; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Ereditato, A; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Pistillo, C; Santorelli, R; Scotto-Lavina, L; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; Loverre, P F; Ludovici, L; Maslennikov, A L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2003-01-01

    A relative measurement of total cross-sections is reported for polyethylene, marble, iron, and lead targets for the inclusive charged-current reaction nu_mu + N -> mu^- + X. The targets, passive blocks of ~100kg each, were exposed simultaneously to the CERN SPS wide-band muon-neutrino beam over a period of 18 weeks. Systematics effects due to differences in the neutrino flux and detector efficiency for the different target locations were minimised by changing the position of the four targets on their support about every two weeks. The relative neutrino fluxes on the targets were monitored within the same experiment using charged-current interactions in the calorimeter positioned directly downstream of the four targets. From a fit to the Z/A dependence of the total cross-sections a value is deduced for the effective neutron-to-proton cross-section ratio.

  18. Phase behaviour and structure of stable complexes of oppositely charged polyelectrolytes

    Science.gov (United States)

    Mengarelli, V.; Auvray, L.; Zeghal, M.

    2009-03-01

    We study the formation and structure of stable electrostatic complexes between oppositely charged polyelectrolytes, a long polymethacrylic acid and a shorter polyethylenimine, at low pH, where the polyacid is weakly charged. We explore the phase diagram as a function of the charge and concentration ratio of the constituents. In agreement with theory, turbidity and ζ potential measurements show two distinct regimes of weak and strong complexation, which appear successively as the pH is increased and are separated by a well-defined limit. Weak complexes observed by neutron scattering and contrast matching have an open, non-compact structure, while strong complexes are condensed.

  19. Nuclear beta decay and the weak interaction

    International Nuclear Information System (INIS)

    Kean, D.C.

    1975-11-01

    Short notes are presented on various aspects of nuclear beta decay and weak interactions including: super-allowed transitions, parity violation, interaction strengths, coupling constants, and the current-current formalism of weak interaction. (R.L.)

  20. High Charge State Ions Extracted from Metal Plasmas in the Transition Regime from Vacuum Spark to High Current Vacuum Arc

    International Nuclear Information System (INIS)

    Yushkov, Georgy Yu.; Anders, A.

    2008-01-01

    Metal ions were extracted from pulsed discharge plasmas operating in the transition region between vacuum spark (transient high voltage of kV) and vacuum arc (arc voltage ∼ 20 V). At a peak current of about 4 kA, and with a pulse duration of 8 (micro)s, we observed mean ion charges states of about 6 for several cathode materials. In the case of platinum, the highest average charge state was 6.74 with ions of charge states as high as 10 present. For gold we found traces of charge state 11, with the highest average charge state of 7.25. At currents higher than 5 kA, non-metallic contaminations started to dominate the ion beam, preventing further enhancement of the metal charge states

  1. Determining the quark charges by one and two photon processes

    International Nuclear Information System (INIS)

    Janah, A.

    1982-01-01

    Testable predictions are presented, which may be used to decide between the gauge theories of integer and fractionally charged quarks (icq and fcq). Two distinctive features of icq are exploited, namely (a) presence of color non-singlet components in weak and electromagnetic currents and (b) possible liberation of color non-singlet states above a threshold energy. Consequences are sought in lepton-hadron interaction processes, taking into account the known color-suppression effect. Single photon/weak-boson processes such as nuN → nuX distinguish between icq and fcq only above color-threshold. Experimental consequences of color-liberation in the above process are obtained. It is found that the gluon-parton contribution survives color-suppression to produce a significant rise in the structure functions when color-threshold is exceeded. Two-photon processes such as e + e - → e + e - + 2 jets distinguish between the two theories even below color threshold. To obtain the icq predictions for this process, one must take into account (a) the (momentum-dependent) color suppression and (b) the added contribution from pair production of charged gluons

  2. Measurement of the neutral to charged current cross section ratios for neutrino and antineutrino interactions on protons

    International Nuclear Information System (INIS)

    Mobayyen, M.

    1986-01-01

    The ratios R νp and R a ntiν a ntip of the neutral current to charged current cross sections for neutrino and antineutrino interactions on protons have been measured in BEBC. For a total transverse momentum of the charged hadrons above 0.45 GeV/c and a charged multiplicity of at least 3, it was found that R νp = 0.384±0.024±0.015 and R a ntiν a nti p = 0.338±0.014±0.016, corresponding to a value of sin 2 θ W (M W ) a nti M a nti S of 0.225±0.030. 20 refs

  3. Measuring the lateral charge-carrier mobility in metal-insulator-semiconductor capacitors via Kelvin-probe.

    Science.gov (United States)

    Milotti, Valeria; Pietsch, Manuel; Strunk, Karl-Philipp; Melzer, Christian

    2018-01-01

    We report a Kelvin-probe method to investigate the lateral charge-transport properties of semiconductors, most notably the charge-carrier mobility. The method is based on successive charging and discharging of a pre-biased metal-insulator-semiconductor stack by an alternating voltage applied to one edge of a laterally confined semiconductor layer. The charge carriers spreading along the insulator-semiconductor interface are directly measured by a Kelvin-probe, following the time evolution of the surface potential. A model is presented, describing the device response for arbitrary applied biases allowing the extraction of the lateral charge-carrier mobility from experimentally measured surface potentials. The method is tested using the organic semiconductor poly(3-hexylthiophene), and the extracted mobilities are validated through current voltage measurements on respective field-effect transistors. Our widely applicable approach enables robust measurements of the lateral charge-carrier mobility in semiconductors with weak impact from the utilized contact materials.

  4. Measuring the lateral charge-carrier mobility in metal-insulator-semiconductor capacitors via Kelvin-probe

    Science.gov (United States)

    Milotti, Valeria; Pietsch, Manuel; Strunk, Karl-Philipp; Melzer, Christian

    2018-01-01

    We report a Kelvin-probe method to investigate the lateral charge-transport properties of semiconductors, most notably the charge-carrier mobility. The method is based on successive charging and discharging of a pre-biased metal-insulator-semiconductor stack by an alternating voltage applied to one edge of a laterally confined semiconductor layer. The charge carriers spreading along the insulator-semiconductor interface are directly measured by a Kelvin-probe, following the time evolution of the surface potential. A model is presented, describing the device response for arbitrary applied biases allowing the extraction of the lateral charge-carrier mobility from experimentally measured surface potentials. The method is tested using the organic semiconductor poly(3-hexylthiophene), and the extracted mobilities are validated through current voltage measurements on respective field-effect transistors. Our widely applicable approach enables robust measurements of the lateral charge-carrier mobility in semiconductors with weak impact from the utilized contact materials.

  5. Neutral strange particle production in high energy charged current neutrino deuterium interactions

    International Nuclear Information System (INIS)

    Son, D.

    1982-01-01

    In an exposure of the Fermilab 15-foot deuterium filled bubble chamber to a single horn focused wide band neutrino beam with energies between 10 and 250 GeV, 311 K/sub s/, 219 lambda and 7 Anti lambda are observed. These correspond to K 0 anti(K 0 ), lambda(Σ 0 ) and anti lambda production rates per charged current interaction of 0.170 +/- 0.010, 0.060 +/- 0.004, and 0.002 +/- 0.001, respectively, in 18.9 +/- 0.09% V 0 events of total charged current events. The inclusive lambda rate in nun interactions is significantly higher than that in nup interactions. The multiplicity of K 0 increases (or decreases) with increasing E/sub nu/, W, and Q 2 (or x/sub BETA), while that of lambda shows no significant variations. From a detailed study of lambda, lambda K 0 ], lambda K/sup */ +0 systems, the production rate of lambda from the charm quark decay is found to be (2.1 +/- 1.0)% of the total charged current, which leads to a small cross section for charmed baryon quasielastic production -40 cm 2 (90% CL) and a small semileptonic branching ratio of lambda/sub c/ + decay, B(lambda/sub c/ + → e + lambda x + , K 0 p, lambda π + π + π - , and antiK 0 pπ + π - decay modes of lambda/sub c/ + are studied and found consistent with our previous results. The gross probability that an (ss) pair is produced in lambda S = 0 neutrino reactions is estimated to be 0.19 +/- 0.06, which agrees well with that in hadronic experiments. The inclusive x/sub F/ and p/sub T 2 / distributions and their average values are very similar to those in hadronic experiments, which suggest that the majority of neutral strange particles are produced in neutrino reactions via the associated production mechanism

  6. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Arevalo, A.A.; /Mexico U., CEN; Anderson, C.E.; /Yale U.; Bazarko, A.O.; /Princeton U.; Brice, S.J.; /Fermilab; Brown, B.C.; /Fermilab; Bugel, L.; /Columbia U.; Cao, J.; /Michigan U.; Coney, L.; /Columbia U.; Conrad, J.M.; /MIT; Cox, D.C.; /Indiana U.; Curioni, A.; /Yale U. /Columbia U.

    2010-02-01

    A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ({sigma}[E{sub {nu}}]) and the single differential cross section (d{sigma}/dQ{sup 2}) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.

  7. Measurement of the Z/A dependence of neutrino charged-current total cross-sections

    CERN Document Server

    Kayis-Topasku, A; Dantzig, R V

    2003-01-01

    A relative measurement of total cross-sections is reported for polyethylene, marble, iron, and lead targets for the inclusive charged-current reaction nu submu + N -> mu sup - + X. The targets, passive blocks of propor to 100 kg each, were exposed simultaneously to the CERN SPS wide-band muon-neutrino beam over a period of 18 weeks. Systematic effects due to differences in the neutrino flux and detector efficiency for the different target locations were minimised by changing the position of the four targets on their support about every two weeks. The relative neutrino fluxes on the targets were monitored within the same experiment using charged-current interactions in the calorimeter positioned directly downstream of the four targets. From a fit to the Z/A dependence of the total cross-sections a value is deduced for the effective neutron-to-proton cross-section ratio. (orig.)

  8. Multi-jet cross sections in charged current e{sup {+-}}p scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2008-02-15

    Jet cross sections were measured in charged current deep inelastic e{sup {+-}}p scattering at high boson virtualities Q{sup 2} with the ZEUS detector at HERA II using an integrated luminosity of 0.36 fb{sup -1}. Differential cross sections are presented for inclusive-jet production as functions of Q{sup 2}, Bjorken x and the jet transverse energy and pseudorapidity. The dijet invariant mass cross section is also presented. Observation of three- and four-jet events in charged-current e{sup {+-}}p processes is reported for the first time. The predictions of next-to-leading-order (NLO) QCD calculations are compared to the measurements. The measured inclusive-jet cross sections are well described in shape and normalization by the NLO predictions. The data have the potential to constrain the u and d valence quark distributions in the proton if included as input to global fits. (orig.)

  9. Multi-jet cross sections in charged current e±p scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2008-02-01

    Jet cross sections were measured in charged current deep inelastic e ± p scattering at high boson virtualities Q 2 with the ZEUS detector at HERA II using an integrated luminosity of 0.36 fb -1 . Differential cross sections are presented for inclusive-jet production as functions of Q 2 , Bjorken x and the jet transverse energy and pseudorapidity. The dijet invariant mass cross section is also presented. Observation of three- and four-jet events in charged-current e ± p processes is reported for the first time. The predictions of next-to-leading-order (NLO) QCD calculations are compared to the measurements. The measured inclusive-jet cross sections are well described in shape and normalization by the NLO predictions. The data have the potential to constrain the u and d valence quark distributions in the proton if included as input to global fits. (orig.)

  10. Coherent single pion production by antineutrino charged current interactions and test of PCAC

    International Nuclear Information System (INIS)

    Marage, P.; Bertrand, D.; Sacton, J.; Aderholz, M.; Wittek, W.; Allport, P.; Wells, J.; Baton, J.P.; Gerbier, G.; Neveu, M.; Clayton, E.F.; Hamisi, F.; Miller, D.B.; Mobayyen, M.M.; Cooper-Sarkar, A.M.; Guy, J.; Kasper, P.; Venus, W.; Klein, H.; Morrison, D.R.O.; Parker, M.A.; Wachsmuth, H.; Simopoulou, E.; Vayaki, A.

    1986-01-01

    The cross section for coherent production of a single π - meson in charged current antineutrino interactions on neon nuclei has been measured in BEBC to be (175+-25) 10 -40 cm 2 /neon nucleus, averaged over the energy spectrum of the antineutrino wide band beam at the CERN SPS; this corresponds to (0.9+-0.1)% of the total charged current anti νsub(μ) cross section. The distributions of kinematical variables are in agreement with theoretical predictions based on the PCAC hypothesis and the meson dominance model; in particular, the Q 2 dependence is well described by a propagator containing a mass m=(1.35+-0.18)GeV. The absolute value of the cross section is also in agreement with the model. This analysis thus provides a test of the PCAC hypothesis in the antineutrino energy range 5-150 GeV. (orig.)

  11. The charge deposition in the numerical simulation of high-current beam

    International Nuclear Information System (INIS)

    Wang Shijun

    1987-01-01

    A new method of charge deposition of high-current beam, conservation-map method, is given. THe advantages of Neil's and other various methods are adopted. The mistake of Neil's method and the limitation of other various methods is discarded. So the method is accurate without additional assumption. The method not only applies to the case of steady laminar flow but also applies to the case of steady non-laminar flow

  12. Influence of effective electron interaction on critical current of Josephson weak links

    International Nuclear Information System (INIS)

    Kupriyanov, M.Yu.; Likharev, K.K.; Lukichev, V.F.

    1981-01-01

    On the basis of microscopic theory of superconductivity, the dc Josphson effect in weak links of the type of variable thickness bridges or high ohmic interlayer sandwiches is studied. The Isub(C)Rsub(N) product is calculatied as a function of temperature T and weak link length L for various amplitudes and both signs of effective electron-electron interaction constant lambda. If the weak link material is superconducting with critical temperature Tsub(C) > 0 (lambda > 0), the maximum value of Isub(C)Rsub(N) product (under condition of the singlevalued Isub(S)(phi) relationship) can be achieved at L approx. <= 3xisup(*) when Tsub(C) approx. <= Tsub(CS)/2, and at L=(4 / 6)xisup(*) when Tsub(C) = Tsub(CS). Electron repulsion inside the weak link (lambda < 0) results in some reduction of the Isub(C)Rsub(N) product in comparison with the case of 'really normal' weak link material (lambda = 0). (orig.)

  13. Persistent Spin Current in a Hard-Wall Confining Quantum Wire with Weak Dresselhaus Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    FU Xi; ZHOU Guang-Hui

    2009-01-01

    We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors.Both the quantum wire and conductors are described by a hard-wall confining potential.Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density jTs,xi and jTs,yi(I = x, y, z).We lind that the elements jTs,xx and jTs,yy have a antisymmetrical relation and the element jTs,yz has the same amount level jTs,xx and jTs,yy.We also find a net linear spin current density, which has peaks at the center of quantum wire.The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.

  14. Programmable controller with overcurrent latch for constant primary peak current in capacitor-charging FET switcher for Nova

    International Nuclear Information System (INIS)

    Mihalka, A.M.

    1983-01-01

    New switching power supplies were designed for the 10 mm laser amplifiers in the Nova Master Oscillator Room. The flashlamp supply must be repratable. Therefore, we designed a constant current, linearly charging power supply. Since it is a capacitor, the load varies throughout the charge cycle. At first the load is great, and di/dt of load current is at a maximum. As the capacitor charges the initial conditions for each cycle change, the power supply in effect sees a smaller capacitance, and di/dt decreases. We need a way of gradually increasing the on-time of the current pulses so that the transistors in the power bridge are turned off when they reach their maximum peak current. The normal current sense response of the control chip is not fast enough to be useful for our application. The deadtime, or the time that all the bridge transistors are turned off, is fixed so that as the pulse width varies so does the period. We end up with a constant peak current, switching power supply whose frequency varies from 50 khz to 20 khz. Finally, an overcurrent latch protects the transistors from bridge or transformer faults. The circuit is described and results are shown

  15. Weak-interaction rates in stellar conditions

    Science.gov (United States)

    Sarriguren, Pedro

    2018-05-01

    Weak-interaction rates, including β-decay and electron captures, are studied in several mass regions at various densities and temperatures of astrophysical interest. In particular, we study odd-A nuclei in the pf-shell region, which are involved in presupernova formations. Weak rates are relevant to understand the late stages of the stellar evolution, as well as the nucleosynthesis of heavy nuclei. The nuclear structure involved in the weak processes is studied within a quasiparticle proton-neutron random-phase approximation with residual interactions in both particle-hole and particle-particle channels on top of a deformed Skyrme Hartree-Fock mean field with pairing correlations. First, the energy distributions of the Gamow-Teller strength are discussed and compared with the available experimental information, measured under terrestrial conditions from charge-exchange reactions. Then, the sensitivity of the weak-interaction rates to both astrophysical densities and temperatures is studied. Special attention is paid to the relative contribution to these rates of thermally populated excited states in the decaying nucleus and to the electron captures from the degenerate electron plasma.

  16. Development of a self-consistent model of dust grain charging at elevated pressures using the method of moments

    International Nuclear Information System (INIS)

    Filippov, A.V.; Dyatko, N.A.; Pal', A.F.; Starostin, A.N.

    2003-01-01

    A model of dust grain charging is constructed using the method of moments. The dust grain charging process in a weakly ionized helium plasma produced by a 100-keV electron beam at atmospheric pressure is studied theoretically. In simulations, the beam current density was varied from 1 to 10 6 μA/cm 2 . It is shown that, in a He plasma, dust grains of radius 5 μm and larger perturb the electron temperature only slightly, although the reduced electric field near the grain reaches 8 Td, the beam current density being 10 6 μA/cm 2 . It is found that, at distances from the grain that are up to several tens or hundreds of times larger than its radius, the electron and ion densities are lower than their equilibrium values. Conditions are determined under which the charging process may be described by a model with constant electron transport coefficients. The dust grain charge is shown to be weakly affected by secondary electron emission. In a beam-produced helium plasma, the dust grain potential calculated in the drift-diffusion model is shown to be close to that calculated in the orbit motion limited model. It is found that, in the vicinity of a body perturbing the plasma, there may be no quasineutral plasma presheath with an ambipolar diffusion of charged particles. The conditions for the onset of this presheath in a beam-produced plasma are determined

  17. Persistent Spin Current in a Hard-Wall Confining Quantum Wire with Weak Dresselhaus Spin-Orbit Coupling

    International Nuclear Information System (INIS)

    Fu Xi; Zhou Guanghui

    2009-01-01

    We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors. Both the quantum wire and conductors are described by a hard-wall confining potential. Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density j s,xi T and j s,yi T (i = x, y, z). We find that the elements j T s,xx and j T s,yy have a antisymmetrical relation and the element j T s,yz has the same amount level as j s,xx T and j s,yy T . We also find a net linear spin current density, which has peaks at the center of quantum wire. The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.

  18. Weak Thermocline Mixing in the North Pacific Low-Latitude Western Boundary Current System

    Science.gov (United States)

    Liu, Zhiyu; Lian, Qiang; Zhang, Fangtao; Wang, Lei; Li, Mingming; Bai, Xiaolin; Wang, Jianing; Wang, Fan

    2017-10-01

    Despite its potential importance in the global climate system, mixing properties of the North Pacific low-latitude western boundary current system (LLWBC) remained unsampled until very recently. We report here on the first measurements of turbulence microstructure associated with these currents, made in the western boundary region of the tropical North Pacific east of the Philippines. The results suggest that thermocline mixing in the North Pacific LLWBC is generally weak with the diapycnal diffusivity κρ˜O(10-6) m2 s-1. This is consistent with predictions from internal wave-wave interaction theory that mixing due to internal wave breaking is significantly reduced at low latitudes. Enhanced mixing is found to be associated with a permanent cyclonic eddy, the Mindanao Eddy, but mainly at its south and north flanks. There, κρ is elevated by an order of magnitude due to eddy-induced geostrophic shear. Mixing in the eddy core is at the background level with no indication of enhancement.

  19. Geometric component of charge pumping current in nMOSFETs due to low-temperature irradiation

    Science.gov (United States)

    Witczak, S. C.; King, E. E.; Saks, N. S.; Lacoe, R. C.; Shaneyfelt, M. R.; Hash, G. L.; Hjalmarson, H. P.; Mayer, D. C.

    2002-12-01

    The geometric component of charge pumping current was examined in n-channel metal-oxide-silicon field effect transistors (MOSFETs) following low-temperature irradiation. In addition to the usual dependencies on channel length and gate bias transition time, the geometric component was found to increase with radiation-induced oxide-trapped charge density and decreasing temperature. A postirradiation injection of electrons into the gate oxide reduces the geometric component along with the density of oxide-trapped charge, which clearly demonstrates that the two are correlated. A fit of the injection data to a first-order model for trapping kinetics indicates that the electron trapping occurs predominantly at a single type of Coulomb-attractive trap site. The geometric component results primarily from the bulk recombination of channel electrons that fail to transport to the source or drain during the transition from inversion to accumulation. The radiation response of these transistors suggests that Coulomb scattering by oxide-trapped charge increases the bulk recombination at low temperatures by impeding electron transport. These results imply that the geometric component must be properly accounted for when charge pumping irradiated n-channel MOSFETs at low temperatures.

  20. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Directory of Open Access Journals (Sweden)

    J. W. Zhang

    2017-10-01

    Full Text Available As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC. In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  1. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Science.gov (United States)

    Zhang, J. W.; Zhou, T. C.; Wang, J. X.; Yang, X. F.; Zhu, F.; Tian, L. M.; Liu, R. T.

    2017-10-01

    As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC). In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  2. On the secondary charging effects and structure of mesospheric dust particles impacting on rocket probes

    Energy Technology Data Exchange (ETDEWEB)

    Havnes, O.; Naesheim, L.I. [Inst. of Physics, Univ. of Tromso (Norway)

    2007-07-01

    The dust probe DUSTY, first launched during the summer of 1994 (flights ECT-02 and ECT-07) from Andoeya Rocket Range, northern Norway, was the first probe to unambiguously detect heavy charged mesospheric aerosols, from hereon referred to as dust. In ECT-02 the probe detected negatively charged dust particles in the height interval of 83 to 88.5 km. In this flight, the lower grid in the detector (Grid 2) measures both positive and negative currents in various regions, and we find that the relationship between the current measurements of Grid 2 and the bottom plate can only be explained by influence from secondary charge production on Grid 2. In ECT-07, which had a large coning, positive currents reaching the top grid of the probe were interpreted as due to the impact of positively charged dust particles. We have now reanalyzed the data from ECT-07 and arrived at the conclusion that the measured positive currents to this grid must have been mainly due to secondary charging effects from the impacting dust particles. The grid consists of a set of parallel wires crossed with an identical set of wires on top of it, and we find that if the observed currents were created from the direct impact of charged dust particles, then they should be very weakly modulated at four times the rocket spin rate {omega}{sub R}. Observations show, however, that the observed currents are strongly modulated at 2{omega}{sub R}. We cannot reproduce the observed large modulations of the impact currents in the dust layer if the currents are due only to the transfer of the charges on the impacted dust particles. Based on the results of recent ice cluster impact secondary charging experiments by Tomsic (2003), which found that a small fraction of the ice clusters, when impacting with nearly grazing incidence, carried away one negative charge - 1e, we have arrived at the conclusion that similar, but significantly more effective, charging effects must be predominantly responsible for the positive

  3. Achievable peak electrode voltage reduction by neurostimulators using descending staircase currents to deliver charge.

    Science.gov (United States)

    Halpern, Mark

    2011-01-01

    This paper considers the achievable reduction in peak voltage across two driving terminals of an RC circuit when delivering charge using a stepped current waveform, comprising a chosen number of steps of equal duration, compared with using a constant current over the total duration. This work has application to the design of neurostimulators giving reduced peak electrode voltage when delivering a given electric charge over a given time duration. Exact solutions for the greatest possible peak voltage reduction using two and three steps are given. Furthermore, it is shown that the achievable peak voltage reduction, for any given number of steps is identical for simple series RC circuits and parallel RC circuits, for appropriate different values of RC. It is conjectured that the maximum peak voltage reduction cannot be improved using a more complicated RC circuit.

  4. Resonant tunneling and persistent current of a non-interacting and weakly interacting one-dimensional electron gas

    International Nuclear Information System (INIS)

    Krive, I.V.; Sandstroem, P.

    1997-01-01

    The persistent current for a one-dimensional ring with two tunneling barriers is considered in the limit of weakly interacting electrons. In addition to small off-resonance current, there are two kinds of resonant behaviour; (i) a current independent of the barrier transparency (true resonance) and (ii) a current analogous to the one for a ring with only single barrier (''semi''-resonance). For a given barrier transparency the realization of this or that type of resonant behaviour depends both on the geometrical factor (the ratio of interbarrier distance to a ring circumference) and on the strength of electron-electron interaction. It is shown that repulsive interaction favours the ''semi''-resonance behaviour. For a small barrier transparency the ''semi''-resonance peaks are easily washed out by temperature whereas the true resonance peaks survive. (author). 22 refs, 2 figs

  5. Measurement of the neutral to charged current cross section ratios for neutrino and antineutrino interactions on protons

    International Nuclear Information System (INIS)

    Jones, G.T.; Jones, R.W.L.; Kennedy, B.W.; O'Neale, S.W.; Hoffmann, E.; Hamisi, F.; Miller, D.B.; Mobayyen, M.M.; Corrigan, G.; Myatt, G.; Radojicic, D.; Retter, M.L.; Saitta, B.; Shotton, P.N.; Towers, S.J.; Bullock, F.W.; Burke, S.; Fitch, P.J.

    1986-01-01

    The ratios R vp and R vp of the neutral current to charged current cross sections for neutrino and antineutrino interactions on protons have been measured in BEBC. The beam was the CERN SPS 400 GeV wideband beam. The bubble chamber, equipped with the standard External Muon Identifier, was surrounded with an additional plane of wire chambers (Internal Picket Fence), which was added to improve neutral current event identification. For a total transverse momentum of the charged hadrons above 0.45 GeV/c and a charged multiplicity of at least 3, it was found that R vp =0.384±0.024±0.015 and R vp =0.338±0.014±0.016, corresponding to a value of sin 2 θ w (M w ) MS of 0.225±0.030. Combining the results from hydrogen and an isoscalar target, the differences of the neutral current chiral coupling constants were found to be u L 2 -d L 2 =-0.080±0.043±0.012 and u R 2 -d R 2 =0.021±0.055±0.028. (orig.)

  6. Analysis and design of a charge pump circuit for high output current applications

    NARCIS (Netherlands)

    van Steenwijk, Gijs; van Steenwijk, Gijs; Hoen, Klaas; Hoen, Klaas; Wallinga, Hans

    1993-01-01

    A charge pump circuit has been developed that can deliver high currents even for a system supply voltage of 3 V. The circuit consists of capacitances, connected by MOS switches. The influence of the on-resistance of the switches on the circuit's output resistance has been analysed. The switches are

  7. Current limitation in low pressure mercury arcs

    International Nuclear Information System (INIS)

    Torven, S.; Babic, M.

    1976-06-01

    When the electric current in a low pressure arc with a long positive column is increased sufficiently, an electrostatic instability develops in the plasma which leads to formation of thin space charge layers across the column. The instability is investigated in a mercury plasma column kept axially homogeneous by a special technique. Values of some plasma parameters are measured at the instability threshold. It is found that the plasma is in a weakly ionized state in contrast to predictions by widely accepted current limitation theories. It is concluded that new types of theories are required to explain the observations. (Auth.)

  8. Four point function of R-currents in N=4 SYM in the Regge limit at weak coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Mischler, A.M.; Salvadore, M. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2008-04-15

    We compute, in N = 4 super Yang-Mills, the four point correlation function of R-currents in the Regge limit in the leading logarithmic approximation at weak coupling. Such a correlator is the closest analog to photon-photon scattering within QCD, and there is a well defined procedure to perform the analogous computation at strong coupling via AdS/CFT. The main result of this paper is, on the gauge theory side, the proof of Regge factorization and the explicit computation of the R-current impact factors. (orig.)

  9. Efficient charge generation by relaxed charge-transfer states at organic interfaces

    KAUST Repository

    Vandewal, Koen

    2013-11-17

    Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy. © 2014 Macmillan Publishers Limited.

  10. Efficient charge generation by relaxed charge-transfer states at organic interfaces

    KAUST Repository

    Vandewal, Koen; Albrecht, Steve N.; Hoke, Eric T.; Graham, Kenneth; Widmer, Johannes; Douglas, Jessica D.; Schubert, Marcel; Mateker, William R.; Bloking, Jason T.; Burkhard, George F.; Sellinger, Alan; Frechet, Jean; Amassian, Aram; Riede, Moritz Kilian; McGehee, Michael D.; Neher, Dieter; Salleo, Alberto

    2013-01-01

    Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy. © 2014 Macmillan Publishers Limited.

  11. Charge effects controlling the current hysteresis and negative differential resistance in periodical nanosize Si/CaF sub 2 structures

    CERN Document Server

    Berashevich, Y A; Kholod, A N; Borisenko, V E

    2002-01-01

    A kinetic model of charge carrier transport in nanosize periodical Si/CaF sub 2 structures via localized states in dielectric is proposed. Computer simulation of the current-voltage characteristics of such structures has shown that the built-in field arises in a dielectric due to polarization of the trapped charge by localized centers. This results in current hysteresis and negative differential resistance region at the current-voltage characteristics when the bias polarity is changed. At temperature below 250 K, the portion of negative differential resistance vanishes

  12. Measurement of the neutral to charged current cross section ratios for neutrino and and antineutrino interactions on protons

    Science.gov (United States)

    Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; O'Neale, S. W.; Hoffmann, E.; Haidt, D.; Klein, H.; Mittendorfer, J.; Morrison, D. R. O.; Schmid, P.; Wachsmuth, H.; Hamisi, F.; Miller, D. B.; Mobayyen, M. M.; Aderholz, M.; Deck, L.; Schmitz, N.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicic, D.; Retter, M. L.; Saitta, B.; Shotton, P. N.; Towers, S. J.; Bullock, F. W.; Burke, S.; Fitch, P. J.; Birmingham-Bonn-CERN-Imperial College-München(MPI)-Oxford-University College Collaboration

    1986-10-01

    The ratios Rvp and Rvp of the neutral current to charged current cross sections for neutrino and antineutrino interactions on protons have been measured in BEBC. The beam was the CERN SPS 400 GeV wideband beam. The bubble chamber, equipped with the standard External Muon Identifier, was surrounded with an additional plane of wire chambers (Internal Picket Fence), which was added to improve neutral current event identification. For a total transverse momentum of the charged hadrons above 0.45 GeV/ c and a charged multiplicity of at least 3, it was found that R vp = 0.384 ± 0.015 and R vp = 0.338 ± 0.014 ± 0.016, corresponding to a value of sin 2θ w(M woverlineMSof 0.225 ± 0.030 . Combining the results from hydrogen and an isoscalar target, the differences of the neutral current chiral coupling constants were found to be u2l- d2L = -0.080 ± 0.043 ± 0.012 and u2R- d2R = 0.021±0.055±0.028.

  13. Phase slip process and charge density wave dynamics in a one dimensional conductor

    Science.gov (United States)

    Habiballah, N.; Zouadi, M.; Arbaoui, A.; Qjani, M.; Dumas, J.

    In this paper, we study the phase slip effect on the charge density wave (CDW) dynamics in a one-dimensional conductor in the weak pinning limit. A considerable enhancement of JCDW is observed in the presence of phase slips. In addition, a spatial dependence of the CDW current density JCDW is also studied showing that a decrease of JCDW with distance from the current contact occurs. The results are discussed in terms the relationship between additional phase slips and the mobility of phase dislocations nucleated at electrical contacts.

  14. Measurement of the nu/sub μ/ charged-current cross section

    International Nuclear Information System (INIS)

    Baker, N.J.; Connolly, P.L; Kahn, S.A.

    1982-01-01

    The Fermilab 15-ft bubble chamber, filled with a heavy neon-hydrogen mix, was exposed to a narrow band nu/sub μ/ beam. Based on the observation of 830 charged current nu/sub μ/ interactions, the cross section was found to rise linearly with the neutrino energy in the interval, 10 GeV less than or equal to E/sub nu/ less than or equal to 240 GeV, with a constant slope of: sigma/sub nu/E/sub nu/ = (0.64 +- 0.05) 10 -38 cm 2 GeV -1 . This result is discussed in relation to other experiments

  15. Neutral strange particle production in antineutrino-neon charged current interactions

    Science.gov (United States)

    Willocq, S.; Marage, P.; Aderholz, M.; Allport, P.; Baton, J. P.; Berggren, M.; Clayton, E. F.; Cooper-Sarkar, A. M.; Erriquez, O.; Faulkner, P. J. W.; Guy, J.; Hulth, P. O.; Jones, G. T.; Mobayyen, M. M.; Morrison, D. R. O.; Neveu, M.; O'Neale, S.; Sacton, J.; Sansum, R. A.; Varvell, K.; Venus, W.; Wells, J.; Wittek, W.

    1992-06-01

    Neutral strange particle production inbar v Ne charged current interactions is studied using the bubble chamber BEBC, exposed to the CERN SPS antineutrino wide band beam. From a sample of 1191 neutral strange particles, the inclusive production rates are determined to be (15.7±0.8)% for K 0 mesons, (8.2±0.5)% for Λ, (0.4±0.2)% forbar Λ and (0.6±0.3)% for Σ0 hyperons. The inclusive production properties of K 0 mesons and Λ hyperons are investigated. The Λ hyperons are found to be polarized in the production plane.

  16. Strong field gravitational lensing by a charged Galileon black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shan-Shan; Xie, Yi, E-mail: clefairy035@163.com, E-mail: yixie@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2016-07-01

    Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgr A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.

  17. Simple DCM or CRM analog peak current controller for HV capacitor charge-discharge applications

    DEFF Research Database (Denmark)

    Trintis, Ionut; Dimopoulos, Emmanouil; Munk-Nielsen, Stig

    2013-01-01

    This paper presents a simple analog current controller suitable for buck and boost converter topologies. The controller operates in DCM or CRM, depending on the setup. The experimental results are presented to validate the proposed controller functionality for a high voltage capacitor charge...

  18. Superconducting quantum interference monitor of charged particle beam current

    International Nuclear Information System (INIS)

    Gertsev, K.F.; Mikheev, M.S.

    1981-01-01

    Description and test results of the monitor of charged particle beam current on the base of the high-frequency superconducting quantum interference detector with lead slotted shield are presented. The toroidal superconducting coil, which covers the measured beam has 16 turns wound by the lead belt of 7 mm width with 0.5 mm gaps between the turns. A superconducting low-coupling monitor having two holes and point oxidated niobium contact has been used in the mode of quanta counting of magnetic flux. The lead point shield was 2 mm thick and it had 30 mm aperture. The coefficient of background shielding within 0-200 Hz frequency range constituted more than 10 8 . The threshold current resolution of the monitor had the value less than 01 μA √Hz. The suggested monitor requires helium cooling. The proposed design of the monitor is applicable for mounting on the vacuum chamber when it is surrounded by helium conductor. In other cases mounting of low-powerful autonomic system or cryostat of helium storage up to several weeks is possible [ru

  19. A weakly coupled semiconductor superlattice as a harmonic hypersonic-electrical transducer

    International Nuclear Information System (INIS)

    Poyser, C L; Akimov, A V; Campion, R P; Kent, A J; Balanov, A G

    2015-01-01

    We study experimentally and theoretically the effects of high-frequency strain pulse trains on the charge transport in a weakly coupled semiconductor superlattice. In a frequency range of the order of 100 GHz such excitation may be considered as single harmonic hypersonic excitation. While travelling along the axis of the SL, the hypersonic acoustic wavepacket affects the electron tunnelling, and thus governs the electrical current through the device. We reveal how the change of current depends on the parameters of the hypersonic excitation and on the bias applied to the superlattice. We have found that the changes in the transport properties of the superlattices caused by the acoustic excitation can be largely explained using the current–voltage relation of the unperturbed system. Our experimental measurements show multiple peaks in the dependence of the transferred charge on the repetition rate of the strain pulses in the train. We demonstrate that these resonances can be understood in terms of the spectrum of the applied acoustic perturbation after taking into account the multiple reflections in the metal film serving as a generator of hypersonic excitation. Our findings suggest an application of the semiconductor superlattice as a hypersonic-electrical transducer, which can be used in various microwave devices. (paper)

  20. Nuclear chiral axial currents and applications to few-nucleon systems

    Energy Technology Data Exchange (ETDEWEB)

    Baroni, Alessandro [Old Dominion Univ., Norfolk, VA (United States)

    2017-08-01

    This Thesis is divided into three main parts. The first part discusses basic aspects of chiral effective field theory and the formalism, based on time ordered perturbation theory, used to to derive the nuclear potentials and currents from the chiral Lagrangians. The second part deals with the actual derivation, up to one loop, of the two-nucleon potential and one- and two-nucleon weak axial charge and current. In both derivations ultraviolet divergences generated by loop corrections are isolated using dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. A complete set of contact terms for the axial charge up to the relevant order in the power counting is constructed. The third part of this Thesis discusses two applications: (i) the calculation of the Gamow-Teller matrix element of tritium, used to constrain the single low-energy constant entering the axial current; (ii) the calculation of neutrino-deuteron inclusive cross sections at low energies. These results have confirmed previous predictions obtained in phenomenological approaches. These latter studies have played an important role in the analysis and interpretation of experiments at the Sudbury Neutrino Observatory.

  1. Weak-interaction processes in stars: applications to core-collapse supernovae

    International Nuclear Information System (INIS)

    Martinez-Pinedo, G.

    2003-01-01

    The role of weak-interaction processes in core collapse and neutrino nucleosynthesis is reviewed. Recent calculations of the electron capture rates for nuclei with mass numbers A=65-112 show that, contrarily to previous assumptions, during core collapse electron capture is dominated by captures on heavy nuclei. Astrophysical simulations demonstrate that these rates have an important impact on the collapse. Neutrinos emitted by the collapsing core can interact with the overlying shells of the star producing substantial nuclear transmutations. This process known as ν-process seems to be responsible for the production of 138 La by charged current neutrino interactions with 138 Ba. The ν-process is then sensitive to the spectra of different neutrino species and to neutrino oscillations. (orig.)

  2. Charge immobilization of the voltage sensor in domain IV is independent of sodium current inactivation.

    Science.gov (United States)

    Sheets, Michael F; Hanck, Dorothy A

    2005-02-15

    Recovery from fast inactivation in voltage-dependent Na+ channels is associated with a slow component in the time course of gating charge during repolarization (i.e. charge immobilization), which results from the slow movement of the S4 segments in domains III and IV (S4-DIII and S4-DIV). Previous studies have shown that the non-specific removal of fast inactivation by the proteolytic enzyme pronase eliminated charge immobilization, while the specific removal of fast inactivation (by intracellular MTSET modification of a cysteine substituted for the phenylalanine in the IFM motif, ICMMTSET, in the inactivation particle formed by the linker between domains III and IV) only reduced the amount of charge immobilization by nearly one-half. To investigate the molecular origin of the remaining slow component of charge immobilization we studied the human cardiac Na+ channel (hH1a) in which the outermost arginine in the S4-DIV, which contributes approximately 20% to total gating charge (Qmax), was mutated to a cysteine (R1C-DIV). Gating charge could be fully restored in R1C-DIV by exposure to extracellular MTSEA, a positively charged methanethiosulphonate reagent. The RIC-DIV mutation was combined with ICMMTSET to remove fast inactivation, and the gating currents of R1C-DIV-ICM(MTSET) were recorded before and after modification with MTSEAo. Prior to MTSEAo, the time course of the gating charge during repolarization (off-charge) was best described by a single fast time constant. After MTSEA, the off-charge had both fast and slow components, with the slow component accounting for nearly 35% of Qmax. These results demonstrate that the slow movement of the S4-DIV during repolarization is not dependent upon the normal binding of the inactivation particle.

  3. Induced-charge electroosmosis around conducting and Janus cylinder in microchip

    Directory of Open Access Journals (Sweden)

    Zhang Kai

    2012-01-01

    Full Text Available The induced-charge elecetroosmosis around conducting/Janus cylinder with arbitrary Debye thickness is studied numerically, when an direct current weak electric filed is suddenly applied in a confined microchannel. It’s found that there are four large circulations around the conducting cylinder, and the total flux in the microchannel is zero; there are two smaller circulations around the Janus cylinder, and they are compressed to wall. A bulk flux, which has a parabolic relation with the applied electric field, is also predicted.

  4. Precision measurement of the cross section of charged-current and neutral current processes at large Q2 at HERA with the polarized-electron beam

    International Nuclear Information System (INIS)

    Tran, Trong Hieu

    2010-03-01

    The inclusive cross sections for both charged and neutral current processes have been measured in interactions of longitudinally polarized electrons (positrons) with unpolarized protons using the full data samples collected by H1 at HERA-II. The data taken at a center-of-mass energy of 319 GeV correspond to an integrated luminosity of 149.1 pb -1 and 180.0 pb -1 for e - p and e + p collisions, representing an increase in statistics of a factor of 10 and 2, respectively, over the data from HERA-I. The measured double differential cross sections d 2 σ/dxdQ 2 cover more than two orders of magnitude in both Q 2 , the negative four-momentum transfer squared, up to 30000 GeV 2 , and Bjorken x, down to 0.003. The cross section data are compared to predictions of the Standard Model which is able to provide a good description of the data. The polarization asymmetry as a function of Q 2 is measured with improved precision, confirming the previous observation of P violation effect in neutral current ep scattering at distances down to 10 -18 m. The total cross sections of the charged current process, for Q 2 > 400 GeV 2 and inelasticity y ± beams and different polarization values. Together with the corresponding cross section obtained from the previously published unpolarized data, the polarization dependence of the charged current cross section is measured and found to be in agreement with the Standard Model prediction with the absence of right-handed charged current. The cross sections are combined with previously published data from H1 to obtain the most precise unpolarized measurements. These are used to extract the structure function xF 3 γZ which is sensitive to the valence quark distributions down to low x values. The new cross sections have also been used in a combined electroweak and QCD fit to significantly improve the light quark couplings to the Z-boson than those obtained based on the HERA-I data alone. (orig.)

  5. Electric vehicle battery charging controller

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides an electric vehicle charging controller. The charging controller comprises a first interface connectable to an electric vehicle charge source for receiving a charging current, a second interface connectable to an electric vehicle for providing the charging current...... to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for controlling a charging current provided from the charge source to the electric vehicle, the controlling at least...... in part being performed in response to a first information associated with a charging message received by the first communication unit...

  6. The Quasi-Static Electromagnetic Approximation for Weakly Conducting Media

    CERN Document Server

    Heubrandtner, T

    2002-01-01

    In a conducting dielectric charge and electric field decay with a time constant tau_R = \\varepsilon/\\sigma. In a weakly conducting medium, as e.g. glass or melamine-phenolic laminate in use in RPC's, this time is about 10^{-3} s; so it is long as compared to the time the charge cloud needs to move through the gap and to the time the signal needs to propagate through a dielectric to the electrode. A quasi-static theory to deal with transient phenomena in weakly conducting media has been developed in Haus and Melcher (1989), Fano, Chu and Adler (1963); it simplifies the analysis considerably since it requires only the solution of a scalar diffusion-type equations in place of the time-dependent Maxwell equations. This little known theory is applied to treat the generation of signals in simple models for chambers with such materials.

  7. Inclusive weak decays of charmed mesons

    International Nuclear Information System (INIS)

    Matthews, C.G.

    1993-01-01

    Inclusive analysis provide a different insight into the understanding of weak decay physics. This thesis experimentally determines inclusive decay predictions of charmed D mesons. Exclusive decay predictions are also used from a variety of theoretical models to make predictions about inclusive properties. Both experimental and theoretical realms benefit from the new techniques presented in this thesis. Inclusive properties derived are the multiplicity distributions, average multiplicities and inclusive branching ratios of charged particles, charged and neutral kaons, and charged pions. The center-of-mass momentum spectra of charged and neutral kaons are also obtained. Additionally, in the theoretical realm only, the inclusive properties of neutral pions, and the center-of-mass momentum spectra of charged and neutral pions are determined. The experimental analysis, which uses data from the mark II experiment at the Stanford Linear Accelerator Center, employs an unfold technique utilizing fold matrices to obtain the charged particle and kaon properties. A new enhanced unfold technique involving fold tensors obtains the first-ever results for the inclusive charged pion properties. The average strange quark contents and the average charged lepton multiplicities of the D + , D 0 and D + 8 are also presented. In the theoretical analysis, the exclusive decay mode predictions from the factorization model for Bauer, Stech and Wirbel; the quark diagram scheme of Chau and Cheng; and the QCD sum rules model of Block and Shifman are processed to determine inclusive predictions will lead to a better understanding of the model. The thesis also derives inclusive predictions from the D meson exclusive branching ratios compiled by the Particle Data Group

  8. One meson π0 final state study in neutral current neutrino and antineutrino interactions

    International Nuclear Information System (INIS)

    Comtet, Alain.

    1975-01-01

    Neutral pion production by weak neutral currents was observed in the CERN-GARGAMELLE neutrino experiment. The aim of the analysis was the measurement of the ratios R(ν) and R(antiν) of neutral-current to charged-current cross sections. The background due to neutron interactions was computed. A lower and an upper limit of the background was obtained. Bounds on the ratios R(ν) and R(antiν) are given using these limits: 0.11 [fr

  9. On the secondary charging effects and structure of mesospheric dust particles impacting on rocket probes

    Directory of Open Access Journals (Sweden)

    O. Havnes

    2007-03-01

    Full Text Available The dust probe DUSTY, first launched during the summer of 1994 (flights ECT–02 and ECT–07 from Andøya Rocket Range, northern Norway, was the first probe to unambiguously detect heavy charged mesospheric aerosols, from hereon referred to as dust. In ECT–02 the probe detected negatively charged dust particles in the height interval of 83 to 88.5 km. In this flight, the lower grid in the detector (Grid 2 measures both positive and negative currents in various regions, and we find that the relationship between the current measurements of Grid 2 and the bottom plate can only be explained by influence from secondary charge production on Grid 2. In ECT–07, which had a large coning, positive currents reaching the top grid of the probe were interpreted as due to the impact of positively charged dust particles. We have now reanalyzed the data from ECT–07 and arrived at the conclusion that the measured positive currents to this grid must have been mainly due to secondary charging effects from the impacting dust particles. The grid consists of a set of parallel wires crossed with an identical set of wires on top of it, and we find that if the observed currents were created from the direct impact of charged dust particles, then they should be very weakly modulated at four times the rocket spin rate ωR. Observations show, however, that the observed currents are strongly modulated at 2ωR. We cannot reproduce the observed large modulations of the impact currents in the dust layer if the currents are due only to the transfer of the charges on the impacted dust particles. Based on the results of recent ice cluster impact secondary charging experiments by Tomsic (2003, which found that a small fraction of the ice clusters, when impacting with nearly grazing incidence, carried away one negative charge −1e, we have arrived at the conclusion that similar, but significantly more effective, charging effects must be predominantly responsible for the

  10. Surface potential, charging and local current transport of individual Ge quantum dots grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Singha, R.K. [Department of Physics, Visva-Bharati, Santiniketan 731235 (India); Manna, S.; Bar, R.; Das, S. [Department of Physics, Indian Institute of Technology-Kharagpur, Kharagpur 721302 (India); Ray, S.K., E-mail: physkr@phy.iitkgp.ernet.in [Department of Physics, Indian Institute of Technology-Kharagpur, Kharagpur 721302 (India)

    2017-06-15

    Highlights: We have elaborately explained the individual Ge QD charging phenomena and current transport, which is very important to understand the Ge/Si nano devices. This paper will give a flavor to properly understand these phenomena linked together along with the photocurrent mechanism which is related to the Ge/Si valence band offset. • Both the CAFM and KPFM techniques point out the functionality of doping nature of the underneath Si substrate on the aforementioned characteristics of Ge QDs. • Analysis of the surface potential mapping using KPFM technique yields an approximate valence band offset measurement which is required to understand the intra-valence transition of holes for the realization of long wavelength infrared photodetector. • KPFM and CAFM can be utilized to explore the charging/discharging phenomena of dots and their composition variations. • Current-voltage (I–V) characteristics of the individual Ge QD strongly depends on the individual QD size. • Energy band diagrams for diamond tip and Ge QD shows the higher barrier for electrons and lower barrier for holes allowing the easy tunneling for holes to dominate the transport. - Abstract: It is fundamentally important to understand the nanoscale electronic properties of a single quantum dot (QD) contrary to an ensemble of QDs. Kelvin probe force microscopy (KPFM) and conductive atomic force microscopy (CAFM) are two important tools, which could be employed to probe surface potential, charging phenomena, and current transport mechanism of individual QD. We demonstrate the aforementioned characteristics of self-assembled Ge QDs, which was grown on Si substrates by solid source molecular beam epitaxy driven by the Stranski-Krastanov method. Study reveals that each Ge QD acts as charge storage node even at zero applied bias. The shape, size and density of QDs could be well probed by CAFM and KPFM, whereas QD facets could be better resolved by the conductive tip. The CAFM investigation

  11. Production of charmed particles in nuN collisions due to neutral weak currents

    International Nuclear Information System (INIS)

    Rekalo, M.P.

    1980-01-01

    A study is made of associated production of charmed particles in neutrino-nucleon interactions due to neutral weak currents. The angular distribution of the jets of charmed hadrons in nN interactions is determined in the lowest approximation in the quark-gluon coupling constant, according to which a charmed quark and antiquark are produced in an annihilation of a vector gluon and a virtual Z boson. It is shown that only a P-even dependence on the azimuthal angle v occurs in the studied approximation, the P-odd dependence which is possible in the general case being equal to zero. The total cross section for charmed-particle production in neutrino-nucleon interactions is calculated, and the origin of the violation of scale invariance is demonstrated

  12. Search for the fourth generation charge -1/3 quark via flavor changing neutral currents

    International Nuclear Information System (INIS)

    Greenlee, H.B.

    1996-08-01

    There is some likelihood that a light ( t ) fourth generation charge -1/3 quark (b') would decay predominantly via loop induced flavor changing neutral currents. The charged current decay of b' to charm wuld be highly Cabibbo suppressed due to the fact that it changes the generation number by two. The D0 experiment has searched for b' pair production where one or both b' quarks decays via b' → b + γ, giving signatures photon + three jets and photon + two jets. We do not see a significant excess of such events over background. In both modes, we set an upper limit on the cross section times branching ratio that is sufficient to rule out a standard sequential b' decaying predominantly via FCNC in the mass range m Z /2 b' Z + m b . For b' masses larger than this, the dominant FCNC decay mode is expected to be b' → b + Z. 10 refs., 10 figs., 10 tabs

  13. Search for a fourth generation charge -1/3 quark via flavor changing neutral currents

    International Nuclear Information System (INIS)

    1996-07-01

    There is some likelihood that a light ( t ) fourth generation charge -1/3 quark (b') would decay predominantly via loop induced flavor changing neutral currents. The charged current decay of b' to charm would be highly Cabibbo suppressed due to the fact that it changes the generation number by two. The D0 experiment has searched for b' pair production where one or both b' quarks decays via b' → b+γ, giving signatures photon + three jets and two photons + two jets. WE don not see a significant excess of such events over background. In both modes, we set an upper limit on the cross section times branching ratio that is sufficient to rule out a standard sequential b' decaying predominantly via FCNC in the mass range m Z /2 b' Z + m b . For b' masses larger than this, the dominant FCNC decay mode is expected to be b' → b + Z. 14 refs., 13 figs., 5 tabs

  14. Low-energy Electro-weak Reactions

    International Nuclear Information System (INIS)

    Gazit, Doron

    2012-01-01

    Chiral effective field theory (EFT) provides a systematic and controlled approach to low-energy nuclear physics. Here, we use chiral EFT to calculate low-energy weak Gamow-Teller transitions. We put special emphasis on the role of two-body (2b) weak currents within the nucleus and discuss their applications in predicting physical observables.

  15. Charged Particle Dynamics in the Magnetic Field of a Long Straight Current-Carrying Wire

    Science.gov (United States)

    Prentice, A.; Fatuzzo, M.; Toepker, T.

    2015-01-01

    By describing the motion of a charged particle in the well-known nonuniform field of a current-carrying long straight wire, a variety of teaching/learning opportunities are described: 1) Brief review of a standard problem; 2) Vector analysis; 3) Dimensionless variables; 4) Coupled differential equations; 5) Numerical solutions.

  16. Non-singlet coefficient functions for charged-current deep-inelastic scattering to the third order in QCD

    International Nuclear Information System (INIS)

    Davies, J.; Vogt, A.

    2016-06-01

    We have calculated the coefficient functions for the structure functions F_2, F_L and F_3 in ν- anti ν charged-current deep-inelastic scattering (DIS) at the third order in the strong coupling α_s, thus completing the description of unpolarized inclusive W"±-exchange DIS to this order of massless perturbative QCD. In this brief note, our new results are presented in terms of compact approximate expressions that are sufficiently accurate for phenomenological analyses. For the benefit of such analyses we also collect, in a unified notation, the corresponding lower-order contributions and the flavour non-singlet coefficient functions for ν+ anti ν charged-current DIS. The behaviour of all six third-order coefficient functions at small Bjorken-x is briefly discussed.

  17. Charge Exchange Contribution to the Decay of the Ring Current, Measured by Energetic Neutral Atoms (ENAs)

    Science.gov (United States)

    Jorgensen, A. M.; Henderson, M. G.; Roelof, E. C.; Reeves, G. D.; Spence, H. E.

    2001-01-01

    In this paper we calculate the contribution of charge exchange to the decay of the ring current. Past works have suggested that charge exchange of ring current protons is primarily responsible for the decay of the ring current during the late recovery phase, but there is still much debate about the fast decay of the early recovery phase. We use energetic neutral atom (ENA) measurements from Polar to calculate the total ENA energy escape. To get the total ENA escape we apply a forward modeling technique, and to estimate the total ring current energy escape we use the Dessler-Parker-Sckopke relationship. We find that during the late recovery phase of the March 10, 1998 storm ENAs with energies greater than 17.5 keV can account for 75% of the estimated energy loss from the ring current. During the fast recovery the measured ENAs can only account for a small portion of the total energy loss. We also find that the lifetime of the trapped ions is significantly shorter during the fast recovery phase than during the late recovery phase, suggesting that different processes are operating during the two phases.

  18. Symmetries, conservation principles, and the phenomenology of meson exchange currents. Chapter 12

    International Nuclear Information System (INIS)

    Foldy, L.L.; Lock, J.A.

    1979-01-01

    The authors show that as an alternative to one-pion exchange S-matrix calculations, one may learn quite a bit concerning meson exchange electromagnetic and weak currents by the application of various symmetries and conservation laws. In particular, one may determine the most general form that the exchange currents may take in the static approximation by the application of invariance under spatial translations, rotations, and space inversion, the electric charge superselection principle. Lorentz invariance, vector current conservation, time reversal invariance, Hermiticity of the interaction Hamiltonian, and invariance under coordinate interchange. (Auth.)

  19. Theory of space charge limited currents in films and nanowires with dopants

    Science.gov (United States)

    Zhang, Xiaoguang; Pantelides, Sokrates

    2015-03-01

    We show that proper description of the space charge limited currents (SCLC) in a homogeneous bulk material must account fully for the effect of the dopants and the interplay between dopants and traps. The sharp rise in the current at the trap-filled-limit (TFL) is partially mitigated by the dopant energy levels and the Frenkel effect, namely the lowering of the ionization energy by the electric field, which is screened by the free carriers. In nanowires, lack of effective screening causes the trap occupation at small biases to reach a high level comparable to the TFL in bulk. This explains the high current density in SCLCs observed in nanowires. This work is supported by the LDRD program at ORNL. Portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  20. Axial weak currents in the Wess-Zumino term

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo.

    1985-03-01

    The conventional axial gauging of the Wess-Zumino term leads to the results which do not necessarily agree with the expectations on the basis of quark level Ward-Takahashi identities. This discrepancy arises from the fact that the quark level anomalous identities reflect the short distance structure of QCD, whereas the gauging of the Wess-Zumino term reflects the axial symmetry in the spontaneously broken chiral phase. The low energy theorem for axial weak fields is not sharply defined, in contrast to the case of vector fields where no such complications arise. (author)

  1. Nano-electron beam induced current and hole charge dynamics through uncapped Ge nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, A.; El Hdiy, A.; Troyon, M. [Laboratoire de Recherche en Nanosciences, Bat. 6, case no 15, UFR Sciences, Universite de Reims Champagne Ardenne, 51687 Reims Cedex 2 (France); Amiard, G.; Ronda, A.; Berbezier, I. [IM2NP, Faculte des Sciences et Techniques, Campus de Saint Jerome - Case 142, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20 (France)

    2012-04-16

    Dynamics of hole storage in spherical Ge nanocrystals (NCs) formed by a two step dewetting/nucleation process on an oxide layer grown on an n-doped <001> silicon substrate is studied using a nano-electron beam induced current technique. Carrier generation is produced by an electron beam irradiation. The generated current is collected by an atomic force microscope--tip in contact mode at a fixed position away from the beam spot of about 0.5 {mu}m. This distance represents the effective diffusion length of holes. The time constants of holes charging are determined and the effect of the NC size is underlined.

  2. The MOLLER Experiment: ``An Ultra-precise Measurement of the Weak Charge of the Electron using moller Scattering''

    Science.gov (United States)

    Beminiwattha, Rakitha; Moller Collaboration

    2017-09-01

    Parity Violating Electron Scattering (PVES) is an extremely successful precision frontier tool that has been used for testing the Standard Model (SM) and understanding nucleon structure. Several generations of highly successful PVES programs at SLAC, MIT-Bates, MAMI-Mainz, and Jefferson Lab have contributed to the understanding of nucleon structure and testing the SM. But missing phenomena like matter-antimatter asymmetry, neutrino flavor oscillations, and dark matter and energy suggest that the SM is only a `low energy' effective theory. The MOLLER experiment at Jefferson Lab will measure the weak charge of the electron, QWe = 1 - 4sin2θW , with a precision of 2.4 % by measuring the parity violating asymmetry in electron-electron () scattering and will be sensitive to subtle but measurable deviations from precisely calculable predictions from the SM. The MOLLER experiment will provide the best contact interaction search for leptons at low OR high energy makes it a probe of physics beyond the Standard Model with sensitivities to mass-scales of new PV physics up to 7.5 TeV. Overview of the experiment and recent pre-R&D progress will be reported.

  3. Poisson–Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes

    NARCIS (Netherlands)

    Ubbink, J.; Khokhlov, A.R.

    2004-01-01

    A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the

  4. Charged-current inclusive neutrino cross sections: superscaling extension to the pion production and realistic spectral function for quasielastic region

    International Nuclear Information System (INIS)

    Ivanov, A.N.; Antonov, M.V.; Barbaro, J.A.; Caballero, G.A.; Megias, G.D.; González-Jiménez, R.; Giusti, C.; Meucci, A.; Moya de Guerra, E.; Udías, J.M.

    2015-01-01

    Superscaling approximation (SuSA) predictions to neutrino-induced charged-current pion production in the Δ-resonance region are explored under MiniBooNE experimental conditions. The results obtained within SuSA for the flux-averaged double-differential cross sections of the pion production for the ν_μ+CH_2 reaction as a function of the muon kinetic energy and of the scattering angle, the cross sections averaged over the angle, the total cross section for the pion production are compared with the corresponding MiniBooNE experimental data. The SuSA charged-current π"+ predictions are in good agreement with data on neutrino flux average cross-sections. The SuSA extension to the pion production region and the realistic spectral function S(p;ε) for quasielastic scattering are used for predictions of charged current inclusive neutrino-nucleus cross sections. The results are compared with the inclusive neutrino-nucleus data from the T2K experiment. (author)

  5. The Properties of the Space-Charge and Net Current Density in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Hatami, M. M.

    2013-01-01

    A hydrodynamic model is used to investigate the properties of positive space-charge and net current density in the sheath region of magnetized, collisional plasmas with warm positive ions. It is shown that an increase in the ion-neutral collision frequency, as well as the magnitude of the external magnetic field, leads to an increase in the net current density across the sheath region. The results also show that the accumulation of positive ions in the sheath region increases by increasing the ion-neutral collision frequency and the magnitude of the magnetic field. In addition, it is seen that an increase in the positive ion temperatures causes a decrease in the accumulation of positive ions and the net current density in the sheath region. (basic plasma phenomena)

  6. Nuclear effects in (anti)neutrino charge-current quasielastic scattering at MINER νA kinematics

    Science.gov (United States)

    Ivanov, M. V.; Antonov, A. N.; Megias, G. D.; González-Jiménez, R.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.; Udías, J. M.

    2018-05-01

    We compare the characteristics of the charged-current quasielastic (anti)neutrino scattering obtained in two different nuclear models, the phenomenological SuperScaling Approximation and the model using a realistic spectral function S(p, ɛ) that gives a scaling function in accordance with the (e, e‧ ) scattering data, with the recent data published by the MiniBooNE, MINER νA, and NOMAD collaborations. The spectral function accounts for the nucleon-nucleon (NN) correlations by using natural orbitals from the Jastrow correlation method and has a realistic energy dependence. Both models provide a good description of the MINER νA and NOMAD data without the need of an ad hoc increase of the value of the mass parameter in the axial-vector dipole form factor. The models considered in this work, based on the the impulse approximation (IA), underpredict the MiniBooNE data for the flux-averaged charged-current quasielastic {ν }μ ({\\bar{ν }}μ ){+}12\\text{C} differential cross section per nucleon and the total cross sections, although the shape of the cross sections is represented by the approaches. The discrepancy is most likely due to missing of the effects beyond the IA, e.g., those of the 2p–2h meson exchange currents that have contribution in the transverse responses.

  7. Research of Ve current charge interactions in the NOMAD experience

    International Nuclear Information System (INIS)

    Manola-Poggioli, E.

    1996-01-01

    Written during the two first years of the NOMAD experiment working, this thesis is divided into two parts. In the first part, a partly equipped detector gives the 1994's results. It allows to identify and to select the NOMAD main interactions (muon neutrino charging current (CC) interactions) in the target. Thank to a events selection, the origin of the produced electrons is studied to better understand simulation's programs. In the second part, neutrino-electron CC interactions represent the main background noise to the oscillations research in the electronic mode. Electrons identification's algorithms are developed and inelastic interactions kinematic properties of electron neutrinos are discussed. (TEC). 57 refs., 72 figs., 18 tabs

  8. Extremally charged line

    International Nuclear Information System (INIS)

    Ryzner, Jirí; Žofka, Martin

    2016-01-01

    We investigate the properties of a static, cylindrically symmetric Majumdar–Papapetrou-type solution of Einstein–Maxwell equations. We locate its singularities, establish its algebraic type, find its asymptotic properties and weak-field limit, study the structure of electrogeodesics, and determine the mass and charge of its sources. We provide an interpretation of the spacetime and discuss the parameter appearing in the metric. (paper)

  9. Generalized space-charge limited current and virtual cathode behaviors in one-dimensional drift space

    International Nuclear Information System (INIS)

    Yang, Zhanfeng; Liu, Guozhi; Shao, Hao; Chen, Changhua; Sun, Jun

    2013-01-01

    This paper reports the space-charge limited current (SLC) and virtual cathode behaviors in one-dimensional grounded drift space. A simple general analytical solution and an approximate solution for the planar diode are given. Through a semi-analytical method, a general solution for SLC in one-dimensional drift space is obtained. The behaviors of virtual cathode in the drift space, including dominant frequency, electron transit time, position, and transmitted current, are yielded analytically. The relationship between the frequency of the virtual cathode oscillation and the injected current presented may explain previously reported numerical works. Results are significant in facilitating estimations and further analytical studies

  10. Charm production in charged current deep inelastic e{sup +}p scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.

    2006-03-15

    The measurement of charm production in charged current deep inelastic positron-proton scattering is investigated with the ZEUS detector at the HERA collider. The data used has been collected from 1995 to 2000, corresponding to an integrated luminosity of 110 pb{sup -1}. Charged D{sup *} mesons decaying in the channel D{sup *+}{yields}D{sup 0}{pi}{sup +}{sub s} with D{sup 0}{yields}K{sup -}{pi}{sup +} and the charge conjugated channel are reconstructed to tag charm quarks. The visible cross section for D{sup *}, {sigma}{sup D*}{sub vis}=12.8{+-}4.0(stat){sup +4.7}{sub -1.5}(sys) pb, is measured in the kinematic range of Q{sup 2}>200 GeV{sup 2} and y<0.9, and of p{sup D{sup *}}{sub T}>1.5 GeV and vertical stroke {eta}{sup D{sup *}} vertical stroke <1.5. The upper-limit for the charm production in the same DIS kinematic range is determined to be {sigma}{sup e{sup +}}{sup p{yields}} {sup anti} {sup {nu}{sub e}}{sup cX} < 109 pb at 90% confidence level. (orig.)

  11. Measurement of the ratios of neutral-current to charged current cross sections of neutrino and antineutrino interactions in Ne

    Science.gov (United States)

    Bosetti, P. C.; Fritze, P.; Grässler, H.; Hasert, F. J.; Schulte, R.; Schultze, K.; Geich-Gimbel, C.; Nellen, B.; Pech, R.; Wünsch, B.; Grant, A.; Hulth, P. O.; Klein, H.; Morrison, D. R. O.; Pape, L.; Wachsmuth, H.; Vayaki, A.; Barnham, K. W. J.; Beuselinck, R.; Clayton, E. F.; Miller, D. B.; Mobayyen, M. M.; Petrides, A.; Albajar, C.; Myatt, G.; Saitta, B.; Wells, J.; Bolognese, T.; Vignaud, D.; Aachen-Bonn-CERN-Democritos-Imperial College, London-Oxford-Saclay Collaboration

    1983-05-01

    The ratios of neutral current to charged current cross sections of neutrino and antineutrino interactions in heavy Ne/H 2 mixture have been measured in BEBC. The beam was the CERN SPS 200 GeV/ c narrow band beam. The ratios were obtained using a cut in the transverse momentum of the hadronic system. In the standard Glashow-Salam-Weinberg model, our results correspond to the value of sin 2θw = 0.182 ± 0.020 ± 0.012. By combining this experiment with data from a hydrogen target the coupling constants uL2 and L2 are found to be 0.15 ± 0.04 and 0.19 ± 0.05, respectively.

  12. Measurement of the ratios of neutral-current to charged current cross sections of neutrino and antineutrino interactions in Ne

    International Nuclear Information System (INIS)

    Bosetti, P.C.; Fritze, P.; Graessler, H.; Hasert, F.J.; Schulte, R.; Schultze, K.; Vayaki, A.; Barnham, K.W.J.; Beuselinck, R.; Clayton, E.F.; Miller, D.B.; Mobayyen, M.M.; Petrides, A.; Albajar, C.; Myatt, G.; Saitta, B.; Wells, J.

    1983-01-01

    The ratios of neutral current to charged current cross sections of neutrino and antineutrino interactions in heavy Ne/H 2 mixture have been measured in BEBC. The beam was the CERN SPS 200 GeV/c narrow band beam. The ratios were obtained using a cut in the transverse momentum of the hadronic system. In the standard Glashow-Salam-Weinberg model, our results correspond to the value of sin 2 THETAsub(w)=0.182+-0.020+-0.012. By combining this experiment with data from a hydrogen target the coupling constants usub(L) 2 and dsub(L) 2 are found to be 0.15+-0.04 and 0.19+-0.05, respectively. (orig.)

  13. On the secondary charging effects and structure of mesospheric dust particles impacting on rocket probes

    Directory of Open Access Journals (Sweden)

    O. Havnes

    2007-03-01

    Full Text Available The dust probe DUSTY, first launched during the summer of 1994 (flights ECT–02 and ECT–07 from Andøya Rocket Range, northern Norway, was the first probe to unambiguously detect heavy charged mesospheric aerosols, from hereon referred to as dust. In ECT–02 the probe detected negatively charged dust particles in the height interval of 83 to 88.5 km. In this flight, the lower grid in the detector (Grid 2 measures both positive and negative currents in various regions, and we find that the relationship between the current measurements of Grid 2 and the bottom plate can only be explained by influence from secondary charge production on Grid 2. In ECT–07, which had a large coning, positive currents reaching the top grid of the probe were interpreted as due to the impact of positively charged dust particles. We have now reanalyzed the data from ECT–07 and arrived at the conclusion that the measured positive currents to this grid must have been mainly due to secondary charging effects from the impacting dust particles. The grid consists of a set of parallel wires crossed with an identical set of wires on top of it, and we find that if the observed currents were created from the direct impact of charged dust particles, then they should be very weakly modulated at four times the rocket spin rate ωR. Observations show, however, that the observed currents are strongly modulated at 2ωR. We cannot reproduce the observed large modulations of the impact currents in the dust layer if the currents are due only to the transfer of the charges on the impacted dust particles. Based on the results of recent ice cluster impact secondary charging experiments by Tomsic (2003, which found that a small fraction of the ice clusters, when impacting with nearly grazing incidence, carried away one negative charge −1e, we have arrived at the conclusion that similar, but significantly more effective, charging effects must

  14. Recollections on the establishment of the weak-interaction notion

    International Nuclear Information System (INIS)

    Pontecorvo, B.M.

    1989-01-01

    The author postulated a muon-electron symmetry as early as 1947 and this gave an early hint of a universal weak interaction and its involvement in particle decay. He also suggested families of leptons. Starting in 1947, a number of new unstable particles were discovered, some electrically neutral and some charged. Some had slow decays, such as the kaon and lambda ''strange'', which could not be explained using the strong interaction. The author was partially responsible for explaining hyperon and kaon decay via the weak interaction, for any four fermions, and for the idea of pair production. (UK)

  15. The asymmetry in electroproduction of the Δ(1232) by polarized electrons and the structure of the weak neutral current

    International Nuclear Information System (INIS)

    Hossain, A.; Chaudhury, T.K.; Nath, L.M.

    1983-08-01

    The R-L asymmetry in electroproduction of the Δ(1232) by longitudinally polarized electrons, which is, a priori, a parity violating effect, has been discussed in the framework of the SU(2)xU(1) symmetry. Our predictions are related to and expected to be useful in the determination of the structure of the weak neutral current. (author)

  16. A comprehensive study of charge trapping in organic field-effect devices with promising semiconductors and different contact metals by displacement current measurements

    International Nuclear Information System (INIS)

    Bisoyi, Sibani; Tiwari, Shree Prakash; Rödel, Reinhold; Zschieschang, Ute; Klauk, Hagen; Kang, Myeong Jin; Takimiya, Kazuo

    2016-01-01

    A systematic and comprehensive study on the charge-carrier injection and trapping behavior was performed using displacement current measurements in long-channel capacitors based on four promising small-molecule organic semiconductors (pentacene, DNTT, C 10 -DNTT and DPh-DNTT). In thin-film transistors, these semiconductors showed charge-carrier mobilities ranging from 1.0 to 7.8 cm 2 V −1 s −1 . The number of charges injected into and extracted from the semiconductor and the density of charges trapped in the device during each measurement were calculated from the displacement current characteristics and it was found that the density of trapped charges is very similar in all devices and of the order 10 12 cm −2 , despite the fact that the four semiconductors show significantly different charge-carrier mobilities. The choice of the contact metal (Au, Ag, Cu, Pd) was also found to have no significant effect on the trapping behavior. (paper)

  17. Vector boson scattering and electroweak production of two like-charge W bosons and two jets at the current and future ATLAS detector

    International Nuclear Information System (INIS)

    Schnoor, Ulrike

    2015-01-01

    The scattering of electroweak gauge bosons is closely connected to the electroweak gauge symmetry and its spontaneous breaking through the Brout-Englert-Higgs mechanism. Since it contains triple and quartic gauge boson vertices, the measurement of this scattering process allows to probe the self-interactions of weak bosons. The contribution of the Higgs boson to the weak boson scattering amplitude ensures unitarity of the scattering matrix. Therefore, the scattering of massive electroweak gauge bosons is sensitive to deviations from the Standard Model prescription of the electroweak interaction and of the properties of the Higgs boson. At the Large Hadron Collider (LHC), the scattering of massive electroweak gauge bosons is accessible through the measurement of purely electroweak production of two jets and two gauge bosons. No such process has been observed before. Being the channel with the least amount of background from QCD-mediated production of the same final state, the most promising channel for the first measurement of a process containing massive electroweak gauge boson scattering is the one with two like-charge W bosons and two jets in the final state. This thesis presents the first measurement of electroweak production of two jets and two identically charged W bosons, which yields the first observation of a process with contributions from quartic gauge interactions of massive electroweak gauge bosons. An overview of the most important issues in Monte Carlo simulation of vector boson scattering processes with current Monte Carlo generators is given in this work. The measurement of the final state of two jets and two leptonically decaying same-charge W bosons is conducted based on proton-proton collision data with a center-of-mass energy of √(s)=8 TeV, taken in 2012 with the ATLAS experiment at the LHC. The cross section of electroweak production of two jets and two like-charge W bosons is measured with a significance of 3.6 standard deviations to be

  18. Weak interaction: past answers, present questions

    International Nuclear Information System (INIS)

    Ne'eman, Y.

    1977-02-01

    A historical sketch of the weak interaction is presented. From beta ray to pion decay, the V-A theory of Marshak and Sudarshan, CVC principle of equivalence, universality as an algebraic condition, PCAC, renormalized weak Hamiltonian in the rehabilitation of field theory, and some current issues are considered in this review. 47 references

  19. Measurement of weak electric currents in copper wire phantoms using MRI: influence of susceptibility enhancement.

    Science.gov (United States)

    Huang, Ruiwang; Posnansky, Oleg; Celik, Abdullah; Oros-Peusquens, Ana-Maria; Ermer, Veronika; Irkens, Marco; Wegener, H-Peter; Shah, N Jon

    2006-08-01

    The use of magnetic resonance imaging (MRI)-based methods for the direct detection of neuronal currents is a topic of intense investigation. Much experimental work has been carried out with the express aim of establishing detection thresholds and sensitivity to flowing currents. However, in most of these experiments, magnetic susceptibility enhancement was ignored. In this work, we present results that show the influence of a susceptibility artefact on the detection threshold and sensitivity. For this purpose, a novel phantom, consisting of a water-filled cylinder with two wires of different materials connected in series, was constructed. Magnitude MR images were acquired from a single slice using a gradient-echo echo planar imaging (EPI) sequence. The data show that the time course of the detected MR signal magnitude correlates very well with the waveform of the input current. The effect of the susceptibility artefacts arising from the two different wires was examined by comparing the magnitudes of the MR signals at different voxel locations. Our results indicate the following: (1) MR signal enhancement arising from the magnetic susceptibility effect influences the detection sensitivity of weak current; (2) the detection threshold and sensitivity are phantom-wire dependent; (3) sub-mu A electric current detection in a phantom is possible on a 1.5-T MR scanner in the presence of susceptibility enhancement.

  20. Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.

    Science.gov (United States)

    Ubbink, Job; Khokhlov, Alexei R

    2004-03-15

    A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.

  1. Charge and current orders in the spin-fermion model with overlapping hot spots

    Science.gov (United States)

    Volkov, Pavel A.; Efetov, Konstantin B.

    2018-04-01

    Experiments carried over the last years on the underdoped cuprates have revealed a variety of symmetry-breaking phenomena in the pseudogap state. Charge-density waves, breaking of C4 rotational symmetry as well as time-reversal symmetry breaking have all been observed in several cuprate families. In this regard, theoretical models where multiple nonsuperconducting orders emerge are of particular interest. We consider the recently introduced [Volkov and Efetov, Phys. Rev. B 93, 085131 (2016), 10.1103/PhysRevB.93.085131] spin-fermion model with overlapping `hot spots' on the Fermi surface. Focusing on the particle-hole instabilities we obtain a rich phase diagram with the chemical potential relative to the dispersion at (0 ,π );(π ,0 ) and the Fermi surface curvature in the antinodal regions being the control parameters. We find evidence for d-wave Pomeranchuk instability, d-form factor charge density waves, as well as commensurate and incommensurate staggered bond current phases similar to the d-density wave state. The current orders are found to be promoted by the curvature. Considering the appropriate parameter range for the hole-doped cuprates, we discuss the relation of our results to the pseudogap state and incommensurate magnetic phases of the cuprates.

  2. A Measurement of the Charged-Current Interaction Cross Section of the Tau Neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Maher, Emily O' Connor [Univ. of Minnesota, Minneapolis, MN (United States)

    2007-02-01

    The Fermilab experiment E872 (DONUT) was designed to make the first observation of the tau neutrino charged-current interaction. Using a hybrid emulsion-spectrometer detector, the tau lepton was identified by its single-prong or trident decay. Six interactions were observed, of which five were in the deep inelastic scattering region. These five interaction were used to measure the charged-current cross section of the tau neutrino. To minimize uncertainties, the tau neutrino cross section was measured relative to the electron neutrino cross section. The result σντNconstνeNconst = 0.77 ± 0.39 is consistent with 1.0, which is predicted by lepton universality. The tau neutrino cross section was also measured for 115 GeV neutrinos, which was the average energy of the interacted tau neutrinos. The result σντNexp = 45 ± 21 x 10-38 cm2 is consistent with the standard model prediction calculated in this thesis, σντNSM = 48 ± 5 x 10-38 cm2.

  3. Weak point disorder in strongly fluctuating flux-line liquids

    Indian Academy of Sciences (India)

    We consider the effect of weak uncorrelated quenched disorder (point defects) on a strongly fluctuating flux-line liquid. We use a hydrodynamic model which is based on mapping the flux-line system onto a quantum liquid of relativistic charged bosons in 2 + 1 dimensions [P Benetatos and M C Marchetti, Phys. Rev. B64 ...

  4. Hunting the weak bosons

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The possibility of the production of weak bosons in the proton-antiproton colliding beam facilities which are currently being developed, is discussed. The production, decay and predicted properties of these particles are described. (W.D.L.).

  5. Fragment-orbital tunneling currents and electronic couplings for analysis of molecular charge-transfer systems.

    Science.gov (United States)

    Hwang, Sang-Yeon; Kim, Jaewook; Kim, Woo Youn

    2018-04-04

    In theoretical charge-transfer research, calculation of the electronic coupling element is crucial for examining the degree of the electronic donor-acceptor interaction. The tunneling current (TC), representing the magnitudes and directions of electron flow, provides a way of evaluating electronic couplings, along with the ability of visualizing how electrons flow in systems. Here, we applied the TC theory to π-conjugated organic dimer systems, in the form of our fragment-orbital tunneling current (FOTC) method, which uses the frontier molecular-orbitals of system fragments as diabatic states. For a comprehensive test of FOTC, we assessed how reasonable the computed electronic couplings and the corresponding TC densities are for the hole- and electron-transfer databases HAB11 and HAB7. FOTC gave 12.5% mean relative unsigned error with regard to the high-level ab initio reference. The shown performance is comparable with that of fragment-orbital density functional theory, which gave the same error by 20.6% or 13.9% depending on the formulation. In the test of a set of nucleobase π stacks, we showed that the original TC expression is also applicable to nondegenerate cases under the condition that the overlap between the charge distributions of diabatic states is small enough to offset the energy difference. Lastly, we carried out visual analysis on the FOTC densities of thiophene dimers with different intermolecular alignments. The result depicts an intimate topological connection between the system geometry and electron flow. Our work provides quantitative and qualitative grounds for FOTC, showing it to be a versatile tool in characterization of molecular charge-transfer systems.

  6. Space-charge-limited currents: An E-infinity Cantorian approach

    Czech Academy of Sciences Publication Activity Database

    Zmeškal, O.; Nešpůrek, Stanislav; Weiter, M.

    2007-01-01

    Roč. 34, č. 2 (2007), s. 143-158 ISSN 0960-0779 R&D Projects: GA MPO FT-TA/036; GA AV ČR IAA100100622 Institutional research plan: CEZ:AV0Z40500505 Keywords : space charge * fractal * charge injection Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.025, year: 2007

  7. Search for lepton number violating charged current processes with neutrino beams

    International Nuclear Information System (INIS)

    Kanemura, Shinya; Kuno, Yoshitaka; Ota, Toshihiko

    2013-01-01

    We propose a novel idea on measurements to understand which physics mechanism is responsible for the origin of a small neutrino mass, by searching for the processes of lepton number violating charged current interaction with incident of a neutrino beam. It turns out that only the proposed measurements could provide a potential to discriminate the mechanisms, in particular the ones called loop-induced mechanisms of neutrino mass generation, from the others. The expected rates of these processes based on some theoretical assumptions are estimated. They are found to be sizable so that detection of such processes could be achievable at near detectors in future highly intense neutrino-beam facilities

  8. Anomalous magnetic and weak magnetic dipole moments of the τ lepton in the simplest little Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo-Urena, M.A.; Tavares-Velasco, G. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Puebla, PUE (Mexico); Hernandez-Tome, G. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Puebla, PUE (Mexico); Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Departamento de Fisica, Mexico City (Mexico)

    2017-04-15

    We obtain analytical expressions, both in terms of parametric integrals and Passarino-Veltman scalar functions, for the one-loop contributions to the anomalous weak magnetic dipole moment (AWMDM) of a charged lepton in the framework of the simplest little Higgs model (SLHM). Our results are general and can be useful to compute the weak properties of a charged lepton in other extensions of the standard model (SM). As a by-product we obtain generic contributions to the anomalous magnetic dipole moment (AMDM), which agree with previous results. We then study numerically the potential contributions from this model to the τ lepton AMDM and AWMDM for values of the parameter space consistent with current experimental data. It is found that they depend mainly on the energy scale f at which the global symmetry is broken and the t{sub β} parameter, whereas there is little sensitivity to a mild change in the values of other parameters of the model. While the τ AMDM is of the order of 10{sup -9}, the real (imaginary) part of its AWMDM is of the order of 10{sup -9} (10{sup -10}). These values seem to be out of the reach of the expected experimental sensitivity of future experiments. (orig.)

  9. Coherent single pion production by antineutrino charged current interactions and test of PCAC

    Science.gov (United States)

    Marage, P.; Aderholz, M.; Allport, P.; Armenise, N.; Baton, J. P.; Berggren, M.; Bertrand, D.; Brisson, V.; Bullock, F. W.; Burkot, W.; Calicchio, M.; Clayton, E. F.; Coghen, T.; Cooper-Sarkar, A. M.; Erriquez, O.; Fitch, P. J.; Gerbier, G.; Guy, J.; Hamisi, F.; Hulth, P. O.; Jones, G. T.; Kasper, P.; Klein, H.; Middleton, R. P.; Miller, D. B.; Mobayyen, M. M.; Morrison, D. R. O.; Natali, S.; Neveu, M.; O'Neale, S. W.; Parker, M. A.; Petiau, P.; Sacton, J.; Sansum, R. A.; Simopoulou, E.; Vallée, C.; Varvell, K.; Vayaki, A.; Venus, W.; Wachsmuth, H.; Wells, J.; Wittek, W.

    1986-06-01

    The cross section for coherent production of a single π- meson in charged current antineutrino interactions on neon nuclei has been measured in BEBC to be (175±25) 10-40 cm2/neon nucleus, averaged over the energy spectrum of the antineutrino wide band beam at the CERN SPS; this corresponds to (0.9±0.1) % of the total charged currentbar v_μ cross section. The distributions of kinematical variables are in agreement with theoretical predictions based on the PCAC hypothesis and the meson dominance model; in particular, the Q 2 dependence is well described by a propagator containing a mass m=(1.35±0.18) GeV. The absolute value of the cross section is also in agreement with the model. This analysis thus provides a test of the PCAC hypothesis in the antineutrino energy range 5 150 GeV.

  10. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wolcott, Jeremy [Rochester U.

    2015-10-28

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross section for a CCQE-like process, made using the MINERvA detector. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^2$. We also compute the ratio to a muon neutrino cross-section in $Q^2$ from MINERvA. We find satisfactory agreement between this measurement and the predictions of the GENIE generator.

  11. Weak and strong factorization properties in nucleus-nucleus collisions in the energy region 290-2100 MeV/nucleon

    International Nuclear Information System (INIS)

    La Tessa, C. . E-mail chiara@nephy.chalmers.se; Sihver, L.; Mancusi, D.; Zeitlin, C.; Miller, J.; Guetersloh, S.; Heilbronn, L.

    2007-01-01

    We have collected from the literature partial charge-changing cross sections for projectiles with charge 6=< Z=<26, energy ranging from 290 up to 2100 MeV/nucleon and interacting with several targets, in order to investigate weak and strong factorization properties. The same analysis methods as in our previous work have been applied to the data: we have shown that, except for hydrogen targets, weak and strong factorization properties are valid within 5%, thus confirming the results obtained in the first paper [C. La Tessa, et al., Test of weak and strong factorization in nucleus-nucleus collisions at several hundred MeV/nucleon, Nucl. Phys. A, in press]. Factorization parameters have been calculated and, in particular, target factors have been expressed with ad hoc analytical functions which describe the data trend very well. New expressions for weak and strong factorization properties can then be obtained by substituting the target factors with these functions: this formulation partially isolates the dependence of the partial charge-changing cross sections on the target and projectile mass numbers; moreover, fragment factors are the only parameters left in the formulas thus facilitating the future task of interpolating them with appropriate analytical expressions

  12. Controlling nonlinear longitudinal space charge oscillations for high peak current bunch train generation

    Directory of Open Access Journals (Sweden)

    P. Musumeci

    2013-10-01

    Full Text Available The evolution of picosecond modulations of the longitudinal profile of an electron beam generated in an rf photoinjector is analyzed and optimized with the goal of obtaining high peak current electron bunch trains at very high frequencies (≥THz. Taking advantage of nonlinear longitudinal space charge forces, it is found that more than 500 A peak current 1 THz bunch trains can be generated using a standard 1.6 cell SLAC/UCLA/BNL rf gun. Postacceleration is used to freeze the longitudinal phase space dynamics after one half plasma oscillation. Applications range from tunable narrow bandwidth THz radiation generation to drivers for high frequency high gradient accelerators.

  13. Electric Vehicles in Colorado: Anticipating Consumer Demand for Direct Current Fast Charging

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-01

    To support the State of Colorado in planning for growth in direct current fast charging (DCFC) for electric vehicles, the National Renewable Energy Laboratory (NREL) has partnered with the Regional Air Quality Council (RAQC) and the Colorado Department of Transportation (CDOT) to analyze a number of DCFC investment scenarios. NREL analyzed existing electric vehicle registration data from IHS Markit (IHS) to highlight early trends in the electric vehicle market, which were compared with sales forecasts predicting large growth in the Colorado electric vehicle market. Electric vehicle forecasts were then used to develop future DCFC scenarios to be evaluated in a simulation environment to estimate consumer benefits of the hypothetical DCFC networks in terms of increased driving range and electric vehicle miles traveled (eVMT). Simulated utilization of the hypothetical DCFC networks was analyzed for geographic trends, particularly for correlations with vehicle electric range. Finally, a subset of simulations is presented for consumers with potentially inconsistent access to charging at their home location and presumably greater reliance on public DCFC infrastructure.

  14. High speed auto-charging system for condenser bank

    International Nuclear Information System (INIS)

    Mizuno, Yasunori; Bito, Fumio; Fujita, Kazuhiko; Sometani, Taro

    1987-01-01

    A current-control type high-speed charging system, which is intended for auto-charging of the condenser bank, is developed. Moreover, the system can also serve to compensate the current leakage from the condenser bank so that the charged voltage can be kept constant. The system consists of a sequence circuit, a charging current control circuit (or auto-charging circuit) and a charging circuit. The auto-charging circuit is characterized by the use of a triac to control the current. The current, controlled by the circuit, is supplied to the condenser bank through a step-up transformer and voltage doubler rectifier circuit. It is demonstrated that the use of the high-speed auto-charging circuit can largely decrease the required charging time, compared to constant voltage charging. In addition, the compensation function is shown to serve effectively for maintaining a constant voltage after the completion of charging. The required charging time is decreases as the charging current increases. The maximum charging current is decided by the rating of the traic and the current rating of the rectifier diode in the secondary circuit. Major components of these circuits have decreased impedances to minimize the effect of noise, so that the possibility of an accident can be eliminated. Other various improvements are made in the grounding circuit and the charging protection circuit in order to ensure safety. (Nogami, K.)

  15. Spin alignment of ρ0 mesons produced in antineutrino and neutrino neon charged-current interactions

    International Nuclear Information System (INIS)

    Wittek, W.; Aderholz, M.; Schmitz, N.; Guy, J.; Cooper-Sarkar, A.M.; Venus, W.; Brisson, V.; Petiau, P.; Vallee, C.; Calicchio, M.; Erriquez, O.; Fogli-Muciaccia, M.T.; Jones, G.T.; Middleton, R.P.; O'Neale, S.W.; Varvell, K.; Klein, H.; Morrison, D.R.O.; Parker, M.A.; Wachsmuth, H.; Vayaki, A.

    1987-01-01

    In a bubble chamber experiment with BEBC the spin alignment parameter η=1/2(2ρ 00 -ρ 11 -ρ -1-1 ) is measured for ρ 0 mesons produced in deep inelastic charged-current antineutrino and neutrino interactions on neon. In the current fragmentation region η is found to be η ν =0.48±0.27(stat.)±0.15(syst.) for anti νNe and η ν =0.12±0.20(stat.)±0.10(syst.) for νNe interactions. (orig.)

  16. Decentralized energy management strategy based on predictive controllers for a medium voltage direct current photovoltaic electric vehicle charging station

    International Nuclear Information System (INIS)

    Torreglosa, Juan P.; García-Triviño, Pablo; Fernández-Ramirez, Luis M.; Jurado, Francisco

    2016-01-01

    Highlights: • Electric vehicle charging station supplied by photovoltaic, batteries and grid connection is analyzed. • The bus voltage is the key parameter for controlling the system by decentralized approach. • Decentralized control approach facilities the enlargement of the system. • Photovoltaic and battery systems are controlled by model predictive controllers. • Response by model predictive controllers improves that by PI controllers. - Abstract: The use of distributed charging stations based on renewable energy sources for electric vehicles has increased in recent years. Combining photovoltaic solar energy and batteries as energy storage system, directly tied into a medium voltage direct current bus, and with the grid support, results to be an interesting option for improving the operation and efficiency of electric vehicle charging stations. In this paper, an electric vehicle charging station supplied by photovoltaic solar panels, batteries and with grid connection is analysed and evaluated. A decentralized energy management system is developed for regulating the energy flow among the photovoltaic system, the battery and the grid in order to achieve the efficient charging of electric vehicles. The medium voltage direct current bus voltage is the key parameter for controlling the system. The battery is controlled by a model predictive controller in order to keep the bus voltage at its reference value. Depending on the state-of-charge of the battery and the bus voltage, the photovoltaic system can work at maximum power point tracking mode or at bus voltage sustaining mode, or even the grid support can be needed. The results demonstrate the proper operation and energy management of the electric vehicle charging station under study.

  17. Noise-enhanced chaos in a weakly coupled GaAs/(Al,Ga)As superlattice

    Science.gov (United States)

    Yin, Zhizhen; Song, Helun; Zhang, Yaohui; Ruiz-García, Miguel; Carretero, Manuel; Bonilla, Luis L.; Biermann, Klaus; Grahn, Holger T.

    2017-01-01

    Noise-enhanced chaos in a doped, weakly coupled GaAs /Al0.45Ga0.55As superlattice has been observed at room temperature in experiments as well as in the results of the simulation of nonlinear transport based on a discrete tunneling model. When external noise is added, both the measured and simulated current-versus-time traces contain irregularly spaced spikes for particular applied voltages, which separate a regime of periodic current oscillations from a region of no current oscillations at all. In the voltage region without current oscillations, the electric-field profile consist of a low-field domain near the emitter contact separated by a domain wall consisting of a charge accumulation layer from a high-field regime closer to the collector contact. With increasing noise amplitude, spontaneous chaotic current oscillations appear over a wider bias voltage range. For these bias voltages, the domain boundary between the two electric-field domains becomes unstable and very small current or voltage fluctuations can trigger the domain boundary to move toward the collector and induce chaotic current spikes. The experimentally observed features are qualitatively very well reproduced by the simulations. Increased noise can consequently enhance chaotic current oscillations in semiconductor superlattices.

  18. Current bistability in a weakly coupled multi-quantum well structure: a magnetic field induced 'memory effect'

    International Nuclear Information System (INIS)

    Feu, W H M; Villas-Boas, J M; Cury, L A; Guimaraes, P S S; Vieira, G S; Tanaka, R Y; Passaro, A; Pires, M P; Landi, S M; Souza, P L

    2009-01-01

    A study of magnetotunnelling in weakly coupled multi-quantum wells reveals a new phenomenon which constitutes a kind of memory effect in the sense that the electrical resistance of the sample after application of the magnetic field is different from before and contains the information that a magnetic field was applied previously. The change in the electric field domain configuration triggered by the magnetic field was compared for two samples, one strictly periodic and another with a thicker quantum well inserted into the periodic structure. For applied biases at which two electric field domains are present in the sample, as the magnetic field is increased a succession of discontinuous reductions in the electrical resistance is observed due to the magnetic field-induced rearrangement of the electric field domains, i.e. the domain boundary jumps from well to well as the magnetic field is changed. The memory effect is revealed for the aperiodic structure as the electric field domain configuration triggered by the magnetic field remains stable after the field is reduced back to zero. This effect is related to the multi-stability in the current-voltage characteristics observed in some weakly coupled multi-quantum well structures.

  19. Measurement of the antineutrino to neutrino charged-current interaction cross section ratio in MINERvA

    Science.gov (United States)

    Ren, L.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Han, J. Y.; Harris, D. A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Ramírez, M. A.; Ransome, R. D.; Ray, H.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Sultana, M.; Sánchez Falero, S.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; MinerνA Collaboration

    2017-04-01

    We present measurements of the neutrino and antineutrino total charged-current cross sections on carbon and their ratio using the MINERvA scintillator-tracker. The measurements span the energy range 2-22 GeV and were performed using forward and reversed horn focusing modes of the Fermilab low-energy NuMI beam to obtain large neutrino and antineutrino samples. The flux is obtained using a subsample of charged-current events at low hadronic energy transfer along with precise higher energy external neutrino cross section data overlapping with our energy range between 12-22 GeV. We also report on the antineutrino-neutrino cross section ratio, RCC , which does not rely on external normalization information. Our ratio measurement, obtained within the same experiment using the same technique, benefits from the cancellation of common sample systematic uncertainties and reaches a precision of ˜5 % at low energy. Our results for the antineutrino-nucleus scattering cross section and for RCC are the most precise to date in the energy range Eν<6 GeV .

  20. Charged-particle multiplicities in B-meson decay

    International Nuclear Information System (INIS)

    Alam, M.S.; Csorna, S.E.; Fridman, A.; Hicks, R.G.; Panvini, R.S.; Andrews, D.; Avery, P.; Berkelman, K.; Cabenda, R.; Cassel, D.G.; DeWire, J.W.; Ehrlich, R.; Ferguson, T.; Gilchriese, M.G.D.; Gittelman, B.; Hartill, D.L.; Herrup, D.; Herzlinger, M.; Holzner, S.; Kandaswamy, J.; Kreinick, D.L.; Mistry, N.B.; Morrow, F.; Nordberg, E.; Perchonok, R.; Plunkett, R.; Silverman, A.; Stein, P.C.; Stone, S.; Weber, D.; Wilcke, R.; Sadoff, A.J.; Bebek, C.; Haggerty, J.; Hempstead, M.; Izen, J.M.; Loomis, W.A.; MacKay, W.W.; Pipkin, F.M.; Rohlf, J.; Tanenbaum, W.; Wilson, R.; Chadwick, K.; Chauveau, J.; Ganci, P.; Gentile, T.; Kagan, H.; Kass, R.; Melissinos, A.C.; Olsen, S.L.; Poling, R.; Rosenfeld, C.; Rucinski, G.; Thorndike, E.H.; Green, J.; Sannes, F.; Skubic, P.; Snyder, A.; Stone, R.; Brody, A.; Chen, A.; Goldberg, M.; Horwitz, N.; Lipari, P.; Kooy, H.; Moneti, G.C.; Pistilli, P.

    1982-01-01

    The charged multiplicity has been measured at the UPSILON(4S) and a value of 5.75 +- 0.1 +- 0.2 has been obtained for the mean charged multiplicity in B-meson decay. Combining this result with the measurement of prompt letpons from B decay, the values 4.1 +- 0.35 +- 0.2 and 6.3 +- 0.2 +- 0.2 are found for the semileptonic and nonleptonic charged multiplicities, respectively. If b→c dominance is assumed for the weak decay of the B meson, then the semileptonic multiplicity is consistent with the recoil mass determined from the lepton momentum spectrum

  1. Features of the low-power charge controller of lead-acid current sources charged by solar batteries

    International Nuclear Information System (INIS)

    Tukfatullin, O.F.; Yuldoshev, I.A.; Solieva, N.A.

    2008-01-01

    Influence of different factors on exploitations characteristics of solar photoelectric plant is investigated by field-performance data. A construction of charge controller of the lead-acid accumulator battery charging by means of solar battery is analyzed taking into account these factors. (authors)

  2. Propagation of dust-acoustic waves in weakly ionized plasmas with ...

    Indian Academy of Sciences (India)

    63, No. 5. — journal of. November 2004 physics pp. 1021–1030. Propagation of dust-acoustic waves in weakly ionized plasmas with dust-charge fluctuation∗. K K MONDAL. Department of Physics ... has essentially to be considered because inertia is provided by the mass of the dust particles. Moreover, the phase velocity ...

  3. Measurement of the #betta#sub(μ) and anti #betta#sub(μ)-nucleon charged current total cross sections, and the ratio of #betta#sub(μ) neutron to #betta#sub(μ) proton charged current total cross-section

    International Nuclear Information System (INIS)

    Allasia, D.; Bisi, V.; Gamba, D.; Marzari-Chiesa, A.; Ramello, L.; Riccati, L.; Romero, A.; Bobisut, F.; Calimani, E.; Ciampolillo, S.; Huzita, H.; Loreti, M.; Sconza, A.; Bolognese, T.; Faccini-Turluer, M.L.; Louedec, C.; Mosca, L.; Vignaud, D.; Bonarelli, R.; Capiluppi, P.; Derkaoui, J.; Giacomelli, G.; Mandrioli, G.; Rossi, A.M.; Serra-Lugaresi, P.; Frodesen, A.G.; Halsteinslid, A.; Hornaes, A.

    1983-04-01

    This report contains an investigation performed by the Amsterdam-Bergen-Bologna-Padova-Pisa-Saclay-Torino collaboration. The total #betta#sub(μ)- and anti #betta#sub(μ)-nucleon charged current cross sections have been measured in BEBC filled with deuterium and exposed to the wide band neutrino and antineutrino beams at the CERN-SPS. Assuming a linear energy dependence for the cross sections, sigma = a Esub((anti #betta#)), the authors obtained the coefficients asub(#betta#N) = 0.60 +- 0.04 and asub(anti #betta#N) = 0.30 +- 0.02 (in units of 10 - 38 cm 2 /GeV), where the quoted error is mainly systematic. The ratio of the cross sections is sigmasub(anti #betta#N)/sigmasub(#betta#N) = 0.50 +- 0.03. They also determined the ratio of the charged current cross section for neutrino interactions on neutrons and protons R = sigmasub(#betta#n)/sigmasub(#betta#p) = 2.10 +- 0.08 (stat.) +- 0.22 (syst.). The dependence of R on the variables x, y and Esub(#betta#) is discussed. (Auth.)

  4. Safety Design for Smart Electric Vehicle Charging with Current and Multiplexing Control

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ching-Yen; Youn, Edward; Chynoweth, Joshua; Qiu, Charlie; Chu, Chi-Cheng; Gadh, Rajit

    2013-10-21

    As Electric Vehicles (EVs) increase, charging infrastructure becomes more important. When during the day there is a power shortage, the charging infrastructure should have the options to either shut off the power to the charging stations or to lower the power to the EVs in order to satisfy the needs of the grid. This paper proposes a design for a smart charging infrastructure capable of providing power to several EVs from one circuit by multiplexing power and providing charge control and safety systems to prevent electric shock. The safety design is implemented in different levels that include both the server and the smart charging stations. With this smart charging infrastructure, the shortage of energy in a local grid could be solved by our EV charging management system.

  5. What is the magnetic Weak Gravity Conjecture for axions

    Energy Technology Data Exchange (ETDEWEB)

    Hebecker, Arthur; Henkenjohann, Philipp [Institute for Theoretical Physics, University of Heidelberg (Germany); Witkowski, Lukas T. [APC, Universite Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cite, Paris (France)

    2017-03-15

    The electric Weak Gravity Conjecture demands that axions with large decay constant f couple to light instantons. The resulting large instantonic corrections pose problems for natural inflation. We explore an alternative argument based on the magnetic Weak Gravity Conjecture for axions, which we try to make more precise. Roughly speaking, it demands that the minimally charged string coupled to the dual 2-form-field exists in the effective theory. Most naively, such large-f strings curve space too much to exist as static solutions, thus ruling out large-f axions. More conservatively, one might allow non-static string solutions to play the role of the required charged objects. In this case, topological inflation would save the superplanckian axion. Furthermore, a large-f axion may appear in the low-energy effective theory based on two subplanckian axions in the UV. The resulting effective string is a composite object built from several elementary strings and domain walls. It may or may not satisfy the magnetic Weak Gravity Conjecture depending on how strictly the latter is interpreted and on the cosmological dynamics of this composite object, which remain to be fully understood. Finally, we recall that large-field brane inflation is naively possible in the codimension-one case. We show how string-theoretic back-reaction closes this apparent loophole of large-f (non-periodic) pseudo-axions. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. ISOLTRAP Mass Measurements for Weak-Interaction Studies

    International Nuclear Information System (INIS)

    Kellerbauer, A.; Delahaye, P.; Herlert, A.; Audi, G.; Guenaut, C.; Lunney, D.; Beck, D.; Herfurth, F.; Kluge, H.-J.; Mukherjee, M.; Rodriguez, D.; Weber, C.; Yazidjian, C.; Blaum, K.; Bollen, G.; Schwarz, S.; George, S.; Schweikhard, L.

    2006-01-01

    The conserved-vector-current (CVC) hypothesis of the weak interaction and the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix are two fundamental postulates of the Standard Model. While existing data on CVC supports vector current conservation, the unitarity test of the CKM matrix currently fails by more than two standard deviations. High-precision mass measurements performed with the ISOLTRAP experiment at ISOLDE/CERN provide crucial input for these fundamental studies by greatly improving our knowledge of the decay energy of super-allowed β decays. Recent results of mass measurements on the β emitters 18Ne, 22Mg, 34Ar, and 74Rb as pertaining to weak-interaction studies are presented

  7. Coherent production of ρ - mesons in charged current antineutrino-neon interactions in BEBC

    Science.gov (United States)

    Marage, P.; Aderholz, M.; Allport, P.; Armenise, N.; Baton, J. P.; Berggren, M.; Bertrand, D.; Brisson, V.; Bullock, F. W.; Burkot, W.; Calicchio, M.; Clayton, E. F.; Coghen, T.; Cooper-Sarkar, A. M.; Erriquez, O.; Fitch, P. J.; Guy, J.; Hamisi, F.; Hulth, P. O.; Jones, G. T.; Kasper, P.; Katz, U. F.; Klein, H.; Matsinos, E.; Middleton, R. P.; Miller, D. B.; Mobayyen, M. M.; Morrison, D. R. O.; Neveu, M.; O'Neale, S. W.; Parker, M. A.; Petiau, P.; Sacton, J.; Sansum, R. A.; Schmitz, N.; Simopoulou, E.; Vallée, C.; Varvell, K.; Vayaki, A.; Venus, W.; Wachsmuth, H.; Wells, J.; Wittek, W.

    1987-09-01

    Coherent production of ρ - mesons in charged current antineutrino interactions on neon nuclei is studied in the BEBC bubble chamber exposed to the CERN SPS wide band beam. The cross section is measured to be (95±25)·10-40 cm2 per neon nucleus, averaged over the beam energy spectrum. The distributions of kinematical variables and the absolute value of the cross section are in agreement with theoretical predictions based on the CVC hypothesis and the vector meson dominance model.

  8. Spin alignment of ρ0 mesons produced in antineutrino and neutrino neon charged-current interactions

    Science.gov (United States)

    Wittek, W.; Guy, J.; Adeholz, M.; Allport, P.; Baton, J. P.; Berggren, M.; Bertrand, D.; Brisson, V.; Bullock, F. W.; Burkot, W.; Calicchio, M.; Clayton, E. F.; Coghen, T.; Cooper-Sarkar, A. M.; Erriquez, O.; Fitch, P. J.; Fogli-Muciaccia, M. T.; Hulth, P. O.; Jones, G. T.; Kasper, P.; Klein, H.; Marage, P.; Middleton, R. P.; Miller, D. B.; Mobayyen, M. M.; Morrison, D. R. O.; Neveu, M.; O'Neale, S. W.; Parker, M. A.; Petiau, P.; Sacton, J.; Sansum, R. A.; Schmitz, N.; Simopoulou, E.; Vallee, C.; Varvell, K.; Vayaki, A.; Venus, W.; Wachsmuth, H.; Wells, J.

    1987-03-01

    In a bubble chamber experiment with BEBC the spin alignment parameter η=1/2 (2ϱ00 - ϱ11 - ϱ-1-1) is measured for ϱ0 mesons produced in deep inelastic charged-current antineutrino and neutrono interactions on neon. In the current fragmentation region η is found to be ηv=0.48+/-0.27 (stat.)+/-0.15 (syst.) for vNe and ηv=0.12+/-0.20 (stat.)+/-0.10 (syst.) for vNe interactions Present address: University College London, London WC1E 6BT, UK.

  9. Dissipative dust-acoustic shock waves in a varying charge electronegative magnetized dusty plasma with trapped electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bacha, Mustapha [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Algerian Academy of Sciences and Technologies, Algiers (Algeria)

    2016-08-15

    The combined effects of an oblique magnetic field and electron trapping on dissipative dust-acoustic waves are examined in varying charge electronegative dusty plasmas with application to the Halley Comet plasma (∼10{sup 4} km from the nucleus). A weakly nonlinear analysis is carried out to derive a modified Korteweg-de Vries-Burger-like equation. Making use of the equilibrium current balance equation, the physically admissible values of the electron trapping parameter are first constrained. We then show that the Burger dissipative term is solely due to the dust charge variation process. It is found that an increase of the magnetic field obliqueness or a decrease of its magnitude renders the shock structure more dispersive.

  10. First Measurement of the Muon Anti-Neutrino Charged Current Quasielastic Double-Differential Cross-Section

    Energy Technology Data Exchange (ETDEWEB)

    Grange, Joseph M. [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    This dissertation presents the first measurement of the muon antineutrino charged current quasi-elastic double-differential cross section. These data significantly extend the knowledge of neutrino and antineutrino interactions in the GeV range, a region that has recently come under scrutiny due to a number of conflicting experimental results. To maximize the precision of this measurement, three novel techniques were employed to measure the neutrino background component of the data set. Representing the first measurements of the neutrino contribution to an accelerator-based antineutrino beam in the absence of a magnetic field, the successful execution of these techniques carry implications for current and future neutrino experiments.

  11. Measurement of high-Q2 charged current cross sections in e+p deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Rautenberg, J.

    2004-06-01

    Cross sections for charged current deep inelastic scattering have been measured in e + p collisions at a center-of-mass energy of 318 GeV. The data collected with the ZEUS detector at HERA in the running periods 1999 and 2000 correspond to an integrated luminosity of 61 pb -1 . Single differential cross sections dσ/dQ 2 , dσ/dx and dσ/dy have been measured for Q 2 >200 GeV 2 , as well as the double differential reduced cross section d 2 σ/dxdQ 2 in the kinematic range 280 GeV 2 2 2 and 0.008 - p charged current deep inelastic scattering cross sections. The helicity structure is investigated in particular. The mass of the space-like W boson propagator has been determined from a fit to dσ/dQ 2 . (orig.)

  12. Charge preamplifier

    International Nuclear Information System (INIS)

    Chaminade, R.; Passerieux, J.P.

    1961-01-01

    We describe a charge preamplifier having the following properties: - large open loop gain giving both stable gain and large input charge transfer; - stable input grid current with aging and without any adjustment; - fairly fast rise; - nearly optimum noise performance; - industrial material. (authors)

  13. Influence of electric current intensity on the performance of electroformed copper liner for shaped charge application

    Directory of Open Access Journals (Sweden)

    Tamer Elshenawy

    2017-12-01

    Full Text Available Electrolytic Copper used in the shaped charge liner manufacturing can be produced from acid solution using electro-deposition technique. The intensity of the applied electric current controls the quality of the produced copper grade. The electric current intensity within the electrolytic acidic solution cell with the minimum oxygen and sulfur elements in the produced copper was optimized and found to be 30–40 A/Ft2. The elemental composition of the obtained electrolytic copper was determined using high-end stationary vacuum spectrometer, while the oxygen was determined precisely using ELTRA ONH-2000 apparatus. Besides, SEM was used to investigate the shape of the copper texture inside the deposited layers and to determine the average grain size. New relations have been obtained between the applied current intensity and both the oxygen and sulfur contents and the average grain size of the produced copper. Experimental result showed that when the applied current density increases to a certain limit, the oxygen and sulfur content in the electrolytic copper decreases. Performance of the produced copper liner was investigated by the static firing of a small caliber shaped charge containing an electro-formed copper liners, where the penetration depth of the optimized electrolytic liner was enhanced by 22.7% compared to that of baseline non-optimized liner.

  14. How does youth cigarette use respond to weak economic periods? Implications for the current economic crisis.

    Science.gov (United States)

    Arkes, Jeremy

    2012-03-01

    This paper examines whether youth cigarette use increases during weak economic periods (as do youth alcohol and drug use). The data come from the 1997 National Longitudinal Survey of Youth. With repeated measures over the 1997-2006 period, for almost 9,000 individuals, the samples include 30,000+ teenagers (15-19 years) and 30,000+ young adults (20-24 years). Logit models with state and year controls are estimated. The results indicate that teenagers and young adults increase cigarette use when the economy is weaker, implying that the current financial crisis has likely increased youth cigarette use relative to what it would have otherwise been.

  15. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment.

    Science.gov (United States)

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-10-20

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.

  16. An Improved Wireless Battery Charging System

    OpenAIRE

    Woo-Seok Lee; Jin-Hak Kim; Shin-Young Cho; Il-Oun Lee

    2018-01-01

    This paper presents a direct wireless battery charging system. The output current of the series-series compensated wireless power transfer (SS-WPT) system is used as a current source, and the output voltage of AC-DC converter controls the current source. Therefore, the proposed wireless battery charging system needs no battery charging circuit to carry out charging profiles, and can solve space constraints and thermal problems in many battery applications. In addition, the proposed wireless b...

  17. Polarization of Λ hyperons produced inclusively in v p andbar v p charged current interactions

    Science.gov (United States)

    Jones, G. T.; Kennedy, B. W.; O'Neale, S. W.; Böckmann, K.; Gebel, W.; Geich-Gimbel, C.; Nellen, B.; Cooper-Sarkar, A. M.; Grant, A.; Klein, H.; Morrison, D. R. O.; Schmid, P.; Wachsmuth, H.; Barnham, K. W. J.; Clayton, E. F.; Miller, D. B.; Mobayyen, M. M.; Villalobos-Baillie, O.; Aderholz, M.; Deck, L.; Schmitz, N.; Settles, R.; Wernhard, K. L.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicic, D.; Saitta, B.; Wells, J.

    1985-03-01

    Lambda hyperons from v p andbar v p charged current interactions have been analysed for polarization. A significant polarization is observed for Λ particles in the quasi-elastic region for both types of interactions. Part of this polarization is due to the decay of highly polarized Σ(1385) resonances. The results are compared with simple predictions of the quark parton model.

  18. Magnetic charge, black holes, and cosmic censorship

    International Nuclear Information System (INIS)

    Hiscock, W.H.

    1981-01-01

    The possibility of converting a Reissner-Nordstroem black hole into a naked singularity by means of test particle accretion is considered. The dually charged Reissner-Nordstroem metric describes a black hole only when M 2 >Q 2 +P 2 . The test particle equations of motion are shown to allow test particles with arbitrarily large magnetic charge/mass ratios to fall radially into electrically charged black holes. To determine the nature of the final state (black hole or naked singularity) an exact solution of Einstein's equations representing a spherical shell of magnetically charged dust falling into an electrically charged black hole is studied. Naked singularities are never formed so long as the weak energy condition is obeyed by the infalling matter. The differences between the spherical shell model and an infalling point test particle are examined and discussed

  19. Electron-beam-charged dielectrics: Internal charge distribution

    Science.gov (United States)

    Beers, B. L.; Pine, V. W.

    1981-01-01

    Theoretical calculations of an electron transport model of the charging of dielectrics due to electron bombardment are compared to measurements of internal charge distributions. The emphasis is on the distribution of Teflon. The position of the charge centroid as a function of time is not monotonic. It first moves deeper into the material and then moves back near to the surface. In most time regimes of interest, the charge distribution is not unimodal, but instead has two peaks. The location of the centroid near saturation is a function of the incident current density. While the qualitative comparison of theory and experiment are reasonable, quantitative comparison shows discrepancies of as much as a factor of two.

  20. Bias dependent charge trapping in MOSFETs during 1 and 6 MeV electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, N.S. [Department of Chemical Engineering, Mie University, 5148507 (Japan); Kulkarni, V.R.; Mathakari, N.L.; Bhoraskar, V.N. [Department of Physics, Univeristy of Pune, Pune 411007 (India); Dhole, S.D. [Department of Physics, Univeristy of Pune, Pune 411007 (India)], E-mail: sanjay@physics.unipune.ernet.in

    2008-06-15

    To study irradiation-induced charge trapping in SiO{sub 2} and around the SiO{sub 2}-Si interface, depletion n-MOSFETs (metal-oxide-semiconductor field effect transistor) were used. The devices were gate biased during 1 and 6 MeV pulsed electron irradiation. The I{sub D}-V{sub DS} (drain current versus drain voltage) and I{sub D}-V{sub GS} (drain current versus gate voltage) characteristics were measured before and after irradiation. The shift in threshold voltage {delta}V{sub T} (difference in threshold voltage V{sub T} before and after irradiation) exhibited trends depending on the applied gate bias during 1 MeV electron irradiation. This behavior can be associated to the contribution of irradiation-induced negative charge {delta}N{sub IT} buildup around the SiO{sub 2}-Si interface to {delta}V{sub T}, which is sensitive to the electron tunneling from the substrates. However, only weak gate bias dependence was observed in 6 MeV electron irradiated devices. Independent of the energy loss and applied bias, the positive oxide trapped charge {delta}N{sub OT} is marginal and can be associated to thin and good quality of SiO{sub 2}. These results are explained using screening of free and acceptor states by the applied bias during irradiation, thereby reducing the total irradiation-induced charges.

  1. An exploration into municipal waste charges for environmental management at local level: The case of Spain.

    Science.gov (United States)

    Puig-Ventosa, Ignasi; Sastre Sanz, Sergio

    2017-11-01

    Municipal waste charges have been widely acknowledged as a crucial tool for waste management at the local level. This is because they contribute to financing the costly provision of waste collection and treatment services and they can be designed to provide an economic stimulus to encourage citizens and local businesses to improve separate collection and recycling. This work presents a methodology to evaluate a sample of 125 municipal waste charges in Spain for the year 2015, covering 33.91% of the Spanish population. The qualitative benchmarking of municipal waste charges shows that flat fees are frequent, whereas variable fees are set according to criteria that are weakly related to waste generation. The average fee per household is €82.2 per year, which does not provide full cost recovery. The current configuration of municipal waste charges penalises taxpayers contributing to source separation of waste, while subsidising less environmentally friendly behaviours. In this sense, municipal waste charges in Spain are far from applying the polluter pays principle. Furthermore, it is argued that municipal waste charges are ineffective for promoting the proper application of the so-called 'waste hierarchy'.

  2. Reconstructing weak values without weak measurements

    International Nuclear Information System (INIS)

    Johansen, Lars M.

    2007-01-01

    I propose a scheme for reconstructing the weak value of an observable without the need for weak measurements. The post-selection in weak measurements is replaced by an initial projector measurement. The observable can be measured using any form of interaction, including projective measurements. The reconstruction is effected by measuring the change in the expectation value of the observable due to the projector measurement. The weak value may take nonclassical values if the projector measurement disturbs the expectation value of the observable

  3. Closing in on the radiative weak chiral couplings

    Science.gov (United States)

    Cappiello, Luigi; Catà, Oscar; D'Ambrosio, Giancarlo

    2018-03-01

    We point out that, given the current experimental status of radiative kaon decays, a subclass of the O (p^4) counterterms of the weak chiral lagrangian can be determined in closed form. This involves in a decisive way the decay K^± → π ^± π ^0 l^+ l^-, currently being measured at CERN by the NA48/2 and NA62 collaborations. We show that consistency with other radiative kaon decay measurements leads to a rather clean prediction for the {O}(p^4) weak couplings entering this decay mode. This results in a characteristic pattern for the interference Dalitz plot, susceptible to be tested already with the limited statistics available at NA48/2. We also provide the first analysis of K_S→ π ^+π ^-γ ^*, which will be measured by LHCb and will help reduce (together with the related K_L decay) the experimental uncertainty on the radiative weak chiral couplings. A precise experimental determination of the {O}(p^4) weak couplings is important in order to assess the validity of the existing theoretical models in a conclusive way. We briefly comment on the current theoretical situation and discuss the merits of the different theoretical approaches.

  4. Nondissipative optimum charge regulator

    Science.gov (United States)

    Rosen, R.; Vitebsky, J. N.

    1970-01-01

    Optimum charge regulator provides constant level charge/discharge control of storage batteries. Basic power transfer and control is performed by solar panel coupled to battery through power switching circuit. Optimum controller senses battery current and modifies duty cycle of switching circuit to maximize current available to battery.

  5. Axial weak currents in the Wess-Zumino term

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo

    1986-01-01

    In a simplified model lagrangian of 3 quarks with an SU(2)sub(L) gauging of chiral SU(3)sub(L)xSU(3)sub(R) to introduce W-boson, we analyse certain complications associated with the low-energy theorem including axial weak fields. We first show that the low-energy amplitude is independent of the form of the quark-level anomalous identity, whether in the covariant form or the consistent form. However, the interplay of the short-distance dynamics (anomalous identity) and the long-distance dynamics (low-energy theorem) becomes involved in the presence of axial fields. We then discuss what kinds of conditions single out the gauged Wess-Zumino term as a low-energy effective action. The connection of the low-energy theorem with the 't Hooft anomaly matching condition is also discussed. (orig.)

  6. The weak-scale hierarchy and discrete symmetries

    International Nuclear Information System (INIS)

    Haba, Naoyuki; Matsuoka, Takeo; Hattori, Chuichiro; Matsuda, Masahisa; Mochinaga, Daizo.

    1996-01-01

    In the underlying Planck scale theory, we introduce a certain type of discrete symmetry, which potentially brings the stability of the weak-scale hierarchy under control. Under the discrete symmetry the μ-problem and the tadpole problem can be solved simultaneously without relying on some fine-tuning of parameters. Instead, it is required that doublet Higgs and color-triplet Higgs fields reside in different irreducible representations of the gauge symmetry group at the Planck scale and that they have distinct charges of the discrete symmetry group. (author)

  7. Charge symmetry at the partonic level

    Energy Technology Data Exchange (ETDEWEB)

    Londergan, J. T.; Peng, J. C.; Thomas, A. W.

    2010-07-01

    This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.

  8. A connection between the strong and weak interactions

    International Nuclear Information System (INIS)

    Treiman, S.B.

    1989-01-01

    By studying weak scattering reactions (such as pion-nucleon scattering), the author and his colleague Marvin L Goldberger became renowned in the 1950s for work on dispersion relations. As a result of their collaboration a remarkable and unexpected connection was found between strong and weak interaction quantities. Agreement with experiment was good. Work by others found the same result, but via the partially conserved axial reactor current relation between the axial current divergence and the canonical pion field. (UK)

  9. A precise determination of the nucleon structure functions in charged-current interactions on an iron target

    International Nuclear Information System (INIS)

    Vallage, B.

    1987-01-01

    570 000 neutrino-iron and 370 000 antineutrino-iron charged-current events were obtained from the Wide Band Beam exposure of the CDHS detector at CERN in 1983, at energies ranging from 20 to 400 GeV. These large statistics allowed a precise measurement of the charged-current differential cross-sections and a detailed study of systematic effects. The nucleon structure functions have been determined in the framework of the quark-parton model, in the kinematic range: 0.015 2 2 /c 2 . The longitudinal structure function F L (x) is in good agreement with the QCD predicted shape. Deviations from scale invariance are clearly seen from the functions F 2 and xF 3 . The Q 2 evolution of the valence quark distribution has been compared with the QCD prediction in order to measure the scale parameter Λ. A good agreement is obtained only if the low Q 2 points are removed from the comparison. Our experiment favours a value of Λ between 50 and 250 MeV [fr

  10. Space Charge Effects

    CERN Document Server

    Ferrario, M.; Palumbo, L.

    2014-12-19

    The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency , shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.

  11. Estimation of the spatial distribution of traps using space-charge-limited current measurements in an organic single crystal

    KAUST Repository

    Dacuña, Javier

    2012-09-06

    We used a mobility edge transport model and solved the drift-diffusion equation to characterize the space-charge-limited current of a rubrene single-crystal hole-only diode. The current-voltage characteristics suggest that current is injection-limited at high voltage when holes are injected from the bottom contact (reverse bias). In contrast, the low-voltage regime shows that the current is higher when holes are injected from the bottom contact as compared to hole injection from the top contact (forward bias), which does not exhibit injection-limited current in the measured voltage range. This behavior is attributed to an asymmetric distribution of trap states in the semiconductor, specifically, a distribution of traps located near the top contact. Accounting for a localized trap distribution near the contact allows us to reproduce the temperature-dependent current-voltage characteristics in forward and reverse bias simultaneously, i.e., with a single set of model parameters. We estimated that the local trap distribution contains 1.19×1011 cm -2 states and decays as exp(-x/32.3nm) away from the semiconductor-contact interface. The local trap distribution near one contact mainly affects injection from the same contact, hence breaking the symmetry in the charge transport. The model also provides information of the band mobility, energy barrier at the contacts, and bulk trap distribution with their corresponding confidence intervals. © 2012 American Physical Society.

  12. Internal Charging

    Science.gov (United States)

    Minow, Joseph I.

    2014-01-01

    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  13. Detection of a weak ring current in a nonaromatic porphyrin nanoring using magnetic circular dichroism.

    Science.gov (United States)

    Kowalska, Patrycja; Peeks, Martin D; Roliński, Tomasz; Anderson, Harry L; Waluk, Jacek

    2017-12-13

    We compare the absorption and magnetic circular dichroism (MCD) spectra of a series of porphyrin oligomers - dimer, tetramer, and hexamer - bound in a linear or cyclic fashion. The MCD signal is extremely weak for low energy transitions in the linear oligomers, but it is amplified when the cyclic porphyrin hexamer binds a template, restricting rotational freedom. The appearance of Faraday A terms in the MCD spectra demonstrates the presence of a magnetic moment, and thus, uncompensated electronic current. The value of the excited state magnetic moment estimated from the A term is very low compared with those of monomeric porphyrins, which confirms the nonaromatic character of the cyclic array and the lack of a global ring current in the ground state of the neutral nanoring. DFT calculations predict the absorption and MCD patterns reasonably well, but fail to reproduce the MCD sign inversion observed in substituted monomeric zinc porphyrins ("soft" chromophores). Interestingly, a correct sign pattern is predicted by INDO/S calculations. Analysis of the MCD spectra of the monomeric porphyrin unit allowed us to distinguish between two close-lying lowest energy transitions, which some previous assignments placed further apart. The present results prove the usefulness of MCD not only for deconvolution and assignment of electronic transitions, but also as a sensitive tool for detecting electronic ring currents.

  14. Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density.

    Science.gov (United States)

    Filip, Jaroslav; Andicsová-Eckstein, Anita; Vikartovská, Alica; Tkac, Jan

    2017-03-15

    Previously we showed that an effective bilirubin oxidase (BOD)-based biocathode using graphene oxide (GO) could be prepared in 2 steps: 1. electrostatic adsorption of BOD on GO; 2. electrochemical reduction of the BOD-GO composite to form a BOD-ErGO (electrochemically reduced GO) film on the electrode. In order to identify an optimal charge density of GO for BOD-ErGO composite preparation, several GO fractions differing in an average flake size and ζ-potential were prepared using centrifugation and consequently employed for BOD-ErGO biocathode preparation. A simple way to express surface charge density of these particular GO nanosheets was developed. The values obtained were then correlated with biocatalytic and electrochemical parameters of the prepared biocathodes, i.e. electrocatalytically active BOD surface coverage (Γ), heterogeneous electron transfer rate (k S ) and a maximum biocatalytic current density. The highest bioelectrocatalytic current density of (597±25)μAcm -2 and the highest Γ of (23.6±0.9)pmolcm -2 were obtained on BOD-GO composite having the same moderate negative charge density, but the highest k S of (79.4±4.6)s -1 was observed on BOD-GO composite having different negative charge density. This study is a solid foundation for others to consider the influence of a charge density of GO on direct bioelectrochemistry/bioelectrocatalysis of other redox enzymes applicable for construction of biosensors, bioanodes, biocathodes or biofuel cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Characterization and correction of charge-induced pixel shifts in DECam

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, D.; Bernstein, G. M.; Jarvis, M.; Rowe, B.; Vikram, V.; Plazas, A. A.; Seitz, S.

    2015-05-01

    Interaction of charges in CCDs with the already accumulated charge distribution causes both a flux dependence of the point-spread function (an increase of observed size with flux, also known as the brighter/fatter effect) and pixel-to-pixel correlations of the {Poissonian} noise in flat fields. We describe these effects in the Dark Energy Camera (DECam) with charge dependent shifts of effective pixel borders, i.e. the Antilogus et al. (2014) model, which we fit to measurements of flat-field {Poissonian} noise correlations. The latter fall off approximately as a power-law r(-)(2.5) with pixel separation r, are isotropic except for an asymmetry in the direct neighbors along rows and columns, are stable in time, and are weakly dependent on wavelength. They show variations from chip to chip at the 20% level that correlate with the silicon resistivity. The charge shifts predicted by the model cause biased shape measurements, primarily due to their effect on bright stars, at levels exceeding weak lensing science requirements. We measure the flux dependence of star images and show that the effect can be mitigated by applying the reverse charge shifts at the pixel level during image processing. Differences in stellar size, however, remain significant due to residuals at larger distance from the centroid.

  16. Full counting statistics of a charge pump in the Coulomb blockade regime

    Science.gov (United States)

    Andreev, A. V.; Mishchenko, E. G.

    2001-12-01

    We study full charge counting statistics (FCCS) of a charge pump based on a nearly open single electron transistor. The problem is mapped onto an exactly soluble problem of a nonequilibrium g=1/2 Luttinger liquid with an impurity. We obtain an analytic expression for the generating function of the transmitted charge for an arbitrary pumping strength. Although this model contains fractionally charged excitations only integer transmitted charges can be observed. In the weak pumping limit FCCS correspond to a Poissonian transmission of particles with charge e*=e/2 from which all events with odd numbers of transferred particles are excluded.

  17. The K 0/π- ratio and strangeness supression in v p andbar vp charged current interactions

    Science.gov (United States)

    Jones, G. T.; Kennedy, B. W.; O'Neale, S. W.; Böckmann, K.; Gebel, W.; Geich-Gimbel, C.; Nellen, B.; Cooper-Sarkar, A. M.; Grant, A.; Klein, H.; Morrison, D. R. O.; Schmid, P.; Wachsmuth, H.; Chima, J. S.; Mobayyen, M. M.; Talebzadeh, M.; Villalobos-Baillie, O.; Aderholz, M.; Deck, L.; Schmitz, N.; Wernhard, K. L.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicic, D.; Saitta, B.; Wells, J.; Towers, S.; Shotton, P.

    1985-03-01

    Neutral kaon to negative pion production ratios from vp andbar vp charged current interactions in BEBC are presented and compared with LUND fragmentation model predictions. Good agreement is obtained with a strangeness suppression factor λ=0.203±0.014(stat)±0.010(sys). No evidence is seen for an energy dependence of λ in our kinematic region.

  18. Current and future accelerator technologies for charged particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Hywel, E-mail: hywel.owen@manchester.ac.uk [School of Physics and Astronomy, University of Manchester (United Kingdom); Cockcroft Institute for Accelerator Science and Technology, Daresbury Science and Innovation Campus, Warrington WA4 4AD (United Kingdom); Lomax, Antony [Paul Scherrer Institute, Villigen (Switzerland); Department of Physics, ETH Zurich (Switzerland); Jolly, Simon [Department of Physics and Astronomy, University College London (United Kingdom)

    2016-02-11

    The past few years have seen significant developments both of the technologies available for proton and other charged particle therapies, and of the number and spread of therapy centres. In this review we give an overview of these technology developments, and outline the principal challenges and opportunities we see as important in the next decade. Notable amongst these is the ever-increasing use of superconductivity both in particle sources and for treatment delivery, which is likely to greatly increase the accessibility of charged particle therapy treatments to hospital centres worldwide.

  19. Muon-neutrino-induced charged-current cross section without pions: Theoretical analysis

    Science.gov (United States)

    Mosel, U.; Gallmeister, K.

    2018-04-01

    We calculate the charged-current cross sections obtained at the T2K near detector for νμ-induced events without pions in the final state. The method used is quantum-kinetic transport theory. Results are shown first, as a benchmark, for electron-inclusive cross sections on 12C and 16O to be followed with a detailed comparison with the data measured by the T2K Collaboration on C8H8 and H2O targets. The contribution of 2p2h processes is found to be relevant mostly for backward angles; their theoretical uncertainties are within the experimental uncertainties. Particular emphasis is then put on a discussion of events in which pions are first created but then reabsorbed. Their contribution is found to be essential at forward angles.

  20. Electrical conductivity and charge carrier screening in weakly non-ideal argon plasmas

    International Nuclear Information System (INIS)

    Guenther, K.; Lang, S.; Radtke, R.

    1983-01-01

    A pulsed argon discharge as a stable source of weakly non-ideal plasmas is described in connection with the diagnostic necessities for conductivity measurements. The parameters overlap the range for stationary arcs and allow comparison with measurements in cascade arcs. The measured conductivities are explained using the binary collision model considering collisions with neutrals, excited atoms, and ions. A relation between the screening parameter and non-ideality is proposed which should be valid for all elements. (author)

  1. Electrical conductivity and charge carrier screening in weakly non-ideal argon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K; Lang, S; Radtke, R [Akademie der Wissenschaften der DDR, Jena. Zentralinstitut fuer Elektronenphysik

    1983-07-14

    A pulsed argon discharge as a stable source of weakly non-ideal plasmas is described in connection with the diagnostic necessities for conductivity measurements. The parameters overlap the range for stationary arcs and allow comparison with measurements in cascade arcs. The measured conductivities are explained using the binary collision model considering collisions with neutrals, excited atoms, and ions. A relation between the screening parameter and non-ideality is proposed which should be valid for all elements.

  2. Measurement of the $\\beta$-asymmetry parameter of $^{67}$Cu in search for tensor type currents in the weak interaction

    CERN Document Server

    Soti, G.; Breitenfeldt, M.; Finlay, P.; Herzog, P.; Knecht, A.; Köster, U.; Kraev, I.S.; Porobic, T.; Prashanth, P.N.; Towner, I.S.; Tramm, C.; Zákoucký, D.; Severijns, N.

    2014-01-01

    Precision measurements at low energy search for physics beyond the Standard Model in a way complementary to searches for new particles at colliders. In the weak sector the most general $\\beta$ decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear $\\beta$ decay are on the level of several percent. The goal of this paper is extracting new information on tensor coupling constants by measuring the $\\beta$-asymmetry parameter in the pure Gamow-Teller decay of $^{67}$Cu, thereby testing the V-A structure of the weak interaction. An iron sample foil into which the radioactive nuclei were implanted was cooled down to milliKelvin temperatures in a $^3$He-$^4$He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic $\\beta$ radiation was observed with planar high purity germanium d...

  3. Three species one-dimensional kinetic model for weakly ionized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J., E-mail: jorge.gonzalez@upm.es; Donoso, J. M.; Tierno, S. P. [Department of Applied Physics, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2016-06-15

    A three species one-dimensional kinetic model is presented for a spatially homogeneous weakly ionized plasma subjected to the action of a time varying electric field. Planar geometry is assumed, which means that the plasma evolves in the privileged direction of the field. The energy transmitted to the electric charges is channelized to the neutrals thanks to collisions, a mechanism that influences the plasma dynamics. Charge-charge interactions have been designed as a one-dimensional collision term equivalent to the Landau operator used for fully ionized plasmas. Charge-neutral collisions are modelled by a conservative drift-diffusion operator in the Dougherty's form. The resulting set of coupled integro-differential equations is solved with the stable and robust propagator integral method. This semi–analytical method feasibility accounts for non–linear effects without appealing to linearisation or simplifications, providing conservative physically meaningful solutions even for initial or emerging sharp velocity distribution function profiles. It is found that charge-neutral collisions exert a significant effect since a quite different plasma evolution arises if compared to the collisionless limit. In addition, substantial differences in the system motion are found for constant and temperature dependent collision frequencies cases.

  4. CERN celebrates the discovery of neutral currents and W and Z particles

    CERN Multimedia

    2003-01-01

    A symposium on 16 September will celebrate the double anniversary of the observation of neutral currents in 1973 and the discovery of W and Z bosons in 1983. The symposium will also provide an opportunity to discuss future discoveries at CERN. Twenty years ago, in 1983, CERN announced the discovery of particles known as W and Z, a discovery that brought the laboratory its first Nobel Prize in 1984. The charged W and neutral Z particles carry the weak force, which causes one form of radioactivity and enables stars to shine. These discoveries provided convincing evidence for the so-called electroweak theory, which unifies the weak force with the electromagnetic force, and which is a cornerstone of the modern Standard Model of particles and forces. An important step towards confirming electroweak unification came already in 1973, when the late André Lagarrigue and colleagues working with the Gargamelle bubble chamber at CERN observed for the first time neutral currents - the neutral manifestation of ...

  5. Anti-Neutrino Charged Current Quasi-Elastic Scattering in MINER$\

    Energy Technology Data Exchange (ETDEWEB)

    Chvojka, Jesse John [Univ. of Rochester, NY (United States)

    2012-01-01

    The phenomenon of neutrino oscillation is becoming increasingly understood with results from accelerator-based and reactor-based experiments, but unanswered questions remain. The proper ordering of the neutrino mass eigenstates that compose the neutrino avor eigenstates is not completely known. We have yet to detect CP violation in neutrino mixing, which if present could help explain the asymmetry between matter and anti-matter in the universe. We also have not resolved whether sterile neutrinos, which do not interact in any Standard Model interaction, exist. Accelerator-based experiments appear to be the most promising candidates for resolving these questions; however, the ability of present and future experiments to provide answers is likely to be limited by systematic errors. A significant source of this systematic error comes from limitations in our knowledge of neutrino-nucleus interactions. Errors on cross-sections for such interactions are large, existing data is sometimes contradictory, and knowledge of nuclear effects is incomplete. One type of neutrino interaction of particular interest is charged current quasi-elastic (CCQE) scattering, which yields a final state consisting of a charged lepton and nucleon. This process, which is the dominant interaction near energies of 1 GeV, is of great utility to neutrino oscillation experiments since the incoming neutrino energy and the square of the momentum transferred to the final state nucleon, Q2, can be reconstructed using the final state lepton kinematics. To address the uncertainty in our knowledge of neutrino interactions, many experiments have begun making dedicated measurements. In particular, the MINER A experiment is studying neutrino-nucleus interactions in the few GeV region. MINERvA is a fine-grained, high precision, high statistics neutrino scattering experiment that will greatly improve our understanding of neutrino cross-sections and nuclear effects that affect the final state particles

  6. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    International Nuclear Information System (INIS)

    Luo, B.; Brandt, W. N.; Scott, A. E.; Alexander, D. M.; Gandhi, P.; Stern, D.; Teng, S. H.; Arévalo, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Ogle, P.; Puccetti, S.; Saez, C.

    2014-01-01

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ eff ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  7. Conduction mechanism of leakage current due to the traps in ZrO2 thin film

    Science.gov (United States)

    Seo, Yohan; Lee, Sangyouk; An, Ilsin; Song, Chulgi; Jeong, Heejun

    2009-11-01

    In this work, a metal-oxide-semiconductor capacitor with zirconium oxide (ZrO2) gate dielectric was fabricated by an atomic layer deposition (ALD) technique and the leakage current characteristics under negative bias were studied. From the result of current-voltage curves there are two possible conduction mechanisms to explain the leakage current in the ZrO2 thin film. The dominant mechanism is the space charge limited conduction in the high-electric field region (1.5-5.0 MV cm-1) while the trap-assisted tunneling due to the existence of traps is prevailed in the low-electric field region (0.8-1.5 MV cm-1). Conduction caused by the trap-assisted tunneling is found from the experimental results of a weak temperature dependence of current, and the trap barrier height is obtained. The space charge limited conduction is evidenced, for different temperatures, by Child's law dependence of current density versus voltage. Child's law dependence can be explained by considering a single discrete trapping level and we can obtain the activation energy of 0.22 eV.

  8. Test of weak and strong factorization in nucleus-nucleuscollisions atseveral hundred MeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    La Tessa, Chiara; Sihver, Lembit; Zeitlin, Cary; Miller, Jack; Guetersloh, Stephen; Heilbronn, Lawrence; Mancusi, Davide; Iwata,Yoshiuki; Murakami, Takeshi

    2006-06-21

    Total and partial charge-changing cross sections have been measured for argon projectiles at 400 MeV/nucleon in carbon, aluminum, copper, tin and lead targets; cross sections for hydrogen were also obtained, using a polyethylene target. The validity of weak and strong factorization properties has been investigated for partial charge-changing cross sections; preliminary cross section values obtained for carbon, neon and silicon at 290 and 400 MeV/nucleon and iron at 400 MeV/nucleon, in carbon, aluminum, copper, tin and lead targets have been also used for testing these properties. Two different analysis methods were applied and both indicated that these properties are valid, without any significant difference between weak and strong factorization. The factorization parameters have then been calculated and analyzed in order to find some systematic behavior useful for modeling purposes.

  9. Effect of Weakly Nonthermal Ion Velocity Distribution on Jeans Instability in a Complex Plasma in Presence of Secondary Electrons

    International Nuclear Information System (INIS)

    Sarkar, S.; Maity, S.

    2013-01-01

    In this paper we have investigated the effect of weak nonthermality of ion velocity distribution on Jean’s instability in a complex plasma in presence of secondary electrons and negatively charged dust grains. The primary and secondary electron temperatures are assumed equal. Thus plasma under consideration consists of three components: Boltzman distributed electrons, non-thermal ions and negatively charged inertial dust grains. From the linear dispersion relation we have calculated the real frequency and growth rate of the Jean’s mode. Numerically we have found that secondary electron emission destabilizes Jean’s mode when ion nonthermality is weak. (author)

  10. A measurement of the branching fractions of the b-quark into charged and neutral b-hadrons

    International Nuclear Information System (INIS)

    Abdallah, J.; Abreu, P.; Adam, W.

    2003-01-01

    The production fractions of charged and neutral b-hadrons in b-quark events from Z 0 decays have been measured with the DELPHI detector at LEP. An algorithm has been developed, based on a neural network, to estimate the charge of the weakly-decaying b-hadron by distinguishing its decay products from particles produced at the primary vertex. From the data taken in the years 1994 and 1995, the fraction of b-quarks fragmenting into positively charged weakly-decaying b-hadrons has been measured to be: f + =42.09+/-0.82(stat)+/-0.89(syst)%. Subtracting the rates for charged Ξ b + and Ω b + baryons gives the production fraction of B + mesons: f Bu =40.99+/-0.82(stat)+/-1.11(syst)%

  11. Application of relativistic distorted-wave method to electron-impact excitation of highly charged Fe XXIV ion embedded in weakly coupled plasmas

    Science.gov (United States)

    Chen, Zhanbin

    2018-05-01

    The process of excitation of highly charged Fe XXIV ion embedded in weakly coupled plasmas by electron impact is studied, together with the subsequent radiative decay. For the target structure, the calculation is performed using the multiconfiguration Dirac-Hartree-Fock method incorporating the Debye-Hückel potential for the electron-nucleus interaction. Fine-structure levels of the 1s22p and 1s2s2p configurations and the transition properties among these levels are presented over a wide range of screening parameters. For the collision dynamics, the distorted-wave method in the relativistic frame is adopted to include the effect of plasma background, in which the interparticle interactions in the system are described by screened interactions of the Debye-Hückel type. The continuum wave function of the projectile electron is obtained by solving the modified Dirac equations. The influence of plasma strength on the cross section, the linear polarization, and the angular distribution of x-ray photon emission are investigated in detail. Comparison of the present results with experimental data and other theoretical predictions, when available, is made.

  12. Polarization of Λ hyperons produced inclusively in νp and anti νp charged current interactions

    International Nuclear Information System (INIS)

    Jones, G.T.; Kennedy, B.W.; O'Neale, S.W.; Barnham, K.W.J.; Clayton, E.F.; Miller, D.B.; Mobayyen, M.M.; Villalobos-Baillie, O.; Corrigan, G.; Myatt, G.; Radojicic, D.; Saitta, B.; Wells, J.; Aderholz, M.; Deck, L.; Schmitz, N.; Settles, R.; Wernhard, K.L.; Wittek, W.

    1985-01-01

    Lambda hyperons from νp and anti np charged current interactions have been analysed for polarization. A significant polarization is observed for Λ particles in the quasi-elastic region for both types of interactions. Part of this polarization is due to the decay of highly polarized Σ(1385) resonances. The results are compared with simple predictions of the quark parton model. (orig.)

  13. Polarization of Λ hyperons produced inclusively in νp and anti νp charged current interactions

    International Nuclear Information System (INIS)

    Jones, G.T.; Kennedy, B.W.; O'Neale, S.W.; Barnham, K.W.J.; Clayton, E.F.; Miller, D.B.; Mobayyen, M.M.; Villalobos-Baillie, O.; Corrigan, G.; Myatt, G.; Radojicic, D.; Saitta, B.; Wells, J.

    1985-01-01

    Lambda hyperons from νp charged current interactions have been analysed for polarization. A significant polarization is observed for Λ particles in the quasi-elastic region for both types of interactions. Part of this polarization is due to the decay of highly polarized phi(1,385) resonances. The results are compared with simple predictions of the quark parton model. (orig.)

  14. Characterization of Final State Interaction Strength in Plastic Scintillator by Muon-Neutrino Charged Current Charged Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Eberly, Brandon M. [Univ. of Pittsburgh, PA (United States)

    2014-01-01

    Precise knowledge of neutrino-nucleus interactions is increasingly important as neutrino oscillation measurements transition into the systematics-limited era. In addition to modifying the initial interaction, the nuclear medium can scatter and absorb the interaction by-products through final state interactions, changing the types and kinematic distributions of particles seen by the detector. Recent neutrino pion production data from MiniBooNE is inconsistent with the final state interaction strength predicted by models and theoretical calculations, and some models fit best to the MiniBooNE data only after removing final state interactions entirely. This thesis presents a measurement of dσ/dTπ and dσ/dθπ for muon-neutrino charged current charged pion production in the MINER A scintillator tracker. MINER A is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. The analysis is limited to neutrino energies between 1.5-10 GeV. Dependence on invariant hadronic mass W is studied through two versions of the analysis that impose the limits W < 1.4 GeV and W < 1.8 GeV. The lower limit on W increases compatibility with the MiniBooNE pion data. The shapes of the differential cross sections, which depend strongly on the nature of final state interactions, are compared to Monte Carlo and theoretical predictions. It is shown that the measurements presented in this thesis favor models that contain final state interactions. Additionally, a variety of neutrino-nucleus interaction models are shown to successfully reproduce the thesis measurements, while simultaneously failing to describe the shape of the MiniBooNE data.

  15. Finite frequency current noise in the Holstein model

    Science.gov (United States)

    Stadler, P.; Rastelli, G.; Belzig, W.

    2018-05-01

    We investigate the effects of local vibrational excitations in the nonsymmetrized current noise S (ω ) of a nanojunction. For this purpose, we analyze a simple model—the Holstein model—in which the junction is described by a single electronic level that is coupled to two metallic leads and to a single vibrational mode. Using the Keldysh Green's function technique, we calculate the nonsymmetrized current noise to the leading order in the charge-vibration interaction. For the noise associated to the latter, we identify distinct terms corresponding to the mean-field noise and the vertex correction. The mean-field result can be further divided into an elastic correction to the noise and in an inelastic correction, the second one being related to energy exchange with the vibration. To illustrate the general behavior of the noise induced by the charge-vibration interaction, we consider two limit cases. In the first case, we assume a strong coupling of the dot to the leads with an energy-independent transmission, whereas in the second case we assume a weak tunneling coupling between the dot and the leads such that the transport occurs through a sharp resonant level. We find that the noise associated to the vibration-charge interaction shows a complex pattern as a function of the frequency ω and of the transmission function or of the dot's energy level. Several transitions from enhancement to suppression of the noise occurs in different regions, which are determined, in particular, by the vibrational frequency. Remarkably, in the regime of an energy-independent transmission, the zero-order elastic noise vanishes at perfect transmission and at positive frequency, whereas the noise related to the charge-vibration interaction remains finite, enabling the analysis of the pure vibrational-induced current noise.

  16. Bulk-Like Electrical Properties Induced by Contact-Limited Charge Transport in Organic Diodes: Revised Space Charge Limited Current

    KAUST Repository

    Xu, Guangwei; Gao, Nan; Lu, Congyan; Wang, Wei; Ji, Zhuoyu; Bi, Chong; Han, Zhiheng; Lu, Nianduan; Yang, Guanhua; Li, Yuan; Liu, Qi; Li, Ling; Liu, Ming

    2018-01-01

    , the charge transport properties of organic diodes are usually characterized by probing the current–voltage (I–V) curves of the devices. However, to unveil the landscape of the underlying potential/charge distribution, which essentially determines the I

  17. Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients

    Science.gov (United States)

    Bruno, Mattia; Lehner, Christoph; Soni, Amarjit; Rbc; Ukqcd Collaborations

    2018-04-01

    We propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C1 and C2 , related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.

  18. A note on linking electrical current, magnetic fields, charges and the pole in a barn paradox in special relativity

    International Nuclear Information System (INIS)

    McGlynn, Enda; Van Kampen, Paul

    2008-01-01

    We point out the connection between the 'pole in a barn paradox' and the phenomenon of alterations in charge in a segment of a current-carrying conductor as perceived by observers in different inertial reference frames. This connection appears to offer a useful pedagogical strategy helping students to appreciate that the issues which underlie the explanation of the paradox can be important and significant in everyday phenomena such as magnetic forces on moving charges and at the very modest speeds associated with electron drift in conductors. (note)

  19. Charge-transport simulations in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    May, Falk

    2012-07-06

    In this thesis we have extended the methods for microscopic charge-transport simulations for organic semiconductors, where weak intermolecular interactions lead to spatially localized charge carriers, and the charge transport occurs as an activated hopping process between diabatic states. In addition to weak electronic couplings between these states, different electrostatic environments in the organic material lead to a broadening of the density of states for the charge energies which limits carrier mobilities. The contributions to the method development include (i) the derivation of a bimolecular charge-transfer rate, (ii) the efficient evaluation of intermolecular (outer-sphere) reorganization energies, (iii) the investigation of effects of conformational disorder on intramolecular reorganization energies or internal site energies and (iv) the inclusion of self-consistent polarization interactions for calculation of charge energies. These methods were applied to study charge transport in amorphous phases of small molecules used in the emission layer of organic light emitting diodes (OLED). When bulky substituents are attached to an aromatic core in order to adjust energy levels or prevent crystallization, a small amount of delocalization of the frontier orbital to the substituents can increase electronic couplings between neighboring molecules. This leads to improved charge-transfer rates and, hence, larger charge-mobility. We therefore suggest using the mesomeric effect (as opposed to the inductive effect) when attaching substituents to aromatic cores, which is necessary for example in deep blue OLEDs, where the energy levels of a host molecule have to be adjusted to those of the emitter. Furthermore, the energy landscape for charges in an amorphous phase cannot be predicted by mesoscopic models because they approximate the realistic morphology by a lattice and represent molecular charge distributions in a multipole expansion. The microscopic approach shows that

  20. Voltage Weak DC Distribution Grids

    NARCIS (Netherlands)

    Hailu, T.G.; Mackay, L.J.; Ramirez Elizondo, L.M.; Ferreira, J.A.

    2017-01-01

    This paper describes the behavior of voltage weak DC distribution systems. These systems have relatively small system capacitance. The size of system capacitance, which stores energy, has a considerable effect on the value of fault currents, control complexity, and system reliability. A number of

  1. Effect of the source charge on charged-boson interferometry

    International Nuclear Information System (INIS)

    Shoppa, T. D.; Koonin, S. E.; Seki, R.

    2000-01-01

    We investigate quantal perturbations of the interferometric correlations of charged bosons by the Coulomb field of an instantaneous, charged source. The source charge increases the apparent source size by weakening the correlation at nonzero relative momenta. The effect is strongest for pairs with a small total momentum and is stronger for kaons than for pions of the same momenta. The low-energy data currently available are well described by this effect. A simple expression is proposed to account for the effect. (c) 2000 The American Physical Society

  2. P-odd effects in πN-scattering at low energies and determination of the isotopical structure of the weak nonleptonic interaction

    International Nuclear Information System (INIS)

    Gershtein, S.S.; Folomeshkin, V.N.; Khlopov, M.Yu.

    1974-01-01

    P-odd effects in the πN-scattering on a target polarized along and again a pion beam have been considered. The P-odd correlations are intensified by interference of weak and strong interactions, whose amplitude is great in the energy range of the order of 100 to 300 MeV. When measuring cross-section differences of the πN-scattering at meson factories, it is possible to hope that the Lobashow integral method may be used in this range. The P-odd amplitudes have been calculated in the approximation of low-energy pions from the P-odd πNN vertex. High-energy meson effects are taken account of in the model of a rho-meson exchange. A kinematic analysis shows that the P-odd effects in a backward charge exchange reaction are sensitive to the presence of neutral currents. Investigation of the P-odd effects in a forward (elastica and with charge exchange) πN-scattering makes it possible to establish the isotopic structure of the nonlepton weak interaction and in particular to check the assumption of an intensified rho-meson exchange which has been offered by. Danilov to explain the high value of circular polarization of γ-quanta in the np → dγ reaction

  3. Measurement of total cross sections for neutrino and antineutrino charged-current interactions in hydrogen and neon

    International Nuclear Information System (INIS)

    Aderholz, M.; Schmitz, N.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicic, D.; Shotton, P.N.; Towers, S.J.; Miller, D.B.; Mobayyen, M.M.; Morrison, D.R.O.; Schmid, P.; Barnham, K.W.J.; Clayton, E.F.; Hamisi, F.; Baton, J.P.; Lagraa, M.; Bullock, F.W.; Fitch, P.J.; Sansum, R.A.; Coghen, T.; Cooper-Sarkar, A.M.; Guy, J.G.; Kasper, P.; Venus, W.; Middleton, R.P.; O'Neale, S.W.; Varvell, K.; Simopoulou, E.; Vayaki, A.; Vallee, C.; Wells, J.

    1986-01-01

    BEBC filled in turn with hydrogen, and with a neon-hydrogen mixture, was exposed to the CERN SPS wide band neutrino and antineutrino beams. The ratios of the charged-current cross sections per nucleon, sigma(νH 2 )/sigma(νNe) and sigma(anti νH 2 )/sigma(anti νNe), between 20 and 300 GeV were found to be 0.656+-0.020 and 1.425+-0.052, respectively. Multiplying these ratios by the revised cross sections in neon, sigma(νNe)/E=(0.723+-0.038)x10 -38 cm 2 /GeV per nucleon and sigma(anti νNe)/E=(0.351+-0.019)x10 -38 cm 2 /GeV per nucleon, and their ratio, sigma(anti νNe)/sigma(νNe)=0.485+-0.020, yields values for the total charged-current cross sections on protons, sigma(νp)/E and sigma(anti νp)/E, of (0.474+-0.029)x10 -38 cm 2 /GeV and (0.500+-0.032)x10 -38 cm 2 /GeV, respectively, and a value for the ratio sigma(anti νp)/sigma(νp) of 1.053+-0.066. (orig.)

  4. Enhanced collective focusing of intense neutralized ion beam pulses in the presence of weak solenoidal magnetic fields

    International Nuclear Information System (INIS)

    Dorf, Mikhail A.; Davidson, Ronald C.; Kaganovich, Igor D.; Startsev, Edward A.

    2012-01-01

    The design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ion driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B ∼ 100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasma electrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electron dynamics strongly affected by a weak applied magnetic field.

  5. Effect of incorporation of nitrogen atoms in Al2O3 gate dielectric of wide-bandgap-semiconductor MOSFET on gate leakage current and negative fixed charge

    Science.gov (United States)

    Kojima, Eiji; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Hosoi, Takuji; Watanabe, Heiji; Shiraishi, Kenji

    2018-06-01

    We performed first-principle calculations to investigate the effect of incorporation of N atoms into Al2O3 gate dielectrics. Our calculations show that the defect levels generated by VO in Al2O3 are the origin of the stress-induced gate leakage current and that VOVAl complexes in Al2O3 cause negative fixed charge. We revealed that the incorporation of N atoms into Al2O3 eliminates the VO defect levels, reducing the stress-induced gate leakage current. Moreover, this suppresses the formation of negatively charged VOVAl complexes. Therefore, AlON can reduce both stress-induced gate leakage current and negative fixed charge in wide-bandgap-semiconductor MOSFETs.

  6. Weak-link-induced thermoelectricity in U-shaped BSCCO superconductor

    International Nuclear Information System (INIS)

    Doyle, R.A.; Gridin, V.V.

    1992-01-01

    The recently reported weak-link-induced analogue of the Fountain effect in high-Tc superconductors involves measurement of the response of a micro-bridge-shaped sample to superimposed electrical and thermal gradients. This geometry is however asymmetric since the current contacts are always at different temperatures. Consequently doubts might be expressed about the interference of Peltier effects at the current contacts with the measured symmetry in the I-V characteristics of the sample. We have studied the temrature dependence of the voltage response of U-shaped samples of polycrystalline BSCCO 2212 superconductor in the presence of a parallel applied temperature gradient and applied current when the current direction is reversed. It is shown that this method is directly complementary to the measurement of asymmetry in critical current density by use of I-V characteristics at fixed temperature. The U-shaped geometry employed here allows the current electrodes to be held equipotential and at the same temperature. Our results show that the Fountain effect, which is due to supercurrent-induced phase differences across weak links in the sample, is apparent in this material when measured using the U-shaped geometry. This provides further support for the importance of weak-link-related thermoelectric effects in high-temperature superconductors. (orig.)

  7. The structure of weak interaction

    International Nuclear Information System (INIS)

    Zee, A.

    1977-01-01

    The effect of introducing righthanded currents on the structure of weak interaction is discussed. The ΔI=1/2 rule is in the spotlight. The discussion provides an interesting example in which the so-called Iizuka-Okubo-Zweing rule is not only evaded, but completely negated

  8. Charged Higgs Beyond the MSSM at the LHC

    CERN Document Server

    Huitu, Katri

    2017-01-01

    The charged Higgs boson is an inevitable particle in supersymmetric models, both in the minimal version and in extensions. It is also a particle, which may have different decay channels depending on the scalar representations in the model, and thus it may help in identifying the model. In this talk I will consider the simplest singlet and triplet extensions of the minimal supersymmetric standard model, and in particular, describe some smoking gun signals of charged Higgs at the LHC collider. Then I will move on to supersymmetric left-right models, in which neutrino masses are naturally generated and which have several dark matter candidates, in addition to possibly solving both the strong and weak CP-problems. I will discuss the charged Higgses, both singly and doubly charged, in such models.

  9. A note on linking electrical current, magnetic fields, charges and the pole in a barn paradox in special relativity

    Energy Technology Data Exchange (ETDEWEB)

    McGlynn, Enda [School of Physical Sciences/National Centre for Plasma Science and Technology (NCPST), Dublin City University, Glasnevin, Dublin 9 (Ireland); Van Kampen, Paul [Physics Education Research Group, Centre for the Advancement of Science Teaching and Learning (CASTeL), School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland)], E-mail: enda.mcglynn@dcu.ie

    2008-11-12

    We point out the connection between the 'pole in a barn paradox' and the phenomenon of alterations in charge in a segment of a current-carrying conductor as perceived by observers in different inertial reference frames. This connection appears to offer a useful pedagogical strategy helping students to appreciate that the issues which underlie the explanation of the paradox can be important and significant in everyday phenomena such as magnetic forces on moving charges and at the very modest speeds associated with electron drift in conductors. (note)

  10. Study of ν+N→ν+N+π and isospin analysis of the hadronic neutral current

    International Nuclear Information System (INIS)

    Longuemare, C.

    1978-04-01

    Experimental results are presented on neutrino induced single pion production in the bubble chamber Gargamelle filled with a light propane-freon mixture and exposed to the CERN PS neutrino beam. After corrections for reinteractions in the target nuclei, the neutrino neutral current cross section and the branching ratios are determined. The isospin structure of the hadronic neutral current is analysed. The conclusions are compatible with the Weinberg-Salam theory for weak and electromagnetic interactions. The isoscalar component of the neutral current is observed at the level of two standard deviations. The charged to neutral current ratio may be intepreted with the one pion production model of Adler in the framework of the above theory [fr

  11. Diffuse-charge dynamics of ionic liquids in electrochemical systems.

    Science.gov (United States)

    Zhao, Hui

    2011-11-01

    We employ a continuum theory of solvent-free ionic liquids accounting for both short-range electrostatic correlations and steric effects (finite ion size) [Bazant et al., Phys. Rev. Lett. 106, 046102 (2011)] to study the response of a model microelectrochemical cell to a step voltage. The model problem consists of a 1-1 symmetric ionic liquid between two parallel blocking electrodes, neglecting any transverse transport phenomena. Matched asymptotic expansions in the limit of thin double layers are applied to analyze the resulting one-dimensional equations and study the overall charge-time relation in the weakly nonlinear regime. One important conclusion is that our simple scaling analysis suggests that the length scale √(λ*(D)l*(c)) accurately characterizes the double-layer structure of ionic liquids with strong electrostatic correlations where l*(c) is the electrostatic correlation length (in contrast, the Debye screening length λ*(D) is the primary double-layer length for electrolytes) and the response time of λ(D)(*3/2)L*/(D*l(c)(1/2)) (not λ*(D)L*/D* that is the primary charging time of electrolytes) is the correct charging time scale of ionic liquids with strong electrostatic correlations where D* is the diffusivity and L* is the separation length of the cell. With these two new scales, data of both electric potential versus distance from the electrode and the total diffuse charge versus time collapse onto each individual master curve in the presence of strong electrostatic correlations. In addition, the dependance of the total diffuse charge on steric effects, short-range correlations, and driving voltages is thoroughly examined. The results from the asymptotic analysis are compared favorably with those from full numerical simulations. Finally, the absorption of excess salt by the double layer creates a depletion region outside the double layer. Such salt depletion may bring a correction to the leading order terms and break down the weakly nonlinear

  12. Updated NNLO QCD predictions for the weak radiative B-meson decays

    CERN Document Server

    Misiak, M; Boughezal, R; Czakon, M; Ewerth, T; Ferroglia, A; Fiedler, P; Gambino, P; Greub, C; Haisch, U; Huber, T; Kaminski, M; Ossola, G; Poradzinski, M; Rehman, A; Schutzmeier, T; Steinhauser, M; Virto, J

    2015-01-01

    We perform an updated analysis of the inclusive weak radiative B-meson decays in the standard model, incorporating all our results for the O(alpha_s^2) and lower-order perturbative corrections that have been calculated after 2006. New estimates of non-perturbative effects are taken into account, too. For the CP- and isospin-averaged branching ratios, we find B_{s gamma} = (3.36 +_ 0.23) * 10^-4 and B_{d gamma} = 1.73^{+0.12}_{-0.22} * 10^-5, for E_gamma > 1.6 GeV. These results remain in agreement with the current experimental averages. Normalizing their sum to the inclusive semileptonic branching ratio, we obtain R_gamma = ( B_{s gamma} + B_{d gamma})/B_{c l nu} = (3.31 +_ 0.22) * 10^-3. A new bound from B_{s gamma} on the charged Higgs boson mass in the two-Higgs-doublet-model II reads M_{H^+} > 480 GeV at 95%C.L.

  13. Inclusive negative-hadron production from high-energy nu-bar-nucleus charged-current interactions

    International Nuclear Information System (INIS)

    Berge, J.P.; Bogert, D.; Endorf, R.; Hanft, R.; Malko, J.A.; Moffatt, G.; Nezrick, F.A.; Scott, W.; Smart, W.; Wolfson, J.; Ammosov, V.V.; Amrakhov, A.H.; Denisov, A.G.; Ermolov, P.F.; Gapienko, V.A.; Klukhin, V.I.; Koreshev, V.I.; Pitukhin, P.V.; Rjabov, V.G.; Slobodyuk, E.A.; Sirotenko, V.I.; Efremenko, V.I.; Gorichev, P.A.; Kaftanov, V.S.; Khovansky, V.D.; Kliger, G.K.; Kolganov, V.Z.; Krutchinin, S.P.; Kubantsev, M.A.; Rosanov, A.N.; Savitsky, M.M.; Shevchenko, V.G.; Coffin, C.T.; Diamond, R.N.; French, H.; Louis, W.; Roe, B.P.; Ross, R.T.; Seidl, A.A.; Sinclair, D.

    1978-01-01

    We present data on inclusive negative-hadron production from charged-current antineutrino interactions in a 21% Ne--H mixture. Inclusive single-particle distributions are presented and are shown to be insensitive to the momentum transferred to the hadron vertex. Comparisons made to inclusive data from π - p and π - n interactions indicate a close similarity between the hadrons resulting from π-nucleon and nu-bar-nucleus interactions. The general features of the nu-bar-nucleus data are found to be similar to those seen in nu-barp interactions. This last observation implies that nu-barp and nu-barn interactions are similar and that nuclear effects are small

  14. Conduction mechanism of leakage current due to the traps in ZrO2 thin film

    International Nuclear Information System (INIS)

    Seo, Yohan; Lee, Sangyouk; An, Ilsin; Jeong, Heejun; Song, Chulgi

    2009-01-01

    In this work, a metal-oxide-semiconductor capacitor with zirconium oxide (ZrO 2 ) gate dielectric was fabricated by an atomic layer deposition (ALD) technique and the leakage current characteristics under negative bias were studied. From the result of current–voltage curves there are two possible conduction mechanisms to explain the leakage current in the ZrO 2 thin film. The dominant mechanism is the space charge limited conduction in the high-electric field region (1.5–5.0 MV cm −1 ) while the trap-assisted tunneling due to the existence of traps is prevailed in the low-electric field region (0.8–1.5 MV cm −1 ). Conduction caused by the trap-assisted tunneling is found from the experimental results of a weak temperature dependence of current, and the trap barrier height is obtained. The space charge limited conduction is evidenced, for different temperatures, by Child's law dependence of current density versus voltage. Child's law dependence can be explained by considering a single discrete trapping level and we can obtain the activation energy of 0.22 eV

  15. Experimental study of nonlinear interaction of plasma flow with charged thin current sheets: 2. Hall dynamics, mass and momentum transfer

    Directory of Open Access Journals (Sweden)

    S. Savin

    2006-01-01

    Full Text Available Proceeding with the analysis of Amata et al. (2005, we suggest that the general feature for the local transport at a thin magnetopause (MP consists of the penetration of ions from the magnetosheath with gyroradius larger than the MP width, and that, in crossing it, the transverse potential difference at the thin current sheet (TCS is acquired by these ions, providing a field-particle energy exchange without parallel electric fields. It is suggested that a part of the surface charge is self-consistently produced by deflection of ions in the course of inertial drift in the non-uniform electric field at MP. Consideration of the partial moments of ions with different energies demonstrates that the protons having gyroradii of roughly the same size or larger than the MP width carry fluxes normal to MP that are about 20% of the total flow in the plasma jet under MP. This is close to the excess of the ion transverse velocity over the cross-field drift speed in the plasma flow just inside MP (Amata et al., 2005, which conforms to the contribution of the finite-gyroradius inflow across MP. A linkage through the TCS between different plasmas results from the momentum conservation of the higher-energy ions. If the finite-gyroradius penetration occurs along the MP over ~1.5 RE from the observation site, then it can completely account for the formation of the jet under the MP. To provide the downstream acceleration of the flow near the MP via the cross-field drift, the weak magnetic field is suggested to rotate from its nearly parallel direction to the unperturbed flow toward being almost perpendicular to the accelerated flow near the MP. We discuss a deceleration of the higher-energy ions in the MP normal direction due to the interaction with finite-scale electric field bursts in the magnetosheath flow frame, equivalent to collisions, providing a charge separation. These effective collisions, with a nonlinear frequency proxy of the order of the proton

  16. Construction of a γ-polarimeter in search of neutral weak current effects in the nucleus 18F

    International Nuclear Information System (INIS)

    Mogharrab, R.

    1978-07-01

    A possible contribution of neutral weak currents to the nucleon-nucleon potential is to be determined by observation of the circular polarization of the 1081 keV γ-transition in 18 F. A γ-polarimeter with 4 transmission magnets will be used. It is suitable for use in beam. The polarimeter has been built and the analysing power determined by using the 1119 keV γ-radiation in 46 Sc. The instrumental asymmetries are -5 . The 18 F is produced in the reaction 16 O ( 3 He,pγ) 18 F. Observations in beam proved the expected suitability of the polarimeter. The observed spectra allow to estimate the finally required beam times to about 2000 hours. (orig.) [de

  17. Measurement of charged and neutral current e-p deep inelastic scattering cross sections at high Q2

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R.L.; Zhang, H.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Haas, T.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.; Katz, U.F.; Mari, S.M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, C.; Schattevoy, R.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G.P.; Heath, H.F.; Llewellyn, T.J.; Morgado, C.J.S.; Norman, D.J.P.; O'Mara, J.A.; Tapper, R.J.; Wilson, S.S.; Yoshida, R.; Rau, R.R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Cartiglia, N.; Parsons, J.A.; Ritz, S.; Sciulli, F.; Straub, P.B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jelen, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarebska, E.; Suszycki, L.; Zajac, J.; Kotanski, A.; Przybycien, M.; Bauerdick, L.A.T.; Behrens, U.; Beier, H.; Bienlein, J.K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasinski, M.; Gilkinson, D.J.; Glasman, C.; Goettlicher, P.; Grosse-Knetter, J.; Gutjahr, B.; Hain, W.; Hasell, D.; Hessling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Koepke, L.; Koetz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Loehr, B.; Loewe, M.; Lueke, D.; Manczak, O.; Ng, J.S.T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.

    1995-01-01

    Deep inelastic e - p scattering has been studied in both the charged current (CC) and neutral current (NC) reactions at momentum transfers squared Q 2 above 400GeV 2 using the ZEUS detector at the HERA ep collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections dσ/dQ 2 are presented. From the Q 2 dependence of the CC cross section, the mass term in the CC propagator is determined to be M W =76±16±13 GeV

  18. Measurement and QCD Analysis of Neutral and Charged Current Cross Sections at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Astvatsatourov, A.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Beglarian, A.; Behnke, O.; Belousov, A.; Berger, C.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cao, Jun; Caron, S.; Cassol-Brunner, F.; Chekelian, V.; Clarke, D.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Grab, C.; Grabski, V.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Haidt, D.; Hajduk, L.; Haller, J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Katzy, J.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Koutouev, R.; Koutov, A.; Kroseberg, J.; Kruger, K.; Kuhr, T.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milstead, D.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Newman, Paul R.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Petrukhin, A.; Phillips, J.P.; Pitzl, D.; Portheault, B.; Poschl, R.; Potachnikova, I.; Povh, B.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schoerner-Sadenius, Thomas; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vassiliev, S.; Vazdik, Y.; Veelken, C.; Vest, A.; Vichnevski, A.; Volchinski, V.; Wacker, K.; Wagner, J.; Wallny, R.; Waugh, B.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wiesand, S.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Woehrling, E.E.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; zur Nedden, M.

    2003-01-01

    The inclusive e^+ p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA. The data were taken in 1999 and 2000 at a centre-of-mass energy of \\sqrt{s} = 319 GeV and correspond to an integrated luminosity of 65.2 pb^-1. The cross sections are measured in the range of four-momentum transfer squared Q^2 between 100 and 30000 GeV^2 and Bjorken x between 0.0013 and 0.65. The neutral current analysis for the new e^+ p data and the earlier e^- p data taken in 1998 and 1999 is extended to small energies of the scattered electron and therefore to higher values of inelasticity y, allowing a determination of the longitudinal structure function F_L at high Q^2 (110 - 700 GeV^2). A new measurement of the structure function x F_3 is obtained using the new e^+ p and previously published e^\\pm p neutral current cross section data at high Q^2. These data together with H1 low Q^2 precision data are further used to perform new next-to-leading order QCD ...

  19. Analysis of (3He, t) charge exchange reactions at 140 AMeV

    International Nuclear Information System (INIS)

    Singh, Pardeep; Zegers, R.G.T.; Danielewicz, Pawel; Noji, S.; Kim, B.T.; Sakai, H.

    2014-01-01

    The spin-isospin response in nuclei has been studied widely through ( 3 He, t) and (t, 3 He) charge-exchange reactions wherein a proton (neutron) transforms into a neutron (proton), which in turn changes the isospin, ΔT=1, of the nuclei participating in the reaction, either with or without spin transfer. The Gamow-Teller transitions are used to obtain the weak transition strength in the excitation-energy regions inaccessible through β-decay. The strengths deduced using charge exchange experiments provide stringent tests for nuclear structure calculations and serve as inputs for variety of applications in which weak transition strengths play a role. In this context, we explore here the ( 3 He,t) charge-exchange reaction at 140 MeV/u on 18 O, 26 Mg, 58,60,62, 64 Ni, 90 Zr, 118,120 Sn and 208 Pb targets, within the theoretical framework of distorted wave impulse approximation

  20. Common Origin for Neutrino Anarchy and Charged Hierarchies

    International Nuclear Information System (INIS)

    Agashe, Kaustubh; Okui, Takemichi; Sundrum, Raman

    2009-01-01

    The generation of exponential flavor hierarchies from extra-dimensional wave function overlaps is reexamined. We find, surprisingly, that the coexistence of anarchic fermion mass matrices with such hierarchies is intrinsic and natural to this setting. The salient features of charged fermion and neutrino masses and mixings can thereby be captured within a single framework. Both Dirac and Majorana neutrinos can be realized. Implications for a variety of weak-scale scenarios, including warped compactification and supersymmetry, are discussed. When the new weak-scale physics is sensitive to the origin of flavor structure, Dirac neutrinos are preferred

  1. Weak interaction contribution to the energy spectrum of two-lepton system

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1995-01-01

    The contribution of neutral currents to the weak interaction quasi-potential of two leptons is investigated. The exact expression for the weak interaction operator of the system for arbitrary biding energies in one-boson approximation is obtained. The weak interaction contribution to the S-levels displacement of hydrogen-like atom. 14 refs

  2. A Grand Canonical Monte Carlo Molecular Study of a Weak Polyampholyte

    KAUST Repository

    Jimenez, Arturo Martinez

    2016-05-01

    Over the last few decades, there has been an increasing interest in the study of charged polymers for applications such as desalination of water, flocculation, sewage treatment, and enhanced oil recovery. Polyelectrolyte chains containing both positively and negatively charged units (polyampholytes) have been recently studied as viscosity-control agents in enhanced oil recovery, and as entrapping macromolecules for protection and delayed release of enzymes in hydraulic fracturing. In this study we performed Monte Carlo molecular simulations in a grand canonical ensemble to study the behavior of a weak polyampholyte in a dilute regime. Weak polyampholytes have the ability to dissociate in a limited pH, which makes them interesting for applications that require a pH-triggerable response. The titration behaviors of diblock and random polyampholytes are simulated as a function of solvent quality, electrostatic strength, and salt concentration. For diblock polyampholyte chains in hydrophobic solvents, transition between tadpole-like and globule conformation occurs with variations in the solution pH. Random polyampholytes present extended, globule, and pearl-necklace conformations at different solvent conditions and pH values. At high ionic strength, electrostatic interactions in the polyampholytes become screened and the chains are mostly in globule state.

  3. Anomalous interactions in confined charge-stabilized colloid

    International Nuclear Information System (INIS)

    Grier, D G; Han, Y

    2004-01-01

    Charge-stabilized colloidal spheres dispersed in weak 1:1 electrolytes are supposed to repel each other. Consequently, experimental evidence for anomalous long-ranged like-charged attractions induced by geometric confinement inspired a burst of activity. This has largely subsided because of nagging doubts regarding the experiments' reliability and interpretation. We describe a new class of thermodynamically self-consistent colloidal interaction measurements that confirm the appearance of pairwise attractions among colloidal spheres confined by one or two bounding walls. In addition to supporting previous claims for this as-yet unexplained effect, these measurements also cast new light on its mechanism

  4. Charged composite scalar dark matter

    Science.gov (United States)

    Balkin, Reuven; Ruhdorfer, Maximilian; Salvioni, Ennio; Weiler, Andreas

    2017-11-01

    We consider a composite model where both the Higgs and a complex scalar χ, which is the dark matter (DM) candidate, arise as light pseudo Nambu-Goldstone bosons (pNGBs) from a strongly coupled sector with TeV scale confinement. The global symmetry structure is SO(7)/SO(6), and the DM is charged under an exact U(1)DM ⊂ SO(6) that ensures its stability. Depending on whether the χ shift symmetry is respected or broken by the coupling of the top quark to the strong sector, the DM can be much lighter than the Higgs or have a weak-scale mass. Here we focus primarily on the latter possibility. We introduce the lowest-lying composite resonances and impose calculability of the scalar potential via generalized Weinberg sum rules. Compared to previous analyses of pNGB DM, the computation of the relic density is improved by fully accounting for the effects of the fermionic top partners. This plays a crucial role in relaxing the tension with the current DM direct detection constraints. The spectrum of resonances contains exotic top partners charged under the U(1)DM, whose LHC phenomenology is analyzed. We identify a region of parameters with f = 1.4 TeV and 200 GeV ≲ m χ ≲ 400 GeV that satisfies all existing bounds. This DM candidate will be tested by XENON1T in the near future.

  5. Dark Matter Decay between Phase Transitions at the Weak Scale.

    Science.gov (United States)

    Baker, Michael J; Kopp, Joachim

    2017-08-11

    We propose a new alternative to the weakly interacting massive particle paradigm for dark matter. Rather than being determined by thermal freeze-out, the dark matter abundance in this scenario is set by dark matter decay, which is allowed for a limited amount of time just before the electroweak phase transition. More specifically, we consider fermionic singlet dark matter particles coupled weakly to a scalar mediator S_{3} and to auxiliary dark sector fields, charged under the standard model gauge groups. Dark matter freezes out while still relativistic, so its abundance is initially very large. As the Universe cools down, the scalar mediator develops a vacuum expectation value (VEV), which breaks the symmetry that stabilizes dark matter. This allows dark matter to mix with charged fermions and decay. During this epoch, the dark matter abundance is reduced to give the value observed today. Later, the SM Higgs field also develops a VEV, which feeds back into the S_{3} potential and restores the dark sector symmetry. In a concrete model we show that this "VEV flip-flop" scenario is phenomenologically successful in the most interesting regions of its parameter space. We also comment on detection prospects at the LHC and elsewhere.

  6. Current flow and pair creation at low altitude in rotation-powered pulsars' force-free magnetospheres: space charge limited flow

    Science.gov (United States)

    Timokhin, A. N.; Arons, J.

    2013-02-01

    We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs. We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc2/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/jGJ > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/jGJ generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be

  7. Charged dust in planetary magnetospheres: Hamiltonian dynamics and numerical simulations for highly charged grains

    Science.gov (United States)

    Schaffer, L.; Burns, J. A.

    1994-01-01

    We use a combination of analytical and numerical methods to investigate the dynamics of charged dust grains in planetary magnetospheres. Our emphasis is on obtaining results valid for particles that are not necessarily dominated either by gravitational or electromagnetic forces. A Hamiltonian formulation of the problem yields exact results, for all values of charge-to-mass ratio, when we introduce two constraints: particles remain in the equatorial plane and the magnetic field is taken as axially symmetric. In particular, we obtain locations of equilibrium points, the frequencies of stable periodic orbits, the topology of separatrices in phase space, and the rate of longitudinal drift. These results are significant for specific applications: motion in the nearly aligned dipolar field of Saturn, and the trajectories of arbitrarily charged particles in complex magnetic fields for limited periods of time after ejection from parent bodies. Since the model is restrictive, we also use numerical integrations of the full three-dimensional equations of motion and illustrate under what conditions the constrained problem yields reasonable results. We show that a large fraction of the intermediately charged and highly charged (gyrating) particles will always be lost to a planet's atmosphere within a few hundred hours, for motion through tilted-dipole magnetic fields. We find that grains must have a very high charge-to-mass ratio in order to be mirrored back to the ring plane. Thus, except perhaps at Saturn where the dipole tilt is very small, the likely inhabitants of the dusty ring systems are those particles that are either nearly Keplerian (weakly charged) grains or grains whose charges place them in the lower end of the intermediate charge zone. Fianlly, we demonstrate the effect of plasma drag on the orbits of gyrating particles to be a rapid decrease in gyroradius followed by a slow radial evolution of the guiding center.

  8. Quasiclassical approach to the weak levitation of extended states in the quantum Hall effect

    OpenAIRE

    Fogler, M. M.

    1997-01-01

    The two-dimensional motion of a charged particle in a random potential and a transverse magnetic field is believed to be delocalized only at discrete energies $E_N$. In strong fields there is a small positive deviation of $E_N$ from the center of the $N$th Landau level, which is referred to as the ``weak levitation'' of the extended state. I calculate the size of the weak levitation effect for the case of a smooth random potential re-deriving earlier results of Haldane and Yang [PRL 78, 298 (...

  9. The global monopole spacetime and its topological charge

    Science.gov (United States)

    Tan, Hongwei; Yang, Jinbo; Zhang, Jingyi; He, Tangmei

    2018-03-01

    We show that the global monopole spacetime is one of the exact solutions of the Einstein equations by treating the matter field as a non-linear sigma model, without the weak field approximation applied in the original derivation by Barriola and Vilenkin. Furthermore, we find the physical origin of the topological charge in the global monopole spacetime. Finally, we generalize the proposal which generates spacetime from thermodynamical laws to the case of spacetime with global monopole charge. Project supported by the National Natural Science Foundation of China (Grant Nos. 11273009 and 11303006).

  10. Measurement of total cross sections for neutrino and antineutrino charged-current interactions in hydrogen and neon

    Science.gov (United States)

    Aderholz, M.; Corrigan, G.; Hoffmann, E.; Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; Miller, D. B.; Mobayyen, M. M.; Morrison, D. R. O.; Myatt, G.; Radojicic, D.; Schmid, P.; Schmitz, N.; Shotton, P. N.; Towers, S. J.; Wittek, W.; Barnham, K. W. J.; Baton, J. P.; Berggren, M.; Bertrand, D.; Bullock, F. W.; Calicchio, M.; Clayton, E. F.; Coghen, T.; Cooper-Sarkar, A. M.; Erriquez, O.; Fitch, P. J.; Fogli-Muciaccia, M. T.; Guy, J. G.; Hamisi, F.; Hulth, P. O.; Kasper, P.; Klein, H.; Lagraa, M.; Marage, P.; Middleton, R. P.; O'Neale, S. W.; Parker, M. A.; Sacton, J.; Sansum, R. A.; Simopoulou, E.; Vallée, C.; Varvell, K.; Vayaki, A.; Venus, W.; Wachmuth, H.; Wells, J.

    1986-06-01

    BEBC filled in turn with hydrogen, and with a neon-hydrogen mixture, was exposed to the CERN SPS wide band neutrino and antineutrino beams. The ratios of the charged-current cross sections per nucleon, σ(νH2)/σ(νNe) and σ(νH2)/σ(νNe), between 20 and 300 GeV were found to be 0.656 +/- 0.020 and 1.425 +/- 0.052, respectively. Multiplying these ratios by the revised cross sections in neon, σ(νNe)/E = (0.723 +/- 0.038) × 10-38 cm2/GeV per nucleon and σ(νNe)/E = (0.351 +/- 0.019) × 10-38 cm2/GeV per nucleon, and their ratio, σ(νNe)/σ(νNe) = 0.485 +/- 0.020,, yields values for the total charged-current cross sections on protons, σ(νp)/E and σ(νp)/E, of (0.474 +/- 0.029) × 10-38 cm2/GeV and (0.500 +/- 0.032) × 10-38 cm2/GeV. respectively, and a value for the ratio σ(νp)/σ(νp) of 1.053 +/- 0.066. Present address: University of Glasgow, Glasgow G12 8QQ, UK.

  11. ELECTROSTATIC FORCES IN WIND-POLLINATION: PART 1: MEASUREMENT OF THE ELECTROSTATIC CHARGE ON POLLEN

    Science.gov (United States)

    Under fair weather conditions, a weak electric field exists between negative charge induced on the surface of plants and positive charge in the air. This field is magnified around points (e.g. stigmas) and can reach values up to 3x106 V m-1. If wind-disperse...

  12. Nuclear charge-exchange excitations in a self-consistent covariant approach

    International Nuclear Information System (INIS)

    Liang, Haozhao

    2010-01-01

    -isospin resonances via the exchange terms, which leads to a profound effect in the nuclear isovector properties, e.g., the density dependence of the symmetry energy in nuclear matter. In the investigation of the isospin symmetry-breaking corrections for the superallowed β decays, it is found that the corrections δ c are sensitive to the proper treatments of the Coulomb mean field, but not so much to specific effective interactions. With these corrections δ c , the nucleus-independent Ft values are obtained in combination with the experimental ft values in the most recent survey and the improved radiative corrections. The values of Cabibbo-Kobayashi-Maskawa matrix element |V ud | thus obtained well agree with those obtained in neutron decay, pion decay, and nuclear mirror transitions, while the sum of squared top-row elements somehow deviates from the unitarity condition. Expressing the weak lepton-hadron interaction in the standard current-current form, the relevant transitions from the nuclear ground state to the excited states are calculated with RHF+RPA approach. In this way, the semileptonic weak interaction processes, e.g., neutrino reactions, charged lepton capture, β-decays, can be investigated microscopically and self-consistently. First illustrative calculations of the inclusive neutrino-nucleus cross section are performed for the 16 O(ν e ,e - ) 16 F reaction, and a good agreement with the previous theoretical studies is obtained. The main effort is dedicated to discussing the substantial influence of different recipes for the axial vector coupling strength and the theoretical low-lying excited states of the daughter nucleus. (author)

  13. Weak interaction and nucleus: the relationship keeps on

    International Nuclear Information System (INIS)

    Martino, J.; Frere, J.M.; Naviliat-Cuncic, O.; Volpe, C.; Marteau, J.; Lhuillier, D.; Vignaud, D.; Legac, R.; Marteau, J.; Legac, R.

    2003-01-01

    This document gathers the lectures made at the Joliot-Curie international summer school in 2003 whose theme, that year, was the relationship between weak interaction and nucleus. There were 8 contributions whose titles are: 1) before the standard model: from beta decay to neutral currents; 2) the electro-weak theory and beyond; 3) testing of the standard model at low energies; 4) description of weak processes in nuclei; 5) 20.000 tonnes underground, an approach to the neutrino-nucleus interaction; 6) parity violation from atom to nucleon; 7) how neutrinos got their masses; and 8) CP symmetry

  14. Determination of Charge-Carrier Mobility in Disordered Thin-Film Solar Cells as a Function of Current Density

    Science.gov (United States)

    Mäckel, Helmut; MacKenzie, Roderick C. I.

    2018-03-01

    Charge-carrier mobility is a fundamental material parameter, which plays an important role in determining solar-cell efficiency. The higher the mobility, the less time a charge carrier will spend in a device and the less likely it is that it will be lost to recombination. Despite the importance of this physical property, it is notoriously difficult to measure accurately in disordered thin-film solar cells under operating conditions. We, therefore, investigate a method previously proposed in the literature for the determination of mobility as a function of current density. The method is based on a simple analytical model that relates the mobility to carrier density and transport resistance. By revising the theoretical background of the method, we clearly demonstrate what type of mobility can be extracted (constant mobility or effective mobility of electrons and holes). We generalize the method to any combination of measurements that is able to determine the mean electron and hole carrier density, and the transport resistance at a given current density. We explore the robustness of the method by simulating typical organic solar-cell structures with a variety of physical properties, including unbalanced mobilities, unbalanced carrier densities, and for high or low carrier trapping rates. The simulations reveal that near VOC and JSC , the method fails due to the limitation of determining the transport resistance. However, away from these regions (and, importantly, around the maximum power point), the method can accurately determine charge-carrier mobility. In the presence of strong carrier trapping, the method overestimates the effective mobility due to an underestimation of the carrier density.

  15. One-Dimensional Brownian Motion of Charged Nanoparticles along Microtubules: A Model System for Weak Binding Interactions

    OpenAIRE

    Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko

    2010-01-01

    Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs ...

  16. Quantum Butterfly Effect in Weakly Interacting Diffusive Metals

    Directory of Open Access Journals (Sweden)

    Aavishkar A. Patel

    2017-09-01

    Full Text Available We study scrambling, an avatar of chaos, in a weakly interacting metal in the presence of random potential disorder. It is well known that charge and heat spread via diffusion in such an interacting disordered metal. In contrast, we show within perturbation theory that chaos spreads in a ballistic fashion. The squared anticommutator of the electron-field operators inherits a light-cone-like growth, arising from an interplay of a growth (Lyapunov exponent that scales as the inelastic electron scattering rate and a diffusive piece due to the presence of disorder. In two spatial dimensions, the Lyapunov exponent is universally related at weak coupling to the sheet resistivity. We are able to define an effective temperature-dependent butterfly velocity, a speed limit for the propagation of quantum information that is much slower than microscopic velocities such as the Fermi velocity and that is qualitatively similar to that of a quantum critical system with a dynamical critical exponent z>1.

  17. Weak interactions in astrophysics and cosmology

    International Nuclear Information System (INIS)

    Taylor, R.J.

    1977-01-01

    There ar many problems in astrophysics and cosmology in which the form of the weak interactions, their strength or the number of weakly interacting particles, is very important. It is possible that astronomical observations may give some information about the weak interactions. In the conventional hot big bang cosmological theory the number of leptons with associated neutrinos influences the speed of expansion of the Universe and the chemical composition of pre-galactic matter. The strength of the weak interaction, as exemplified by the half-life of the neutron, has a similar effect. In addition, the form of the weak interactions will determine how effectively neutrino viscosity can smooth out irregularities in the early Universe. Because neutrinos have a very long mean free path, they can escape from the central region of stars whereas photons can only escape from the surface. In late stages of stellar evolution, neutrino luminosity is often believed to be much greater than photon luminosity. This can both accelerate the cooling of dying stars and influence the stages of stellar evolution leading to the onset of supernova explosions. In pre-super-novae it is even possible that very dense stellar cores can be opaque to neutrinos and that the absorption or scattering of neutrinos can cause the explosion. These results depend crucially on the form of the weak interactions, with the discovery of neutral currents being very important. Until the solar neutrino experiment has been reconciled with theory, the possible role of uncertainties in the weak interactions cannot be ignored. (author)

  18. Screening in weakly ionized dusty plasmas; effect of dust density perturbations

    International Nuclear Information System (INIS)

    Tolias, P.; Ratynskaia, S.

    2013-01-01

    The screening of the charge of a non-emitting dust grain immersed in a weakly ionized dusty plasma is studied on the basis of a self-consistent hydrodynamic description. The dust number density is considered large enough so that the test grain is not isolated from other grains and dust collective effects are important. Not only dust charge perturbations but also dust density perturbations are taken into account, the latter are shown to have a strong effect on both the short and long range part of the potential. The realization of collective attraction via the newly obtained potential is discussed, a mechanism that could be central to the understanding of phase-transitions and self-organization processes in dusty plasmas.

  19. Single-chain-in-mean-field simulations of weak polyelectrolyte brushes

    Science.gov (United States)

    Léonforte, F.; Welling, U.; Müller, M.

    2016-12-01

    Structural properties of brushes which are composed of weak acidic and basic polyelectrolytes are studied in the framework of a particle-based approach that implicitly accounts for the solvent quality. Using a semi-grandcanonical partition function in the framework of the Single-Chain-in-Mean-Field (SCMF) algorithm, the weak polyelectrolyte is conceived as a supramolecular mixture of polymers in different dissociation states, which are explicitly treated in the partition function and sampled by the SCMF procedure. One obtains a local expression for the equilibrium acid-base reaction responsible for the regulation of the charged groups that is also incorporated to the SCMF sampling. Coupled to a simultaneous treatment of the electrostatics, the approach is shown to capture the main features of weak polyelectrolyte brushes as a function of the bulk pH in the solution, the salt concentration, and the grafting density. Results are compared to experimental and theoretical works from the literature using coarse-grained representations of poly(acrylic acid) (PAA) and poly(2-vinyl pyridine) (P2VP) polymer-based brushes. As the Born self-energy of ions can be straightforwardly included in the numerical approach, we also study its effect on the local charge regulation mechanism of the brush. We find that its effect becomes significant when the brush is dense and exposed to high salt concentrations. The numerical methodology is then applied (1) to the study of the kinetics of collapse/swelling of a P2VP brush and (2) to the ability of an applied voltage to induce collapse/swelling of a PAA brush in a pH range close to the pKa value of the polymer.

  20. Cathodic hydrogen charging of zinc

    International Nuclear Information System (INIS)

    Panagopoulos, C.N.; Georgiou, E.P.; Chaliampalias, D.

    2014-01-01

    Highlights: •Incorporation of hydrogen into zinc and formation of zinc hydrides. •Investigation of surface residual stresses due to hydrogen diffusion. •Effect of hydrogen diffusion and hydride formation on mechanical properties of Zn. •Hydrogen embrittlement phenomena in zinc. -- Abstract: The effect of cathodic hydrogen charging on the structural and mechanical characteristics of zinc was investigated. Hardening of the surface layers of zinc, due to hydrogen incorporation and possible formation of ZnH 2 , was observed. In addition, the residual stresses brought about by the incorporation of hydrogen atoms into the metallic matrix, were calculated by analyzing the obtained X-ray diffraction patterns. Tensile testing of the as-received and hydrogen charged specimens revealed that the ductility of zinc decreased significantly with increasing hydrogen charging time, for a constant value of charging current density, and with increasing charging current density, for a constant value of charging time. However, the ultimate tensile strength of this material was slightly affected by the hydrogen charging procedure. The cathodically charged zinc exhibited brittle transgranular fracture at the surface layers and ductile intergranular fracture at the deeper layers of the material