WorldWideScience

Sample records for weak capture-gamma-ray resonances

  1. Studies of weak capture-gamma-ray resonances via coincidence techniques

    CERN Document Server

    Rowland, C; Champagne, A E; Dummer, A K; Fitzgerald, R; Harley, E C T; Mosher, J; Runkle, R

    2002-01-01

    A method for measuring weak capture-gamma-ray resonances via gamma gamma-coincidence counting techniques is described. The coincidence apparatus consisted of a large-volume germanium detector and an annular NaI(Tl) crystal. The setup was tested by measuring the weak E sub R =227 keV resonance in sup 2 sup 6 Mg(p,gamma) sup 2 sup 7 Al. Absolute germanium and NaI(Tl) counting efficiencies for a range of gamma-ray energies and for different detector-target geometries are presented. Studies of the gamma-ray background in our spectra are described. Compared to previous work, our method improves the detection sensitivity for weak capture-gamma-ray resonances by a factor of approx 100. The usefulness of the present technique for investigations of interest to nuclear astrophysics is discussed.

  2. Measurements of gamma rays from keV-neutron resonance capture by odd-Z nuclei in the 2s-1d shell region

    Energy Technology Data Exchange (ETDEWEB)

    Igashira, Masayuki; Lee, Sam Yol; Mizuno, Satoshi; Hori, Jun-ichi [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Kitazawa, Hideo

    1998-03-01

    Measurements of gamma rays from keV-neutron resonance capture by {sup 19}F, {sup 23}Na, and {sup 27}Al, which are odd-Z nuclei in the 2s-1d shell region, were performed, using an anti-Compton HPGe spectrometer and a pulsed neutron source by the {sup 7}Li(p,n){sup 7}Be reaction. Capture gamma rays from the 27-, 49-, and 97-keV resonances of {sup 19}F, the 35- and 53-keV resonances of {sup 23}Na, and the 35-keV resonance of {sup 27}Al were observed. Some results are presented. (author)

  3. Thermal neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Tuli, J.K.

    1983-01-01

    The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,α), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,#betta#) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide

  4. GEANT4 simulation study of a gamma-ray detector for neutron resonance densitometry

    International Nuclear Information System (INIS)

    Tsuchiya, Harufumi; Harada, Hideo; Koizumi, Mitsuo; Kitatani, Fumito; Takamine, Jun; Kureta, Masatoshi; Iimura, Hideki

    2013-01-01

    A design study of a gamma-ray detector for neutron resonance densitometry was made with GEANT4. The neutron resonance densitometry, combining neutron resonance transmission analysis and neutron resonance capture analysis, is a non-destructive technique to measure amounts of nuclear materials in melted fuels of the Fukushima Daiichi nuclear power plants. In order to effectively quantify impurities in the melted fuels via prompt gamma-ray measurements, a gamma-ray detector for the neutron resonance densitometry consists of cylindrical and well type LaBr 3 scintillators. The present simulation showed that the proposed gamma-ray detector suffices to clearly detect the gamma rays emitted by 10 B(n, αγ) reaction in a high environmental background due to 137 Cs radioactivity with its Compton edge suppressed at a considerably small level. (author)

  5. Gamma rays from fast neutron capture in silicon and sulphur

    International Nuclear Information System (INIS)

    Lindholm, A.; Nilsson, L.; Bergqvist, I.

    1975-01-01

    Gamma-ray spectra from neutron capture in natural samples of silicon and sulphur have been recorded at eight neutron energies between 4 and 15 MeV. Time-of-flight techniques were used to improve the signal-to-background ratio and the gamma radiation was detected by a large NaI(Tl) scintillator. Cross sections have been determined for transitions to individual (or groups of) levels in the final nucleus. Calculations based on the direct-semidirect model show that this model gives a reasonable description of the shapes of the gamma-ray spectra, but fails to account for observed excitation functions. The inclusion of the compound-nucleus capture process gives a conclusive improvement in the description of the excitation functions, in particular at low neutron energies. The ability of the compound-nucleus model to account for the shapes of the gamma-ray spectra is as good as that of the direct-semidirect model. At higher neutron energies, an improvement is obtained for transitions to the region of weakly bound levels, where the single-particle structure is poorly known. (Auth.)

  6. Analytical applications of neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Lindstrom, R.M.; Paul, R.L.; Anderson, D.L.; Paul, R.L.

    1997-01-01

    Field and industrial applications of neutron capture gamma-ray spectrometry with isotopic sources or neutron generators are economically important. Geochemical exploration in boreholes is done routinely with neutron probes. Coal and ores are assayed with analyzers adjacent to a conveyor belt in dozens of industrial facilities. The use of capture gamma rays for explosives detection has been described in the literature, both for scanning airline baggage and for characterizing obsolete munitions; a packaged system for the latter is available commercially. Generalizations are drawn from the history of the field, and predictions are made about the future usefulness of capture gamma rays. (author)

  7. Capture Gamma-Ray Libraries for Nuclear Applications

    International Nuclear Information System (INIS)

    Sleaford, B.W.; Firestone, Richard B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H.D.

    2010-01-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF has been used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy an is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We use CASINO, a version of DICEBOX that is modified for this purpose. This can be used to simulate the neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modelling of unknown assemblies.

  8. Resonance spin memory in low-energy gamma-ray spectra from Sb, Tb, Ho and Ta odd-odd compound nuclei

    International Nuclear Information System (INIS)

    Olejniczak, U.; Gundorin, N.A.; Pikelner, L.B.; Serov, D.G.; Przytula, M.

    2002-01-01

    The low-energy gamma-ray spectra from neutron resonance capture with natural samples of Sb, Tb, Ho and Ta were measured using a HPGe detector at the IBR-30 pulsed reactor (JINR, Dubna). The resonance spin memory effect in the spectra from the odd-odd compound nuclei of 122 Sb, 160 Tb and 166 Ho was found to be quite distinct. For the 182 Ta compound nucleus it proved to be rather weak

  9. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    International Nuclear Information System (INIS)

    Sleaford, B. W.; Summers, N.; Escher, J.; Firestone, R. B.; Basunia, S.; Hurst, A.; Krticka, M.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H. D.

    2011-01-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  10. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    International Nuclear Information System (INIS)

    Sleaford, B.W.; Firestone, R.B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H.D.

    2010-01-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. this can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. They are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  11. Neutron Capture Gamma-Ray Spectroscopy. Proceedings of the International Symposium on Neutron Capture Gamma-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-11-15

    Experimental capabilities in the field of neutron capture gamma-ray spectroscopy have expanded greatly in the last few years; this has been due in large part to the advent of high-quality Ge(Li) detectors, improvements in electronic data processing, and improvements in bent-crystal spectrometers. Previously unsuspected phenomena, such as the '5. 5-MeV1 anomaly, have appeared and new research tools, such as neutron guide tubes, have been brought into use. Equally exciting developments have occurred in the theory of neutron capture. Complex spectra have yielded to analysis after account had been taken of such effects as vibration, rotation and Coriolis forces, and the theoretical prediction of capture spectra seems to be a future possibility. In view of the International Atomic Energy Agency's close interest in this subject and the need for an international exchange of ideas to analyse and study the latest developments, the organizers of the Symposium felt that work on neutron capture gamma-ray spectroscopy had achieved such valuable and significant results that the time had come for this information to be presented, examined and discussed internationally.

  12. Neutron Capture Gamma-Ray Spectroscopy. Proceedings of the International Symposium on Neutron Capture Gamma-Ray Spectroscopy

    International Nuclear Information System (INIS)

    1969-01-01

    Experimental capabilities in the field of neutron capture gamma-ray spectroscopy have expanded greatly in the last few years; this has been due in large part to the advent of high-quality Ge(Li) detectors, improvements in electronic data processing, and improvements in bent-crystal spectrometers. Previously unsuspected phenomena, such as the '5. 5-MeV1 anomaly, have appeared and new research tools, such as neutron guide tubes, have been brought into use. Equally exciting developments have occurred in the theory of neutron capture. Complex spectra have yielded to analysis after account had been taken of such effects as vibration, rotation and Coriolis forces, and the theoretical prediction of capture spectra seems to be a future possibility. In view of the International Atomic Energy Agency's close interest in this subject and the need for an international exchange of ideas to analyse and study the latest developments, the organizers of the Symposium felt that work on neutron capture gamma-ray spectroscopy had achieved such valuable and significant results that the time had come for this information to be presented, examined and discussed internationally

  13. Study of gamma ray multiplicity spectra for radiative capture of neutrons in 113,115In

    International Nuclear Information System (INIS)

    Georgiev, G.P.; Fajkov-Stanchik, Kh.; Grigor'ev, Yu.V.; Muradyan, G.V.; Yaneva, N.B.

    1997-08-01

    Neutron radiative capture measurements were performed for the enriched isotopes 113 In and 115 In on the neutron spectrometer at the Neutron Physics Laboratory of the Joint Institute for Nuclear Research employing the gamma ray multiplicity technique and using a ''Romashka'' multi-sectional 4p detector on the 500 m time base of the IBR-30 booster. The gamma multiplicity spectra of resolved resonances were obtained for the 20-500 eV energy range. The mean gamma ray multiplicity was determined for each resonance. The dependence of the ratio S of the low-energy coincidence multiplicity spectrum to the high-energy coincidence multiplicity spectrum on resonance energy exhibits a non-statistical structure. This structure was found to correlate with the local neutron strength function. (author). 10 refs, 6 figs, 2 tabs

  14. Non-destructive assay of 242Pu by resonance neutron capture

    International Nuclear Information System (INIS)

    Kane, W.R.; Lu, Ming-Shih; Aronson, A.; Forman, L.; Vanier, P.E.

    1995-01-01

    For the accurate assay of plutonium by neutron correlation measurements, especially for material derived from high-burnup reactor fuel, the content of 242 Pu in a sample must be determined. Since 242 Pu has a long half-life (387,000 yr) and decays to 238 U by alpha particle emission with the accompanying emission of only weak, low-energy gamma rays, gamma-ray spectrometry methods which are ordinarily employed to determine the isotopic composition of a plutonium sample are not feasible for 242 Pu. The existence of a resonance in the neutron capture cross section of 242 Pu at an energy of 2.67 electron volts (eV) with a large (72, 000 barn) cross section affords the possibility for the quantitative assay of this isotope by epithermal neutron capture. Essential for this purpose is an appropriately designed geometry of neutron moderators and absorbers which will provide maximum flux in the eV region while suppressing thermal neutron capture by the fissile plutonium isotopes. Signatures for neutron capture in 242 Pu include the decay of 243 Pu (4.9 hr), prompt capture gamma rays (total energy 5.034 MeV), and the decay of an isomeric state (330 nanosecond). Experiments to determine the feasibility of this approach are currently in progress

  15. Measurements of keV-neutron capture {gamma} rays of fission products. 3

    Energy Technology Data Exchange (ETDEWEB)

    Igashira, Masayuki [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    1997-03-01

    {gamma} rays from the keV-neutron capture reactions by {sup 143,145}Nd and {sup 153}Eu have been measured in a neutron energy region of 10 to 80 keV, using a large anti-Compton NaI(Tl) {gamma}-ray spectrometer and the {sup 7}Li(p,n){sup 7}Be pulsed neutron source with a 3-MV Pelletron accelerator. The preliminary results for the capture cross sections and {gamma}-ray spectra of those nuclei are presented and discussed. (author)

  16. The effect of weak resonances on the sup 25 Mg(p,gamma) sup 26 Al reaction rate

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, A E [Princeton Univ., NJ (USA). Dept. of Physics; Howard, A J [Trinity Coll., Hartford, CT (USA). Dept. of Physics and Astronomy; Smith, M S; Magnus, P V; Parker, P D [Yale Univ., New Haven, CT (USA). Wright Nuclear Structure Lab.

    1989-12-11

    The {sup 25}Mg({sup 3}He,d){sup 26}Al reaction has been used to estimate proton spectroscopic factors for states which could be weak {sup 25}Mg+p resonances located near the proton-capture threshold. One of these states (corresponding to a resonance energy E{sub c.m.}=92.2 keV) is found to have a significant effect on the {sup 25}Mg(p,gamma){sup 26}Al reaction rate for temperatures characteristic of Wolf-Rayet stars or late-stage red giants. (orig.).

  17. Study of the fluctuations of the partial and total radiative widths by neutron capture resonance method; Etude des fluctuations des largeurs radiatives partielles et totales par la capture des neutrons de resonance

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, V D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-06-01

    Radiative capture experiments by neutron time-of-flight methods have been made for following studies: distribution of partial radiative widths, effects of correlation between different radiative transitions, fluctuations of total radiative widths {gamma}{sub {gamma}} from resonance to resonance, variation of {gamma}{sub {gamma}} with number of mass and the search for the existence of potential capture. Also, some other experiments with the use of neutron capture gamma-rays spectra have been investigated. (author) [French] Par la capture des neutrons de resonance dont les energies sont selectionnees a l'aide de la technique du temps de vol, differents types d'experiences ont ete realisees concernant les etudes des distributions des largeurs radiatives partielles, des effets de correlation entre differentes voies de desexcitation, de la fluctuation des largeurs radiatives totales {gamma}{sub {gamma}} de resonance a resonance, de la variation de la quantite {gamma}{sub {gamma}} en fonction du nombre de masse et de la mise en evidence de l'existence du processus de capture potentielle. Quelques autres applications de l'emploi du spectre de rayons gamma ont egalement ete presentees. (auteur)

  18. Gamma ray generator

    Science.gov (United States)

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  19. Development of advanced sensing system for antipersonnel mines with neutron capture gamma-ray analysis

    International Nuclear Information System (INIS)

    Iguchi, Tetsuo

    2006-01-01

    Neutron induced prompt gamma-ray analysis (NPGA) for survey of antipersonnel landmines is developed. A concept of sensor system with compact strong accelerator neutron source, simulation of detection and simulation results by trial examinations are stated. The measurement principles, objects, system construction, development of compact accelerator neutron source and high performance neutron capture gamma-ray detector, simulation of detection of landmine are reported. It can detect 10.8 MeV gamma-rays and estimate the incident angle of gamma-ray. Schematic layouts of the compact accelerator neutron resource, the compact Compton gamma camera and sensor unit, the estimation principle of incident angle of gamma-ray, experiments and comparison between the experimental results and the estimation results, a preliminary trial experiment system for sensing antipersonnel mines with neutron capture gamma-ray analysis are illustrated. (S.Y.)

  20. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234,236,238U Neutron-Capture Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kawano, Toshihiko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bredeweg, Todd Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baramsai, Bayarbadrakh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haight, Robert Cameron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jandel, Marian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Donnell, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vieira, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilhelmy, Jerry B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Becker, John A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Ching-Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Krticka, Milan [Charles Univ., Prague (Czech Republic)

    2015-05-28

    Neutron capture cross sections in the “continuum” region (>≈1 keV) and gamma-emission spectra are of importance to basic science and many applied fields. Careful measurements have been made on most common stable nuclides, but physicists must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides. Calculations must be benchmarked against measurements (cross sections, gamma-ray spectra, and <Γγ>). Gamma-ray spectrum measurements from resolved resonances were made with 1 - 2 mg/cm2 thick targets; cross sections at >1 keV were measured using thicker targets. The results show that the shape of capture cross section vs neutron energy is not sensitive to the form of the strength function (although the magnitude is); the generalized Lorentzian E1 strength function is not sufficient to describe the shape of observed gamma-ray spectra; MGLO + “Oslo M1” parameters produces quantitative agreement with the measured 238U(n,γ) cross section; additional strength at low energies (~ 3 MeV) -- likely M1-- is required; and careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations.

  1. Numerical study on determining formation porosity using a boron capture gamma ray technique and MCNP.

    Science.gov (United States)

    Liu, Juntao; Zhang, Feng; Wang, Xinguang; Han, Fei; Yuan, Zhelong

    2014-12-01

    Formation porosity can be determined using the boron capture gamma ray counting ratio with a near to far detector in a pulsed neutron-gamma element logging tool. The thermal neutron distribution, boron capture gamma spectroscopy and porosity response for formations with different water salinity and wellbore diameter characteristics were simulated using the Monte Carlo method. We found that a boron lining improves the signal-to-noise ratio and that the boron capture gamma ray counting ratio has a higher sensitivity for determining porosity than total capture gamma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Advances in gamma ray resonant scattering and absorption long-lived isomeric nuclear states

    CERN Document Server

    Davydov, Andrey V

    2015-01-01

    This book presents the basics and advanced topics of research of gamma ray physics. It describes measuring of  Fermi surfaces with gamma resonance spectroscopy and the theory of angular distributions of resonantly scattered gamma rays. The dependence of excited-nuclei average lifetime on the shape of the exciting-radiation spectrum and electron binding energies in the spectra of scattered gamma rays is described. Resonant excitation by gamma rays of nuclear isomeric states with long lifetime leads to the emission and absorption lines. In the book, a new gamma spectroscopic method, gravitational gamma spectrometry, is developed. It has a resolution hundred million times higher than the usual Mössbauer spectrometer. Another important topic of this book is resonant scattering of annihilation quanta by nuclei with excited states in connection with positron annihilation. The application of the methods described is to explain the phenomenon of Coulomb fragmentation of gamma-source molecules and resonant scatt...

  3. Study of the fluctuations of the partial and total radiative widths by neutron capture resonance method; Etude des fluctuations des largeurs radiatives partielles et totales par la capture des neutrons de resonance

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, V.D. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-06-01

    Radiative capture experiments by neutron time-of-flight methods have been made for following studies: distribution of partial radiative widths, effects of correlation between different radiative transitions, fluctuations of total radiative widths {gamma}{sub {gamma}} from resonance to resonance, variation of {gamma}{sub {gamma}} with number of mass and the search for the existence of potential capture. Also, some other experiments with the use of neutron capture gamma-rays spectra have been investigated. (author) [French] Par la capture des neutrons de resonance dont les energies sont selectionnees a l'aide de la technique du temps de vol, differents types d'experiences ont ete realisees concernant les etudes des distributions des largeurs radiatives partielles, des effets de correlation entre differentes voies de desexcitation, de la fluctuation des largeurs radiatives totales {gamma}{sub {gamma}} de resonance a resonance, de la variation de la quantite {gamma}{sub {gamma}} en fonction du nombre de masse et de la mise en evidence de l'existence du processus de capture potentielle. Quelques autres applications de l'emploi du spectre de rayons gamma ont egalement ete presentees. (auteur)

  4. Partial radiative capture of resonance neutrons; Capture radiative partielle des neutrons de resonance

    Energy Technology Data Exchange (ETDEWEB)

    Samour, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The radiative capture of resonance neutrons has been studied near the Saclay linac between 0.5 and 700 eV with time-of-flight method and a Ge(Li) detector. {sup 195}Pt + n and {sup 183}W + n allow the study of the distribution of partial radiative widths and their eventual correlation and also the variation of < {gamma}{sub {gamma}{sub i}} > with E{sub {gamma}}. The mean values of Ml and El transition intensities are compared in several tin isotopes. Interference effects, either between resonances or between direct capture and resonant capture are found in {sup 195}Pt + n, {sup 197}Au + n and {sup 59}Co + n. The excited level schemes of a great deal of nuclei are obtained and compared with theoretical predictions. This study has been completed by an analysis of thermal spectrum. (author) [French] La capture radiative des neutrons de resonance a ete etudiee pres de l'accelerateur lineaire de Saclay entre 0,5 et 700 eV a l'aide de la methode du temps-de-vol et d'un detecteur Ge(Li). Les noyaux {sup 195}Pt + n et {sup 183}W + n permettent l'analyse de la distribution de resonance en resonance des largeurs radiatives partielles {gamma}{sub {gamma}{sub i}} et de leur eventuelle correlation, ainsi que l'etude de la variation de < {gamma}{sub {gamma}{sub i}} > en fonction de E{sub {gamma}}. Les intensites moyennes des transitions Ml et El sont comparees pour quelques isotopes de l'etain. Des effets d'interference, soit entre resonances, soit entre capture directe et capture resonnante sont mis en evidence dans {sup 195}Pt + n, {sup 197}Au + n et {sup 59}Co + n. Enfin les schemas des etats excites d'un grand nombre de noyaux sont obtenus et compares avec les predictions theoriques. Cette etude a ete completee par une analyse des spectres thermiques. (auteur)

  5. Partial radiative capture of resonance neutrons; Capture radiative partielle des neutrons de resonance

    Energy Technology Data Exchange (ETDEWEB)

    Samour, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The radiative capture of resonance neutrons has been studied near the Saclay linac between 0.5 and 700 eV with time-of-flight method and a Ge(Li) detector. {sup 195}Pt + n and {sup 183}W + n allow the study of the distribution of partial radiative widths and their eventual correlation and also the variation of < {gamma}{sub {gamma}{sub i}} > with E{sub {gamma}}. The mean values of Ml and El transition intensities are compared in several tin isotopes. Interference effects, either between resonances or between direct capture and resonant capture are found in {sup 195}Pt + n, {sup 197}Au + n and {sup 59}Co + n. The excited level schemes of a great deal of nuclei are obtained and compared with theoretical predictions. This study has been completed by an analysis of thermal spectrum. (author) [French] La capture radiative des neutrons de resonance a ete etudiee pres de l'accelerateur lineaire de Saclay entre 0,5 et 700 eV a l'aide de la methode du temps-de-vol et d'un detecteur Ge(Li). Les noyaux {sup 195}Pt + n et {sup 183}W + n permettent l'analyse de la distribution de resonance en resonance des largeurs radiatives partielles {gamma}{sub {gamma}{sub i}} et de leur eventuelle correlation, ainsi que l'etude de la variation de < {gamma}{sub {gamma}{sub i}} > en fonction de E{sub {gamma}}. Les intensites moyennes des transitions Ml et El sont comparees pour quelques isotopes de l'etain. Des effets d'interference, soit entre resonances, soit entre capture directe et capture resonnante sont mis en evidence dans {sup 195}Pt + n, {sup 197}Au + n et {sup 59}Co + n. Enfin les schemas des etats excites d'un grand nombre de noyaux sont obtenus et compares avec les predictions theoriques. Cette etude a ete completee par une analyse des spectres thermiques. (auteur)

  6. New determinations of gamma-ray line intensities of the E{sub p}=550 and 1747 keV resonances of the {sup 13}C(p,{gamma}){sup 14}N reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kiener, J. E-mail: kiener@csnsm.in2p3.fr; Gros, M.; Tatischeff, V.; Attie, D.; Bailly, I.; Bauchet, A.; Chapuis, C.; Cordier, B.; Deloncle, I.; Porquet, M.G.; Schanne, S.; Sereville, N. de; Tauzin, G

    2004-03-01

    Gamma-ray angular distributions for the resonances at E{sub p}=550 and 1747 keV of the radiative capture reaction {sup 13}C(p,{gamma}){sup 14}N have been measured, using intense proton beams on isotopically pure {sup 13}C targets. Experimental gamma-ray spectra were obtained with three HP-Germanium detectors at four angles for E{sub p}=550 keV and six angles for E{sub p}=1747 keV in the range of 0-90 deg. with respect to the proton beam. From the data, relative intensities for the strongest transitions were extracted with an accuracy of typically 5%, making these resonances new useful gamma-ray standards for efficiency calibration in the energy range from E{sub {gamma}}=1.6-9 MeV. Gamma-ray branching ratios were obtained for several levels of {sup 14}N and are compared with literature values.

  7. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    Energy Technology Data Exchange (ETDEWEB)

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  8. Neutron-capture gamma-ray analysis of coal for sulfur, iron, silicon and moisture

    International Nuclear Information System (INIS)

    Fay, D.A.

    1979-05-01

    Samples of coal weighing approximately 200 grams placed in a collimated beam of neutrons from the thermal column of the Ames Laboratory Research Reactor produced capture gamma-rays which could be used for the simultaneous determination of sulfur and iron. Spectra from NaI(Tl) and Ge(Li) detectors were used and interferences were located by examining spectra of the major elemental components of coal. In determining sulfur, iron is a potential source of interference when gamma-ray spectra are collected with a NaI(Tl) detector. Corrections for iron interference were made by use of a higher energy iron peak. The possibility of determining silicon in coal was investigated but this element determination was unsuccessful since capture gamma-ray spectrometry lacked the necessary sensitivity for silicon. A linear relation was found between the area of the hydrogen capture peak at 2.23 MeV and the amount of water added to coal

  9. Cyclotron resonant scattering in the spectra of gamma-ray bursts

    International Nuclear Information System (INIS)

    Lamb, D.Q.; Wang, J.C.L.; Loredo, T.J.; Wasserman, I.; Fenimore, E.E.

    1989-01-01

    Data on the GB880205 gamma-ray bursts are presented that have implications for the nature of gamma-ray burst sources. It is shown that cyclotron resonant scattering and Raman scattering account well for the positions, strengths, and shapes of the relative strengths of the first and second harmonics and their narrow widths. These results imply the existence of a superstrong (B of about 2 x 10 to the 12th G) magnetic field in the vicinity of the X-ray emission region of GB880205. Such a superstrong magnetic field points to a strongly magnetic neutron star as the origin of gamma-ray bursts, and to the fact that the gamma-ray sources belong to the Galaxy. 59 refs

  10. Cross-correlation of weak lensing and gamma rays: implications for the nature of dark matter

    Science.gov (United States)

    Tröster, Tilman; Camera, Stefano; Fornasa, Mattia; Regis, Marco; van Waerbeke, Ludovic; Harnois-Déraps, Joachim; Ando, Shin'ichiro; Bilicki, Maciej; Erben, Thomas; Fornengo, Nicolao; Heymans, Catherine; Hildebrandt, Hendrik; Hoekstra, Henk; Kuijken, Konrad; Viola, Massimo

    2017-05-01

    We measure the cross-correlation between Fermi gamma-ray photons and over 1000 deg2 of weak lensing data from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), the Red Cluster Sequence Lensing Survey (RCSLenS), and the Kilo Degree Survey (KiDS). We present the first measurement of tomographic weak lensing cross-correlations and the first application of spectral binning to cross-correlations between gamma rays and weak lensing. The measurements are performed using an angular power spectrum estimator while the covariance is estimated using an analytical prescription. We verify the accuracy of our covariance estimate by comparing it to two internal covariance estimators. Based on the non-detection of a cross-correlation signal, we derive constraints on weakly interacting massive particle (WIMP) dark matter. We compute exclusion limits on the dark matter annihilation cross-section , decay rate Γdec and particle mass mDM. We find that in the absence of a cross-correlation signal, tomography does not significantly improve the constraining power of the analysis. Assuming a strong contribution to the gamma-ray flux due to small-scale clustering of dark matter and accounting for known astrophysical sources of gamma rays, we exclude the thermal relic cross-section for particle masses of mDM ≲ 20 GeV.

  11. Gamma-ray measurements at the WNR white neutron source

    International Nuclear Information System (INIS)

    Nelson, R.O.; Wender, S.A.; Mayo, D.R.

    1994-01-01

    Photon production data have been acquired in the incident neutron energy range, 1 n γ 56 Fe, and 207,208 Pb. These data are useful both for testing nuclear reaction models at intermediate energies and for numerous applied purposes. BGO detectors do not have the good energy resolution of Ge detectors, but have much greater detection efficiency for gamma rays with energies greater than a few MeV. We have used an array of 5 BGO detectors to measure cross sections and angular distributions for photon production from C and N. A large, well-shielded BGO detector has been used to measure fast neutron capture in the giant resonance region with a maximum gamma-ray energy of 52 MeV. We present results of our study of the isovector giant quadrupole resonance in 41 Ca via these capture measurements. Recent measurements of inclusive photon spectra from our neutron proton Bremsstrahlung experiment have been made using a gamma-ray telescope to detect gamma-rays in the energy range, 40 γ < 300 MeV. This detector is briefly described. The advantages and disadvantages of these detector systems are discussed using examples from our measurements. The status of current measurements is presented

  12. Photoneutron cross sections measurements in 9Be, 13C e 17O with thermal neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Semmler, Renato

    2006-01-01

    Photoneutron cross sections measurements of 9 Be, 13 C and 17 O have been obtained in the energy interval between 1,6 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 a 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (5 MW) research reactor. The samples have been irradiated inside a 4π geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm 3 , 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A inversion matrix methodology to solve inversion problems for unfolding the set of experimental compound cross sections, was used in order to obtain the cross sections at specific excitation energy values (principal gamma line energies of the capture targets). The cross sections obtained at the energy values of the principal gamma lines were compared with experimental data reported by other authors, with have employed different gamma-ray sources. A good agreement was observed among the experimental data in this work with reported in the literature. (author)

  13. Tangential channel for nuclear gamma-resonance spectroscopy in thermal neutron capture

    International Nuclear Information System (INIS)

    Belogurov, V.N.; Bondars, H.Ya.; Lapenas, A.A.; Reznikov, R.S.; Senkov, P.E.

    1979-01-01

    Design of a tangential reactor channel which has been made to replace the radial one in the pulsed research reactor IRT-2000 is described. It allows to use the same hole in biological reactor schielding. Characteristics of neutron and gamma-background spectra at the excit of the channel are given and compared with analogous characteristics of the radial one. The gamma background in the tangential channel is lower than in the radial channel. The gamma spectra in the Gd 155 (n, γ)Gd 156 , Gd 157 (n, γ)Gd 158 , Er 167 (n, γ)Er 168 and Hf 177 (n, γ)Hf 178 reactions show that the application of X-ray detection units BDR with the tangential channel allows to carry out the gamma spectrometry of gamma quanta emitted in the thermal neutron capture by both high and low neutron capture cross section nuclei (e.g., Gdsup(157, 155) and Er 167 , Hf 177 , respectively)

  14. Testing T-odd, p-even interactions with gamma-rays from neutron p-wave resonances

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1992-01-01

    A new method for the study of time reversal violation is described. It consists of measurements of the forward-backward asymmetry in individual gamma-ray transitions resulting from unpolarized neutron capture in p-wave resonance. An experiment with a 113 Cd target performed at the Dubna pulsed neutron source has been analyzed and a limit on the time reversal odd, parity even interaction extracted. The possibilities of experiments using the powerful pulsed neutron source at Los Alamos are considered. 23 refs.; 2 figs

  15. Assembly and calibration of a new experimental apparatus for production and utilization of capture gamma rays

    International Nuclear Information System (INIS)

    Semmler, R.

    1993-01-01

    A new experimental apparatus has been mounted at the tangential beam tube B H 4/12 of the IPEN IEA-R1 (2 MW) reactor, for production and utilization of capture gamma rays. In this type of experiment, monochromatic gamma radiation, with energy resolution of about 10 eV, is produced by thermal neutron capture in several materials placed near the reactor core. By changing the target material it was possible to obtain up to 30 gamma lines in the 5 to 11 MeV energy range and so, the present experimental arrangement may be considered as an excellent gamma ray source for photonuclear reactions studies in low excitation energies. (author)

  16. New lithology compensated capture gamma ray system

    International Nuclear Information System (INIS)

    Peatross, R.F.

    1976-01-01

    The results of the HYDROCARBON* log after a series of field tests in which gamma rays resulting from thermal neutron capture were measured utilizing an energy analyzer and a scintillation counter of unique construction are reported. A brief discussion covers the nuclear physics required for an understanding of gamma spectral logging. Included in the explanation will be the effects of different atoms on neutrons and photons. The HYDROCARBON log utilizes these nuclear principles to record cased hole measurements and quantitatively distinguish possible productive zones from non-productive zones. Different field examples are illustrated showing the response to shaly sands, porosity and water salinity. Interpretation techniques are discussed both qualitatively and quantitatively. The HYDROCARBON log has proven to be a reliable device in the determination of water saturation in sands behind casing even when shale content and porosity are not well known. This technique is also valuable in the location of the present position of gas--oil contacts and water levels

  17. Experimental determination of nuclear reaction rates (n,γ) by the gamma-rays capture spectrometry technique

    International Nuclear Information System (INIS)

    Lucatero, M.A.

    1976-01-01

    The technique of the gamma-rays capture spectrometry was used in the experimental determination of nuclear reaction rates of the type (n,γ). This technique consists in the incidence of a thermal neutrons collimated beam upon a sample, detecting the capture spectrum of gamma rays emitted at a solid fixed angle. In the determination of the efficiency curve intrinsic to the detection electronic system the reactions 199 Hg(n,γ) 200 Hg, 56 Fe(n,γ) 57 Fe and 63 Cu(n,γ) 64 Cu were used with the energy of the gamma rays capture of 5.976, 7.635 and 7.915 Mev respectively, through the irradiation of standard samples of Hg(175.3g), Fe(110.4g) and Cu(108.5g) of cylindrical geometry the two former and parallelepiped the latter. The problem concerning the corrections due to the thermal neutrons flux depression, the gammas auto-attenuation, and the geometric factor due to the cylindrical and parallelepiped geometry are involved in the data process. The experimental determination of the reaction 35 Cl(n,γ) 36 Cl rate was made through the observation of the gamma caputre of 6.111 Mev when a sample of CaCl 2 of cylindrical geometry was irradiated. This rate can be favorably compared with the reaction rate determined theoretically. (author)

  18. Self-absorption of neutron capture gamma-rays in gold samples

    International Nuclear Information System (INIS)

    Wisshak, K.; Walter, G.; Kaeppeler, F.

    1983-06-01

    The self absorption of neutron capture gamma rays in gold samples has been determined experimentally for two standard setups used in measurements of neutron capture cross sections. One makes use of an artificially collimated neutron beam and two C 6 D 6 detectors, the other of kinematically collimated neutrons and three Moxon-Rae detectors. Correction factors for an actual measurement of a neutron capture cross section using a gold standard of 1 mm thickness up to 12% were found for the first setup while they are only 4% for the second setup. The present data allow to determine the correction in an actual measurement with an accuracy of 0.5-1%. (orig.) [de

  19. Weak-scale hidden sector and energy transport in fireball models of gamma-ray bursts

    International Nuclear Information System (INIS)

    Demir, Durmus A.; Mosquera Cuesta, Herman J.

    2000-12-01

    The annihilation of pairs of very weakly interacting particles in the neighborhood of gamma-ray sources is introduced here as a plausible mechanism to overcome the baryon load problem. This way we can explain how these very high energy gamma-ray bursts can be powered at the onset of very energetic events like supernovae (collapsars) explosions or coalescences of binary neutron stars. Our approach uses the weak-scale hidden sector models in which the Higgs sector of the standard model is extended to include a gauge singlet that only interacts with the Higgs particle. These particles would be produced either during the implosion of the red supergiant star core or at the aftermath of a neutron star binary merger. The whole energetics and timescales of the relativistic blast wave, the fireball, are reproduced. (author)

  20. A NOVEL APPROACH IN THE WEAKLY INTERACTING MASSIVE PARTICLE QUEST: CROSS-CORRELATION OF GAMMA-RAY ANISOTROPIES AND COSMIC SHEAR

    International Nuclear Information System (INIS)

    Camera, Stefano; Fornasa, Mattia; Fornengo, Nicolao; Regis, Marco

    2013-01-01

    Both cosmic shear and cosmological gamma-ray emission stem from the presence of dark matter (DM) in the universe: DM structures are responsible for the bending of light in the weak-lensing regime and those same objects can emit gamma rays, either because they host astrophysical sources (active galactic nuclei or star-forming galaxies) or directly by DM annihilations (or decays, depending on the properties of the DM particle). Such gamma rays should therefore exhibit strong correlation with the cosmic shear signal. In this Letter, we compute the cross-correlation angular power spectrum of cosmic shear and gamma rays produced by the annihilation/decay of weakly interacting massive particle DM, as well as by astrophysical sources. We show that this observable provides novel information on the composition of the extragalactic gamma-ray background (EGB), since the amplitude and shape of the cross-correlation signal strongly depend on which class of sources is responsible for the gamma-ray emission. If the DM contribution to the EGB is significant (at least in a definite energy range), although compatible with current observational bounds, its strong correlation with the cosmic shear makes such signal potentially detectable by combining Fermi Large Area Telescope data with forthcoming galaxy surveys, like the Dark Energy Survey and Euclid. At the same time, the same signal would demonstrate that the weak-lensing observables are indeed due to particle DM matter and not to possible modifications of general relativity.

  1. A Novel Approach in the Weakly Interacting Massive Particle Quest: Cross-correlation of Gamma-Ray Anisotropies and Cosmic Shear

    Science.gov (United States)

    Camera, Stefano; Fornasa, Mattia; Fornengo, Nicolao; Regis, Marco

    2013-07-01

    Both cosmic shear and cosmological gamma-ray emission stem from the presence of dark matter (DM) in the universe: DM structures are responsible for the bending of light in the weak-lensing regime and those same objects can emit gamma rays, either because they host astrophysical sources (active galactic nuclei or star-forming galaxies) or directly by DM annihilations (or decays, depending on the properties of the DM particle). Such gamma rays should therefore exhibit strong correlation with the cosmic shear signal. In this Letter, we compute the cross-correlation angular power spectrum of cosmic shear and gamma rays produced by the annihilation/decay of weakly interacting massive particle DM, as well as by astrophysical sources. We show that this observable provides novel information on the composition of the extragalactic gamma-ray background (EGB), since the amplitude and shape of the cross-correlation signal strongly depend on which class of sources is responsible for the gamma-ray emission. If the DM contribution to the EGB is significant (at least in a definite energy range), although compatible with current observational bounds, its strong correlation with the cosmic shear makes such signal potentially detectable by combining Fermi Large Area Telescope data with forthcoming galaxy surveys, like the Dark Energy Survey and Euclid. At the same time, the same signal would demonstrate that the weak-lensing observables are indeed due to particle DM matter and not to possible modifications of general relativity.

  2. A NOVEL APPROACH IN THE WEAKLY INTERACTING MASSIVE PARTICLE QUEST: CROSS-CORRELATION OF GAMMA-RAY ANISOTROPIES AND COSMIC SHEAR

    Energy Technology Data Exchange (ETDEWEB)

    Camera, Stefano [CENTRA, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Lisboa (Portugal); Fornasa, Mattia [School of Physics and Astronomy, University of Nottingham, Nottingham (United Kingdom); Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica, Universita di Torino and INFN, Torino (Italy)

    2013-07-01

    Both cosmic shear and cosmological gamma-ray emission stem from the presence of dark matter (DM) in the universe: DM structures are responsible for the bending of light in the weak-lensing regime and those same objects can emit gamma rays, either because they host astrophysical sources (active galactic nuclei or star-forming galaxies) or directly by DM annihilations (or decays, depending on the properties of the DM particle). Such gamma rays should therefore exhibit strong correlation with the cosmic shear signal. In this Letter, we compute the cross-correlation angular power spectrum of cosmic shear and gamma rays produced by the annihilation/decay of weakly interacting massive particle DM, as well as by astrophysical sources. We show that this observable provides novel information on the composition of the extragalactic gamma-ray background (EGB), since the amplitude and shape of the cross-correlation signal strongly depend on which class of sources is responsible for the gamma-ray emission. If the DM contribution to the EGB is significant (at least in a definite energy range), although compatible with current observational bounds, its strong correlation with the cosmic shear makes such signal potentially detectable by combining Fermi Large Area Telescope data with forthcoming galaxy surveys, like the Dark Energy Survey and Euclid. At the same time, the same signal would demonstrate that the weak-lensing observables are indeed due to particle DM matter and not to possible modifications of general relativity.

  3. New parameterization of the E1 gamma-ray strength function

    International Nuclear Information System (INIS)

    Gardner, D.G.; Dietrich, F.S.

    1979-01-01

    The giant dipole (GD) parameters of peak energy, width, and cross section were satisfactorily correlated for elements from V to Bi, assuming two overlapping peaks with a separation dependent on deformation. The energy dependence of the GD resonance is assumed to have a Breit-Wigner form, but with an energy-dependent width. The resulting gamma-ray strength function model is used to predict neutron capture cross sections and gamma-ray spectra for isotopes of Ta, Os, and Au. 23 references

  4. Principles of resonance-averaged gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1981-01-01

    The unambiguous determination of excitation energies, spins, parities, and other properties of nuclear levels is the paramount goal of the nuclear spectroscopist. All developments of nuclear models depend upon the availability of a reliable data base on which to build. In this regard, slow neutron capture gamma-ray spectroscopy has proved to be a valuable tool. The observation of primary radiative transitions connecting initial and final states can provide definite level positions. In particular the use of the resonance-averaged capture technique has received much recent attention because of the claims advanced for this technique (Chrien 1980a, Casten 1980); that it is able to identify all states in a given spin-parity range and to provide definite spin parity information for these states. In view of the importance of this method, it is perhaps surprising that until now no firm analytical basis has been provided which delineates its capabilities and limitations. Such an analysis is necessary to establish the spin-parity assignments derived from this method on a quantitative basis; in other words a quantitative statement of the limits of error must be provided. It is the principal aim of the present paper to present such an analysis. To do this, a historical description of the technique and its applications is presented and the principles of the method are stated. Finally a method of statistical analysis is described, and the results are applied to recent measurements carried out at the filtered beam facilities at the Brookhaven National Laboratory

  5. Determination of protein content in grains by radioactive thermal neutron capture prompt gamma rays analysis

    International Nuclear Information System (INIS)

    Carbonari, A.W.

    1983-01-01

    The radioactive thermal neutron capture prompt gamma rays technique can be used to determinate the nitrogen content in grains without chemical destruction, with good precision and relative rapidity. This determination is based on the detection of prompt gamma rays emitted by the 14 N(n,γ) 15 N reaction product. The samples has been irradiated the tanGencial tube of the IEA-R1 research reator and a pair spectrometer has been used for the detection of the prompt gamma rays. The nitrogen content is determinated in several samples of soybean, commonbean, peas and rice, and the results is compared with typical nitrogen content for each grain. (Autor) [pt

  6. Monte Carlo simulation of the scattered component of neutron capture prompt gamma-ray analyzer responses

    International Nuclear Information System (INIS)

    Jin, Y.; Verghese, K.; Gardner, R.P.

    1986-01-01

    This paper describes a major part of our efforts to simulate the entire spectral response of the neutron capture prompt gamma-ray analyzer for bulk media (or conveyor belt) samples by the Monte Carlo method. This would allow one to use such a model to augment or, in most cases, essentially replace experiments in the calibration and optimum design of these analyzers. In previous work, we simulated the unscattered gamma-ray intensities, but would like to simulate the entire spectral response as we did with the energy-dispersive x-ray fluorescence analyzers. To accomplish this, one must account for the scattered gamma rays as well as the unscattered and one must have available the detector response function to translate the incident gamma-ray spectrum calculated by the Monte Carlo simulation into the detected pulse-height spectrum. We recently completed our work on the germanium detector response function, and the present paper describes our efforts to simulate the entire spectral response by using it with Monte Carlo predicted unscattered and scattered gamma rays

  7. Fast neutron capture in 197Au and the gamma-ray strength function

    International Nuclear Information System (INIS)

    Earle, E.D.; Bergqvist, I.; Nilsson, L.

    1977-08-01

    Gamma-ray spectra from the reaction 197 Au(n,γ) 198 Au have been measured at several incident energies between 30 keV and 2.5 MeV. The γ-ray detector was a NaI(Tl) scintillation detector and time-of-flight techniques were utilized to suppress background. A γ-ray strength function was deduced from the spectra by a spectrum fitting method. The strength function indicates a resonance-like structure at E(γ) approximately 5.5 MeV. Comparison is made with the γ-ray strength derived from photonuclear work.(author)

  8. Measuring parity violation using the neutron capture reaction

    International Nuclear Information System (INIS)

    Frankle, C.M.; Bowman, J.D.; Seestrom, S.J.; Roberson, N.R.; Sharapov, E.I.

    1993-01-01

    Measuring parity violation using the total capture reaction has certain advantages over neutron transmission experiments. Very much less material is required for targets, a necessity when dealing with separated isotopes. The capture reaction is also quite sensitive to very weak resonances. These advantages indicated the need to construct a near 4π gamma ray detector for use at LANSCE. A design for such a detector has been completed. Issues influencing the design and the final design parameters will be discussed in detail

  9. Neutron capture prompt gamma-ray activation analysis at the NIST cold neutron research facility

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, R M; Zeisler, R; Vincent, D H; Greenberg, R R; Stone, C A; Mackey, E A [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Anderson, D L [Food and Drug Administration, Washington, DC (United States); Clark, D D [Cornell Univ., Ithaca, NY (United States)

    1993-01-01

    An instrument for neutron capture prompt gamma-ray activation analysis (PGAA) has been constructed as part of the Cold Neutron Research Facility at the 20 MW National Institute of Standards and Technology Research Reactor. The neutron fluence rate (thermal equivalent) is 1.5*10[sup 8] n*cm[sup -2]*s[sup -] [sup 1], with negligible fast neutrons and gamma-rays. With compact geometry and hydrogen-free construction, the sensitivity is sevenfold better than an existing thermal instrument. Hydrogen background is thirtyfold lower. (author) 17 refs.; 2 figs.

  10. Measurement of salinity of fluids in earth formations by comparison of inelastic and capture gamma ray spectra

    International Nuclear Information System (INIS)

    1979-01-01

    A method of borehole logging by detecting and counting gamma rays from inelastic scattering of fast neutrons by carbon, oxygen, silicon and calcium, gamma rays from capture of thermal neutrons by calcium, chlorine and silicon and comparing the former with the latter thereby deriving an estimate of the salinity of the fluids in the borehole, is given (UK)

  11. Apparatus for parity-violation study via capture gamma-ray measurements

    CERN Document Server

    Seestrom, S J; Bowman, J D; Crawford, B C; Haseyama, T; Masaike, A; Matsuda, A; Penttilae, S I; Roberson, R N; Sharapov, E I; Stephenson, S L

    1999-01-01

    The Time Reversal and Parity at Low Energy (TRIPLE) Collaboration uses a short-pulsed longitudinally polarized epithermal neutron beam at the Los Alamos Neutron Science Center to study spatial parity violation (PV) in the compound nucleus. The typical PV experiment measures the longitudinal cross-section asymmetry by the neutron transmission method through thick samples. Neutron capture gamma-ray measurement provides an alternative method for the study of PV, which enables the use of smaller amounts of isotopically pure target material. In 1995 TRIPLE commissioned a new neutron-capture detector consisting of 24 pure CsI scintillators arranged in a cylindrical geometry around the neutron beam. The characteristics and the performance of the detector and spin transport are described.

  12. Detection efficiency for radionuclides decaying by electron capture and gamma-Ray

    International Nuclear Information System (INIS)

    Grau, A.; Fernandez, A.

    1985-01-01

    In this paper, the electron capture partial counting efficiency vs the figure of merit for electron-capture and gamma-ray emitters has been computed. The radionuclides tabulated are 48 c r, 54 M n, 57 C o 56 N i, 72 S e, 73 A s, 85 S r, 88 Z r, 92 N b, 103 P d, 111 l n, 119 S b, 125 I , 139 C e and 152 D y. It has been assumed that the liquid is a toluene based scintillator solution in standard glass vials containing 15 cm 3 . (Author) 17 refs

  13. Gamma ray heating rates due to chromium isotopes in stellar core during late stages of high mass stars (>10M⊙

    Directory of Open Access Journals (Sweden)

    Nabi Jameel-Un

    2017-01-01

    Full Text Available Gamma ray heating rates are thought to play a crucial role during the pre-supernova stage of high mass stars. Gamma ray heating rates, due to β±-decay and electron (positron capture on chromium isotopes, are calculated using proton-neutron quasiparticle random phase approximation theory. The electron capture significantly affects the lepton fraction (Ye and accelerates the core contraction. The gamma rays emitted as a result of weak processes heat the core and tend to hinder the cooling and contraction due to electron capture and neutrino emission. The emitted gamma rays tend to produce enormous entropy and set the convection to play its role at this stage. The gamma heating rates, on 50-60Cr, are calculated for the density range 10 < ρ (g.cm-3 < 1011 and temperature range 107 < T (K < 3.0×1010.

  14. Cross Sections for High-Energy Gamma Transitions from MeV Neutron Capture in {sup 206}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bergqvist, I; Lundberg, B; Nilsson, L

    1970-03-15

    Gamma-ray spectra from neutron capture in Pb (radiogenic lead) in the energy range 1.5 to 8.5 MeV were recorded using time-of-flight techniques. The spectrometer was a Nal (Tl) crystal, 20.8 cm long and 22.6 cm in diameter. The spectra are dominated by gamma transitions to levels with large single-particle strength, in agreement with predictions of semi-direct capture theories. The theories predict enhancements of the direct capture cross section by a factor of 10 - 15 in the region of the giant dipole resonance. The observed enhancement is about 50.

  15. A Search Technique for Weak and Long-Duration Gamma-Ray Bursts from Background Model Residuals

    Science.gov (United States)

    Skelton, R. T.; Mahoney, W. A.

    1993-01-01

    We report on a planned search technique for Gamma-Ray Bursts too weak to trigger the on-board threshold. The technique is to search residuals from a physically based background model used for analysis of point sources by the Earth occultation method.

  16. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    International Nuclear Information System (INIS)

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae; Jo Hong, Key; Sil Lee, Keum

    2015-01-01

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations

  17. Measurements of neutron-induced capture and fission reactions on $^{235}$ U: cross sections and ${\\alpha}$ ratios, photon strength functions and prompt ${\\gamma}$-ray from fission

    CERN Multimedia

    We propose to measure the neutron-induced capture cross section of the fissile isotope $^{235}$U using a fission tagging set-up. This new set-up has been tested successfully in 2010 and combines the n_TOF 4${\\pi}$ Total Absorption Calorimeter (TAC) with MicroMegas (MGAS) fission detectors. It has been proven that such a combination of detectors allows distinguishing with very good reliability the electromagnetic cascades from the capture reactions from dominant ${\\gamma}$-ray background coming from the fission reactions. The accurate discrimination of the fission background is the main challenge in the neutron capture cross section measurements of fissile isotopes. The main results from the measurement will be the associated capture cross section and ${\\alpha}$ ratio in the resolved (0.3-2250 eV) and unresolved (2.25-30 keV) resonance regions. According to the international benchmarks and as it is mentioned in the NEA High Priority Request List (HPRL), the 235U(n,${\\gamma}$) cross section is of utmost impo...

  18. Relativistic motion in gamma-ray bursts

    International Nuclear Information System (INIS)

    Krolik, J.H.; Pier, E.A.

    1991-01-01

    Three fundamental problems affect models of gamma-ray bursts, i.e., the energy source, the ability of high-energy photons to escape the radiation region, and the comparative weakness of X-ray emission. It is indicated that relativistic bulk motion of the gamma-ray-emitting plasma generically provides a solution to all three of these problems. Results show that, if the plasma that produces gamma-ray bursts has a bulk relativistic velocity with Lorentz factor gamma of about 10, several of the most troubling problems having to do with gamma-ray bursts are solved. 42 refs

  19. Photoexcitation by gamma-ray scattering near threshold and giant dipole resonance

    International Nuclear Information System (INIS)

    Lakosi, L.; Safar, J.; Veres, A.; Sekine, T.; Kaji, H.; Yoshihara, K.

    1993-01-01

    Photoexcitation of 4.5 h half-life 115m In and 56 min half-life 103m Rh isomers by inelastic gamma-ray scattering near threshold and in the giant dipole resonance region has been reviewed. In disagreement with earlier experimental results available in the literature, but in good agreement with our experiments published recently, present calculations indicate that above the photoneutron emission threshold the isomer excitation drops abruptly and remains orders of magnitude smaller than at the threshold, even around resonance maximum. (author)

  20. Multiparameter data acquisition and analysis system for capture gamma-ray studies

    International Nuclear Information System (INIS)

    Hejja, I.; Belgya, T.; Molnar, G.L.; Szepesvary, A.

    1997-01-01

    A PC-based multiparameter data acquisition system has been built for the Budapest neutron capture gamma-ray spectrometer. The hardware consists of a homemade multiplexer accommodating up to ten ADC inputs, a 64 kword histogram memory board and a National Instruments 32-bit DIO card, used for data acquisition and control, as well as a timer/scaler TIO card of the same company. The multiplexer inputs can be flexibly configured by means of programmable XILINX logic chips. The system is driven by a Pentium PC connected to the local Ethernet. (author)

  1. Use of gamma ray strength functions for predicting the neutron capture cross section of 88Y

    International Nuclear Information System (INIS)

    Gardner, D.G.; Gardner, M.A.

    1977-01-01

    The present study indicates that the estimation of the gamma-ray strength function is the approach least subject to error when unmeasured capture cross sections are to be computed. An estimate is given for the 88 γ(n,γ) cross section

  2. Resonant production of $\\gamma$ rays in jolted cold neutron stars

    CERN Document Server

    Kusenko, A

    1998-01-01

    Acoustic shock waves passing through colliding cold neutron stars can cause repetitive superconducting phase transitions in which the proton condensate relaxes to its equilibrium value via coherent oscillations. As a result, a resonant non-thermal production of gamma rays in the MeV energy range with power up to 10^(52) erg/s can take place during the short period of time before the nuclear matter is heated by the shock waves.

  3. Database of prompt gamma rays from slow neutron capture for elemental analysis

    International Nuclear Information System (INIS)

    Firestone, R.B.; Choi, H.D.; Lindstrom, R.M.; Molnar, G.L.; Mughabghab, S.F.; Paviotti-Corcuera, R.; Revay, Zs; Trkov, A.; Zhou, C.M.; Zerkin, V.

    2004-01-01

    The increasing importance of Prompt Gamma-ray Activation Analysis (PGAA) in a broad range of applications is evident, and has been emphasized at many meetings related to this topic (e.g., Technical Consultants' Meeting, Use of neutron beams for low- and medium-flux research reactors: radiography and materials characterizations, IAEA Vienna, 4-7 May 1993, IAEA-TECDOC-837, 1993). Furthermore, an Advisory Group Meeting (AGM) for the Coordination of the Nuclear Structure and Decay Data Evaluators Network has stated that there is a need for a complete and consistent library of cold- and thermal neutron capture gamma ray and cross-section data (AGM held at Budapest,14-18 October 1996, INDC(NDS)-363); this AGM also recommended the organization of an IAEA CRP on the subject. The International Nuclear Data Committee (INDC) is the primary advisory body to the IAEA Nuclear Data Section on their nuclear data programs. At a biennial meeting in 1997, the INDC strongly recommended that the Nuclear Data Section support new measurements and update the database on Neutron-induced Prompt Gamma-ray Activation Analysis (21st INDC meeting, INDC/P(97)-20). As a consequence of the various recommendations, a CRP on ''Development of a Database for Prompt Gamma-ray Neutron Activation Analysis (PGAA)'' was initiated in 1999. Prior to this project, several consultants had defined the scope, objectives and tasks, as approved subsequently by the IAEA. Each CRP participant assumed responsibility for the execution of specific tasks. The results of their and other research work were discussed and approved by the participants in research co-ordination meetings (see Summary reports: INDC(NDS)-411, 2000; INDC(NDS)-424, 2001; and INDC(NDS)-443, 200). PGAA is a non-destructive radioanalytical method, capable of rapid or simultaneous ''in-situ'' multi-element analyses across the entire Periodic Table, from hydrogen to uranium. However, inaccurate and incomplete data were a significant hindrance in the

  4. Apparatus for reducing pulse pileup in an elemental analyzer measuring gamma rays arising from neutron capture in bulk substances

    International Nuclear Information System (INIS)

    Marshall, J.H. III.

    1979-01-01

    The active reduction of the number of analyzed events with pulse amplitudes which pileup has distorted improves measurement accuracy and response time in an apparatus for neutron-capture-based on-line elemental analysis of bulk substances. Within the apparatus, the analyzed bulk substance is exposed to neutrons, and neutron capture generates prompt gamma rays therefrom. A detector interacts with some of these gamma rays to produce electrical signals used to measure their energy spectrum by pulse-height analysis. Circuits associated with this pulse-height analysis also detect the pileup of the signals of two or more independent gamma rays using one or more of several techniques. These techniques include multiple outputs from a special amplifier-discriminator system, which has been optimized for low pulse-pair resolving time and may have adaptive thresholds, and the requirement that the relative amplitudes of the outputs of slow and fast amplifiers be consistent with a single event producing both outputs. Pulse-width measurements are also included in the pileup detection

  5. Database of prompt gamma rays from slow neutron capture forelemental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, R.B.; Choi, H.D.; Lindstrom, R.M.; Molnar, G.L.; Mughabghab, S.F.; Paviotti-Corcuera, R.; Revay, Zs; Trkov, A.; Zhou,C.M.; Zerkin, V.

    2004-12-31

    The increasing importance of Prompt Gamma-ray ActivationAnalysis (PGAA) in a broad range of applications is evident, and has beenemphasized at many meetings related to this topic (e.g., TechnicalConsultants' Meeting, Use of neutron beams for low- andmedium-fluxresearch reactors: radiography and materialscharacterizations, IAEA Vienna, 4-7 May 1993, IAEA-TECDOC-837, 1993).Furthermore, an Advisory Group Meeting (AGM) for the Coordination of theNuclear Structure and Decay Data Evaluators Network has stated that thereis a need for a complete and consistent library of cold- and thermalneutron capture gammaray and cross-section data (AGM held at Budapest,14-18 October 1996, INDC(NDS)-363); this AGM also recommended theorganization of an IAEA CRP on the subject. The International NuclearData Committee (INDC) is the primary advisory body to the IAEA NuclearData Section on their nuclear data programmes. At a biennial meeting in1997, the INDC strongly recommended that the Nuclear Data Section supportnew measurements andupdate the database on Neutron-induced PromptGamma-ray Activation Analysis (21st INDC meeting, INDC/P(97)-20). As aconsequence of the various recommendations, a CRP on "Development of aDatabase for Prompt Gamma-ray Neutron Activation Analysis (PGAA)" wasinitiated in 1999. Prior to this project, several consultants had definedthe scope, objectives and tasks, as approved subsequently by the IAEA.Each CRP participant assumed responsibility for the execution of specifictasks. The results of their and other research work were discussed andapproved by the participants in research co-ordination meetings (seeSummary reports: INDC(NDS)-411, 2000; INDC(NDS)-424, 2001; andINDC(NDS)-443, 200). PGAA is a non-destructive radioanalytical method,capable of rapid or simultaneous "in-situ" multi-element analyses acrossthe entire Periodic Table, from hydrogen to uranium. However, inaccurateand incomplete data were a significant hindrance in the qualitative andquantitative

  6. The isovector quadrupole resonance in yttrium excited by neutron radiative capture

    International Nuclear Information System (INIS)

    Zorro, R.; Bergqvist, I.

    1987-01-01

    In order to investigate the properties of the isovector giant quadrupole resonance (ΔT=1, ΔS=0) in the A=90 mass region, gamma-ray spectra from the reaction 89 Y(n,γ) 90 Y were recorded at several neutron energies in the energy range 12 to 27 MeV at 55 0 , 90 0 and 125 0 . The measured fore-aft asymmetry for the ground-state transition is very small in the low-energy region, but becomes appreciable above a neutron energy of 18 MeV. The observed asymmetry is attributed to interference between radiation from the isovector giant quadrupole resonance and radiation of opposite parity (from the high-energy tail of the giant dipole resonance and direct E1 capture). The data obtained in the present work, interpreted in terms of the direct-semidirect capture model, indicate that the excitation energy of the isovector E2 resonance in 90 Y is 26 ± 1 MeV. The data are consistent with a resonance width of 10 ± 2 MeV and with complete exhaustion of the energy-weighted sum rule for the lower isospin component of the resonance. (orig.)

  7. Gamma-ray emission profile measurements during JET ICRH discharges

    Energy Technology Data Exchange (ETDEWEB)

    Howarth, P.J.A. [Birmingham Univ. (United Kingdom); Adams, J.M.; Bond, D.S.; Watkins, N. [AEA Technology, Harwell (United Kingdom); Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Belle, P. van [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-12-31

    Ion Cyclotron Resonant Heating (ICRH) that is tuned to minority fuel ions can induce an energy diffusion of the heated species and create high energy tail temperatures of {approx} 1 MeV. The most energetic of these accelerated minority ions can undergo nuclear reactions with impurity Be and C that produces {gamma}-ray emission from the decay of the excited product nuclei. This RF-induced {gamma}-ray emission has been recorded using the JET neutron emission profile diagnostic which is capable of distinguishing neutrons and {gamma}-rays. Appropriate data processing has enabled the RF-induced {gamma}-ray emission signals to be isolated from the {gamma}-ray emission signals associated with neutron interactions in the material surrounding the profile monitor. The 2-d {gamma}-ray emission profiles show that virtually all the radiation originates from the low field side of the RF resonance layer, as expected from RF-induced pitch angle diffusion. The emission profiles indicate the presence of a small population of resonant {sup 3}He ions that possess orbits lying near the passing-trapped boundary. (author) 6 refs., 4 figs.

  8. Prompt gamma-ray imaging for small animals

    Science.gov (United States)

    Xu, Libai

    Small animal imaging is recognized as a powerful discovery tool for small animal modeling of human diseases, which is providing an important clue to complete understanding of disease mechanisms and is helping researchers develop and test new treatments. The current small animal imaging techniques include positron emission tomography (PET), single photon emission tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). A new imaging modality called prompt gamma-ray imaging (PGI) has been identified and investigated primarily by Monte Carlo simulation. Currently it is suggested for use on small animals. This new technique could greatly enhance and extend the present capabilities of PET and SPECT imaging from ingested radioisotopes to the imaging of selected non-radioactive elements, such as Gd, Cd, Hg, and B, and has the great potential to be used in Neutron Cancer Therapy to monitor neutron distribution and neutron-capture agent distribution. This approach consists of irradiating small animals in the thermal neutron beam of a nuclear reactor to produce prompt gamma rays from the elements in the sample by the radiative capture (n, gamma) reaction. These prompt gamma rays are emitted in energies that are characteristic of each element and they are also produced in characteristic coincident chains. After measuring these prompt gamma rays by surrounding spectrometry array, the distribution of each element of interest in the sample is reconstructed from the mapping of each detected signature gamma ray by either electronic collimations or mechanical collimations. In addition, the transmitted neutrons from the beam can be simultaneously used for very sensitive anatomical imaging, which provides the registration for the elemental distributions obtained from PGI. The primary approach is to use Monte Carlo simulation methods either with the specific purpose code CEARCPG, developed at NC State University or with the general purpose

  9. Neutron capture in s-wave resonances of 56Fe, 58Ni, and 60Ni

    International Nuclear Information System (INIS)

    Wisshak, F.; Kaeppeler, F.; Reffo, G.; Fabbri, F.

    1983-07-01

    The neutron capture widths of s-wave resonances in 56 Fe (27.7 keV), 58 Ni(15.4 keV) and 60 Ni (12.5 keV) have been determined using a setup completely different from previous experiments. A pulsed 3-MV Van de Graaff accelerator and a kinematically collimated neutron beam, produced via the 7 Li (p,n) reaction, was used in the experiments. Capture gamma-rays were observed by three Moxon-Rae detectors with graphite-, bismuth-graphite-, and bismuth-converters, respectively. The samples were positioned at a neutron flight path of only 8 cm. Thus events due to capture of resonance scattered neutrons in the detectors or in surrounding materials are completely discriminated by their additional time of flight. The high neutron flux at the sample position allowed the use of very thin samples (0.15 mm-0.45 mm), avoiding large multiple scattering corrections. The data obtained with the individual detectors were corrected for the efficiency of the respective converter materials. For that purpose, detailed theoretical calculations of the capture gamma-ray spectra of the measured isotopes and of gold, which was used as a standard, were performed. The final results are: GAMMAsub(γ)(27.7 keV, 56 Fe) = 1.06 +- 0.05 eV, GAMMAsub(γ)(15.4 keV, 58 Ni) = 1.53 +- 0.10 eV and GAMMAsub(γ)(12.5 keV, 60 Ni) = 2.92 +- 0.19 eV. The accuracy obtained with the present experimental method represents an improvement of a factor 3-6 compared to previous experiments. The investigated s-wave resonances contribute 10-40% to the total capture rate of the respective isotopes in a typical fast reactor. (orig.) [de

  10. Proton capture resonance studies

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, G.E. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bilpuch, E.G. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bybee, C.R. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Cox, J.M.; Fittje, L.M. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Labonte, M.A.; Moore, E.F.; Shriner, J.D. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Shriner, J.F. Jr. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Vavrina, G.A. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Wallace, P.M. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708

    1997-02-01

    The fluctuation properties of quantum systems now are used as a signature of quantum chaos. The analyses require data of extremely high quality. The {sup 29}Si(p,{gamma}) reaction is being used to establish a complete level scheme of {sup 30}P to study chaos and isospin breaking in this nuclide. Determination of the angular momentum J, the parity {pi}, and the isospin T from resonance capture data is considered. Special emphasis is placed on the capture angular distributions and on a geometric description of these angular distributions. {copyright} {ital 1997 American Institute of Physics.}

  11. Thermal neutron capture cross sections resonance integrals and g-factors

    International Nuclear Information System (INIS)

    Mughabghab, S.F.

    2003-02-01

    The thermal radiative capture cross sections and resonance integrals of elements and isotopes with atomic numbers from 1 to 83 (as well as 232 Th and 238 U) have been re-evaluated by taking into consideration all known pertinent data published since 1979. This work has been undertaken as part of an IAEA co-ordinated research project on 'Prompt capture gamma-ray activation analysis'. Westcott g-factors for radiative capture cross sections at a temperature of 300K were computed by utilizing the INTER code and ENDF-B/VI (Release 8) library files. The temperature dependence of the Westcott g-factor is illustrated for 113 Cd, 124 Xe and 157 Gd at temperatures of 150, 294 and 400K. Comparisons have also been made of the newly evaluated capture cross sections of 6 Li, 7 Li, 12 C and 207 Pb with those determined by the k 0 method. (author)

  12. A study on gamma rays from electrochemical cells

    International Nuclear Information System (INIS)

    Shin, Seung Ai

    1993-01-01

    The energies and intensities of gamma rays emitted from 3 cells with Pd-cathodes of φ 1mm x 10mm, φ 2mm x 20mm, φ 1mm x 10mm were determined using HPGe-detector system and compared with Pd-neutron capture model. Very strong gamma rays of 512keC, 622keC, 1051keC and 8 more important ones were found to be identical with characteristic gamma rays of 106 Pd and 109 Pd. It is likely that the neutron capture reaction, A PD(n, γ) A+1 Pd, occurred in the cell and the neutrons came from the fusion reaction of two deutrons. It is necessary, however, to retest the model since another strong 84keV-gamma rays do not belong to any A+1 Pd-gamma spectra and two important 106 Pd-gamma rays 717keV, 1046KeV were not detected. Total amount of emitted gamma rays was large when the size of the Pd-cathod was large. Its depedence on the time of measurement and the preheating period did not have any regularities. Thus the replication is not an easy thing. (Author)

  13. INTEGRAL and XMM-Newton observations of the weak gamma-ray burst GRB 030227

    DEFF Research Database (Denmark)

    Mereghetti, S.; Gotz, D.; Tiengo, A.

    2003-01-01

    We present International Gamma-Ray Astrophysical Laboratory ( INTEGRAL) and XMM-Newton observations of the prompt gamma-ray emission and the X-ray afterglow of GRB 030227, the first gamma-ray burst for which the quick localization obtained with the INTEGRAL Burst Alert System has led...

  14. Evaluation of gamma-ray intensities

    International Nuclear Information System (INIS)

    Yoshizawa, Yasukazu; Inoue, Hikaru; Hoshi, Masaharu; Shizuma, Kiyoshi; Iwata, Yosei.

    1980-04-01

    Relative intensities and intensities per decay of gamma rays were evaluated for 16 nuclides, 22 Na, 24 Na, 46 Sc, 54 Mn, 60 Co, 85 Sr, 88 Y, 95 Nb, sup(108m)Ag, 134 Cs, 133 Ba, 139 Ce, sup(180m)Hf, 198 Au, 203 Hg and 207 Bi. For most of these nuclides disintegration rates can be determined by means of β-γ or X-γ coincidence method. Since decay schemes of these nuclides are established, intensities per decay of strong gamma rays were accurately evaluated by using weak beta-ray branching ratios, relative gamma-ray intensities and internal conversion coefficients. Half-lives of the nuclides were also evaluated. Use of the nuclides, therefore, are recommended for precision intensity calibration of the detectors. (author)

  15. Gamma-ray emission profile measurements during JET ICRH discharges

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O N; Marcus, F B; Sadler, G; Van Belle, P [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Howarth, P J.A. [Birmingham Univ. (United Kingdom); Adams, J M; Bond, D S [UKAEA Harwell Lab. (United Kingdom). Energy Technology Div.

    1994-07-01

    Gamma-ray emission from plasma-impurity reactions caused by minority ICRH accelerating fuel ions to MeV energies has been measured using the JET neutron profile monitor. A successful data analysis technique has been used to isolate the RF-induced gamma-ray emission that was detected, enabling profiles of gamma-ray emission to be obtained. The 2-d gamma-ray emission profiles show that virtually all the radiation originates from the low field side of the RF resonance layer, as expected from RF-induced pitch angle diffusion. The emission profiles indicate the presence of a small population of resonant {sup 3}He ions that possess orbits lying near the passing-trapped boundary. 6 refs., 4 figs.

  16. Neutron Capture Gamma Ray Cross Sections for Ta, Ag, In and Au between 30 and 175 keV

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, J; Beshai, S

    1971-11-15

    A new detector has been used to determine neutron capture gamma ray cross sections for Ta, Ag, In and Au. The results are listed and discussed together with associated problems. The energy range from 30 keV to 175 keV is considered

  17. Neutron Capture Gamma Ray Cross Sections for Ta, Ag, In and Au between 30 and 175 keV

    International Nuclear Information System (INIS)

    Hellstroem, J.; Beshai, S.

    1971-11-01

    A new detector has been used to determine neutron capture gamma ray cross sections for Ta, Ag, In and Au. The results are listed and discussed together with associated problems. The energy range from 30 keV to 175 keV is considered

  18. An investigation of the reaction mechanism for resonance neutron capture in 54Fe and 62Ni

    International Nuclear Information System (INIS)

    Mason, J.P.

    1986-01-01

    The gamma-ray spectra produced following neutron capture in the low energy resonances of 54 Fe and 62 Ni have been observed, using the Harwell 136 MeV electron linear accelerator facility, HELIOS, as a source of pulsed neutrons. The work indicated that, for s-wave capture in the mass region A approx. 55, single particle effects may only be apparent if the size of the valence component is about an order of magnitude larger than the compound nuclear component, and that this may limit the importance of such effects to a few nuclides. In addition, some information was obtained on the radiative decay of p-wave resonances of 54 Fe and 62 Ni. (author)

  19. Measurement of keV-neutron capture cross sections and capture gamma-ray spectra of Er isotopes

    International Nuclear Information System (INIS)

    Harun-Ar-Rashid, A.K.M.; Igashira, Masayuki; Ohsaki, Toshiro

    2000-01-01

    Neutron capture cross sections and capture γ-ray spectra of 166,167, 168 Er were measured in the energy region of 10 to 550 keV. The measurements were performed with a pulsed 7 Li(p,n) 7 Be neutron source and a large anti-Compton NaI(Tl) γ-ray spectrometer. A pulse-height weighting technique and the standard capture cross sections of gold were used to derive the capture cross sections. The errors of the derived cross sections were about 5%. The present results were compared with other measurements and evaluations. The observed capture γ-ray pulse-height spectra were unfolded to obtain the corresponding γ-ray spectra. An anomalous shoulder was observed around 3 MeV in each of the capture γ-ray spectra. (author)

  20. TU-FG-BRB-07: GPU-Based Prompt Gamma Ray Imaging From Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S; Suh, T; Yoon, D; Jung, J; Shin, H; Kim, M [The catholic university of Korea, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusion: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray reconstruction using the GPU computation for BNCT simulations.

  1. Finding Sub-threshold Short Gamma-ray Bursts in Fermi GBM Data

    Science.gov (United States)

    Burns, Eric; Fermi Gamma-ray Burst Monitor Team

    2018-01-01

    The all-sky monitoring capability of Fermi GBM makes it ideal for finding transients, and the most prolific detector of short gamma-ray bursts with about 40 on-board triggers per year. Because the observed brightness of short gamma-ray bursts has no correlation with redshift, weak short gamma-ray bursts are important during the gravitational wave era. With this in mind, we discuss two searches of GBM data to find short gamma-ray which were below the on-board trigger threshold. The untargeted search looks for significant background-subtracted signals in two or more detectors at various timescales in the continuous data, detecting ~80 additional short GRB candidates per year. The targeted search is the most sensitive search for weak gamma-ray signals in GBM data and is run over limited time intervals around sources of interest like gravitational waves.

  2. Correcting the effects of the matrix using capture gamma-ray spectrometry: Application to measurement by Active Neutron Interrogation

    International Nuclear Information System (INIS)

    Baudry, G.

    2003-11-01

    In the field of the measurement of low masses of fissile material ( 235 U, 239 Pu, 241 Pu) in radioactive waste drums, the Active Neutron Interrogation is a non-destructive method achieving good results. It does however remain reliant upon uncertainties related to the matrix effects on interrogation and fission neutrons. The aim of this thesis is to develop a correction method able to take into account these matrix effects by quantifying the amount of absorbent materials (chlorine and hydrogen) in a 118- liter homogeneous matrix. The main idea is to use the gamma-ray spectrometry of gamma emitted by neutron captures to identify and quantify the composition of the matrix. An indicator from its chlorine content is then deduced in order to choose the calibration coefficient which best represents the real composition of the matrix. This document firstly presents the needs of control and characterization of radioactive objects, and the means used in the field of nuclear measurement. Emphases is put in particular on the Active Neutron Interrogation method. The matrices of interest are those made of light technological waste (density ≤ 0,4 g/cm 3 ) containing hydrogenated and chlorinated materials. The advantages of gamma-rays emitted by neutron captures for the determination of a chlorine content indicator of the matrices and the principles of the correction method are then explained. Measurements have been firstly realized with an existing Neutron Interrogation device (PROMETHEE 6). Such measurements have proven its inadequacy: no signal from the matrix hydrogen was detected, due to an intense signal from the polyethylene contained in some cell elements. Moreover, the matrix chlorine content appeared difficult to be measured. A new and specific device, named REGAIN and dedicated to active gamma-rays spectrometry, was defined with the Monte-Carlo N-Particle (MCNP) code. The experiments conducted with this new device made it possible to detect the hydrogen from the

  3. Evaluation of neutron and gamma-ray-production cross-section data for lead

    International Nuclear Information System (INIS)

    Fu, C.Y.; Perey, F.G.

    1975-01-01

    A survey was made of the available information on neutron and gamma-ray-production cross-section measurements of lead. From these and from relevant nuclear-structure information on the Pb isotopes, recommended neutron cross-section data sets for lead covering the neutron energy range from 0.00001 eV to 20.0 MeV have been prepared. The cross sections are derived from experimental results available to February 1972 and from calculations based on optical-model, DWBA, and Hauser--Feshbach theories. Comparisons which show good agreement between theoretical and experimental values are displayed in a number of graphs. Also presented graphically are smoothed total cross sections, Legendre coefficients for angular distributions, and a representative energy distribution of gamma rays from resonance capture. 15 tables, 36 figures, 104 references

  4. Elemental analysis of water and soil environmental samples in Tabuk area by neutron capture gamma-ray spectroscopy techniques

    International Nuclear Information System (INIS)

    Al-Aseery, Sh.M.; Alamoudi, Z.; Hassan, A.M.

    2006-01-01

    The prompt and delayed gamma-rays due to neutron capture in the nuclei of the constituent elements of three soil samples and one drinking water sample have been measured. The 252 Cf and 226 Ra/Be isotopic neutron sources are used for neutron irradiation. Also, the hyper pure germanium detection system is used. The soil samples were from Astra, Tadco and El-Gammaz farms, while the water sample was taken from Tabuk city. In case of prompt gamma-ray analysis, a total of 16 elements were identified and the concentration percentage values by weight were calculated for: C, Na, Mg, Al, Si, S, Cl,, Ca, Ti, Cr, Mn, Fe, Co, Zn, Sr ad Pb elements. A comparative study between the results obtained in this work and the results obtained by ICP-MS and EDX-Ray techniques for the same samples is given

  5. The evaluated gamma-ray activation file (EGAF)

    International Nuclear Information System (INIS)

    Firestone, R.B.; Molnar, G.L.; Revay, Zs.; Belgya, T.; McNabb, D.P.; Sleaford, B.W.

    2004-01-01

    The Evaluated Gamma-ray Activation File (EGAF), a new database of prompt and delayed neutron capture g-ray cross sections, has been prepared as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project to develop a ''Database of Prompt Gamma-rays from Slow Neutron Capture for Elemental Analysis.'' Recent elemental g-ray cross-section measurements performed with the guided neutron beam at the Budapest Reactor have been combined with data from the literature to produce the EGAF database. EGAF contains thermal cross sections for ∼ 35,000 prompt and delayed g-rays from 262 isotopes. New precise total thermal radiative cross sections have been derived for many isotopes from the primary and secondary gamma-ray cross sections and additional level scheme data. An IAEA TECDOC describing the EGAF evaluation and tabulating the most prominent g-rays will be published in 2004. The TECDOC will include a CD-ROM containing the EGAF database in both ENSDF and tabular formats with an interactive viewer for searching and displaying the data. The Isotopes Project, Lawrence Berkeley National Laboratory continues to maintain and update the EGAF file. These data are available on the Internet from both the IAEA and Isotopes Project websites

  6. Study of X-rays and nuclear gamma -rays in muonic thallium

    CERN Document Server

    Backe, H; Jahnke, U; Kankeleit, E; Pearce, R M; Petitjean, C; Schellenberg, L; Schneuwly, H; Schröder, W U; Walter, H K; Zehnder, A

    1972-01-01

    Energies and intensities of muonic X-rays, nuclear gamma -rays and mu -capture gamma -rays were measured in natural muonic thallium with Ge (Li) detectors. The absolute intensities of higher mu X-rays were reproduced by a cascade calculation starting with a statistical population at n=20 including K-, L- and M-conversion. The electron screening effect was deduced from energies of higher mu X-rays. Eight prompt nuclear gamma -rays were found. This excitation explains the anomalous intensity ratios of the 2p-1s and 3d-2p fine structure components. From the nuclear gamma -rays of the first excited states were deduced: the magnetic h.f. splittings, muonic isomer shifts E2/M1 mixing ratios and the half-life in the presence of the muon in /sup 205/Tl. Evidence for a magnetic nuclear polarization was found. An isotope shift of Delta E=10.35+or-0.25 keV was measured for the 1s/sub 1/2/ state which is compared with data from optical spectroscopy. From an analysis of the time distribution of delayed gamma -rays from mu...

  7. Development of the new gamma-ray calorimeter for the measurement of Pigmy Dipole Resonance

    Science.gov (United States)

    Shikata, Mizuki; Nakamura, Takashi; Togano, Yasuhiro; Kondo, Yosuke

    2014-09-01

    A new γ-ray calorimeter CATANA (CAlorimeter for gamma γ-ray Transition in Atomic Nuclei at high isospin Asynmetry) has been developed to measure highly excited states like the pygmy dipole resonance and the giant dipole resonance. CATANA will be used with the SAMURAI spectrometer at RIBF. The excitation energy spectrum will be reconstructed combining the invariant mass of the reaction products measured by SAMURAI and γ-ray energies from CATANA. CATANA has focused on achieving a high detection efficiency. It is calculated as 56% for 1 MeV γ-rays from beam with a velocity of β = 0.6. The CATANA array consists of 200 CsI(Na) crystals and covers angles from 10 to 120 degrees along the beam axis. In this study, we have tested prototype crystals of CATANA to evaluate their performance. A position dependence of the light input have been measured and compared with a Monte-Carlo simulation based on GEANT4. In this talk, we will report the design of CATANA and the result of the tests and the simulation.

  8. Generation of laser Compton gamma-rays using Compact ERL

    International Nuclear Information System (INIS)

    Shizuma, Toshiyuki; Hajima, Ryoichi; Nagai, Ryoji; Hayakawa, Takehito; Mori, Michiaki; Seya, Michio

    2015-01-01

    Nondestructive isotope-specific assay system using nuclear resonance fluorescence has been developed at JAEA. In this system, intense, mono-energetic laser Compton scattering (LCS) gamma-rays are generated by combining an energy recovery linac (ERL) and laser enhancement cavity. As technical development for such an intense gamma-ray source, we demonstrated generation of LCS gamma-rays using Compact ERL (supported by the Ministry of Education, Culture, Sports, Science and Technology) developed in collaboration with KEK. We also measured X-ray fluorescence for elements near iron region by using mono-energetic LCS gamma-rays. In this presentation, we will show results of the experiment and future plan. (author)

  9. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    Science.gov (United States)

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  10. Prompt Gamma Ray Spectroscopy for process monitoring

    International Nuclear Information System (INIS)

    Zoller, W.H.; Holmes, J.L.

    1991-01-01

    Prompt Gamma Ray Spectroscopy (PGRS) is a very powerful analytical technique able to measure many metallic, contamination problem elements. The technique involves measurement of gamma rays that are emitted by nuclei upon capturing a neutron. This method is sensitive not only to the target element but also to the particular isotope of that element. PGRS is capable of measuring dissolved metal ions in a flowing system. In the field, isotopic neutron sources are used to produce the desired neutron flux ( 252 Cf can produce neutron flux of the order of 10 8 neutrons/cm 2 --sec.). Due to high penetrating power of gamma radiation, high efficiency gamma ray detectors can be placed in an appropriate geometry to maximize sensitivity, providing real-time monitoring with low detection level capabilities

  11. New measurement of neutron capture resonances of 209Bi

    CERN Document Server

    Domingo-Pardo, C.; Aerts, G.; Alvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Cano-Ott, D.; Capote, R.; Carrillode Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Dolfini, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Kappeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; Oshima, M.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, Alberto; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2006-01-01

    The neutron capture cross section of Bi209 has been measured at the CERN n TOF facility by employing the pulse-height-weighting technique. Improvements over previous measurements are mainly because of an optimized detection system, which led to a practically negligible neutron sensitivity. Additional experimental sources of systematic error, such as the electronic threshold in the detectors, summing of gamma-rays, internal electron conversion, and the isomeric state in bismuth, have been taken into account. Gamma-ray absorption effects inside the sample have been corrected by employing a nonpolynomial weighting function. Because Bi209 is the last stable isotope in the reaction path of the stellar s-process, the Maxwellian averaged capture cross section is important for the recycling of the reaction flow by alpha-decays. In the relevant stellar range of thermal energies between kT=5 and 8 keV our new capture rate is about 16% higher than the presently accepted value used for nucleosynthesis calculations. At th...

  12. Monitoring taconite process streams with thermal neutron capture-gamma ray analysis. Report of investigations/1980

    International Nuclear Information System (INIS)

    Woodbury, F.B.W.

    1980-12-01

    The Bureau of Mines is evaluating alternative technologies to treat oxidized taconites. Since process control is an essential element in the application of these process technologies, research was performed on a prototype monitoring system utilizing a californium-252 (252-Cf) neutron source and a thermal neutron capture-gamma ray spectra analysis method to measure the amount of iron and percent solids in process slurries. The prototype system was used to monitor the concentrate and tailing streams in a 900-lb/hr flotation pilot plant during continuous around-the-clock tests. The iron content of the process slurries was determined by measuring the total peak areas under the capture spectrum peaks at 7.626-7.632 MeV, the associated escape peaks at 7.136-7.122 and 6.626-6.612 MeV, and the iron doublets at 4.900 and 4.998 MeV. A potential method for determining the percent solids in process slurries using the 2.22 MeV hydrogen capture peak is discussed

  13. Very high-energy gamma rays from gamma-ray bursts.

    Science.gov (United States)

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  14. Observation of the M1 giant resonance by resonance averaging in 106Pd

    International Nuclear Information System (INIS)

    Kopecky, J.

    1987-01-01

    An investigation of capture of 2 keV and 24 keV neutrons in a 105 Pd target resulted in resonance-averaged intensities of primary gamma rays with energies between 5.2 and 9.5 MeV. From these intensities the gamma ray strength functions have been evaluated for E1, M1 and E2 radiation and compared with predictions of the giant resonance theory. The inclusion of an energy dependent spreading width for the E1 giant resonance is necessary. The energy distribution of M1 reduced strength is consistent with an interpretation of a broad resonance around 8.8 MeV. E2 data agrees satisfactorily with the giant extrapolation. (orig.)

  15. Gamma-Ray Imager With High Spatial And Spectral Resolution

    Science.gov (United States)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  16. gamma. -ray. Present status and problems

    Energy Technology Data Exchange (ETDEWEB)

    Okudaira, K [Rikkyo Univ., Tokyo (Japan). Faculty of Science

    1975-01-01

    As ..gamma..-ray advances straightly through space, the study on cosmic ..gamma..-ray will give the information concerning the origin directly. However, the intensity is weak, and the avoidance of background is a serious problem. The wide-spread components were studied by OSO-3. The intensity of the galactic disc component around 100 MeV was reported as (3.4+-1.0)x10/sup -5/ photons (cm/sup 2/, radian, sec)/sup -1/ by OSO-3 and 0.2x10/sup -4/ photons (cm/sup 2/, radian sec)/sup -1/ by SAS-2, and corresponds to the calculated ..gamma.. yield from ..pi../sup 0/. The strong disc component, so-called galactic center region, has been observed, and is due to the mixture of ..gamma..-ray from ..pi../sup 0/ and inverse Compton ..gamma..-ray. A peak at 476+-24 KeV was found as well as the continuous component. Special care must be taken for the observation of isotropic component, since it is hardly distinguished from the background. It is considered that the isotropic component is due to the inverse Compton scattering of 3/sup 0/K radiation in super-galactic space and the contribution from outer galaxy. The nearest point source of ..gamma..-ray is the sun. Among the other point sources, the crab nebula is the most reliable one. The energy flux of pulse component showed the spectrum of E/sup -1/. ..gamma..-ray bursts were observed by man-made satellites Vela-5 and 6. Theoretical explanation is still incomplete regarding the bursts. (Kato, T.).

  17. Laser Compton Scattering Gamma Ray Induced Photo-Trasmutation

    CERN Document Server

    Li, Dazhi

    2004-01-01

    High brightness beams of gamma rays produced with laser Compton scattering have the potential to realize photo-transmutation through (γ,n) reaction, implying an efficient method to dispose long-lived fission products. Preliminary investigations have been carried out in understanding the feasibility of development of a transmutation facility to repose nuclear waste. A laser Compton scattering experimental setup based on a storage ring started to generate gamma-ray beams for studying the coupling of gamma photons and nuclear giant resonance. This paper demonstrates the dependency of nuclear transmutation efficiency on target dimensions and gamma ray features. 197Au sample was adopted in our experiment, and experimental results correspond to the theoretical estimations.

  18. Fully non-destructive elemental analyses of copper-alloy artefacts with neutron resonance capture between 1 eV and 10 keV

    International Nuclear Information System (INIS)

    Postma, H.; Blaauw, M.; Corvi, F.

    2002-01-01

    Neutron capture resonance analysis (NRCA) using a pulsed neutron beam and the time-of-flight (ToF) technique is a new method to determine the elemental compositions of artifacts. Neutron capture by an object can be observed by detecting the prompt capture gamma-radiation. Energies of resonance peaks in the ToF spectrum are the 'fingerprints' for elements. Since it is not necessary to determine the energy of the gamma-rays with any precision, it is possible to use a detector system with high detection efficiency. It is not necessary to take parts from an object for the analysis or to clean the surface or to do other things which might damage the object. Therefore NRCA is especially of interest for studying fragile, small or valuable objects from which one does not want to, or cannot take samples, or for which cleaning of even a small part of a surface is not desirable. Knowledge of the elemental composition of artifacts might be useful for archaeological or historical studies or to check the authenticity of an artifact. Recent experiments at the GELINA facility in Geel, Belgium show that indeed NRCA is a useful way to recognize elements on the basis of the energies of resonance in the ToF spectrum. We applied NRCA to several copper-alloy artifacts. In the studied objects very little activity was induced, which also disappeared quickly. Thus resonance energies allow us to recognize elements of an object. In addition, a quantitative analysis is possible on the basis of resonance areas. In the case of our artefacts the amounts of several elements (notably Sn, As, Zn, Fe, Sb, Ag, Au) were determined as ratios to copper. For a strong resonance it is necessary to take self-shielding into account. The effect of self-shielding made it possible to determine the absolute amount of copper by comparing the areas of a weak and a strong copper resonance, and thus also absolute amounts of the other components could be determined. The method of NRCA is discussed in relation to the

  19. Dark gamma-ray bursts

    Science.gov (United States)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2017-03-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.

  20. Slow neutrons and secondary gamma ray distributions in concrete shields followed by reflecting layers

    International Nuclear Information System (INIS)

    Makarious, A.S.; Swilem, Y.I.; Awwad, Z.; Bayomy, T.

    1993-01-01

    Slow neutrons and secondary gamma ray distributions in concrete shields with and without a reflecting layer behind layer behind the concrete shield have been investigated first in case of using a bare reactor beam and then on using a B-4 C filtered beam. The total and capture secondary gamma ray coefficient (B gamma and B gamma C ), the ratio of the reflected thermal neutron (gamma) the ratio of the secondary gamma rays caused by reflected neutrons to those caused transmitted neutrons (Th I gamma/F I gamma) and the effect of inserting a blocking layer (a B-4 C layer) between the concrete shield and the reflector on the suppression of the produced secondary gamma rays have been investigated. It was found that the presence of the reflector layer behind the concrete shield reflects some thermal neutrons back to the concrete shields and so it increases the number of thermal neutrons at the interface between the concrete shield and the reflector. Also the capture secondary gamma rays was increased at the interface between the two medii due to the capture of the reflected thermal neutrons in the concrete shields. It was shown that B-gamma is higher than and that B g amma B gamma C and I gamma T h/ I gamma i f for the different concrete types is higher in case of using the graphite reflector than that in using either water or paraffin reflectors. Putting a blocking layer (B 4 C layer) between the concrete shield and the reflector decreases the produced secondary gamma rays due to the absorption of the reflected thermal neutrons. 17 figs

  1. Distribution of iron and titanium on the lunar surface from lunar prospector gamma ray spectra

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Feldman, W.C.; Lawrence, David J.; Elphic, R.C.; Gasnault, O.M.; Maurice, S.; Moore, K.R.; Binder, A.B.

    2001-01-01

    Gamma ray pulse height spectra acquired by the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) contain information on the abundance of major elements in the lunar surface, including O, Si, Ti, Al, Fe, Mg, Ca, K, and Th. With the exception of Th and K, prompt gamma rays produced by cosmic ray interactions with surface materials are used to determine elemental abundance. Most of these gamma rays are produced by inelastic scattering of fast neutrons and by neutron capture. The production of neutron-induced gamma rays reaches a maximum deep below the surface (e.g. ∼140 g/cm 2 for inelastic scattering and ∼50 g/cm 2 for capture). Consequently, gamma rays sense the bulk composition of lunar materials, in contrast to optical methods (e.g. Clementine Spectral Reflectance (CSR)), which only sample the top few microns. Because most of the gamma rays are produced deep beneath the surface, few escape unscattered and the continuum of scattered gamma rays dominates the spectrum. In addition, due to the resolution of the spectrometer, there are few well-isolated peaks and peak fitting algorithms must be used to deconvolve the spectrum in order to determine the contribution of individual elements.

  2. Detection of gamma rays using scintillation optical fibers

    International Nuclear Information System (INIS)

    Park, J. W.; Hong, S. B.

    2002-01-01

    Scintillating optical fibers have several advantages over other conventional materials used for radiation detection. We have used glass and plastic scintillating fibers to detect gamma rays emitted from 60 Co and 137 Cs, and beta rays from 90 Sr. The sensors are constructed of single strand or multi-strand fibers of 1 mm diameter. The glass scintillating fiber used contains cerium-activated lithium-silicate as scintillating material and the plastic scintillating fiber used is Bicron model BCF-12. In this paper, we report the pulse-height spectra obtained by both sensor types, and analyze them in the aspect of their usability for radiation detectors. Our investigation suggests that the glass fiber can be used to develop gamma ray detectors which will function in high and low gamma ray flux environments. Use of the sensor for the beta ray detection was not satisfactory. The plastic fiber sensor did not work satisfactorily for the weak gamma sources, but did produce somewhat promising results. The scintillating plastic fiber offers some feasibility as beta ray sensor material

  3. Current status of fast-neutron-capture calculations

    International Nuclear Information System (INIS)

    Gardner, D.G.

    1982-01-01

    This work is primarily concerned with the calculation of neutron capture cross sections and capture gamma-ray spectra, in the framework of the Hauser-Feshbach statistical model and for neutrons from the resonance region up to several MeV. An argument is made that, for applied purposes such as constructing evaluated cross-section libraries, nonstatistical capture mechanisms may be completely neglected at low energies and adequately approximated at high energies in a simple way. The use of gamma-ray strength functions to obtain radiation widths is emphasized. Using the reaction 89 Y + n as an example, the problems encountered in trying to construct a case that could be run equivalently on two different nuclear reaction codes are illustrated, and the effects produced by certain parameter variations are discussed

  4. Neutron capture studies of {sup 206}Pb at a cold neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Schillebeeckx, P.; Kopecky, S.; Quetel, C.R.; Tresl, I.; Wynants, R. [Institute for Reference Materials and Measurements, European Commission, Joint Research Centre, Geel (Belgium); Belgya, T.; Szentmiklosi, L. [Institute for Energy Security and Environmental Safety, Centre for Energy Research, Budapest (Hungary); Borella, A. [Institute for Reference Materials and Measurements, European Commission, Joint Research Centre, Geel (Belgium); SCK CEN, Mol (Belgium); Mengoni, A. [Nuclear Data Section, International Atomic Energy Agency (IAEA), Wagramerstrasse 5, PO Box 100, Vienna (Austria); Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Bologna (Italy)

    2013-11-15

    Gamma-ray transitions following neutron capture in {sup 206}Pb have been studied at the cold neutron beam facility of the Budapest Neutron Centre using a metallic sample enriched in {sup 206}Pb and a natural lead nitrate powder pellet. The measurements were performed using a coaxial HPGe detector with Compton suppression. The observed {gamma} -rays have been incorporated into a decay scheme for neutron capture in {sup 206}Pb. Partial capture cross sections for {sup 206}Pb(n, {gamma}) at thermal energy have been derived relative to the cross section for the 1884 keV transition after neutron capture in {sup 14}N. From the average crossing sum a total thermal neutron capture cross section of 29{sup +2}{sub -1} mb was derived for the {sup 206}Pb(n, {gamma}) reaction. The thermal neutron capture cross section for {sup 206}Pb has been compared with contributions due to both direct capture and distant unbound s-wave resonances. From the same measurements a thermal neutron-induced capture cross section of (649 {+-} 14) mb was determined for the {sup 207}Pb(n, {gamma}) reaction. (orig.)

  5. Determination of contaminants in nuclear materials by measuring the capture gamma rays of thermal neutrons in a reactor internal geometry

    International Nuclear Information System (INIS)

    Suarez, A.A.

    1980-01-01

    A new method for analysis of impurities in nuclear fuel material was developed. Prompt gamma rays following thermal neutron capture, from a sample placed inside the research reactor were analyzed with a solid state high resolution detector. A number of improvements were introduced to improve the background-to-signal ratio, and the sensitivity of the method: use of collimeters for gamma rays and 6 Li 2 CO 3 filters to eliminate thermal neutrons from the beam were supplemented with the application of a pair spectrometer. Using a 42.5 cm 3 true coaxial Ge(Li) detector, and two optically separated NaI (Tl) scintillation detector, the sensitivity of the method for quantitative determination of impurities reached 30 p.p.m. The reproducibility of the results was better than 2%

  6. Gamma-ray production cross sections for MeV neutrons

    International Nuclear Information System (INIS)

    Kitazawa, Hideo; Harima, Yoshiko; Yamakoshi, Hisao; Sano, Yuji; Kobayashi, Tsuguyuki.

    1979-01-01

    Gamma-ray production cross section and spectra for 1- to 20-MeV neutrons were theoretically obtained, which were requested for heating calculations, for shielding design calculations, and for material damage estimates. Calculations were carried out for Al, Si, Ca, Fe, Ni, Cu, Nb, Ta, Au, and Pb, using a spin-dependent evaporation model without the parity conservation and including the dipole and quardupole gamma-ray transitions. The results were compared with the experimental data measured in ORNL to confirm the availability of this model in applications. In addition, the effects on the gamma-ray production cross section of the optical potential, level density, yrast level, and radiation width were investigated in detail. The conclusions are: 1) the use of the optical potential which gives the correct total reaction cross section is essential to gamma-ray production calculations, 2) the gamma-ray production cross section is not so sensitive to the choice of level density parameters, 3) the inclusion of yrast levels is necessary in dealing with the competition of the neutron and gamma-ray emissions from highly excited states, and 4) the Brink-Axel type's radiation width is unsuitable to be applied to radiative capture processes. (author)

  7. Optimization of H.E.S.S. instrumental performances for the analysis of weak gamma-ray sources: Application to the study of HESS J1832-092

    International Nuclear Information System (INIS)

    Laffon, H.

    2012-01-01

    H.E.S.S. (High Energy Stereoscopic System) is an array of very-high energy gamma-ray telescopes located in Namibia. These telescopes take advantage of the atmospheric Cherenkov technique using stereoscopy, allowing to detect gamma-rays between 100 GeV and a few tens of TeV. The location of the H.E.S.S. telescopes in the Southern hemisphere allows to observe the central parts of our galaxy, the Milky Way. Tens of new gamma-ray sources were thereby discovered thanks to the galactic plane survey strategy. After ten years of fruitful observations with many detections, it is now necessary to improve the detector performance in order to detect new sources by increasing the sensitivity and improving the angular resolution. The aim of this thesis consists in the development of advanced analysis techniques allowing to make sharper analysis. An automatic tool to look for new sources and to improve the subtraction of the background noise is presented. It is optimized for the study of weak sources that needs a very rigorous analysis. A combined reconstruction method is built in order to improve the angular resolution without reducing the statistics, which is critical for weak sources. These advanced methods are applied to the analysis of a complex region of the galactic plane near the supernova remnant G22.7-0.2, leading to the detection of a new source, HESS J1832-092. Multi-wavelength counterparts are shown and several scenarios are considered to explain the origin of the gamma-ray signal of this astrophysical object. (author)

  8. γ -Ray Generation from Plasma Wakefield Resonant Wiggler

    Science.gov (United States)

    Lei, Bifeng; Wang, Jingwei; Kharin, Vasily; Zepf, Matt; Rykovanov, Sergey

    2018-03-01

    A flexible gamma-ray radiation source based on the resonant laser-plasma wakefield wiggler is proposed. The wiggler is achieved by inducing centroid oscillations of a short laser pulse in a plasma channel. Electrons (self-)injected in such a wakefield experience both oscillations due to the transverse electric fields and energy gain due to the longitudinal electric field. The oscillations are significantly enhanced when the laser pulse centroid oscillations are in resonance with the electron betatron oscillations, extending the radiation spectrum to the gamma-ray range. The polarization of the radiation can be easily controlled by adjusting the injection of the laser pulse into the plasma channel.

  9. Systematic study on nuclear resonant scattering

    International Nuclear Information System (INIS)

    Suarez, A.A.; Freitas, M.L.

    1974-01-01

    New resonant scattering effect of thermal neutron capture gamma rays from Ti and Fe on Sb, Cu, Se and Ce target were observed. These results together with those published by other authors are summarized and discussed in terms of a possible systematic search for new resonant scattering effects

  10. Correcting the effects of the matrix using capture gamma-ray spectrometry: Application to measurement by Active Neutron Interrogation; Correction des effets de matrice par spectrometrie des rayonnements gamma de capture: Application a la mesure par Interrogation Neutronique Active (I.N.A.)

    Energy Technology Data Exchange (ETDEWEB)

    Baudry, G.

    2003-11-15

    In the field of the measurement of low masses of fissile material ({sup 235}U, {sup 239}Pu, {sup 241}Pu) in radioactive waste drums, the Active Neutron Interrogation is a non-destructive method achieving good results. It does however remain reliant upon uncertainties related to the matrix effects on interrogation and fission neutrons. The aim of this thesis is to develop a correction method able to take into account these matrix effects by quantifying the amount of absorbent materials (chlorine and hydrogen) in a 118- liter homogeneous matrix. The main idea is to use the gamma-ray spectrometry of gamma emitted by neutron captures to identify and quantify the composition of the matrix. An indicator from its chlorine content is then deduced in order to choose the calibration coefficient which best represents the real composition of the matrix. This document firstly presents the needs of control and characterization of radioactive objects, and the means used in the field of nuclear measurement. Emphases is put in particular on the Active Neutron Interrogation method. The matrices of interest are those made of light technological waste (density {<=} 0,4 g/cm{sup 3}) containing hydrogenated and chlorinated materials. The advantages of gamma-rays emitted by neutron captures for the determination of a chlorine content indicator of the matrices and the principles of the correction method are then explained. Measurements have been firstly realized with an existing Neutron Interrogation device (PROMETHEE 6). Such measurements have proven its inadequacy: no signal from the matrix hydrogen was detected, due to an intense signal from the polyethylene contained in some cell elements. Moreover, the matrix chlorine content appeared difficult to be measured. A new and specific device, named REGAIN and dedicated to active gamma-rays spectrometry, was defined with the Monte-Carlo N-Particle (MCNP) code. The experiments conducted with this new device made it possible to detect the

  11. Observations of the highest energy gamma-rays from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dingus, Brenda L.

    2001-01-01

    EGRET has extended the highest energy observations of gamma-ray bursts to GeV gamma rays. Such high energies imply the fireball that is radiating the gamma-rays has a bulk Lorentz factor of several hundred. However, EGRET only detected a few gamma-ray bursts. GLAST will likely detect several hundred bursts and may extend the maximum energy to a few 100 GeV. Meanwhile new ground based detectors with sensitivity to gamma-ray bursts are beginning operation, and one recently reported evidence for TeV emission from a burst

  12. GAMSOURCE - WRS system module number 38474 for calculating gamma-ray sources produced by neutron capture

    International Nuclear Information System (INIS)

    Grimstone, M.J.

    1978-06-01

    The WRS Modular Programming System has been developed as a means by which programmes may be more efficiently constructed, maintained and modified. In this system a module is a self-contained unit typically composed of one or more Fortran routines, and a programme is constructed from a number of such modules. This report describes one WRS module, the function of which is to calculate the source strength of gamma-rays arising from neutron capture in a system represented in one-dimensional geometry. The information given in this manual is of use both to the programmer wishing to incorporate the module in a programme, and to the user of such a programme. (author)

  13. Study on the keV neutron capture reaction in 56Fe and 57Fe

    Science.gov (United States)

    Wang, Taofeng; Lee, Manwoo; Kim, Guinyun; Ro, Tae-Ik; Kang, Yeong-Rok; Igashira, Masayuki; Katabuchi, Tatsuya

    2014-03-01

    The neutron capture cross-sections and the radiative capture gamma-ray spectra from the broad resonances of 56Fe and 57Fe in the neutron energy range from 10 to 90keV and 550keV have been measured with an anti-Compton NaI(Tl) detector. Pulsed keV neutrons were produced from the 7Li 7Be reaction by bombarding the lithium target with the 1.5ns bunched proton beam from the 3MV Pelletron accelerator. The incident neutron spectrum on a capture sample was measured by means of a time-of-flight (TOF) method with a 6Li -glass detector. The number of weighted capture counts of the iron or gold sample was obtained by applying a pulse height weighting technique to the corresponding capture gamma-ray pulse height spectrum. The neutron capture gamma-ray spectra were obtained by unfolding the observed capture gamma-ray pulse height spectra. To achieve further understanding on the mechanism of neutron radiative capture reaction and study on physics models, theoretical calculations of the -ray spectra for 56Fe and 57Fe with the POD program have been performed by applying the Hauser-Feshbach statistical model. The dominant ingredients to perform the statistical calculation were the Optical Model Potential (OMP), the level densities described by the Mengoni-Nakajima approach, and the -ray transmission coefficients described by -ray strength functions. The comparison of the theoretical calculations, performed only for the 550keV point, show a good agreement with the present experimental results.

  14. Uses of neutron capture gamma-rays in environmental pollution applications

    International Nuclear Information System (INIS)

    AbdAl-Samad, M.A.

    1998-01-01

    As a sensitive and accurate technique, the prompt gamma-rays neutron activation is used with success for elemental analysis. The advantages of this method over the other techniques are rapidity, usage of relatively large sample size and high reliability, beside the detection of the elements which have no gamma activity during the delayed neutron activation analysis or very short lived isotopes. Actually different techniques could be used for estimating the trace, minor and major elements of these environmental samples which are considered as complex samples. In the mean time the neutron activation analysis techniques have been improved and have become an excellent tool for elemental analysis of complex samples (Duffey et al., 1970; Senftle et al., 1971; Henkelmm and Born, 1973 ; Hassan et al., .; 1981, 1982, 1983; Clyton et al., 1983; Zaghloul et al., 1993) and the advantages of the prompt γ- ray neutron activation analysis over the other techniques put this technique in the fore front

  15. Nuclear models and data for gamma-ray production

    International Nuclear Information System (INIS)

    Young, P.G.

    1975-01-01

    The current Evaluated Nuclear Data File (ENDF/B, Version IV) contains information on prompt gamma-ray production from neutron-induced reactions for some 38 nuclides. In addition, there is a mass of fission product yield, capture, and radioactive decay data from which certain time-dependent gamma-ray results can be calculated. These data are needed in such applications as gamma-ray heating calculations for reactors, estimates of radiation levels near nuclear facilities and weapons, shielding design calculations, and materials damage estimates. The prompt results are comprised of production cross sections, multiplicities, angular distributions, and energy spectra for secondary gamma-rays from a variety of reactions up to an incident neutron energy of 20 MeV. These data are based in many instances on experimental measurements, but nuclear model calculations, generally of a statistical nature, are also frequently used to smooth data, to interpolate between measurements, and to calculate data in unmeasured regions. The techniques and data used in determining the ENDF/B evaluations are reviewed, and comparisons of model-code calculations and ENDF data with recent experimental results are given. 11 figures

  16. Determining the solar-flare photospheric scale height from SMM gamma-ray measurements

    Science.gov (United States)

    Lingenfelter, Richard E.

    1991-01-01

    A connected series of Monte Carlo programs was developed to make systematic calculations of the energy, temporal and angular dependences of the gamma-ray line and neutron emission resulting from such accelerated ion interactions. Comparing the results of these calculations with the Solar Maximum Mission/Gamma Ray Spectrometer (SMM/GRS) measurements of gamma-ray line and neutron fluxes, the total number and energy spectrum of the flare-accelerated ions trapped on magnetic loops at the Sun were determined and the angular distribution, pitch angle scattering, and mirroring of the ions on loop fields were constrained. Comparing the calculations with measurements of the time dependence of the neutron capture line emission, a determination of the He-3/H ratio in the photosphere was also made. The diagnostic capabilities of the SMM/GRS measurements were extended by developing a new technique to directly determine the effective photospheric scale height in solar flares from the neutron capture gamma-ray line measurements, and critically test current atmospheric models in the flare region.

  17. Self-powered neutron and gamma-ray flux detector

    International Nuclear Information System (INIS)

    Allan, C.J.; Shields, R.B.; Lynch, G.F.; Cuttler, J.M.

    1980-01-01

    A new type of self-powered neutron detector was developed which is sensitive to both the neutron and gamma-ray fluxes. The emitter comprises two parts. The central emitter core is made of materials that generate high-energy electrons on exposure to neutrons. The outer layer acts as a gamma-ray/electron converter, and since it has a higher atomic number and higher back-scattering coefficient than the collector, increases the net outflow or emmission of electrons. The collector, which is around the emitter outer layer, is insulated from the outer layer electrically with dielectric insulation formed from compressed metal-oxide powder. The fraction of electrons given off by the emitter that is reflected back by the collector is less than the fraction of electrons emitted by the collector that is reflected back by the emitter. The thickness of the outer layer needed to achieve this result is very small. A detector of this design responds to external reactor gamma-rays as well as to neutron capture gamma-rays from the collector. The emitter core is either nickel, iron or titanium, or alloys based on these metals. The outer layer is made of platinum, tantalum, osmium, molybdenum or cerium. The detector is particularly useful for monitoring neutron and gamma ray flux intensities in nuclear reactor cores in which the neutron and gamma ray flux intensities are closely proportional, are unltimately related to the fission rate, and are used as measurements of nuclear reactor power. (DN)

  18. Weak interaction in a three nucleon system: search for an asymmetry in radiative capture n-d

    International Nuclear Information System (INIS)

    Avenier, M.

    1982-01-01

    Experimental determination of the weak interaction rate in a three nucleon neutron-deuteron system: this weak interaction is observed through pseudoscalar parameters such as the asymetric angular distribution of the capture photon in relation with the system polarization. Orientation of the system is achieved by use of a polarized cold neutron beam. This phenomena is explained as a result of weak coupling between nucleons and mesons. Measurements of the gamma asymmetries observed when tests are conducted with or without heavy water and effects of depolarization are discussed [fr

  19. Gamma ray beam transmutation

    International Nuclear Information System (INIS)

    Imasaki, K.; Li, D.; Miyamoto, S.; Amano, S.; Motizuki, T.

    2007-01-01

    We have proposed a new approach to nuclear transmutation by a gamma ray beam of Compton scattered laser photon. We obtained 20 MeV gamma ray in this way to obtain transmutation rates with the giant resonance of 1 97Au and 1 29Iodine. The rate of the transmutation agreed with the theoretical calculation. Experiments on energy spectrum of positron, electron and neutron from targets were performed for the energy balance and design of the system scheme. The reaction rate was about 1.5∼4% for appropriate photon energies and neutron production rate was up to 4% in the measurements. We had stored laser photon more than 5000 times in a small cavity which implied for a significant improvement of system efficiency. Using these technologies, we have designed an actual transmutation system for 1 29Iodine which has a 16 million year's activity. In my presentation, I will address the properties of this scheme, experiments results and transmutation system for iodine transmutation

  20. Contribution of External Gamma Rays to SPND at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, B. G.; Cho, D. K.; Kim, M. S.; Kang, G. D. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Self-Powered Neutron Detectors (SPNDs) have been widely used for monitoring the neutron flux in reactors as well as in irradiation facilities. In its simplest form, the detector operates on the basis of directly measuring the beta decay current following neutron capture. The neutron capture cross-section of {sup 103}Rh, which is used for an emitter of the SPND, is 142.13 barns for thermal neutron (0.0253 eV). After neuron capture of {sup 103}Rh, the compound nuclei of {sup 104}Rh (92.6%) and {sup 104}mRh (7.4%) are produced. The sensitivity of SPND is generally defined as. The influence of water in the irradiation basket on the external gamma rays is determined by calculations of neutron capture reaction and photon interaction rates at various irradiation positions in HANARO. Since it is not easy to correct the contribution of the external gamma rays to the current signal by measurements at the research reactor, it is advantageous to reduce materials such as water at the irradiation position.

  1. Radioactive well logging system with shale (boron) compensation by gamma ray build-up

    International Nuclear Information System (INIS)

    Peelman, H.E.; Arnold, D.M.; Pitts, R.W. Jr.

    1976-01-01

    Earth formations in the vicinity of a well borehole are repetitively bombarded with bursts of high energy neutrons. A radiation detector in a sonde in the borehole senses the gamma rays induced by the capture of thermal neutrons and sends signals representative thereof to the surface. At the surface, two single channel energy analyzers, such as from 1.30 to 2.92 MeV and from 3.43 to 10.0 MeV, sense the formation thermal neutron capture gamma ray response after each neutron burst. The counts of thermal neutron capture gamma rays in these analyzers are used to distinguish between the presence of salt water and hydrocarbons, which is logged. By controlling the repetition rate of the neutron source, measured counting rates in formations with relatively large thermal neutron lifetimes are emphasized, compensating for borehole effects which could otherwise give rise to erroneous results in shale formations, which have a high boron content. 11 claims, 5 figures

  2. Topics in Astrophysical X-Ray and Gamma Ray Spectroscopy. Ph.D. Thesis - Maryland Univ.

    Science.gov (United States)

    Bussard, R. W.

    1978-01-01

    A number of topics relating to astrophysical observations that have already been made or are currently planned of spectral features, mostly emission lines, in the X-ray and gamma ray region of the electromagnetic spectrum are investigated. These topics include: the production of characteristic X-ray and gamma ray lines by nonthermal ions, spectral features induced by processes occurring in strong magnetic fields, and the positron annihilation line at 0.5 MeV. The rate of X-ray production at 6.8 keV by the 2p to 1s transition in fast hydrogen- and helium-like iron ions, following both electron capture to excited levels and collisional excitation is calculated. The cross section for electron-ion Coulomb collisions in strong fields is also calculated.

  3. Formation properties from high resolution neutron activation gamma-ray spectra

    International Nuclear Information System (INIS)

    Mellor, D.W.; Underwood, M.C.

    1985-01-01

    A neutron activation logging tool has been developed comprising a Five Curie /sup 241/ Am-Be neutron source and a large n-type hyper-pure germanium gamma-ray detector. The tool maintains a constant temperature cryogenic environment for periods in excess of twenty hours. No liquid nitrogen or other consumable material is used in the operating or recharging stages. A large calibration tank in simulated well-bore geometry has been constructed with sand bodies saturated with oil and low salinity water (14,000 ppm NaCl). In the water zone prompt neutron capture gamma-rays from silicon, hydrogen and chlorine were prominent; gamma-rays from inelastic scattering on oxygen and silicon were detected. No gamma-rays arising from inelastic scattering on carbon were detected. These data have been interpreted to yield the porosity, fluid saturations, salinity and matrix composition. In the oil zone, gamma-rays arising from inelastic scattering on oxygen, silicon and carbon were detected. The intensity of the carbon line was very poor, and inadequate for quantitative purposes

  4. Gamma-ray induced doppler broadening

    International Nuclear Information System (INIS)

    Robinson, S.J.

    1992-01-01

    The ultra high resolving power of the GAMS4 double-flat crystal spectrometer (M.S. Dewey et al Nucl. Instrum. Methods A 284 (1989) 151.) has been used to observe the Doppler broadening of gamma-rays emitted by nuclei recoiling at speeds as low as 10 -6 c. Such recoils may be induced by the previous emission of gamma-radiation following thermal neutron capture. If the population mechanism of an excited state is known (or can be approximated) and the slowing down mechanism can be modeled, then this technique can be used to extract the lifetime of excited nuclear states. The combination of this technique and the neutron capture reaction allows the study of states which cannot necessarily be accessed by other means. This has allowed the resolution of a number of long standing questions in low-spin nuclear structure. The basis of the technique is discussed and a number of examples given

  5. A 3D simulation look-up library for real-time airborne gamma-ray spectroscopy

    Science.gov (United States)

    Kulisek, Jonathan A.; Wittman, Richard S.; Miller, Erin A.; Kernan, Warnick J.; McCall, Jonathon D.; McConn, Ron J.; Schweppe, John E.; Seifert, Carolyn E.; Stave, Sean C.; Stewart, Trevor N.

    2018-01-01

    A three-dimensional look-up library consisting of simulated gamma-ray spectra was developed to leverage, in real-time, the abundance of data provided by a helicopter-mounted gamma-ray detection system consisting of 92 CsI-based radiation sensors and exhibiting a highly angular-dependent response. We have demonstrated how this library can be used to help effectively estimate the terrestrial gamma-ray background, develop simulated flight scenarios, and to localize radiological sources. Source localization accuracy was significantly improved, particularly for weak sources, by estimating the entire gamma-ray spectra while accounting for scattering in the air, and especially off the ground.

  6. High energy resolution measurement of the sup 238 U neutron capture yield from 1 to 100 keV

    Energy Technology Data Exchange (ETDEWEB)

    Macklin, R.L. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering); Perez, R.B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering Oak Ridge National Lab., TN (United States)); De Saussure, G.; Ingle, R.W. (Oak Ridge National Lab., TN (United States))

    1991-01-01

    The purpose of this work is the precise determination of the {sup 238}U neutron capture yield (i.e. the probability of neutron capture) as a function of neutron energy with the highest available neutron energy resolution. The motivation for this undertaking arises from the central role played by the {sup 238}U neutron capture process in the neutron balance of both thermal reactors and fast breeder reactors. The present measurement was performed using the Oak Ridge Electron Linear Accelerator (ORELA) facility. The pulsed beam of neutrons from the ORELA facility is collimated on a sample of {sup 238}U. The neutron capture rate in the sample is measured, as a function of neutron time-of-flight (TOF) by detecting the {gamma}-rays from the {sup 238}U(n, {gamma}){sup 239}U reaction with a large {gamma}-ray detector surrounding the {sup 238}U sample. At each energy, the capture yield is proportional to the observed capture rate divided by the measured intensity of the neutron beam. The constant of proportionality (the normalization constant) is obtained from the ratio of theoretical to experimentally measured areas under small {sup 238}U resonances where the resonance parameters have been determined from high-resolution {sup 238}U transmission measurements. The cross section for the reaction {sup 238}U(n,{gamma}){sup 239}U can be derived from the measured capture yield if one applies appropriate corrections for multiple scattering and resonance self-shielding. Some 200 {sup 238}U neutron resonances in the energy range from 250 eV to 10 keV have been observed which had not been detected in previous measurements. (author).

  7. Photoneutron cross sections measurements in {sup 9}Be, {sup 13}C e {sup 17}O with thermal neutron capture gamma-rays; Medidas das secoes de choque de fotoneutrons do {sup 9}Be, {sup 13}C e {sup 17}O com radiacao gama de captura de neutrons termicos

    Energy Technology Data Exchange (ETDEWEB)

    Semmler, Renato

    2006-07-01

    Photoneutron cross sections measurements of {sup 9}Be, {sup 13}C and {sup 17}O have been obtained in the energy interval between 1,6 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 a 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (5 MW) research reactor. The samples have been irradiated inside a 4{pi} geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm{sup 3}, 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A inversion matrix methodology to solve inversion problems for unfolding the set of experimental compound cross sections, was used in order to obtain the cross sections at specific excitation energy values (principal gamma line energies of the capture targets). The cross sections obtained at the energy values of the principal gamma lines were compared with experimental data reported by other authors, with have employed different gamma-ray sources. A good agreement was observed among the experimental data in this work with reported in the literature. (author)

  8. Compton suppression gamma ray spectrometry

    International Nuclear Information System (INIS)

    Landsberger, S.; Iskander, F.Y.; Niset, M.; Heydorn, K.

    2002-01-01

    In the past decade there have been many studies to use Compton suppression methods in routine neutron activation analysis as well as in the traditional role of low level gamma ray counting of environmental samples. On a separate path there have been many new PC based software packages that have been developed to enhance photopeak fitting. Although the newer PC based algorithms have had significant improvements, they still suffer from being effectively used in weak gamma ray lines in natural samples or in neutron activated samples that have very high Compton backgrounds. We have completed a series of experiments to show the usefulness of Compton suppression. As well we have shown the pitfalls when using Compton suppression methods for high counting deadtimes as in the case of neutron activated samples. We have also investigated if counting statistics are the same both suppressed and normal modes. Results are presented in four separate experiments. (author)

  9. Capture and fission with DANCE and NEUANCE

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T.A.; Chadwick, M.B.; Couture, A.; Fowler, M.M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T.N.; Talou, P.; Ullmann, J.L.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

    2015-12-15

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on {sup 235}U are focused on quantifying the population of short-lived isomeric states in {sup 236}U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables. (orig.)

  10. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Fichtel, C.E.

    1975-01-01

    The first certain detection of celestial high energy gamma rays came from a satellite experiment flown on the third Orbiting Solar Observatory (OSO-111). A Gamma ray spark chamber telescope with substantively greater sensitivity and angular resolution (a few degrees) flown on the second Small Astronomy Satellite (SAS-II) has now provided a better picture of the gamma ray sky, and particularly the galactic plane and pulsars. This paper will summarize the present picture of gamma ray astronomy as it has developed at this conference from measurements made with experiments carried out on balloons, those remaining on the ground, and ones flown on satellites. (orig.) [de

  11. Radioprotective effects of dimethyl sulfoxide in golden hamster embryo cells exposed to gamma rays at 77 K. I. Radical formation as studied by electron spin resonance

    International Nuclear Information System (INIS)

    Miyazaki, T.; Hayakawa, Y.; Suzuki, K.; Suzuki, M.; Watanabe, M.

    1990-01-01

    Formation of free radicals in golden hamster embryo (GHE) cells in the frozen living state by gamma irradiation has been studied by electron spin resonance spectroscopy at 4.2 and 77 K. The relative yields of H atoms, OH radicals, and organic radicals trapped in the irradiated GHE cells are 12, 72, and 16%, respectively, of total radical yields. When dimethylsulfoxide (DMSO) is added to GHE cells at 77 K, a large quantity of CH2SOCH3 radicals (DMSO radicals) are formed after gamma irradiation. The yields of OH radicals are not affected by the addition of DMSO. When the GHE cell-DMSO mixtures are irradiated with gamma rays at 77 K and then warmed to 111 K, the OH radicals decay, whereas the DMSO radicals do not increase complementarily. Moreover, the decay rates of the OH radicals at 111 K do not depend upon the concentration of DMSO. Thus OH radicals do not react with DMSO during warming of the irradiated sample. When H atoms are produced by gamma irradiation of acid ice at 60 K, the decay rates of the H atoms at 77 K increase with increasing DMSO concentration, indicating that DMSO reacts with H atoms (CH3SOCH3 + H----.CH2SOCH3 + H2) at 77 K by quantum-mechanical tunneling. When the GHE cell-DMSO mixture is irradiated with gamma rays at 77 or 4.2 K in the dark, DMSO ions are produced in addition to DMSO radicals. Therefore it is concluded that DMSO does not scavenge OH radicals, but does capture H atoms, holes and/or electrons in the gamma-irradiated cells, resulting in the remarkable formation of DMSO radicals. This scavenger effect of DMSO may be related to the radioprotection of DMSO against cell killing

  12. Cosmic ray-dark matter scattering: a new signature of (asymmetric) dark matter in the gamma ray sky

    International Nuclear Information System (INIS)

    Profumo, Stefano; Ubaldi, Lorenzo

    2011-01-01

    We consider the process of scattering of Galactic cosmic-ray electrons and protons off of dark matter with the radiation of a final-state photon. This process provides a novel way to search for Galactic dark matter with gamma rays. We argue that for a generic weakly interacting massive particle, barring effects such as co-annihilation or a velocity-dependent cross section, the gamma-ray emission from cosmic-ray scattering off of dark matter is typically smaller than that from dark matter pair-annihilation. However, if dark matter particles cannot pair-annihilate, as is the case for example in asymmetric dark matter scenarios, cosmic-ray scattering with final state photon emission provides a unique window to detect a signal from dark matter with gamma rays. We estimate the expected flux level and its spectral features for a generic supersymmetric setup, and we also discuss dipolar and luminous dark matter. We show that in some cases the gamma-ray emission might be large enough to be detectable with the Fermi Large Area Telescope

  13. Basics of Gamma Ray Detection

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venkataraman, Ram [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-13

    The objective of this training is to explain the origin of x-rays and gamma rays, gamma ray interactions with matter, detectors and electronics used in gamma ray-spectrometry, and features of a gamma-ray spectrum for nuclear material that is safeguarded.

  14. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    International Nuclear Information System (INIS)

    Kheymits, M D; Leonov, A A; Zverev, V G; Galper, A M; Arkhangelskaya, I V; Arkhangelskiy, A I; Yurkin, Yu T; Bakaldin, A V; Suchkov, S I; Topchiev, N P; Dalkarov, O D

    2016-01-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work. (paper)

  15. Partial neutron capture cross sections of actinides using cold neutron prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Genreith, Christoph

    2015-01-01

    Nuclear waste needs to be characterized for its safe handling and storage. In particular long-lived actinides render the waste characterization challenging. The results described in this thesis demonstrate that Prompt Gamma Neutron Activation Analysis (PGAA) with cold neutrons is a reliable tool for the non-destructive analysis of actinides. Nuclear data required for an accurate identification and quantification of actinides was acquired. Therefore, a sample design suitable for accurate and precise measurements of prompt γ-ray energies and partial cross sections of long-lived actinides at existing PGAA facilities was presented. Using the developed sample design the fundamental prompt γ-ray data on 237 Np, 241 Am and 242 Pu were measured. The data were validated by repetitive analysis of different samples at two individual irradiation and counting facilities - the BRR in Budapest and the FRM II in Garching near Munich. Employing cold neutrons, resonance neutron capture by low energetic resonances was avoided during the experiments. This is an improvement over older neutron activation based works at thermal reactor neutron energies. 152 prompt γ-rays of 237 Np were identified, as well as 19 of 241 Am, and 127 prompt γ-rays of 242 Pu. In all cases, both high and lower energetic prompt γ-rays were identified. The most intense line of 237 Np was observed at an energy of E γ =182.82(10) keV associated with a partial capture cross section of σ γ =22.06(39) b. The most intense prompt γ-ray lines of 241 Am and of 242 Pu were observed at E γ =154.72(7) keV with σ γ =72.80(252) b and E γ =287.69(8) keV with σ γ =7.07(12) b, respectively. The measurements described in this thesis provide the first reported quantifications on partial radiative capture cross sections for 237 Np, 241 Am and 242 Pu measured simultaneously over the large energy range from 45 keV to 12 MeV. Detailed uncertainty assessments were performed and the validity of the given uncertainties was

  16. Reproducibility of (n,γ) gamma ray spectrum in Pb under different ENDF/B releases

    Energy Technology Data Exchange (ETDEWEB)

    Kebwaro, J.M., E-mail: jeremiahkebwaro@gmail.com [Department of Physical Sciences, Karatina University, P.O. Box 1957-10101, Karatina (Kenya); He, C.H.; Zhao, Y.L. [School of Nuclear Science and Technology, Xian Jiaotong University, Xian, Shaanxi 710049 (China)

    2016-04-15

    Radiative capture reactions are of interest in shielding design and other fundamental research. In this study the reproducibility of (n,γ) reactions in Pb when cross-section data from different ENDF/B releases are used in the Monte-Carlo code, MCNP, was investigated. Pb was selected for this study because it is widely used in shielding applications where capture reactions are likely to occur. Four different neutron spectra were declared as source in the MCNP model which consisted of a simple spherical geometry. The gamma ray spectra due to the capture reactions were recorded at 10 cm from the center of the sphere. The results reveal that the gamma ray spectrum produced by ENDF/B-V is in reasonable agreement with that produced when ENDF/B-VI.6 is used. However the spectrum produced by ENDF/B-VII does not reveal any primary gamma rays in the higher energy region (E > 3 MeV). It is further observed that the intensities of the capture gamma rays produced when various releases are used differ by a some margin showing that the results are not reproducible. The generated spectra also vary with the spectrum of the source neutrons. The discrepancies observed among various ENDF/B releases could raise concerns to end users and need to be addressed properly during benchmarking calculations before the next release. The evaluation from ENDF to ACE format that is supplied with MCNP should also be examined because errors might have arisen during the evaluation.

  17. {beta}-Delayed proton-decay study of {sup 20}Mg and its implications for the {sup 19}Ne(p,{gamma}){sup 20}Na breakout reaction in X-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J.P., E-mail: J.P.Wallace@sms.ed.ac.uk [University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom); Woods, P.J.; Lotay, G. [University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom); Alharbi, A.; Banu, A. [Cyclotron Institute, Texas A and M University, College Station, TX (United States); David, H.M.; Davinson, T. [University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom); McCleskey, M.; Roeder, B.T.; Simmons, E.; Spiridon, A.; Trache, L.; Tribble, R.E. [Cyclotron Institute, Texas A and M University, College Station, TX (United States)

    2012-05-30

    Under astrophysical conditions of high temperature and density, such as for example found in X-ray bursts, breakout can occur from the hot CNO cycles into the rapid proton capture process. A key breakout route is via the sequence {sup 15}O({alpha},{gamma}){sup 19}Ne(p,{gamma}){sup 20}Na. The {sup 19}Ne(p,{gamma}){sup 20}Na reaction rate is expected to be dominated by a single resonance at 457(3) keV. The identity of the resonance has been under discussion for a long time, with J{sup {pi}}=1{sup +} and 3{sup +} assignments suggested. In this study of the {beta}-delayed proton decay of {sup 20}Mg we report a new, significantly more stringent, upper limit on the {beta}-decay branch to this state of 0.02% with a confidence level of 90%. This makes a 1{sup +} assignment highly unlikely and favours a 3{sup +} assignment for which no branch is expected to be observed. The 3{sup +} state is predicted to have a significantly higher resonance strength, and to produce a proportionately higher {sup 19}Ne(p,{gamma}){sup 20}Na reaction rate in X-ray burst conditions.

  18. Natural background gamma-ray spectrum. List of gamma-rays ordered in energy from natural radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Ichimiya, Tsutomu [Japan Radioisotope Association, Tokyo (Japan); Narita, Tsutomu; Kitao, Kensuke

    1998-03-01

    A quick index to {gamma}-rays and X-rays from natural radionuclides is presented. In the list, {gamma}-rays are arranged in order of increasing energy. The list also contains {gamma}-rays from radioactive nuclides produced in a germanium detector and its surrounding materials by interaction with cosmic neutrons, as well as direct {gamma}-rays from interaction with the neutrons. Artificial radioactive nuclides emitting {gamma}-rays with same or near energy value as that of the natural {gamma}-rays and X-rays are also listed. In appendix, {gamma}-ray spectra from a rock, uranium ore, thorium, monazite and uraninite and also background spectra obtained with germanium detectors placed in iron or lead shield have been given. The list is designed for use in {gamma}-ray spectroscopy under the conditions of highly natural background, such as in-situ environmental radiation monitoring or low-level activity measurements, with a germanium detector. (author)

  19. Measurements and applications of neutron multiple scattering in resonance region

    International Nuclear Information System (INIS)

    Ohkubo, Makio

    1977-02-01

    Capture yield of neutrons impinging on a thick material is complicated due to self-shielding and multiple scattering, especially in the resonance region. When the incident neutron energy is equal to a resonance energy of the material, capture probability of the neutron increases with sample thickness and reaches a saturation value P sub(CO). There is a simple relation between P sub(CO) and GAMMA sub(n)/GAMMA and the recoil energy by the Monte-Carlo calculation. To examine validity of the relation, P sub(CO) was measured for 19 resonances in 12 nuclides with thick samples, using a JAERI linac time-of-flight spectrometer with Moxon-Rae type gamma ray detector and transmission type neutron flux monitor. Results of the measurements confirmed the validity. With this relation, the GAMMA sub(n)/GAMMA or GAMMA sub(γ)/GAMMA value can be obtained from the measured P sub(CO), and also the level spins be determined by combining the transmission data. Because of the definition of P sub(CO), determination of the resonance parameters is not sensitive to the sample thickness as far as it is sufficiently thick. (auth.)

  20. Study on the keV neutron capture reaction in {sup 56}Fe and {sup 57}Fe

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Taofeng [Beihang University, International Research Center for Nuclei and Particles in the Cosmos, Beijing (China); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Lee, Manwoo [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Dong-nam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of); Kim, Guinyun [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Ro, Tae-Ik [Dong-A University, Department of Physics, Busan (Korea, Republic of); Kang, Yeong-Rok [Dong-A University, Department of Physics, Busan (Korea, Republic of); Dong-nam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of); Igashira, Masayuki; Katabuchi, Tatsuya [Tokyo Institute of Technology, Research Laboratory for Nuclear Reactors, Tokyo (Japan)

    2014-03-15

    The neutron capture cross-sections and the radiative capture gamma-ray spectra from the broad resonances of {sup 56}Fe and {sup 57}Fe in the neutron energy range from 10 to 90 keV and 550 keV have been measured with an anti-Compton NaI(Tl) detector. Pulsed keV neutrons were produced from the {sup 7}Li (p,n) {sup 7}Be reaction by bombarding the lithium target with the 1.5ns bunched proton beam from the 3MV Pelletron accelerator. The incident neutron spectrum on a capture sample was measured by means of a time-of-flight (TOF) method with a {sup 6}Li -glass detector. The number of weighted capture counts of the iron or gold sample was obtained by applying a pulse height weighting technique to the corresponding capture gamma-ray pulse height spectrum. The neutron capture gamma-ray spectra were obtained by unfolding the observed capture gamma-ray pulse height spectra. To achieve further understanding on the mechanism of neutron radiative capture reaction and study on physics models, theoretical calculations of the γ-ray spectra for {sup 56}Fe and {sup 57}Fe with the POD program have been performed by applying the Hauser-Feshbach statistical model. The dominant ingredients to perform the statistical calculation were the Optical Model Potential (OMP), the level densities described by the Mengoni-Nakajima approach, and the γ-ray transmission coefficients described by γ-ray strength functions. The comparison of the theoretical calculations, performed only for the 550keV point, show a good agreement with the present experimental results. (orig.)

  1. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission

    International Nuclear Information System (INIS)

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-01-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm. - Highlights: • PIGE was evaluated for measuring blood boron concentration during clinical BNCT. • PIGE detected 18 μgB/mL f-BPA in culture medium. • All measurements of any given sample were taken within 20 min. • Two hours of f-BPA exposure is required to create boron distribution image by PIGE. • Boron on the cell membrane could not be distinguished from boron in the cytoplasm.

  2. Gamma detector for use with luggage X-ray systems

    International Nuclear Information System (INIS)

    McHugh, H.; Quam, W.

    1998-01-01

    A new gamma radiation sensor has been designed for installation on several types of luggage x-ray machines and mobile x-ray vans operated by the U.S. Customs Service and the U.S. Department of State. The use of gamma detectors on x-ray machines imposed difficulties not usually encountered in the design of gamma detectors because the spectrum of scattered x-rays, which varied from machine to machine, extended to energies significantly higher than those of the low-energy isotopic emissions. In the original design, the lower level discriminator was raised above the x-ray end point energy resulting in the loss of the americium line associated with plutonium. This reduced the overall sensitivity to unshielded plutonium by a factor of approximately 100. An improved method was subsequently developed wherein collimation was utilized in conjunction with a variable counting threshold to permit accommodation of differing conditions of x-ray scattering. This design has been shown to eliminate most of the problems due to x-ray scattering while still capturing the americium emissions. The overall sensitivity has remained quite high, though varying slightly from one model of x-ray machine to another, depending upon the x-ray scattering characteristics of each model. (author)

  3. Gamma-ray identification of nuclear weapon materials

    International Nuclear Information System (INIS)

    Gosnell, T. B.; Hall, J. M.; Jam, C. L.; Knapp, D. A.; Koenig, Z. M.; Luke, S. J.; Pohl, B. A.; Schach Wittenau, A. von; Wolford, J. K.

    1997-01-01

    There has been an accelerating national interest in countering nuclear smuggling. This has caused a corresponding expansion of interest in the use of gamma-ray spectrometers for checkpoint monitoring, nuclear search, and within networks of nuclear and collateral sensors. All of these are fieldable instruments--ranging from large, fixed portal monitors to hand-held and remote monitoring equipment. For operational reasons, detectors with widely varying energy resolution and detection efficiency will be employed. In many instances, such instruments must be sensitive to weak signals, always capable of recognizing the gamma-ray signatures from nuclear weapons materials (NWM), often largely insensitive to spectral alteration by radiation transport through intervening materials, capable of real-time implementation, and able to discriminate against signals from commonly encountered legitimate gamma-ray sources, such as radiopharmaceuticals. Several decades of experience in classified programs have shown that all of these properties are not easily achieved and successful approaches were of limited scope--such as the detection of plutonium only. This project was originally planned as a two-year LDRD-ER. Since funding for 1997 was not sustained, this is a report of the first year's progress

  4. Black Hole Accretion in Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiuk

    2017-02-01

    Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.

  5. EJ-309 pulse shape discrimination performance with a high gamma-ray-to-neutron ratio and low threshold

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, A.C., E-mail: Alexis.C.Kaplan@gmail.com [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48104 (United States); Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Flaska, M.; Enqvist, A.; Dolan, J.L.; Pozzi, S.A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48104 (United States)

    2013-11-21

    Measuring neutrons in the presence of high gamma-ray fluence is a challenge with multi-particle detectors. Organic liquid scintillators such as the EJ-309 are capable of accurate pulse-shape discrimination (PSD) but the chance for particle misclassification is not negligible for some applications. By varying the distance from an EJ-309 scintillator to a strong-gamma-ray source and keeping a weak-neutron source at a fixed position, various gamma-to-neutron ratios can be measured and PSD performance can be quantified. Comparing neutron pulse-height distributions allows for pulse-height specific PSD evaluation, and quantification and visualization of deviation from {sup 252}Cf alone. Even with the addition of the misclassified gamma-rays, the PSD is effective in separating particles so that neutron count rate can be predicted with less than 10% error up to a gamma-to-neutron ratio of almost 650. For applications which can afford a reduction in neutron detection efficiency, PSD can be sufficiently effective in discriminating particles to measure a weak neutron source in a high gamma-ray background. -- Highlights: •We measure neutrons in a high photon background with EJ-309 liquid scintillators. •A low threshold is used to test the limits of particle discrimination. •A weak neutron signal is detectable with a gamma/neutron ratio as high as 770. •Photon pileup most commonly adds to error in classification of neutrons. •Neutron count rates are within 10% of expected rate under high gamma background.

  6. EJ-309 pulse shape discrimination performance with a high gamma-ray-to-neutron ratio and low threshold

    International Nuclear Information System (INIS)

    Kaplan, A.C.; Flaska, M.; Enqvist, A.; Dolan, J.L.; Pozzi, S.A.

    2013-01-01

    Measuring neutrons in the presence of high gamma-ray fluence is a challenge with multi-particle detectors. Organic liquid scintillators such as the EJ-309 are capable of accurate pulse-shape discrimination (PSD) but the chance for particle misclassification is not negligible for some applications. By varying the distance from an EJ-309 scintillator to a strong-gamma-ray source and keeping a weak-neutron source at a fixed position, various gamma-to-neutron ratios can be measured and PSD performance can be quantified. Comparing neutron pulse-height distributions allows for pulse-height specific PSD evaluation, and quantification and visualization of deviation from 252 Cf alone. Even with the addition of the misclassified gamma-rays, the PSD is effective in separating particles so that neutron count rate can be predicted with less than 10% error up to a gamma-to-neutron ratio of almost 650. For applications which can afford a reduction in neutron detection efficiency, PSD can be sufficiently effective in discriminating particles to measure a weak neutron source in a high gamma-ray background. -- Highlights: •We measure neutrons in a high photon background with EJ-309 liquid scintillators. •A low threshold is used to test the limits of particle discrimination. •A weak neutron signal is detectable with a gamma/neutron ratio as high as 770. •Photon pileup most commonly adds to error in classification of neutrons. •Neutron count rates are within 10% of expected rate under high gamma background

  7. X-ray echoes from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dermer, C.D.; Hurley, K.C.; Hartmann, D.H.

    1991-01-01

    The identification of an echo of reflected radiation in time histories of gamma-ray burst spectra can provide important information about the existence of binary companions or accretion disks in gamma-ray burst systems. Because of the nature of Compton scattering, the spectrum of the echo will be attenuated at gamma-ray energies compared with the spectrum of the primary burst emission. The expected temporal and spectral signatures of the echo and a search for such echoes are described, and implications for gamma-ray burst models are discussed. 35 refs

  8. The Dawn of Nuclear Photonics with Laser-based Gamma-rays

    International Nuclear Information System (INIS)

    Barty, C.J.

    2011-01-01

    around the world as well some of the exciting applications that these machines will enable. The optimized interaction of short-duration, pulsed lasers with relativistic electron beams (inverse laser-Compton scattering) is the key to unrivaled MeV-scale photon source monochromaticity, pulse brightness and flux. In the MeV spectral range, such Mono-Energetic Gamma-ray (MEGa-ray) sources can have many orders of magnitude higher peak brilliance than even the world's largest synchrotrons. They can efficiently perturb and excite the isotope-specific resonant structure of the nucleus in a manner similar to resonant laser excitation of the valence electron structure of the atom.

  9. The Gamma-ray Sky with Fermi

    Science.gov (United States)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  10. A distribution-free test for anomalous gamma-ray spectra

    International Nuclear Information System (INIS)

    Chan, Kung-sik; Li, Jinzheng; Eichinger, William; Bai, Er-Wei

    2014-01-01

    Gamma-ray spectra are increasingly acquired in monitoring cross-border traffic, or in an area search for lost or orphan special nuclear material (SNM). The signal in such data is generally weak, resulting in poorly resolved spectra, thereby making it hard to detect the presence of SNM. We develop a new test for detecting anomalous spectra by characterizing the complete shape change in a spectrum from background radiation; the proposed method may serve as a tripwire for routine screening for SNM. We show that, with increasing detection time, the limiting distribution of the test is given by some functional of the Brownian bridge. The efficacy of the proposed method is illustrated by simulations. - Highlights: • We develop a new non-parametric test for detecting anomalous gamma-ray spectra. • The proposed test has good empirical power for detecting weak signals. • It can serve as an effective tripwire for invoking more thorough scrutiny of the source

  11. Applied gamma-ray spectrometry

    CERN Document Server

    Dams, R; Crouthamel, Carl E

    1970-01-01

    Applied Gamma-Ray Spectrometry covers real life application of the gamma-ray and the devices used in their experimental studies. This book is organized into 9 chapters, and starts with discussions of the various decay processes, the possible interaction mechanisms of gamma radiation with matter, and the intrinsic and extrinsic variables, which affect the observed gamma-ray and X-ray spectra. The subsequent chapters deal with the properties and fabrication of scintillation detectors, semiconductor detectors, and proportional gas counters. These chapters present some of the most widely utilized

  12. Neutron-induced gamma-ray spectroscopy: simulations for chemical mapping of planetary surfaces

    International Nuclear Information System (INIS)

    Brueckner, J.; Waenke, H.; Reedy, R.C.

    1986-01-01

    Cosmic rays interact with the surface of a planetary body and produce a cascade of secondary particles, such as neutrons. Neutron-induced scattering and capture reactions play an important role in the production of discrete gamma-ray lines that can be measured by a gamma-ray spectrometer on board of an orbiting spacecraft. These data can be used to determine the concentration of many elements in the surface of a planetary body, which provides clues to its bulk composition and in turn to its origin and evolution. To investigate the gamma rays made by neutron interactions, thin targets were irradiated with neutrons having energies from 14 MeV to 0.025 eV. By means of foil activation technique the ratio of epithermal to thermal neutrons was determined to be similar to that in the Moon. Gamma rays emitted by the targets and the surrounding material were detected by a high-resolution germanium detector in the energy range of 0.1 to 8 MeV. Most of the gamma-ray lines that are expected to be used for planetary gamma-ray spectroscopy were found in the recorded spectra and the principal lines in these spectra are presented. 58 refs., 7 figs., 9 tabs

  13. Collimatorless imaging of gamma rays with help of gamma-ray tracking

    CERN Document Server

    Marel, J V D

    2001-01-01

    In many gamma-ray detector systems that are built for imaging purposes Compton scattered photons are suppressed as much as possible. However, the information from photons that scattered inside a detector system can be used to reconstruct the tracks of the photons with help of gamma-ray tracking. Estimates of the incident directions of the photons can be made and an image can be created. Examples of potential applications for this technique are the use as a gamma-camera in medical imaging (e.g. SPECT) or as a detector for PET. Due to the omission of collimators, much higher detection efficiencies can be achieved, reducing the doses required for an image. A gamma-ray tracking method, called backtracking, has been developed for nuclear spectroscopy. The method tracks gamma-rays originating from a point source in the center of a spherical detector system consisting of position-sensitive germanium detectors. This method can also be used as a tracking technique for imaging of an unknown source distribution. With he...

  14. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    International Nuclear Information System (INIS)

    Luo, B.; Brandt, W. N.; Scott, A. E.; Alexander, D. M.; Gandhi, P.; Stern, D.; Teng, S. H.; Arévalo, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Ogle, P.; Puccetti, S.; Saez, C.

    2014-01-01

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ eff ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  15. First results of the CERN Resonant Weakly Interacting sub-eV Particle Search (CROWS)

    CERN Document Server

    Betz, M; Gasior, M; Thumm, M; Rieger, S W

    2013-01-01

    The CERN Resonant Weakly Interacting sub-eV Particle Search probes the existence of weakly interacting sub-eV particles like axions or hidden sector photons. It is based on the principle of an optical light shining through the wall experiment, adapted to microwaves. Critical aspects of the experiment are electromagnetic shielding, design and operation of low loss cavity resonators, and the detection of weak sinusoidal microwave signals. Lower bounds are set on the coupling constant g=4.5 x 10$^{-8}$ GeV$^{-1}$ for axionlike particles with a mass of m$_a$=7.2 $\\mu$eV. For hidden sector photons, lower bounds are set for the coupling constant $\\chi$=4.1 x 10$^{^-9}$ at a mass of m$\\gamma$=10.8 $\\mu$eV. For the latter we are probing a previously unexplored region in the parameter space.

  16. SB2. Experiment on secondary gamma-ray production cross sections arising from thermal-neutron capture in each of 14 different elements plus a stainless steel

    International Nuclear Information System (INIS)

    Maerker, R.E.

    1976-01-01

    The experimental and calculational details for a CSEWG integral data testing shielding experiment are presented. This particular experiment measured the secondary gamma-ray production cross sections arising from thermal-neutron capture in iron, nitrogen, sodium, aluminum, copper, titanium, calcium, potassium, chlorine, silicon, ickel, zinc, barium, sulfur and a type 321 stainless steel. 1 figure, 30 tables

  17. Baseline distortion effect on gamma-ray pulse-height spectra in neutron capture experiments

    International Nuclear Information System (INIS)

    Laptev, A.; Harada, H.; Nakamura, S.; Hori, J.; Igashira, M.; Ohsaki, T.; Ohgama, K.

    2005-01-01

    A baseline distortion effect due to gamma-flash at neutron time-of-flight measurement using a pulse neutron source has been investigated. Pulses from C 6 D 6 detectors accumulated by flash-ADC were processed with both standard analog-to-digital converter (ADC) and flash-ADC operational modes. A correction factor of gamma-ray yields, due to baseline shift, was quantitatively obtained by comparing the pulse height spectra of the two data-taking modes. The magnitude of the correction factor depends on the time after gamma-flash and has complex time dependence with a changing sign

  18. Optical observations of Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Hjorth, J.; Pian, E.; Fynbo, J.P.U.

    2004-01-01

    We briefly review the status and recent progress in the field of optical observations of gamma-ray burst afterglows. We will focus on the fundamental observational evidence for the relationship between gamma-ray bursts and the final evolutionary phases of massive stars. In particular, we will address (i) gamma-ray burst host galaxies, (ii) optically dark gamma-ray burst afterglows, (iii) the gamma-ray burst-supernova connection, and (iv) the relation between X-ray flashes, gamma-ray bursts, and supernovae

  19. Initial studies of the gamma resonance of the 109mAg isomer with a gravitational gamma spectrometer

    International Nuclear Information System (INIS)

    Alpatov, V. G.; Bayukov, Yu. D.; Davydov, A. V.; Isaev, Yu. N.; Kartashov, G. R.; Korotkov, M. M.; Migachev, V. V.

    2008-01-01

    The problem of observing the Moessbauer resonance absorption of gamma rays from long-lived isomers is briefly outlined, first and foremost for 109m Ag taken as an example. Experiments indicative of a small broadening of the Moessbauer gamma line of this isomer in metallic silver are described. This circumstance made it possible to develop and manufacture a gravitational gamma spectrometer and to perform the first experiments with it, which confirm once again the previous data on a small width of the gamma line in question. The broadening factor obtained from these data proved to be 6.3 -1.9 +5.2 .

  20. Search for gamma-ray transients using the SMM spectrometer

    Science.gov (United States)

    Share, G. H.; Harris, M. J.; Leising, M. D.; Messina, D. C.

    1993-01-01

    Observations for transient radiation made by the Gamma Ray Spectrometer on the SMM satellite are summarized. Spectra were obtained from 215 solar flares and 177 gamma-ray bursts. No narrow or moderately broadened lines were observed in any of the bursts. The rate of bursts is consistent with a constant over the mission but is weakly correlated with solar activity. No evidence was found for bursts of 511 keV line emission, unaccompanied by a strong continuum, at levels not less than 0.05 gamma/sq cm s for bursts lasting not more than 16 s. No evidence was found for broad features near 1 MeV from Cyg X-1, the Galactic center, or the Crab in 12-d integrations at levels not less than 0.006 gamma/sq cm s. No evidence was found for transient celestial narrow-line emission from 300 keV to 7 MeV on min-to-hrs-long time scales from 1984 to 1989.

  1. The Gamma-ray Universe through Fermi

    Science.gov (United States)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  2. Determination of protein content in seeds by prompt gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Carbonari, A.W.; Pecequilo, B.R.S.

    1984-01-01

    The protein level in seeds can be directly calculated through the determination of the nitrogen content in grains. The authors show here that the radioactive thermal neutron capture prompt gamma-rays technique can be used to determine the nitrogen content in grains without chemical destruction, with good precision and relative rapidity, by detecting the prompt gamma rays emitted by the 14 N(n,γ) 15 N reaction product. The samples were irradiated in the tangential tube of the IEA-R1 research reactor, in Sao Paulo, and a pair spectrometer was used for the detection of the prompt gamma-rays. The nitrogen content was determined in several samples of soybean, common bean, peas and rice and the results compared with typical nitrogen content values for each grain. 33 references, 1 figure, 1 table

  3. Detection efficiency for radionuclides decaying by electron capture and gamma-Ray; Calculo de la eficiencia de deteccion de nucleidos que se desintegran por captura elec- tronica y emision gamma

    Energy Technology Data Exchange (ETDEWEB)

    Grau, A; Fernandez, A

    1985-07-01

    In this paper, the electron capture partial counting efficiency vs the figure of merit for electron-capture and gamma-ray emitters has been computed. The radionuclides tabulated are 48{sup c}r, 54{sup M}n, 57{sup C}o 56{sup N}i, 72{sup S}e, 73{sup A}s, 85{sup S}r, 88{sup Z}r, 92{sup N}b, 103{sup P}d, 111{sup l}n, 119{sup S}b, 125{sup I}, 139{sup C}e and 152{sup D}y. It has been assumed that the liquid is a toluene based scintillator solution in standard glass vials containing 15 cm{sup 3}. (Author) 17 refs.

  4. Measurement of sup 15 O(. alpha. ,. gamma. ) sup 19 Ne resonance strengths

    Energy Technology Data Exchange (ETDEWEB)

    Magnus, P V; Smith, M S; Howard, A J; Parker, P D [Yale Univ., New Haven, CT (USA). Nuclear Structure Lab.; Champagne, A E [Princeton Univ., NJ (USA). Dept. of Physics

    1990-01-08

    States in {sup 19}Ne above the {sup 15}O+{alpha} threshold were populated by means of the {sup 19}F({sup 3}He,t){sup 19}Ne* reaction, and their alpha-particle decays to the {sup 15}O ground state were measured. The branching ratios {Gamma}{sub {alpha}}/{Gamma}{sub total} for the E{sub c.m.}=850-, 1020-, 1971-, 1183- and 1563-keV resonances in {sup 15}O+{alpha} were determined. This information together with alpha-particle and/or gamma-ray partial widths (determined from knowledge of these quantities for the mirror states in {sup 19}F) determines the strengths of these {sup 15}O({alpha},{gamma}){sup 19}Ne resonances and the {sup 15}O({alpha},{gamma}){sup 19}Ne reaction rate for temperatures between 7x10{sup 8} and 3x10{sup 9} K. (orig.).

  5. Searches for Particle Dark Matter with gamma-rays.

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    In this contribution I review the present status and discuss some prospects for indirect detection of dark matter with gamma-rays. Thanks to the Fermi Large Area Telescope, searches in gamma-rays have reached sensitivities that allow to probe the most interesting parameter space of the weakly interacting massive particles (WIMP) paradigm. This gain in sensitivity is naturally accompanied by a number of detection claims or indications, the most recent being the claim of a line feature at a dark matter particle mass of ∼ 130 GeV at the Galactic Centre, a claim which requires confirmation from the Fermi-LAT collaboration and other experiments, for example HESS II or the planned Gamma-400 satellite. Predictions for the next generation air Cherenkov telescope, Cherenkov Telescope Array (CTA), together with forecasts on future Fermi-LAT constraints arrive at the exciting possibility that the cosmological benchmark cross-section could be probed from masses of a few GeV to a few TeV. Consequently, non-detection wou...

  6. Determination of the resonance parameters for 232Th from high resolution transmission and capture measurements at GELINA

    International Nuclear Information System (INIS)

    Brusegan, A.; Schillebeeckx, P.; Lobo, G.; Borella, A.; Volev, K.; Janeva, N.

    2003-01-01

    To deduce the resonance parameters for 232 Th in the resolved resonance region, high resolution transmission and capture measurements are being performed. The measurements are performed at the Time-Of-Flight facility GELINA. A comparison of experimental data resulting from capture (top) and transmission (bottom) are shown. The transmission measurements are performed at a 50 m flight path. The neutron are detected with a 0.25' thick lithium glass (NE912) placed in an Al sphere and viewed by a 5' EMI KQB photomultiplier orthogonal to the neutron beam axis. The injection of a stabilised light pulse in the detector during the measurements provided an efficient tool to control to better than 1% the gain of the entire electronics. The experimental set-up includes a sample-changer, placed at 23 m from the neutron source, which is driven by the acquisition system. The determination of the flight path length, was based on transmission of the 6.673 eV resonance of 238 U. We summarise, for the different energy regions of interest, the scheduled measurement conditions: the operation frequency of the accelerator and the target thickness. A simultaneous analysis of the data using REFIT will result in the resonance parameters from 0 to 4 keV. We show the result of a resonance shape analysis for the resonances at 21.8 and 23.5 eV. The resulting resonance parameters are important for the energy calibration and normalisation of the capture measurements in both the resolved and unresolved resonance region. The capture measurements are completed and were performed at a 60 m flight path. The sample consisted of a metallic natural thorium disc of 8 cm diameter and 1.0 mm thick, corresponding to a thickness of 3.176 10 -3 at/b. The neutron flux was measured with an ionisation chamber loaded with three back-to-back layers of about 40 μg/cm 2 10 B. The gamma rays, originating from the 232 Th(n,γ) reaction, were detected by four C 6 D 6 -based liquid scintillators (NE230) placed

  7. Lunar based gamma ray astronomy

    International Nuclear Information System (INIS)

    Haymes, R.C.

    1985-01-01

    Gamma ray astronomy represents the study of the universe on the basis of the electromagnetic radiation with the highest energy. Gamma ray astronomy provides a crucial tool for the understanding of astronomical phenomena, taking into account nucleosynthesis in supernovae, black holes, active galaxies, quasars, the sources of cosmic rays, neutron stars, and matter-antimatter annihilation. Difficulties concerning the conduction of studies by gamma ray astronomy are related to the necessity to perform such studies far from earth because the atmosphere is a source of gamma rays. Studies involving the use of gamma ray instruments in earth orbit have been conducted, and more gamma ray astronomy observations are planned for the future. Imperfections of studies conducted in low earth orbit could be overcome by estalishing an observatory on the moon which represents a satellite orbiting at 60 earth radii. Details concerning such an observatory are discussed. 5 references

  8. Neutron capture widths of s-wave resonances in 56Fe, 5860Ni and 27Al

    International Nuclear Information System (INIS)

    Wisshak, K.; Kaeppeler, F.; Reffo, G.; Fabbri, F.

    1982-01-01

    The neutron capture widths of s-wave resonances in 56 Fe (27.7 keV), 58 Ni (15.4 keV), 60 Ni (12.5 keV) and 27 Al (35.3 keV) have been determined, using a setup completely different from LINAC experiments. A pulsed 3 MV Van de Graaff accelerator and the 7 Li(p,n) reaction served as a neutron source. The proton energy was adjusted just above the reaction threshold to obtain a kinematically collimated neutron beam. This allowed to position the samples at a flight path as short as approx. 90 mm. Capture events were detected by three Moxon-Rae detectors with graphite, bismuth-graphite and pure bismuth converter, respectively. The measurements were performed relative to a gold standard. The setup allows to discriminate capture of scattered neutrons completely by time of flight and to use very thin samples (0.15 mm) in order to reduce multiple scattering. After correction for deviations of the detector efficiency from a linear increase with gamma-ray energy, the results obtained with different detectors agree within their remaining systematic uncertainty of approx. 5%. Only preliminary results are presented

  9. Compton Gamma-Ray Observatory

    Science.gov (United States)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  10. X-Ray-Driven Gamma Emission

    International Nuclear Information System (INIS)

    Carroll, J. J.; Karamian, S. A.; Rivlin, L. A.; Zadernovsky, A. A.

    2001-01-01

    X-ray-driven gamma emission describes processes that may release nuclear energy in a 'clean' way, as bursts of incoherent or coherent gamma rays without the production of radioactive by-products. Over the past decade, studies in this area, as a part of the larger field of quantum nucleonics, have gained tremendous momentum. Since 1987 it has been established that photons could trigger gamma emission from a long-lived metastable nuclear excited state of one nuclide and it appears likely that triggering in other isotopes will be demonstrated conclusively in the near future. With these experimental results have come new proposals for the creation of collective and avalanche-like incoherent gamma-ray bursts and even for the ultimate light source, a gamma-ray laser. Obviously, many applications would benefit from controlled bursts of gamma radiation, whether coherent or not. This paper reviews the experimental results and concepts for the production of gamma rays, driven by externally produced X-rays

  11. Excitation of multiphase waves of the nonlinear Schroedinger equation by capture into resonances

    International Nuclear Information System (INIS)

    Friedland, L.; Shagalov, A.G.

    2005-01-01

    A method for adiabatic excitation and control of multiphase (N-band) waves of the periodic nonlinear Schroedinger (NLS) equation is developed. The approach is based on capturing the system into successive resonances with external, small amplitude plane waves having slowly varying frequencies. The excitation proceeds from zero and develops in stages, as an (N+1)-band (N=0,1,2,...), growing amplitude wave is formed in the (N+1)th stage from an N-band solution excited in the preceding stage. The method is illustrated in simulations, where the excited multiphase waves are analyzed via the spectral approach of the inverse scattering transform method. The theory of excitation of 0- and 1-band NLS solutions by capture into resonances is developed on the basis of a weakly nonlinear version of Whitham's averaged variational principle. The phenomenon of thresholds on the driving amplitudes for capture into successive resonances and the stability of driven, phase-locked solutions in these cases are discussed

  12. Extragalactic Gamma-Ray Astrophysics

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    During the last decades, various classes of radio-loud active galactic nuclei have been established as sources of high-energy radiation extending over a very broad range from soft gamma-rays (photon energies E~MeV) up to very-high-energy gamma-rays (E>100 GeV). These include blazars of different types, as well as young and evolved radio galaxies. The observed gamma-ray emission from such implies efficient particle acceleration processes taking place in highly magnetized and relativistic jets produced by supermassive black holes, processes that have yet to be identified and properly understood. In addition, nearby starforming and starburst galaxies, some of which host radio-quiet Seyfert-type nuclei, have been detected in the gamma-ray range as well. In their cases, the observed gamma-ray emission is due to non-thermal activity in the interstellar medium, possibly including also a contribution from accretion disks and nuclear outflows. Finally, the high-energy emission from clusters of galaxies remains elusive...

  13. Gravitational Waves versus X and Gamma Ray Emission in a Short Gamma-Ray Burst

    OpenAIRE

    Oliveira, F. G.; Rueda, Jorge A.; Ruffini, Remo

    2012-01-01

    The recent progress in the understanding the physical nature of neutron star equilibrium configurations and the first observational evidence of a genuinely short gamma-ray burst, GRB 090227B, allows to give an estimate of the gravitational waves versus the X and Gamma-ray emission in a short gamma-ray burst.

  14. Gamma-ray sources

    International Nuclear Information System (INIS)

    Hermsen, W.

    1980-01-01

    Results are presented from an analysis of the celestial gamma-ray fine-scale structure based on over half of the data which may ultimately be available from the COS-B satellite. A catalogue consisting of 25 gamma-ray sources measured at energies above 100 MeV is presented. (Auth.)

  15. The 3D tomographic image reconstruction software for prompt-gamma measurement of the boron neutron capture therapy

    International Nuclear Information System (INIS)

    Morozov, Boris; Auterinen, Iiro; Kotiluoto, Petri; Kortesniemi, Mika

    2006-01-01

    A tomographic imaging system based on the spatial distribution measurement of the neutron capture reaction during Boron Neutron Capture Therapy (BNCT) would be very useful for clinical purpose. Using gamma-detectors in a 2D-panel, boron neutron capture and hydrogen neutron capture gamma-rays emitted by the neutron irradiated region can be detected, and an image of the neutron capture events can be reconstructed. A 3D reconstruction software package has been written to support the development of a 3D prompt-gamma tomographic system. The package consists of three independent modules: phantom generation, reconstruction and evaluation modules. The reconstruction modules are based on algebraic approach of the iterative reconstruction algorithm (ART), and on the maximum likelihood estimation method (ML-EM). In addition to that, two subsets of the ART, the simultaneous iterative reconstruction technique (SIRT) and the component averaging algorithms (CAV) have been included to the package employing parallel codes for multiprocessor architecture. All implemented algorithms use two different field functions for the reconstruction of the region. One is traditional voxel function, another is, so called, blob function, smooth spherically symmetric generalized Kaiser-Bessel function. The generation module provides the phantom and projections with background by tracing the prompt gamma-rays for a given scanner geometry. The evaluation module makes statistical comparisons between the generated and reconstructed images, and provides figure-of-merit (FOM) values for the applied reconstruction algorithms. The package has been written in C language and tested under Linux and Windows platforms. The simple graphical user interface (GUI) is used for command execution and visualization purposed. (author)

  16. Equipment for x- and gamma ray radiography

    International Nuclear Information System (INIS)

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    The following topics related to the equipment for x - and gamma ray radiography are discussed in this chapter. The topics are x-ray source for Industrial Radiography: properties of x-ray, generation of x-ray, mechanism of x-ray production, x-ray equipment, power supply, distribution of x-ray intensity along the tube: gamma ray source for Industrial Radiography: properties of gamma rays, gamma ray sources, gamma ray projectors on cameras, source changing. Care of Radiographic Equipments: Merits and Demerits of x and Gamma Rays

  17. Neutron-capture gamma-ray study of levels in 135Ba and description of nuclear levels in the interacting-boson-fermion model

    International Nuclear Information System (INIS)

    Chrien, R.E.; Koene, B.K.S.; Stelts, M.L.; Meyer, R.A.; Brant, S.; Paar, V.; Lopac, V.

    1993-01-01

    We have performed neutron-capture gamma-ray studies on natural and enriched targets of 134 Ba in order to investigate the nuclear levels of 135 Ba. The low-energy level spectra were compared with the calculations using the interacting-boson-fermion model (IBFM) and the cluster-vibration model. The level densities up to 5 MeV that are calculated within the IBFM are in accordance with the constant temperature Fermi gas model. From the spin distribution we have determined the corresponding spin cutoff parameter σ and compared it to the prediction from nuclear systematics

  18. Gamma-ray burst polarimeter (GAP)

    International Nuclear Information System (INIS)

    Mihara, Tatehiro; Murakami, Toshio; Yonetoku, Daisuke; Gunji, Shuichi; Kubo, Shin

    2013-01-01

    The gamma-ray burst polarimeter (GAP: GAmma-ray burst Polarimeter), which had been almost handcrafted by scientists, has succeeded in working normally in interplanetary space, and in detecting the polarization of the gamma-ray from a mysterious astronomical object 'gamma-ray burst'. It is the first result of the detectors in the world exclusively aiming at detecting gamma-ray polarization. We mainly describe the hardware of our GAP equipment and show the method of preparing equipment to work in the cosmic space with a tight budget. The mechanical structure, the electronic circuits, the software on the equipment, the data analysis on the earth, and the scientific results gained by the observation just over one year, are presented after explaining the principle of gamma-ray polarization detection. Our design to protect equipment against mechanical shock and cosmic radiation may provide useful information for future preparation of compact satellite. (J.P.N.)

  19. Neutron detection in a high gamma-ray background with EJ-301 and EJ-309 liquid scintillators

    International Nuclear Information System (INIS)

    Stevanato, L.; Cester, D.; Nebbia, G.; Viesti, G.

    2012-01-01

    Using a fast digitizer, the neutron–gamma discrimination capability of the new liquid scintillator EJ-309 is compared with that obtained using standard EJ-301. Moreover the capability of both the scintillation detectors to identify a weak neutron source in a high gamma-ray background is demonstrated. The probability of neutron detection is PD=95% at 95% confidence level for a gamma-ray background corresponding to a dose rate of 100 μSv/h.

  20. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Hillier, R.

    1984-01-01

    The book reviews the development of gamma ray astronomy over the past twenty five years. A large section of the book is devoted to the problems of background radiation and the design of detectors. Gamma rays from the sun, the galactic disc, the galaxy, and extra galactic sources; are also discussed. (U.K.)

  1. Monitoring the sulfur content of coal streams by thermal-neutron-capture gamma-ray analysis

    International Nuclear Information System (INIS)

    Martin, J.W.; Hall, A.W.

    1976-07-01

    A theory was developed for evaluating a complex, prompt gamma ray spectrum to serve as the basis for an instrument to monitor continuously the sulfur content of tonnage streams of coal. Equations for the energies and intensities of prompt gamma rays emitted from 13 most significant elements in coal are combined into a single equation that defines the basic electronic design of the meter. The sulfur content of up to 10 tons per hour of coal was determined in pilot plant tests with a prototype meter. The precision of 0.04 percent sulfur substantiates the validity of the theory. In subsequent industrial plant tests the precision was determined to be a comparable 0.05 percent sulfur

  2. Contraband detection using high-energy gamma rays from 16O*

    International Nuclear Information System (INIS)

    Micklich, B.J.; Fink, C.L.; Sagalovsky, L.; Smith, D.L.

    1996-01-01

    High-energy monoenergetic gamma rays (6.13 and 7.12 MeV) from the decay of excited states of the 16 O* nucleus are highly penetrating and thus offer potential for non-intrusive inspection of loaded containers for narcotics, explosives, and other contraband items. These excited states can be produced by irradiation of water with 14-MeV neutrons from a DT neutron generator or through the 19 F(p,α) 16 O* reaction. Resonances in 19 F(p,α) 16 O* at proton energies between 340 keV and 2 MeV allow use of a low-energy accelerator to provide a compact, portable gamma source of reasonable intensity. The present work provides estimates of gamma source parameters and suggests how various types of contraband could be detected. Gamma rays can be used to perform transmission or emission radiography of containers or other objects. Through the use of (γ, n) and (γ, fission) reactions, this technique is also capable of detecting special nuclear materials such as deuterium, lithium, beryllium, uranium, and plutonium. Analytic and Monte Carlo techniques are used to model empty and loaded container inspection for accelerator-produced gamma, radioisotope, and x-ray sources

  3. Space instrumentation for gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Teegarden, B.J

    1999-02-11

    The decade of the 1990s has witnessed a renaissance in the field of gamma-ray astronomy. The seminal event was the launch of the Compton Gamma-Ray Observatory (CGRO) in April 1991. There have been a flood of major discoveries from CGRO including breakthroughs in gamma-ray bursts, annihilation radiation, and blazars. The Italian SAX satellite was launched in April 1996. Although not primarily a gamma-ray mission, it has added a new dimension to our understanding of gamma-ray bursts. Along with these new discoveries a firm groundwork has been laid for missions and new technology development that should maintain a healthy and vigorous field throughout most of the next decade. These include the ESA INTEGRAL mission (INTErnational Gamma-Ray Astrophysics Laboratory, to be launched in mid-2001) and the NASA GLAST mission (Gamma-Ray Large Area Space Telescope) with a likely launch in the middle of the next decade. These two missions will extend the observational capabilities well beyond those of CGRO. New technologies (to gamma-ray astronomy), such as cooled germanium detectors, silicon strip detectors, and CdTe detectors are planned for these new missions. Additional promising new technologies such as CdZnTe strip detectors, scintillator fibers, and a gamma-ray lens for future gamma-ray astronomy missions are under development in laboratories around the world.

  4. Space instrumentation for gamma-ray astronomy

    International Nuclear Information System (INIS)

    Teegarden, B.J.

    1999-01-01

    The decade of the 1990s has witnessed a renaissance in the field of gamma-ray astronomy. The seminal event was the launch of the Compton Gamma-Ray Observatory (CGRO) in April 1991. There have been a flood of major discoveries from CGRO including breakthroughs in gamma-ray bursts, annihilation radiation, and blazars. The Italian SAX satellite was launched in April 1996. Although not primarily a gamma-ray mission, it has added a new dimension to our understanding of gamma-ray bursts. Along with these new discoveries a firm groundwork has been laid for missions and new technology development that should maintain a healthy and vigorous field throughout most of the next decade. These include the ESA INTEGRAL mission (INTErnational Gamma-Ray Astrophysics Laboratory, to be launched in mid-2001) and the NASA GLAST mission (Gamma-Ray Large Area Space Telescope) with a likely launch in the middle of the next decade. These two missions will extend the observational capabilities well beyond those of CGRO. New technologies (to gamma-ray astronomy), such as cooled germanium detectors, silicon strip detectors, and CdTe detectors are planned for these new missions. Additional promising new technologies such as CdZnTe strip detectors, scintillator fibers, and a gamma-ray lens for future gamma-ray astronomy missions are under development in laboratories around the world

  5. Capture reactions at astrophysically relevant energies: extended gas target experiments and GEANT simulations

    CERN Document Server

    Kölle, V; Braitmayer, S E; Mohr, P J; Wilmes, S; Staudt, G; Hammer, J W; Jäger, M; Knee, H; Kunz, R; Mayer, A

    1999-01-01

    Several resonances of the capture reaction sup 2 sup 0 Ne(alpha, gamma) sup 2 sup 4 Mg were measured using an extended windowless gas target system. Detailed GEANT simulations were performed to derive the strength and the total width of the resonances from the measured yield curve. The crucial experimental parameters, which are mainly the density profile in the gas target and the efficiency of the gamma-ray detector, were analyzed by a comparison between the measured data and the corresponding simulation calculations. The excellent agreement between the experimental data and the simulations gives detailed insight into these parameters. (author)

  6. Energy–angle correlation of neutrons and gamma-rays emitted from an HEU source

    Energy Technology Data Exchange (ETDEWEB)

    Miloshevsky, G., E-mail: gennady@purdue.edu; Hassanein, A.

    2014-06-01

    Special Nuclear Materials (SNM) yield very unique fission signatures, namely correlated neutrons and gamma-rays. A major challenge is not only to detect, but also to rapidly identify and recognize SNM with certainty. Accounting for particle multiplicity and correlations is one of standard ways to detect SNM. However, many parameter data such as joint distributions of energy, angle, lifetime, and multiplicity of neutrons and gamma-rays can lead to better recognition of SNM signatures in the background radiation noise. These joint distributions are not well understood. The Monte Carlo simulations of the transport of neutrons and gamma-rays produced from spontaneous and interrogation-induced fission of SNM are carried out using the developed MONSOL computer code. The energy spectra of neutrons and gamma-rays from a bare Highly Enriched Uranium (HEU) source are investigated. The energy spectrum of gamma-rays shows spectral lines by which HEU isotopes can be identified, while those of neutrons do not show any characteristic lines. The joint probability density function (JPDF) of the energy–angle association of neutrons and gamma-rays is constructed. Marginal probability density functions (MPDFs) of energy and angle are derived from JPDF. A probabilistic model is developed for the analysis of JPDF and MPDFs. This probabilistic model is used to evaluate mean values, standard deviations, covariance and correlation between the energy and angle of neutrons and gamma-rays emitted from the HEU source. For both neutrons and gamma-rays, it is found that the energy–angle variables are only weakly correlated.

  7. Orbital Normalization of MESSENGER Gamma-Ray Spectrometer Data

    Science.gov (United States)

    Rhodes, E. A.; Peplowski, P. N.; Evans, L. G.; Hamara, D. K.; Boynton, W. V.; Solomon, S. C.

    2011-12-01

    The MESSENGER Gamma-Ray Spectrometer (GRS) measures energy spectra of gamma rays emanating from the surface of Mercury. Analysis of these spectra provides elemental abundances of surface material. The MESSENGER mission necessarily provides some data normalization challenges for GRS analysis. So as to keep the spacecraft cool while orbiting the dayside of the planet, the orbits are highly eccentric, with altitudes varying from 200-500 km to ~ 15,000 km. A small fraction of time is spent at the low altitudes where gamma-ray signals are largest, requiring a large number of orbits to yield sufficient counting statistics for elemental analysis. Also, the sunshade must always shield the spacecraft from the Sun, which causes the orientation of the GRS often to be far from nadir-pointing, so the detector efficiency and attenuation of gamma rays from the planet must be known for a wide range of off-nadir orientations. An efficiency/attenuation map for the expected ranges of orientations and energies was constructed in a ground calibration experiment for a limited range of orientations using a nuclear reactor and radioisotope sources, and those results were extended to other orientations by radiation transport computations using as input a computer-aided design model of the spacecraft and its composition. This normalization has allowed abundance determinations of elements K, Th, and U from radioisotopes of these elements in the Mercury regolith during the first quarter of the year-long mission. These results provide constraints on models of Mercury's chemical and thermal evolution. The normalization of gamma-ray spectra for surface elements not having radioisotopes is considerably more complex; these gamma rays come from neutron inelastic-scatter and capture reactions in the regolith, where the neutrons are generated by cosmic ray impact onto the planet. A radiation transport computation was performed to generate the expected count rates in the neutron-generated gamma-ray

  8. Low-energy resonances in sup 25 Mg(p,. gamma. ) sup 26 Al, sup 26 Mg(p,. gamma. ) sup 27 Al and sup 27 Al(p,. gamma. ) sup 28 Si

    Energy Technology Data Exchange (ETDEWEB)

    Iliadis, C; Schange, T; Rolfs, C; Schroeder, U; Somorjai, E; Trautvetter, H P; Wolke, K [Muenster Univ. (Germany, F.R.). Inst. fuer Kernphysik; Endt, P M; Kikstra, S W [Rijksuniversiteit Utrecht (Netherlands). Robert van de Graaff Lab.; Champagne, A E [Princeton Univ., NJ (USA). Dept. of Physics; Arnould, M; Paulus, G [Universite Libre de Bruxelles (Belgium). Inst. d' Astronomie et d' Astrophysique

    1990-06-11

    Gamma-ray decay schemes have been measured with bare and Compton-suppressed Ge detectors at low-energy resonances (E{sub p}<340 keV) in the (p, {gamma}) reactions on {sup 25}Mg, {sup 26}Mg and {sup 27}Al. Althogether 58 new decay branches have been observed and a new {sup 26}Mg(p, {gamma}){sup 27}Al resonance has been found at E{sub p}=154.5{plus minus}1.0 keV. The new branchings lead to J{sup {pi}}; T determinations (or limitations) for two states in {sup 26}Al and four states in {sup 28}Si. The absolute strengths of the {sup 25}Mg(p, {gamma}){sup 26}Al and {sup 26}Mg(p, {gamma}){sup 27}Al resonances have also been obtained, and the uncertainties of the stellar rates, deduced from the available data for both reactions, are significantly reduced. Some astrophysical consequences are discussed. (orig.).

  9. Apparatus for gamma ray radiography

    International Nuclear Information System (INIS)

    Kobayashi, Masatoshi; Enomoto, Shigemasa; Oga, Hiroshi

    1979-01-01

    This is the standard of Japan Non-Destructive Inspection Society, NDIS 1101-79, which stipulates on the design, construction and testing method of the apparatuses for gamma ray radiography used for taking industrial radiograms. The gamma ray apparatuses stipulated in this standard are those containing sealed radioactive isotopes exceeding 100 μCi, which emit gamma ray. The gamma ray apparatuses are classified into three groups according to their movability. The general design conditions, the irradiation dose rate and the sealed radiation sources for the gamma ray apparatuses are stipulated. The construction of the gamma ray apparatuses must be in accordance with the notification No. 52 of the Ministry of Labor, and safety devices and collimators must be equipped. The main bodies of the gamma ray apparatuses must pass the vibration test, penetration test, impact test and shielding efficiency test. The method of each test is described. The attached equipments must be also tested. The tests according to this standard are carried out by the makers of the apparatuses. The test records must be made when the apparatuses have passed the tests, and the test certificates are attached. The limit of guarantee by the endurance test must be clearly shown. The items to be shown on the apparatuses are stipulated. (Kako, I.)

  10. Polarized proton capture reaction /sup 7/Li(p,. gamma. )/sup 8/Be in the energy range from 380 to 960 keV

    Energy Technology Data Exchange (ETDEWEB)

    Ulbricht, J; Arnold, W; Berg, H; Huttel, E; Krause, H H; Clausnitzer, G [Giessen Univ. (Germany, F.R.). Abt. Grossgeraete (Angewandte Kernphysik)

    1977-09-05

    The polarized proton capture in /sup 7/Li was used to study the reaction mechanism and to obtain spectroscopic information on the /sup 8/Be nucleus. Gamma-ray angular distributions of the analyzing power were measured as a function of proton energy from Esub(p) = 380-960 keV with three Ge(Li) detectors simultaneously. The excitation functions of the cross section and the analyzing power are strongly energy dependent. The data were analyzed unambiguously and represented by three R-matrix elements, two M1 and one E1. The energy dependence of the two M1 matrix elements agrees with the well-known two 1/sup +/ resonances at Esub(x) = 17.642 and 18.157 MeV. The energy dependence of the E1 matrix element shows a smooth background presumably caused by a direct-capture mechanism, and furthermore, a resonant contribution, which is a significant suggestion of a new 1/sup -/ state in the /sup 8/Be system at Esub(x) = 17.70 MeV with a width of GAMMAsub(p) = 180 keV.

  11. Buildup factor and mechanical properties of high-density cement mixed with crumb rubber and prompt gamma ray study

    Science.gov (United States)

    Aim-O, P.; Wongsawaeng, D.; Tancharakorn, S.; Sophon, M.

    2017-09-01

    High-density cement mixed with crumb rubber has been studied to be a gamma ray and neutron shielding material, especially for photonuclear reactions that may occur from accelerators where both types of radiation exist. The Buildup factors from gamma ray scattering, prompt and secondary gamma ray emissions from neutron capture and mechanical properties were evaluated. For buildup factor studies, two different geometries were used: narrow beam and broad beam. Prompt Gamma Neutron Activation Analysis (PGNAA) was carried out to determine the prompt and secondary gamma ray emissions. The compressive strength of samples was evaluated by using compression testing machine which was central point loading crushing test. The results revealed that addition of crumb rubber increased the buildup factor. Gamma ray spectra following PGNAA revealed no prompt or secondary gamma ray emission. Mechanical testing indicated that the compressive strength of the shielding material decreased with increasing volume percentage of crumb rubber.

  12. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Broomhead, Laurent.

    1980-01-01

    The nuclear gamma astronomy is presented, in particular the Gamma Ray Observatory, an enormous eight tonnes machine fitted with gamma telescopes, scheduled for launching around 1985. It is thereby hoped to study the natural nuclear reactions which occur when stars explode [fr

  13. Design of a {gamma}-ray analysis system for determination of boron in a patient`s head, during neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Verbakel, W.F.A.R.

    1997-12-01

    Boron Neutron Capture Therapy (BNCT) is a new radiation therapy in which thermal neutron capture by {sup 10}B is used for the selective destruction of a cancer tumour. At the High Flux Reactor (HFR) in Petten, Netherlands, a therapy facility is built for the neutron irradiations. In first instance, patients with a brain tumour will be treated. The doses delivered to the tumour and to the healthy tissue depend on the thermal neutron fluence and on the boron concentrations in these regions. Yet, both concentrations change in time after the administration of the tumour-seeking boron compound. An accurate determination of the patient`s dose requires the knowledge of these time dependent concentrations during the therapy. For this reason, a {gamma}-ray telescope system, together with a reconstruction tool, are developed. Two HPGe-detectors measure the 478 keV prompt {gamma}-rays which are emitted at the boron neutron capture reaction, in a large background of {gamma}-rays and neutrons. By using the detectors in a telescope configuration, only {gamma}-rays emitted by a small specific region are detected. The best shielding of the detectors is obtained by performing the measurements through a small hole in the iron roof. A reconstruction tool is developed to calculate absolute boron concentrations using the measured boron {gamma}-ray detection rates. Besides the boron {gamma}-rays, a large component of 2.2 MeV {gamma}-rays emitted at thermal neutron capture in hydrogen is measured. Since the hydrogen distribution is almost homogeneous over the head, this component can serve as a measure of the total number of thermal neutrons in the observed volume. By using the hydrogen {gamma}-line for normalisation of the boron concentration, the reconstruction tool eliminates the greater part of the influence of the inhomogeneity of the thermal neutron distribution. MCNP calculations are used as a tool for the optimisation of the detector configuration. Experiments on a head phantom

  14. Cosmic gamma-ray burst

    International Nuclear Information System (INIS)

    Yamagami, Takamasa

    1985-01-01

    Ballon experiments for searching gamma-ray burst were carried out by employing rotating-cross modulation collimators. From a very long observation of total 315 hours during 1975 to 1979, three gamma-ray intensity anomalies were observed which were speculated as a gamma-ray burst. As for the first gamma-ray intensity anomaly observed in 1975, the burst source could be located precisely but the source, heavenly body, could not be specified. Gamma-ray burst source estimation was made by analyzing distribution of burst source in the celestial sphere, burst size distribution, and burst peak. Using the above-mentioned data together with previously published ones, apparent inconsistency was found between the observed results and the adopted theory that the source was in the Galaxy, and this inconsistency was found due to the different time profiles of the burst observed with instruments of different efficiency. It was concluded by these analysis results that employment of logN - logP (relation between burst frequency and burst count) was better than that of logN - logS (burst size) in the examination of gamma-ray burst because the former was less uncertain than the latter. Analyzing the author's observed gamma-ray burst data and the related published data, it was clarified that the burst distribution was almost P -312 for the burst peak value larger than 10 -6 erg/cm 2 .sec. The author could indicate that the calculated celestial distribution of burst source was consistent with the observed results by the derivation using the logN - logP relationship and that the burst larger than 10 -6 erg/cm 2 .sec happens about one thousand times a year, about ten times of the previous value. (Takagi, S.)

  15. Gamma-Ray Astronomy Technology Needs

    Science.gov (United States)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  16. GRAP, Gamma-Ray Level-Scheme Assignment

    International Nuclear Information System (INIS)

    Franklyn, C.B.

    2002-01-01

    1 - Description of program or function: An interactive program for allocating gamma-rays to an energy level scheme. Procedure allows for searching for new candidate levels of the form: 1) L1 + G(A) + G(B) = L2; 2) G(A) + G(B) = G(C); 3) G(A) + G(B) = C (C is a user defined number); 4) L1 + G(A) + G(B) + G(C) = L2. Procedure indicates intensity balance of feed and decay of each energy level. Provides for optimization of a level energy (and associated error). Overall procedure allows for pre-defining of certain gamma-rays as belonging to particular regions of the level scheme, for example, high energy transition levels, or due to beta- decay. 2 - Method of solution: Search for cases in which the energy difference between two energy levels is equal to a gamma-ray energy within user-defined limits. 3 - Restrictions on the complexity of the problem: Maximum number of gamma-rays: 999; Maximum gamma ray energy: 32000 units; Minimum gamma ray energy: 10 units; Maximum gamma-ray intensity: 32000 units; Minimum gamma-ray intensity: 0.001 units; Maximum number of levels: 255; Maximum level energy: 32000 units; Minimum level energy: 10 units; Maximum error on energy, intensity: 32 units; Minimum error on energy, intensity: 0.001 units; Maximum number of combinations: 6400 (ca); Maximum number of gamma-ray types : 127

  17. Observation of solar gamma-ray by Hinotori

    International Nuclear Information System (INIS)

    Yoshimori, Masato; Okudaira, Kiyoaki; Hirashima, Yo; Kondo, Ichiro.

    1982-01-01

    The solar gamma-ray emitted by solar flare was observed. The gamma-ray is the electromagnetic radiation with the energy more than 300 keV. The line gamma-ray intensity and the time profile were observed. The gamma-ray detector CsI (Tl) was loaded on Hinotori, and the observed gamma-ray was analyzed by a multi-channel analyzer. The observed line gamma-ray was the radiation from Fe-56 and Ne-20. The line gamma-ray from C-12 and O-16 was also seen. These gamma-ray is the direct evidence of the nuclear reaction on the sun. The observed spectrum suggested the existence of the lines from Mg-24 and Si-28. The intensity of the 2.22 MeV gamma-line was small. This fact showed that the origin of this line was different from other nuclear gamma-ray. Two kinds of hard X-ray bursts were detected. The one was impulsive burst, and the other was gradual burst. There was no time difference between the hard X-ray and the gamma-ray of the impulsive burst. The impulsive burst may be explained by the beam model. The delay of time profile in the high energy gamma-ray of the gradual burst was observed. This means that the time when accelerated electrons cause bremsstrahlung depends on the electron energy. The long trapping of electrons at the top of magnetic loop is suggested. (Kato, T.)

  18. Simulation of Neutron-Induced Prompt Gamma-ray Spectra Emitted from Fake Tungsten Gold Bar

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. M.; Sum, G. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Fake gold bars on the market cannot be identified easily without testing because they have the same appearance as a pure gold bar. A non-destructive monitoring method is needed to avoid the trading of fake gold bars on the market. The ultimate goal of this study is to find a fake gold bar detection method using a PGAA (Prompt Gamma Activation Analysis). Using existing data, the number of neutron capture for gold and tungsten in fake tungsten gold bar was calculated and a Monte Carlo simulation for the prompt neutron-induced gamma-ray spectra was conducted. A simulation for neutron-induced prompt gamma-rays spectra when a neutron beam is irradiated onto pure and fake gold bars was successfully conducted. Through a comparison between the prompt gamma-ray spectra of the pure gold bar and those of the fake gold bar, it was concluded that the observation of prompt high-energy gamma-rays from tungsten or a reduction of prompt gamma-rays from gold can be evidence of a fake gold bar. The possibility for detecting a fake gold bar using a PGAA facility was verified.

  19. Simulation of Neutron-Induced Prompt Gamma-ray Spectra Emitted from Fake Tungsten Gold Bar

    International Nuclear Information System (INIS)

    Lee, K. M.; Sum, G. M.

    2016-01-01

    Fake gold bars on the market cannot be identified easily without testing because they have the same appearance as a pure gold bar. A non-destructive monitoring method is needed to avoid the trading of fake gold bars on the market. The ultimate goal of this study is to find a fake gold bar detection method using a PGAA (Prompt Gamma Activation Analysis). Using existing data, the number of neutron capture for gold and tungsten in fake tungsten gold bar was calculated and a Monte Carlo simulation for the prompt neutron-induced gamma-ray spectra was conducted. A simulation for neutron-induced prompt gamma-rays spectra when a neutron beam is irradiated onto pure and fake gold bars was successfully conducted. Through a comparison between the prompt gamma-ray spectra of the pure gold bar and those of the fake gold bar, it was concluded that the observation of prompt high-energy gamma-rays from tungsten or a reduction of prompt gamma-rays from gold can be evidence of a fake gold bar. The possibility for detecting a fake gold bar using a PGAA facility was verified

  20. Highlights of GeV Gamma-Ray Astronomy

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  1. Localization of Gamma-Ray Bursts Using the Fermi Gamma-Ray Burst Monitor

    NARCIS (Netherlands)

    Connaughton, V.; Briggs, M.S.; Goldstein, A.; Meegan, C.A.; Paciesas, W.S.; Preece, R.D.; Wilson-Hodge, C.A.; Gibby, M.H.; Greiner, J.; Gruber, D.; Jenke, P.; Kippen, R.M.; Pelassa, V.; Xiong, S.; Yu, H-F.; Bhat, P.N.; Burgess, J.M.; Byrne, D.; Fitzpatrick, G.; Foley, S.; Giles, M.M.; Guiriec, S.; van der Horst, A.J.; von Kienlin, A.; McBreen, S.; McGlynn, S.; Tierney, D.; Zhang, B..B.

    2015-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the

  2. Gamma-Ray Lenses for Astrophysics-and the Gamma-Ray Imager Mission GRI

    DEFF Research Database (Denmark)

    Wunderer, C. B.; Ballmoos, P. V.; Barriere, N.

    2009-01-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are acc...

  3. Gamma ray astronomy with COS-B

    International Nuclear Information System (INIS)

    Swanenburg, B.N.

    1981-01-01

    Observational results in the field of gamma-ray astronomy that have been obtained to date with the COS-B satellite are discussed and questions raised by these observations are summarized. Following a brief review of the instrumental characteristics of COS-B and the extent of COS-B gamma-ray coverage of the sky, particular attention is given to the questions raised by the discovery of many unidentified gamma-ray sources with no apparent optical, X-ray or radio counterparts and the detection of high-energy gamma radiation from the quasar 3C 273, which suggests the role of gamma-ray emission in the creation of other radiation

  4. Inverse Compton gamma-rays from pulsars

    International Nuclear Information System (INIS)

    Morini, M.

    1983-01-01

    A model is proposed for pulsar optical and gamma-ray emission where relativistic electrons beams: (i) scatter the blackbody photons from the polar cap surface giving inverse Compton gamma-rays and (ii) produce synchrotron optical photons in the light cylinder region which are then inverse Compton scattered giving other gamma-rays. The model is applied to the Vela pulsar, explaining the first gamma-ray pulse by inverse Compton scattering of synchrotron photons near the light cylinder and the second gamma-ray pulse partly by inverse Compton scattering of synchrotron photons and partly by inverse Compton scattering of the thermal blackbody photons near the star surface. (author)

  5. Planetary gamma-ray spectroscopy: the effects of hydrogen absorption cross-section of the gamma-ray spectrum

    International Nuclear Information System (INIS)

    Lapides, J.R.

    1981-01-01

    The gamma-ray spectroscopy of planet surfaces is one of several possible methods that are useful in determining the elemental composition of planet surfaces from orbiting spacecraft. This has been demonstrated on the Apollos 15 and 16 missions as well as the Soviet Mars-5 mission. Planetary gamma-ray emission is primarily the result of natural radioactive decay and cosmic-ray and solar-flare-induced nuclear reactions. Secondary neutron reactions play a large role in the more intense gamma-ray emission. The technique provides information on the elemental composition of the top few tens of centimeters of the planet surface. Varying concentrations of hydrogen and compositional variations that alter the macroscopic thermal-neutron absorption cross section have a significant effect on the neutron flux in the planet surface and therefore also on the gamma-ray emission from the surface. These effects have been systematically studied for a wide range of possible planetary compositions that include Mercury, the moon, Mars, the comets, and the asteroids. The problem of the Martian atmosphere was also investigated. The results of these calculations, in which both surface neutron fluxes and gamma-ray emission fluxes were determined, were used to develop general procedures for obtaining planet compositions from the gamma-ray spectrum. Several changes have been suggested for reanalyzing the Apollos 15 and 16 gamma-ray results. In addition, procedures have been suggested that can be applied to neutron-gamma techniques in mineral and oil exploration

  6. Neutron capture resonances in 56Fe and 58Fe in the energy range from 10 to 100 keV

    International Nuclear Information System (INIS)

    Kaeppeler, F.; Wisshak, K.; Hong, L.D.

    1982-11-01

    The neutron capture cross section of 56 Fe and 58 Fe has been measured in the energy range from 10 to 250 keV relative to the gold standard. A pulsed 3 MV Van de Graaff accelerator and the 7 Li(p, n) reaction served as a neutron source. Capture gamma rays were detected by two C 6 D 6 detectors, which were operated in coincidence and anticoincidence mode. Two-dimensional data acquisition allowed to apply the pulse height weighting technique off-line. The samples were located at a flight path of 60 cm. The total time resolution was 1.2 ns thus allowing for an energy resolution of 2 ns/m. The experimental set-up was optimized with respect to low background and low neutron sensitivity. The additional flight path of 4 cm from the sample to the detector was sufficient to discriminate capture of sample scattered neutrons by the additional time of flight. In this way reliable results were obtained even for the strong s-wave resonances of both isotopes. The experimental capture yield was analyzed with the FANAC code. The energy resolution allowed to extract resonance parameters in the energy range from 10 to 100 keV. The individual systematic uncertainties of the experimental method are discussed in detail. They were found to range between 5 and 10% while the statistical uncertainty is 3-5% for most of the resonances. A comparison to the results of other authors exhibits in case of 56 Fe systematic differences of 7-11%. For 58 Fe the present results differ up to 50% from the only other measurement for this isotope. (orig.) [de

  7. Gamma Ray Bursts-Afterglows and Counterparts

    Science.gov (United States)

    Fishman, Gerald J

    1998-01-01

    Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.

  8. About cosmic gamma ray lines

    Science.gov (United States)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  9. Measurement of gamma-ray multiplicity spectra and the alpha value for {sup 235}U resonances

    Energy Technology Data Exchange (ETDEWEB)

    Grigor` ev, Yu V [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Georgiev, G P; Stanchik, Kh [Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1997-06-01

    Gamma spectra from 1 to 12 multiplicity were measured on th 500 m flight path of the IBR-30 reactor using a 16-section 32 L NaI(Tl) crystal scintillation detector able to hold 2 metallic samples of 90% {sup 235}U and 10% {sup 238}U 0.00137 atoms/b and 0.00411 atoms/b thick. Multiplicity spectra were obtained for resolved resonances in the E = 1-150 eV energy region. They were used to determine the value of {alpha} = {sigma}{sub {gamma}}/{sigma}{sub f} for 165 resonances of {sup 235}U. (author). 6 refs, 7 figs, 1 tab.

  10. Lunar occultations for gamma-ray source measurements

    Science.gov (United States)

    Koch, David G.; Hughes, E. B.; Nolan, Patrick L.

    1990-01-01

    The unambiguous association of discrete gamma-ray sources with objects radiating at other wavelengths, the separation of discrete sources from the extended emission within the Galaxy, the mapping of gamma-ray emission from nearby galaxies and the measurement of structure within a discrete source cannot presently be accomplished at gamma-ray energies. In the past, the detection processes used in high-energy gamma-ray astronomy have not allowed for good angular resolution. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For purposes of discussion, this concept is examined for gamma rays above 100 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  11. Future prospects for. gamma. -ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Fichtel, C [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center

    1981-06-30

    As ..gamma..-ray astronomy moves from the discovery to the exploratory phase, the promise of ..gamma..-ray astrophysics noted by theorists in the late 1940s and 1950s is beginning to be realized. In the future, satellites should carry instruments that will have over an order of magnitude greater sensitivity than those flown thus far, and, for at least some portions of the ..gamma..-ray energy range, these detectors will also have substantially improved energy and angular resolution. The information to be obtained from these experiments should greatly enhance our knowledge of several astrophysical phenomena including the very energetic and nuclear processes associated with compact objects, astrophysical nucleosynthesis, solar particle acceleration, the chemical composition of the planets and other bodies of the Solar System, the structure of our Galaxy, the origin and dynamic pressure effects of the cosmic rays, high energy particles and energetic processes in other galaxies especially active ones, and the degree of matter-antimatter symmetry of the Universe. The ..gamma..-ray results of the forthcoming programs such as Gamma-I, the Gamma Ray Observatory, the ..gamma..-ray burst network, Solar Polar, and very high energy ..gamma..-ray telescopes on the ground will almost certainly provide justification for more sophisticated telescopes. These advanced instruments might be placed on the Space Platform currently under study by N.A.S.A.

  12. Radio Observations of Gamma-ray Novae

    Science.gov (United States)

    Linford, Justin D.; Chomiuk, L.; Ribeiro, V.; project, E.-Nova

    2014-01-01

    Recent detection of gamma-ray emission from classical novae by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope surprised many in the astronomical community. We present results from radio observations, obtained using the Karl G. Jansky Very Large Array (VLA), of three gamma-ray novae: Mon2012, Sco2012, and Del2013. Radio observations allow for the calculation of ejecta masses, place limits on the distances, and provide information about the gamma-ray emission mechanism for these sources.

  13. The Gamma-Ray Imager GRI

    Science.gov (United States)

    Wunderer, Cornelia B.; GRI Collaboration

    2008-03-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. ESA's INTEGRAL observatory currently provides the astronomical community with a unique tool to investigate the sky up to MeV energies and hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes have been discovered. NASA's GLAST mission will similarly take the next step in surveying the high-energy ( GeV) sky, and NuSTAR will pioneer focusing observations at hard X-ray energies (to 80 keV). There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  14. Observation of gamma-ray bursts with GINGA

    International Nuclear Information System (INIS)

    Murakami, Toshio; Fujii, Masami; Nishimura, Jun

    1989-01-01

    Gamma-ray Burst Detector System (GBD) on board the scientific satellite 'GINGA' which was launched on Feb. 5, 1987, was realized as an international cooperation between ISAS and LANL. It has recorded more than 40 Gamma-Ray Burst candidates during 20 months observation. Although many observational evidences were accumulated in past 20 years after the discovery of gamma-ray burst by LANL scientists, there are not enough evidence to determine the origin and the production mechanism of the gamma-ray burst. GBD consists of a proportional counter and a NaI scintillation counter so that it became possible to observe energy spectrum of the gamma-ray burst with high energy resolution over wide range of energy (1.5-380 keV) together with high time resolution. As the result of observation, the following facts are obtained: (1) A large fraction of observed gamma-ray bursts has a long X-ray tail after the harder part of gamma-ray emission has terminated. (2) Clear spectral absorption features with harmonic in energy was observed in some of the energy spectrum of gamma-ray bursts. These evidences support the hypothesis that the strongly magnetized neutron star is the origin of gamma-ray burst. (author)

  15. Determination of the neutron resonance parameters for 206Pb and of the thermal neutron capture cross section for 206Pb and 209Bi

    International Nuclear Information System (INIS)

    Borella, A.

    2005-01-01

    Chapter 1 describes the motivation of the measurements (accelerator driven systems, stellar nucleosynthesis, neutron induced reactions on 206 Pb), the present status of the neutron capture data for 206 Pb and 209 Bi and the structure of this work. In Chapter 2 the basic reaction theory underlying this work is described. The neutron induced reaction mechanism and formalism are explained. The parameterisation of the cross section in terms of R-matrix theory is discussed and we put particular emphasis on the statistical behaviour of the resonance parameters and the impact of the angular distribution of gamma rays following neutron capture. The relation between experimental observables and the resonance parameters is discussed together with general comments related to resonance shape analysis. Chapter 3 is focused on the determination of resonance parameters for 206 Pb. We performed high-resolution transmission and capture measurements at the Time-Of-Flight (TOF) facility GELINA of the IRMM at Geel (B) and determined the resonance parameters. For nuclei like 206 Pb, where the total width is dominated by Γ n , the capture area allows to determine G . Transmission measurements were carried out to determine Γ n , and the statistical factor g of resonances. Before performing a Resonance Shape Analysis (RSA) on the transmission and capture data, we verified the neutron flux and resolution at GELINA. We also compared the characteristics of GELINA with those of the n-TOF facility at CERN. A special emphasis is placed on the total energy detection technique using C 6 D 6 detectors. This technique was applied for the determination of the capture cross section. To reduce systematic bias effects on the capture cross section, the response of the detectors was determined by Monte Carlo simulations, which has been validated by experiments. Using these response functions the partial capture cross sections for individual resonances of 206 Pb have been deduced, by unfolding the

  16. Gamma ray astronomy from satellites and balloons

    International Nuclear Information System (INIS)

    Schoenfelder, V.

    1986-01-01

    A survey is given of gamma ray astronomy topics presented at the Cosmic Ray Conference. The major conclusions at the Cosmic Ray Conference in the field of gamma ray astronomy are given. (1) MeV-emission of gamma-ray bursts is a common feature. Variations in duration and energy spectra from burst to burst may explain the discrepancy between the measured log N - log S dependence and the observed isotropy of bursts. (2) The gamma-ray line at 1.809 MeV from Al(26) is the first detected line from a radioactive nucleosynthesis product. In order to understand its origin it will be necessary to measure its longitude distribution in the Milky Way. (3) The indications of a gamma-ray excess found from the direction of Loop I is consistent with the picture that the bulk of cosmic rays below 100 GeV is produced in galactic supernova remnants. (4) The interpretation of the large scale distribution of gamma rays in the Milky Way is controversial. At present an extragalactic origin of the cosmic ray nuclei in the GeV-range cannot be excluded from the gamma ray data. (5) The detection of MeV-emission from Cen A is a promising step towards the interesting field of extragalactic gamma ray astronomy

  17. Multi-parameter study of gammas capture

    International Nuclear Information System (INIS)

    Samama, R.; Nifenecker, H.; Carlos, P.; Delaitre, B.

    1966-06-01

    This equipment is intended for analyzing, recording, and reading simultaneous information from several 'gamma' detectors. It allows multiparameter study of γ-γ cascades emitted after thermal neutrons capture. (authors) [fr

  18. Measurements of neutron capture cross sections

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1984-01-01

    A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238 U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)

  19. NEW FERMI-LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Tinivella, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Chekhtman, A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Cohen-Tanugi, J. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, F-34095 Montpellier (France); Drlica-Wagner, A.; Omodei, N.; Rochester, L. S.; Usher, T. L. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra' anana 43537 (Israel); Longo, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Razzaque, S. [Department of Physics, University of Johannesburg, Auckland Park 2006 (South Africa); Zimmer, S., E-mail: melissa.pesce.rollins@pi.infn.it, E-mail: nicola.omodei@stanford.edu, E-mail: granot@openu.ac.il [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

    2013-09-01

    Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy ({approx}147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

  20. X-ray and gamma radiography devices

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    When we are using this technique, we also must familiar with the device and instrument that used such as gamma projector, crawler, x-ray tubes and others. So this chapter discussed detailed on device used for radiography work. For the x-ray and gamma, their characteristics are same but the source to produce is a big different. X-ray produced from the machine meanwhile, gamma produce from the source such as Co-60 and IR-192. Both are electromagnetic waves. So, the reader can have some knowledge on what is x-ray tube, discrete x-ray and characteristic x-ray, how the machine works and how to control a machine, what is source for gamma emitter, how to handle the projector and lastly difference between x-ray and gamma. Of course this cannot be with the theory only, so detailed must be learned practically.

  1. Pulsed Gamma-Rays From PSR J2021 3651 with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    Abdo, Aous A.; Ackermann, M.; Ajello, Marco; Atwood, William B.; Baldini, L.; Ballet, J.; Barbiellini, Guido; Bastieri, Denis; Battelino, Milan; Baughman, B.M.; Bechtol, K.; Bellazzini, Ronaldo; Berenji, Bijan; Bloom, Elliott D.; Bogaert, G.; Borgland, Anders W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, Thompson H.

    2009-01-01

    We report the detection of pulsed gamma-rays from the young, spin-powered radio pulsar PSR J2021+3651 using data acquired with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The light curve consists of two narrow peaks of similar amplitude separated by 0.468 ± 0.002 in phase. The first peak lags the maximum of the 2 GHz radio pulse by 0.162 ± 0.004 ± 0.01 in phase. The integral gamma-ray photon flux above 100 MeV is (56 ± 3 ± 11) x 10 -8 cm -2 s -1 . The photon spectrum is well-described by an exponentially cut-off power law of the form dF/dE = kE -# Gamma#e (-E/E c ) where the energy E is expressed in GeV. The photon index is Γ = 1.5 ± 0.1 ± 0.1 and the exponential cut-off is E c = 2.4 ± 0.3 ± 0.5 GeV. The first uncertainty is statistical and the second is systematic. The integral photon flux of the bridge is approximately 10% of the pulsed emission, and the upper limit on off-pulse gamma-ray emission from a putative pulsar wind nebula is -2 but a poorly constrained magnetic geometry. Re-analysis of Chandra data enhanced the significance of the weak X-ray pulsations, and the first peak is roughly phase-aligned with the first gamma-ray peak. We discuss the emission region and beaming geometry based on the shape and spectrum of the gamma-ray light curve combined with radio and X-ray measurements, and the implications for the pulsar distance. Gamma-ray emission from the polar cap region seems unlikely for this pulsar.

  2. Phenomenology of Dark Matter from radio to gamma ray frequencies

    International Nuclear Information System (INIS)

    Vollmann, Martin

    2015-07-01

    Multiwavelength astronomical observations have been proven to be of crucial relevance in understanding the most fundamental questions in physics. One of the biggest mysteries of nature is the existence of a (still) unidentified type of matter that makes up most of the material universe. Although little is known about its nature, it is very likely that this exotic Dark Matter (DM) is made of so-called Weakly Interacting Massive Particles (WIMPs). In this thesis we investigate which strategies can best address the fundamental question: What is Dark Matter? Specifically, by following the ''WIMP'' paradigm as our guiding principle, we comprehensively discuss the phenomenology of prospective ''indirect'' detection scenarios of such WIMPs. Special consideration is given to extraterrestrial gamma rays and radio waves produced around the center of the Milky Way. In light of two recently highly debated claims of WIMP Dark Matter discovery, namely the 130 GeV gamma-ray line and the GeV gamma-ray excess, we invoke our methods to confront those hypotheses. In addition our study contains antiparticle cosmic-ray (antiproton and positron) data analyses. The phenomenology for indirect DM detection with these ''messengers'' is briefly discussed as well. By exploiting the high degree of symmetry of typical annihilating 2-WIMP initial states, we are able to employ a very powerful tool in theoretical particle physics: the generalized optical theorem. This theorem relates the amplitude of loop-suppressed processes, such as the 130 GeV line if interpreted as product of WIMP annihilations, with tree-level process which are constrained in the same way as with the GeV excess. Unprecedentedly reported analytical computations of partial-wave (and helicity) cross sections with general applicability are calculated and applied. The possibility that a non-trivial effect in the particle model for DM might enhance the strength of a gamma-ray

  3. Processing of gamma-ray spectrometric logs

    International Nuclear Information System (INIS)

    Umiastowski, K.; Dumesnil, P.

    1984-10-01

    CEA (Commissariat a l'Energie Atomique) has developped a gamma-ray spectrometric tool, containing an analog-to-digital converter. This new tool permits to perform very precise uranium logs (natural gamma-ray spectrometry), neutron activation logs and litho-density logs (gamma-gamma spectrometric logs). Specific processing methods were developped to treate the particular problems of down-hole gamma-ray spectrometry. Extraction of the characteristic gamma-ray peak, even if they are superposed on the background radiation of very high intensity, is possible. This processing methode enables also to obtain geological informations contained in the continuous background of the spectrum. Computer programs are written in high level language for SIRIUS (VICTOR) and APOLLO computers. Exemples of uranium and neutron activation logs treatment are presented [fr

  4. A link between prompt optical and prompt gamma-ray emission in gamma-ray bursts.

    Science.gov (United States)

    Vestrand, W T; Wozniak, P R; Wren, J A; Fenimore, E E; Sakamoto, T; White, R R; Casperson, D; Davis, H; Evans, S; Galassi, M; McGowan, K E; Schier, J A; Asa, J W; Barthelmy, S D; Cummings, J R; Gehrels, N; Hullinger, D; Krimm, H A; Markwardt, C B; McLean, K; Palmer, D; Parsons, A; Tueller, J

    2005-05-12

    The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.

  5. ATLAS searches for VH, HH, VV, V+$\\gamma$/$\\gamma\\gamma$ resonances

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00441490; The ATLAS collaboration

    2017-01-01

    The discovery of a Higgs boson at the Large Hadron Collider motivates searches for physics beyond the Standard Model in channels involving coupling to the Higgs boson. A search for massive resonances decaying into couples of bosons is described. The considered final states are: $HH$, $VH$, $VV$, $V\\gamma$ and $\\gamma\\gamma$ with $V$ indicating either the $W$ or the $Z$ boson. Final states with different number of leptons or photons and where, in many cases, at least one Higgs decays into a b-quark pair are studied using different jet reconstruction techniques which allow to optimize the signal acceptance for low or high Higgs boson transverse momentum. The most recent diboson resonance searches using LHC Run 2 data are described.

  6. Stellar Sources of Gamma-ray Bursts

    OpenAIRE

    Luchkov, B. I.

    2011-01-01

    Correlation analysis of Swift gamma-ray burst coordinates and nearby star locations (catalog Gliese) reveals 4 coincidences with good angular accuracy. The random probability is 4\\times 10^{-5}, so evidencing that coincident stars are indeed gamma-ray burst sources. Some additional search of stellar gamma-ray bursts is discussed.

  7. Partial radiative capture of resonance neutrons

    International Nuclear Information System (INIS)

    Samour, C.

    1969-01-01

    The radiative capture of resonance neutrons has been studied near the Saclay linac between 0.5 and 700 eV with time-of-flight method and a Ge(Li) detector. 195 Pt + n and 183 W + n allow the study of the distribution of partial radiative widths and their eventual correlation and also the variation of γ i > with E γ . The mean values of Ml and El transition intensities are compared in several tin isotopes. Interference effects, either between resonances or between direct capture and resonant capture are found in 195 Pt + n, 197 Au + n and 59 Co + n. The excited level schemes of a great deal of nuclei are obtained and compared with theoretical predictions. This study has been completed by an analysis of thermal spectrum. (author) [fr

  8. Gamma ray irradiation characteristics of SM fibers

    International Nuclear Information System (INIS)

    Ito, Ryuichi; Okano, Hiroaki; Hashiba, Keichi; Nakai, Hisanori

    1987-01-01

    1.3 μm range single mode (SM) optical fibers have been used for wide application of mainly long distance communication. At present, in order to realize the larger capacity and longer distance between relay points, the development of 1.5 μm range SM fibers of low dispersion and small loss has been actively promoted. As for the radiation withstanding property of SM fibers, report is scarce. The authors reported on the gamma ray irradiation characteristics of 1.3 μm range SM fibers, but since 1.5 μm range SM fibers are designed with the different structure from that of 1.3 μm fibers, it is necessary to evaluate from new viewpoint. In this report, mainly on the structure having triangular distribution, the effect that the manufacturing condition and the structural defects of glass exert on the gamma ray irradiation characteristics is described. The specimens were mainly dispersion shift type fibers (DSF), and for comparison, single window, double window and 1.3 μm SM fibers were examined. Co-60 gamma ray was irradiated, and the optical loss and electron spin resonance were measured. By low temperature and low speed drawing, the good result in the optical loss was obtained. The presence of oxygen at the time of sintering materials had no effect. The dependence of the ESR on the drawing condition was not very remarkable. (Kako, I.)

  9. Physical constraints on models of gamma-ray bursters

    International Nuclear Information System (INIS)

    Epstein, R.I.

    1985-01-01

    This report deals with the constraints that can be placed on models of gamma-ray burst sources based on only the well-established observational facts and physical principles. The premise is developed that the very hard x-ray and gamma-ray continua spectra are well-established aspects of gamma-ray bursts. Recent theoretical work on gamma-ray bursts are summarized with emphasis on the geometrical properties of the models. Constraints on the source models which are implied by the x-ray and gamma-ray spectra are described. The allowed ranges for the luminosity and characteristic dimension for gamma-ray burst sources are shown. Some of the deductions and inferences about the nature of the gamma-ray burst sources are summarized. 67 refs., 3 figs

  10. Development of a Gamma-Ray Detector for Z-Selective Radiographic Imaging

    International Nuclear Information System (INIS)

    Brandis, Michal

    2013-11-01

    Dual-Discrete Energy Gamma-Radiography (DDEGR) is a method for Special Nuclear Materials (SNM) detection. DDEGR utilizes 15.11 and 4.43 MeV gamma-rays produced in the 11B(d,n)12C reaction, in contrast to the conventional use of continuous Bremsstrahlung radiation. The clean and well separated gamma-rays result in high contrast sensitivity, enabling detection of small quantities of SNM. The most important aspects of a DDEGR system were discussed, simulated, measured and demonstrated. An experimental measurement of gamma-ray yields from the 11B(d,n)12C reaction showed that the yields from deuterons with 3{12 MeV energy are 2{201010 N/sr/mC 4.4 MeV gamma- rays and 2{5109 N/sr/mC 15.1 MeV gamma-rays. The measured neutron yields show that the neutron energies extend to 15-23 MeV for the same deuteron energy range. A simplied inspection system was simulated with GEANT4, showing that the ect of scattering on the signal measured in the detector is acceptable. Considering the reaction gamma yields, 1.8 mA deuteron current is required for separation of high-Z materials from medium- and low-Z materials and a 4.5 mA current is required for the additional capability of separating benign high-Z materials from SNM. The main part of the work was development of a detector suitable for a DDEGR system | Time Resolved Event Counting Optical Radiation (TRECOR) detector. TRECOR detector is a novel spectroscopic imaging detector for gamma-rays within the MeV energy range that uses an event counting image intensier with gamma-rays for the rst time. Neutrons that accompany the gamma radiation enable to implement, in parallel, Fast Neutron Resonance Radiography (FNRR), a method for explosives detection. A second generation detector, TRECOR-II, is capable of detecting gamma-rays and neutrons in parallel, separating them to create particle-specic images and energy-specic images for each particle, thus enabling simultaneous implementation of the two detection methods. A full DDEGR laboratory

  11. Microwave-gamma ray water in crude monitor

    International Nuclear Information System (INIS)

    Paap, H.J.

    1984-01-01

    A microwave-gamma ray water-in-crude monitoring system measures the percent quantity of fresh water or salt water in crude oil flowing in a pipe line. The system includes a measuring cell arranged with the pipe line so that the crude oil flows through the measuring cell. A microwave transmitter subsystem and a gamma ray source are arranged with the measuring cell so that microwave energy and gamma rays are transmitted through the measuring cell. A microwave receiving subsystem and a gamma ray detector provide signals corresponding to received microwave energy and to the received gamma rays, respectively. Apparatus connected to the microwave receiver and to the gamma ray detector provides an indication of the percentage of water in the crude oil

  12. Remote planetary geochemical exploration with the NEAR X-ray/gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Trombka, J.I.; Boynton, W.V.; Brueckner, J.; Squyres, S.; Clark, P.E.; Starr, R.; Evans, L.G.; Floyd, S.R.; McClanahan, T.P.; Goldsten, J.; Mcnutt, R.; Schweitzer, J.S.

    1999-01-01

    The X-ray/gamma-ray spectrometer (XGRS) instrument onboard the Near Earth Asteroid Rendezvous (NEAR) spacecraft will map asteroid 433 Eros in the 0.2 keV to 10 MeV energy region. Measurements of the discrete line X-ray and gamma-ray emissions in this energy domain can be used to obtain both qualitative and quantitative elemental composition maps of the asteroid surface. The NEAR X-ray/gamma-ray spectrometer (XGRS) was turned on for the first time during the week of 7 April 1996. Rendezvous with Eros 433 is expected during December 1998. Observations of solar X-ray spectra during both quiescent and active periods have been made. A gamma-ray transient detection system has been implemented and about three gamma-ray transient events a week have been observed which are associated with either gamma-ray bursts or solar flares

  13. Plutonium characterisation with prompt high energy gamma-rays from (n,gamma) reactions for nuclear warhead dismantlement verification

    Energy Technology Data Exchange (ETDEWEB)

    Postelt, Frederik; Gerald, Kirchner [Carl Friedrich von Weizsaecker-Centre for Science and Peace Research, Hamburg (Germany)

    2015-07-01

    Measurements of neutron induced gammas allow the characterisation of fissile material (i.e. plutonium and uranium), despite self- and additional shielding. Most prompt gamma-rays from radiative neutron capture reactions in fissile material have energies between 3 and 6.5 MeV. Such high energy photons have a high penetrability and therefore minimise shielding and self-absorption effects. They are also isotope specific and therefore well suited to determine the isotopic composition of fissile material. As they are non-destructive, their application in dismantlement verification is desirable. Disadvantages are low detector efficiencies at high gamma energies, as well as a high background of gammas which result from induced fission reactions in the fissile material, as well as delayed gammas from both, (n,f) and(n,gamma) reactions. In this talk, simulations of (n,gamma) measurements and their implications are presented. Their potential for characterising fissile material is assessed and open questions are addressed.

  14. Multifrequency Observations of Gamma-Ray Burst

    OpenAIRE

    Greiner, J.

    1995-01-01

    Neither a flaring nor a quiescent counterpart to a gamma-ray burst has yet been convincingly identified at any wavelength region. The present status of the search for counterparts of classical gamma-ray bursts is given. Particular emphasis is put on the search for flaring counterparts, i.e. emission during or shortly after the gamma-ray emission.

  15. Gamma-rays from deep inelastic collisions

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1981-01-01

    My objective in this talk is to consider the question: 'What can be learned about deep inelastic collisions (DIC) from studying the associated gamma-rays'. First, I discuss the origin and nature of the gamma-rays from DIC, then the kinds of information gamma-ray spectra contain, and finally come to the combination of these two subjects. (orig./HSI)

  16. Soft x-ray emission from gamma-ray bursts observed with ginga

    International Nuclear Information System (INIS)

    Yoshida, Atsumasa; Murakami, Toshio; Itoh, Masayuki

    1989-01-01

    The soft X-ray emission of gamma-ray bursts below 10 keV provides information about size, location, and emission mechanism. The Gamma-ray Burst Detector (GBD) on board Ginga, which consists of a proportional counter and a scintillation detector, covers an energy range down to 1.5 keV with 63 cm 2 effective area. In several of the observed gamma-ray bursts, the intensity of the soft X-ray emission showed a longer decay time of 50 to 100s after the higher energy gamma-ray emission had ended. Although we cannot rule out other models, such as bremsstrahlung and thermal cyclotron types, due to poor statistics, the soft X-ray spectra are consistent with a blackbody of 1 to 2 keV in the late phase of the gamma-ray bursts. This enables us to estimate the size of the blackbody responsible for the X-ray emission. (author)

  17. The high intensity {gamma}-ray source (HI{gamma}S) and recent results

    Energy Technology Data Exchange (ETDEWEB)

    Tonchev, A.P. [Duke University and TUNL, Triangle University Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 0308 (United States)]. E-mail: tonchev@tunl.duke.edu; Boswell, M. [University of North Carolina at Chapel Hill and TUNL, Chapel Hill, NC 27599 (United States); Howell, C.R. [Duke University and TUNL, Triangle University Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 0308 (United States); Karwowski, H.J. [University of North Carolina at Chapel Hill and TUNL, Chapel Hill, NC 27599 (United States); Kelley, J.H. [North Carolina State University and TUNL, Raleigh, NC 27695 (United States); Tornow, W. [Duke University and TUNL, Triangle University Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 0308 (United States); Wu, Y.K. [Duke University and Duke Free Electron Laser Laboratory, Durham, NC 27708-0319 (United States)

    2005-12-15

    The high intensity {gamma}-ray source (HI{gamma}S) utilizes intra-cavity backscattering of free electron laser photons from the Duke electron storage ring to produce a unique monoenergetic beam of high-flux {gamma}-rays with high polarization and selectable energy resolution. At present, {gamma}-ray beams with energies from 2 to 58 MeV are available with intensities as high as 10{sup 5}-5 x 10{sup 6} {gamma}/s, energy spreads of 3% or better, and nearly 100% linear polarization. The quality and intensity of the {gamma}-ray beams at HI{gamma}S are responsible for the unprecedented performance of this facility in a broad range of research programs in nuclear structure, nuclear astrophysics and nuclear applications. Recent results from excitation of isomeric states in ({gamma}, n) reactions and parity assignments of dipole states determined via the ({gamma}, {gamma}') reaction are presented.

  18. Demonstration of Neutron Resonance capture applied to a Cultural Heritage study of Antique Benin Bronzes

    International Nuclear Information System (INIS)

    Blaauw, M.; Postma, H.; Mutti, P.

    2001-01-01

    In many cases of historical and archaeological studies physical techniques Instrumental Neutron Activation Analysis (INAA) X-Ray Fluorescence (XRF) and Proton Induced X-ray Emission (PIXE) are used to get information about the element composition of objects. INAA is usually carried out using small samples taken from the object . XRF and PIXE only yield surface information, and require cleaning of the surface to suppress the effect of external contamination. Such actions on artefacts are unwanted. Recently neutron capture resonances have been used to identify elements in artefacts using a set of γray detectors and a time-of flight system at the GELINA facility. This allows identification and quantification of elements of precious artefacts in an fully non-destructive way and with very little activation Because of the novelly of the method the principles of neutron resonance capture analysis (NRC A) will be discussed and the results of an applications to a comparative study of two Benin Bronzes presented

  19. Gamma-ray Output Spectra from 239 Pu Fission

    International Nuclear Information System (INIS)

    Ullmann, John

    2015-01-01

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239 Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution

  20. X-ray and. gamma. -ray sources: a comparison of their characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Freund, A K [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)

    1979-11-01

    A comparison of the various source characteristics, in particular the available fluxes of radiation in the X-ray/..gamma..-ray region from (1) high power rotary anode X-ray generators, (2) radioactive ..gamma..-ray sources and (3) high energy electron storage rings is presented. Some of the specific characteristics and possible applications of synchrotron radiation as a source are discussed in detail, together with problems associated with the monochromatization of the continuous radiation in the X-ray/..gamma..-ray region. The new high energy machines PEP at Stanford, the 8 GeV storage ring CESR at Cornell and the PETRA storage ring in Hamburg, which will soon come into operation provide a spectrum of high intensity radiation reaching well above h..gamma..sub(photon)=100 keV. The possibilities of using ondulators (wigglers), and laser-electron scattering for constructing high repetition rate tunable ..gamma..-ray sources are also discussed. Finally the potentials of using the powerful spontaneous emission of ..gamma..-quanta by relativistic channeled particles are mentioned.

  1. Very high energy gamma ray astrophysics: Progress report, May 1, 1987-February 1, 1988

    International Nuclear Information System (INIS)

    Lamb, R.G.; Lewis, D.A.

    1988-02-01

    The Whipple observatory Gamma Ray Collaboration has continued to make steady progress in its development of a highly sensitive stereoscopic imaging gamma-ray telescope (known as the HERCULES project). The milestones in this year's development include: the demonstration of the success of the imaging concept with a single camera by the detection of a very weak flux of gamma rays from the Crab Nebula at a high level of statistical significance (7 sigma), the confirmation of our detection of an anomalous pulsed flux from Hercules X-1 in the summer of 1986 by two other groups; this result has serious implications for the mechanism for gamma-ray emission in this binary source. The construction and installation of the new high resolution camera on the 10 m reflector; the realistic simulation of the sensitivity of this camera as well as that of the full HERCULES system was also undertaken. These, and other highlights of this year's program at the Iowa State University and the Smithsonian Astrophysical Observatory, are discussed in this paper. 6 figs

  2. Gamma-Ray Bursts

    Science.gov (United States)

    Pellizza, L. J.

    Gamma-ray bursts are the brightest transient sources in the gamma-ray sky. Since their discovery in the late 1960s, the investigation of the astrophysical sys- tems in which these phenomena take place, and the physical mechanisms that drive them, has become a vast and prolific area of modern astrophysics. In this work I will briefly describe the most relevant observations of these sources, and the models that describe their nature, emphasizing on the in- vestigations about the progenitor astrophysical systems. FULL TEXT IN SPANISH

  3. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    Science.gov (United States)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  4. Low-temperature system for simultaneous counting of conversion electrons and backscattered [gamma]-rays in Moessbauer effect experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ruskov, Todor (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Passage, Guener (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Rastanawi, Abdallah (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Radev, Rumen (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria))

    1994-12-01

    A system for simultaneous detection of conversion electrons, emitted after resonant exciting of [sup 57]Fe, and resonant backscattered [gamma]-rays and X-rays, accompanying the conversion electrons, is described. The system includes a helium proportional counter, for detection of conversion electrons, and a toroidal ''Keisch-type'' proportional counter, connected to the vacuum part of a helium cryostat. ((orig.))

  5. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    International Nuclear Information System (INIS)

    Grenier, Isabelle

    2009-01-01

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008. In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  6. Modern utilization of accurate methods for gamma-ray spectral analysis detected by high pure germanium (HPGE) detectors through different applications

    International Nuclear Information System (INIS)

    El-Sayed, M.M.

    2005-01-01

    this thesis presents a novel way for application of wavelet trans-from theory in gamma -ray spectroscopy. this technique was applied for searching real and weak peaks, solving problem of multiplets, smoothing and de-noising gamma-ray spectra, and using artificial neural network for identifying peaks. a brief description about gamma-ray spectrum analysis is presented . we discussed the necessary formulas and algorithms of wavelet theory to solve these main problems in gamma ray spectrum analysis. the algorithm of peak search was applied on different types of spectra, IAEA spectra and other sources of gamma spectra. the algorithm of multiplets algorithm was applied successfully on different types of multiplets. the algorithm of denoising was applied successfully on different sources of spectra

  7. Sample analysis using gamma ray induced fluorescent X-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Sood, B S; Allawadhi, K L; Gandhi, R; Batra, O P; Singh, N [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1983-01-01

    A non-destructive method for the analysis of materials using gamma ray-induced fluorescent x-ray emission has been developed. In this method, special preparation of very thin samples in which the absorption of the incident gamma rays and the emitted fluorescent x-rays is negligible, is not needed, and the absorption correction is determined experimentally. A suitable choice of the incident gamma ray energies is made to minimise enhancement effects through selective photoionization of the elements in the sample. The method is applied to the analysis of a typical sample of the soldering material using 279 keV and 59.5 keV gamma rays from /sup 203/Hg and /sup 241/Am radioactive sources respectively. The results of the analysis are found to agree well with those obtained from the chemical analysis.

  8. Direct neutron capture and related mechanisms

    International Nuclear Information System (INIS)

    Lynn, J.E.; Raman, S.

    1990-01-01

    We consider the evidence for the role of direct and related mechanisms in neutron capture at low and medium energies. Firstly, we compare the experimental data on the thermal neutron cross sections for El transitions in light nuclei with careful estimates of direct capture. Over the full range of light nuclei with small cross sections direct capture is found to be the predominant mechanism, in some cases being remarkable accurate, but in a few showing evidence for collective effects. When resonance effects become substantial there is evidence for an important contribution from the closely related valence mechanism, but full agreement with the data in such cases appears to require the introduction of a more generalised valence model. The possibility of direct and valence mechanisms playing a role in M1 capture is studied, and it is concluded that in light nuclei at relatively low gamma ray energies, it does indeed play some role. In heavier nuclei it appears that the evidence, especially from the correlations between E1 and M1 transitions to the same final states, favours the hypothesis that the main transition strength is governed by the M1 giant resonance. 31 refs., 2 tabs

  9. Spectra of γ-rays from capture of 2 eV to 9 x 104 eV neutrons by 181Ta

    International Nuclear Information System (INIS)

    Stelts, M.L.

    Using new experimental techniques, the spectra of γ-rays from the capture of neutrons by 181 Ta were measured at the Livermore 100-MeV linac for neutrons from 2 eV to 9 x 10 4 eV with a (Ge(Li)-NaI) three-crystal spectrometer. Individual primary γ-ray lines were resolved to 1778-keV excitation in 182 Ta. Neutron resonances were resolved to 200-eV neutron energy. Data analysis techniques and codes were developed to extract positions and intensities of resolved transitions from the large data matrices accumulated in this experiment. Techniques were developed to unfold the unresolved γ-ray spectra using the simple response of the three-crystal spectrometer. The resolved transition data were used to place 110 states with spin and parity assignments in the 182 Ta level diagram below 1780-keV excitation. A set of 1240 E1 transition strengths were analyzed to extract 1.38 +- 0.11 degrees of freedom for the most likely chisquared fit to the distribution of widths. The E1 strength function was extracted for E/sub gamma/ = 4 to 6 MeV and compared with previous results. The γ-ray spectra for E/sub gamma/ = 1.5 to 6.1 MeV were unfolded for neutron energy groups between 20 and 9 x 10 4 eV. Below 5-MeV γ-ray energy no dependence of the spectral shape on neu []ron energy was observed. (30 figures, 4 tables) (auth)

  10. ICIT contribution to JET gamma-ray diagnostics enhancement

    International Nuclear Information System (INIS)

    Soare, S.; Curuia, M.; Zoita, V.

    2010-01-01

    Full text: Gamma-ray emission of tokamak plasmas is the result of the interaction of fast ions (fusion reaction products, including alpha particles, NBI ions, ICRH-accelerated ions) with main plasma impurities (e.g., carbon, beryllium). Gamma-ray diagnostics involve both gamma-ray imaging (cameras) and gamma-ray spectrometry (spectrometers). For the JET tokamak, gamma-ray diagnostics have been used to provide information on the characteristics of the fast ion population in plasmas. Two gamma-ray diagnostics enhancements project have been launched by JET and the MEdC/EURATOM Association has agreed to lead both of them with ICIT as projects leader. (authors)

  11. Gamma-ray burst observations: the present situation

    International Nuclear Information System (INIS)

    Vedrenne, G.

    1984-01-01

    Recent results in gamma ray burst investigations concerning the spectral variability on a short time scale, precise locations, and the discovery of optical flashes in gamma ray burst positions on archival plates are presented. The implications of optical and X-ray observations of gamma ray burst error boxes are also discussed. 72 references

  12. Found: A Galaxy's Missing Gamma Rays

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016

  13. Measurement of concentrations of {gamma}-ray emitters induced in the concrete shield of the JAERI electron linac facility

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Akira; Kawasaki, Katsuya; Kikuchi, Masamitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Harada, Yasunori

    1997-07-01

    Measurement has been made to study distributions of {gamma}-ray emitters induced in the concrete shield of the JAERI electron linac facility. Core boring was carried out at seven positions to take samples from the concrete shield, and {gamma}-ray counting rates and {gamma}-ray spectra of these samples were measured with a NaI(Tl) detector and a Ge semiconductor detector, respectively. The following radionuclides were detected in the concrete samples: {sup 60}Co, {sup 134}Cs, {sup 152}Eu and {sup 154}Eu generated through thermal neutron capture reaction, and {sup 22}Na and {sup 54}Mn generated through nuclear reactions by bremsstrahlung and fast neutrons. The relation between the distributions of {gamma}-ray emitters, as a function of the depth of concrete, and the positions of core boring is discussed. (author)

  14. Revisiting the U-238 thermal capture cross section and gamma-raymission probabilities from Np-239 decay

    Energy Technology Data Exchange (ETDEWEB)

    Trkov, A.; Molnar, G.L.; Revay, Zs.; Mughabghab, S.F.; Firestone,R.B.; Pronyaev, V.G.; Nichols, A.L.; Moxon, M.C.

    2005-03-03

    The precise value of the thermal capture cross section of238U is uncertain, and evaluated cross sections from various sourcesdiffer by more than their assigned uncertainties. A number of theoriginal publications have been reviewed to assess the discrepant data,corrections were made for more recent standard cross sections andotherconstants, and one new measurement was analyzed. Due to the strongcorrelations in activation measurements, the gamma-ray emissionprobabilities from the beta decay of 239Np were also analyzed. As aresult of the analysis, a value of 2.683 +- 0.012 barns was derived forthe thermal capture cross section of 238U. A new evaluation of thegamma-ray emission probabilities from 239Np decay was alsoundertaken.

  15. Multiwavelength Study of Gamma-Ray Bright Blazars

    Science.gov (United States)

    Morozova, Daria; Larionov, V. M.; Hagen-Thorn, V. A.; Jorstad, S. G.; Marscher, A. P.; Troitskii, I. S.

    2011-01-01

    We investigate total intensity radio images of 6 gamma-ray bright blazars (BL Lac, 3C 279, 3C 273, W Com, PKS 1510-089, and 3C 66A) and their optical and gamma-ray light curves to study connections between gamma-ray and optical brightness variations and changes in the parsec-scale radio structure. We use high-resolution maps obtained by the BU group at 43 GHz with the VLBA, optical light curves constructed by the St.Petersburg State U. (Russia) team using measurements with the 0.4 m telescope of St.Petersburg State U. (LX200) and the 0.7 m telescope of the Crimean Astrophysical Observatory (AZT-8), and gamma-ray light curves, which we have constructed with data provided by the Fermi Large Area Telescope. Over the period from August 2008 to November 2009, superluminal motion is found in all 6 objects with apparent speed ranging from 2c to 40c. The blazars with faster apparent speeds, 3C 273, 3C 279, PKS 1510-089, and 3C 66A, exhibit stronger variability of the gamma-ray emission. There is a tendency for sources with sharply peaked gamma-ray flares to have faster jet speed than sources with gamma-ray light curves with no sharp peaks. Gamma-ray light curves with sharply peaked gamma-ray flares possess a stronger gamma-ray/optical correlations. The research at St.Petersburg State U. was funded by the Minister of Education and Science of the Russian Federation (state contract N#P123). The research at BU was funded in part by NASA Fermi Guest Investigator grant NNX08AV65G and by NSF grant AST-0907893. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  16. K-shell jump ratios and jump factors for molybdenum and silver by using 2D-geometrical configuration and a weak gamma source

    International Nuclear Information System (INIS)

    Francis Maria Anand, L.; Gudennavar, S.B.; Bubbly, S.G.; Joseph, Daisy

    2013-01-01

    The article presents a simple method of measuring K-shell absorption jump ratios and jump factors for elements in the field of X-ray spectroscopy. The K-shell jump ratios and jump factors for Molybdenum and Silver are measured by adopting 2ŏ-geometrical configuration and a weak gamma source. The characteristic K X-ray photons are excited in the targets using 32.8 keV barium X-ray photons from a weak 137 Cs radioactive source that is produced due to the internal conversion of cesium nucleus (IC). The fluorescent K X-ray photons are detected using low energy Si(Li) detector coupled to a 8k multichannel analyser. The K X-ray intensity ratios from X-ray fluorescent spectrum are measured experimentally, the total atomic attenuation cross section and the total atomic scattering cross sections are calculated using WinXcom software. The K-shell jump factor and jump ratio are computed using the measured K X-ray intensity ratios and the calculated K a , X-ray production cross section. The computed values of K-shell jump factor and jump ratio for molybdenum and silver are compared with the theoretical values and others' experimental data and are presented. The amount of uncertainty in the experimental measurement of K X-ray intensity ratios is less than 5%. Thus the 2ŏ-geometrical configuration method with weak gamma source can be an alternative simple method to measure the jump factors and the jump ratios of pure elements in the field of X-ray spectroscopy. (author)

  17. Pulsed Gamma-Rays From PSR J2021 3651 with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, Marco; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, William B.; /UC, Santa Cruz; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Battelino, Milan; /Royal Inst. Tech., Stockholm; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, Ronaldo; /INFN, Pisa; Berenji, Bijan; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bogaert, G.; /Ecole Polytechnique; Borgland, Anders W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Columbia U. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /IASF, Milan /IASF, Milan /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /LPCE, Orleans /Montpellier U. /Sonoma State U. /Royal Inst. Tech., Stockholm /Stockholm U. /ASI, Rome /NRAO, Charlottesville /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Manchester U. /Montpellier U. /Bari U. /INFN, Bari; /more authors..

    2011-11-30

    We report the detection of pulsed gamma-rays from the young, spin-powered radio pulsar PSR J2021+3651 using data acquired with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The light curve consists of two narrow peaks of similar amplitude separated by 0.468 {+-} 0.002 in phase. The first peak lags the maximum of the 2 GHz radio pulse by 0.162 {+-} 0.004 {+-} 0.01 in phase. The integral gamma-ray photon flux above 100 MeV is (56 {+-} 3 {+-} 11) x 10{sup -8} cm{sup -2} s{sup -1}. The photon spectrum is well-described by an exponentially cut-off power law of the form dF/dE = kE{sup -{Gamma}}e{sup (-E/E{sub c})} where the energy E is expressed in GeV. The photon index is {Gamma} = 1.5 {+-} 0.1 {+-} 0.1 and the exponential cut-off is E{sub c} = 2.4 {+-} 0.3 {+-} 0.5 GeV. The first uncertainty is statistical and the second is systematic. The integral photon flux of the bridge is approximately 10% of the pulsed emission, and the upper limit on off-pulse gamma-ray emission from a putative pulsar wind nebula is < 10% of the pulsed emission at the 95% confidence level. Radio polarization measurements yield a rotation measure of RM = 524 {+-} 4 rad m{sup -2} but a poorly constrained magnetic geometry. Re-analysis of Chandra data enhanced the significance of the weak X-ray pulsations, and the first peak is roughly phase-aligned with the first gamma-ray peak. We discuss the emission region and beaming geometry based on the shape and spectrum of the gamma-ray light curve combined with radio and X-ray measurements, and the implications for the pulsar distance. Gamma-ray emission from the polar cap region seems unlikely for this pulsar.

  18. NRF Based Nondestructive Inspection System for SNM by Using Laser-Compton-Backscattering Gamma-Rays

    Science.gov (United States)

    Ohgaki, H.; Omer, M.; Negm, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Hori, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.

    2015-10-01

    A non-destructive inspection system for special nuclear materials (SNMs) hidden in a sea cargo has been developed. The system consists of a fast screening system using neutron generated by inertial electrostatic confinement (IEC) device and an isotope identification system using nuclear resonance fluorescence (NRF) measurements with laser Compton backscattering (LCS) gamma-rays has been developed. The neutron flux of 108 n/sec has been achieved by the IEC in static mode. We have developed a modified neutron reactor noise analysis method to detect fission neutron in a short time. The LCS gamma-rays has been generated by using a small racetrack microtoron accelerator and an intense sub-nano second laser colliding head-on to the electron beam. The gamma-ray flux has been achieved more than 105 photons/s. The NRF gamma-rays will be measured using LaBr3(Ce) scintillation detector array whose performance has been measured by NRF experiment of U-235 in HIGS facility. The whole inspection system has been designed to satisfy a demand from the sea port.

  19. U and Pu Gamma-Ray Measurements of Spent Fuel Using a Gamma-Ray Mirror Band-Pass Filter

    International Nuclear Information System (INIS)

    Ziock, K.-P.; Kisner, R.; Melin, A.; Patton, B.; Alameda, J.; Brejnhold, N.; Decker, T.; Descalle, M.-A.; Fernandez-Perea, M.; Hill, R.; Ruz Armendariz, J.; Soufli, R.

    2015-01-01

    We report the use of grazing incidence gamma-ray mirrors as narrow band-pass filters for advanced non-destructive analysis of spent nuclear fuel. The mirrors limit radiation reaching an HPGe detector to narrow spectral bands around characteristic emission lines from fissile isotopes in the fuel. Ideally, these emissions could be used to determine the fuel's fissile content, but they are normally masked by the overwhelming radiation emitted by short-lived fission by-products. These latter emissions raise the overall background, making direct observation of the fuel with HPGe detectors virtually impossible. Such observations can only be performed using precise collimators that restrict the detector's field of view to very small solid angles. This results in impracticably long dwell times for safeguards measurements targeting the weak isotopic lines of interest. In a proof-ofconcept experiment, a set of simple flat gamma-ray mirrors was used to observe the atomic florescence lines from U and Pu from a spent nuclear fuel pin. For the measurements, the mirrors were placed at the egress of an access port in a hot cell wall. A coarse collimator in the port restricted radiation from a fuel pin placed in front of the port to fully illuminate the front surface of the mirror assembly (0:5 x 3:8 cm2). The mirrors, consisting of highly polished silicon substrates deposited with WC/SiC multilayer coatings, were successfully used to deflect the lines of interest onto an HPGe detector while the intense primary radiation from the spent fuel was blocked by a lead beam stop. The gamma-ray mirror multilayer coatings used here at ∼100 keV, have been experimentally tested at energies as high as 645 keV, indicating that direct observation of nuclear emission lines from 239Pu should be possible with an appropriately designed optic. (author)

  20. Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS

    Science.gov (United States)

    Pinzke, Anders

    The quest for the first detection of a galaxy cluster in the high energy gamma-ray regime is ongoing, and even though clusters are observed in several other wave-bands, there is still no firm detection in gamma-rays. To complement the observational efforts we estimate the gamma-ray contributions from both annihilating dark matter and cosmic-ray (CR) proton as well as CR electron induced emission. Using high-resolution simulations of galaxy clusters, we find a universal concave shaped CR proton spectrum independent of the simulated galaxy cluster. Specifically, the gamma-ray spectra from decaying neutral pions, which are produced by CR protons, dominate the cluster emission. Furthermore, based on our derived flux and luminosity functions, we identify the galaxy clusters with the brightest galaxy clusters in gamma-rays. While this emission is challenging to detect using the Fermi satellite, major observations with Cherenkov telescopes in the near future may put important constraints on the CR physics in clusters. To extend these predictions, we use a dark matter model that fits the recent electron and positron data from Fermi, PAMELA, and H.E.S.S. with remarkable precision, and make predictions about the expected gamma-ray flux from nearby clusters. In order to remain consistent with the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures for cold dark matter halos. In addition, we find comparable levels of gamma-ray emission from CR interactions and dark matter annihilations without Sommerfeld enhancement.

  1. CASTHY, Statistical Model for Neutron Cross-Sections and Gamma-Ray Spectra

    International Nuclear Information System (INIS)

    Igarasi, Sin-iti; Fukahori, Tokio

    1998-01-01

    Description of program or function: CASTHY calculates neutron cross sections of total, shape elastic scattering and compound nucleus formation with the optical model, and compound elastic, inelastic and capture cross sections by the statistical model. The other cross sections, such as (n,2n), (n,p), (n,f) reactions are treated as cross sections of competing processes, and their sum is given through input data. Capture gamma-ray spectra can also be calculated. The branching ratio for primary transition can be treated in a particular way, if required

  2. Neutron detection gamma ray sensitivity criteria

    International Nuclear Information System (INIS)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Mace, Emily K.; Stephens, Daniel L.; Woodring, Mitchell L.

    2011-01-01

    The shortage of 3 He has triggered the search for effective alternative neutron detection technologies for national security and safeguards applications. Any new detection technology must satisfy two basic criteria: (1) it must meet a neutron detection efficiency requirement, and (2) it must be insensitive to gamma-ray interference at a prescribed level, while still meeting the neutron detection requirement. It is the purpose of this paper to define measureable gamma ray sensitivity criteria for neutron detectors. Quantitative requirements are specified for: intrinsic gamma ray detection efficiency and gamma ray absolute rejection. The gamma absolute rejection ratio for neutrons (GARRn) is defined, and it is proposed that the requirement for neutron detection be 0.9 3 He based neutron detector is provided showing that this technology can meet the stated requirements. Results from tests of some alternative technologies are also reported.

  3. Local gamma ray events as tests of the antimatter theory of gamma ray bursts

    International Nuclear Information System (INIS)

    Sofia, S.; Wilson, R.E.

    1976-01-01

    Nearby examples of the antimatter 'chunks' postulated by Sofia and Van Horn to explain the cosmic gamma ray bursts may produce detectable gamma ray events when struck by solar system meteoroids. These events would have a much shorter time scale and higher energy spectrum than the bursts already observed. In order to have a reasonably high event rate, the local meteoroid population must extend to a distance from the Sun of the order of 0.1 pc, but the required distance could become much lower if the instrumental threshold is improved. The expected gamma ray flux for interaction of the antimatter bodies with the solar wind is also examined, and found to be far below present instrumental capabilities. (Auth.)

  4. The gamma-ray-flux PDF from galactic halo substructure

    International Nuclear Information System (INIS)

    Lee, Samuel K.; Ando, Shin'ichiro; Kamionkowski, Marc

    2009-01-01

    One of the targets of the recently launched Fermi Gamma-ray Space Telescope is a diffuse gamma-ray background from dark-matter annihilation or decay in the Galactic halo. N-body simulations and theoretical arguments suggest that the dark matter in the Galactic halo may be clumped into substructure, rather than smoothly distributed. Here we propose the gamma-ray-flux probability distribution function (PDF) as a probe of substructure in the Galactic halo. We calculate this PDF for a phenomenological model of halo substructure and determine the regions of the substructure parameter space in which the PDF may be distinguished from the PDF for a smooth distribution of dark matter. In principle, the PDF allows a statistical detection of substructure, even if individual halos cannot be detected. It may also allow detection of substructure on the smallest microhalo mass scales, ∼ M ⊕ , for weakly-interacting massive particles (WIMPs). Furthermore, it may also provide a method to measure the substructure mass function. However, an analysis that assumes a typical halo substructure model and a conservative estimate of the diffuse background suggests that the substructure PDF may not be detectable in the lifespan of Fermi in the specific case that the WIMP is a neutralino. Nevertheless, for a large range of substructure, WIMP annihilation, and diffuse background models, PDF analysis may provide a clear signature of substructure

  5. Gamma Ray Bursts

    Science.gov (United States)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  6. Statistical analysis for discrimination of prompt gamma ray peak induced by high energy neutron: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Do-Kun Yoon; Joo-Young Jung; Tae Suk Suh; Seong-Min Han

    2015-01-01

    The purpose of this research is a statistical analysis for discrimination of prompt gamma ray peak induced by the 14.1 MeV neutron particles from spectra using Monte Carlo simulation. For the simulation, the information of 18 detector materials was used to simulate spectra by the neutron capture reaction. The discrimination of nine prompt gamma ray peaks from the simulation of each detector material was performed. We presented the several comparison indexes of energy resolution performance depending on the detector material using the simulation and statistics for the prompt gamma activation analysis. (author)

  7. Discoveries by the Fermi Gamma Ray Space Telescope

    Science.gov (United States)

    Gehrels, Neil

    2011-01-01

    Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

  8. Feasibility study of gamma-ray medical radiography

    International Nuclear Information System (INIS)

    Alyassin, Abdalmajeid M.; Maqsoud, Hamza A.; Mashat, Ahmad M.; Al-Mohr, Al-Sayed; Abdulwajid, Subhan

    2013-01-01

    This research explores the feasibility of using gamma-ray radiography in medical imaging. We will show that gamma-ray medical radiography has the potential to provide alternative diagnostic medical information to X-ray radiography. Approximately one Ci Am-241 radioactive source which emits mono-energetic 59.5 keV gamma rays was used. Several factors that influence the feasibility of this study were tested. They were the radiation source uniformity, image uniformity, and image quality parameters such as contrast, noise, and spatial resolution. In addition, several gamma-ray and X-ray images were acquired using humanoid phantoms. These images were recorded on computed radiography image receptors and displayed on a standard monitor. Visual assessments of these images were then conducted. The Am-241 radioactive source provided relatively uniform radiation exposure and images. Image noise and image contrast were mainly dependent on the exposure time and source size, whereas spatial resolution was dependent on source size and magnification factor. The gamma-ray humanoid phantom images were of lower quality than the X-ray images mainly due to the low radioactivity used and not enough exposure time. Nevertheless, the gamma-ray images displayed most of the main structures contained in the humanoid phantoms. Higher exposure rates and thus lower exposure times were estimated for different pure Am-241 source sizes that are hypothesized to provide high quality images similar to X-ray images. For instance, a 10 mm source size of pure Am-241 with 7 s exposure time should produce images similar in contrast and noise to X-ray images. This research paves the way for the production and usage of a highly radioactive Am-241 source with the potential to lead to the feasibility of acceptable quality medical gamma-ray radiography. - Highlights: ► Characterized the performance of gamma-ray radiography. ► Displayed medical images of humanoid phantoms using gamma radiography. ► Am-241

  9. Neutron capture measurements and resonance parameters of dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S.G.; Kye, Y.U.; Namkung, W.; Cho, M.H. [Pohang University of Science and Technology, Division of Advanced Nuclear Engineering, Pohang, Gyeongbuk (Korea, Republic of); Kang, Y.R.; Lee, M.W. [Dongnam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of); Kim, G.N. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Ro, T.I. [Dong-A University, Department of Physics, Busan (Korea, Republic of); Danon, Y.; Williams, D. [Rensselaer Polytechnic Institute, Department of Mechanical, Aerospace, and Nuclear Engineering, Troy, NY (United States); Leinweber, G.; Block, R.C.; Barry, D.P.; Rapp, M.J. [Naval Nuclear Laboratory, Knolls Atomic Power Laboratory, Schenectady, NY (United States)

    2017-10-15

    Neutron capture yields of dysprosium isotopes ({sup 161}Dy, {sup 162}Dy, {sup 163}Dy, and {sup 164}Dy) were measured using the time-of-flight method with a 16 segment sodium iodide multiplicity detector. The measurements were made at the 25m flight station at the Gaerttner LINAC Center at Rensselaer Polytechnic Institute. Resonance parameters were obtained using the multilevel R-matrix Bayesian code SAMMY. The neutron capture data for four enriched dysprosium isotopes and one natural dysprosium sample were sequentially fitted. New resonances not listed in ENDF/B-VII.1 were observed. There were 29 and 17 new resonances from {sup 161}Dy and {sup 163}Dy isotopes, respectively. Six resonances from {sup 161}Dy isotope, two resonances from {sup 163}Dy, and four resonances from {sup 164}Dy were not observed. The capture resonance integrals of each isotope were calculated with the resulting resonance parameters and those of ENDF/B-VII.1 in the energy region from 0.5 eV to 20 MeV and were compared to the capture resonance integrals with the resonance parameters from ENDF/B-VII.1. A resonance integral value of the natural dysprosium calculated with present resonance parameters was 1405 ± 3.5 barn. The value is ∝ 0.3% higher than that obtained with the ENDF/B-VII.1 parameters. The distributions of the present and ENDF/B-VII.1 neutron widths were compared to a Porter-Thomas distribution. Neutron strength functions for {sup 161}Dy and {sup 163}Dy were calculated with the present resonance parameters and both values were in between the values of ''Atlas of Neutron Resonances'' and ENDF/B-VII.1. The present radiation width distributions of {sup 161}Dy and {sup 163}Dy were fitted with the χ{sup 2} distribution by varying the degrees of freedom. (orig.)

  10. Giant resonance effects in radiative capture

    International Nuclear Information System (INIS)

    Snover, K.A.

    1979-01-01

    The technique of capture reaction studies of giant resonance properties is described, and a number of examples are given. Most of the recent work of interest has been in proton capture, in part because of the great utility (and availability) of polarized beams; most of the discussion concerns this reaction. Alpha capture, which has been a useful tool for exploring isoscalar E2 strength, and neutron capture are, however, also treated. 46 references, 14 figures

  11. Acoustic loss and frequency stability studies of gamma- and proton-irradiated alpha-quartz crystal resonators

    International Nuclear Information System (INIS)

    Suter, J.J.

    1988-01-01

    This work examines the radiation-induced effects in alpha-quartz crystal resonators and distinguishes the various acoustic losses responsible for the frequency susceptibility over these dose ranges. Simulation of low-earth-orbit proton radiation was accomplished with protons from the Harvard University Cyclotron using a novel proton-beam modulator, which was designed to emulate a 10-120 MeV proton spectrum for the radiation susceptibility and acoustic-loss studies on AT quartz resonators. Quartz resonators having aluminum defect center concentrations between 0.01 and 19 ppm experienced proton-induced frequency shifts not correlated to their aluminum impurity content. It was also found that AT quartz resonators of the electrode-less BVA design experienced the smallest frequency shifts. Experiments conducted with 1.25-MeV gamma rays from a cobalt 60 source demonstrated identical frequency shifts in quartz, indicating that the energy losses of gamma rays and protons in quartz over the examined dose and energy ranges were similar. Acoustic-loss measurements conducted over the 0.3-70 K range revealed that the phonon-phonon and two-level energy excitation peaks near 20 and 5 K, respectively, were not affected by proton or cobalt 60 radiation

  12. Gamma-ray transients and related astrophysical phenomena

    International Nuclear Information System (INIS)

    Lingenfelter, R.E.; Hudson, H.S.; Worrall, D.M.

    1982-01-01

    The workshop covered the study of the explosive phenomena responsible for the various gamma ray transients. X-ray burster observations and theories were also reviewed with emphasis on their relationship to gamma ray bursts. Recent observational data, particularly from the SMM, HEAO, and VENERA satellites made the workshop especially timely. Major headings include: gamma-ray transients, x-ray bursts, solar transients, and instrumental concepts. Individual items from the workshop were prepared separately for the data base

  13. Cosmic gamma-ray background radiation. Current understandings and problems

    International Nuclear Information System (INIS)

    Inoue, Yoshiyuki

    2015-01-01

    The cosmic gamma-ray background radiation is one of the most fundamental observables in the gamma-ray band. Although the origin of the cosmic gamma-ray background radiation has been a mystery for a long time, the Fermi gamma-ray space telescope has recently measured it at 0.1-820 GeV and revealed that the cosmic GeV gamma-ray background is composed of blazars, radio galaxies, and star-forming galaxies. However, Fermi still leaves the following questions. Those are dark matter contribution, origins of the cosmic MeV gamma-ray background, and the connection to the IceCube TeV-PeV neutrino events. In this proceeding, I will review the current understandings of the cosmic gamma-ray background and discuss future prospects of cosmic gamma-ray background radiation studies. (author)

  14. Gamma-Ray Interactions for Reachback Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-02

    This presentation is a part of the DHS LSS spectroscopy training course and presents an overview of the following concepts: identification and measurement of gamma rays; use of gamma counts and energies in research. Understanding the basic physics of how gamma rays interact with matter can clarify how certain features in a spectrum were produced.

  15. Gamma-ray spectrometry applied to down-hole logging

    International Nuclear Information System (INIS)

    Dumesnil, P.; Umiastowsky, K.

    1983-11-01

    Gamma-ray spectrometry permits to improve the accuracy of natural gamma, gamma-gamma and neutron-gamma geophysical measurements. The probe developed at Centre d'Etudes Nucleaires de Saclay allows down-hole gamma-ray spectrometry. Among others, this probe can be applied to the uranium content determination by selective natural gamma method, down-hole determination of the ash content in the coal by gamma-gamma selective method and elemental analysis by neutron-gamma method. For the calibration and an exact interpretation of the measurements it is important to know the gamma-ray and neutron characteristics of the different kinds of rocks considered as probabilistic variables

  16. Absolute disintegration rate and 320 keV {gamma}-ray emission probability of {sup 51}Cr

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, M.C.M. de [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes /Instituto de Radioprotecao e Dosimetria (LNMRI/ IRD), Avenida Salvador Allende, s/no. Recreio-Rio de Janeiro, CEP 22780-160 (Brazil)], E-mail: candida@ird.gov.br; Iwahara, A.; Poledna, R.; Silva, C.J. da; Delgado, J.U. [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes /Instituto de Radioprotecao e Dosimetria (LNMRI/ IRD), Avenida Salvador Allende, s/no. Recreio-Rio de Janeiro, CEP 22780-160 (Brazil)

    2007-09-21

    This work describes the procedures for determining absolutely the {sup 51}Cr disintegration rate by using the 4{pi}{beta}-{gamma} coincidence and anti-coincidence counting and the sum-peak methods. A 4''x4''-NaI(Tl) scintillation detector was used in the {gamma}- channel of the 4{pi}{beta}-{gamma} coincidence system for {gamma}-ray counting. In the {beta}-channel, a 4{pi} gas flow proportional counter was used for counting of characteristic X-rays and Auger electrons originating from the electron capture events of the {sup 51}Cr decay scheme. Gamma spectrometry measurements by high-pure planar and coaxial germanium detectors were performed in the sum-peak method and in the determination of the 320 keV {gamma}-emission probability of {sup 51}Cr. This latter determined value agrees with the recent values found in the literature, confirming the reliability of the three methods used in this work for the disintegration rate measurements.

  17. Gamma-Ray Imaging Spectrometer (GRIS): a new balloon-borne experiment for gamma-ray line astronomy

    International Nuclear Information System (INIS)

    Teegarden, B.J.; Cline, T.L.; Gehrels, N.; Porreca, G.; Tueller, J.; Leventhal, M.; Huters, A.F.; Maccallum, C.J.; Stang, P.D.; Sandia Labs., Albuquerque, NM)

    1985-01-01

    High resolution gamma-ray spectroscopy is a relatively new field that holds great promise for further understanding of high energy astrophysical processes. When the high resolution gamma-ray spectrometer (GRSE) was removed from the GRO payload, a balloon program was initiated to permit continued development and improvement of instrumentation in this field, as well as continued scientific observations. The Gamma-Ray Imaging Spectrometer (GRIS) is one of the experiments selected as part of this program. The instrument contains a number of new and innovative features that are expected to produce a significant improvement in source location accuracy and sensitivity over previous balloon and satellite experiments

  18. High-energy gamma-ray emission in compact binaries

    International Nuclear Information System (INIS)

    Cerutti, Benoit

    2010-01-01

    Four gamma-ray sources have been associated with binary systems in our Galaxy: the micro-quasar Cygnus X-3 and the gamma-ray binaries LS I +61 degrees 303, LS 5039 and PSR B1259-63. These systems are composed of a massive companion star and a compact object of unknown nature, except in PSR B1259-63 where there is a young pulsar. I propose a comprehensive theoretical model for the high-energy gamma-ray emission and variability in gamma-ray emitting binaries. In this model, the high-energy radiation is produced by inverse Compton scattering of stellar photons on ultra-relativistic electron-positron pairs injected by a young pulsar in gamma-ray binaries and in a relativistic jet in micro-quasars. Considering anisotropic inverse Compton scattering, pair production and pair cascade emission, the TeV gamma-ray emission is well explained in LS 5039. Nevertheless, this model cannot account for the gamma-ray emission in LS I +61 degrees 303 and PSR B1259-63. Other processes should dominate in these complex systems. In Cygnus X-3, the gamma-ray radiation is convincingly reproduced by Doppler-boosted Compton emission of pairs in a relativistic jet. Gamma-ray binaries and micro-quasars provide a novel environment for the study of pulsar winds and relativistic jets at very small spatial scales. (author)

  19. VHE Gamma-ray Supernova Remnants

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Stefan; /KIPAC, Menlo Park

    2007-01-22

    Increasing observational evidence gathered especially in X-rays and {gamma}-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ''knee'' in the energy spectrum of Cosmic rays. This review summarizes the current status of {gamma}-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.

  20. Resonant Capture and Tidal Evolution in Circumbinary Systems: Testing the Case of Kepler-38

    Science.gov (United States)

    Zoppetti, F. A.; Beaugé, C.; Leiva, A. M.

    2018-04-01

    Circumbinary planets are thought to form far from the central binary and migrate inwards by interactions with the circumbinary disk, ultimately stopping near their present location either by a planetary trap near the disk inner edge or by resonance capture. Here, we analyze the second possibility, presenting a detailed numerical study on the capture process, resonant dynamics and tidal evolution of circumbinary planets in high-order mean-motion resonances (MMRs). Planetary migration was modeled as an external acceleration in an N-body code, while tidal effects were incorporated with a weak-friction equilibrium tide model. As a working example we chose Kepler-38, a highly evolved system with a planet in the vicinity of the 5/1 MMR. Our simulations show that resonance capture is a high-probability event under a large range of system parameters, although several different resonant configuration are possible. We identified three possible outcomes: aligned librations, anti-aligned librations and chaotic solutions. All were found to be dynamically stable, even after the dissipation of the disk, for time-spans of the order of the system's age. We found that while tidal evolution decreases the binary's separation, the semimajor axis of the planet is driven outwards. Although the net effect is a secular increase in the mean-motion ratio, the system requires a planetary tidal parameter of the order of unity to reproduce the observed orbital configuration. The results presented here open an interesting outlook into the complex dynamics of high-order resonances in circumbinary systems.

  1. Gamma-rays from decaying dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, G. [Paris-6 Univ., 75 (France). Inst. d' Astrophysique; Buchmueller, W.; Covi, L.; Ibarra, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2007-10-15

    We study the prospects for detecting gamma-rays from decaying Dark Matter (DM), focusing in particular on gravitino DM in R-parity breaking vacua. Given the substantially different angular distribution of the predicted gamma-ray signal with respect to the case of annihilating DM, and the relatively poor (of order 0.1 ) angular resolution of gamma-ray detectors, the best strategy for detection is in this case to look for an exotic contribution to the gamma-ray flux at high galactic latitudes, where the decaying DM contribution would resemble an astrophysical extragalactic component, similar to the one inferred by EGRET observations. Upcoming experiments such as GLAST and AMS-02 may identify this exotic contribution and discriminate it from astrophysical sources, or place significant constraints on the mass and lifetime of DM particles. (orig.)

  2. Phantom experiment of depth-dose distributions for gadolinium neutron capture therapy

    International Nuclear Information System (INIS)

    Matsumoto, T.; Kato, K.; Sakuma, Y.; Tsuruno, A.; Matsubayashi, M.

    1993-01-01

    Depth-dose distributions in a tumor simulated phantom were measured for thermal neutron flux, capture gamma-ray and internal conversion electron dose rates for gadolinium neutron capture therapy. The results show that (i) a significant dose enhancement can be achieved in the tumor by capture gamma-rays and internal conversion electrons but the dose is mainly due to capture gamma-rays from the Gd(n, γ) reactions, therefore, is not selective at the cellular level, (ii) the dose distribution was a function of strongly interrelated parameters such as gadolinium concentrations, tumor site and neutron beam size (collimator aperture size), and (iii) the Gd-NCT by thermal neutrons appears to be a potential for treatment of superficial tumor. (author)

  3. SYSTEMATIC STUDY OF GAMMA-RAY-BRIGHT BLAZARS WITH OPTICAL POLARIZATION AND GAMMA-RAY VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Ryosuke; Fukazawa, Yasushi; Kanda, Yuka; Shiki, Kensei; Kawabata, Miho; Nakaoka, Tatsuya; Takaki, Katsutoshi; Takata, Koji; Ui, Takahiro [Department of Physical Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Nalewajko, Krzysztof; Madejski, Greg M. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States); Uemura, Makoto; Tanaka, Yasuyuki T.; Kawabata, Koji S.; Akitaya, Hiroshi; Ohsugi, Takashi [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Schinzel, Frank K. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Moritani, Yuki [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Sasada, Mahito [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Yamanaka, Masayuki, E-mail: itoh@hep01.hepl.hiroshima-u.ac.jp, E-mail: itoh@hp.phys.titech.ac.jp [Department of Physics, Faculty of Science and Engineering, Konan University, Okamoto, Kobe, Hyogo 658-8501 (Japan); and others

    2016-12-10

    Blazars are highly variable active galactic nuclei that emit radiation at all wavelengths from radio to gamma rays. Polarized radiation from blazars is one key piece of evidence for synchrotron radiation at low energies, and it also varies dramatically. The polarization of blazars is of interest for understanding the origin, confinement, and propagation of jets. However, even though numerous measurements have been performed, the mechanisms behind jet creation, composition, and variability are still debated. We performed simultaneous gamma-ray and optical photopolarimetry observations of 45 blazars between 2008 July and 2014 December to investigate the mechanisms of variability and search for a basic relation between the several subclasses of blazars. We identify a correlation between the maximum degree of optical linear polarization and the gamma-ray luminosity or the ratio of gamma-ray to optical fluxes. Since the maximum polarization degree depends on the condition of the magnetic field (chaotic or ordered), this result implies a systematic difference in the intrinsic alignment of magnetic fields in parsec-scale relativistic jets between different types of blazars (flat-spectrum radio quasars vs. BL Lacs) and consequently between different types of radio galaxies (FR I versus FR II).

  4. Gamma-ray spectroscopy on irradiated fuel rods

    International Nuclear Information System (INIS)

    Terremoto, Luis Antonio Albiac

    2009-01-01

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  5. Monitoring of blood-10B concentration for boron neutron capture therapy using prompt gamma-ray analysis

    International Nuclear Information System (INIS)

    Raaijmakers, C.P.J.; Konijnenberg, M.W.; Dewit, L.; Mijnheer, B.J.; Haritz, D.; Huiskamp, R.; Philipp, K.; Siefert, A.; Stecher-Rasmussen, F.

    1995-01-01

    The aim of the present study was to monitor the blood- 10 B concentration of laboratory dogs receiving boron neutron capture therapy, in order to obtain optimal agreement between prescribed and actual dose. A prompt gamma-ray analysis system was developed for this purpose at the High Flux Reactor in Petten. The technique was compared with inductively coupled plasma-atomic emission spectrometry and showed good agreement. A substantial variation in 10 B clearance pattern after administration of borocaptate sodium was found between the different dogs. Consequently, the irradiation commencement was adjusted to the individually determined boron elimination curve. Mean blood- 10 B concentratios during irradiation of 25.8±2.2 μg/g (1 SD, n=18) and 49.3±5.3 μg/g (1 SD, n=17) were obtained for intended concentrations of 25 μg/g and 50 μg/g, respectively. These variations are a factor of two smaller than irradiations performed at a uniform post-infusion irradiation starting time. Such a careful bolld- 10 B monitoring procedure is a prerequisite for accurately obtaining such steep dose-response curves as observed during the dog study. (orig.)

  6. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    International Nuclear Information System (INIS)

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano

    2012-01-01

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 μm) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  7. Electron Capture Dissociation of Weakly Bound Polypeptide Polycationic Complexes

    DEFF Research Database (Denmark)

    Haselmann, Kim F; Jørgensen, Thomas J D; Budnik, Bogdan A

    2002-01-01

    as well as specific complexes of modified glycopeptide antibiotics with their target peptide. The weak nature of bonding is substantiated by blackbody infrared dissociation, low-energy collisional excitation and force-field simulations. The results are consistent with a non-ergodic ECD cleavage mechanism.......We have previously reported that, in electron capture dissociation (ECD), rupture of strong intramolecular bonds in weakly bound supramolecular aggregates can proceed without dissociation of weak intermolecular bonds. This is now illustrated on a series of non-specific peptide-peptide dimers...

  8. Upgrade of the JET gamma-ray cameras

    International Nuclear Information System (INIS)

    Soare, S.; Curuia, M.; Anghel, M.; Constantin, M.; David, E.; Craciunescu, T.; Falie, D.; Pantea, A.; Tiseanu, I.; Kiptily, V.; Prior, P.; Edlington, T.; Griph, S.; Krivchenkov, Y.; Loughlin, M.; Popovichev, S.; Riccardo, V; Syme, B.; Thompson, V.; Lengar, I.; Murari, A.; Bonheure, G.; Le Guern, F.

    2007-01-01

    Full text: The JET gamma-ray camera diagnostics have already provided valuable information on the gamma-ray imaging of fast ion in JET plasmas. The applicability of gamma-ray imaging to high performance deuterium and deuterium-tritium JET discharges is strongly dependent on the fulfilment of rather strict requirements for the characterisation of the neutron and gamma-ray radiation fields. These requirements have to be satisfied within very stringent boundary conditions for the design, such as the requirement of minimum impact on the co-existing neutron camera diagnostics. The JET Gamma-Ray Cameras (GRC) upgrade project deals with these issues with particular emphasis on the design of appropriate neutron/gamma-ray filters ('neutron attenuators'). Several design versions have been developed and evaluated for the JET GRC neutron attenuators at the conceptual design level. The main design parameter was the neutron attenuation factor. The two design solutions, that have been finally chosen and developed at the level of scheme design, consist of: a) one quasi-crescent shaped neutron attenuator (for the horizontal camera) and b) two quasi-trapezoid shaped neutron attenuators (for the vertical one). The second design solution has different attenuation lengths: a short version, to be used together with the horizontal attenuator for deuterium discharges, and a long version to be used for high performance deuterium and DT discharges. Various neutron-attenuating materials have been considered (lithium hydride with natural isotopic composition and 6 Li enriched, light and heavy water, polyethylene). Pure light water was finally chosen as the attenuating material for the JET gamma-ray cameras. The neutron attenuators will be steered in and out of the detector line-of-sight by means of an electro-pneumatic steering and control system. The MCNP code was used for neutron and gamma ray transport in order to evaluate the effect of the neutron attenuators on the neutron field of the

  9. {sup 41}K(n, {gamma}){sup 42}K thermal and resonance integral cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, F.A. Jr.; Maidana, N.L.; Vanin, V.R. [Sao Paulo Univ., SP (Brazil). Lab. do Acelerador Linear; Dias, M.S.; Koskinas, M.F. [IPEN-CNEN, Sao Paulo, SP (Brazil). Lab. de Metrolgia Nuclear; Lopez-Pino, N. [Instituto Superior de Tecnolgias y Ciencias Aplicadas (InSTEC), Habana (Cuba)

    2012-07-01

    We measured the {sup 41}K thermal neutron absorption and resonance integral cross sections after the irradiation of KNO{sub 3} samples near the core of the IEA-R1 IPEN pool-type research reactor. Bare and cadmium-covered targets were irradiated in pairs with Au-Al alloy flux-monitors. The residual activities were measured by gamma-ray spectroscopy with a HPGe detector, with special care to avoid the {sup 42}K decay {beta}{sup -} emission effects on the spectra. The gamma-ray self-absorption was corrected with the help of MCNP simulations. We applied the Westcott formalism in the average neutron flux determination and calculated the depression coefficients for thermal and epithermal neutrons due to the sample thickness with analytical approximations. We obtained 1.57(4) b and 1.02(4) b, for thermal and resonance integral cross sections, respectively, with correlation coefficient equal to 0.39.

  10. Gamma-Ray Pulsar Studies With GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  11. Egret observations of the extragalactic gamma-ray emission

    DEFF Research Database (Denmark)

    Sreekumar, P.; Bertsch, D.L.; Dingus, B.L.

    1998-01-01

    The all-sky survey in high-energy gamma rays (E > 30 MeV) carried out by EGRET aboard the Compton Gamma Ray Observatory provides a unique opportunity to examine in detail the diffuse gamma-ray emission. The observed diffuse emission has a Galactic component arising from cosmic-ray interactions wi...

  12. A study of the sensitivity of an imaging telescope (GRITS) for high energy gamma-ray astronomy. Final report

    International Nuclear Information System (INIS)

    Yearian, M.R.

    1990-08-01

    When a gamma-ray telescope is placed in Earth orbit, it is bombarded by a flux of cosmic protons much greater than the flux of interesting gammas. These protons can interact in the telescope's thermal shielding to produce detectable gamma rays, most of which are vetoed. Since the proton flux is so high, the unvetoed gamma rays constitute a significant background relative to some weak sources. This background increases the observing time required to pinpoint some sources and entirely obscures other sources. Although recent telescopes have been designed to minimize this background, its strength and spectral characteristics were not previously calculated in detail. Monte Carlo calculations are presented which characterize the strength, spectrum and other features of the cosmic proton background using FLUKA, a hadronic cascade program. Several gamma-ray telescopes, including SAS-2, EGRET and the Gamma Ray Imaging Telescope System (GRITS), are analyzed, and their proton-induced backgrounds are characterized. In all cases, the backgrounds are either shown to be low relative to interesting signals or suggestions are made which would reduce the background sufficiently to leave the telescope unimpaired. In addition, several limiting cases are examined for comparison to previous estimates and calibration measurements

  13. Sensitivity of Gamma-Ray Detectors to Polarization

    OpenAIRE

    Yadigaroglu, I. -A.

    1996-01-01

    Previous studies have shown that the largest gamma-ray detector to date, EGRET, does not have useful polarization sensitivity. We have explored here some improved approaches to analyzing gamma-ray pair production events, leading to important gains in sensitivity to polarization. The performance of the next generation gamma-ray instrument GLAST is investigated using a detailed Monte Carlo simulation of the complete detector.

  14. Bulk density calculations from prompt gamma ray yield

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Nagadi, M.M.; Al-Amoudi, O.S.B.; Maslehuddin, M.

    2006-01-01

    Full text: The gamma ray yield from a Prompt Gamma ray Neutron Activation Analysis (PGNAA) setup is a linear function of element concentration and neutron flux in a the sample with constant bulk density. If the sample bulk density varies as well, then the element concentration and the neutron flux has a nonlinear correlation with the gamma ray yield [1]. The measurement of gamma ray yield non-linearity from samples and a standard can be used to estimate the bulk density of the samples. In this study the prompt gamma ray yield from Blast Furnace Slag, Fly Ash, Silica Fumes and Superpozz cements samples have been measured as a function of their calcium and silicon concentration using KFUPM accelerator-based PGNAA setup [2]. Due to different bulk densities of the blended cement samples, the measured gamma ray yields have nonlinear correlation with calcium and silicon concentration of the samples. The non-linearity in the yield was observed to increase with gamma rays energy and element concentration. The bulk densities of the cement samples were calculated from ratio of gamma ray yield from blended cement and that from a Portland cement standard. The calculated bulk densities have good agreement with the published data. The result of this study will be presented

  15. Airborne gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    A new method - Noise Adjusted Singular Value Decomposition, NASVD - for processing gamma-ray spectra has been developed as part of a Ph.D. project. By using this technique one is able to decompose a large set of data - for example from airborne gamma-ray surveys - into a few spectral components....... By knowing the spectral components and their amplitudes in each of the measured spectra one is able to extract more information from the data than possible with the methods used otherwise....

  16. Multiple Gamma-Ray Detection Capability of a CeBr3 Detector for Gamma Spectroscopy

    Directory of Open Access Journals (Sweden)

    A. A. Naqvi

    2017-01-01

    Full Text Available The newly developed cerium tribromide (CeBr3 detector has reduced intrinsic gamma-ray activity with gamma energy restricted to 1400–2200 keV energy range. This narrower region of background gamma rays allows the CeBr3 detector to detect more than one gamma ray to analyze the gamma-ray spectrum. Use of multiple gamma-ray intensities in elemental analysis instead of a single one improves the accuracy of the estimated results. Multigamma-ray detection capability of a cylindrical 75 mm × 75 mm (diameter × height CeBr3 detector has been tested by analyzing the chlorine concentration in water samples using eight chlorine prompt gamma rays over 517 to 8578 keV energies utilizing a D-D portable neutron generator-based PGNAA setup and measuring the corresponding minimum detection limit (MDC of chlorine. The measured MDC of chlorine for gamma rays with 517–8578 keV energies varies from 0.07 ± 0.02 wt% to 0.80 ± 0.24. The best value of MDC was measured to be 0.07 ± 0.02 wt% for 788 keV gamma rays. The experimental results are in good agreement with Monte Carlo calculations. The study has shown excellent detection capabilities of the CeBr3 detector for eight prompt gamma rays over 517–8578 keV energy range without significant background interference.

  17. Observational techniques of gamma rays astronomy in low energy

    International Nuclear Information System (INIS)

    Costa, J.M. da.

    1982-02-01

    Due to the absorption of great part of the gamma-ray spectrum of cosmic origin, by the earth's atmosphere at heights above 20Km, gamma-ray astronomy achieved its full development only after the advent of the space age. Ballons and satellites are the space vehicles which have been used to transport gamma-ray telescopes to observational heights in the atmosphere, or out of it. The results of these experiments can determine the sources, the energy spectra and the intensities of the cosmic gamma-rays, and provide other important information of astrophysical interest. The detection of gamma-rays of cosmic origin is very difficult. The observational techniques used in gamma-ray astronomy are dependent on the energy range of the gamma-rays which one desires to detect. The most common telescopes of low energy gamma-ray astronomy (50KeV - 20MeV) use NaI(Tl) scintillators, or germanium diodes, as principal detectors, surrounded by an active shield (anticoincidence) of organic or inorganic scintillators. (Author) [pt

  18. Synergistic interaction of gamma rays and some metallic salts in the induction of chlorophyll mutations in rice

    International Nuclear Information System (INIS)

    Reddy, T.P.; Vaidyanath, K.

    1978-01-01

    In this study the mutagenic activity of 9 metallic salts was tested in comparison and conjunction with gamma rays on rice seed. In M 2 , barium and cadmium produced chlorophyll mutation and mutant frequencies on a par with those of 20 kR gamma rays. Similarly, copper and mercury induced moderately high mutation and mutant frequencies. Salts of strontium, iron and lead showed rather weak mutagenic effects. On the other hand, two metals - manganese anc calcium - failed to provoke chlorophyll mutations in rice seed. Sequential treatments of gamma rays + 5 metals, namely Sr, Cd, Hg, Pb and Cu, produced synergistic yields of chlorophyll mutants in the M 2 generation. Two genetically active metals, Ba and Fe, showed less than additive effects when post-treated after gamma irradiation. Manganese, which failed to induce chlorophyll mutations in independent treatment, potentiated the mutagenic activity of gamma radiation in sequential treatment. On the other hand, sequential treatment with calcium seemed to confer a substantial protection against gamma-ray-induced genetic lesions. The probable mechanisms of synergistic interaction, mutagenic potentiation and protection, observed in sequential treatments, are discussed. (Auth.)

  19. Possible galactic origin of. gamma. -ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Manchanda, R K; Ramsden, D [Southampton Univ. (UK). Dept. of Physics

    1977-03-31

    It is stated that extragalactic models for the origin of non-solar ..gamma..-ray bursts include supernova bursts in remote galaxies, and the collapse of the cores of active stars, whilst galactic models are based on flare stars, thermonuclear explosions in neutron stars and the sudden accretion of cometary gas on to neutron stars. The acceptability of any of these models may be tested by the observed size spectrum of the ..gamma..-ray bursts. The extragalactic models predict a power law spectrum with number index -1.5, whilst for the galactic models the number index will be -1. Experimental data on ..gamma..-ray bursts is, however, still meagre, and so far only 44 confirmed events have been recorded by satellite-borne instruments. The number spectrum of the observed ..gamma..-ray bursts indicates that the observed distribution for events with an energy < 10/sup -4/ erg/cm/sup 2/ is flat; this makes the choice of any model completely arbitrary. An analysis of the observed ..gamma..-ray events is here presented that suggests very interesting possibilities for their origin. There appears to be a preferred mean energy for ..gamma..-ray bursts; some 90% of the recorded events show a mean energy between 5 x 10/sup -5/ and 5 x 10/sup -4/ erg/cm/sup 2/, contrary to the predicted characteristics of the number spectrum of various models. A remarkable similarity is found between the distribution of ..gamma..-ray bursts and that of supernova remnants, suggesting a genetic relationship between the two and the galactic origin of the ..gamma..-ray bursts, and the burst source could be identified with completely run down neutron stars, formed during supernova explosions.

  20. Terrestrial gamma-ray flashes

    Science.gov (United States)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-08-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models.

  1. Terrestrial gamma-ray flashes

    International Nuclear Information System (INIS)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-01-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models

  2. Prompt gamma-ray activation analysis (PGAA)

    International Nuclear Information System (INIS)

    Kern, J.

    1996-01-01

    The paper deals with a brief description of the principles of prompt gamma-ray activation analysis (PGAA), with the detection of gamma-rays, the PGAA project at SINQ and with the expected performances. 8 figs., 3 tabs., 10 refs

  3. Prompt gamma-ray activation analysis (PGAA)

    Energy Technology Data Exchange (ETDEWEB)

    Kern, J [Fribourg Univ. (Switzerland). Inst. de Physique

    1996-11-01

    The paper deals with a brief description of the principles of prompt gamma-ray activation analysis (PGAA), with the detection of gamma-rays, the PGAA project at SINQ and with the expected performances. 8 figs., 3 tabs., 10 refs.

  4. Gamma-Ray Bursts: 4th Huntsville Symposium. Proceedings

    International Nuclear Information System (INIS)

    Meegan, C.A.; Preece, R.D.; Koshut, T.M.

    1998-01-01

    These proceedings represent papers presented at the Fourth Huntsville Gamma-Ray Bursts Symposium held in September, 1997 in Huntsville, Alabama, USA. This conference occurred at a crucial time in the history of the gamma-ray burst research. In early 1997, 30 years after the detection of the first gamma-ray burst by the Vela satellites, counterparts to bursts were finally detected at optical and radio wavelengths. The symposium attracted about 200 scientists from 16 countries. Some of the topics discussed include gamma-ray burst spectra, x-ray observations, optical observations, radio observations, host galaxies, shocks and afterglows and models of gamma-ray bursts. There were 183 papers presented, out of these, 16 have been abstracted for the Energy Science and Technology database

  5. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  6. Catalog of gamma-rays unplaced in radioactive decay schemes

    International Nuclear Information System (INIS)

    Narita, Tsutomu; Kitao, Kensuke.

    1991-03-01

    A catalog is made for gamma-rays emitted in decay of radioactive nuclides but not placed in their decay schemes. It consists of two tables. In Table 1, the number of these unplaced gamma-ray components by a nuclide is given together with the fraction of total intensity of these gamma-rays to that of all observed gamma-rays. In Table 2, the unplaced gamma-rays are arranged in order of increasing energy. Each line of this table contains the gamma-ray energy, intensity, nuclide identification, and energies and intensities of the most prominent gamma-rays from the decay of the radionuclides. This catalog is a compilation from Evaluated Nuclear Structure Data File (ENSDF) maintained by National Nuclear Data Center at Brookhaven National Laboratory, of at February 1990. (author)

  7. modern utilization of accurate methods for gamma-ray spectral analysis detected by high pure germanium (HPGE) detectors through different applications

    International Nuclear Information System (INIS)

    El-Sayed, M.M.

    2006-01-01

    this thesis presents a novel way for application of wavelet transform theory in gamma-ray spectroscopy . this technique was applied for searching real and weak peaks, solving problem of multiplets, smoothing and de-noising gamma-ray spectra, and using artificial neural network for identifying peaks. a brief description about gamma-ray spectrum analysis is presented. we discussed the necessary formulas and algorithms of wavelet theory to solve these main problems in gamma -ray spectrum analysis. the algorithm of peak search was applied on different types of spectra, IAEA spectra and other sources of gamma spectra. the algorithm of multiplets algorithm was applied successfully on different types of multiplets. the algorithm of de noising was applied successfully on different sources of spectra.finally, a database for neutron activation laboratory is created. this data base consists of five routines, wavelet gamma spectrum analysis, peak identification, elemental concentration , neutron flux determination,and detector efficiency calculation

  8. Weak Hard X-Ray Emission from Broad Absorption Line Quasars: Evidence for Intrinsic X-Ray Weakness

    DEFF Research Database (Denmark)

    Luo, B.; Brandt, W. N.; Alexander, D. M.

    2014-01-01

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z 330 times weaker than...... expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL...... quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three...

  9. Near stellar sources of gamma-ray bursts

    OpenAIRE

    Luchkov, B. I.; Markin, P. D.

    2012-01-01

    Correlation analysis of gamma-ray burst coordinates and nearby stars, registered on 2008-2011, revealed 5 coincidences with angular accuracy better than 0.1 degree. The random probability is $7\\times 10^{-7}$, so evidencing that coincident stars are indeed gamma-ray burst sources. The proposed method should be continued in order to provide their share in common balance of cosmic gamma-ray bursts.

  10. Gamma rays from the interstellar medium

    International Nuclear Information System (INIS)

    Bloemen, J.B.G.M.

    1985-01-01

    This thesis describes new gamma-ray views on cosmic rays and the interstellar medium. The author describes the COS-B data base and the pre-launch and in-flight calibration data used for all analyses. Diffuse galactic gamma radiation (> 50 MeV) may be either a result of cosmic-ray-matter interactions, or of the cosmic-ray electrons with the interstellar radiation field (mainly at optical and infrared wavelengths), through the inverse-Compton process. A detailed comparison between the gamma-ray observations of the large complex of interstellar clouds in Orion and Monoceros and the CO and HI surveys of this region is given. It gives insight into the cloud penetration of cosmic rays and in the relation between CO detections and molecular hydrogen column densities. Next, the radial distribution of gamma rays in the Galaxy is studied, as well as the galactic centre (more precisely, the central 400 pc), which contains a large concentration of CO molecules. The H 2 /CO abundance and the cosmic-ray density in the galactic centre are discussed and compared to the findings for the galactic disk. In various analyses in this thesis a likelihood-ratio method is applied for parameter estimation and hypothesis testing. A general description of this method is added as an appendix. (Auth.)

  11. Review of GRANAT observations of gamma-ray bursts

    DEFF Research Database (Denmark)

    Terekhov, O.; Denissenko, D.; Sunyaev, R.

    1995-01-01

    The GRANAT observatory was launched into a high apogee orbit on 1 December, 1989. Three instruments onboard GRANAT - PHEBUS, WATCH and SIGMA are able to detect gamma-ray bursts in a very broad energy range from 6 keV up to 100 MeV. Over 250 gamma-ray bursts were detected. We discuss the results...... of the observations of the time histories and spectral evolution of the detected events provided by the different instruments in different energy ranges. Short Gamma-Ray Bursts ( 2 s) events. Evidence of the existence...... of four differently behaving componenents in gamma-ray burst spectra is discussed. Statistical properties of the gamma-ray burst sources based on the 5 years of observations with (∼ 10−6 erg/cm2) sensitivity as well as the results of high sensitivity (∼ 10−8 erg/cm2) search for Gamma-Ray Bursts within...

  12. European team gauges a gamma-ray star

    Science.gov (United States)

    1996-03-01

    Italian astrophysicists have pushed the Hubble Space Telescope to the limit of its powers in finding the distance of Geminga, a pointlike object 500 light-years from the Earth. It is the prototype of a novel kind of star, a radio-silent neutron star, which may be much more common in the Universe than previously supposed. Geminga is so weak in visible light that Hubble had to stare at the spot for more than an hour to register it adequately. The object is nevertheless one of the brightest sources of gamma-rays in the sky, and its output of this very energetic form of radiation can now be accurately ganged. Neutron stars, first discovered as radio pulsars in 1967, are fantastic creations of exploding stars, just one step short of a black hole. They are heavier than the Sun yet only about twenty kilometres wide. Made of compressed nuclear matter, they have gravity and magnetic fields many billions of times stronger than on the Earth. With the first direct measurement of the distance of a radio-silent neutron star, astrophysicists can assess Geminga's power and speed of motion. The astronomical task was like judging the width of a one- franc piece in Paris, seen from the distance of Sicily. Geminga's low brightness greatly aggravated the difficulties. Patrizia Caraveo and her colleagues at the Istituto di Fisica Cosmica in Milan arranged for Hubble's wide-field camera (WFPC2) to make its prolonged observations of Geminga three times. Their findings will be published in Astrophysical Journal Letters on 20 April 1996. Caraveo's co-authors are Giovanni Bignami and Roberto Mignani of Milan, and Laurence Taff of Johns Hopkins University, Maryland. The Italians took advantage of the European Space Agency's collaboration with NASA in the Hubble mission, which gives European astronomers privileged access to the Space Telescope. Shifts of millionths of a degree The three sightings of Geminga, made at intervals of six months, revealed small shifts in the position of the faint

  13. ESR Study of the polyvinyl alcohol gamma-ray induced free-radicals

    International Nuclear Information System (INIS)

    Rosas S, E.

    1994-01-01

    This work reports the findings of the molecular weight effect on the electron spin resonance saturation curve of the gamma-ray irradiated polyvinyl alcohol, G-RIPVA. It has been noted that Pva of a lower molecular weight, between 13,000-23,000, show some noticeable differences in the electron spin resonance, ESR, response as a function of the gamma-ray dose in the 1-100 k Gy range than the one reported in the literature with molecular weight of 108,000. Results show a linear response in the log-log plot of the dose vs ESR signal intensity for samples based on G-RIPVA of the lower molecular weight as contrasted with the non-linear ESR response of G-RIPVA of higher molecular weight in the above named dose range. Such a result has been assumed to arise from the shorter molecular chains for the case of the lower molecular weight samples making this to increase the production of Pva free radicals with respect to the absorbed studied doses. Also, a discussion on the nature and stability of the Pva free radicals will be given. (Author)

  14. Ultra-high energy cosmic rays and prompt TeV gamma rays from ...

    Indian Academy of Sciences (India)

    physics pp. 789-792. Ultra-high energy cosmic rays and prompt. TeV gamma rays from gamma ray bursts ... The origin of the observed ultra-high energy cosmic ray (UHECR) events with ... are proton and electron rest mass, respectively.

  15. Factors influencing in situ gamma-ray measurements

    Science.gov (United States)

    Loonstra, E. H.; van Egmond, F. M.

    2009-04-01

    Introduction In situ passive gamma-ray sensors are very well suitable for mapping physical soil properties. In order to make a qualitative sound soil map, high quality input parameters for calibration are required. This paper will focus on the factors that affect the output of in situ passive gamma-ray sensors, the primary source, soil, not taken into account. Factors The gamma-ray spectrum contains information of naturally occurring nuclides 40K, 238U and 232Th and man-made nuclides like 137Cs, as well as the total count rate. Factors that influence the concentration of these nuclides and the count rate can be classified in 3 categories. These are sensor design, environmental conditions and operational circumstances. Sensor design The main elements of an in situ gamma-ray sensor that influence the outcome and quality of the output are the crystal and the spectrum analysis method. Material and size of the crystal determine the energy resolution. Though widely used, NaI crystals are not the most efficient capturer of gamma radiation. Alternatives are BGO and CsI. BGO has a low peak resolution, which prohibits use in cases where man-made nuclides are subject of interest. The material is expensive and prone to temperature instability. CsI is robust compared to NaI and BGO. The density of CsI is higher than NaI, yielding better efficiency, especially for smaller crystal sizes. More volume results in higher energy efficiency. The reduction of the measured spectral information into concentration of radionuclides is mostly done using the Windows analysis method. In Windows, the activities of the nuclides are found by summing the intensities of the spectrum found in a certain interval surrounding a peak. A major flaw of the Windows method is the limited amount of spectral information that is incorporated into the analysis. Another weakness is the inherent use of ‘stripping factors' to account for contributions of radiation from nuclide A into the peak of nuclide B. This

  16. A new gamma ray imaging diagnostic for runaway electron studies at DIII-D

    Science.gov (United States)

    Cooper, C. M.; Pace, D. C.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Hollmann, E. M.; Moyer, R. A.; Risov, V.

    2015-11-01

    A new Gamma Ray Imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at DIII-D. The diagnostic is sensitive to 0.5 - 50 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE dissipation from pellet injection. The GRI consists of a lead ``pinhole camera'' mounted on the midplane with 11x11 counter-current tangential chords 20 cm wide that span the vessel. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE Bremsstrahlung radiation. Detectors operate in current saturation mode at 10 MHz, or the flux is attenuated for Pulse Height Analysis (PHA) capable of discriminating up to ~10k pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. Work supported by the US DOE under DE-AC05-00OR22725, DE-FG02-07ER54917 & DE-FC02-04ER54698.

  17. Gamma ray energy tracking in GRETINA

    Science.gov (United States)

    Lee, I. Y.

    2011-10-01

    The next generation of stable and exotic beam accelerators will provide physics opportunities to study nuclei farther away from the line of stability. However, these experiments will be more demanding on instrumentation performance. These come from the lower production rate for more exotic beams, worse beam impurities, and large beam velocity from the fragmentation and inverse reactions. Gamma-ray spectroscopy will be one of the most effective tools to study exotic nuclei. However, to fully exploit the physics reach provided by these new facilities, better gamma-ray detector will be needed. In the last 10 years, a new concept, gamma-ray energy tracking array, was developed. Tracking arrays will increase the detection sensitivity by factors of several hundred compared to current arrays used in nuclear physics research. Particularly, the capability of reconstructing the position of the interaction with millimeters resolution is needed to correct the Doppler broadening of gamma rays emitted from high velocity nuclei. GRETINA is a gamma-ray tracking array which uses 28 Ge crystals, each with 36 segments, to cover ¼ of the 4 π of the 4 π solid angle. The gamma ray tracking technique requires detailed pulse shape information from each of the segments. These pulses are digitized using 14-bit 100 MHz flash ADCs, and digital signal analysis algorithms implemented in the on-board FPGAs provides energy, time and selection of pulse traces. A digital trigger system, provided flexible trigger functions including a fast trigger output, and also allows complicated trigger decisions to be made up to 20 microseconds. Further analyzed, carried out in a computer cluster, determine the energy, time, and three-dimensional positions of all gamma-ray interactions in the array. This information is then utilized, together with the characteristics of Compton scattering and pair-production processes, to track the scattering sequences of the gamma rays. GRETINA construction is completed in

  18. Physics and astrophysics with gamma-ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, J. [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2012-08-15

    In the past few years gamma-ray astronomy has entered a golden age. A modern suite of telescopes is now scanning the sky over both hemispheres and over six orders of magnitude in energy. At {approx}TeV energies, only a handful of sources were known a decade ago, but the current generation of ground-based imaging atmospheric Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS) has increased this number to nearly one hundred. With a large field of view and duty cycle, the Tibet and Milagro air shower detectors have demonstrated the promise of the direct particle detection technique for TeV gamma rays. At {approx}GeV energies, the Fermi Gamma-ray Space Telescope has increased the number of known sources by nearly an order of magnitude in its first year of operation. New classes of sources that were previously theorized to be gamma-ray emitters have now been confirmed observationally. Moreover, there have been surprise discoveries of GeV gamma-ray emission from source classes for which no theory predicted it was possible. In addition to elucidating the processes of high-energy astrophysics, gamma-ray telescopes are making essential contributions to fundamental physics topics including quantum gravity, gravitational waves, and dark matter. I summarize the current census of astrophysical gamma-ray sources, highlight some recent discoveries relevant to fundamental physics, and describe the synergetic connections between gamma-ray and neutrino astronomy. This is a brief overview intended in particular for particle physicists and neutrino astronomers, based on a presentation at the Neutrino 2010 conference in Athens, Greece. I focus in particular on results from Fermi (which was launched soon after Neutrino 2008), and conclude with a description of the next generation of instruments, namely HAWC and the Cherenkov Telescope Array.

  19. X-Ray Spectral Characteristics of Ginga Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Strohmayer, T.E.; Fenimore, E.E.; Murakami, T.; Yoshida, A.

    1998-01-01

    We have investigated the spectral characteristics of a sample of bright gamma-ray bursts detected with the gamma-ray burst sensors aboard the satellite Ginga. This instrument employed a proportional and scintillation counter to provide sensitivity to photons in the 2 endash 400 keV region and as such provided a unique opportunity to characterize the largely unexplored X-ray properties of gamma-ray bursts. The photon spectra of the Ginga bursts are well described by a low-energy slope, a bend energy, and a high-energy slope. In the energy range where they can be compared, this result is consistent with burst spectral analyses obtained from the BATSE experiment aboard the Compton Gamma-Ray Observatory. However, below 20 keV we find evidence for a positive spectral number index in approximately 40% of our burst sample, with some evidence for a strong rolloff at lower energies in a few events. There is a correlation (Pearson's r = -0.62) between the low-energy slope and the bend energy. We find that the distribution of spectral bend energies extends below 10 keV. There has been some concern in cosmological models of gamma-ray bursts (GRBs) that the bend energy covers only a small dynamic range. Our result extends the observed dynamic range, and, since we observe bend energies down to the limit of our instrument, perhaps observations have not yet limited the range. The Ginga trigger range was virtually the same as that of BATSE, yet we find a different range of fit parameters. One possible explanation might be that GRBs have two break energies, one often in the 50 endash 500 keV range and the other near 5 keV. Both BATSE and Ginga fit with only a single break energy, so BATSE tends to find breaks near the center of its energy range, and we tend to find breaks in our energy range. The observed ratio of energy emitted in the X-rays relative to the gamma rays can be much larger than a few percent and, in fact, is sometimes larger than unity. The average for our 22 bursts

  20. Handbook on Mobile Gamma-ray Spectrometry

    DEFF Research Database (Denmark)

    Aage, Helle Karina; Korsbech, Uffe C C

    2003-01-01

    Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing......Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing...

  1. Use of neutron capture gamma radiation for determining grade of iron ore in blast holes and exploration holes

    International Nuclear Information System (INIS)

    Eisler, P.L.; Huppert, P.; Mathew, P.J.; Wylie, A.W.; Youl, S.F.

    1977-01-01

    Neutron radiative capture and neutron-neutron logging have been applied to determining the grade of ore in dry blast holes and a dry exploration hole drilled into a layered iron deposit. Both thermal and epithermal neutron responses were measured as well as the gamma-ray responses due to neutron capture by iron and by hydrogen present in hydrated minerals. The results were fitted by a stepwise multiple linear regression technique to give expressions for mean grade of ore in the drill hole and 95% confidence intervals for estimation of this mean. For an overall range of ore grades of 20-68% Fe and a mean grade of 63% Fe, the confidence interval for prediction of mean grade for the neutron-gamma technique was 0.3% Fe for pooled data from all five blast holes and 0.8% Fe for a single hole. It was also shown that for this type of layered deposit a simpler neutron-neutron log incorporating simultaneous measurement of both thermal and epithermal neutron responses gave almost as good a grade prediction result for pooled results from five drill holes, namely 63+-0.4% Fe, as that obtained by the neutron-gamma technique. The results of both types of log are compared with those obtained by the spectral gamma-ray backscattering [Psub(z)] technique, or by logging of natural gamma radiations from the shale component of the ore. From this comparison conclusions are drawn regarding the most suitable technique to employ for determining grade of iron ore in various practical logging situations. (author)

  2. Swift: A gamma ray burst MIDEX

    International Nuclear Information System (INIS)

    Barthelmy, Scott

    2001-01-01

    Swift is a first of its kind multiwavelength transient observatory for gamma-ray burst astronomy. It has the optimum capabilities for the next breakthroughs in determining the origin of gamma-ray bursts and their afterglows as well as using bursts to probe the early Universe. Swift will also perform the first sensitive hard X-ray survey of the sky. The mission is being developed by an international collaboration and consists of three instruments, the Burst Alert Telescope (BAT), the X-ray Telescope (XRT), and the Ultraviolet and Optical Telescope (UVOT). The BAT, a wide-field gamma-ray detector, will detect ∼1 gamma-ray burst per day with a sensitivity 5 times that of BATSE. The sensitive narrow-field XRT and UVOT will be autonomously slewed to the burst location in 20 to 70 seconds to determine 0.3-5.0 arcsec positions and perform optical, UV, and X-ray spectrophotometry. On-board measurements of redshift will also be done for hundreds of bursts. Swift will incorporate superb, low-cost instruments using existing flight-spare hardware and designs. Strong education/public outreach and follow-up programs will help to engage the public and astronomical community. Swift has been selected by NASA for development and launch in late 2003

  3. Gamma-ray yield dependence on bulk density and moisture content of a sample of a PGNAA setup. A Monte Carlo study

    International Nuclear Information System (INIS)

    Nagadi, M.M.; Naqvi, A.A.

    2007-01-01

    Monte Carlo calculations were carried out to study the dependence of γ-ray yield on the bulk density and moisture content of a sample in a thermalneutron capture-based prompt gamma neutron activation analysis (PGNAA) setup. The results of the study showed a strong dependence of the γ-ray yield upon the sample bulk density. An order of magnitude increase in yield of 1.94 and 6.42 MeV prompt γ-rays from calcium in a Portland cement sample was observed for a corresponding order of magnitude increase in the sample bulk density. On the contrary the γ-ray yield has a weak dependence on sample moisture content and an increase of only 20% in yield of 1.94 and 6.42 MeV prompt γ-rays from calcium in the Portland cement sample was observed for an order of magnitude increase in the moisture content of the Portland cement sample. A similar effect of moisture content has been observed on the yield of 1.167 MeV prompt γ-rays from chlorine contaminants in Portland cement samples. For an order of magnitude increase in the moisture content of the sample, a 7 to 12% increase in the yield of the 1.167 MeV chlorine γ-ray was observed for the Portland cement samples containing 1 to 5 wt.% chlorine contaminants. This study has shown that effects of sample moisture content on prompt γ-ray yield from constituents of a Portland cement sample are insignificant in a thermal-neutrons capture-based PGNAA setup. (author)

  4. Gamma-ray lasers or grasers

    International Nuclear Information System (INIS)

    Wilson, G.V.H.; George, E.P.; Hora, H.

    1976-01-01

    A method is described for controlling the emission and direction of gamma rays from excited nuclei contained in a sample source of suitable geometry having its major axis parallel to the proposed direction of gamma ray emission, comprising subjecting said sample source to thermal or dynamic polarization at temperatures approaching absolute zero in the presence of a strong magnetic field, and when a pulse of coherent gamma radiation is required along said major axis rotating the active nuclei through 90 0 by employing a short pulse of radio frequency oscillations in an auxilliary coil around the sample source

  5. Gamma ray astronomy and the origin of galactic cosmic rays

    International Nuclear Information System (INIS)

    Gabici, Stefano

    2011-01-01

    Diffusive shock acceleration operating at expanding supernova remnant shells is by far the most popular model for the origin of galactic cosmic rays. Despite the general consensus received by the model, an unambiguous and conclusive proof of the supernova remnant hypothesis is still missing. In this context, the recent developments in gamma ray astronomy provide us with precious insights into the problem of the origin of galactic cosmic rays, since production of gamma rays is expected both during the acceleration of cosmic rays at supernova remnant shocks and during their subsequent propagation in the interstellar medium. In particular, the recent detection of a number of supernova remnants at TeV energies nicely fits with the model, but it still does not constitute a conclusive proof of it, mainly due to the difficulty of disentangling the hadronic and leptonic contributions to the observed gamma ray emission. The main goal of my research is to search for an unambiguous and conclusive observational test for proving (or disproving) the idea that supernova remnants are the sources of galactic cosmic rays with energies up to (at least) the cosmic ray knee. Our present comprehension of the mechanisms of particle acceleration at shocks and of the propagation of cosmic rays in turbulent magnetic fields encourages beliefs that such a conclusive test might come from future observations of supernova remnants and of the Galaxy in the almost unexplored domain of multi-TeV gamma rays. (author)

  6. Librarian driven analysis of gamma ray spectra

    International Nuclear Information System (INIS)

    Kondrashov, V.; Petersone, I.

    2002-01-01

    For a set of a priori given radionuclides extracted from a general nuclide data library, the authors use median estimates of the gamma-peak areas and estimates of their errors to produce a list of possible radionuclides matching gamma ray line(s). The identification of a given radionuclide is obtained by searching for a match with the energy information of a database. This procedure is performed in an interactive graphic mode by markers that superimpose, on the spectral data, the energy information and yields provided by a general gamma ray data library. This library of experimental data includes approximately 17,000 gamma ray energy lines related to 756 known gamma emitter radionuclides listed by the ICRP. (author)

  7. New stage in high-energy gamma-ray studies with GAMMA-400 after Fermi-LAT

    Directory of Open Access Journals (Sweden)

    Topchiev N.P.

    2017-01-01

    Full Text Available Fermi-LAT has made a significant contribution to the study of high-energy gamma-ray diffuse emission and the observations of 3000 discrete sources. However, one third of all gamma-ray sources (both galactic and extragalactic are unidentified, the data on the diffuse gamma-ray emission should be clarified, and signatures of dark matter particles in the high-energy gamma-ray range are not observed up to now. GAMMA-400, the currently developing gamma-ray telescope, will have angular (∼0.01∘ at 100 GeV and energy (∼1% at 100 GeV resolutions in the energy range of 10–1000 GeV which are better than Fermi-LAT (as well as ground gamma-ray telescopes by a factor of 5–10. It will observe some regions of the Universe (such as the Galactic Center, Fermi Bubbles, Crab, Cygnus, etc. in a highly elliptic orbit (without shading the telescope by the Earth continuously for a long time. It will allow us to identify many discrete sources, to clarify the structure of extended sources, to specify the data on the diffuse emission, and to resolve gamma rays from dark matter particles.

  8. Bright x-ray flares in gamma-ray burst afterglows.

    Science.gov (United States)

    Burrows, D N; Romano, P; Falcone, A; Kobayashi, S; Zhang, B; Moretti, A; O'brien, P T; Goad, M R; Campana, S; Page, K L; Angelini, L; Barthelmy, S; Beardmore, A P; Capalbi, M; Chincarini, G; Cummings, J; Cusumano, G; Fox, D; Giommi, P; Hill, J E; Kennea, J A; Krimm, H; Mangano, V; Marshall, F; Mészáros, P; Morris, D C; Nousek, J A; Osborne, J P; Pagani, C; Perri, M; Tagliaferri, G; Wells, A A; Woosley, S; Gehrels, N

    2005-09-16

    Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

  9. NO CORRELATION BETWEEN HOST GALAXY METALLICITY AND GAMMA-RAY ENERGY RELEASE FOR LONG-DURATION GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Levesque, Emily M.; Kewley, Lisa J.; Soderberg, Alicia M.; Berger, Edo

    2010-01-01

    We compare the redshifts, host galaxy metallicities, and isotropic (E γ,iso ) and beaming-corrected (E γ ) gamma-ray energy release of 16 long-duration gamma-ray bursts (LGRBs) at z γ,iso , or E γ . These results are at odds with previous theoretical and observational predictions of an inverse correlation between gamma-ray energy release and host metallicity, as well as the standard predictions of metallicity-driven wind effects in stellar evolutionary models. We consider the implications that these results have for LGRB progenitor scenarios, and discuss our current understanding of the role that metallicity plays in the production of LGRBs.

  10. Gamma ray camera

    International Nuclear Information System (INIS)

    Wang, S.-H.; Robbins, C.D.

    1979-01-01

    An Anger gamma ray camera is improved by the substitution of a gamma ray sensitive, proximity type image intensifier tube for the scintillator screen in the Anger camera. The image intensifier tube has a negatively charged flat scintillator screen, a flat photocathode layer, and a grounded, flat output phosphor display screen, all of which have the same dimension to maintain unit image magnification; all components are contained within a grounded metallic tube, with a metallic, inwardly curved input window between the scintillator screen and a collimator. The display screen can be viewed by an array of photomultipliers or solid state detectors. There are two photocathodes and two phosphor screens to give a two stage intensification, the two stages being optically coupled by a light guide. (author)

  11. Polarization of the prompt gamma-ray emission from the gamma-ray burst of 6 December 2002.

    Science.gov (United States)

    Coburn, Wayne; Boggs, Steven E

    2003-05-22

    Observations of the afterglows of gamma-ray bursts (GRBs) have revealed that they lie at cosmological distances, and so correspond to the release of an enormous amount of energy. The nature of the central engine that powers these events and the prompt gamma-ray emission mechanism itself remain enigmatic because, once a relativistic fireball is created, the physics of the afterglow is insensitive to the nature of the progenitor. Here we report the discovery of linear polarization in the prompt gamma-ray emission from GRB021206, which indicates that it is synchrotron emission from relativistic electrons in a strong magnetic field. The polarization is at the theoretical maximum, which requires a uniform, large-scale magnetic field over the gamma-ray emission region. A large-scale magnetic field constrains possible progenitors to those either having or producing organized fields. We suggest that the large magnetic energy densities in the progenitor environment (comparable to the kinetic energy densities of the fireball), combined with the large-scale structure of the field, indicate that magnetic fields drive the GRB explosion.

  12. Production of 147Eu for gamma-ray emission probability measurement

    International Nuclear Information System (INIS)

    Katoh, Keiji; Marnada, Nada; Miyahara, Hiroshi

    2002-01-01

    Gamma-ray emission probability is one of the most important decay parameters of radionuclide and many researchers are paying efforts to improve the certainty of it. The certainties of γ-ray emission probabilities for neutron-rich nuclides are being improved little by little, but the improvements of those for proton-rich nuclides are still insufficient. Europium-147 that decays by electron capture or β + -particle emission is a proton-rich nuclide and the γ-ray emission probabilities evaluated by Mateosian and Peker have large uncertainties. They referred to only one report concerning with γ-ray emission probabilities. Our final purpose is to determine the precise γ-ray emission probabilities of 147 Eu from disintegration rates and γ-ray intensities by using a 4πβ-γ coincidence apparatus. Impurity nuclides affect largely to the determination of disintegration rate; therefore, a highly pure 147 Eu source is required. This short note will describe the most proper energy for 147 Eu production through 147 Sm(p, n) reaction. (author)

  13. Integral's first look at the gamma-ray Universe

    Science.gov (United States)

    2002-12-01

    The high-energy Universe is a violent place of exploding stars and their collapsed remnants such as the ultra-compressed neutron stars and, at the most extreme, all-consuming black holes. These celestial objects create X-rays and gamma rays that are many times more powerful than the optical radiation we can see with our eyes and optical telescopes. Integral’s Principal Investigators - the scientists responsible for the instruments on board - explain the crucial role that high-energy missions like Integral play in astronomy. “X-ray and gamma-ray astronomy is a pathfinder to unusual objects. At optical wavelengths, the number of stars is staggering. At X-ray and gamma-ray wavelengths, there are fewer objects, but the ones that remain are the really peculiar ones.” As a first test, Integral observed the Cygnus region of the sky, looking particularly at that enigmatic object, Cygnus X-1. Since the 1960s, we have known this object to be a constant generator of high-energy radiation. Most scientists believe that Cygnus X-1 is the site of a black hole, containing around five times the mass of our Sun and devouring a nearby star. Observing Cygnus X-1, which is relatively close by in our own Galaxy - ‘only’ 10 000 light years from us - is a very important step towards understanding black holes. This will also help understand the monstrous black hole - three million times the mass of our Sun - at the centre of our Galaxy. During the initial investigations, scientists had a pleasant surprise when Integral captured its first gamma-ray burst. These extraordinary celestial explosions are unpredictable, occurring from random directions about twice a day. Their precise origin is contentious: they could be the result of massive stars collapsing in the distant Universe or alternatively the result of a collision between two neutron stars. Integral promises to provide vital clues to solving this particular celestial mystery. To study these peculiarities, Integral carries two

  14. Investigation of the 93Nb neutron cross-sections in resonance energy range

    International Nuclear Information System (INIS)

    Grigoriev, Yu.V.; Kitaev, V.Ya.; Zhuravlev, B.V.; Sinitsa, V.V.; Borzakov, S.B.; Faikov-Stanchik, H.; Ilchev, G.; Mezentseva, Zh.V.; Panteleev, Ts.Ts.; Kim, G.N.

    2002-01-01

    The results of gamma-ray multiplicity spectra and transmission measurements for 93 Nb in energy range 21.5 eV-100 keV are presented. Gamma spectra from 1 to 7 multiplicity were measured on the 501 m and 121 m flight paths of the IBR-30 using a 16-section scintillation detector with a NaI(Tl) crystals of a total volume of 36 l and a 16-section liquid scintillation detector of a total volume of 80 l for metallic samples of 50, 80 mm in diameter and 1, 1.5 mm thickness with 100% 93 Nb. Besides, the total and scattering cross-section of 93 Nb were measured by means batteries of B-10 and He-3 counters on the 124 m, 504 m and 1006 m flight paths of the IBR-30. Spectra of multiplicity distribution were obtained for resolved resonances in the energy region E=30-6000 eV and for energy groups in the energy region E=21.5 eV- 100 keV. They were used for determination of the average multiplicity, resonance parameters and capture cross-section in energy groups and for low-laying resonances of 93 Nb. Standard capture cross-sections of 238 U and experimental gamma-ray multiplicity spectra were also used for determination of capture cross section 93 Nb in energy groups. Similar values were calculated using the ENDF/B-6 and JENDL-3 evaluated data libraries with the help of the GRUKON computer program. Within the limits of experimental errors there is observed an agreement between the experiment and calculation, but in some groups the experimental values differ from the calculated ones. (author)

  15. Secondary gamma-ray data for shielding calculation

    International Nuclear Information System (INIS)

    Miyasaka, Sunichi

    1979-01-01

    In deep penetration transport calculations, the integral design parameters is determined mainly by secondary particles which are produced by interactions of the primary radiation with materials. The shield thickness and the biological dose rate at a given point of a bulk shield are determined from the contribution from secondary gamma rays. The heat generation and the radiation damage in the structural and shield materials depend strongly on the secondary gamma rays. In this paper, the status of the secondary gamma ray data and its further problems are described from the viewpoint of shield design. The secondary gamma-ray data in ENDF/B-IV and POPOP4 are also discussed based on the test calculations made for several shield assemblies. (author)

  16. X-Ray and Gamma-Ray Radiation Detector

    DEFF Research Database (Denmark)

    2015-01-01

    Disclosed is a semiconductor radiation detector for detecting X-ray and / or gamma-ray radiation. The detector comprises a converter element for converting incident X-ray and gamma-ray photons into electron-hole pairs, at least one cathode, a plurality of detector electrodes arranged with a pitch...... (P) along a first axis, a plurality of drift electrodes, a readout circuitry being configured to read out signals from the plurality of detector electrodes and a processing unit connected to the readout circuitry and being configured to detect an event in the converter element. The readout circuitry...... is further configured to read out signals from the plurality of drift electrodes, and the processing unit is further configured to estimate a location of the event along the first axis by processing signals obtained from both the detector electrodes and the drift electrodes, the location of the event along...

  17. Numerical simulations on efficiency and measurement of capabilities of BGO detectors for high energy gamma ray

    CERN Document Server

    Wen Wan Xin

    2002-01-01

    The energy resolution and time resolution of two phi 75 x 100 BGO detectors for high energy gamma ray newly made were measured with sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co resources. The two characteristic gamma rays of high energy emitted from the thermal neutron capture of germanium in BGO crystal were used for the energy calibration of gamma spectra. The intrinsic photopeak efficiency, single escape probability and double escape probabilities of BGO detectors in photon energy range of 4-30 MeV are numerically calculated with GEANT code. The real count response and count ratio of the uniformly distributed incident photons in energy range of 0-30 MeV are also calculated. The distortion of gamma spectra caused by the photon energy loss extension to lower energy in detection medium is discussed

  18. An X-ray perspective on a gamma-ray mission

    DEFF Research Database (Denmark)

    Lund, Niels

    2003-01-01

    The most recent astrophysics mission of ESA is INTEGRAL, a mission dedicated to gamma-ray astronomy (Winkler et al. 2003). INTEGRAL carries two gamma-ray instruments: the imager, IBIS, and the spectrometer, SPI, and in addition an optical monitor, OMC, and an X-ray monitor, JEM-X. INTEGRAL is an ...... is an observatory mission with 70% of the observation time available to the general astronomical community through a peer-reviewed selection process. This paper describes the INTEGRAL mission primarily as seen from the JEM-X perspective....

  19. Constraints on the galactic distribution of cosmic rays from the COS-B gamma-ray data

    International Nuclear Information System (INIS)

    1985-08-01

    The velocity information of the HI and CO observations is used as a distance indicator to ascertain the spatial distribution of the interstellar gas. Using this distance information, the galacto-centric distribution of the gamma-ray emissivity (the production rate per H atom) is determined for three gamma-ray energy ranges from a correlation study of the gamma-ray intensity maps and the gas-tracer maps for selected galacto-centric distance intervals, taking into account the expected IC contribution and pointlike gamma-ray sources. On the assumption that unresolved gamma-ray point sources do not contribute significantly to the observed gamma-ray emission, the gamma-ray emissivity is proportional to the Cosmic ray density and, more specifically, the energy dependence can be used to study separately the distribution of Cosmic ray electrons and nuclei: whereas the emission for the 300 MeV - 5 GeV range is dominated by π 0 -decay, the 70 MeV - 150 MeV range has a large electron bremsstrahlung contribution

  20. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  1. Neutron capture cross section of ^243Am

    Science.gov (United States)

    Jandel, M.

    2009-10-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for neutron capture cross section measurement on ^243Am. The high granularity of DANCE (160 BaF2 detectors in a 4π geometry) enables the efficient detection of prompt gamma-rays following neutron capture. DANCE is located on the 20.26 m neutron flight path 14 (FP14) at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). The methods and techniques established in [1] were used for the determination of the ^243Am neutron capture cross section. The cross sections were obtained in the range of neutron energies from 0.02 eV to 400 keV. The resonance region was analyzed using SAMMY7 and resonance parameters were extracted. The results will be compared to existing evaluations and calculations. Work was performed under the auspices of the U.S. Department of Energy at Los Alamos National Laboratory by the Los Alamos National Security, LLC under Contract No. DE-AC52-06NA25396 and at Lawrence Livermore National Laboratory by the Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344. [4pt] [1] M. Jandel et al., Phys. Rev. C78, 034609 (2008)

  2. THE ORIGIN OF GAMMA RAYS FROM GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Cheng, K. S.; Chernyshov, D. O.; Dogiel, V. A.; Hui, C. Y.; Kong, A. K. H.

    2010-01-01

    Fermi has detected gamma-ray emission from eight globular clusters (GCs). It is commonly believed that the energy sources of these gamma rays are millisecond pulsars (MSPs) inside GCs. Also it has been standard to explain the spectra of most Fermi Large Area Telescope pulsars including MSPs resulting from the curvature radiation (CR) of relativistic electrons/positrons inside the pulsar magnetosphere. Therefore, gamma rays from GCs are expected to be the collection of CR from all MSPs inside the clusters. However, the angular resolution is not high enough to pinpoint the nature of the emission. In this paper, we calculate the gamma rays produced by the inverse Compton (IC) scattering between relativistic electrons/positrons in the pulsar wind of MSPs in the GCs and background soft photons including cosmic microwave/relic photons, background star lights in the clusters, the galactic infrared photons, and the galactic star lights. We show that the gamma-ray spectrum from 47 Tucanae can be explained equally well by upward scattering of either the relic photons, the galactic infrared photons, or the galactic star lights, whereas the gamma-ray spectra from the other seven GCs are best fitted by the upward scattering of either the galactic infrared photons or the galactic star lights. We also find that the observed gamma-ray luminosity is correlated better with the combined factor of the encounter rate and the background soft photon energy density. Therefore, the IC scattering may also contribute to the observed gamma-ray emission from GCs detected by Fermi in addition to the standard CR process. Furthermore, we find that the emission region of high-energy photons from GCs produced by the IC scattering is substantially larger than the cores of GCs with a radius >10 pc. The diffuse radio and X-rays emitted from GCs can also be produced by the synchrotron radiation and IC scattering, respectively. We suggest that future observations including radio, X-rays, and gamma rays

  3. The early X-ray afterglows of optically bright and dark Gamma-Ray Bursts

    OpenAIRE

    Lin, Yi-Qing

    2006-01-01

    A systematical study on the early X-ray afterglows of both optically bright and dark gamma-ray bursts (B-GRBs and D-GRBs) observed by Swift has been presented. Our sample includes 25 GRBs. Among them 13 are B-GRBs and 12 are D-GRBs. Our results show that the distributions of the X-ray afterglow fluxes ($F_{X}$), the gamma-ray fluxes ($S_{\\gamma}$), and the ratio ($R_{\\gamma, X}$) for both the D-GRBs and B-GRBs are similar. The differences of these distributions for the two kinds of GRBs shoul...

  4. Specific activities and the relevant gamma ray dose rates at 1 meter from radioisotopes and isomers following thermal neutron capture reaction

    International Nuclear Information System (INIS)

    Eissa, E.A.; Aly, R.A.; Gomaa, M.A.; Hassan, A.M.

    1995-01-01

    Calculations were performed for the specific activity of 245 gamma-ray emitting radioisotopes and isomers produced in 48, 72 and 96 hour irradiation periods of the natural isotopic mixture of their 77 elements with thermal neutron flux 1.0 E + 13 n/cm 2 .5, at the core of the (ET-R R-1) reactor. The relevant gamma-ray dose rate at a point 1 meter apart from each radioisotope or isomer was evaluated whenever the specific gamma-ray dose rate constant is available. The irradiation time factor (ITF) for the irradiation periods 24, 48, 72 and 96 hours are reported for each of the 248 gamma-ray emitters. The average of (ITF) over these 248 radionuclides for each irradiation period is taken as a measure of the feasibility of the irradiation time. The results favour the increase of the irradiation period from the conventional 48 to 72 hours but not to 96 hours. A programme was established in the VAX computer to carry out the above mentioned calculations. Tables of the present work are very useful for isotope production and reactor safety. 1 fig., 2 tabs

  5. Gamma ray bursts observed with WATCH‐EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, Niels; Castro-Tirado, A. J.

    1994-01-01

    The WATCH wide field x‐ray monitor has the capability of independently locating bright Gamma Ray Bursts to 1° accuracy. We report the preliminary positions of 12 Gamma Ray Bursts observed with the WATCH monitor flown on the ES spacecraft EURECA during its 11 month mission. Also the recurrence...

  6. Technology Needs for Gamma Ray Astronomy

    Science.gov (United States)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  7. A study of gamma-ray bursts and a new detector for gamma-ray astronomy

    International Nuclear Information System (INIS)

    Carter, J.N.

    1979-09-01

    Three gamma-ray experiments flown on balloons between August 1975 and August 1976 are described in detail. The successful Transatlantic balloon flight enabled a rate of 3 bursts year -1 with energies > 7 x 10 -7 ergs cm -2 to be established. This result is discussed in the light of other work. The choice of γ-ray detector for optimum sensitivity is presented. In addition various techniques for determining the arrival direction of gamma-ray bursts are compared. A new balloon borne γ-ray burst telescope is proposed. The design, testing and results of the beam calibration of a new drift chamber detector system for high energy (> 50 MeV) γ-rays are presented. A projected angular resolution of 0.8 0 was obtained at 300 MeV. Techniques for the measurement of γ-ray energies are discussed in relation to this instrument. Finally the use of drift chambers in an integrated free flying satellite is illustrated, and the expected performance is presented. (author)

  8. UNVEILING THE NATURE OF THE UNIDENTIFIED GAMMA-RAY SOURCES. III. GAMMA-RAY BLAZAR-LIKE COUNTERPARTS AT LOW RADIO FREQUENCIES

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F.; Funk, S. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); D' Abrusco, R.; Paggi, A. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Giroletti, M. [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Masetti, N. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129 Bologna (Italy); Tosti, G. [Dipartimento di Fisica, Universita degli Studi di Perugia, I-06123 Perugia (Italy); Nori, M. [Department of Physics and Astronomy, University of Bologna, viale Berti Pichat 6/2, I-40127 Bologna (Italy)

    2013-07-01

    About one-third of the {gamma}-ray sources listed in the second Fermi Large Area Telescope catalog (2FGL) have no firmly established counterpart at lower energies and so are classified as unidentified gamma-ray sources (UGSs). Here, we propose a new approach to find candidate counterparts for the UGSs based on the 325 MHz radio survey performed with the Westerbork Synthesis Radio Telescope in the northern hemisphere. First, we investigate the low-frequency radio properties of blazars, the largest known population of {gamma}-ray sources; then we search for sources with similar radio properties combining the information derived from the Westerbork Northern Sky Survey (WENSS) with those of the NRAO Very Large Array Sky Survey. We present a list of candidate counterparts for 32 UGSs with at least one counterpart in the WENSS. We also performed an extensive research in the literature to look for infrared and optical counterparts of the {gamma}-ray blazar candidates selected using the low-frequency radio observations to confirm their nature. On the basis of our multifrequency research, we identify 23 new {gamma}-ray blazar candidates out of the 32 UGSs investigated. Comparison with previous results on the UGSs is also presented. Finally, we speculate on the advantages of using low-frequency radio observations to associate UGSs and to search for {gamma}-ray pulsar candidates.

  9. Contribution to gamma ray transport calculation in heterogeneous media

    International Nuclear Information System (INIS)

    Bourdet, L.

    1985-04-01

    This thesis presents the development of gamma transport calculation codes in three dimension heterogeneous geometries. These codes allow us to define the protection against gamma-rays or verify their efficiency. The laws that govern the interactions of gamma-rays with matters are briefly revised. A library with the all necessary constants for these codes is created. TRIPOLI-2, a code that treats in exact way the neutron transport in matters using Monte-Carlo method, has been adapted to deal with the transport of gamma-rays in matters as well. TRINISHI, a code which considers only one collision, has been realized to treat heterogeneous geometries containing voids. Elaborating a formula that calculates the albedo for gamma-ray reflection (the code ALBANE) allows us to solve the problem of gamma-ray reflection on plane surfaces. NARCISSE-2 deals with gamma-rays that suffer only one reflection on the inner walls of any closed volume (rooms, halls...) [fr

  10. Pulser injection with subsequent removal for gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Hartwell, J.K.; Goodwin, S.G.; Johnson, L.O.; Killian, E.W.

    1990-01-01

    This patent describes a module for use with a gamma-ray spectroscopy system. The system includes a gamma-ray detector for detecting gamma-ray events and producing a signal representing the gamma-ray events, a converter responsive to the detector and capable of converting the signal to a spectrum, a storage memory responsive to the converter and capable of storing the spectrum at address locations in memory, and a pulser capable of injecting pulses into the signal produced by the detector. The module comprises: means for generating a logic pulse for controlling the pulser, the controlling means adapted for coupling to the pulser; means for generating separation of events logic to isolate the components of a combined gamma-ray---pulse spectrum, the separation of events logic means adapted for coupling to the converter and the storage memory with the capability of storing pulses at address locations in the storage memory separate from the gamma-ray events; means for receiving an imitating signal from the converter to generate a plurality of operations by the module; means for tracking variations in a gamma-ray---pulse spectrum brought on by external parameter changes; and means for interfacing with commercially developed gamma-ray spectrometry equipment

  11. Shape isomer excitation by mu-minus capture

    International Nuclear Information System (INIS)

    Kaplan, S.N.; Monard, J.A.; Nagamiya, S.

    1975-06-01

    In a search for back-decay gamma rays from the shape isomer in 238 U following mu-minus capture, no candidates have been found with yields greater than 2 percent of the muon stoppings. The intensities of the gamma rays are insufficient to permit definitive lifetime measurements of individual peaks; however, for 500-keV energy ranges of gamma ray pulses, lifetimes have been determined that give results consistent with recent electron lifetime measurements. (6 figures, 2 tables) (U.S.)

  12. Gamma-ray astronomy and cosmic-ray origin theory

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1973-01-01

    A theory of the origin of cosmic radiation is discussed in light of the advances made in gamma-ray astronomy. Arguments against metagalactic models for the origin of cosmic rays are emphasized. (U.S.)

  13. Prompt gamma-ray analysis of steel slag in concrete

    International Nuclear Information System (INIS)

    Naqvi, Akhtar Abbas; Garwan, Muhammad Ahmad; Nagadi, Mahmoud Mohammad; Rehman, Khateeb-ur; Raashid, Mohammad; Masalehuddin Mohiuddin, Mohammad; Al-Amoudi, Omar Saeed Baghabra

    2009-01-01

    Blast furnace slag (BFS) is added to Portland cement concrete to increase its durability, particularly its corrosion resistance. Monitoring the concentration of BFS in concrete for quality control purposes is desired. In this study, the concentration of BFS in concrete was measured by utilizing an accelerator-based prompt gamma-ray neutron activation analysis (PGNAA) setup. The optimum size of the BFS cement concrete specimen that produces the maximum intensity of gamma rays at the detector location was calculated through Monte Carlo simulations. The simulation results were experimentally validated through the gamma-ray yield measurement from BFS cement concrete specimens having different radii. The concentration of BFS in the cement concrete specimens was assessed through calcium and silicon gamma-ray yield measurement from cement concrete specimens containing 5 to 80 wt% BFS. The yield of calcium gamma rays decreases with increasing BFS concentration in concrete while the yield of silicon gamma rays increases with increasing BFS concentration in concrete. The calcium-to-silicon gamma-ray yield ratio has an inverse relation with BFS concentration in concrete. (author)

  14. Interstellar medium structure and content and gamma ray astronomy

    International Nuclear Information System (INIS)

    Lebrun, F.

    1982-05-01

    A general description of gamma-ray astronomy is presented with special emphasis on the study of diffuse gamma-ray emission. This is followed by a collection of reflections and observations on the structure and the gas and dust content of the local interstellar medium. Results of gamma-ray observations on the local interstellar medium are given. The last part is devoted to the whole of the galactic gamma-ray emission and its interpretation [fr

  15. Gamma Ray Tomographic Scan Method for Large Scale Industrial Plants

    International Nuclear Information System (INIS)

    Moon, Jin Ho; Jung, Sung Hee; Kim, Jong Bum; Park, Jang Geun

    2011-01-01

    The gamma ray tomography systems have been used to investigate a chemical process for last decade. There have been many cases of gamma ray tomography for laboratory scale work but not many cases for industrial scale work. Non-tomographic equipment with gamma-ray sources is often used in process diagnosis. Gamma radiography, gamma column scanning and the radioisotope tracer technique are examples of gamma ray application in industries. In spite of many outdoor non-gamma ray tomographic equipment, the most of gamma ray tomographic systems still remained as indoor equipment. But, as the gamma tomography has developed, the demand on gamma tomography for real scale plants also increased. To develop the industrial scale system, we introduced the gamma-ray tomographic system with fixed detectors and rotating source. The general system configuration is similar to 4 th generation geometry. But the main effort has been made to actualize the instant installation of the system for real scale industrial plant. This work would be a first attempt to apply the 4th generation industrial gamma tomographic scanning by experimental method. The individual 0.5-inch NaI detector was used for gamma ray detection by configuring circular shape around industrial plant. This tomographic scan method can reduce mechanical complexity and require a much smaller space than a conventional CT. Those properties make it easy to get measurement data for a real scale plant

  16. Measurement of secondary gamma-ray skyshine and groundshine from intense 14 MeV neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeo; Morotomi, Ryutaro; Kondo, Tetsuo; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan). Dept. of Nuclear Engineering

    2000-03-01

    Secondary gamma-ray skyshine and groundshine, including the direct contribution from the facility building, have been measured with an Hp-Ge detector and an NaI(Tl) detector at the Intense 14 MeV Neutron Source Facility OKTAVIAN of Osaka University, Japan. The mechanism of secondary gamma-rays propagation were analyzed with the measured spectrum with the Hp-Ge detector. The contribution of the skyshine was shown to be a continuum spectrum that was composed of mainly Compton scattered high energy secondary gamma-rays generated in the facility building created by (n, {gamma}) reaction. The contribution of the groundshine considerably contained secondary gamma-rays generated by {sup nat}Si (n, {gamma}) reaction in soil, including the albedo contribution from the ground. And the total contribution contained capture gamma-rays from iron (Fe) and other nuclides. The measurements with the NaI(Tl) detector as well as the Hp-Ge detector were carried out to investigate the dependence of gamma-ray dose as a function of distance from the neutron source up to hundreds meters. Consequently, it was found that the dependence could be fitted with the function of const.{center_dot}exp(-r/{lambda})/r{sup n}, where n values were around 2 except for the skyshine (n {approx} 1). It was thus indicated that the contribution of the skyshine could be propagated farther downfield than the direct contribution from the facility. The measured ratios of the three contributions (skyshine, groundshine, and direct contributions) and the distance dependence in each path were shown to be in good agreement with calculated results by the Monte Carlo transport code MCNP-4A. And the total contributions for the two detectors of NaI(Tl) and Hp-Ge agree excellently with each other. (author)

  17. Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Samarium

    International Nuclear Information System (INIS)

    Leinweber, G.; Burke, J.A.; Knox, H.D.; Drindak, N.J.; Mesh, D.W.; Haines, W.T.; Ballad, R.V.; Block, R.C.; Slovacek, R.E.; Werner, C.J.; Trbovich, M.J.; Barry, D.P.; Sato, T.

    2001-01-01

    The purpose of the present work is to accurately measure the neutron cross sections of samarium. The most significant isotope is 149 Sm, which has a large neutron absorption cross section at thermal energies and is a 235 U fission product with a 1% yield. Its cross sections are thus of concern to reactor neutronics. Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic institute (RPI) LINAC facility using metallic and liquid Sm samples. The capture measurements were made at the 25 meter flight station with a multiplicity-type capture detector, and the transmission total cross-section measurements were performed at 15- and 25-meter flight stations with 6 Li glass scintillation detectors. Resonance parameters were determined by a combined analysis of six experiments (three capture and three transmission) using the multi-level R-matrix Bayesian code SAMMY version M2. The significant features of this work are as follows. Dilute samples of samarium nitrate in deuterated water (D 2 O) were prepared to measure the strong resonances at 0.1 and 8 eV without saturation. Disk-shaped spectroscopic quartz cells were obtained with parallel inner surfaces to provide a uniform thickness of solution. The diluent feature of the SAMMY program was used to analyze these data. The SAMMY program also includes multiple scattering corrections to capture yield data and resolution functions specific to the RPI facility. Resonance parameters for all stable isotopes of samarium were deduced for all resonances up to 30 eV. Thermal capture cross-section and capture resonance integral calculations were made using the resultant resonance parameters and were compared to results obtained using resonance parameters from ENDF/B-VI updated through release 3. Extending the definition of the capture resonance integral to include the strong 0.1 eV resonance in 149 Sm, present measurements agree within estimated uncertainties with En

  18. CENTRAL ENGINE MEMORY OF GAMMA-RAY BURSTS AND SOFT GAMMA-RAY REPEATERS

    International Nuclear Information System (INIS)

    Zhang, Bin-Bin; Castro-Tirado, Alberto J.; Zhang, Bing

    2016-01-01

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs

  19. Applications of Monte Carlo simulations of gamma-ray spectra

    International Nuclear Information System (INIS)

    Clark, D.D.

    1995-01-01

    A short, convenient computer program based on the Monte Carlo method that was developed to generate simulated gamma-ray spectra has been found to have useful applications in research and teaching. In research, we use it to predict spectra in neutron activation analysis (NAA), particularly in prompt gamma-ray NAA (PGNAA). In teaching, it is used to illustrate the dependence of detector response functions on the nature of gamma-ray interactions, the incident gamma-ray energy, and detector geometry

  20. Fermi GBM Observations of Terrestrial Gamma-Ray Flashes

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; hide

    2010-01-01

    This slide presentation explores the relationship between Terrestrial Gamma-Ray Flashes (TGF) and lightning. Using data from the World-Wide Lightning Location Network (WWLLN), and the gamma ray observations from Fermi's Gamma-ray Burst Monitor (GBM), the study reviews any causal relationship between TGFs and lightning. The conclusion of the study is that the TGF and lightning are simultaneous with out a causal relationship.

  1. Cellular response to low Gamma-ray doses

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares A, E; Vega C, H R; Leon, L.C. de . [Unidades Academicas de Estudios Nucleares, Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico); Rebolledo D, O; Radillo J, F [Facultad de Ciencias Biologicas y Agropecuarias de la Universidad de Colima, Colima (Mexico)

    2002-07-01

    Lymphocytes, obtained from healthy donors, were exposed to a low strength gamma-ray field to determine heat shock protein expression in function of radiation dose. Protein identification was carried out using mAb raised against Hsp70 and Hsc70.Hsp70 protein was detected after lymphocyte irradiation. In all cases, an increasing trend of relative amounts of Hsp70 in function to irradiation time was observed. After 1.25 c Gy gamma-ray dose, lymphocytes expressed Hsp70 protein, indicating a threshold response to gamma rays. (Author)

  2. Cellular response to low Gamma-ray doses

    International Nuclear Information System (INIS)

    Manzanares A, E.; Vega C, H.R.; Leon, L.C. de; Rebolledo D, O.; Radillo J, F.

    2002-01-01

    Lymphocytes, obtained from healthy donors, were exposed to a low strength gamma-ray field to determine heat shock protein expression in function of radiation dose. Protein identification was carried out using mAb raised against Hsp70 and Hsc70.Hsp70 protein was detected after lymphocyte irradiation. In all cases, an increasing trend of relative amounts of Hsp70 in function to irradiation time was observed. After 1.25 c Gy gamma-ray dose, lymphocytes expressed Hsp70 protein, indicating a threshold response to gamma rays. (Author)

  3. Gamma-ray burst spectra

    International Nuclear Information System (INIS)

    Teegarden, B.J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events

  4. Gamma-ray Imaging Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  5. Gamma-ray imaging spectrometer (GRIS): a new balloon-borne experiment for gamma-ray line astronomy

    International Nuclear Information System (INIS)

    Teegarden, B.J.; Cline, T.L.; Gehrels, N.; Porreca, G.; Tueller, J.; Leventhal, M.; Huters, A.F.; MacCallum, C.J.; Stang, P.D.

    1985-01-01

    High resolution gamma-ray spectroscopy is a relatively new field that holds great promise for further understanding of high energy astrophysical processes. Preliminary results such as the annihilation radiation from the galactic center, the 26 Al line from the galactic plane and cyclotron lines from neutron stars may well be just the initial discoveries of a rich and as yet undeveloped field. When the high resolution gamma-ray spectrometer (GRSE) was removed from the GRO payload NASA decided to initiate a balloon program to permit continued development and improvement of instrumentation in this field, as well as continued scientific observations. The Gamma-Ray Imaging Spectrometer (GRIS) is one of the experiments selected as part of this program. The instrument contains a number of new and innovative features that are expected to produce a significant improvement in source location accuracy and sensitivity over previous balloon and satellite experiments. 6 refs., 2 figs

  6. Study of weak vacuum polarization in $Z \\to 2l \\gamma$

    CERN Document Server

    Zhabin, Viktor

    2017-01-01

    The goal of the work was to perform a search of weak vacuum polarization in the channel $Z \\to 2l \\gamma$ using $20 \\text{ fb}^{-1}$ of $pp$ collision data collected by the ATLAS experiment in 2012 at 8 TeV. The ratio of the distribution of an invariant mass of $l\\gamma$ obtained from experimental data to the MC distribution from the experimental data was used for the search of the effect. Total significance of weak vacuum polarization signal in the invariant mass distribution of $l \\gamma$ in only one of four channels has some significance. First studies indicate that an evidence of about $3.5 \\sigma$ can be reached. The parameters, amplitude and phase, determined from the fit are different in each channel and thus inconclusive.

  7. Dust grain resonant capture: A statistical study

    Science.gov (United States)

    Marzari, F.; Vanzani, V.; Weidenschilling, S. J.

    1993-01-01

    A statistical approach, based on a large number of simultaneous numerical integrations, is adopted to study the capture in external mean motion resonances with the Earth of micron size dust grains perturbed by solar radiation and wind forces. We explore the dependence of the resonant capture phenomenon on the initial eccentricity e(sub 0) and perihelion argument w(sub 0) of the dust particle orbit. The intensity of both the resonant and dissipative (Poynting-Robertson and wind drag) perturbations strongly depends on the eccentricity of the particle while the perihelion argument determines, for low inclination, the mutual geometrical configuration of the particle's orbit with respect to the Earth's orbit. We present results for three j:j+1 commensurabilities (2:3, 4:5 and 6:7) and also for particle sizes s = 15, 30 microns. This study extends our previous work on the long term orbital evolution of single dust particles trapped into resonances with the Earth.

  8. Study on keV-neutron capture cross sections and capture γ-ray spectra of 117,119Sn

    International Nuclear Information System (INIS)

    Nishiyama, J.; Igashira, M.; Ohsaki, T.; Kim, G.N.; Chung, W.C.; Ro, T.I.

    2006-01-01

    The capture cross sections and capture γ-ray spectra of 117,119 Sn were measured in an incident neutron energy region from 10 to 100 keV and at 570 keV, using a 1.5-ns pulsed neutron source by the 7 Li(p,n) 7 Be reaction and a large anti-Compton NaI(Tl) γ-ray spectrometer. A pulse-height weighting technique was applied to observed capture γ-ray pulse-height spectra to derive capture yields. The capture cross sections of 117,119 Sn were obtained with the error of about 5% by using the standard capture cross sections of 197 Au. The present cross sections were compared with previous experimental data and the evaluated values in JENDL-3.3 and ENDF/B-VI. The capture γ-ray spectra of 117,119 Sn were derived by unfolding the observed capture γ-ray pulse-height spectra. The calculations of capture cross sections and capture γ-ray spectra of 117,119 Sn were performed with the EMPIRE-II code. The calculated results were compared with the present experimental ones. (author)

  9. Gamma-ray pulsars: Emission zones and viewing geometries

    Science.gov (United States)

    Romani, Roger W.; Yadigaroglu, I.-A.

    1995-01-01

    There are now a half-dozen young pulsars detected in high-energy photons by the Compton Gamma-Ray Observatory (CGRO), showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high-energy emission on the sky in a model which posits gamma-ray production by charge-depleted gaps in the outer magnetosphere. This model accounts for the radio to gamma-ray pulse offsets of the known pulsars, as well as the shape of the high-energy pulse profiles. We also show that about one-third of emitting young radio pulsars will not be detected due to beaming effects, while approximately 2.5 times the number of radio-selected gamma-ray pulsars will be viewed only high energies. Finally we compute the polarization angle variation and find that the previously misunderstood optical polarization sweep of the Crab pulsar arises naturally in this picture. These results strongly support an outer magnetosphere location for the gamma-ray emission.

  10. CAMAC gamma ray scanning system

    International Nuclear Information System (INIS)

    Moss, C.E.; Pratt, J.C.; Shunk, E.R.

    1981-01-01

    A flexible gamma-ray scanning system, based on a LeCroy 3500 multichannel analyzer and CAMAC modules, is described. The system is designed for making simultaneous passive and active scans of objects of interest to nuclear safeguards. The scanner is a stepping-motor-driven carriage; the detectors, a bismuth-germanate scintillator and a high-purity germanium detector. A total of sixteen peaks in the two detector-produced spectra can be integrated simultaneously, and any scan can be viewed during data acquisition. For active scanning, the 2615-keV gamma-ray line from a 232 U source and the 4439-keV gamma-ray line from 9 Be(α,n) 12 C were selected. The system can be easily reconfigured to accommodate up to seven detectors because it is based on CAMAC modules and FORTRAN. The system is designed for field use and is easily transported. Examples of passive and active scans are presented

  11. Population Studies of Radio and Gamma-Ray Pulsars

    Science.gov (United States)

    Harding, Alice K; Gonthier, Peter; Coltisor, Stefan

    2004-01-01

    Rotation-powered pulsars are one of the most promising candidates for at least some of the 40-50 EGRET unidentified gamma-ray sources that lie near the Galactic plane. Since the end of the EGRO mission, the more sensitive Parkes Multibeam radio survey has detected mere than two dozen new radio pulsars in or near unidentified EGRET sources, many of which are young and energetic. These results raise an important question about the nature of radio quiescence in gamma-ray pulsars: is the non-detection of radio emission a matter of beaming or of sensitivity? The answer is very dependent on the geometry of the radio and gamma-ray beams. We present results of a population synthesis of pulsars in the Galaxy, including for the first time the full geometry of the radio and gamma-ray beams. We use a recent empirically derived model of the radio emission and luminosity, and a gamma-ray emission geometry and luminosity derived theoretically from pair cascades in the polar slot gap. The simulation includes characteristics of eight radio surveys of the Princeton catalog plus the Parkes MB survey. Our results indicate that EGRET was capable of detecting several dozen pulsars as point sources, with the ratio of radio-loud to radio-quiet gamma-ray pulsars increasing significantly to about ten to one when the Parkes Survey is included. Polar cap models thus predict that many of the unidentified EGRET sources could be radio-loud gamma- ray pulsars, previously undetected as radio pulsars due to distance, large dispersion and lack of sensitivity. If true, this would make gamma-ray telescopes a potentially more sensitive tool for detecting distant young neutron stars in the Galactic plane.

  12. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    Science.gov (United States)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; hide

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  13. WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS?

    Energy Technology Data Exchange (ETDEWEB)

    Luo, B.; Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Alexander, D. M.; Hickox, R. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Bauer, F. E. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E. [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Comastri, A. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fiore, F. [Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone (Italy); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Matt, G. [Dipartimento di Matematica e Fisica, Universita degli Studi Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Ogle, P. [IPAC, California Institute of Technology, Mail Code 220-6, Pasadena, CA 91125 (United States); and others

    2013-08-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  14. AGIS -- the Advanced Gamma-ray Imaging System

    Science.gov (United States)

    Krennrich, Frank

    2009-05-01

    The Advanced Gamma-ray Imaging System, AGIS, is envisioned to become the follow-up mission of the current generation of very high energy gamma-ray telescopes, namely, H.E.S.S., MAGIC and VERITAS. These instruments have provided a glimpse of the TeV gamma-ray sky, showing more than 70 sources while their detailed studies constrain a wealth of physics and astrophysics. The particle acceleration, emission and absorption processes in these sources permit the study of extreme physical conditions found in galactic and extragalactic TeV sources. AGIS will dramatically improve the sensitivity and angular resolution of TeV gamma-ray observations and therefore provide unique prospects for particle physics, astrophysics and cosmology. This talk will provide an overview of the science drivers, scientific capabilities and the novel technical approaches that are pursued to maximize the performance of the large array concept of AGIS.

  15. Gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  16. Gamma-ray flares from the Crab nebula

    International Nuclear Information System (INIS)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.

    2011-01-01

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10 15 electron volts) electrons in a region smaller than 1.4 * 10 -2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory. (authors)

  17. Very high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Weekes, T.C.

    1988-01-01

    Current interest in gamma-ray astronomy at energies above 100 GeV comes from the identification of Cygnus X-3 and other X-ray binaries as sources. In addition there are reports of emission from radio pulsars and a variety of other objects. The statistical significance of many of the observations is not high and many reported effects await confirmation, but there are a sufficient number of independent reports that very high energy gamma-ray astronomy must now be considered to have an observational basis. The observations are summarized with particular emphasis on those reported since 1980. The techniques used - the detection of small air showers using the secondary photons and particles at ground level - are unusual and are described. Future prospects for the field are discussed in relation to new ground-based experiments, satellite gamma-ray studies and proposed neutrino astronomy experiments. (orig.) With 296 refs

  18. Aircraft gamma-ray spectrometry in snow-water equivalent measurement

    International Nuclear Information System (INIS)

    Kuittinen, R.; Vironmaeki, J.

    1979-01-01

    During the winter periods 1976-1977 and 1977-1978 the Hydrological Office at the National Board of Waters and the Geological Survey of Finland carried out a joint study to evaluate usefuluess of gamma-ray spectrometry in snow-water equivalent measurement. A multichannel gamma-ray spectrometer was fitted in a DC-3 aircraft. Fourteen snow courses were operated using both the gravimetric method and the gamma-ray method. The snow courses were located in southern Finland in forest, swamp and agricultural land. The results shows that the gamma ray method can be considered suitable for use in Finnish conditions and the accuracy of the gamma-ray method is almost of the same magnitude as the accuracy of the gravimetric method. (Auth.)

  19. Aircraft gamma-ray spectrometry in snow-water equivalent measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kuittinen, R [National Board of Waters (Finland); Vironmaeki, J [Geological Survey of Finland

    1979-01-01

    During the winter periods 1976-1977 and 1977-1978 the Hydrological Office at the National Board of Waters and the Geological Survey of Finland carried out a joint study to evaluate usefuluess of gamma-ray spectrometry in snow-water equivalent measurement. A multichannel gamma-ray spectrometer was fitted in a DC-3 aircraft. Fourteen snow courses were operated using both the gravimetric method and the gamma-ray method. The snow courses were located in southern Finland in forest, swamp and agricultural land. The results shows that the gamma ray method can be considered suitable for use in Finnish conditions and the accuracy of the gamma-ray method is almost of the same magnitude as the accuracy of the gravimetric method.

  20. Aircraft gamma-ray spectrometry in snow-water equivalent measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kuittinen, R; Vironmaeki, J

    1979-01-01

    During the winter periods of 1976 to 1977 and 1977 to 1978, the Hydrological Office at the National Boards of Waters and the Geological Survey of Finland carried out a joint study to evaluate usefulness of gamma-ray spectrometry in snowwater equivalent measurement. A multichannel gamma-ray spectrometry was fitted out in a DC-3 aircraft. Fourteen snow courses were operated using gravimetric method and gamma-ray method. The snow courses were located in southern Finland in forest, swamp and agricultural land. The results show that the gamma ray method can be considered suitable for use in Finnish conditions and the accuracy of the gamma-ray method is almost of the same magnitude of the accuracy of the gravimetric method.

  1. The self-absorption effect of gamma rays in 239Pu

    International Nuclear Information System (INIS)

    Hsiaohua Hsu

    1989-01-01

    Nuclear materials assay with gamma-ray spectrum measurement is a well-established method for safeguards. However, for a thick source, the self-absorption of characteristic low-energy gamma rays has been a handicap to accurate assay. The author has carried out Monte Carlo simulations to study this effect using the 239 Pu α-decay gamma-ray spectrum as an example. The thickness of a plutonium metal source can be considered a function of gamma-ray intensity ratios. In a practical application, gamma-ray intensity ratios can be obtained from a measured spectrum. With the help of calculated curves, scientists can find the source thickness and make corrections to gamma-ray intensities, which then lead to an accurate quantitative determination of radioactive isotopes in the material

  2. Supernova sheds light on gamma-ray bursts

    CERN Multimedia

    2003-01-01

    On 29 March the HETE-II satellite detected the most violent explosion in the universe to date - an enormous burst of gamma rays. Observers across the world recorded and studied the event. It appears to prove that gamma ray bursts originate in supernovae (1 page)

  3. AGILE: A gamma-ray mission

    International Nuclear Information System (INIS)

    Tavani, M.; Caraveo, P.; Mereghetti, S.; Perotti, F.; Vercellone, S.; Barbiellini, G.; Budini, G.; Longo, F.; Prest, M.; Vallazza, E.; Cocco, V.; Morselli, A.; Picozza, P.; Pittori, C.; Costa, E.; Feroci, M.; Lapshov, I.; Morelli, E.; Rubini, A.; Soffitta, P.

    2000-01-01

    AGILE is an innovative, cost-effective gamma-ray mission selected by the Italian Space Agency for a Program of Small Scientific Missions. The AGILE gamma-ray imaging detector (GRID, made of a Silicon tracker and CsI Mini-Calorimeter) is designed to detect and image photons in the 30 MeV-50 GeV energy band with good sensitivity and very large field of view (FOV ∼3 sr). The X-ray detector, Super-AGILE, sensitive in the 10-40 keV band and integrated on top of the GRID gamma-ray tracker will provide imaging (1-3 arcmin) and moderate spectroscopy. For selected sky areas, AGILE might achieve a flux sensitivity (above 100 MeV) better than 5x10 -8 ph cm 2 s -1 at the completion of its scientific program. AGILE will operate as an Observatory open to the international community and is planned to be operational during the year 2002 for a nominal 2-year mission. It will be an ideal 'bridge' between EGRET and GLAST, and the only mission entirely dedicated to high-energy astrophysics above 30 MeV during that period

  4. Design Study for Direction Variable Compton Scattering Gamma Ray

    Science.gov (United States)

    Kii, T.; Omer, M.; Negm, H.; Choi, Y. W.; Kinjo, R.; Yoshida, K.; Konstantin, T.; Kimura, N.; Ishida, K.; Imon, H.; Shibata, M.; Shimahashi, K.; Komai, T.; Okumura, K.; Zen, H.; Masuda, K.; Hori, T.; Ohgaki, H.

    2013-03-01

    A monochromatic gamma ray beam is attractive for isotope-specific material/medical imaging or non-destructive inspection. A laser Compton scattering (LCS) gamma ray source which is based on the backward Compton scattering of laser light on high-energy electrons can generate energy variable quasi-monochromatic gamma ray. Due to the principle of the LCS gamma ray, the direction of the gamma beam is limited to the direction of the high-energy electrons. Then the target object is placed on the beam axis, and is usually moved if spatial scanning is required. In this work, we proposed an electron beam transport system consisting of four bending magnets which can stick the collision point and control the electron beam direction, and a laser system consisting of a spheroidal mirror and a parabolic mirror which can also stick the collision point. Then the collision point can be placed on one focus of the spheroid. Thus gamma ray direction and collision angle between the electron beam and the laser beam can be easily controlled. As the results, travelling direction of the LCS gamma ray can be controlled under the limitation of the beam transport system, energy of the gamma ray can be controlled by controlling incident angle of the colliding beams, and energy spread can be controlled by changing the divergence of the laser beam.

  5. Analysis of the /sup 28/Si(p,. gamma. )/sup 29/P reaction data in the region of the sub-barrier single particle resonances

    Energy Technology Data Exchange (ETDEWEB)

    Matulewicz, T; Decowski, P; Kicinska-Habior, M; Sikora, B; Toke, J

    1983-01-01

    The /sup 28/Si(p, ..gamma..)/sup 29/P reaction data have been analyzed in terms of a modified direct-semidirect capture model which accounts for the presence of broad shape (single-particle) resonances in the entrance channel. Values of the spectroscopic factors for the ground state and 1,65 MeV and 2,88 MeV resonances in /sup 29/P nuclei were extracted and found to be consistent with those obtained in other experiments. The modified theoretical analysis scheme was found to provide a convenient tool for analyzing the radiative capture reaction data.

  6. Summary of existing information on gamma-ray and X-ray attenuation coefficients of solutions

    DEFF Research Database (Denmark)

    Singh, K.; Gerward, Leif

    2002-01-01

    Accurate values of X-ray and gamma-ray attenuation coefficients of different chemicals are required in spectrometry as well as in many other scientific, engineering and medical disciplines involving photon radiation. The current state of knowledge of experimental and theoretical gamma-ray and X-r......-ray attenuation coefficients in aqueous solutions of salts is presented and exemplified by recent work. The results presented provide a basis for studying X-ray and gamma-ray photon interactions with ions in solution (hydrated ions) rather than ion compounds in solid form....

  7. Guidelines for radioelement mapping using gamma ray spectrometry data

    International Nuclear Information System (INIS)

    2003-07-01

    The purpose of the report is to provide an up-to-date review on the use of gamma ray spectrometry for radioelement mapping and, where appropriate, provide guidelines on the correct application of the method. It is a useful training guide for those new to the method. It gives a broad coverage of all aspects of the gamma ray method and provides a comprehensive list of references. The report gives an overview of the theoretical background to radioactivity and the gamma ray spectrometric method followed by a review of the application of the method to mapping the radiation environment. A brief outline is presented of the principles of radioactivity, the interaction of gamma rays with matter, instrumentation applied to the measurement of gamma rays, and the quantities and units in contemporary use in gamma ray spectrometry. This is followed by a review of the fundamentals of gamma ray spectrometry, and its application to ground and airborne mapping. Covered are also all aspects of the calibration and data processing procedures required for estimating the ground concentrations of the radioelements. The procedures required for the recovery of older survey data are also presented as well as an overview of data presentation and integration for mapping applications

  8. Gamma-ray Emission from Globular Clusters

    Directory of Open Access Journals (Sweden)

    Pak-Hin T. Tam

    2016-03-01

    Full Text Available Over the last few years, the data obtained using the Large Area Telescope (LAT aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs. Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  9. Gamma ray lines from a universal extra dimension

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Gianfranco; Jackson, C. B.; Shaughnessy, Gabe; Tait, Tim M.P.; Vallinotto, Alberto

    2012-03-01

    Indirect Dark Matter searches are based on the observation of secondary particles produced by the annihilation or decay of Dark Matter. Among them, gamma-rays are perhaps the most promising messengers, as they do not suffer deflection or absorption on Galactic scales, so their observation would directly reveal the position and the energy spectrum of the emitting source. Here, we study the detailed gamma-ray energy spectrum of Kaluza--Klein Dark Matter in a theory with 5 Universal Extra Dimensions. We focus in particular on the two body annihilation of Dark Matter particles into a photon and another particle, which produces monochromatic photons, resulting in a line in the energy spectrum of gamma rays. Previous calculations in the context of the five dimensional UED model have computed the line signal from annihilations into \\gamma \\gamma, but we extend these results to include \\gamma Z and \\gamma H final states. We find that these spectral lines are subdominant compared to the predicted \\gamma \\gamma signal, but they would be important as follow-up signals in the event of the observation of the \\gamma \\gamma line, in order to distinguish the 5d UED model from other theoretical scenarios.

  10. Gamma ray auto absorption correction evaluation methodology

    International Nuclear Information System (INIS)

    Gugiu, Daniela; Roth, Csaba; Ghinescu, Alecse

    2010-01-01

    Neutron activation analysis (NAA) is a well established nuclear technique, suited to investigate the microstructural or elemental composition and can be applied to studies of a large variety of samples. The work with large samples involves, beside the development of large irradiation devices with well know neutron field characteristics, the knowledge of perturbing phenomena and adequate evaluation of correction factors like: neutron self shielding, extended source correction, gamma ray auto absorption. The objective of the works presented in this paper is to validate an appropriate methodology for gamma ray auto absorption correction evaluation for large inhomogeneous samples. For this purpose a benchmark experiment has been defined - a simple gamma ray transmission experiment, easy to be reproduced. The gamma ray attenuation in pottery samples has been measured and computed using MCNP5 code. The results show a good agreement between the computed and measured values, proving that the proposed methodology is able to evaluate the correction factors. (authors)

  11. Fuzzy correlations of gamma-ray bursts

    International Nuclear Information System (INIS)

    Hartmann, D.H.; Linder, E.V.; Blumenthal, G.R.

    1991-01-01

    The origin of gamma-ray bursts is not known, both in the sense of the nature of the source emitting the radiation and literally, the position of the burst on the sky. Lacking unambiguously identified counterparts in any wavelength band studied to date, statistical approaches are required to determine the burster distance scale. Angular correlation analysis is one of the most powerful tools in this regard. However, poor detector resolution gives large localization errors, effectively beam smearing the positions. The resulting fuzzy angular correlation function is investigated and the generic isotropization that smearing induces on any intrinsic clustering is discussed. In particular, the extent to which gamma-ray burst observations by the BATSE detector aboard the Gamma-Ray Observatory might recover an intrinsic source correlation is investigated. 16 refs

  12. Saccharification of gamma-ray and alkali pretreated lignocellulosics

    International Nuclear Information System (INIS)

    Begum, A.; Choudhury, N.

    1988-01-01

    Enzymic saccharification of gamma ray and alkali pretreated sawdust, rice straw, and sugar cane bagasse showed higher release of reducing sugar from pretreated substrates. By gamma ray treatment alone (500 kGy) reducing sugar release of 2.8, 9.2, and 10 g/l was obtained from 7.5% (w/v) sawdust, rice straw, and bagasse and the same substrates showed reducing sugar release of 4.2, 30, and 20 g/l respectively when treated with alkali (0.1 g/g). Combination of gamma ray with alkali treatment further increased the reducing sugar release to 10.2, 33, and 36 g/l from sawdust, rice straw, and bagasse respectively. The effects of gamma ray and alkali treatment on saccharification varied with the nature of the substrate

  13. Gamma-ray multiplicity distribution in ternary fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Kliman, J [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Krupa, L [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Morhac, M [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Hamilton, J H [Department of Physics, Vanderbilt University, Nashville, TN (United States); Kormicki, J [Department of Physics, Vanderbilt University, Nashville, TN (United States); Ramayya, A V [Department of Physics, Vanderbilt University, Nashville, TN (United States); Hwang, J K [Department of Physics, Vanderbilt University, Nashville, TN (United States); Luo, Y X [Department of Physics, Vanderbilt University, Nashville, TN (United States); Fong, D [Department of Physics, Vanderbilt University, Nashville, TN (United States); Gore, P [Department of Physics, Vanderbilt University, Nashville, TN (United States); Akopian, G M Ter; Oganessian, Yu Ts; Rodin, A M; Fomichev, A S; Popeko, G S; Daniel, A V [Flerov Laboratory for Nuclear Reactions, Joint Institute for Nuclear Research, Dubna (Russian Federation); Rasmussen, J O; Macchiavelli, A O [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Stoyer, M A [Lawrence Livermore National Laboratory, Livermore, CA (United States); Donangelo, R [Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro (Brazil); Cole, J D [Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (United States)

    2002-12-01

    From multiparameter data obtained at Lawrence Berkeley National Laboratory, the integral characteristics of the prompt {gamma}-ray emission were extracted for tripartition of {sup 252}Cf with He, Be and C being the third light charged particle. We used multifold {gamma}-ray coincidence spectra for the determination of {gamma}-ray multiplicities assuming a Gaussian distribution for {gamma}-ray multiplicity. The multiplicity distribution characteristics, i.e. mean multiplicity and its dispersion were obtained by minimizing with respect to the calculated values of probabilities of multifold {gamma}-ray coincidences using a combinatoric method. Comparison with the known experimental data from binary fission was made. Further, we investigated dependencies of the mean {gamma}-ray multiplicity on the kinetic energy of the light charged particle. The mean {gamma}-ray multiplicity for He ternary fission is found to increase rapidly with increasing kinetic energy of He in the region less than 11 MeV and then decrease slowly with increasing kinetic energy of He. The anomalous behaviour of {gamma}-ray emission is discussed. The mean {gamma}-ray multiplicity was determined for the first time for Be and C ternary fission. For Be, the {gamma}-ray multiplicity as a function of kinetic energy was obtained as well.

  14. Measurements of proton induced gamma-ray emission cross sections and yields on Al and Na

    International Nuclear Information System (INIS)

    Chiari, M.

    2014-01-01

    Full text: The measurement of the proton induced gamma-ray emission cross sections on low-Z nuclei such as Na and Al of specific interest for environmental and cultural heritage applications, were carried out for proton beam energy from 2.5 to 4.1 MeV, including the measurement of the angular distributions of the emitted rays at selected angles, i.e. 90°, 45° and 0°, using an array of three HPGe detectors coupled to the multi-purpose scattering chamber on the +30° beamline of the Tandetron accelerator at INFN LABEC. The studied gamma-ray inducing reactions were: "2"7Al(p,p’γ)"2"7Al (gamma-ray energies 844 and 1014 keV), and "2"3Na(p,p"’γ)"2"3Na (gamma-ray energies 441 and 1636 keV) and "2"3Na(p,"αγ)"2"0Ne (gamma-ray energy 1634 keV). As a first step, the absolute efficiency of the HPGe detectors placed at 90° and 0° was improved by a factor up to 2 by designing a new target holder, with less absorbing material facing the HPGe detector at 90°, and installing a new Faraday cup/beam stopper with graphite body instead of stainless steel and a thinner Ta cap at the bottom, to reduce the shielding effect for the HPGe detector at 0°. The measurement of the absolute efficiency of the HPGe detectors of the array was carried out using a "1"5"2Eu calibration source mounted on the target holder and placed in the exact position of the target under irradiation. The proton beam energy was calibrated using an aluminum thick target and the resonances at 991.86 keV and 1683.57 keV, respectively in the (p,γ) and (p,p"’γ) reactions on "2"7Al, and a native aluminium oxide thin target and the resonance at 3470 keV in elastic scattering on "1"6O. The targets employed were thin Al (29 μg/cm"2) and NaF (35 μg/cm"2) films evaporated on thin self-supporting Ag foils; in order to obtain the differential gamma-ray inducing cross-sections, we normalized the results by the Rutherford elastic backscattering of protons from Ag, adopting a procedure not relying on the

  15. Continued Development of a Soft Gamma-Ray Concentrator

    Science.gov (United States)

    Bloser, Peter

    We propose to continue our development of a concept for a soft gamma-ray (E > 100 keV) concentrator using thin-film multilayer structures. Alternating layers of low- and high-density materials will channel soft gamma-ray photons via total external reflection. A suitable arrangement of bent structures will then concentrate the incident radiation to a point. Gamma-ray optics made in this way offer the potential for soft gamma-ray telescopes with focal lengths of less than 10 m, removing the need for formation flying spacecraft and opening the field up to balloon-borne instruments. Under previous APRA funding we have been investigating methods for efficiently producing such multilayer structures and modeling their performance. We now propose to pursue magnetron sputtering (MS) techniques to quickly produce structures with the required smoothness and thickness, to measure their channeling efficiency and compare with calculations, and to design a "lens" with optimized bandpass and throughput and predict its scientific performance. If successful, this work will confirm that this innovative optics concept is suitable for a balloon-born soft gamma-ray telescope with unprecedented sensitivity.

  16. Fast-neutron and gamma-ray imaging with a capillary liquid xenon converter coupled to a gaseous photomultiplier

    Science.gov (United States)

    Israelashvili, I.; Coimbra, A. E. C.; Vartsky, D.; Arazi, L.; Shchemelinin, S.; Caspi, E. N.; Breskin, A.

    2017-09-01

    Gamma-ray and fast-neutron imaging was performed with a novel liquid xenon (LXe) scintillation detector read out by a Gaseous Photomultiplier (GPM). The 100 mm diameter detector prototype comprised a capillary-filled LXe converter/scintillator, coupled to a triple-THGEM imaging-GPM, with its first electrode coated by a CsI UV-photocathode, operated in Ne/5%CH4 at cryogenic temperatures. Radiation localization in 2D was derived from scintillation-induced photoelectron avalanches, measured on the GPM's segmented anode. The localization properties of 60Co gamma-rays and a mixed fast-neutron/gamma-ray field from an AmBe neutron source were derived from irradiation of a Pb edge absorber. Spatial resolutions of 12± 2 mm and 10± 2 mm (FWHM) were reached with 60Co and AmBe sources, respectively. The experimental results are in good agreement with GEANT4 simulations. The calculated ultimate expected resolutions for our application-relevant 4.4 and 15.1 MeV gamma-rays and 1-15 MeV neutrons are 2-4 mm and ~ 2 mm (FWHM), respectively. These results indicate the potential applicability of the new detector concept to Fast-Neutron Resonance Radiography (FNRR) and Dual-Discrete-Energy Gamma Radiography (DDEGR) of large objects.

  17. Development of Monte Carlo decay gamma-ray transport calculation system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Kawasaki, Nobuo [Fujitsu Ltd., Tokyo (Japan); Kume, Etsuo [Japan Atomic Energy Research Inst., Center for Promotion of Computational Science and Engineering, Tokai, Ibaraki (Japan)

    2001-06-01

    In the DT fusion reactor, it is critical concern to evaluate the decay gamma-ray biological dose rates after the reactor shutdown exactly. In order to evaluate the decay gamma-ray biological dose rates exactly, three dimensional Monte Carlo decay gamma-ray transport calculation system have been developed by connecting the three dimensional Monte Carlo particle transport calculation code and the induced activity calculation code. The developed calculation system consists of the following four functions. (1) The operational neutron flux distribution is calculated by the three dimensional Monte Carlo particle transport calculation code. (2) The induced activities are calculated by the induced activity calculation code. (3) The decay gamma-ray source distribution is obtained from the induced activities. (4) The decay gamma-rays are generated by using the decay gamma-ray source distribution, and the decay gamma-ray transport calculation is conducted by the three dimensional Monte Carlo particle transport calculation code. In order to reduce the calculation time drastically, a biasing system for the decay gamma-ray source distribution has been developed, and the function is also included in the present system. In this paper, the outline and the detail of the system, and the execution example are reported. The evaluation for the effect of the biasing system is also reported. (author)

  18. Fermi Large Area Telescope Bright Gamma-ray Source List

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /KIPAC, Menlo Park /SLAC; Ajello, M.; /KIPAC, Menlo Park /SLAC; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Bechtol, K.; /KIPAC, Menlo Park /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /KIPAC, Menlo Park /SLAC; Bignami, G.F.; /Pavia U.; Bloom, Elliott D.; /KIPAC, Menlo Park /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /KIPAC, Menlo Park /SLAC; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /IASF, Milan /IASF, Milan /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /KIPAC, Menlo Park /SLAC /ASDC, Frascati /NASA, Goddard /Maryland U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /UC, Santa Cruz /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /NASA, Goddard; /more authors..

    2009-05-15

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

  19. Investigation of prompt gamma-ray yields as a function of mass and charge of 236U fission fragments

    International Nuclear Information System (INIS)

    Bogdzel', A.A.; Gundorin, N.A.; Duka-Zojomi, A.; Kliman, Ya.; Krishtiak, J.

    1987-01-01

    New experimental results determining yields of the prompt gamma-rays from the excited states decay of fission fragments are presented. 80 gamma-transitions were observed in 51 fission fragments. The measurements were performed by Ge(Li)-spectrometry in coincidence with fast ionization chamber (10g 235 U). The beam of the resonance neutrons with energy range from 0.7 to 36 eV was used

  20. The LASL gamma-ray burst astronomy program

    International Nuclear Information System (INIS)

    Klebesadel, R.W.; Evans, W.D.; Laros, J.G.

    1981-01-01

    Gamma-ray burst observations performed by LASL began with the identification and initial report of the phenomenon from data acquired by the Vela satellites. The Vela instruments have recorded responses to 73 gamma-ray bursts over a ten-year interval, and are continuing to contribute toward these observations. Similar instrumentation was included aboard the NRL SOLRAD 11 spacecraft. These performed well but suffered an early demise. Recently, the LASL gamma-ray burst astronomy program has been enhanced through the implementation of experiments aboard the Pioneer Venus Orbiter and ISEF-C spacecraft. Both of these experiments are continuing to contribute data vital to trigonometric directional analyses. (orig.)

  1. Discovery of Pulsed Gamma Rays from the Young Radio Pulsar PSR J1028-5819 with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Baring, Matthew G.; /Rice U.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle; Caliandro, G.A.; /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /NASA, Goddard /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

    2009-05-15

    Radio pulsar PSR J1028-5819 was recently discovered in a high-frequency search (at 3.1 GHz) in the error circle of the Energetic Gamma-Ray Experiment Telescope (EGRET) source 3EG J1027-5817. The spin-down power of this young pulsar is great enough to make it very likely the counterpart for the EGRET source. We report here the discovery of {gamma}-ray pulsations from PSR J1028-5819 in early observations by the Large Area Telescope (LAT) on the Fermi Gamma-Ray Space Telescope. The {gamma}-ray light curve shows two sharp peaks having phase separation of 0.460 {+-} 0.004, trailing the very narrow radio pulse by 0.200 {+-} 0.003 in phase, very similar to that of other known {gamma}-ray pulsars. The measured {gamma}-ray flux gives an efficiency for the pulsar of {approx}10-20% (for outer magnetosphere beam models). No evidence of a surrounding pulsar wind nebula is seen in the current Fermi data but limits on associated emission are weak because the source lies in a crowded region with high background emission. However, the improved angular resolution afforded by the LAT enables the disentanglement of the previous COS-B and EGRET source detections into at least two distinct sources, one of which is now identified as PSR J1028-5819.

  2. Astrophysical applications of Delbrück scattering: Dust scattered gamma radiation from gamma ray bursts

    International Nuclear Information System (INIS)

    Kunwar, B.; Bhadra, A.; Gupta, S.K. Sen

    2014-01-01

    A preliminary, and perhaps the first, study of astrophysical applications of Delbrück scattering in a gamma-ray emitting celestial object like a gamma-ray burst (GRB) has been made. At energies≥100 MeV the elastic scattering of gamma-ray photons off the molecular dust surrounding the GRB site is dominated by Delbrück scattering. Expressions for Delbrück-scattered gamma-ray flux as a function of time has been obtained for a few selected energies by assuming a simple model of GRB. These are compared with Compton-scattered flux. At certain situations, interestingly, the former is found to exceed the latter for the first few milliseconds of the burst. The issue of detectability of Delbrück-scattered gamma-ray echo from the cloud of a GRB is discussed. Although it is observed that the detection of such an echo is not within the capability of the presently operating gamma-ray missions such as Fermi LAT, a rough estimate shows that one can be optimistic that future generation gamma-ray telescopes might be able to see such photons' contribution to the total flux. - Highlights: ► Astrophysical application of Delbrück scattering in a GRB has been made. ► Initially, the Delbrück scattering may dominate the scattering of GeV γ-rays. ► The issue of detectability of such radiations is discussed

  3. X-ray and gamma ray waveguide, cavity and method

    International Nuclear Information System (INIS)

    Vali, V.; Krogstad, R.S.; Willard, H.R.

    1978-01-01

    An x-ray and gamma ray waveguide, cavity, and method for directing electromagnetic radiation of the x-ray, gamma ray, and extreme ultraviolet wavelengths are described. A hollow fiber is used as the waveguide and is manufactured from a material having an index of refraction less than unity for these wavelengths. The internal diameter of the hollow fiber waveguide and the radius of curvature for the waveguide are selectively predetermined in light of the wavelength of the transmitted radiation to minimize losses. The electromagnetic radiation is obtained from any suitable source ad upon introduction into the waveguide is transmitted along a curvilinear path. The waveguide may be formed as a closed loop to create a cavity or may be used to direct the electromagnetic radiation to a utilization site

  4. Proceedings of the workshop on multiple prompt gamma-ray analysis

    International Nuclear Information System (INIS)

    Ebihara, Mitsuru; Hatsukawa, Yuichi; Oshima, Masumi

    2006-10-01

    The workshop on 'Multiple Prompt Gamma-ray Analysis' was held on March 8, 2006 at Tokai. It is based on a project, 'Developments of real time, non-destructive ultra sensitive elemental analysis using multiple gamma-ray detections and prompt gamma ray analysis and its application to real samples', one of the High priority Cooperative Research Programs performed by Japan Atomic Energy Agency and the University of Tokyo. In this workshop, the latest results of the Multiple Prompt Gamma ray Analysis (MPGA) study were presented, together with those of Neutron Activation Analysis with Multiple Gamma-ray Detection (NAAMG). The 9 of the presented papers are indexed individually. (J.P.N.)

  5. Recent achievements in the field of gamma-ray bursts

    International Nuclear Information System (INIS)

    Lu Tan; Dai Zigao

    2001-01-01

    Recent progresses in the field of gamma-ray bursts is briefly introduced. Gamma-ray bursts are the most energetic explosion since the Big Bang of the universe. Within a few tens of seconds, the energy released in gamma-ray bursts could be several hundred times larger than that released form the sun in its whole life (about 10 billion years). The authors will first briefly discuss the observational facts, based on which the authors will discuss the standard fireball model, the dynamical behavior and evolution of gamma-ray bursts and their afterglows. Then, various observational phenomena that contradict the standard model are given and the importance of these post-standard effects are pointed out. The questions related to the energy source of gamma-ray bursts are still unanswered, and other important questions also remain to be solved

  6. A high energy gamma ray astronomy experiment

    International Nuclear Information System (INIS)

    Hofstadter, R.

    1988-01-01

    The author describes work involving NASA's Gamma Ray Observatory (GRO). GRO exemplifies the near zero principle because it investigates new gamma ray phenomena by relying on the space program to take us into the region of zero interference above the earth's atmosphere. In its present form GRO has four experiments

  7. Gamma-ray emission from internal shocks in novae

    Science.gov (United States)

    Martin, P.; Dubus, G.; Jean, P.; Tatischeff, V.; Dosne, C.

    2018-04-01

    Context. Gamma-ray emission at energies ≥100 MeV has been detected from nine novae using the Fermi Large Area Telescope (LAT), and can be explained by particle acceleration at shocks in these systems. Eight out of these nine objects are classical novae in which interaction of the ejecta with a tenuous circumbinary material is not expected to generate detectable gamma-ray emission. Aim. We examine whether particle acceleration at internal shocks can account for the gamma-ray emission from these novae. The shocks result from the interaction of a fast wind radiatively-driven by nuclear burning on the white dwarf with material ejected in the initial runaway stage of the nova outburst. Methods: We present a one-dimensional model for the dynamics of a forward and reverse shock system in a nova ejecta, and for the associated time-dependent particle acceleration and high-energy gamma-ray emission. Non-thermal proton and electron spectra are calculated by solving a time-dependent transport equation for particle injection, acceleration, losses, and escape from the shock region. The predicted emission is compared to LAT observations of V407 Cyg, V1324 Sco, V959 Mon, V339 Del, V1369 Cen, and V5668 Sgr. Results: The ≥100 MeV gamma-ray emission arises predominantly from particles accelerated up to 100 GeV at the reverse shock and undergoing hadronic interactions in the dense cooling layer downstream of the shock. The emission rises within days after the onset of the wind, quickly reaches a maximum, and its subsequent decrease reflects mostly the time evolution of the wind properties. Comparison to gamma-ray data points to a typical scenario where an ejecta of mass 10-5-10-4 M⊙ expands in a homologous way with a maximum velocity of 1000-2000 km s-1, followed within a day by a wind with a velocity values of which result in the majority of best-fit models having gamma-ray spectra with a high-energy turnover below 10 GeV. Our typical model is able to account for the main

  8. Probing Intrinsic Properties of Short Gamma-Ray Bursts with Gravitational Waves.

    Science.gov (United States)

    Fan, Xilong; Messenger, Christopher; Heng, Ik Siong

    2017-11-03

    Progenitors of short gamma-ray bursts are thought to be neutron stars coalescing with their companion black hole or neutron star, which are one of the main gravitational wave sources. We have devised a Bayesian framework for combining gamma-ray burst and gravitational wave information that allows us to probe short gamma-ray burst luminosities. We show that combined short gamma-ray burst and gravitational wave observations not only improve progenitor distance and inclination angle estimates, they also allow the isotropic luminosities of short gamma-ray bursts to be determined without the need for host galaxy or light-curve information. We characterize our approach by simulating 1000 joint short gamma-ray burst and gravitational wave detections by Advanced LIGO and Advanced Virgo. We show that ∼90% of the simulations have uncertainties on short gamma-ray burst isotropic luminosity estimates that are within a factor of two of the ideal scenario, where the distance is known exactly. Therefore, isotropic luminosities can be confidently determined for short gamma-ray bursts observed jointly with gravitational waves detected by Advanced LIGO and Advanced Virgo. Planned enhancements to Advanced LIGO will extend its range and likely produce several joint detections of short gamma-ray bursts and gravitational waves. Third-generation gravitational wave detectors will allow for isotropic luminosity estimates for the majority of the short gamma-ray burst population within a redshift of z∼1.

  9. Resonance capture reactions with a total energy detector

    International Nuclear Information System (INIS)

    Macklin, R.L.

    1978-01-01

    The determination of nuclear reaction rates is considered; the Moxon--Rae detector and pulse height weighting are reviewed. This method has been especially useful in measuring (n,γ) cross sections. Strength functions and level spacing can be derived from (n,γ) yields. The relevance of neutron capture data to astrophysical nucleosynthesis is pointed out. The total gamma energy detection method has been applied successfully to radiative neutron capture cross section measurements. A bibliography of most of the published papers reporting neutron capture cross sections measured by the pulse height weighting technique is included. 55 references

  10. Overcoming weak intrinsic depolarizing resonances with energy-jump

    International Nuclear Information System (INIS)

    Huang, H.; Ahrens, L.; Alessi, J.G.

    1997-01-01

    In the recent polarized proton runs in the AGS, a 5% partial snake was used successfully to overcome the imperfection depolarizing resonances. Polarized proton beam was accelerated up to the required RHIC injection energy of 25 GeV. However, significant amount of polarization was lost at 0+ν y , 12+ν y and 36+ν y , which is believed to be partially due to the coupling resonances. To overcome the coupling resonance, an energy-jump was generated by rapidly changing the beam circumference using the powerful AGS rf system. It clearly demonstrates that the novel energy-jump method can successfully overcome coupling resonances and weak intrinsic resonances

  11. Gamma-ray bursts

    CERN Document Server

    Wijers, Ralph A M J; Woosley, Stan

    2012-01-01

    Cosmic gamma ray bursts (GRBs) have fascinated scientists and the public alike since their discovery in the late 1960s. Their story is told here by some of the scientists who participated in their discovery and, after many decades of false starts, solved the problem of their origin. Fourteen chapters by active researchers in the field present a detailed history of the discovery, a comprehensive theoretical description of GRB central engine and emission models, a discussion of GRB host galaxies and a guide to how GRBs can be used as cosmological tools. Observations are grouped into three sets from the satellites CGRO, BeppoSAX and Swift, and followed by a discussion of multi-wavelength observations. This is the first edited volume on GRB astrophysics that presents a fully comprehensive review of the subject. Utilizing the latest research, Gamma-ray Bursts is an essential desktop companion for graduate students and researchers in astrophysics.

  12. The First Fermi-LAT Gamma-Ray Burst Catalog

    NARCIS (Netherlands)

    Ackermann, M.; et al., [Unknown; van der Horst, A.J.

    2013-01-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (gsim 20 MeV) γ-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected

  13. Statistical gamma-ray decay studies at iThemba LABS

    Directory of Open Access Journals (Sweden)

    Wiedeking M.

    2017-01-01

    Full Text Available A program to study the γ-ray decay from the region of high-level density has been established at iThemba LABS, where a high-resolution gamma-ray detector array is used in conjunction with silicon particle-telescopes. Results from two recent projects are presented: 1 The 74Ge(α,α′γ reaction was used to investigate the Pygmy Dipole Resonance. The results were compared to (γ,γ′ data and indicate that the dipole states split into mixed isospin and relatively pure isovector excitations. 2 Data from the 95Mo(d,p reaction were used to develop a novel method for the determination of spins for low-lying discrete levels utilizing statistical γ-ray decay in the vicinity of the neutron separation energy. These results provide insight into the competition of (γ,n and (γ,γ′ reactions and highlights the need to correct for angular momentum barrier effects.

  14. Simulation Study on Identifiability of UHE Gamma-ray Air Showers

    International Nuclear Information System (INIS)

    Wada, Y.; Inoue, N.; Miyazawa, K.; Vankov, H.P.

    2008-01-01

    The chemical composition of Ultra-High-Energy (UHE) comic rays is one of unsolved mysteries, and its study will give us fruitful information on the origin and acceleration mechanism of UHE cosmic rays. Especially, a detection of UHE gamma-rays by hybrid experiments, such as AUGER and TA, will be a key to solve these questions. The characteristics of UHE gamma-ray showers have been studied by comparing the lateral and longitudinal structures of shower particles calculated with AIRES and our own simulation code, so far. There are apparent differences in a slope of lateral distribution (η) and a depth of shower maximum (Xmax) between gamma-ray and proton induced showers because UHE gamma-ray showers are affected by the LPM effect and the geomagnetic cascading process in an energy region of >10 19.5 eV. Different features between gamma-ray and proton showers are pointed out from the simulation study and an identifiability of gamma-ray showers from proton ones is also discussed by the method of Neural-Network-Analysis

  15. Simulation Study on Identifiability of UHE Gamma-ray Air Showers

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Y.; Inoue, N.; Miyazawa, K. [Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan); Vankov, H.P. [Institute for Nuclear Research and Nuclear Energy, Bulgaria Academy, Sofia (Bulgaria)

    2008-01-15

    The chemical composition of Ultra-High-Energy (UHE) comic rays is one of unsolved mysteries, and its study will give us fruitful information on the origin and acceleration mechanism of UHE cosmic rays. Especially, a detection of UHE gamma-rays by hybrid experiments, such as AUGER and TA, will be a key to solve these questions. The characteristics of UHE gamma-ray showers have been studied by comparing the lateral and longitudinal structures of shower particles calculated with AIRES and our own simulation code, so far. There are apparent differences in a slope of lateral distribution ({eta}) and a depth of shower maximum (Xmax) between gamma-ray and proton induced showers because UHE gamma-ray showers are affected by the LPM effect and the geomagnetic cascading process in an energy region of >10{sup 19.5}eV. Different features between gamma-ray and proton showers are pointed out from the simulation study and an identifiability of gamma-ray showers from proton ones is also discussed by the method of Neural-Network-Analysis.

  16. Cosmic very high-energy {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R. [Max-Planck-Institut fur Physik, Muenchen (Germany)

    1998-12-31

    The article gives a brief overview, aimed at nonspecialists, about the goals and selected recent results of the detection of very-high energy {gamma}-rays (energies above 100 GeV) with ground based detectors. The stress is on the physics questions, specially the origin of Galactic Cosmic Rays and the emission of TeV {gamma}-radiation from active galaxies. Moreover some particle-physics questions which are addressed in this area are discussed.

  17. Resonant inelastic scattering at intermediate X-ray energies

    CERN Document Server

    Hague, C F; Journel, L; Gallet, J J; Rogalev, A; Krill, G; Kappler, J P

    2000-01-01

    We describe resonant inelastic X-ray scattering (RIXS) experiments and magnetic circular dichroism (MCD) in X-ray fluorescence performed in the 3-5 keV range. The examples chosen are X-ray fluorescence MCD of FeRh and RIXS experiments performed at the L/sub 3/ edge of Ce. Fe Rh is antiferromagnetic at room temperature but has a transition to the ferromagnetic state above 400 K. The Rh MCD signal is compared with an augmented spherical wave calculation. The experiment confirms the predicted spin polarization of the Rh 4d valence states. The RIXS measurements on Ce compounds and intermetallics address the problem of mixed valency especially in systems where degeneracy with the Fermi level remains small. Examples are taken from the 2p to (4f5d) /sup +1/ followed by 3d to 2p RIXS for a highly ionic compound CeF /sub 3/ and for almost gamma -like CeCuSi. (38 refs).

  18. Materials testing by computerized tomography with neutrons and gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghobary, A M; Bakkoush, F A; Megahid, R M [Reactor and Neutron Physics Department, Nuclear Research Center, A.E.A., Cairo (Egypt)

    1997-12-31

    The method of computerized tomography by fast neutrons and gamma-rays are used for inspecting and testing of materials by non-destructive technique. The transmission technique was applied using narrow collimated beams of reactor neutrons and gamma-ray. The neutron and gamma-rays transmitted through the object inspection were measured by means of a neutron gamma detector with Ne - 213 liquid organic scintillator. The undesired pulses of neutrons or gamma-rays are rejected from the transmitted beam by a discrimination technique based on the difference in the decay part of light pulse produced by recoil electrons or recoil protons. The transmitted neutrons or gamma-rays for different projections used to get the image of the section through the object investigated using the method of filtered back projection (FBP) algorithm. 8 figs.

  19. Neural network consistent empirical physical formula construction for neutron–gamma discrimination in gamma ray tracking

    International Nuclear Information System (INIS)

    Yildiz, Nihat; Akkoyun, Serkan

    2013-01-01

    Highlights: ► Detector responses in neutron–gamma discrimination were estimated by neural networks. ► Novel consistent neural network empirical physical formulas (EPFs) were constructed for detector responses. ► The EPFs are of explicit mathematical functional form. ► The EPFs can be used to derive various physical functions relevant to neutron–gamma discrimination in gamma ray tracking. -- Abstract: Gamma ray tracking is an efficient detection technique in studying exotic nuclei which lies far from beta stability line. To achieve very powerful and extraordinary resolution ability, new detectors based on gamma ray tracking are currently being developed. To reach this achievement, the neutron–gamma discrimination in these detectors is also an important task. In this paper, by suitable layered feedforward neural networks (LFNNs), we have constructed novel and consistent empirical physical formulas (EPFs) for some highly nonlinear detector counts measured in neutron–gamma discrimination. The detector counts data used in the discrimination was actually borrowed from our previous paper. The counts used here had been originally measured versus the following parameters: energy deposited in the first interaction points, difference in the incoming direction of initial gamma rays, and finally figure of merit values of the clusters determined by tracking. The LFNN–EPFs are of explicit mathematical functional form. Therefore, by various suitable operations of mathematical analysis, these LFNN–EPFs can be used to derivate further physical functions which might be potentially relevant to neutron–gamma discrimination performance of gamma ray tracking.

  20. Simulating Gamma-Ray Emission in Star-forming Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Pfrommer, Christoph [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker, E-mail: cpfrommer@aip.de [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany)

    2017-10-01

    Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way–like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate a bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.

  1. Simulating Gamma-Ray Emission in Star-forming Galaxies

    Science.gov (United States)

    Pfrommer, Christoph; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker

    2017-10-01

    Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way-like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate a bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.

  2. Swift pointing and gravitational-wave bursts from gamma-ray burst events

    International Nuclear Information System (INIS)

    Sutton, Patrick J; Finn, Lee Samuel; Krishnan, Badri

    2003-01-01

    The currently accepted model for gamma-ray burst phenomena involves the violent formation of a rapidly rotating solar-mass black hole. Gravitational waves should be associated with the black-hole formation, and their detection would permit this model to be tested. Even upper limits on the gravitational-wave strength associated with gamma-ray bursts could constrain the gamma-ray burst model. This requires joint observations of gamma-ray burst events with gravitational and gamma-ray detectors. Here we examine how the quality of an upper limit on the gravitational-wave strength associated with gamma-ray bursts depends on the relative orientation of the gamma-ray-burst and gravitational-wave detectors, and apply our results to the particular case of the Swift Burst-Alert Telescope (BAT) and the LIGO gravitational-wave detectors. A result of this investigation is a science-based 'figure of merit' that can be used, together with other mission constraints, to optimize the pointing of the Swift telescope for the detection of gravitational waves associated with gamma-ray bursts

  3. Cosmic Connections:. from Cosmic Rays to Gamma Rays, Cosmic Backgrounds and Magnetic Fields

    Science.gov (United States)

    Kusenko, Alexander

    2013-12-01

    Combined data from gamma-ray telescopes and cosmic-ray detectors have produced some new surprising insights regarding intergalactic and galactic magnetic fields, as well as extragalactic background light. We review some recent advances, including a theory explaining the hard spectra of distant blazars and the measurements of intergalactic magnetic fields based on the spectra of distant sources. Furthermore, we discuss the possible contribution of transient galactic sources, such as past gamma-ray bursts and hypernova explosions in the Milky Way, to the observed ux of ultrahigh-energy cosmicrays nuclei. The need for a holistic treatment of gamma rays, cosmic rays, and magnetic fields serves as a unifying theme for these seemingly unrelated phenomena.

  4. Janus probe, a detection system for high energy reactor gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Gold, R.; Kaiser, B.J.

    1980-03-01

    In reactor environments, gamma-ray spectra are continuous and the absolute magnitude as well as the general shape of the gamma continuum are of paramount importance. Consequently, conventional methods of gamma-ray detection are not suitable for in-core gamma-ray spectrometry. To meet these specific needs, a method of continuous gamma-ray spectrometry, namely Compton Recoil Gamma-Ray Spectrometry, was developed for in-situ observations of reactor environments. A new gamma-ray detection system has been developed which extends the applicability of Compton Recoil Gamma-Ray Spectrometry up to roughly 7 MeV. This detection system is comprised of two separate Si(Li) detectors placed face-to-face. Hence this new detection system is called the Janus probe. Also shown is the block diagram of pulse processing instrumentation for the Janus probe. This new gamma probe not only extends the upper energy limit of in-core gamma-ray spectrometry, but in addition possesses other fundamental advantages

  5. Intercomparison of gamma ray analysis software packages

    International Nuclear Information System (INIS)

    1998-04-01

    The IAEA undertook an intercomparison exercise to review available software for gamma ray spectra analysis. This document describes the methods used in the intercomparison exercise, characterizes the software packages reviewed and presents the results obtained. Only direct results are given without any recommendation for a particular software or method for gamma ray spectra analysis

  6. Mutagenic effectiveness and efficiency of EMS, DES and gamma-rays in rice

    International Nuclear Information System (INIS)

    Kaul, M.L.H.; Bhan, A.K.

    1977-01-01

    Data on chlorophyll mutation frequency after treatment with EMS, DES and gamma-rays and sequential administration of gamma-rays and the two alkylating agents in three varieties of rice have been used to work out quantitatively the effectiveness and efficiency of each mutagen and combination treatment. For effectiveness, the order is EMS > DES and for efficiency it is EMS > DES > gamma-rays. In some sequential treatments (Gamma-rays + DES in 'IR8' and 'Basmati'; DES + gamma-rays in 'IR8' and 'Jhona'; Gamma-rays + EMS in 'IR8' and 'Basmati'; and EMS + gamma-rays in 'IR8', 'Jhona' and 'Basmati') mutation frequency is more than additive (synergistic) but these treatments are decisively less efficient because of their relatively high injurious effects in the M 1 generation. EMS induces more albinas than gamma-rays do. The mutational spectrum patterns induced by gamma-rays and DES are alike. In general, combination treatments tend to increase the frequency of albinas over other types of chlorophyll mutants. (orig.) [de

  7. Plutonium isotopic measurements by gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Haas, F.X.; Lemming, J.F.

    1976-01-01

    A nondestructive technique is described for calculating plutonium-238, plutonium-240, plutonium-241 and americium-241 relative to plutonium-239 from measured peak areas in the high resolution gamma-ray spectra of solid plutonium samples. Gamma-ray attenuation effects were minimized by selecting sets of neighboring peaks in the spectrum whose components are due to the different isotopes. Since the detector efficiencies are approximately the same for adjacent peaks, the accuracy of the isotopic ratios is dependent on the half-lives, branching intensities, and measured peak areas. The data presented describe the results obtained by analyzing gamma-ray spectra in the energy region from 120 to 700 keV. Most of the data analyzed were obtained from plutonium material containing 6 percent plutonium-240. Sample weights varied from 0.25 g to approximately 1.2 kg. The methods were also applied to plutonium samples containing up to 23 percent plutonium-240 with weights of 0.25 to 200 g. Results obtained by gamma-ray spectroscopy are compared to chemical analyses of aliquots taken from the bulk samples

  8. Energy spectrum of extragalactic gamma-ray sources

    Science.gov (United States)

    Protheroe, R. J.

    1985-01-01

    The result of Monte Carlo electron photon cascade calculations for propagation of gamma rays through regions of extragalactic space containing no magnetic field are given. These calculations then provide upper limits to the expected flux from extragalactic sources. Since gamma rays in the 10 to the 14th power eV to 10 to the 17th power eV energy range are of interest, interactions of electrons and photons with the 3 K microwave background radiation are considered. To obtain an upper limit to the expected gamma ray flux from sources, the intergalactic field is assumed to be so low that it can be ignored. Interactions with photons of the near-infrared background radiation are not considered here although these will have important implications for gamma rays below 10 to the 14th power eV if the near infrared background radiation is universal. Interaction lengths of electrons and photons in the microwave background radiation at a temperature of 2.96 K were calculated and are given.

  9. Improvements in Applied Gamma-Ray Spectrometry with Germanium Semiconductor Detector

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D; Hellstroem, S [AB Atomenergi, Nykoeping (Sweden); Dubois, J [Chalmers University of Technology, Goeteborg (Sweden)

    1965-01-15

    A germanium semi-conductor detector has in the present investigation been used in four cases of applied gamma-ray spectrometry. In one case the weak-activity contribution of Cs{sup 134} in Cs{sup 137} standard sources has been determined. The second case concerns the determination of K{sup 42} in samples of biological origin containing strong Na{sup 24} activities. In the third case the Nb{sup 94} and Nb{sup 95} activities from neutron-irradiated niobium foils used in the dosimetry of high neutron fluxes with long exposure times have been completely resolved and it has been possible to determine the ratio of the two activities with a high degree of accuracy. Finally, a Zr{sup 95} - Nb{sup 95} source has been analysed in a similar way with respect to its radiochemical composition. The resolution obtained also made possible a determination of the branching ratio of the two gamma-transitions in Zr{sup 95} and of the energies of the gamma-transitions of both nuclides.

  10. Accurate calculations of the WIMP halo around the Sun and prospects for its gamma-ray detection

    International Nuclear Information System (INIS)

    Sivertsson, Sofia; Edsjoe, Joakim

    2010-01-01

    Galactic weakly interacting massive particles (WIMPs) may scatter off solar nuclei to orbits gravitationally bound to the Sun. Once bound, the WIMPs continue to lose energy by repeated scatters in the Sun, eventually leading to complete entrapment in the solar interior. While the density of the bound population is highest at the center of the Sun, the only observable signature of WIMP annihilations inside the Sun is neutrinos. It has been previously suggested that although the density of WIMPs just outside the Sun is lower than deep inside, gamma rays from WIMP annihilation just outside the surface of the Sun, in the so-called WIMP halo around the Sun, may be more easily detected. We here revisit this problem using detailed Monte Carlo simulations and detailed composition and structure information about the Sun to estimate the size of the gamma-ray flux. Compared to earlier simpler estimates, we find that the gamma-ray flux from WIMP annihilations in the solar WIMP halo would be negligible; no current or planned detectors would be able to detect this flux.

  11. Resonance enhancement of neutrinoless double electron capture

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.; Simkovic, Fedor; Frekers, Dieter; Faessler, Amand

    2011-01-01

    The process of neutrinoless double electron (0νECEC) capture is revisited for those cases where the two participating atoms are nearly degenerate in mass. The theoretical framework is the formalism of an oscillation of two atoms with different total lepton number (and parity), one of which can be in an excited state so that mass degeneracy is realized. In such a case and assuming light Majorana neutrinos, the two atoms will be in a mixed configuration with respect to the weak interaction. A resonant enhancement of transitions between such pairs of atoms will occur, which could be detected by the subsequent electromagnetic de-excitation of the excited state of the daughter atom and nucleus. Available data of atomic masses, as well as nuclear and atomic excitations are used to select the most likely candidates for the resonant transitions. Assuming an effective mass for the Majorana neutrino of 1 eV, some half-lives are predicted to be as low as 10 22 years in the unitary limit. It is argued that, in order to obtain more accurate predictions for the 0νECEC half-lives, precision mass measurements of the atoms involved are necessary, which can readily be accomplished by today's high precision Penning traps. Further advancements also require a better understanding of high-lying excited states of the final nuclei (i.e. excitation energy, angular momentum and parity) and the calculation of the nuclear matrix elements.

  12. High energy gamma-ray production in nuclear reactions

    International Nuclear Information System (INIS)

    Pinston, J.A.; Nifenecker, H.; Nifenecker, H.

    1989-01-01

    Experimental techniques used to study high energy gamma-ray production in nuclear reactions are reviewed. High energy photon production in nucleus-nucleus collisions is discussed. Semi-classical descriptions of the nucleus-nucleus gamma reactions are introduced. Nucleon-nucleon gamma cross sections are considered, including theoretical aspects and experimental data. High energy gamma ray production in proton-nucleus reactions is explained. Theoretical explanations of photon emission in nucleus-nucleus collisions are treated. The contribution of charged pion currents to photon production is mentioned

  13. Gamma-ray Burst X-ray Flares Light Curve Fitting

    Science.gov (United States)

    Aubain, Jonisha

    2018-01-01

    Gamma Ray Bursts (GRBs) are the most luminous explosions in the Universe. These electromagnetic explosions produce jets demonstrated by a short burst of prompt gamma-ray emission followed by a broadband afterglow. There are sharp increases of flux in the X-ray light curves known as flares that occurs in about 50% of the afterglows. In this study, we characterized all of the X-ray afterglows that were detected by the Swift X-ray Telescope (XRT), whether with flares or without. We fit flares to the Norris function (Norris et al. 2005) and power laws with breaks where necessary (Racusin et al. 2009). After fitting the Norris function and power laws, we search for the residual pattern detected in prompt GRB pulses (Hakkila et al. 2014, 2015, 2017), that may indicate a common signature of shock physics. If we find the same signature in flares and prompt pulses, it provides insight into what causes them, as well as, how these flares are produced.

  14. Method and apparatus for neutron induced gamma ray logging for lithology identificaion

    International Nuclear Information System (INIS)

    Oliver, D.W.; Culver, R.B.

    1979-01-01

    A pulsed neutron generator in a well logging instrument is pulsed at a clock frequency of 20 KHz. Inelastic scatter gamma rays are detected during a first time interval coinciding with the neutron source being on and capture gamma rays are measured during a second interval subsequent to the end of each neutron burst. Only a single detected pulse, assuming detection occurs, is transmitted during each of the two detection intervals. Sync pulses are generated in the well logging instrument scaled down to a frequency of 200 Hz for transmission to the earth's surface. At the earth's surface, the scaled-down sync pulses are applied to a phase-locked loop system for regenerating the sync pulses to the same frequency as that of the clock frequency used to pulse the neutron source and to open the detection gates in the borehole instrument. The regenerated sync pulses are used in the surface instrumentation to route the pulses occurring in the inelastic interval into one section of a multichannel analyzer memory and the pulses occurring in the capture interval into another section of the multichannel analyzer. The use of memory address decoders, subtractors and ratio circuits enables both a carbon/oxygen ratio and a silicon/calcium ratio to be struck, substantially independent of the chlorine content of the borehole and formation

  15. Gamma-ray bursts from black hole accretion disks

    International Nuclear Information System (INIS)

    Strong, I.B.

    1975-01-01

    The suggestion was first made more than a year ago that gamma-ray bursts might originate in the neighborhood of black holes, based on some rather circumstantial evidence linking Cygnus X-1, the prime black-hole candidate, with two of the then-known gamma-ray bursts. Since then additional evidence makes the idea still more plausible. The evidence is summarized briefly, a physical model for production of gamma-ray bursts is given, and several of the more interesting consequences of such an origin are pointed out. (orig.) [de

  16. Computational techniques in gamma-ray skyshine analysis

    International Nuclear Information System (INIS)

    George, D.L.

    1988-12-01

    Two computer codes were developed to analyze gamma-ray skyshine, the scattering of gamma photons by air molecules. A review of previous gamma-ray skyshine studies discusses several Monte Carlo codes, programs using a single-scatter model, and the MicroSkyshine program for microcomputers. A benchmark gamma-ray skyshine experiment performed at Kansas State University is also described. A single-scatter numerical model was presented which traces photons from the source to their first scatter, then applies a buildup factor along a direct path from the scattering point to a detector. The FORTRAN code SKY, developed with this model before the present study, was modified to use Gauss quadrature, recent photon attenuation data and a more accurate buildup approximation. The resulting code, SILOGP, computes response from a point photon source on the axis of a silo, with and without concrete shielding over the opening. Another program, WALLGP, was developed using the same model to compute response from a point gamma source behind a perfectly absorbing wall, with and without shielding overhead. 29 refs., 48 figs., 13 tabs

  17. Magic gamma rays, extra-atmospheric source

    International Nuclear Information System (INIS)

    Bolufer, P.

    2010-01-01

    Without the atmospheric layer, the cosmos radiation would kill every living, our planet would be like the moon. The cosmic gamma ray to collide with gases in land cover, as it is disintegrated. They are harmless, they form a cone of light that points to the cosmic source comes from. On April 25, 2009 was born on the island of Palma Magic II and Magic I the best observer of atmospheric gamma rays of low intensity. (Author)

  18. Gamma ray imager on the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pace, D. C., E-mail: pacedc@fusion.gat.com; Taussig, D.; Eidietis, N. W.; Van Zeeland, M. A.; Watkins, M. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Cooper, C. M. [Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830 (United States); Hollmann, E. M. [University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Riso, V. [State University of New York-Buffalo, 12 Capen Hall, Buffalo, New York 14260-1660 (United States)

    2016-04-15

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electrons in the energy range of 1–60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.

  19. A multi-frequency analysis of possible dark matter contributions to M31 gamma-ray emissions

    Energy Technology Data Exchange (ETDEWEB)

    Beck, G.; Colafrancesco, S., E-mail: geoffrey.beck@wits.ac.za, E-mail: sergio.colafrancesco@wits.ac.za [School of Physics, University of the Witwatersrand, Private Bag 3, WITS-2050, Johannesburg (South Africa)

    2017-10-01

    We examine the possibility of a dark matter (DM) contribution to the recently observed gamma-ray spectrum seen in the M31 galaxy. In particular, we apply limits on Weakly Interacting Massive Particle DM annihilation cross-sections derived from the Coma galaxy cluster and the Reticulum II dwarf galaxy to determine the maximal flux contribution by DM annihilation to both the M31 gamma-ray spectrum and that of the Milky-Way Galactic Centre. We limit the energy range between 1 and 12 GeV in M31 and Galactic Centre spectra due to the limited range of former's data, as well as to encompass the high-energy gamma-ray excess observed in the latter target. In so doing, we will make use of Fermi-LAT data for all mentioned targets, as well as diffuse radio data for the Coma cluster. The multi-target strategy using both Coma and Reticulum II to derive cross-section limits, as well as multi-frequency data, ensures that our results are robust against the various uncertainties inherent in modelling of indirect DM emissions. Our results indicate that, when a Navarro-Frenk-White (or shallower) radial density profile is assumed, severe constraints can be imposed upon the fraction of the M31 and Galactic Centre spectra that can be accounted for by DM, with the best limits arising from cross-section constraints from Coma radio data and Reticulum II gamma-ray limits. These particular limits force all the studied annihilation channels to contribute 1% or less to the total integrated gamma-ray flux within both M31 and Galactic Centre targets. In contrast, considerably more, 10−100%, of the flux can be attributed to DM when a contracted Navarro-Frenk-White profile is assumed. This demonstrates how sensitive DM contributions to gamma-ray emissions are to the possibility of cored profiles in galaxies. The only channel consistently excluded for all targets and profiles (except for ∼ 10 GeV WIMPs) is the direct annihilation into photons. Finally, we discuss the ramifications of

  20. Gamma spectrometry of infinite 4Π geometry

    International Nuclear Information System (INIS)

    Nordemann, D.J.R.

    1987-07-01

    Owing to the weak absorption og gamma radiation by matter, gamma-ray spectrometry may be applied to samples of great volume. A very interesting case is that of the gamma-ray spectrometry applied with 4Π geometry around the detector on a sample assumed to be of infinite extension. The determination of suitable efficiencies allows this method to be quantitative. (author) [pt

  1. The measurement of gamma ray induced heating in a mixed neutron and gamma ray environment

    International Nuclear Information System (INIS)

    Chiu, H.K.

    1991-10-01

    The problem of measuring the gamma heating in a mixed DT neutron and gamma ray environment was explored. A new detector technique was developed to make this measurement. Gamma heating measurements were made in a low-Z assembly irradiated with 14-Mev neutrons and (n, n') gammas produced by a Texas Nuclear Model 9400 neutron generator. Heating measurements were made in the mid-line of the lattice using a proportional counter operating in the Continuously-varied Bias-voltage Acquisition mode. The neutron-induced signal was separated from the gamma-induced signal by exploiting the signal rise-time differences inherent to radiations of different linear energy transfer coefficient, which are observable in a proportional counter. The operating limits of this measurement technique were explored by varying the counter position in the low-Z lattice, hence changing the irradiation spectrum observed. The experiment was modelled numerically to help interpret the measured results. The transport of neutrons and gamma rays in the assembly was modelled using the one- dimensional radiation transport code ANISN/PC. The cross-section set used for these calculations was derived from the ENDF/B-V library using the code MC 2 -2 for the case of DT neutrons slowing down in a low-Z material. The calculated neutron and gamma spectra in the slab and the relevant mass-stopping powers were used to construct weighting factors which relate the energy deposition in the counter fill-gas to that in the counter wall and in the surrounding material. The gamma energy deposition at various positions in the lattice is estimated by applying these weighting factors to the measured gamma energy deposition in the counter at those locations

  2. AGIS: A Next-generation TeV Gamma-ray Observatory

    Science.gov (United States)

    Vandenbroucke, Justin

    2010-05-01

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation array of imaging atmospheric Cherenkov telescopes for gamma-ray astronomy in the 100 GeV to 100 TeV band. TeV astronomy has flourished in the last few years. Together with the extremely successful first year of the Fermi LAT telescope for GeV gamma-ray astronomy, we are now in a golden age of gamma-ray astronomy. AGIS seeks to continue the success of gamma-ray astronomy by discovering hundreds of new TeV sources and improving our understanding of known sources, as well as searching for signals from dark matter annihilation. AGIS will feature 36 Schwarzschild-Couder (SC) telescopes spanning 1 km2. The two-mirror SC design allows a wide field of view (8 deg diameter) and high-resolution (0.05 deg diameter) pixellation. I will present the science capabilities of the AGIS observatory as well as the technical design and current status of the project.

  3. Studies on the influences of. gamma. -ray irradiation upon food additives, (6). Radiolysis of monosodium glutamate due to. gamma. -ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, M [Shimonoseki Univ. of Fisheries, Yamaguchi (Japan); Gohya, Y; Ishio, S

    1981-08-01

    The effect of ..gamma..-ray irradiation on monosodium glutamate (MSG) in aqueous solution and in ''kamaboko'' was investigated to evaluate the rate of decomposition of MSG and to elucidate the safety of the decomposed products, under the concentration of 106.9 mmol/l aqueous solution and 1% content of MSG in ''kamaboko''. In aqueous solution, MSG was decomposed by ..gamma..-ray irradiation, and G value was estimated to be 1.24. The decomposition of MSG resulted from deamination reaction was estimated to be 40% of the total decomposition. Glutamic acid content decreased as the dose of ..gamma..-ray increased in MSG-enriched ''kamaboko'', while it increased as the dose of ..gamma..-ray increased in MSG-free ''kamaboko''. Glutamic acid was liberated from the protein in ''kamaboko'', therefore the apparent decomposition rate of MSG in ''kamaboko'' was regarded as lower than actual.

  4. Characteristics of the telescope for high energy gamma-ray astronomy selected for definition studies on the Gamma Ray Observatory

    Science.gov (United States)

    Hughes, E. B.; Hofstadter, R.; Rolfe, J.; Johansson, A.; Bertsch, D. L.; Cruickshank, W. J.; Ehrmann, C. H.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.

    1980-01-01

    The high energy gamma-ray telescope selected for definition studies on the Gamma Ray Observatory provides a substantial improvement in observational capability over earlier instruments. It will have about 20 times more sensitivity, cover a much broader energy range, have considerably better energy resolution and provide a significantly improved angular resolution. The design and performance are described.

  5. Observation of a very weak gamma ray burst

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; La Padula, C.; Polcaro, V.F.; Vialetto, G.

    1982-01-01

    In this paper we report the detection of a very faint burst detected in the hard X-ray range. The burst, having a peak intensity of approx.=7 x 10 - 9 erg/cm 2 s in the 20-120 KeV range has been detected by means two of the four detectors on board the HXR-81 balloon borne hard X-ray telescope (POKER) during a transmediterranean flight devoted to a sky survey. (orig./WL)

  6. High energy astrophysics with ground-based gamma ray detectors

    International Nuclear Information System (INIS)

    Aharonian, F; Buckley, J; Kifune, T; Sinnis, G

    2008-01-01

    Recent advances in ground-based gamma ray astronomy have led to the discovery of more than 70 sources of very high energy (E γ ≥ 100 GeV) gamma rays, falling into a number of source populations including pulsar wind nebulae, shell type supernova remnants, Wolf-Rayet stars, giant molecular clouds, binary systems, the Galactic Center, active galactic nuclei and 'dark' (yet unidentified) galactic objects. We summarize the history of TeV gamma ray astronomy up to the current status of the field including a description of experimental techniques and highlight recent astrophysical results. We also discuss the potential of ground-based gamma ray astronomy for future discoveries and describe possible directions for future instrumental developments

  7. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    International Nuclear Information System (INIS)

    Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; Eidietis, N. W.; Commaux, N.; Shiraki, D.; Hollmann, E. M.

    2016-01-01

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5–100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead “pinhole camera” mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  8. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, C. M., E-mail: coopercm@fusion.gat.com [Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830 (United States); Pace, D. C.; Paz-Soldan, C.; Eidietis, N. W. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Commaux, N.; Shiraki, D. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Hollmann, E. M. [University of California, San Diego, La Jolla, California 92093-0533 (United States)

    2016-11-15

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5–100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead “pinhole camera” mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  9. Conceptual design of the Radial Gamma Ray Spectrometers system for α particle and runaway electron measurements at ITER

    DEFF Research Database (Denmark)

    Nocente, Massimo; Tardocchi, Marco; Barnsley, Robin

    2017-01-01

    We here present the principles and main physics capabilities behind the design of the radial gamma ray spectrometers (RGRS) system for alpha particle and runaway electron measurements at ITER. The diagnostic benefits from recent advances in gamma-ray spectrometry for tokamak plasmas and combines...... the measurements sensitive to α particles at characteristic resonant energies and to possible anisotropies of their slowing down distribution function. An independent assessment of the neutron rate by gamma-ray emission is also feasible. In case of runaway electrons born in disruptions with a typical duration...... of 100ms, a time resolution of at least 10ms for runaway electron studies can be achieved depending on the scenario and down to a current of 40 kA by use of external gas injection. We find that the bremsstrahlung spectrum in the MeV range from confined runaways is sensitive to the electron velocity space...

  10. Six Years of Gamma Ray Burst Observations with BeppoSAX

    OpenAIRE

    Frontera, Filippo

    2004-01-01

    I give a summary of the prompt X-/gamma-ray detections of Gamma Ray Bursts (GRBs) with the BeppoSAX satellite and discuss some significant results obtained from the study of the prompt emission of these GRBs obtained with the BeppoSAX Gamma Ray Burst Monitor and Wide Field Cameras.

  11. X-ray and gamma-ray standards for detector calibration

    International Nuclear Information System (INIS)

    1991-09-01

    The IAEA established a Co-ordinated Research Programme (CRP) on the Measurements and Evaluation of X- and Gamma-Ray Standards for Detector Efficiency Calibration in 1986 with the aim of alleviating the generation of such discrepancies. Within the framework of this CRP, representatives of nine research groups from six Member States and one international organization performed a number of precise measurements and systematic in-depth evaluations of the required decay data. They have also contributed to the development of evaluation methodology and measurement techniques, and stimulated a number of such studies at laboratories not directly involved in the IAEA project. The results of the work of the CRP, which was finished in 1990, are presented in this report. Recommended values of half-lives and photon emission probabilities are given for a carefully selected set of radionuclides that are suitable for detector efficiency calibration (X-rays from 5 to 90 keV and gamma-rays from 30 to about 3000 keV). Detector efficiency calibration for higher gamma-ray energies (up to 14 MeV) is also considered. The evaluation procedures used to obtain the recommended values and their estimated uncertainties are reported, and a summary of the remaining discrepancies is given. Refs and tabs

  12. Very high energy gamma ray astronomy from Hanle

    International Nuclear Information System (INIS)

    Chitnis, Varsha R.

    2015-01-01

    Over a past decade very high energy (VHE) gamma ray astronomy has emerged as a major astronomical discipline. In India, we have a long tradition of experiments in this field. Few years ago, multi-institutional Himalayan Gamma Ray Observatory (HiGRO) collaboration was formed to set up VHE gamma rays experiments at Hanle, a high altitude location in Himalayas. HAGAR, the first phase of this collaboration is operational since 2008. HAGAR has successfully detected VHE gamma ray emission from some of the extragalactic objects like Mrk 421, Mrk 501 as well as galactic sources including Crab nebula/pulsar. Details of HAGAR telescope system and results obtained will be discussed. HiGRO is now gearing up for the next phase, i.e. 21 m diameter MACE telescope, which is being installed at Hanle at present. Details of MACE telescope system and future plans will be discussed. (author)

  13. Exploring the extreme gamma-ray sky with HESS

    International Nuclear Information System (INIS)

    Sol, Helene

    2006-01-01

    The international HESS experiment. High Energy Stereoscopic System, fully operational since January 2004, is opening a new era for extreme gamma-ray astronomy. Located in Namibia, it is now the most sensitive detector for cosmic sources of very high energy (VHE) gamma-rays, in the tera-electron-volt (TeV) range. In July 2005, it had already more than double the number of sources detected at such energies, with the discovery of several active galactic nuclei (AGN), supernova remnants and plerions, a binary pulsar system, a microquasar candidate, and a sample of yet unidentified sources. HESS has also provide for the first time gamma-ray images of extended sources with the first astrophysical jet resolved in gamma-rays, and the first mapping of a shell supernova remnant, which proves the efficiency of in situ acceleration of particles up to 100 TeV and beyond

  14. Population Synthesis of Radio & Gamma-Ray Millisecond Pulsars

    Science.gov (United States)

    Frederick, Sara; Gonthier, P. L.; Harding, A. K.

    2014-01-01

    In recent years, the number of known gamma-ray millisecond pulsars (MSPs) in the Galactic disk has risen substantially thanks to confirmed detections by Fermi Gamma-ray Space Telescope (Fermi). We have developed a new population synthesis of gamma-ray and radio MSPs in the galaxy which uses Markov Chain Monte Carlo techniques to explore the large and small worlds of the model parameter space and allows for comparisons of the simulated and detected MSP distributions. The simulation employs empirical radio and gamma-ray luminosity models that are dependent upon the pulsar period and period derivative with freely varying exponents. Parameters associated with the birth distributions are also free to vary. The computer code adjusts the magnitudes of the model luminosities to reproduce the number of MSPs detected by a group of ten radio surveys, thus normalizing the simulation and predicting the MSP birth rates in the Galaxy. Computing many Markov chains leads to preferred sets of model parameters that are further explored through two statistical methods. Marginalized plots define confidence regions in the model parameter space using maximum likelihood methods. A secondary set of confidence regions is determined in parallel using Kuiper statistics calculated from comparisons of cumulative distributions. These two techniques provide feedback to affirm the results and to check for consistency. Radio flux and dispersion measure constraints have been imposed on the simulated gamma-ray distributions in order to reproduce realistic detection conditions. The simulated and detected distributions agree well for both sets of radio and gamma-ray pulsar characteristics, as evidenced by our various comparisons.

  15. Scene data fusion: Real-time standoff volumetric gamma-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barnowski, Ross [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720, United States of America (United States); Haefner, Andrew; Mihailescu, Lucian [Lawrence Berkeley National Lab - Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720, United States of America (United States); Vetter, Kai [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720, United States of America (United States); Lawrence Berkeley National Lab - Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720, United States of America (United States)

    2015-11-11

    An approach to gamma-ray imaging has been developed that enables near real-time volumetric (3D) imaging of unknown environments thus improving the utility of gamma-ray imaging for source-search and radiation mapping applications. The approach, herein dubbed scene data fusion (SDF), is based on integrating mobile radiation imagers with real-time tracking and scene reconstruction algorithms to enable a mobile mode of operation and 3D localization of gamma-ray sources. A 3D model of the scene, provided in real-time by a simultaneous localization and mapping (SLAM) algorithm, is incorporated into the image reconstruction reducing the reconstruction time and improving imaging performance. The SDF concept is demonstrated in this work with a Microsoft Kinect RGB-D sensor, a real-time SLAM solver, and a cart-based Compton imaging platform comprised of two 3D position-sensitive high purity germanium (HPGe) detectors. An iterative algorithm based on Compton kinematics is used to reconstruct the gamma-ray source distribution in all three spatial dimensions. SDF advances the real-world applicability of gamma-ray imaging for many search, mapping, and verification scenarios by improving the tractiblity of the gamma-ray image reconstruction and providing context for the 3D localization of gamma-ray sources within the environment in real-time.

  16. Dissecting the Gamma-Ray Background in Search of Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cholis, Ilias; Hooper, Dan; McDermott, Samuel D.

    2014-02-01

    Several classes of astrophysical sources contribute to the approximately isotropic gamma-ray background measured by the Fermi Gamma-Ray Space Telescope. In this paper, we use Fermi's catalog of gamma-ray sources (along with corresponding source catalogs at infrared and radio wavelengths) to build and constrain a model for the contributions to the extragalactic gamma-ray background from astrophysical sources, including radio galaxies, star-forming galaxies, and blazars. We then combine our model with Fermi's measurement of the gamma-ray background to derive constraints on the dark matter annihilation cross section, including contributions from both extragalactic and galactic halos and subhalos. The resulting constraints are competitive with the strongest current constraints from the Galactic Center and dwarf spheroidal galaxies. As Fermi continues to measure the gamma-ray emission from a greater number of astrophysical sources, it will become possible to more tightly constrain the astrophysical contributions to the extragalactic gamma-ray background. We project that with 10 years of data, Fermi's measurement of this background combined with the improved constraints on the astrophysical source contributions will yield a sensitivity to dark matter annihilations that exceeds the strongest current constraints by a factor of ~ 5 - 10.

  17. MODELING THE GAMMA-RAY EMISSION IN THE GALACTIC CENTER WITH A FADING COSMIC-RAY ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruo-Yu; Wang, Xiang-Yu; Prosekin, Anton [Max-Planck-Institut für Kernphysik, D-69117 Heidelberg (Germany); Chang, Xiao-Chuan, E-mail: ruoyu@mpi-hd.mpg.de, E-mail: xywang@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2016-12-20

    Recent HESS observations of the ∼200 pc scale diffuse gamma-ray emission from the central molecular zone (CMZ) suggest the presence of a PeV cosmic-ray accelerator (PeVatron) located in the inner 10 pc region of the Galactic center. Interestingly, the gamma-ray spectrum of the point-like source (HESS J1745-290) in the Galactic center shows a cutoff at ∼10 TeV, implying a cutoff around 100 TeV in the cosmic-ray proton spectrum. Here we propose that the gamma-ray emission from the inner and the outer regions may be explained self-consistently by run-away protons from a single yet fading accelerator. In this model, gamma-rays from the CMZ region are produced by protons injected in the past, while gamma-rays from the inner region are produced by protons injected more recently. We suggest that the blast wave formed in a tidal disruption event (TDE) caused by the supermassive black hole (Sgr A*) could serve as such a fading accelerator. With typical parameters of the TDE blast wave, gamma-ray spectra of both the CMZ region and HESS J1745-290 can be reproduced simultaneously. Meanwhile, we find that the cosmic-ray energy density profile in the CMZ region may also be reproduced in the fading accelerator model when appropriate combinations of the particle injection history and the diffusion coefficient of cosmic rays are adopted.

  18. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    Science.gov (United States)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  19. The goals of gamma-ray spectroscopy in high energy astrophysics

    Science.gov (United States)

    Lingenfelter, Richard E.; Higdon, James C.; Leventhal, Marvin; Ramaty, Reuven; Woosley, Stanford E.

    1990-01-01

    The use of high resolution gamma-ray spectroscopy in astrophysics is discussed with specific attention given to the application of the Nuclear Astrophysics Explorer (NAE). The gamma-ray lines from nuclear transitions in radionucleic decay and positron annihilation permits the study of current sites, rates and models of nucleosynthesis, and galactic structure. Diffuse galactic emission is discussed, and the high-resolution observations of gamma-ray lines from discrete sites are also described. Interstellar mixing and elemental abundances can also be inferred from high-resolution gamma-ray spectroscopy of nucleosynthetic products. Compact objects can also be examined by means of gamma-ray emissions, allowing better understanding of neutron stars and the accreting black hole near the galactic center. Solar physics can also be investigated by examining such features as solar-flare particle acceleration and atmospheric abundances.

  20. Capture into resonance and phase space dynamics in optical centrifuge

    Science.gov (United States)

    Armon, Tsafrir; Friedland, Lazar

    2016-05-01

    The process of capture of a molecular enesemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1 , 2 characterising the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in a good agreement with simulations. The existing experiments satisfy the validity conditions of the theory. This work was supported by the Israel Science Foundation Grant 30/14.

  1. Spatial distribution of reflected gamma rays by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Jehouani, A.; Merzouki, A.; Boutadghart, F.; Ghassoun, J.

    2007-01-01

    In nuclear facilities, the reflection of gamma rays of the walls and metals constitutes an unknown origin of radiation. These reflected gamma rays must be estimated and determined. This study concerns reflected gamma rays on metal slabs. We evaluated the spatial distribution of the reflected gamma rays spectra by using the Monte Carlo method. An appropriate estimator for the double differential albedo is used to determine the energy spectra and the angular distribution of reflected gamma rays by slabs of iron and aluminium. We took into the account the principal interactions of gamma rays with matter: photoelectric, coherent scattering (Rayleigh), incoherent scattering (Compton) and pair creation. The Klein-Nishina differential cross section was used to select direction and energy of scattered photons after each Compton scattering. The obtained spectra show peaks at 0.511 * MeV for higher source energy. The Results are in good agreement with those obtained by the TRIPOLI code [J.C. Nimal et al., TRIPOLI02: Programme de Monte Carlo Polycinsetique a Trois dimensions, CEA Rapport, Commissariat a l'Energie Atomique.

  2. A study of Venus surface elemental composition from 14 MeV neutron induced gamma ray spectroscopy: Activation analysis

    International Nuclear Information System (INIS)

    Jun, I.; Kim, W.; Smith, M.; Mitrofanov, I.; Litvak, M.

    2011-01-01

    The surface elemental composition of Venus can be determined using an artificially pulsed 14 MeV neutron generator (PNG) combined with a gamma ray spectrometer (GRS). The 14 MeV neutrons will interact with the surface materials and generate gamma rays, characteristic of specific elements, whose energy spectrum will be measured by GRS. These characteristic gamma rays are produced mainly through 3 different neutron interaction mechanisms: capture, inelastic, and activation reactions. Each reaction type has a different neutron energy dependency and different time scale for gamma ray production and transport. Certain elements are more easily identified through one reaction type over the others. Thus, careful analysis of the gamma ray spectra during and after the neutron pulse provides a comprehensive understanding of the surface elemental composition. In this paper, we use a well-tested neutron/gamma transport code, called Monte Carlo N-Particles (MCNP), to investigate the measurement capability of a PNG-GRS detection system through the neutron activation reactions. An activation analysis was performed for a representative soil composition of Venus with a notional operational scenario of PNG and GRS. The analysis shows that the proposed instrument concept can identify most of the modeled surface elements at Venus with sufficient accuracy through the activation mode. Specifically, U, Th, K, Si can be measured to within 1%, Fe within 2%, Al within 10%, Ca within 5%, Mg with 15%, Mn with 20%, and Cl within 6%. Although modeled in the analysis, it is shown that the activation mode alone cannot distinguish the S and Ti peaks.

  3. X and gamma ray backgroud observations in Antarctic

    International Nuclear Information System (INIS)

    Jayanthi, U.B.

    1988-01-01

    Atmospheric X amd gamma rays are products of complex electromagnetic interation between charged particles and atmospheric constituents. The latitudinal dependence of the cosmic rays secondaries, auroral and South Atlantic Anomaly phenomena produce flux variations, especially the later temporal flux variations. We propose to discuss these variations in relevance to balloon flight observations of X and gamma ray atmospheric background at polar latitudes. (author) [pt

  4. Computers in activation analysis and gamma-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, B. S.; D' Agostino, M. D.; Yule, H. P. [eds.

    1979-01-01

    Seventy-three papers are included under the following session headings: analytical and mathematical methods for data analysis; software systems for ..gamma..-ray and x-ray spectrometry; ..gamma..-ray spectra treatment, peak evaluation; least squares; IAEA intercomparison of methods for processing spectra; computer and calculator utilization in spectrometer systems; and applications in safeguards, fuel scanning, and environmental monitoring. Separate abstracts were prepared for 72 of those papers. (DLC)

  5. Millisecond Pulsars at Gamma-Ray Energies: Fermi Detections and Implications

    Science.gov (United States)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the discovery of new populations of radio quiet and millisecond gamma-ray pulsars. The Fermi Large Area Telescope has so far discovered approx.20 new gamma-ray millisecond pulsars (MSPs) by both folding at periods of known radio MSPs or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -30 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. Many of the newly discovered MSPs may be suitable for addition to the collection of very stable MSPs used for gravitational wave detection. Detection of such a large number of MSPs was surprising, given that most have relatively low spin-down luminosity and surface field strength. I will discuss their properties and the implications for pulsar particle acceleration and emission, as well as their potential contribution to gamma-ray backgrounds and Galactic cosmic rays.

  6. TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS

    Energy Technology Data Exchange (ETDEWEB)

    Archer, A.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R.; Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Buchovecky, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cardenzana, J. V; Eisch, J. D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Feng, Q.; Finley, J. P. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Fleischhack, H. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Flinders, A. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Fortson, L., E-mail: asmith44@umd.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); and others

    2016-04-20

    The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by the VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.

  7. Gamma-ray standards for detector calibration

    International Nuclear Information System (INIS)

    Lorenz, A.

    1985-10-01

    The proceeedings are reported of a Consultants' Meeting on Gamma-ray Standards for Detector Calibration, held at the CEN, Grenoble in France, from 30-31 May 1985. The meeting provided a forum to assess the requirements for a suitable file to be used internationally for the calibration of X- and gamma-ray detectors. A provisional list of nuclides was drawn up, and an initial assessment of the status of the required data was agreed to be performed by the participants before the end of 1985. (author)

  8. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Lamb, R.C.; Lewis, D.A.

    1991-01-01

    The Whipple Observatory High Resolution Camera will be used in a vigorous program of observations to search for new sources of very-high-energy gamma rays. In addition, a search for antimatter using the moon-earth system as an ion spectrometer will be begun. The first phase of GRANITE, the new 37-element 11-m camera, will be concluded with first light scheduled for September, 1991. The two cameras will operate in support of the Gamma Ray Observatory mission in the winter of 1991/2

  9. Increase in compton scattering of gamma rays passing along metal surface

    International Nuclear Information System (INIS)

    Grigor'ev, A.N.; Bilyk, Z.V.; Sakun, A.V.; Marushchenko, V.V.; Chernyavskij, O.Yu.; Litvinov, Yu.V.

    2014-01-01

    The paper considers experimental study of changes in energy of 137 Cs gamma source as gamma rays pass along metal surface. Decrease in gamma energy was examined by reducing the number of gamma rays in the complete absorption peak to the Compton length level and increasing the Compton effect. The number of gamma rays in the complete absorption peak decreases by 3.5 times in the angle range under study

  10. Terrestrial Gamma-Ray Flashes (TGFs) Observed with the Fermi-Gamma-Ray Burst Monitor: The First Hundred TGFs

    Science.gov (United States)

    Fishman, G J.; Briggs, M. S.; Connaughton, V.; Bhat, P. N.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) is now detecting 2.1 TGFs per week. At this rate, nearly a hundred TGFs will have been detected by the time of this Meeting. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. The high time resolution (2 microseconds) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented.

  11. Cosmic-ray and neutrino emission from Gamma-Ray Bursts with a nuclear cascade

    Energy Technology Data Exchange (ETDEWEB)

    Biehl, Daniel; Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter

    2017-05-24

    We discuss neutrino and cosmic-ray emission from Gamma-Ray Bursts (GRBs) with the injection of nuclei, where we take into account that a nuclear cascade from photo-disintegration can fully develop in the source. One of our main objectives is to test if recent results from the IceCube and the Pierre Auger Observatory can be accommodated with the paradigm that GRBs are the sources of Ultra-High Energy Cosmic Rays (UHECRs). While our key results are obtained using an internal shock model, we discuss how the secondary emission from a GRB shell can be interpreted in terms of other astrophysical models. It is demonstrated that the expected neutrino flux from GRBs weakly depends on the injection composition, which implies that prompt neutrinos from GRBs can efficiently test the GRB-UHECR paradigm even if the UHECRs are nuclei. We show that the UHECR spectrum and composition, as measured by the Pierre Auger Observatory, can be self-consistently reproduced in a combined source-propagation model. In an attempt to describe the energy range including the ankle, we find tension with the IceCube bounds from the GRB stacking analyses. In an alternative scenario, where only the UHECRs beyond the ankle originate from GRBs, the requirement for a joint description of cosmic-ray and neutrino observations favors lower luminosities, which does not correspond to the typical expectation from γ-ray observations.

  12. Cosmic-ray and neutrino emission from Gamma-Ray Bursts with a nuclear cascade

    International Nuclear Information System (INIS)

    Biehl, Daniel; Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter

    2017-01-01

    We discuss neutrino and cosmic-ray emission from Gamma-Ray Bursts (GRBs) with the injection of nuclei, where we take into account that a nuclear cascade from photo-disintegration can fully develop in the source. One of our main objectives is to test if recent results from the IceCube and the Pierre Auger Observatory can be accommodated with the paradigm that GRBs are the sources of Ultra-High Energy Cosmic Rays (UHECRs). While our key results are obtained using an internal shock model, we discuss how the secondary emission from a GRB shell can be interpreted in terms of other astrophysical models. It is demonstrated that the expected neutrino flux from GRBs weakly depends on the injection composition, which implies that prompt neutrinos from GRBs can efficiently test the GRB-UHECR paradigm even if the UHECRs are nuclei. We show that the UHECR spectrum and composition, as measured by the Pierre Auger Observatory, can be self-consistently reproduced in a combined source-propagation model. In an attempt to describe the energy range including the ankle, we find tension with the IceCube bounds from the GRB stacking analyses. In an alternative scenario, where only the UHECRs beyond the ankle originate from GRBs, the requirement for a joint description of cosmic-ray and neutrino observations favors lower luminosities, which does not correspond to the typical expectation from γ-ray observations.

  13. Effect of sample moisture and bulk density on performance of the 241Am-Be source based prompt gamma rays neutron activation analysis setup. A Monte Carlo study

    International Nuclear Information System (INIS)

    Almisned, Ghada

    2010-01-01

    Monte Carlo simulations were carried out using the dependence of gamma ray yield on the bulk density and moisture content for five different lengths of Portland cement samples in a thermal neutron capture based Prompt Gamma ray Neutron Activation Analysis (PGNAA) setup for source inside moderator geometry using an 241 Am-Be neutron source. In this study, yields of 1.94 and 6.42 MeV prompt gamma rays from calcium in the five Portland cement samples were calculated as a function of sample bulk density and moisture content. The study showed a strong dependence of the 1.94 and 6.42 MeV gamma ray yield upon the sample bulk density but a weaker dependence upon sample moisture content. For an order of magnitude increase in the sample bulk density, an order of magnitude increase in the gamma rays yield was observed, i.e., a one-to-one correspondence. In case of gamma ray yield dependence upon sample moisture content, an order of magnitude increase in the moisture content of the sample resulted in about 16-17% increase in the yield of 1.94 and 6.42 MeV gamma rays from calcium. (author)

  14. High-energy gamma-ray beams from Compton-backscattered laser light

    Energy Technology Data Exchange (ETDEWEB)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized ..gamma..-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10/sup 7/ s/sup -1/) of background-free polarized ..gamma.. rays whose energy will be determined to a high accuracy (..delta..E = 2.3 MeV). Initially, 300(420)-MeV ..gamma.. rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the ..gamma..-ray energy up to 700 MeV.

  15. Wolf-Rayet stars as gamma-ray burst progenitors

    NARCIS (Netherlands)

    Langer, N.; van Marle, A. -J; Yoon, S.C.

    2010-01-01

    It became clear in the last few years that long gamma-ray bursts are associated with the endpoints of massive star evolution. They occur in star forming regions at cosmological distances (Jakobsson et al., 2005), and are associated with supernova-type energies. The collapsar model explains gamma-ray

  16. The many phases of gamma-ray burst afterglows

    NARCIS (Netherlands)

    Leventis, K.

    2013-01-01

    Gamma-ray bursts are the brightest sources in the universe. Their afterglows have been observed for about 15 years now, and their study has greatly advanced our understanding of these, mysterious until recently, events. In a way, gamma-ray bursts can be seen as huge cosmic bombs which convert

  17. Spectral analysis of paramagnetic centers induced in human tooth enamel by x-rays and gamma radiation

    Science.gov (United States)

    Kirillov, V. A.; Kuchuro, I. I.

    2010-03-01

    Based on study of spectral and relaxation characteristics, we have established that paramagnetic centers induced in tooth enamel by x-rays and gamma radiation are identical in nature. We show that for the same exposure dose, the intensity of the electron paramagnetic resonance (EPR) signal induced by x-radiation with effective energy 34 keV is about an order of magnitude higher than the amplitude of the signal induced by gamma radiation. We have identified a three-fold attenuation of the EPR signal along the path of the x-radiation from the buccal to the lingual side of a tooth, which is evidence that the individual had undergone diagnostic x-ray examination of the dentition or skull. We have shown that the x-ray exposure doses reconstructed from the EPR spectra are an order of magnitude higher than the applied doses, while the dose loads due to gamma radiation are equal to the applied doses. The data obtained indicate that for adequate reconstruction of individual absorbed doses from EPR spectra of tooth enamel in the population subjected to the combined effect of x-radiation and accidental external gamma radiation as a result of the disaster at the Chernobyl nuclear power plant, we need to take into account the contribution to the dose load from diagnostic x-rays in examination of the teeth, jaw, or skull.

  18. Coincidence gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Markovic, Nikola; Roos, Per; Nielsen, Sven Poul

    2017-01-01

    Gamma-ray spectrometry with high-purity germanium (HPGe) detectors is often the technique of choice in an environmental radioactivity laboratory. When measuring environmental samples associated activities are usually low so an important parameter that describes the performance of the spectrometer...... for a nuclide of interest is the minimum detectable activity (MDA). There are many ways for lowering the MDAs in gamma spectrometry. Recently, developments of fast and compact digital acquisition systems have led to growing number of multiple HPGe detector spectrometers. In these applications all detected...

  19. Asymmetry of the cross section for the reaction. gamma. d. -->. pi. /sup 0/d with linearly polarized. gamma. rays at 500--700 MeV and at a c. m. angle theta(0 = 130/sup 0/

    Energy Technology Data Exchange (ETDEWEB)

    Adamyan, F.V.; Akopyan, G.G.; Vartapetyan, G.A.; Galumyan, P.I.; Grabskii, V.O.; Karapetyan, V.V.; Karapetyan, G.V.; Oktanyan, V.K.

    1984-06-25

    The asymmetry of the cross section (..sigma..) of the reaction ..gamma..d ..-->.. ..pi../sup 0/d induced by linearly polarized ..gamma.. rays has been measured at energies E..gamma.. = 500 MeV, E..gamma.. = 600, and E/sub ..gamma../ = 700 MeV at the c.m. angle theta(0 = 130/sup 0/. The results disagree with calculations in the impulse approximation. The results can be explained in a qualitative way by appealing to an /sup 3/F/sub 3/ (2.26-GeV) dibaryon resonance.

  20. Anisotropy of the cosmic gamma-ray background from dark matter annihilation

    International Nuclear Information System (INIS)

    Ando, Shin'ichiro; Komatsu, Eiichiro

    2006-01-01

    High-energy photons from pair annihilation of dark matter particles contribute to the cosmic gamma-ray background (CGB) observed in a wide energy range. Since dark matter particles are weakly interacting, annihilation can happen only in high density regions such as dark matter halos. The precise shape of the energy spectrum of CGB depends on the nature of dark matter particles--their mass and annihilation cross section, as well as the cosmological evolution of dark matter halos. In order to discriminate between the signals from dark matter annihilation and other astrophysical sources, however, the information from the energy spectrum of CGB may not be sufficient. We show that dark matter annihilation not only contributes to the mean CGB intensity, but also produces a characteristic anisotropy, which provides a powerful tool for testing the origins of the observed CGB. We develop the formalism based on a halo model approach to analytically calculate the three-dimensional power spectrum of dark matter clumping, which determines the power spectrum of annihilation signals. We show that the expected sensitivity of future gamma-ray detectors such as the Gamma Ray Large Area Space Telescope (GLAST) should allow us to measure the angular power spectrum of CGB anisotropy, if dark matter particles are supersymmetric neutralinos and they account for most of the observed mean intensity of CGB in GeV region. On the other hand, if dark matter has a relatively small mass, on the order of 20 MeV, and accounts for most of the CGB in MeV region, then the future Advanced Compton Telescope (ACT) should be able to measure the angular power spectrum in MeV region. As the intensity of photons from annihilation is proportional to the density squared, we show that the predicted shape of the angular power spectrum of gamma rays from dark matter annihilation is different from that due to other astrophysical sources such as blazars and supernovae, whose intensity is linearly proportional to

  1. Presentation of a semiempirical method for the calculation of doses due to neutrons and capture gamma rays inside high energy accelerators rooms

    International Nuclear Information System (INIS)

    Larcher, A.M.; Bonet Duran, S.M.

    1998-01-01

    Full text: Medical electron accelerators operating above 10 MeV produce radiation beams that are contaminated with neutrons. Therefore, shielding design for high energy accelerator rooms must consider the neutron component of the radiation field. In this paper a semiempirical method is presented to calculate doses due to neutrons and capture gamma rays inside the room and the maze. The calculation method is based on the knowledge of the neutron yield Q (neutrons/Gy of photons at isocenter) and the average energy of the primary beam of neutrons Eo (MeV). The method constitutes an appropriate tool for shielding facilities evaluation. The accuracy of the method has been contrasted with data obtained from the literature and an excellent correlation among the calculations and the measured values was achieved. In addition, the method has been used in the verification of experimental data corresponding to a 15 MeV linear accelerator installed in the country with similar results. (author) [es

  2. Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Komura, S.; Takada, A.; Mizumura, Y.; Miyamoto, S.; Takemura, T.; Kishimoto, T.; Kubo, H.; Matsuoka, Y.; Mizumoto, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Parker, J. D.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K. [Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502 (Japan); Kurosawa, S. [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, 980-8579 (Japan); Miuchi, K. [Department of Physics, Kobe University, Kobe, Hyogo, 658-8501 (Japan); Sawano, T., E-mail: komura@cr.scphys.kyoto-u.ac.jp [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kanazawa, Ishikawa, 920-1192 (Japan)

    2017-04-10

    X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factor over an FoV of up to 2 π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 10{sup 7} s exposure and over 20 GRBs down to a 6 × 10{sup −6} erg cm{sup −2} fluence and 10% polarization during a one-year observation.

  3. Method and apparatus for neutron induced gamma ray logging for lithology identification

    International Nuclear Information System (INIS)

    Oliver, D.W.; Culver, R.B.

    1981-01-01

    The patent describes a neutron-gamma well logging technique which can distinguish between sandstone and limestone formations irrespective of water salinity in the formation. The formation surrounding a borehole is irradiated by fast neutrons and the resulting gamma rays are counted. The gamma rays are converted to electrical signals in three distinct steps; the first two signals result from gamma rays associated with calcium content of the formation and the third signal from gamma rays associated with silicon content. Gamma rays resulting from irradiation of calcium are counted at two non-contiguous energy bands. (O.T.)

  4. High energy photons and neutrinos from gamma ray bursts

    International Nuclear Information System (INIS)

    Dar, A.

    1998-01-01

    The Hubble space telescope has recently discovered thousands of gigantic comet-like objects in a ring around the central star in the nearest planetary nebula. It is suggested that such circumstellar rings exist around most of stars. Collisions of the relativistic debris from gamma ray bursts in dense stellar regions with such gigantic comet-like objects, which have been stripped off from the circumstellar rings by gravitational perturbations, produce detectable fluxes of high energy gamma-rays and neutrinos from gamma ray bursts

  5. Capture into resonance and phase-space dynamics in an optical centrifuge

    Science.gov (United States)

    Armon, Tsafrir; Friedland, Lazar

    2016-04-01

    The process of capture of a molecular ensemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase-space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1 ,2 characterizing the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in good agreement with simulations. The existing experiments satisfy the validity conditions of the theory.

  6. Detection of pseudo gamma-ray bursts of long duration

    International Nuclear Information System (INIS)

    Frontera, F.; Fuligni, F.; Morelli, E.; Pizzichini, G.; Ventura, G.

    1981-01-01

    It is known that the counting rate of both Na I and Cs I hard X-ray detectors can have intense enhancements of brief (< 1 s) duration, which appear like very short cosmic gamma-ray bursts but probably are due to phosphorescence in the detector itself. Unfortunately, this problem is not limited to short bursts. We present here three much longer (up to 80 s) pseudo-gamma-ray bursts observed during a transatlantic balloon flight. We conclude that detections of gamma-ray bursts (and probably also of hard X-ray source flares) based only on a rate increase by a single scintillator should always be confirmed by at least one other instrument. (orig.)

  7. MAGNETIC STRUCTURES IN GAMMA-RAY BURST JETS PROBED BY GAMMA-RAY POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Yonetoku, Daisuke; Murakami, Toshio; Morihara, Yoshiyuki; Takahashi, Takuya; Wakashima, Yudai; Yonemochi, Hajime; Sakashita, Tomonori; Fujimoto, Hirofumi; Kodama, Yoshiki [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192 (Japan); Gunji, Shuichi; Toukairin, Noriyuki [Department of Physics, Faculty of Science, Yamagata University, 1-4-12, Koshirakawa, Yamagata, Yamagata 990-8560 (Japan); Mihara, Tatehiro [Cosmic Radiation Laboratory, RIKEN, 2-1, Hirosawa, Wako City, Saitama 351-0198 (Japan); Toma, Kenji, E-mail: yonetoku@astro.s.kanazawa-u.ac.jp [Department of Earth and Space Science, Osaka University, Toyonaka 560-0043 (Japan)

    2012-10-10

    We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the gamma-ray burst polarimeter (GAP) on borad the IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of {Pi} = 70 {+-} 22% with statistical significance of 3.7{sigma} for GRB 110301A, and {Pi} = 84{sup +16}{sub -28}% with 3.3{sigma} confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. Synchrotron emission model can be consistent with the data of the three GRBs, while the photospheric quasi-thermal emission model is not favored. We suggest that magnetic field structures in the emission region are globally ordered fields advected from the central engine.

  8. TPASS: a gamma-ray spectrum analysis and isotope identification computer code

    International Nuclear Information System (INIS)

    Dickens, J.K.

    1981-03-01

    The gamma-ray spectral data-reduction and analysis computer code TPASS is described. This computer code is used to analyze complex Ge(Li) gamma-ray spectra to obtain peak areas corrected for detector efficiencies, from which are determined gamma-ray yields. These yields are compared with an isotope gamma-ray data file to determine the contributions to the observed spectrum from decay of specific radionuclides. A complete FORTRAN listing of the code and a complex test case are given

  9. High energy X-ray observations of COS-B gamma-ray sources from OSO-8

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Caraveo, P. A.

    1985-01-01

    During the three years between satellite launch in June 1975 and turn-off in October 1978, the high energy X-ray spectrometer on board OSO-8 observed nearly all of the COS-B gamma-ray source positions given in the 2CG catalog (Swanenburg et al., 1981). An X-ray source was detected at energies above 20 keV at the 6-sigma level of significance in the gamma-ray error box containing 2CG342 - 02 and at the 3-sigma level of significance in the error boxes containing 2CG065 + 00, 2CG195 + 04, and 2CG311 - 01. No definite association between the X-ray and gamma-ray sources can be made from these data alone. Upper limits are given for the 2CG sources from which no X-ray flux was detected above 20 keV.

  10. Discovery of Giant Gamma-ray Bubbles in the Milky Way

    Science.gov (United States)

    Su, Meng

    Based on data from the Fermi Gamma-ray Space Telescope, we have discovered two gigantic gamma-ray emitting bubble structures in our Milky Way (known as the Fermi bubbles), extending ˜50 degrees above and below the Galactic center with a width of ˜40 degrees in longitude. The gamma-ray emission associated with these bubbles has a significantly harder spectrum (dN/dE ˜ E-2) than the inverse Compton emission from known cosmic ray electrons in the Galactic disk, or the gamma-rays produced by decay of pions from proton-ISM collisions. There is no significant difference in the spectrum or gamma-ray luminosity between the north and south bubbles. The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAP haze; we also found features in the ROSAT soft X-ray maps at 1.5 -- 2 keV which line up with the edges of the bubbles. The Fermi bubbles are most likely created by some large episode of energy injection in the Galactic center, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last ˜ 10 Myr. Study of the origin and evolution of the bubbles also has the potential to improve our understanding of recent energetic events in the inner Galaxy and the high-latitude cosmic ray population. Furthermore, we have recently identified a gamma-ray cocoon feature within the southern bubble, with a jet-like feature along the cocoon's axis of symmetry, and another directly opposite the Galactic center in the north. If confirmed, these jets are the first resolved gamma-ray jets ever seen.

  11. The bright gamma-ray burst of 2000 February 10: A case study of an optically dark gamma-ray burst

    DEFF Research Database (Denmark)

    Piro, L.; Frail, D.A.; Gorosabel, J.

    2002-01-01

    The gamma-ray burst GRB 000210 had the highest gamma-ray peak flux of any event localized by BeppoSAX as yet, but it did not have a detected optical afterglow, despite prompt and deep searches down to R-lim approximate to 23.5. It is therefore one of the events recently classified as dark GRBs......, whose origin is still unclear. Chandra observations allowed us to localize the X-ray afterglow of GRB 000210 to within approximate to1", and a radio transient was detected with the Very Large Array. The precise X-ray and radio positions allowed us to identify the likely host galaxy of this burst...

  12. Polar gamma ray mode for testing weld quality natural gas pipeline

    International Nuclear Information System (INIS)

    Shahout, A. M.; Mahmood, A.Sh.

    2005-01-01

    The polar gamma-ray radiography method was studied extensively, gamma ray from Ir 192 source was used to detect weld defects in the main gas pipeline extending from Kh oms to Tripoli, gamma ray radiographic inspections were carried out according to the Astm(1) standards, and the radiographs were analyzed according to quality specifications API(2) standard-1104. The polar gamma ray mode has been applied to specimens of weld joints of pipes used in this pipeline in the reg [the kilometer 118(3)] and [the kilometer 123], and weld joints in the SLR 7 stz in the region [the kilometer 125]. The results obtained from gamma-rays have discussed and analyzed

  13. Application for plasma diagnostics with D(α, γ)6Li gamma-ray

    International Nuclear Information System (INIS)

    Ochiai, Kentaro; Kubota, Naoyoshi; Nishitani, Takeo; Taniike, Akira; Kitamura, Akira

    2006-01-01

    The gamma ray measurement from fusion plasma is one of the important techniques to clarify fast ion properties in plasma. Some observation of the gamma-ray in JET plasma was reported. 12 C(d, pγ) 13 C and 9 Be(α, nγ) 12 C reactions on the JET observation are mainly recommended as the actual prospective nuclear reaction on the gamma-ray measurement. However, it is thought that the gamma-ray observation by means of these reactions significantly depends on the conditioning (i.e. densities of the beryllium and carbon in plasma). Therefore, it is also important to examine the availabilities concerning the methods of gamma ray. We have tried to measure the 2.18 MeV gamma ray of D(α, γ) 6 Li reaction and the properties of the another gamma ray emission by MeV-He ++ beam irradiation experiment. (author)

  14. Study of gamma cascades and strength functions in the neutron capture reaction 77Se(n,γ)

    International Nuclear Information System (INIS)

    John, Robert

    2014-01-01

    One of the most important nuclear processes is the nuclear capture reaction. The cosmic nucleosynthesis (s-process) of heavy elements produces nuclei with mass numbers greater than 56 (Iron), which cannot be produced by nuclear fusion. A nucleus gets exited to the binding energy via capture of a neutron and afterwards deexcites to the groundstate by the emission of photons (gamma rays). The characteristics of the γ rays allow conclusions about the structure of the nucleus. In this work the photons, sent out by the excited 78 Se * , were analyzed. The experiment took place at the research reactor of the Institute Laue-Langevin in Grenoble, France. After a efficiency calibration and the addback procedure the multi detector setup allowed coincidence and directional correlation measurements. With the help of these measurements a level scheme was developed and the directional correlation measurements were used to assign spins to different levels. Furthermore the experimental acquired data were compared to results of a simulation (γDEX) and a photon scattering experiment carried out at the ELBE electron accelerator.

  15. Observation of cosmic gamma ray burst by Hinotori

    International Nuclear Information System (INIS)

    Okudaira, Kiyoaki; Yoshimori, Masato; Hirashima, Yo; Kondo, Ichiro.

    1982-01-01

    The solar gamma ray detecor (SGR) on Hinotori has no collimator, and the collimator of a hard X-ray monitor is not effective for gamma ray with energy more than 100 KeV. Accordingly, the detection system can detect cosmic gamma ray burst, and two bursts were observed. The first burst was detected on February 28, 1981, and the source of the burst was in the direction of 81 degree from Venus. The time profile and the spectrum were observed. In July 21, 1981, the second burst was detected. The time profile obtained with the SGR was compared with those of PVO (Pioneer Venus Orbiter) and LASL-ISEE. The time difference among the data of time profiles indicated that the source of the burst was not the sun. The spectrum was also measured. (Kato, T.)

  16. Gamma-Ray imaging for nuclear security and safety: Towards 3-D gamma-ray vision

    Science.gov (United States)

    Vetter, Kai; Barnowksi, Ross; Haefner, Andrew; Joshi, Tenzing H. Y.; Pavlovsky, Ryan; Quiter, Brian J.

    2018-01-01

    The development of portable gamma-ray imaging instruments in combination with the recent advances in sensor and related computer vision technologies enable unprecedented capabilities in the detection, localization, and mapping of radiological and nuclear materials in complex environments relevant for nuclear security and safety. Though multi-modal imaging has been established in medicine and biomedical imaging for some time, the potential of multi-modal data fusion for radiological localization and mapping problems in complex indoor and outdoor environments remains to be explored in detail. In contrast to the well-defined settings in medical or biological imaging associated with small field-of-view and well-constrained extension of the radiation field, in many radiological search and mapping scenarios, the radiation fields are not constrained and objects and sources are not necessarily known prior to the measurement. The ability to fuse radiological with contextual or scene data in three dimensions, in analog to radiological and functional imaging with anatomical fusion in medicine, provides new capabilities enhancing image clarity, context, quantitative estimates, and visualization of the data products. We have developed new means to register and fuse gamma-ray imaging with contextual data from portable or moving platforms. These developments enhance detection and mapping capabilities as well as provide unprecedented visualization of complex radiation fields, moving us one step closer to the realization of gamma-ray vision in three dimensions.

  17. Matrix of response functions for xenon gamma-ray detector

    International Nuclear Information System (INIS)

    Shustov, A.E.; Vlasik, K.F.; Grachev, V.M.; Dmitrenko, V.V.; Novikov, A.S.; P'ya, S.N.; Ulin, S.E.; Uteshev, Z.M.; Chernysheva, I.V.

    2014-01-01

    An approach of creation of response matrix using simulation GEANT4 gamma-ray Monte-Carlo method has been described for gamma-ray spectrometer based on high pressure xenon impulse ionization chamber with a shielding grid [ru

  18. Non-statistical effects in the radiative capture cross sections of the neodymium isotopes

    International Nuclear Information System (INIS)

    Musgrove, A.R.; Allen, B.J.; Boldeman, J.W.

    1977-01-01

    The neutron capture cross sections of the stable neodymium isotopes have been measured with high energy resolution in the keV region at the 40 m station of ORELA. Average resonance parameters are extracted for s-wave resonances. Significant positive correlations are found between gamma-n-0 and gamma-gamma for all isotopes. The magnitude of the observed correlation coefficient, particularly for 142 Nd (rho = 0.9), cannot be explained in terms of valence neutron capture and additional mechanisms are discussed. The average s-wave radiative widths for the odd-A isotopes are markedly greater than for the even-A isotopes, while the p-wave radiative width for 142 Nd is considerably less than the s-wave width. (author)

  19. Evaluation of effective dose equivalent from environmental gamma rays

    International Nuclear Information System (INIS)

    Saito, K.; Tsutsumi, M.; Moriuchi, S.; Petoussi, N.; Zankl, M.; Veit, R.; Jacob, P.; Drexler, G.

    1991-01-01

    Organ doses and effective dose equivalents for environmental gamma rays were calculated using human phantoms and Monte Carlo methods accounting rigorously the environmental gamma ray fields. It was suggested that body weight is the dominant factor to determine organ doses. The weight function expressing organ doses was introduced. Using this function, the variation in organ doses due to several physical factors were investigated. A detector having gamma-ray response similar to that of human bodies has been developed using a NaI(Tl) scintillator. (author)

  20. Fermi Discovery of Gamma-Ray Emission from NGC 1275

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Asano, K.; /Tokyo Inst. Tech.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle; Caliandro, G.A.; /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /SISSA, Trieste /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /ASDC, Frascati /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U.; /more authors..

    2009-05-15

    We report the discovery of high-energy (E > 100 MeV) {gamma}-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope. The positional center of the {gamma}-ray source is only {approx}3{prime} away from the NGC 1275 nucleus, well within the 95% LAT error circle of {approx}5{prime}. The spatial distribution of {gamma}-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F{sub {gamma}} = (2.10 {+-} 0.23) x 10{sup -7} ph (>100 MeV) cm{sup -2} s{sup -1} and {Gamma} = 2.17 {+-} 0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period. Previous EGRET observations gave an upper limit of F{sub {gamma}} < 3.72 x 10{sup -8} ph (>100 MeV) cm{sup -2} s{sup -1} to the {gamma}-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.